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.1 Introduction

Useful visual information can be extracted from optical flow - a 2D vector field

which estimates the velocity of points in space as projected on the image plane. For

example, images can be segmented at discontinuities of optical flov, while 3D motion

and structure parameters can be computed from flow features in several ways [Wax84,

Kan85, DN82b, DN82a, LHP80, TH84, WU85, BH83, WN86, U11831. A thorough
analysis of how to recover optical flow robustly from a sequence of time-varying images,
therefore, is important for understanding the strengths and weaknesses of th,- different
methods that can be used.

In this paper, a number of algorithms for optical flow are examined on both theo-

retical and experimental grounds. In particular, we examine differential and matching
methods. Emphasis has been given to algorithms which have a very simple and lo-
cal computational structure. We contrast algorithms where optical flow is derived
from simple local processing with those having global constraints. The former meth-
ods may require some simple smoothing to achieve coherence while the latter require
global smoothing under constraint (regularization)[BPT88, YG88].

The flow can be derived either by differential or matching methods. Differen-
tial methods estimate image velocity from spatial and temporal variation in image
brightness. Matching methods search for displacements which bring image brightness
features into correspondence.

Our analysis suggests several points. The traditional algorithms for optical flow
utilize weak assumptions on the local variation of the flow, and on the variation of
image brightness. Strengthening these assumptions makes local flow computation
possible. The computational consequence of stronger assumptions is a need for larger
spatial and temporal support. Using larger support is valid when constraints on
the local shape of the flow are satisfied. We show that a simple constraint on the
local shape of the optical flow, slow spatial variation across the image plane, is often
satisfied.

The initial measurements in differential methods include various spatial and tem-
poral derivatives of the image. Much care must then be taken in numerical imple-
mentation of differentiation. For example, if the scale of the smoothing filter applied
before differentiation is comparable with the size of the inter-pixel distance (o is ap-
proximately 1) - which is usually the case - accurate numerical approximation of
derivatives requires large spatial support. Intuitively, this happens because the inter-
pixel distance is not "small" with respect to the spatial and temporal change in image
brightness. Moreover, much care must be taken in mixing numerical approximations
with different support. This fact plays a crucial role in analyzing performance of

algorithms.
Rather general conclusions can be drawn from our analysis. Firstly, local algo-
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rithms provide good measurements of optical flow and thus are particularly promising
as inputs to later visual tasks. Moreover, suitable differential techniques are able to
produce local estimates of the optical flow at much less computational expense than
global methods.

Secondly, the use of simple constraints on the local shape of optical flow improves
the quality of results. Localization and segmentation require precise estimates of the
optical flow, while robustness demands an assumption of smoothness or coherence in
the flow. These goals often conflict. The better the estimates in the initial stage, the
less stringent need be the constraints PDplied in the smoothing stage.

The rest of the paper is organized in three sections. Section 2 discusses the general
structure of methods for optical flow. In section 3 different algorithms are considered.
The computational assumptions which underlie each of them are discussed and some
novel theoretical arguments introduced. Experimental results are always presented
to corroborate major points. Section 4 examines the performance of some of the
algorithms when their assumptions do not hold. The concluding section summarizes
our results.

2 General Structure of Methods for Optical Flow

This section discusses the general structure of several rather different algorithms which
attempt to recover optical flow from a sequence of time-varying images.

The extraction of motion information from a sequence of images is a difficult task.
Goals and computational constraints often do not match, and sometimes are conflict-
ing. For example, local optical flow estimates can be refined by assuming different
degrees of spatial smoothness. On the other hand, discontinuity of optical flow, local-
ization of features, and 3D parameter estimates require accurate reconstruction of the
optical flow. It proves useful to think of optical flow recovery as a process consisting
of two steps. In the first step, measurement, the optical flow is estimated by means
of local techniques. The measurements are not necessarily very accurate but should
allow for a complete reconstruction of the optical flow, which is carried out in the
second step, usually a smoothing or regularization step.

Indeed, traditional motion studies usually start from the assumption that the first
step has to be incomplete and ineffective since the recovery of the optical flow is an
underconstrained problem - the so-called "aperture problem" [MU81]. Recently, how-
ever, this assumption has been successfully challenged [UGVT88a. LBPS8. RSES8];
several studies have proved experimentally and theoretically that there is enough in-
formation in a sequence of images to give an accurate measurement of local motion
in a single step. A very important consequence of this result is the fact that often no
further processing is required, particularly so when the measurement stage depends
upon large spatial support, as in matching methods. In the next section, we will
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examine iu some detail the assumptions underlying these studies, and the structure
and computational requirements of the algorithms that arise naturally from them.
An influential algorithm proposed by Horn and Schunck[HS81] is also considered as a
prototype of a certain way to look at the problem of computing the optical flow.

3 Algorithms for Optical Flow

In this section we review some algorithms for optical flow. Emphasis is given to
computational issues and theoretical arguments which support the use of simple but
effective constraints to produce measurements of optical flow on a strictly local basis.

3.1 Differential Algorithms

Optical flow information can be extracted by making assumptions about spatial and
temporal variations of the image brightness. If E = E(xl, x 2, t) is the image brightness
at the location i = (xI, X2) on the image plane at time t in a suitable system of
orthogonal coordinates, the weakest possible assumption is that the total temporal
derivative of the image brightness vanishes [FT79., HS81]:

dE
d- =0 (1)

Eq. 1 embodies the "brightness constancy" assumption. Since this is a very simple
assumption, making no hypothesis on the spatial variation of the optical flow, it is
the starting point of several methods for computing optical flow. Equation 1 can be
read as an analytical formulation of the "aperture problem" - because from Eq. 1 it
is only possible to recover the component of the optical flow in the direction of the
spatial gradient. Equation 1 can be expanded into the total derivative of the optical
flow V= (vI,v 2 ):

aE aE 49E
- v, + 7 -v 2 + - = 0 (2)

Note that Eq. 2 involves only first spatial and temporal derivatives of the image
brightness. Methods for optical flow based upon Eq. 2 need further constraints in
order to determine the correct flow field. Horn and Schunck [HS81] introduced a
smoothness assumption on the spatial variation of the optical flow, and chose the
smoothest vector field which satisfies Eq. 2 in order to recover a unique solution.
They also proposed an iterative algorithm to compute the solution, which we have
implemented and tested. The update rule in the iterative scheme is

n+( n a ,, 2 at-

"1 I + A( 1-E + 9 O X1
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jn+ 2-7'2 n +!!- i)E (3
V2"+ I = J 2 n 1±A( 2) 3t (3)

where superscripts denote the step and JY, iT2 are local averages of vi,v 2 .' Figure 1

shows a "plaid" pattern, a superposition of vertical and horizontal sine waves of the

same period (64 pixels) in an image of 256 x 256 pixels. The pattern is translating

across the image plane from the upper left corner to the lower right corner by 6.4

pixels per frame. The Horn and Schunck algorithm recovers the correct translational

flow for this pattern (Fig. 2), but requires many iterations of the iterative regular-

ization (smoothing) step. Consider the effect of setting A to zero in Eq. 3; then the

regularization (as constructed) will choose the smoothest velocity field derived from

repeated averaging of the initial measurements. The number of iterations of such a

process is proportional to the square of the spatial scale, since it is a diffusion pro-

cess. The spatial wavelength is large in this case (64 pixels), necessitating so many

iterations to propagate information from regions where the image gradient is parallel

to the flow to regions where the image gradient is normal to the flow (see Fig. 3 for

the initial normal flow). When A is not zero, the convergence is even slower, since the

subtracted terms in Eq. 3 force the value of 6 away from the average value (f,, D2)

toward the image gradient. Multigrid methods [Ter86] can be used to overcome some

of these problems of scale.

To improve the measurement step without enforcing global smoothness constraints,
a simple working assumption (examined later in Section 4) is that the optical flow

does not change appreciably at neighboring pixels. Then, in the neighborhood of

every pixel, Eq. 2 can be rewritten for the same unknown velocity. At each pixel, a
linear system, possibly overconstrained, has to be solved (see [LK81, KTB87], among

others). Every equation of the linear system for the optical flow v = (vi, v2) is of
the form of Eq. 2, and v, and v2 are assumed to be constant over a neighborhood of
every pixel. This local constraint algorithm, applied to the sequence of Fig. 1, using

a neighborhood of lIxIl pixels, produces the correct translational flow. Note that

no further smoothing step has been implemented but that a larger support has been

used. At least two questions arise from the implementation of this simple algorithm:

firstly, what can be said about the assumption on the local structure of the optical

flow, namely that the optical flow is locally "approximately constant"? An argument

to support this and other similar constraints is presented in Section 4. Secondly, does

this formulation lead to a seriously ill-conditioned algorithm? The performance of the
algorithm is dependent on the local variation of the image gradient; the neighborhood

must be large enough to contain sufficient variation of VE.

Other constraints, instead of Eq. 2, can be applied for optical flow. The total
temporal derivative of several other quantities vanishes depending on the kind of

'This formula (due to Horn) corrects an error in the update rule given in [Hor85], p. 288.
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Figure 1: A "plaid" pattern, a superposition of vertical and horizontal sine waves of
the same period (64 pixels). The pattern is translating across the image plane from

the upper left corner to the lower right corner by 6.4 pixels per frame.

O Figure 2: The optical flow field produced by the matching algorithm using a displace-

ment range of ±t8 pixels; for this input, all algorithms performed similarly.
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observed motion [VGT90]. For example, the total temporal derivative of the spatial

gradient vanishes for parallel translation on the image plane [UGVTSSb], that is.

dVE
dt

We term this assumption gradient constancy. Expanding Eq. 4 leads to the two

constraints:
0 2 E 0 2E 0 2 E5X 2 v , + -z~x V2 + O t 0

a2 E 02 E a2 E
VOx + O--V2 + Oxt- (5)

at each pixel in the image. If the spatial changes in the optical flow can be assumed to

be negligible (see Sec. 4) then Eq. 4 can be solved for the optical flow. However, since

Eq. 4 provides two constraints for the optical flow, in principle the flow it produces

needs less smoothing. Again this has been obtained by using larger support since

it requires computing second derivatives [Nag83a, Nag83b, HL83, TP82, Nag87]. At

locations where the two scalar equations in Eq. 4 are linearly dependent - that

is, where the determinant of the Hessian, the matrix of second derivatives of image

brightness, vanishes - there is not enough local information to measure the optical

flow. Where the determinant of the Hessian is small, the linear system is often ill-

conditioned. For an analysis of errors in local constraint methods, see [KTB87J.
The gradient constancy algorithm performs well on the sequence in Fig. 1; where the

Hessian vanishes, there are gaps - this implies the need of a small amount of smoothing

to fill in gaps. Interestingly, the local constraint method and gradient constancy are

intimately related. It is possible to show that the constraints given by locally solving

the brightness constancy equation at three nearby points, assuming constant flow.

imply the gradient constancy constraint.

Consider three points in the image, a central point p, and two others, P2, displaced

by (Axi,0) from pi, and p3, displaced by (0, Ax 2 ) from pi. The spatial and temporal

derivatives of brightness at p can be expanded in a Taylor series around pl, letting

superscripts denote the point at which derivatives are taken, to give

OE 2  0 E1  O2EIl

- - + T7 Ax 1

a E2 aEt a2E

ax2 Ox + Ox2xa1
OE 2  aE 02 E '

- - a t Ot x (6)

ignoring high order terms. Substituting these terms in Eq. 2 at p2 yields

OE' 02E 1  El 02 E ' DE' 02E 1

( + X1 )V,+(- + 70 +(- + - Ax1)=0. (7)
ax I xOx 2 tx2x )Ox



Rearranging gives

aE' DE' E' 0 2 E 02 E 1 02E 1

( TX- + + T ) + + -- - V2+ 5-t =0. o.

The first sum vanishes, and. after division bv AxI. we get the first equation in Eq. .5.
Similar expansion at P3 using second derivatives in x2 , with the same manipulations.
yields the second equation in Eq. 5. Local solution of the brightness constraint equa-
tion at three points, chosen in this way, thus implies the gradient constancy constraint.

3.2 Matching Algorithms

Let us consider methods which match features from two images to derive displace-
ments describing the optical flow field. The large class of correlation-based algorithms
for stereo or motion are matching methods. [Dev75, Nis84, Ana87, LOY73. MP76.
KMJ77] (see [ior85] for references). As a prototype, we will use the parallel optical

flow algorithm described in [LBP88]. This algorithm assumes that the optical flow
is locally constant, that, for each point, the displacement of nearby points under the
optical flow is the same as the displacement of the central point. We show later
(Section 4) that this assumption is true at many points in most optical flow fields.
particularly since the matching method only considers displacements at multiples of
pixels. A second assumption states that the effects of foreshortening are small: note
that this assumption is not true at occluding boundaries of rotating objects. In stereo.
this assumption is more often violated, since the viewing angle (the angle between the
projection ray of a surface point and the surface normal) varies much more between
the two images.

The structure of the algorithm is as follows. At each point in the image. under
each integer displacement, the image in the two frames are compared and a measure
of the matching between points is computed, and summed over a small region. This
can be interpreted as matching small patches from the first image with small patches
in the second. Coherence of the resulting flow field is achieved as a result of the
fact that the support regions, the patches, have large overlap. The displacement is
chosen to maximize the matching measure over all displacements. There are two
important parameters in this algorithm: the size of the summation regions and the
range of displacements to be considered. For a further discussion of this algorithm
and parameter choices, see [LB88].

The algorithm is simple and local, but is more computationally intensive than
the measurement stage of most differential methods, since the number of comparison
steps depends on the displacement range. The optical flow obtained by using this
method on the sequence of images previously considered is shown in Fig. 2. We
will see from later examples of the matching algorithm that the algorithm is robust
under small deviations from the assumption of local constancy of the flow. When
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the flow results from parallel translation in the image plane, and the magnitude of

the displacement is integral and within the range of displacements considered, the

matching algorithm should be exact, and thus can serve as a reference in some of our

examples. Note that the gradient constancy method also produces correct estimates

under these circumstances. The matching measure used in experiments reported here

is the squared difference of the smoothed brightness over patches from the first and

second images. Valid measurements result at locations-where the image Hessian does

not vanish. The constraint of gradient constancy leads to a matching criterion for

the matching method, the squared difference of the image gradients, that can also be

effectively used in the matching algorithm.

4 Verifying Assumptions

In this section we deal with computational and numerical assumptions made to re-

cover the optical flow. Sequences of a rotating circle and of a planar surface which

translates toward the observer are considered. Finally, the numerical implementation

of derivatives for optical flow is discussed in detail.

*4.1 Local Properties of the Optical Flow

Let us consider the simple case in which a planar surface is translating in space. The

optical flow i = (vl, v2) can then be written as

- T3 )
= &. (i-(9)

where Y = (xI, X2 , f) is the perspective projection onto the image plane of the point

N in a system of coordinates defined by the triple of mutually orthogonal unit vectors

(e'F, F2 , e3 ). The center of projection lies at the origin and the image plane has equation

X3 = - F3 = f. The point P = fT/T3 , T3 = T eF3, is the singular point of the
optical flow, or the point where the optical flow vanishes. The vector 6 = (0 .1-2, 3)

is the unit normal to the planar surface which has equation

-=Y . (10)

Note that Y is now considered a 3D vector. Its third component is. however, always

equal to the focal length f. We want to estimate the spatial variation of the optical
flow across the image plane. Let us define btyij, the relative spatial variation of t,, in

the direction Fj, as follows:

9 - (11)
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where -8- is the spatial partial derivative of vi, i = 1, 2, in the direction Fj, j = 1 2,

and 11011 is the magnitude of the optical flow at X-. The relative spatial variations

are good measures of the magnitude of spatial variation of the optical flow, because

they do not depend on the magnitude of thL; flow field. Previous examinations of the

uniformity of optical flow [KTB87] formulate a similar measure of flow variation and

derive an approximate bound for the flow induced by a planar surface, although under

more restricted assumptions on viewing geometry.
Now, straightforward computation of the partial derivatives of the vi leads to the

following inequality
0Vi r3 . ,+Ii ,I

L_ (, a  _l + 1- -' (12)
,9x j 1 1

while for the magnitude of the optical flow we have

11611 1 I -III - PH (13)

Thus, since 11111 > f, one obtains

1 1
vf +-- (14)Ii1 -1 11 f cos0

where 0 is t' .ngle between the normal vector 6 and i. The focal length f is typically
103 pixels. 'I nerefore, when the angle is smaller than 20 degrees, at locations thirty

pixels away from the singular point the relative spatial variations are less than 5%
percent per pixe'. For angles as wide as 85 degrees, at least ten pixels away from the

singular point the relative spatial variation is still less than about 10% per pixel.
A similar argument for pure rotation leads to the following inequality

SVj < (15)I W3111- is11V1 - 2 cos(o

where P' = fX/w 3 , w3 = Z -e 3 is the singular point of the optical flow and 0 is the

angle between i - - and Y. In the case in which Z = wg 3 (when the rotational and
optical axis coincide), for example, Eq. 15 can be rewritten as

V0  i _ 2 l (16)

which is similar to Eq. 14. For w 3 = 0 or Iw31 << IIwI, a similar conclusion can be

obtained.
The above analysis can easily be extended to an arbitrary smooth surface, due

to its local nature. The only difference is that, since the normal to the surface is

changing, 5 must change accordingly. As intuitively expected, therefore, locations of
strong spatial variation lie near occluding boundaries (that is, where the normal to

10



the surface is almost perpendicular to the projecting ray) and probably not far away

from discontinuities. Horn and Schunck[HS81] show that (in the case of rotational

motion)
V2vI = W2V 2x 3 , V 2v 2 = wV 2x 3 , (17)

showing that "the smoothness of the optical flow is directly related to the smoothness
of a rotating body".

The above arguments suggest that the local shape of the optical flow is indeed
fairly simple. Due to discretization errors and noise, at most locations, optical flows
are likely to be locally indistinguishable from constant vector fields. Therefore, as-
sumptions like local constancy, i.e., slow variation of the optical flow across the image
plane, capture a fundamental local property of optical flow, entirely due to the simple
structure of 3D rigid motion which has been, as usual, implicitly assumed.

4.2 Non-constant Velocity Fields

We consider the behavior of the algorithms when the assumptions of small spatial
variation of the velocity are violated, for example, in the cases of rotational and

looming fields.

4.2.1 Rotational Field

First we examine a sequence of images of a circle of random grey levels rotating on
the image plane around its center at a fixed angular velocity of 3 degrees per frame.
resulting in maximum displacement of 6.7 pixels. A random grey level circle rotates
before a random grey level background parallel to the image plane. The radius of
the circle is 128 pixels, random grey levels are uniformly distributed in the range
0..255, and the dots are 2 by 2 pixels, finally smoothed by a Gaussian, ar = 2. The

output of the Horn-Schunck algorithm is shown in Fig. 5; large values of A, the regu-
larization parameter, select smoother optical flows. The results of the local constraint
algorithm, and the gradient constancy algorithm (Eq. 4) are shown respectively in
Fig. 6 and Fig. 7. The result of the matching algorithm is shown in Fig. 8. Both
the local constraint algorithm and the gradient constancy algorithm are followed by
a smoothing step to restore coherence. Convolving each of the two components of
the optical flow resulting from the measurement step with a 2D symmetric Gaussian
function produces more coherent optical flows. Note that the theoretical argument of
the previous section, that small relative variation in the optical flow can be assumed.
is clearly verified.

We have also compared the optical flow fields generated by the various algorithms
with the true projected velocity field, which is available since these are synthetic

images. Differential algorithms produce real-valued flow fields, while the matching

11



Figure 4: A random grey level disc rotates on a random grey level background parallel
to the image plane. The disc radius is 128 pixels; grey levels are uniformly distributed
from 0. .255; the dots are 2 by 2 pixels, smoothed by a Gaussian, a 2.
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Algorithm Aver. cosa Aver. I VVlAver. of

Horn-Schunck (100 steps) 0.976 0.904 0.202

Horn-Schunck (400 steps) 0.977 0.914 0.205

Local constraint 0.992 0.645 0.157

Gradient constancy 0.991 0.744 0.165

Matching (rounded) 0.994 0.196 0.052

Matching (exact) 0.992 0.422 0.129
Matching, interpolated (exact) 0.994 0.252 0.082

Table 1: Comparison of true and computed velocity fields - rotating image.

algorithm generates integer displacements. For the differential algorithms, the exact
field i9 is compared with the computed outputs V ,. The output of the matching
algorithm is compared both with the exact field, and the field rounded to integer
values. Moreover, the output of the matching algorithm, the matching scores at inte-
gral displacements, was interpolated to half pixel increments, resulting in significant
improvement in the error measures. Interpolated data for matching reduces the errors
both in this example and the next by 35%.

Several measures were computed from this comparison: the average of cosa, the
cosine of the angle between the true and computed velocity vectors , the average
length of V = V - 1/a, the vector difference between the true and computed velocities
and the average of IYW. Note the slow improvement of the Horn-Schunck algorithm;
this flow field and the looming field are both quite smooth, but the regularization
stage needs many iterations.

An interesting question is why the performance of differential techniques degrades
when moving from translational to rotational velocity fields while matching tech-
niques still produce good results when both are based on similar constraints. The
answer is likely to be intimately connected to the nature of differential and match-
ing techniques. Differential techniques like local constraint and gradient constancy
need some smoothing of the input data. During the smoothing step, brightness in-
formation from locations with different velocities are mixed, introducing error into
the differential measurements. The matching algorithm does not, in principle, need
smoothing, since it does not take derivatives. Another factor in this and the next
example is that a wide range of velocities are present. Differential algorithms depend
on the brightness derivatives being well approximated by linear (first derivative) and
quadratic terms (second derivative). The images are smoothed by a Gaussian before
differentiation, but no one scale of Gaussian suffices to smooth brightness enough at
high velocities while not over-blurring locations with small velocities.
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Algorithm Aver. cosa Aver. I WI Aver. of 2!1

Horn-Schunck (100 steps) 0.942 0.463 0.321

Horn-Schunck (400 steps) 0.943 0.450 0.314

Local constraint 0.960 0.316 0.174

Gradient constancy 0.977 0.230 0.105
Matching (rounded) 0.988 0.115 0.062

Matching (exact) 0.980 0.405 0.247
atching, interpolated (exact) 0.992 0.211 0.160

Table 2: Comparison of true and computed velocity fields - looming image.

4.2.2 Looming Field

Let us now consider another simple kind of motion, that of a planar surface translating
in space towards the observer (looming). We have compared the performance of the
algorithms in the case of a looming planar surface; its appearance is similar to the
textured surface used in the preceding example.

The Horn-Schunck algorithm behaves well (see Fig. 9). Differential techniques
based on larger support, like local constraint and, in particular, the gradient constancy
technique, are not influenced by the spatial structure of the gradient (see Fig. 10 and
11 respectively). The matching algorithm appears not to produce any output in
the immediate neighborhood of the singular point of the optical flow - a focus of
expansion - because displacemcnts in the neighborhood of the focus of expansion
are less than one pixel (see Fig. 12), but does correctly compute zero motion (the
rounded approximation to small values) near the singular point.

4.3 Numerical Differentiation

In implementing and testing these algorithms, we directly confronted many of the
difficulties in computing derivatives of images. As a concluding point of our analysis,
we examine briefly the problems underlying numerical implementation of derivatives
of image brightness. Typically, computer vision algorithms - with rare exceptions, for
example, [TP86] - use two-point and three-point approximation formulae to compute
first and second derivatives of image brightness. For example. an analysis of errors in
optical flow gradient methods [KTB87] uses only the forward difference. In essence,
it is taken for granted that the inter-pixel distance in space (or average displacements
over the image plane between consecutive frames in time) is very "small". A closer
analysis, however, shows that this is equivalent to assuming that the filter function
used before taking derivatives is oversampled in space (or time), i.e., that it has a
"large" scale. To study the effects of various finite difference methods, we use the fact
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that differentiation commutes with convolution and examine the approximations to
the first and second derivatives of a ID Gaussian generated by convolving the Gaussian
with several finite difference operators. Figures 13-16 show some characteristic graphs.
The curves plot the true derivative of a 1D Gaussian G, and samples of several
numerical approximations: the forward or finite difference (two-point formula),

Pf(x) = f(x + 1) - f(x), (18)

central or symmetric difference (three-point formula),

f'(x) = (f(x + 1) - f(x - 1))/2, (19)

four-point formula,

f'(x) = (f(x - 1) - f(x + 2))/24 + 27(f(x + 1) - f(x))/24, (20)

and five-point formula,

f'(x) = 2(f(x + 1) - f(x - 1))/3 - (f(x + 2) - f(z - 2))/12, (21)

at the pixel x. In the formulae above, the interpixel distance is unity.
The comparison between the second derivative, f", of a 1D Gaussian function f

and numerical approximation of it is obtained by using symmetric difference,

f"(x) = f(x + 1) - 2f(x) + f(x- 1), (22)

and five-point support,

f"(x) = 4(f(x + 1) - 2f(x) + f(x - 1))/3 - (f(x + 2) - 2f(x) + f(x - 2))/12, (23)

at the pixel x.
The reference curve in each of the figures is plotted with open circles. For small

values of a, the central difference for the first derivative (squares in Fig. 13) and
three-point approximation for the second derivative (triangles in Fig. 15) are clearly
insufficient. The error for the approximation A is computed at integer values i for
z < 3a and the quantity shown is:

fI3,, IA(i) - G'(i)I (24)

I1 '( i)
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The following table summarizes the errors for various approximations. Note that

a 2-point 3-point 4-point 5-point 6-point 7-point

1.0 0.0737 0.258 0.0153 0.0875 0.00647 0.0495

1.5 0.0333 0.126 0.00523 0.0339 0.00171 0.0135

2.0 0.0192 0.0745 0.00193 0.0126 0.000380 0.00341

3.0 0.00845 0.0334 0.000392 0.00271 0.0000376 0.000364

4.0 0.00474 0.0188 0.000129 10.000899 0.00000696 0.0000689

Table 3: Normalized summed absolute errors for first derivative of Gaussian.

the error for the central difference only becomes less than 5% for o, >= 3. This

example demonstrates that these estimators are accurate, as theory predicts, when

the higher-order derivatives of the function being approximated are small. For the first

derivative of the Gaussian, these derivatives become small when a > 3 or x becomes

large. But, when these conditions are not met, it is clearly superior to use larger

support for the approximation. Interestingly, the estimators with an even number of

points are consistently better than the odd numbered estimators. For example, at

a = 1, it is necessary to use the 7-point estimate to achieve accuracy comparable with

the 2-point estimate.

But there is a problem with these even number operators. For the first derivative,

the estimators with an even number of points, the forward (two-point) and the four-

point estimator, are shown displaced leftward by -0.5. Both actually estimate the

first derivative at the point x = 0.5. For large o', the relative shift is small. Three-

and five-point formulae for the finite difference estimate the derivative at x = 0.

Any computation which mixes the forward difference operator for the first derivative
(which is shifted) with the three-point operator for the second derivative (unshifted)

runs into difficulties. The bias of the forward difference operator shows up as a phase

shift, dependent on the image frequency, when the frequency response characteristics

of the operator are examined.

Let us examine the z-transform of the forward-difference operator z - 1 - 1. The

Fourier transform of this operator is

Z-1 - 111". = e-= - - 1, (25)

which, factored, is

- jw/2(e-j'/2 _ ej /2), (26)

which reduces to

eJ(r1 2-w/ 2)2sinw/2. (27)

For small angles, sinw approximates w, giving

( ,r/2-w/2),. (28)
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The Fourier transform of the derivative operator is

,j"1/2, . (29)

Comparing these two formula we see that the forward-difference operator is an ad-
equate approximation for the derivative operator only for small w, but, even there.
there is a small phase shift, proportional to w/2. The other operators do not introduce
such a phase shift.

These observations explain the symmetric treatment of spatial and temporal deriva-
tives in [HorS5] (p. 289). There the forward difference operator is used, both in space
and time. Our analysis indicates that its use must be accompanied by significant
smoothing of the image.

Another consequence of the preceding analysis of numerical differentiation is that
one can improve the results of implementations of optical flow methods simply by
improving the accuracy of the measurement stage. As an example, consider the local
constraint method; it does not require subsequent smoothing, so the effects of im-
proved measurements should directly appear in the results. In the results we reported
above, we used Horn's symmetric spatial/temporal differentiators. We replaced the
x and y components of these operators by the 4-point operators. The results for
the rotating image figure show minimal improvement, but other similar images show
substantial improvement, reducing the length of the error vector by up to 25%.

Similarly, the gradient constancy utilizes temporal derivatives of dEldx and dE/dy.
The output of that algorithm is most sensitive to the temporal derivatives; changing
the operator from the 3-point to the 5-point operator for the first derivative reduces
error by 30%.

Numerical differentiation is, in general, ill-posed, and the choice of operator must
be influenced by analyis of the task and the noise in the image [TP86]. It is important
to note that, while, over space, larger support can be utilized with only a small
increase in computation, but over time the situation is rather different, requiring
more images. Temporal differentiation is more critical to differential methods than
spatial differentiation. The difference in sampling in space and time is significant.
and usually several orders of magnitude. In estimation of the temporal derivative, the
phase shift induced by the derivative estimators with even numbers of points becomes
considerable, given the relatively large spacing between sample points. Considerable
care must be taken to handle the estimates appropriately. The symmetric operator
used by Horn averages spatial derivates over time and temporal derivatives over space
so that estimates are taken at the same time in space-time, resulting in accurate
estimates that do not suffer from the phase shift.
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Figure 13: First derivative of Gaussian function (a" = 1): Gaussian (open circle),
forward difference (square), central difference (triangle), four-point (diamond), and
five-point (star).
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Figure 14: First derivative of Gaussian function (a, = 2): Gaussian (open circle),
forward difference (square), central difference (triangle), four-point (diamond), and
five-point (star).
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Second Derivative -- Sigma = 1
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Figure 15: The second derivative of the Gaussian function (o = 1): derivative of the

Gaussian (open circle); central difference (triangle); five-point formula (star).

Second Derivative -- Sigma =2
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Gaussian (open circle); central difference (triangle); five-point formula (star).
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5 Conclusion 0
We have shown that local algorithms can provide good direct measurements of the
optical flow, and can locally solve the aperture problem. These algorithms require

a simpler, less computationally demanding smoothing stage than global algorithms
which begin with normal motion. Since less smoothing is used, localization and dis-
continuity identification are likely to be better. These improved algorithms Iquire
larger spatial support, and thus need to make stronger assumptions about the optical
flow. We have shown that, in the cases of pure translation and pure rotation, the pro-
jected velocity field which produces the optical flow will meet the local requirements
of slow variation except close to singular points of the velocity field.

We have implemented these algorithms on the Conr- -tion Machine 1LBC89] and
tested them on various real and synthetic images, to test their sensitivity to violations
of their assumptions. It is clear from both analysis and experience in the implemen-
tation that care must be taken in computing derivatives. Interestingly, the methods
which produce improved measurements have much in common: they use larger spatial
support and they rely on similar assumptions on the local behavior of the velocity
field.
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