
AD-A234 321 P.

MATCHING THEORY - A SAMPLER: F.-OM DtNES KONIG TO THE PRESENT

by

Michael D. Plummert*
, ." Department of Mathematics

Vanderbilt University
A/PR 0 4191 Nashville, Tennessee 37235, USA

1. Introduction and Terminology

Let G be a finite undirected graph without loops or multiple lines. A set of lines
M C E(G) is a matching if no two share a common endpoint. A matching is said to be
perfect if it covers all points of G. One can take the point of view that a matching is a
special case of a more general concept in graph theory-an n-factor. An n-factor of graph
G is a spanning subgraph which is regular of degree n; that is, each point has degree n.
But we can generalize even more. Let f denote a function which assigns to each point v
in V(G) a non-negative integer f(v). Then an f-factor is any subgraph F of G in which
deg FV = f(v). The existence of these increasingly more general concepts for a fixed graph
G are all instances of what have come to be called degree-constrained subgraph problems.

The reader of these Proceedings has already seen in Mulder's article [125] that these
ideas were of great interest to Julius Petersen and in fact he enjoyed some considerable
success in his studies of such problems. Probably the most widely known Petersen results
in these areas are two.

(a) In [132], he proved that any connected cubic graph with no more than two cutlines
has a perfect matching and hence decomposes into the union of a line disjoint perfect
matching and a 2-factor.

It was in this paper that Petersen displayed a cubic graph (actually a multigraph)
with three cutlines and no perfect matching, thus showing that in a sense his "2 cutline"
theorem was best possible. Incidently, the cubic graph so displayed was attributed by
Petersen to his mathematical colleague and friend, Sylvester, and is shown as Figure 4 of
Mulder's paper [125].

(b) In [133], Petersen offered the now famous ten-point cubic graph, which has come
" to be known as the Petersen graph, as an example of a cubic graph which cannot be

expressed as the union of three line-disjoint perfect matchings.
Of course, we do not want to imply that Petersen's reputation in graph theory rests

upon the existence of two particular graphs! These two examples arose out of his ground
breaking studies in the area of graph factorization, said studies having been well delineated
in the paper of Mulder.

It was but a short time after the appearance of Petersen's work ..i print, that the
young Hungarian mathematician Dines K6nig appeared on the scene. It was K6nig who
gave the next strong impetus to the study of graph factorization after Petersen's ground-
breaking work, and it is K~nig with whom we are charged to begin our brief summary of
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the history of matching theory.
It is a formidable task to undertake such a charge! Indeed, hundreds of papers and

a book have been published on the topic of matching theory and there seem to be no
signs that the study of matchings is in any immediate danger of "whithering on the vine"!
Indeed, throughout this paper, we mention quite a number of problems which remain
unsolved Rs we go to press.

Fortunately, matching theory serves well as an historical thread extending from the
time of K6nig (and before) up to the present, wending its way through graph theory
and intersecting many of the most important new ideas which have sprung forth in our
discipline. One sees in particular that after the close of World War I this intertwining
of matching theory with the study of graphs as a whole became ever more inextricable,
even as the study of graph theory as a discipline unto itself literally exploded upon the
mathematical scene.

AlthoLth it is "jumping the gun" somewhat with respect to the organization of this
paper, we can mention three major areas which have joined with graph theory to give
rise to many new and deep results. These are: (1) linear programming and polyhedral
combinatorics; (2) the linking of graphs and probability theory in the area of random
graphs and finally (3) the theory of algorithms and computational complexity. (The three
areas are far from mutually exclusive; but more about that later.)

But having tried to claim that our task is impossible, let us get to it. Please note,
dear reader, that the word "survey" was intentionally avoided in our title and the word
"sampler" used instead. We make no claim in this short paper to be comprehensive or
complete, but instead readily plead guilty to having selected some of our own favorite
branches of matching for more extensive discussion.

Our general plan, then, will be as follows. We present first a Chronology in tabular
form of many of the most important events in the history of matching theory. We will
then deal with much of this in narrative fashion, hopefully supplying enough references as
we go to enable the interested reader to take the various forks in the road offered in order
to study more deeply certain of the topics we mention only superficially. As a much more
comprehensive guide to matching in general and to a large - but by no means exhaustive
- list of references we refer the reader to the book [113]. A less comprehensive - but more
up to date - survey of matching theory is the excellent chapter written by Pulleyblank
for the forthcoming Handbook of Combinatorics [1441.
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A CHRONOLOGY OF EVENTS IN MATCHING THEORY

1912 Frobenius' reducible determinant theorem

1914, 1916 K6nig proves every regular bipartite graph has a perfect matching. K6nig's

Line Coloring Theorem

1915 K6nig's proves Frobenius' theorem in a graph theoretic setting

1927 Menger's Theorem (almost!)

1931, 1933 K6nig's Minimax Theorem

1931 Egerviiry's Weighted Minimax Theorem

1935 P. Hall'E SDR Theorem

19ld K~nig's book appears

1947 Tutte's 1-factor Theorem

1950 Gallai's new proof of Tutte's 1-factor Theorem; new results on regular

factors of regular graphs; extensions to infinite graphs

1952 Tutte's f-factor Theorem

1955 Ore's minimax defect version of Hall's Theorem

1956 Kuhn formulates bipartite matching as a linear programming problem

1956 The Max-flow Min-cut Theorem (Ford and Fulkerson; Dantzig and Fulk-

erson; Elias, Feinstein and Shannon)

1958 Berge's minimax defect version of Tutte's Theorem

1958 Gallai uses LP duality and total unimodularity to derive the Max-flow

Min-cut Theorem, Menger's Theorem, Dilworth's Theorem and Konig-

Egervary Theorem

1958 Berge's book appears (in French)

1960 Ore's book appears

1959-60 Kotzig's three "lost Slovak papers" on the structure of graphs with perfect

matchings

1959-61 Erd6s and Renyi publish first papers on random graphs

1962 Berge's Book appears in English-fi. ..
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1961, 1963 Kasteleyn gives a polynomial algorithm for the number of perfect match-
.mgs in a planar graph

1964-65 Gallai and Edmonds obtain canonical decomposition for any graph in

terms of its naxirnum matchings

1965 Edmonds develops first polynomial matching algorithm for non-ipartite

graphs

196 Erd~s and RInyi discover threshold function for random graph to have a

perfect matching

1965-73 Edmonds and Pulleyblank characterize the facets of the matching poly-

tope

1971 Cook finds first "NP-complete" problem

1972 Karp publishes first list of NP-complete graph problems

1972 Lovisz, building upon the ideas of Kotzig (1959-60), begins an as yet

incomplete extension of the structure of graphs with a perfect matching

1979 Khachian develops first polynomial algorithm for LP - the Ellipsoid Al-

gorithm

1979 Pippenger introduces the parallel complexity class "NC"

1979 Valiant proves that computing the number of perfect matchings is #

P-complete (and also shows that this computation is thus NP-hard)

1982 Naddef and Edmonds, Lovisz and Pulleyblank obtain two structural

characterizations of the dimension of the perfect matching polytope

1984 Bollobis book on random graphs appears

1985 Razborov obtains his superpolynomial monotone complexity bound for

the perfect matching decision problem

1986 Lovsz-Plummer book on matching theory appears

1986 Karp, Upfal and Wigderson give RNC (parallel) algorithm for finding a

perfect matching

1986-88 Broder, Jerrum and Sinclair relate approximate counting of perfect match-

ings to random generation of a perfect matching thereby introducing new

probabilistic techniques
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2. Our Narrative Begins

In 1912, Frobenius [54] published a paper in which he dealt with determinants of
square matrices in which the non-zero entries were all distinct variables. The question
was: when could such a determinant (i.e., a polynomial) be factored? Frobenius showed
that this was possible if and only if one could permute the rows and columns of the matrix
so as to display a rectangular block of zero entries. Some three years later, K6nig [90] gave
a somewhat shorter proof, but more importantly from our perspective, showed that this
problem could be modeled in terms of the pefect matchings of a certain bipartite graph.

In the following year, K6nig published twin papers - one in Hungarian [92], the
other in German (911 - in which he proved the. every regular bipartite graph has a
perfect matching. (Actually, this result had been announced some two years earlier in a
1914 communication to the Congr~s de Philoophie Math~matique in Paris. However, this
communication was not published until some nine years later! See [89].) Others treated
this theorem in differing contexts, but to go into this would certainly interrupt the flow
of our narrative, so we refer the interested reader to the chapter notes of K6nig's book in
either its original German version [951 or the new English translation [96], a translation
for which the graph theory community has had to wait far too long!

In 1927, Menger published the first proof of his now celebrated minimax theorem on
connectivity in graphs [120]. The version published in this paper was the "undirected point
version" known to any beginning student of graph theory. Informally, the result says that
in any undirected graph with two distinguished nonadjacent points s and t, the maximum
number of point-disjoint paths joining a and t is equal to the minimum size of any set of
points in G - 8 - t the deletion of which separates points a and t. (There are now four
principal versions of Menger' Theorem which one may obtain by taking all combinations
of the concepts "undirected graph", "directed graph", "point-disjoint paths" and "line-
disjoint paths". All are really equivalent and derivations of each from others can be found
throughout the literature. See, for example, the textbook by Bondy and Murty [191.)

Unfortunately, there was a hole in Menger's 1927 proof which was to prove of deep
significance for all of subsequent graph theory! First, let us hasten to point out that Menger
himself 1121] repaired the gap and published a complete proof. But in the meantime, K6nig
had discovered the flaw in the 1927 proof; Menger had neglected the case when the graph
involved was bipartite.

This realization by K6nig led to the proof of what is surely one of the most influen-
tial theorems in all of graph theory - his minimax theorem. (See 193] and 194] for the
Hungarian and German language treatments of this landmark result respectively.) The
statement of the minimax theorem is easy to grasp. Let G be a bipartite graph. Then
the minimum size of any set of points which collectively cover (i.e., touch) each line of G
equals the maximum size of any matching in G. Also in 1931, Egerviry [37] published a
more general version of the minimax version in which the lines were assigned non-negative
weights.

Now one could rhapsodize about minimax theorems and their importance in graph
theory at great length! Their importance can hardly be overestimated, especially today,
since such ideas and results as the Max-flow Min-cut Theorem, the duality theorem of
linear programming, so-called "good characterizations", etc. etc., have emerged.
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But why are minimax results so important? Because they often tell us when a candi-
date for a 8olution we have in hand, in fact truly is a 8olution! Consider the simple case of
bipartite matching and K6nig's Minimax Theorem. Suppose we have a matching in hand
and wish to know if it is indeed a maximum matching.

If, somehow, we can find a point cover for G the cardinality of which is also k, then
by K6nig we know that our matching is indeed maximum. We must be honest here and
point out that how one obtained such a point cover has been ignored! Indeed, we have
already met the crux of the idea of a good characterization, a concept generally attributed
to Edmonds in the 1960's.

Let us stick to the setting of our paradigm problem - bipartite matching. We say
that the matching number k of a bipartite graph is wdl-characterizcd for the following
reason. If we want to convince someone that the matching number is > k, we need only
exhibit a matching of cardinality > k. On the other hand, if we wish to show that the
matching number is < k, we need only exhibit a point cover of size < k. In the modern
terminology of complexity theory, we say that a graph property is in NP if, given any
graph for which the property holds, there is a "short" proof - or certificate - that it
holds. (For the definition of NP, it has been agreed upon that "short" means a number of
steps polynomial in the size of the input graph.)

We have already been a bit cavalier about just how the problem of bipartite matching
is to be posed. Is the problem to obtain a number or is it to be some kind of "yes or
no" question? The class NP is normally defined as a class of "yes or no", i.e., decision
problems. But it is easy to convert the problem of determining the size of a maximum
matching into such a decision problem. Let k be any integer such that 1 < k < IV (G) 1/2.
Then for each such k, ask the question: "is the size of a maximum matching in graph
G at least k?" We then need at most k certificates to determine the size of any largest
matching in G. But if the task of verifying one certificate can be done in time polynomial
in the size of the input graph, then, trivially, so can the compound task of verifying k such
certificates, for k is, by definition, polynomially bounded in the size of the input graph and
the sum of a polynomial number of polynomials is a polynomial!

It is important to emphasize that for the purposes of defining NP, it is of no conse-
quence how we "happened upon" the fact that the property holds, in other words, how we
obtained our certificate.

In contrast to the class NP, however, if given any graph for which a property does not
hold, there is a certificate showing that it does not hold, we say that the property is in
the class co-NP. It is immediate by K6nig's Minimax Theorem that bipartite matching
is in NPn co-NP. (For the cognoscenti of complexity theory, of course one can say more;
namely that bipartite matching is in class P. That is to say, we have an algorithm, which
not only certifies that a given matching is maximum, but actually obtains the certificate
- in fact, the maximum matching itself! - in polynomial time.)

Surely, class P must a proper subset of class NP! But is it? Most readers will know
that this is the outstanding open question in the area of complexity theory today. More
particularly, it is clear by definition that we have P C NPn co - NP C NP. It is unknown
whether "C" can be replaced by "=" at either location.

We shall return to other complexity results and questions later in this paper.
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For much more comprehensive treatments of minimax theorems in graph theory and
combinatorics, we refer the reader to the surveys of Woodal] [170], Schrijver [152] and
[143]. As for us, we shall return to several matching-specific minimax theorems below.

But ..... we have strayed from our timeline.
In 1935, Philip Hall [72] published his famous theorem on systems of distinct repre-

sentatives. Although cast in the language of set theory, it was soon realized by K~nig [95]
that Hall's theorem could be simply stated in terms of bipartite graphs as follows. Let
G = (A, B) be a bipartite graph with point bipartition AU B with JAl = IBI and if X C A,
let r(X) denote the set of points in B each of which is adjacent to at least one point of X.
In other words, let I(X) denote the set of neighbors of set X. Hall proved that bipartite
graph G has a perfect matching if and only if Ir(X)l I_ IXI for every X C A. In this form,
Philip Hall's Theorem was to prove one of the most famous in all of matching theory and
is perhaps to be found in more lists of references of matching theory papers than any other
one paper. It is interesting to note that Hall was quite aware of the contents of Kanig's
1916 papers and in fact in his paper, Hall's begins by referring to the German version
thereof.

The following year, K6nig published the first book on graph theory [95]. For the first
time, graph theory was set down as an organized body of mathematical results derived
from a set of axioms in a precise manner. The book was written in German. For all
intents and purposes, up to that time the discipline of graph theory had been ignored by
the Englizh-speaking mathematical communities in Great Britain and the United States.

But that, along with most other matters in the affairs of man, was about to change
swiftly and dramatically.

During the dark days of World War II, little, if any, graph theory was done, as was
more or less the case with mathematics in general. However, significant exceptions to that
statement are to be found in such areas - for the most part kept highly secret - as
cryptography, ballistic trajectories, computer development, nuclear physics and navigation
and communications. But the seminal ideas of a new and tremendously important branch
of mathematics were also to arise in reaction to very "applied" wartime issues such as
deployment and logistical supply. Soon to be born was the discipline of linear programming.
(See Section 3 below.)

The first significant graph theory theorem of the post-war era was indeed to become
one of the most significant in the entire history of the subject. In 1947, W.T. Tutte [158]
published his celebrated 1-factor Theorem. (This, incidently, before he had finished his
Ph.D .!) This -resualt set fohh imxt~ fist e X~ci '~'~m &.. .M*.

bipartite) graphs with perfect matchings.
Let G denote any graph, bipartite or non-bipartite, and let S be any set of points in

G. Finally, let co(G - S) denote the number of odd components of G - S. Then Tutte's
result states that graph G has a perfect matching if and only if c0 (G - S) < ISI for every
set S C V(G). We would point out that similarities in form are apparent between Hall's
theorem for bipartite graphs and Tutte's theorem for general graphs. Another interesting
parallel lies in the proofs. In Hall's formulation, let us call a set S C A a barrier if
ISj > F(S)i. Similarly, in Tutte's formulation, let a barrier be any set S for which
ISI < co(G - S). Then in each of the two theorems, half of the proof is trivial. Namely, if
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there exists a barrier, then a perfect matching cannot exist. The non-trivial part of each
theorem lies in proving the converse.

One more remark is in order here before pressing on. Tutte's original proof of his 1-
factor Theorem involved computations with the so-called Pafflan of a matrix. It was not
long before other proofs were found which involved only truly graph-theoretic techniques.
However, the notion of a Pfaffian matrix associated with a graph was to reappear much
later in the work of Kasteleyn and is still being investigated at the time of this writing.
(See for example, Vazirani [88; 89].)

In 1950, one of the truly "unsung heros" of graph theory, T. Gallai, published a paper
[60] in which, among other things, he gave a proof of Tutte's theorem using the method
of alternating paths. The idea of using alternating paths, to be sure, did not originate
with Gallai. In fact, Gallai himself in his two fascinating biographies of K6nig [63; 96]
points out that such methods were used by K6nig as early as 1915 [90] and indeed, Mulder
[125] has pointed out that the idea was even used by Petersen [132]! The concept of an
alternating path is simple indeed. Suppose one has a fixed matching M in a graph G.
Let us agree to call the lines of this matching red if they belong to the matching and blue
otherwise. Then a path P in G is said to be alternating with respect to M (or simply
M-alternating) if the lines of P alternate in color. An M-alternating path P is said to
be M-augmenting if it is M-alternating and begins and ends with blue lines. Clearly, if
one can find an M-augmenting path in the graph G which joins two lines not covered by
M, then one can find a matching larger than 14 simply by exchanging on the lines of P.

It was proved by Berge [5; 9], but probably known to Petersen (see Mulder [125]),
that a matching M is of maximum cardinality, or simply maximum, if and only if there
exists no augmenting path with respect to M. This fundamental idea has proved to be the
basis for the best known and most efficient combinatorial algorithms for finding maximum
matchings known today. But more about that below.

In addition to his new proof of Tutte's Theorem, Gallai also extended the theory of
regular factors of regular graphs first started by Petersen. (See Section 1 of the present
paper.) Indeed, gradual improvements on the general question of the existence of regular
factors in regular graphs had been made by Bibler [3], Rado [147], Belck [4] and others.
Although this is an interesting and important branch of graph factorization, we have
chosen not to treat it in detail. Instead, fortunately, we can refer the interested reader to
the paper of Bollobis, Saito and Wormald [17] for a concise summary of the status of the
problem, leading up to their own result which is, to the best of the author's knowledge,
the latest word on this subject in the following sense. Given integers r > 3, and 1 < A < r,
the authors determine precisely for which values of k, every r-regular graph G with line-
connectivity A has a k-factor.

The reader, we hope, will forgive a personal remark at this point. We referred to Gallai
as an "unsung hero" above. Indeed, his name is seldom found, for example, in introductory
textbooks on graph theory. His publication list, although containing some graph theoretic
results of the highest caliber, is not long. But to those fortunate enough to have come
to know him, either as students or colleagues (or both), have the greatest respect for this
modest, unassuming and selfless man. (See Lovisz's remarks in his tribute to Gallai on the
occasion of his seventieth birthday [110].) The present author fondly recalls some twenty
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years ago or so when he wrote a letter to Gallai asking a question about independent
sets. In response, we received a long and carefully written reply containing theorems,
constructions, etc. etc. which to the best of my knowledge, still have not seen the light
of day! Nor was this the only occasion upon which we benefited from Gallai's kindness.
In conversations with other graph theorists, we have heard similar stories. One can only
conjecture what graphical gems lay hidden on Gallai's desk which he has not seen fit to
publish. Yet, in a life filled with more than one's fair share of personal tragedy, Gallai
seems to have remained unfailingly kind, unselfish and considerate to his colleagues and
students.

At this point, the reader's attention is directed back to the Introduction to this paper
where the concept of an f-factor was defined. Of course, a perfect matching is just a
special case of an f-factor when the function f has the value 1 on each point of the graph.
In 1952, Tutte [159] published his f-factor Theorem in which he gave a characterization
of those graphs which have an f-factor. Unfortunately, the characterization is somewhat
complicated and not easy to apply. Tutte also formulated a beautifully symmetric version
of his f-factor theorem by defining what he called an f-barrier and then showing that an
arbitrary graph had an f-factor if and only if it had no f-barrier. This approach is much
in the spirit of the classical theorems of P. Hall and Tutte's own on the existence of a
1-factor.

Soon after in 1954, Tutte showed that in fact his f-factor Theorem could be derived
from his earlier 1-factor Theorem [160]. Although this served the double purpose of unify-
ing his 1-factor Theorem and his f-factor Theorem and provided a much more accessible
proof of the latter, it still did not help one to use the f-factor result. Indeed, Tutte himself
was quite aware of this difficulty and some twenty years later published a paper in which
he attempted to simplay matters by the introduction or mraxmai barriers [161]. Even so,
it seems fair to say that despite these attempts, the f-factor theorem remains one of the
most challenging results for graph theorists to assimilate and to use in their own work.

The interested reader will find the most comprehensive treatments of the f-factor
Theorem in the three books [162], [10] and [113].

But the story about f-factors did not end here. All of the above-mentioned treatments
of the problem deal with the existence of an f-factor. It is another matter indeed to actually
find one! Of course this leads us immediately to the area of algorithms. However, since
the f-factor Theorem will not be a central issue in this Sampler, we omit an algorithmic
discussion from Section 6. Suffice it to say that there exist algorithms for finding f-
factors which are polynomial only in the number of points and lines of the graph and are
independent of the function f. (See Gabow [57] and Anstee [2].)

Having said only that, we revert to our Chronology.

In 1955, Ore [127] published his minimax version of Hall's Theorem and thereby
focused attention on a more general problem: in a graph with no perfect matching, what
is the size of a largest matching? We call such a matching a maximum matching.

It is a good idea at this point to clear up a point which is not perhaps so minor as
one might think. All mathematicians are aware of the difference between the concepts of a
maximal structure (i.e., inclusion-wise maximal) and a maximum structure (i.e., a struc-
ture having largest cardinality). A maximum matching, for example, is certainly maximal,
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but the converse implication seldom holds. Indeed, in mathematics in general, the two
concepts are seldom equivalent and yet the two words are carelessly interchanged again
and again in the literature by mathematicians who should know better. Just how different
the two concepts are vis-k-vis matchings will be made more apparent when we discuss al-
gorithmic questions in Section 6. (Incidently, although it is not at all clear in which graphs
all maximal matchings are indeed maximum (in other words, those graphs in which all
maximal matchings have the same cardinality), such graphs have been characterized in
such a way that they can be polynomially recognized. (See [105].)

But having gotten that off our chest, let us return to Ore's result. Let us henceforth
denote the size of a maximum matching in graph G by v(G). Now let G = (A, B) denote
an arbitrary bipartite graph. Define now the parameter L'(G) as the minimum taken over
all subsets X C A of the quantity JAI + ]F(X)I - IXI. Then Ore's minimax theorem -
also called Ore's Deficiency Theorem - says that v(G) = v'(G).

Two years later, Berge [6] generalized this result to all graphs. Let us modify Ore's
parameter L'(G) as follows. Let G be any graph; that is, no longer necessarily bipartite.
As in the statement of Tutte's 1-factor Theorem above, for any subset S C V(G), let
co(G - S) denote the number of odd components of G - S. Now let z,"(G) be one half
the minimum over all subsets S C V(G) of the quantity JV(G)J - co(G - S) + ]S[. Then
Berge's minimax theorem for matchings - also called Berge 's Deficiency Theorem - says
that v(G) = L"(G).

It is of interest to note here that the Theorem of P. Hall, Tutte's 1-factor Theorem
and their respective deficiency versions discussed above belong to a category of theorems
called "self-refining results". The idea is this. Although the deficiency versions sound more
general than the two 1-factor theorems to which they correspond (and to be sure the I-
factor versions are indeed immediate corollaries of the deficiency versions), it is somewhat
surprising to discover that in fact the deficiency versions are really equivalent to the 1-factor
results

This business of equivalent theorems which we have already mentioned in our dis-
cussion of Menger' Theorems in their various forms, and which we meet here again in
these two deficiency results, extends even further in the area of our narrative. Although
i4 is not centrai to our chronology, it can be shown that most of the main theorems we
state are all equivalent! That includes such results as K6nig's minimax theorem, Menger's
Theorem, Hall's Theorem, Tutte's 1-factor Theorem, Tutte's f-factor theorem, the defi-
ciency theorems of Ore and Berge, Dilworth's Theorem on partially ordered sets [311, and
the Max-flow Min-cut Theorem which we are about to meet. Those we relish "circles of
proofs" are referred to [113], to the thesis of Magagnosc [119], to Hoffman [731 and to a
monograph devoted entirely to this subject [150].

At this point we will diverge from our heretofore "linear" treatment of the Chronology
of matching theory to treat in somewhat more detail four "branches" of the subject.
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a. The Max-flow Min-cut Theorem and Linear Programming

In the immediate post-World War LI years, George Dantzig, who had, by his own
admission, "become an expert on programming planning methods using desk calculators"
[29; pg 78], was still in the employ of the U.S. Air Force. In 1947, based upon a family of
logistical supply programs with which he had worked, Dantzig formulated the archetype of
what we call today a linear programming problem. The idea was - and is - to optimize
(i.e., to either maximize or minimize) a linear objective function subject to a set of of linear
conastrainta (linear equations and inequalities). Moreover, Dantzig developed a method for
efficiently solving such problems; a method which remains the favorite in practice today
- the Simplez Method. Later in the same year, Dantzig met John von Neumann for
the first time in order to consult with him on his new idea. It seems that, although no
evidence existed in print, the seminal ideas of linear programming had also occurred to von
Neumann, apparently during his work with Morgenstern on the theory of games. According
to Dantzig, it was at this time that he (Dantzig) first learned about the now-fundamental
concept of duality from von Neumann. The history seems muddy here, but Dantzig claims
that as far as he is concerned, the famous Duality Theorem was known to von Neumann,
although it was Gale, Kuhn and Tucker [58] who published the first rigorous proof.

The idea of the Duality Theorem is that for every linear program which, let us say,
seeks the maximum of a certain linear objective function subject to a collection of linear
constraints, there is a second linear program - the dual - definable in terms of the
parameters of the first program - called the primal - such that the dual program is
a minimization problem and that as long as both the primal and dual programs have
solutions, they are in fact equal. Or stated more formally,

Theorem 2.1. (The Duality Theorem of Linear Programming) Let A be any matrix
and b and c be vectors. Then

max {czlAx < b} = min {ybly > 0; yA = c}

(provided at least one of these sets is non-empty.)

In this succinct representation, cx represents the (primal) objective function and yb
the dual objective function. The linear constraints of the primal are represented as the
matrix inequality Ax < -6, while those of the dual are stored in the expressions y > 0 and
yA=c.

So here again we have a minimax theorem.
From the barely countable number of references on linear programming (or "LP" for

short) which exist in book and paper form, in addition to the historical article by Dantzig
J29] already referred to, we suggest the books by Chvital 123] and Schrijver [154]. For our
part, we shall attempt to ruthlessly stick only to those aspects of LP which directly affect
matching theory. (See also [113; Chapt. 7].)

But before continuing any discussion of linear programming and its applications to
matching, let us introduce one more minimax theorem which will turn out to be important
for our purposes. This theorem sounds strikingly like the Menger Theorem(s) discussed
above and first proved in the 1927-32 era. But, similar though it is, our next theorem
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remained undiscovered for another twenty years until proved first by Ford and Fulkerson
in 1956 147] not long after the birth of LP described above. It is commonly called the
Max-flow Min-cut Theorem.

First we need a bit of terminology. Let D be a digraph with two distinguished points
8 and t called the source and sink respectively. As usual, we will denote the line directed
from point u to point v by (u, v). In addition, let each line (u, v) be assigned a non-negative
real number c(u, v) called its capacity. The resulting line-weighted digraph is often called a
trarportation network, or simply, a network. Let V(D) = S U S denote a partition of the
point set V (D) such that the source a lies in S and the sink t in S. Then the ordered pair
(S, S) (or sometimes the set of lines directed from set S to set S) is called an 8 - t-cut in
D. The sum Z-(u,,,),uES, -E C(u, v) is called the capacity of the cut (S, S) and is denoted

by c(S, S).
Next, let .6 denote another function from the lines of D to the real numbers satisfying

the following two conditions:

(i) for each line (u, v), 0(u, v) !S c(u, v), and

(ii) for each point u E V(D), u {s,t}, F(w,u)EE(D)O4(WU) = Z(u,v)EE(D) 4(U,v).

Such a function 4, is called a flow in digraph D. We call the quantity E(,u)EV(D) C,(s, u)
the value of the flow 4, and denote it by 101.

We are now prepared to state the next result.

Theorem 2.2. (The Max-flow Min-cut Theorem) Let D be a network with source s
and sink t. Then: max 141 = min c(S, s), where the maximum is taken over all s - t flows
6 and the minimum is taken over all s - t cuts (S, Y).

This extremely useful theorem sounds like a direct generalization of Menger's Theorem
(directed line version) and in fact it is! But it is also yet another example of a self-refining
result in that it can be derived from Menger's result and hence by the above discussion
can be added to the circle of proofs already containing K6nig's Theorem, Hall's Theorem,
Tutte's Theorem, etc. The first proof of the Max-flow Min-cut Theorem is due to to Ford
and Fulkerson [47], followed hot on the heels by independent proofs by Elias, Feinstein and
Shannon [40], a second due to Ford and Fulkerson [48] (this one containing the now-familiar
labeling algorithm for constructing a maximum flow) and yet another due to Dantzig and
Fulkerson [30] using the duality theorem of LP. Thus flow theory and linear programming
were essentially "joined from birth"! (Hoffman [74] claims that Kotzig had independently
proved the theorem during World War II as well. Indeed, at least a line-version of Menger's
Theorem appears in the Slovakian reference [97] which, because of its inaccessibility due
to language among other things, has remained largely ignored. This unfortunate linguistic
problem was to also rob Kotzig of credit well-deser 'ed in the theory of graphs with perfect
matchings, but more about that in Section 4 below.) One finds a nice historical treatment
of the early days of the Max-flow Min-cut Theorem in the book by Ford and Fulkerson
[49] including a derivation of the K6nig Minimax Theorem from Max-flow Min-cut.

Kuhn [102; 103] at nearly the same time as the above, published an algorithm for the
Assignment Problem (line-weighted bipartite matching) which makes use of the primal-
dual approach of LP. Kuhn seems to have been the first to refer to this procedure as the
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Hungarian Method and pays fulsome tribute to K6nig and Egerv.ry for having developed
the essence of the method in their classic papers of some twenty-five years before. Hence-
forth, matchings, flows and linear programming were to be inextricably bound together.

We now describe what might be called - for want of a better term - the polyhedral
approach to matching.

Let us agree that our task is to find a maximum matching, using LP. In order to do
this, consider each matching M in a given graph G as a binary vector of length IE(G)I = m,
indexed by the lines of G, in which one finds a 1 in the ith slot if and only if the ith line is
found in matching M. Such a binary vector will be called a matching vector. One can
then define the matching polytope of a graph G, denoted by M(G), as the convex hull
of all these matching vectors.

But the usual approach to solving a linear programming problem - as we have already
seen in the brief description of the duality theorem above - is to is to optimize (in this
case maximize) a linear function subject to a set of linear constraints. Let us set about
formulating the problem this way. We shall begin by stating an certain abstract linear
program:

maximize I lx (3.1)

subject to x > 0 (3.2)

Ax < L, (3.3)

where A is a matrix of (non-negative) real numbers.
Now let us begin to specialize. Let A = (a..) denote the point-line incidence

matrix of graph G; that is,

ave 1, if v is an endpoint of line e,
0, otherwise.

So now A has become an integer - in fact, (0,1) - matrix.
The solutions of the above linear program will be called fractional matchings; the

reason why will become clear in just a moment.
Now let us suppose that among the vectors x yielding an optimum solution to the

above LP, one has as its components only 0's and l's. Then the constraints (3.2) and (3.3)
guarantee that vector x is a matching and hence 1 • x is just the number of lines in this
matching. Thus our maximized objective function is just the cardinality of a maximum
matching!

Moreover, in the special case when graph G is bipartite, it can be proved that such a
0 - 1 solution vector x always exists.

But let us return to the inequalities (3.2) and (3.3) for a moment. It may be shown
that the solutions to these inequalities form a polytope (or bounded polyhedron), called
the fractional matching polytope. (In fact, a system of inequalities - or half spaces -
like those above is one of two equivalent methods of defining a polyhedron; the other, via
a classical result of Minkowski [124] and Weyl [169] is as the convex hull of a finite number
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of vectors.) It is a well-known fact from LP that at least one optimum value of x will occur
at a vertex of this polytope. But when G is bipartite, all such vertices are integral! This
follows from the fact that when G is bipartite, every square submatrix of the constraint
matrix A has determinant 0 or ±1 [113]. A matrix possessing this property for each of
its square determinants is called totally unimodular. The result we seek then follows
from a more general result due to Hoffman and Kruskal [751] which in our setting says that
if the constraint matrix is totally unimodular, then the corresponding polyhedron has all
integral vertices.

But let us now drop the assumption that our graph is bipartite and return to the LP
having constraints (3.2) and (3.3). By linear programming duality, we have a minimax
result which in turn offers a "good chracterization", but a good characterization of what?
The answer is: a good characterization of the cardinality of a maximum fraetiond match-
ing. But, sadly, we can no longer necessarily conclude that among the vector x which
maximize the objective function, i.e, that correspond to maximum (fractional) matchings,
there is any at all which is integral! So what are we to do?

Let us once again return to our paradigm LP above with constraints (3.2) and (3.3).
To be sure, there are only a polynomial number of constraints given - namely IVGI + 1.
Let us simply replace the constraint (3.2) with the stronger demand that:

x is a 0 -1 vector. (3.2)'

The resulting new LP has exactly the same number of constraints, but duality theory
no longer applies, so our minimax result is gone. Where can we turn?

Fortunately, there is an alternative approach. It can be shown that the integrality
constraint is dropped, an integral minimax result is still obtainable, by adding more linear
constraints!

But what kind of constraints can we add to accomplish this and how many of them
will do the job? To this end, let us define the matching polytope of graph G, denoted
M(G), as the convex hull of all matchings in G. We know that such a polytope has an
alternative definition in terms of a system of linear inequalities. We now seek to find such
a system. Of course, it is natural to want to add as few additional constraints as possible
in order to accomplish this task as well.

Such an alternative description of the matching polytope in terms of constraints (3.2)
and (3.3) and a set of additional constraints has been accomplished by Edmonds [34].

From this point on, details become quite a bit more difficult to deal with and we
refer the reader to [113] or [142; 143] as just three possible sources. First, let us define
the co-boundary of a point v of graph G, denoted 6(v), as the set of lines incident with
point v (or more carefully, in our LP language, the characteristic IE(G)I-vector of such a
line set). Then we will replace each of the [V(G constraint inequalities in (3.3) with the
inequality:

x .6(v) _ 1, for each point v E V(G). (3.3)1

Now let us define an entirely new set of inequalities called the blossom inequalities:
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1
x E(S) < -(ISI - 1), for all S C V(G), such that ISI 3 and odd. (3.4)

Edmonds [34] proved that the matching polytope M(G) is equal to the set of vectors
x satisfying (3.2), (3,3)' and (3.4).

In the case of the matching polytope, let us call a linear inequality essential if it
is valid and is not a non-negative combination of other valid inequalities. The set of
points which satisfy an essential inequality with equality is called a facet. (We may say
equivalently that a valid inequality "*" is a facet if and only if every valid inequality which
holds with equality whenever * does, is a positive multiple of *.) Edmonds showed that the
facets of the matching polytope are found among (3.2), (3.3)' and (3.4). Somewhat later,
Pulleyblank [141] in his Ph.D. thesis (see also Pulleyblank and Edmonds [145]) showed
precisely which of these facets are necessary for a unique minimal linear system sufficient
to define M(G).

The situation is even more complex when one passes from the matching polytope
M(G) to the perfect matching polytope, PM(G), defined as the convex hull of perfect
matchings of graph G. Clearly this polytope lies inside the matching polytope in general.
In fact, a linear description for PM(G) can be obtained from that given above for PM(G)
by appending one more linear constraint, namely: 1. x = IV (G)1/2. However, one runs
into trouble when seeking a unique minimal description of this polytope! (See [1131.)

But let us stop here and summarize a bit. We find that one can obtain integral min-
imax theorems for both maximum matching and perfect matching. But the catch is that
in order to find descriptions of the corresponding polytopes, one is saddled with an expo-
nential number of facets! This puts a crimp in our style if we want to design a polynomial
algorithm for the maximum matching or perfect matching problems based on linear pro-
gramming! In fact, a polynomial LP algorithm was unknown until the development of the
so-called Ellipsoid Algorithm due to Khachian [88]. Even then, one requires a polynomial
time subroutine for testing certain constraints. Fortunately, such a subroutine algorithm
has been developed. (See [129] and also [70]. See also Remark 1 at the end of this paper.)

But it remains an open question to decide which graphs G have the property that
their perfect matching polytope PM(G) possesses only a polynomially bounded number of
facets. Gamble [64] has constructed a family of planar graphs G for which PM(G) have
exponentially many facets. On the other hand, he has shown that a rather widely studied
family of planar graphs called Halin graphs always do have a polynomial number of facets.
Hence the perfect matching problem can be solved on Halin graphs without further ado
simply by applying any polynomial LP algorithm. At this time, that would be either the
Ellipsoid method of Khachian or the more recent algorithm of Karmarkar [80].

In ending this section, we hasten to point out that there are in fact polynomial al-
gorithms for maximum (and therefore also perfect) matching which are not at all LP in
nature! The most famous of these is undoubtedly Edmonds Blossom Algorithm. (See [33]
and also [113].) We shall return to algorithmic questions in the final section of this paper.

Returning briefly to our Chronology, it should be noted that 1958 saw the appearance
of Berge's first book on graph theory [7]. This was the first book dealing with the discipline
to have appeared since that of K6nig some twenty-two years before. The Berge book was
published first in French, but two years later, the year 1960 saw, for the first time, a graph
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theory book in English - Ore's AMS Colloquium volume [128]. Then in 1962, Berge's
volume appeared in English translation [8]. With the appearance of these two books, graph
theory began to be much more widely studied by students outside continental Europe.

4. On the Number of Perfect Matchings

Suppose a graph G has at least one perfect matching. Ezactly how many does it have?
Is there a polynomial algorithm to count them?

Such questions have application in the real world. For example, this question arises
in a problem in crystal physics - counting the number of dimers on a rectangular lattice.
We shall return to this application below.

But first, some bad news. In 1979, Valiant [163] proved that counting the number
of perfect matchings in a graph, even if it is bipartite, is #P-complete. He also showed
that any problem in the class #P is at least as hard as any NP-hard problem. Hence it is
highly unlikely that a polynomial algorithm exists for this ezact counting problem.

So what can be done? We will explore three main avenues of research in this regard.
Let us denote the number of perfect matchings in any graph G by O(G).

The first direction of investigation has been to determine intereting 8ubclacaes of
graphs for which @(G) can be polynomially determined. The second area of research deals
with bounding O(G). Finally, the third deals with finding efficient approzimations for
t(G). We will deal with the first two areas in this section and defer treatment of the third
to Section 6 on algorithms.

Motivated by the dimer counting problem mentioned above, Kasteleyn [86; 87] devel-
oped an algorithm for determining 4(G) for planar graphs. He discovered that one can
always orient the lines of an (undirected) planar graph in a certain way, so that this orien-
tation can then be used to polynomially determine the number of perfect matchings. For
a rather complete treatment of Kasteleyn's method, we refer the reader to [113]. For both
Kasteleyn's method and more recent extensions thereof, here we will follow the excellent
summary of Vazirani and Yannakakis [166; 167].

Our discussion now reverts back to general (i.e., not necessarily planar) graphs. If G
is any graph and C a cycle in G, call C good if it has even length and G - V(C) has a

perfect matching. Orient G arbitrarily to obtain a directed graph ". An even cycle is
said to be oddly oriented (with respect to the given orientation) if when one traverses
the cycle (in either direction) an odd number of lines are traversed in the direction of the

orientation. Orientation V of graph G is then called a Pfaffian orientation if every
good cycle in G is oddly oriented.

Now how does such an orientation help one to determine 4(G)? Let -6 be a Pfaffian
orientation of graph G and let A(G) denote the symmetric n x n adjacency matrix of G.

Modify A(G) to obtain a second matrix A,(d), the so-called skew adjacency matrix
of V as follows:
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+1, if(Viv)EEtd),

A= -1, if (v,vi) E

0, otherwise.

It can then be shown that since the orientation is Pfaffian,

O(G) = Vdet (A,(-d)).

Since evaluation of a determinant is well-known to be polynomial, we have our polynomial
scheme for computing 4(G).

The problem, of course, lies in finding a Pfaffian orientation. As we mentioned above,
Kasteleyn gave a polynomial procedure for finding one in any planar graph. Let us call a
graph K 3 ,3-free if it contains no subdivision of the complete bipartite graph K 3 ,3 . By the
classical theorem of Kuratowski, we know that all planar graphs are K 3 ,3-free. Little [107]
extended Kasteleyn's result for planar graphs by showing that every K 3 ,3-free graph has a
Pfaffian orientation. His proof implicitly also gives a polynomial procedure for obtaining
such an orientation. More recently, V.V. Vazirani has in turn extended Little's result by
showning that, in fact, there is even an NC algorithm for obtaining a Pfaffian orientation
in a K3 ,3 -free graph. (For more about NC algorithms, see Section 6 below.)

Let us return once more to Pfaffians and graphs in general. In fact, one can pose three
(at least formally) different questions here:

(1) Does a given graph G have a Pfaffian orientation?

(2) Given an orientation V, is it Pfaffian?

(3) Given a graph G, find a Pfaffian orientation

Observe that the first two questions are decision questions, while the third is a search
question. The complexity of all three questions is presently unknown. It has been shown
[113] that problem (2) is in co-NP. (But that is certainly not obvious from the presentation
given here!) Moreover, recently it has been shown [166; 167] that problems (1) and (2) are

polynomial-time equivalent. Hence problem (1) is also in co-NP.
In the case when the graph G is bipartite, there is an interesting connection between

problems (1) and (2) and a fourth problem which has been studied by Seymour and
Thomassen [155; 157], among others.

(4) Given a directed graph -, does it contain a directed cycle of even length?

Vazirani and Yannakakis [166; 167 have proved that problem (4) is polynomial-time
equivalent to problems (1) and (2).

We will now turn our attention to the second area of investigation mentioned at the
beginning of this section - bounding the number of perfect matchings.

In the special case of regular bipartite graphs, we have some interesting bounds -

both upper and lower - on t(G). Suppose G is a k-regular bipartite graph on 2n points.
We state the bounds in the following combined form:

17



,,!(k/.,)" < *(G) _< (M!)- k.

The lower bound follows from the famous "conjecture" of van der Waerden [168] about
doubly stochastic matrices which was proved nearly simultaneously, but independently, by
Falikman [46] and Egory~ev [38; 39]. The upper bound follows from another more general
permanental inequality conjectured by Minc (123] and proved by Brigman [21].

For a brief discussion of each of these inequalities, see [113] and for a much more
thorough one, see Schrijver [153].

The balance of this section will report on results to date on lower bounds for f(G)
for general graphs. In connection with this, we should mention that over the years, several
methods for decomposing graphs in terms of their maximum, or perfect, matchings have
been developed. The first of these due independently to Edmonds [33] and Gallai [61; 62]
described a decomposition in terms of the maximum matchings. The procedure can be
executed in polynomial time; that is a corollary of Edmonds' Blossom Algorithm to be
discussed in more detail in Section 6. The problem with the Gallai-Edmonds decomposi-
tion, if one may say so, is that gives no information in the case when the graph in question
has a perfect matching. But others were already at work on this case. Indeed Kotzig [98;
99; 100] had already begun work on a decomposition of graphs with perfect matchings;
unfortunately his work remained largely unknown due to the fact that the results appeared
in Slovak. In [108], Lovi.sz, then working on his Ph.D., extended the work of Kotzig in this
area. Subsequently, Lovhsz and Plummer [112] and Edmonds, Lov~sz and Pulleyblank [36]
further developed this decomposition. It had now come to be called the brick decomposi-
tion theory for graphs with perfect matchings. A somewhat simpler approach leading to
the same terminal decomposition was begun in [36] and developed more fully in [111] now
bears the name tight set decomposition theory. We will now proceed to describe how to
obtain lower bounds on 0(G) via the tight set decomposition approach.

Unless otherwise specified, let us assume that the graph G in question has an even
number of points. Also, since we seek a lower bound on O(G), we will lose nothing by
assuming that our graph G has the property that every line lies in a perfect matching.
Such graphs are called I-extendable or matching covered.

Let us begin by recalling the description of the matching polytope M(G) in Section 3.
In particular, we saw that one could obtain a description of the perfect matching polytope
PM(G) from constraints (3.2), (3.3)', (3.4) and one additonal linear constraint, namely,
I x = IV(G)1/2. It turns out that there is alternate description of this polytope which
lends transition to our discussion in the rest of this section.

A cutset of lines C in a graph G is called an odd cut if C is a line cutset separating
two point sets of odd cardinality. The two odd sets separated by cut C are called the
shores of the cut. An odd cut is said to be trivial if one of its shores is a singleton. It
can be shown (see Edmonds [34]) that the perfect matching polytope can be described by
the following constraints involving odd cuts:

x>O (4.1)

x C = 1 for C a trivial odd cut (4.2)
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x C > 1 for C a non - trivial odd cut (4.3)

We still need several more definitions. A cut is tight if every perfect matching contains
exactly one line of the cut. Clearly, then, every tight cut is odd and trivial tight cuts are
just the stars at each point of G.

Now let graph G be called bicritical if for every choice of distinct points u and v
in G, graph G - u - v has a perfect matching. A 3-connected bicritical graph is called a
brick. Bricks form one of two basic classes of "building blocks" which we are about to
develop for a canonical decomposition procedure for every 1-extendable graph.

Our second class of building blocks are the so-called braces of G. A bipartite graph
G = AU B is a brace if for every subset X C A with 0 < IXI < JAI - I, I(X)I > IXi + 2.

Note that by definition, no bicritical graph can be bipartite, and hence bricks and
braces form disjoint classes of 1-extendable graphs. The close connection with tight cuts
lies in the fact that a 1-extendable graph is a brick or a brace if and only if it has no
non-trivial tight cuts. This result is far from trivial. The left-to-right proof is to be found
in a paper of Edmonds, Lovisz and Pulleyblank [36] and, in fact, forms one of the key
results of that paper. It depends heavily on the polyhedral approach and the details will
be omitted here. The converse is proved in [111].

Now suppose that C is any non-trivial tight cut in a 1-extendable graph G. If the
two shores relative to cut C are Si and S2, then denote by Gi and G2 the two (strictly
smaller) graphs obtained from G by contracting S1 and S 2 to single points respectively.
It can be proved that both Gi's are 1-extendable. Hence this procedure can be repeated.
We are only forced to stop when one of the contracted graphs we produce is either a brick
or a brace. Keep a list of the bricks and braces so formed. Lovisz calls this procedure a
tight cut decomposition procedure and the list of bricks and braces obtained, the result of
the procedure.

The reader will recognize immediately that in general one has quite a bit of freedom
in this procedure, depending upon the sequence of tight cutr chosen. The truly amazing
thing about this routine is that the final list of bricks and braces is independent of the
sequence of tight cuts chosen! This deep result was really proven in two stages. In [361, the
number of such terminal graphs was shown to be invariant. Then five years later, Lovisz
[111] proved that actually the terminal graphs themselves were invariant.

Where is all this leading, you may well ask? Let r(G) denote the maximum number
of perfect matchings (perfect matching vectors) in G which are linearly independent over
R, the real numbers. Then it can be shown [36] that, if G is any 1-extendable graph with
n points, m lines and P(G) bricks in its final list resulting from a tight set decomposition
procedure, then:

r(G) = m - n + 2 - P3(G).

Since 4(G) is at least as great as r(G), we have the lower bound we seek. In the special
case when the graph G we start with is itself a brick, we obtain the bound 0l(G) >_ rn-n+ 1.
This result can then be used to obtain another bound for an arbitrary bicritical graph. In
[112] it was proved that if G is bicritical, then O(G) > n/4 + 2 and conjectured that, in
fact O(G) _ n/2 + 1 for these graphs. This conjectured bound can now be derived from
the rank equation for a brick and an inductive argument.
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The procedure for computing r(G) can be done in polynomial time since the tight set
decomposition procedure can be so carried out. (This too is far from obvious, based upon
our sketchy treatment of the topic.)

Even more evidence that the study of bricks and braces may well be the secret to
counting perfect matchings has been provided very recently by V.V. Vazirani and Yan-
nakakis [166; 167] who have shown that for an arbitrary (1-extendable) graph G, G is
Pfaffan if and only if all its bricks and braces are Pfaffian.

It is probably not surprising to learn that the complexity of the Pfaffian orientation
problem for bricks remains open.

Another approach to learning more about bricks has been pursued by the author.
Motivated by the concept of a 1-extendable graph, we make the following definition. Let
k be an integer such that 0 < k < n/2. A graph G (with a perfect matching) is k-
extendable if every set of k independent lines extends (i.e., is a subset of) a perfect
matching. In [135] it was proved that if G is 2-extendable and not bipartite, then it is
bicritical. It was also shown that every k-extendable graph is also (k - 1)-extendable as
well as (k + 1)-connected. It then follows that every 2-extendable graph is either a brick
or a brace. In addition, it also follows immediately that as k increabei, the k-extendable
graphs form a nested sequence of graph families.

We have studied the interaction of k-extendability with a number of other graph
parameters, for example, toughness [138] and genus [137; 136], to name but two. A survey
of results in this area can be found in 1139].

In bringing this section on bounds to a close, we would like to mention some lower
bound results which can be obtained by more elementary means than those of the tight
set decomposition. On the other hand, they do follow, for the most part, from the tight
set approach.

Let us now agree to seek a lower bound for O (G) depending upon the connectivity of
G. Again, as above, we will assume that G has a perfect matching.

One of the early results in this direction was obtained by Lovisz [108]. He proved that
if a graph G with a perfect matching is k-connected and not bicritical, then $(G) k!.
At the time, the result piqued the fancy of several investigators, including your author,
who found it rather counterintuitive that the bicritical graphs should be those with 'few"
perfect matchings. After all, trivially, bicritical graphs are 1-extendable. But, we digress.

Following Bollob~s [10; pg 62], define f(k) to be the minimum value of 0(G) taken
over all k-connected graphs G having at least one perfect matching. One can show that
the Lov~sz result above can be used to obtain a lower bound on f(k) due to Zaks (171;
172]. Zaks' result says that f1(k) > k!! = k(k - 2)(k - 4).... If k is odd, the complete
graph Kk+I serves to show that the above bound for 1(k) is sharp. (In fact, it may be
shown that Kk+1 is the unique extremal graph in this case.) If k is even, however, the
situation is less clear, but more interesting. In this case, Mader (117] has shown that the
extremal graph is again unique. These extremal graphs S(k) are obtained by deleting a
perfect matching from the complete graphs Kk+2.

Curiously, however, a closed form for f'(k) in this case is unknown. But one does have
a recurrence relation for f1(k) for these extremal graphs. (See also Bollobis [101.)

Later, Mader [118] was able to strengthen the above results by dropping the as-
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sumption that G be k-connected, and replacing it with the weaker assumption that G be
2-connected and have minimum degree at least k.

Finally, one can combine the tight set bound of n/2 + I for bicritical graphs with the
Lov~sz "k!" theorem above to prove that any sufficiently large k-connected graph G having
a perfect matching must have O(G) _ k!.

5. On Matchings in Random Graphs

Suppose among all the graphs on an even number of points, we select one "at random".
How likely is it to contain a perfect matching? Failing that, what is the expected size of
a maximum matching? Such statements, though decidedly imprecise at this stage, are
nontheless, intuitively appealing. The idea of selecting a graph "at random", or selecting a
"random" graph has its mathematical roots well back into the 1930's, according to Bollob~s
[14], but the concatenation of the two concepts of random graph and matching seems to
have been first appeared in the pioneering series of papers by Erd6s and RAnyi [41; 42; 43;
A :; 4 '*.

Let n denote a fixed integer; we shall be considering graphs having n points.
There are quite a number of models of random graphs to be found in the literature.

But two certainly predominate.
The first of these two we define as follows. Given a p, 0 < p < 1, let 9{n,p) denote

the set of all graphs with point set V = (1,2,... ,n} in which each line is present with
probability p. Thus if Go denotes any fixed graph with point set V having m lines, then
in this model, Prob(Go) = p- (1 - where N = ().

The second model of random graph which we now introduce will be the one most
often used to state the results of this section. Let 9(n, M) denote the set of all graphs
having point set V = {1,2,... ,n}, having M lines in which each graph has the same
probability. In other words, letting N - (), we have 0 < M < N, the class 9(n,M)
contains (N) mcmbers (labelled graphs) and every member occurs with equal probability

(N) -. Normally, M is a function of n and is thus often denoted M = M(n). A typical
member of class 9 (n, M) will be denoted by Gn,M. For an arbitrary graph property Q we
will say that a typical member of our probability space has property Q if the probability
that a random graph on n points has property Q tends to 1 as n --+ oo. We also say, in
this case, that almost every (a.e.) graph has property Q. A graph property Q is said to
be monotone if whenever a graph Gi has property Q and G is a subgraph of G 2 , then
G 2 also has property Q. For example, "has a perfect matching" is a monotone property.
(Remember: the number of points n is fixed.)

Next we need the concept of a threshold function. Let Q denote a monotone property.
A function M* (n) is a threshold function for property Q if

M(n)/M*(n) --- 0 implies that almost no Gn.M has Q,

and

M(n) /M* (n) --+ co implies that almost every GnRM has Q.
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It iz a fact, proved surprisingly recently, [18], that for every monotone property, such
a threshold function must exist.

Erd6s and Rlnyi were the first to suggest the following point of view toward random
graphs. Start with the graph having no lines and add lines, one by one, selected at
random; then try to determine how the graph "evolves" in doing so. It is one of the great
accomplishments of random graph theory that so much can be said about this process.

We begin with a graph Go having n points and no lines. One line is added at random
to obtain the graph G1 , another is added at random to obtain G2 , etc. In general, for
0 < t < N, let Gt be the random graph obtained in this way.

When one adopts this point of view, it is useful to define another parameter closely
associated with the threshold function, namely the so-called hitting time of monotone
property Q. We define the hitting time of property Q as:

rQ= min {t > 01 Gt has Q}.

Then M. (n) is the threshold function of Q if whenever w (n) - oo, the hitting time
is almost surely between M* (n) /w(n) and M* (n)wt(n). In other words,

Prob{M *(n)/w(n) < TQ(n) < M*(n) w(n)} -- 1.

Although we are mainly interested in matchings, we cannot resist the temptation to
devote a paragraph to "taking a stroll", so to speak, with our random graph as it evolves
by this random addition of lines. (Our stroll will be a mathematically cavalier one; for
more justification and rigor, see 1141.)

Of course, our beginning graph contains no lines and hence has n components. As
lines are randomly added, components begin to form. Although much can be said about
what happens in the range 0 < M < n/2, we will begin our observations only at this
point. What now begins to happen is one of the great surprises to neophytes in random
graph theory! One might think that components grow more or less at the same rate as we
proceed. But quite the opposite is the case. In fact, there now begins the emergence of a
"giant component" which ultimately swallows up all the remaining components.

When t reaches [n/2 + 2(logn) 1/ 2 n2/ 3J, the graph Gt has a unique component of
order at least n 2 / 3 and each of the other components has at most n2 / 3 /2 points each. As
t increases further, i.e., as t > con/2, where co > 1 is a constant, every remaining small
component contains at most one cycle. Moreover, the order of these small components is
o(log n). Should it happen that for any function w (n) such that w (n) --* oo, that t > w (n)n,
then every component of Gt, other than the giant component, is a tree.

The next point of interest to us along this evolutionary trail occurs at (n/2) log n.
When t reaches this point, the giant component has succeeded in swallowing up all the
other components (largest ones first!) and Gt becomes connected. This connectivity hitting
time was first obtained by Erd6s and R6nyi in [41]. But in two subsequent papers ([44]
and [45]), these same two authors were to prove two more very surprising results. First
they proved that this same hitting time marked the point where the evolving graph Gt has
minimum degree 1 and this in turn was the same point where (provided n is even), graph
Gt has a perfect matching!
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Since the beginning of this Chronicle on matching, we have often differentiated be-
tween the bipartite and non-bipartite cases. We might do the same here. Hence one might
ask if one changed the probability space to one that was composed solely of random i-
partite graphs, if the above triple coincidence of hitting times might change. The answer
is "no"! (See [14].)

If one reflects a bit upon the fact that the hitting times for Gt to have a perfect
matching (when n is even) and that for Gt to have minimum degree 1 coincide, it seems
that the (probabilistic) obstruction to a random graph having a perfect matching is that
it has points of degree 0. So what if one restricts the random graphs G.,M to those having
minimum degree at least 1? Then it is not too surprising that the threshold drops. In
fact, roughly speaking, it falls from n/2logn to (n/4)(logn + 2nloglog n. (See 1161.) (Of
course, we still assume n even here.)

Let us pursue this line of enquiry one more step. Let us further restrict the minimum
degree of our random graphs G,,,M to be at least 2. Denote these random graphs by n_ *
An open problem posed by Frieze [52] is the following:

Does c > 1 imply that a.e. n,cnhas a matching of size n/2J?
He has subsequently made some progress on this problem by showing that in the

special case when the graphs are bipartite with minimum degree at least 2, have an even
number of points, and constant c > 2, the random graph almost surely has a perfect
matching [531. The proof, however, of this result currently requires in excess of sixty
pages!

We would also like to note that there is a random graph result akin somewhat to
the results in Section 4 dealing with the number of perfect matchings in a k-connected
(respectively, minimum degree = k) graph. Bollobas and Frieze [16] proved that as a
random graph on an even number of points evolves, the hitting time for the minimum
degree to be > k is the same as the hitting time for the graph to have k line-disjoint
perfect matchings.

Let us move on to yet another probability space - that of r-regular graphs. Suppose
that r and n are positive integers such that 3 < r < n and that rn = 2m is even. Let
9(n,r - reg) denote the set of all r-regular graphs on the point set V = {1,2,...,n}.
(Since rn is even, we know this class is not empty.) Assign each member of this class
the same probability. It then follows from a result of Bollobas [14; Theorem 321 that a.e.
r-regular graph is r-connected. But it is also known [15] that every r-regular r-connected
graph on n points contains [n/2J independent lines. Combining these results, we see that
a.e. Gn,r-reg with an even number of points has a perfect matching.

Our final example of a random graph probability space which has been studied with
respect to perfect matchings is the so-called k-out model. It is yet another attempt to deal
with the fact that points of degree 0 seem to be the blocking factor for the existence of a
perfect matching in our first two random graph models studied in this section.

Once again let V = {1,2,...,n} and let D(n,m) denote the set of directed graphs
on point set V in which each point v E V has outdegree m. Choose B (n, m) uniformly
at random from D(n,rm) and then form the undirected graph D(n,rm) by ignoring the

orientation of the lines of B(n,in). Frieze [51] proved that when n is even:
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lim Prob(D(n, 1) has a perfect matching) = 0,
nI 00

while

lir Prob(D(n, 2) has a perfect matching) = 1.
nl-00

For most of the terminology and many of the theorems of this section, we have de-
pended heavily upon the encyclopedic book of Bollobis [14). For gentler introductions to
the subject of random graphs, se [11] and [130]. For survey articles, see [12],[69] and [13].

6. Matching Algorithms

We will only be interested in polynomial algorithms (at least in the sequential machine
setting) since the mathematical community has essentially unanimously agreed with Ed-
monds point of view expounded in his ground-breaking paper on non-bipartite matching
[331 that polynomiality should be the crucial criterion for "goodness" of algorithms. With
this polynomiality criterion in mind, however, it is difficult to trace the early history of
matching algorithms.

By far the most fundamental idea in the area of matching algorithms - the augment-
ing path - has already been introduced in Section 2. But augmenting paths were known
to Petersen, K6nig, Egerviry and probably others long before anyone really cared about
algorithms - be they "good" or "bad"!

Historically speaking, as we know, bipartite matching came first. We can say that
although K6nig's proof of his Minimax Theorem involved alternating paths, it was a proof
by contradiction; it contained no algorithm as such. It seems that we must wait until the
mid-50's for the true beginning of our algorithmic tale. In 1956, M. Hall [71] published an
algorithm for constructing a system of distinct representatives, but so far as we know, no
one bothered to analize its complexity. Shortly before that, Kuhn [103] who had studied
carefully the methods of K6nig and Egerv;.ry, developed an algorithm for the Assignment
Problem. (The Assignment Problem is a generalization of the bipartite matching problem
in which weights are assigned to the lines of the graph.) His routine was polynomial,
but neither he nor anyone else, as far as we know, made this observation at that time.
It was in this paper that the term "Hungarian Method" was first used. To his credit,
Kuhn attributes the algorithm to the seminal ideas of K6nig and Egervhry set forth some
twenty-five years earlier. In essence, Kuhn showed that a primal-dual algorithmic idea
of Egervwry could be used and termination at optimality followed from K6nig's Minimax
Theorem.

In their book [49], published in 1962, Ford and Fulkerson showed that their labeling
algorithm for Max-flow Min-cut could be adapted to solve the Assignment Problem, among
others. Still no mention of polynomiality, but the authors did mention that in the case of
integral capacities, their labeling method would terminate in a number of steps no greater
than the maximum of the line capacities. They even gave an example of a network with
irrational capacities such that their labeling process would not even terminate! In this
example, the labeling algorithm produced an infinite number of flow-augmenting paths
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which did, however, converge. On the other hand, the limit of convergence was far from
the value of a maximum flow.

Not until some ten years later, did Edmonds and Karp overcome these difficulties
[35]. They pointed out that in the Ford-Fulkerson labeling process there was a potentially
dangerous ambiguity in the labeling and hence in the choice of a flow-augmenting path.
Using the simple, yet ingenious, method of "first-labeled first-scanned" in the labeling
procedure, Edmonds and Karp were able to show that not only did the algorithm converge
to a maximum flow for arbitrary real capacities, but that the number of steps to termination
was polynomial ordny in the number of points of the network. In other words, running time
was independent of the capacities.

This, coupled with the fact that Ford and Fulkerson in their book [49] had shown
that bipartite matching could be done with their labeling algorithm, showed explicitly for
the first time that there was a bipartite matching algorithm which was polynomial in the
number of points in the input graph.

At about the same time that Edmonds and Karp obtained their result, Soviet graph
theorist, E.A. Dinic, published a similar improvement [32]. From that day to the present,
there has been a stream of successive improvements in efficiency of flow algorithms. We will
no. pursue this further, since flows are not central to our mission. Instead, we direct the
interested reader to [113; Chapter 2] and to the even more recent survey on flow algorithms
[66].

The flow algorithm of Edmonds and Karp is 0(n 3 ). In the year following the publica-
tion of the Edmonds-Karp flow algorithm, Hopcroft and Karp [76] designed an 0(mv, n)
bipartite matching algorithm. This remains the best time bound for bipartite matching
today.

But what about non-bipartite matching? It was not until 1965 that we had any polyno-
mid algorithm for general (i.e., non-bipartite) matching at all! In that year, Jack Edmonds
published two papers which were to profoundly affect the study of matching theory. In
the first [331, he developed the first polynomial algorithm for non-bipartite matching, the
now-famous blossom algorithm. In the second, he developed the polyhedral approach to
matching and employed it to develop a polynomial algorithm for weighted non-bipartite
matching. With the benefit of hindsight, it is difficult to overestimate the importance of
these papers. In [33], in addition to the important development of a polynomial algorithm
for general matching, Edmonds expounded at some length on "efficient" algorithms and
offered polynomiality as a measure for such efficiency. Some five years later, Cook (24] in
an equally monumental work, laid the foundations for modern-day algorithmic complexity
with the introduction of the classes P and NP and the discovery of the first NP-complete

problem. (As the reader undoubtedly knows, "P" stands for "polynomial", or in contrast
to NP, we should really say that class P stands for the class of decision problems for which
there is a deterministic polynomial algorithm. Recall that P and NP were introduced in
Section 2 of this paper.)

The reader may well have noted by this time that we have not treated weighted
matching so far. In fact, we will not do so. Although it is an important branch of matching
theory, due to space limitations, we have elected not to treat it in this paper. Fortunately,
however, there are several sources to which we can direct the reader's attention. See 113],
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[1441, [143], 167] and 159]. It should be noted, however, that we have laid a fair amount
o' .he groundwork for weighted matching in Section 3 by introducing the concepts of
matching polytopes and their facets.

But let us return to Edmonds' algorithm. We will give only a superficial description
of how it works.

Clearly Edmonds was motivated by the long-standing notion of augmenting paths.
Suppose we begin the procedure with a given matching M. If M happens to be perfect,
there is nothing to do, so we halt. So suppose that the set S of points not covered by M
is not empty. We then construct a forest F such that every connected component of F
contains exactly one point of S, every point of S belongs to exactly one component of F
and every line of F which is at an odd distance from a point in S belongs to matching
M. It follows that every point of F which is at an odd distance from S has degree 2 in
F. Such points will be called inner points and all other points in F will be called outer.
(Note that the points of S are outer.) Forest F is said to be M-alternating.

The idea is to try to enlarge F as much as possible. If we find an outer point x
adjacent to a point y not in F, then line yz must be in M (or else y would have already
been in the forest) and we can then enlarge forest F to a larger forest F' = F + xy + yz
which is clearly also M-alternating.

If F has two outer points z and y which belong to different components of F and
which are adjacent in G, then the roots of these two components are connected by an
M-augmenting path joining the respective roots of the two components and using the line
xy. So we can augment M to a matching M' such that IM'I = IMI + 1 and we begin again
with the new larger matching.

Suppose that every outer point has only inner points as neighbors. Then we claim
that the matching M at hand is a maximum matching. For suppose that the forest F
contains a inner points and b outer points. Clearly, b - a = ISI. Moreover, if we delete all
the inner points of F from graph G, the remaining graph will contain all the outer points
of F as isolated points. At this point we appeal Lo Berge's deficiency version of Tutte's
1-factor Theorem. Let the defect of any matching M denote the number of points of G
not covered by M. Let d, denote the minimum taken over the defects of all matchings in
G. On the other hand, let d2 = max {co(G - X) - IXJIX C V(G)}. Then Berge's result
states that di = d2. Let Xi denote the set of all inner points relative to matching M and
as above, assume that no two outer points are adjacent. Then M is a matching with defect
= S, so d, <_ ISJ. On the other hand, ISI <_ c,(G - Xi) - JXiJ < d2. Thus it follows from
Berge's theorem that M is a maximum matching.

So far so good, but the careful reader will see that we have omitted treating precisely
one case. What if forest F has two outer points z and y in the 8ame connected component
(tree) of the forest which are adjacent in G? Thus an odd cycle of a particular type is
formed; namely, one rooted at an outer point and having the property that all the other
points of the cycle are covered by the matching M. Such an odd cycle is called a blossom.
What can we do with blossoms?

Edmonds answer: Shrink them! If blossom B is shrunk to a single point and the
resulting smaller graph is denoted by G', and if M' = M - E(B), then the crucial "Cycle
Shrinking Lemma" says that M' is a maximum matching in G' if and only if M is a
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maximum matching in G.
Thus we have an algorithm which terminates in a maximum matching. Moreover,

the geometry of the steps is appealingly simple. That's the good news. The bad news is
that the data structures necessary to implement Edmonds algorithm are very complicated
and hence the time bound is not clear. The first careful analyses for running time seem
to have been carried out by Gabow [55; 56] and Lawler 1104] each of whom obtained an
implementation of the algorithm which was 0(n3 ).

Since 1976, a number of successive improvements have been made both in the simplic-
ity of the data structures involved and the time bound. At the present time, the fastest
known cardinality matching algorithm is due to Micali and V.V. Vazirani 11221, and cu-
riously enough, it has the same polynomial time bound as that of Hopcroft and Karp for
bipartite graphs. Unhappily, they must still deal with blossoms. Inde, it remains to be
seen if one can design a polynomial matching algorithm which remains competitive with
Micali-Vazirani, but somehow avoids blossoms and their attendant trouble.

Lov~sz [113] has built a blossom-free matching algorithm based upon the Gallai-
Edmonds decomposition procedure discussed in Section 4. His algorithm is 0(n 4 ), but
it is unknown to the author whether or not implementation of this algorithm has ever
been undertaken.

So far, all our algorithmic discussions have dealt with the sequential approach. Al-
though we want to avoid such technicalities as much as possible in this paper, one can safely
assume that our algorithms have been carried out on a random access machine (RAM).
For those who interested in such matters, see [1].

In the last twenty years or so, the world of computing has seen tremendous strides in
the miniturization of chips and a steady decrease in the cost of their production. Such real
world considerations have served to buttress the case for developing parallel computers in
which large jobs can be subdivided into smaller tasks and farmed out to individual proces-
sors. The processors can then perform their assigned tasks "in parallel" and communicate
their answers to a central processor for a final output.

Formidable problems arise immediately, however. What type of architecture should
be adopted? In othe words, how should the individual processors be arranged and linked
together in order to achieve "optimal" efficiency? How does one avoid network "gridlock"?
That is, how can the entire parallel computation be sychronized? How can a given problem
be efficiently subdivided into smaller parts which can then be effectively done in parallel
and then be combined to produce an answer?

Awesome problems indeed! And, we hasten to add, far from solved in most senses of
the word. But how does all this intersect with matching theory?

We will give a rough overview of the present state of affairs vis-i-vis parallel matching
problems. We shall avoid discussion and comparison of various parallel computer models.
In this matter, let it suffice to say that we will adopt as our model the standard parallel
random access machine - or PRAM - and one can read about PRAMs in [50] as well
as many other places. A particularly nice overview of various models of PRAMs from the
point of view of the mathematician can be found in the new survey of parallel algorithms
by Karp and Ramachandran 1831. In particular, another very important model of parallel
computation is the Boolean circuit model. It is especially useful for defining certain com-
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plexity classes for parallel computation. But due to space limitations, we shall not deal
with it here. Again we refer the reader to [83] and, for the most complete and up-to-date
treatment of circuit models for parallel computation, to [20] in the same volume.

When switching from sequential to parallel computation, some new philosophical ques-
tions immediately arise. (Well, philosophical, yes, but also very easily translatable into
cold hard cash!)

Of course, any problem which can be solved sequentially can trivially be solved in
parallel, but the important question is: can it be done faster in parallel? For that matter,
what should "faster" mean here? And what about the coat of achieving such speed-up?
How many processors will be needed to achieve a given speed-up factor?

Here is another question which we find particularly intriguing. Are there graph prob-
lems which are somehow "inherently sequential" in the sense that no parallel algorithms
can be found which will offer a significant speedup in computation time? Although we
are being deliberately vague here with the phrase "inherently sequential", let us illustrate
with a simple problem from matching. Suppose we wish to find a maximal matching in a
graph. (That's right; a maximal matching, not a maximum matching!) Such a task is a
triviality in the sequential sense. Choose any line. Delete its endpoints. Choose any line
in the remaining graph and add it to the first. Delete its endpoints and continue in this
manner until there are no lines left to choose. Presto! We have a maximal matching -
and in polynomial time. But how can one do this (non-trivially) in parallel?

Before we return to this and other matching questions, we must lay some groundwork.
The reader will recall our earlier discussion of the sequential complexity classes P and
NP. We now introduce what has become the most widely studied parallel complexity
class. It is called NC, the letters corresponding to the abbreviation "Nick's Class" after
Nick Pippenger who first studied it [134]. Class NC consists of those problems solvable
in "polylog" time using a polynomial number of processors. (Here "polylog" refers to
polylogarithmic time, that is to say, in time polynomial in the logarithm of the size of the
input.) Clearly, NC lies in sequential class P. Could it possibly be that NC = P? This is
an open question.

Actually, a finer classification than just NC has been introduced and studied as well.
It focuses upon the degree of the polynomial in the polylog time part of the definition.
More particularly, let us define class NC' to be the class of problems in NC in which the
polynomial in the logarithm of input size is of degree i. Then of course NC = U "NCi.

Now let us return to matching. The irst result on maximal matching in parallel is
due to Lev [106]. She showed that the problem was in NC 4 for bipartite graphs. Maximal
matching in general graphs was first shown to be in NC by Karp and Wigderson [85] who
actually solved the more difficult problem of showing that the maximal independent set
problem was in NC. Since matchings in a graph G correspond to independent sets (of
points) in the line graph L(G), the matching result follows.

The Karp and Wigderson result actually showed that maximal matching is in NC'.
Luby [114] subsequently showed that in fact maximal matching is in NC 2 . Luby's approach,
like that of Karp and Wigderson, was through a speed-up in the maximal independent set
problem. All of these results are truly eye-openers in the sense that these parallel algo-
rithms for doing this sequentially trivial problem are quite complex. In particular, Karp
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and Wigderson appeal to the use of block designs, while Luby first obtains a "randomized'
version of the algorithm and then uses a beautiful probabilistic argument to show that the
randomness can be eliminated! Luby's approach seems especially novel and one wonders
if it will bear further fruit in designing graph algorithms. (See also Luby 1115].)

In view of the above discussion on maximal matching, we approach our old friends -

finding maximum or perfect matchings - with not a little fear and trepidation!
Let us start by informing the reader that no NC-algorithm for finding a maximum or

a perfect matching is known. In fact, it is not even known if the decision problem "does
graph G have a perfect matching?" lies in NC.

Some interesting special cases of these questions have been settled, however. For
example, if a bipartite graph has a polynomially-bounded number of perfect matchings,
then the decision and search problems have been shown to be in classes NC 2 and NC
respectively by Grigoriev and Karpinski [68].) In contrast, Dahlhaus and Karpinski 1281
have shown that if a graph G is dense (and has an even number of points), then the search
problem is in NC 2 . (A graph G is dense if mindeg (G) _ n/2. Note that in this class of
graphs, the decision problem always has the answer "yes" since by a well-known theorem
of Dirac, dense graphs all have Hamiltonian cycles.)

In another direction, although no polylog-time matching algorithms are yet known,
there do exist sub-linear matching algorithms, at least in the bipartite case. To the author's
knowledge, the fastest known maximum matching algorithm of this type is due to Goldberg,
Plotkin and Vaidya (65].

In an exciting new direction, however, progress on matching (and many other) prob-
lems has been made when one allows randomization to creep into one's algorithms. But
what do we mean by "randomization"? Randomization comes in all shapes and sizes and
constitutes a subject for study unto itself. For our Sampler purposes, we will rely heavily
upon the treatments of Karp [82] and Johnson [79]. Randomized algorithms receive, in
addition to the input graph, some additional bits from some "random" source and then
perform their computations based upon both types of input. Sometimes, randomized al-
gorithms are described as ones which are allowed to flip coins during their execution. Let
us agree that our output is to be either "yes" or "no". Then one can define various types
of randomized algorithms and associated complexity classes by the manner in which they
adher to the truth. For example, a Monte Carlo algorithm behaves as follows. If the input
problem has "yes" as its answer, the algorithm will answer "yes" with some probability
exceeding 1/2. But if the correct answer is "no", the algorithm remains silent. Thus if the
correct answer is "yes" and one runs the algorithm a number of times on this same input
and if one gets even one "yes" output response from the algorithm, one is certain that the
answer is truly "yes". If the correct answer is "no", the machine will never lie and tell you
that the answer is "yes". On the other hand, if after a large number of trials, say k, the
machine has always answered "no", the probability that the correct answer is yes" is at
most 1/ 2k . Thus it is very likely that the correct answer is "no".

The class of (sequential) decision problems for which polynomial-time Monte Carlo
algorithms exist is denoted by RP. The parallel complexity class corresponding to NC in
the same way that RP corresponds to P is denoted by RNC.

An RN C2 algorithm for testing for the ezistenee of a perfect matching was first found
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by Lovisz [109] (see also [113]) who reduced the problem to deciding whether or not a
given integer matrix is non-singular. This, in turn, is known to be in RNC2 by a result of
Csnky [25]. But if we know that graph G hm a perfect matching; how can we find one
(in parallel)? Karp, Upfal and Wigderson 184] produced a parallel search algorithm for
a perfect matching which is RNC 3 . This was later improved by Mulmuley, Vazirani and
Vazirani [126] who found an RNC 2 algorithm. The design of the algorithm is ingenious
enough to deserve a comment. Remember: the Lovim-Csnky result stated above can
be used to decide whether or not G has a perfect matching in RNC2 . So ruppose we
run this algorithm as a subroutine and find that indeed G does have a perfect matching.
Now assign random integer weights to the lines of G, chosen randomly and uniformly from
{1,2,...,m}, where m = IE(G)I. They then show that G will have a unique minmum
weight perfect matching with probability at least 1/2. Next they show how to find this
minimum weight, and finally how to find the perfect matching itself!

They then show how to extend their algorithm to one for finding a maximum matching.
The extended algorithm remains in RNC 2 . In fact, they do even more.

The exact matching problem can be stated as follows and is credited to Papadimitriou
and Yannakakis [131]. Given a graph with a distinguished subset of lines called "red" and
an integer k. Does G have a perfect matching containing exactly k red lines? Mulmuley,
Vazirani and Vazirani extend their methods to provide an RNC 2 algorithm to decide
this problem. This is of special interest, as the exact matching problem is of unknown
deterministic complexity! One result in this direction has been recently obtained by V.V.
Vazirani, however [164: 1651. If graph G is K 3 ,3-free (See Section 4) then there is an NC
algorithm to decide exact matching.

Before leaving the existence and search problems for matchings, we cannot resist
stating two more results. Although it remains unknown whether or not the existence
problem for perfect matchings lies in NC, if the graph in question happens to have a unique
perfect matching, Kozen, Vazirani and Vazirani [101] have developed an NC algorithm
for the existence problem. (Although the authors do not say so, it appears that their
algorithm actually is NC 2 .) On the other hand, if one is given a graph having a unique
perfect matching, Rabin and Vazirani [146] have recently shown that the search problem
for the perfect matching is in NC 2 . The publication dates of these two papers belie the
true sequence of events. The Rabin-Vazirani paper actually existed in preprint form for
at least five years before its recent publication and its contents became rather widely
known to those in the area, including Kozen, Vazirani and Vazirani. Thus chronologically
speaking, the search problem for the special case of graphs with unique perfect matchings
was actually shown to be in NC before the decision problem was similarly settled.

We would like to make one final remark before leaving the study of parallel match-
ing algorithms per se. The classes NC and RNC by definition place strong emphasis on
increasing the speed of parallel algorithms at the expense of almost ignoring the price to
be paid in increased number of processors. Processors may be cheap in future parallel
computers, but perhaps not that cheap! There are a number of papers scattered through-
out the parallel algorithm literature, including that pertaining to matching, which do deal
with such processor penalties. Due to our space limitations, however, we will not discuss
this matter.
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Now let us once again turn from existence and search problems for matchings back
to the problem of counting them. The reader will recall from earlier in this paper that
it is known that exact counting of perfect matchings is known to be #P-complete. From
this it follows that the problem is at least as hard as any problem in NP. It is unknown
if NP = #P, but most mathematicians think it unlikely. So what can we hope to do,
algorithmically, toward counting perfect matchings?

We do have the lower bounds described in Section 5, but they are not sharp. We
also have polynomial algorithms for f(G) in certain special cases (see the discussion of
Pfaffians in Section 4). We will now briefly describe a third approach to the problem.

Quite recently, much excitement has been generated in the area of approximating the
value of ,(G). But here the approach is quite different from those treated in Section 4. It
deals with approximating the value of the permanent of a matrix, and through that, the
value of 4(G) for bipartite graphs.

Let A = (A1 ,j) denote any n x n matrix of positive integers. It is easy to define the
permanent of matrix A as follows. Form all the n! terms that one forms to compute
the determinant of A, change all those terms having minus signs to plus, and add all n!
terms together. Despite the simplicity of definition, the permanent function has proved to
be notoriously hard to handle! (See Minc [123], for a general reference on permanents.)
Also despite its close resemblance to the determinant, whereas the determinant can be
polynomially evaluated by any student in a first course in linear algebra, the best known
algorithm for evaluating the permanent has a time bound of O(n2'), [151].

Why should we want to have anything to do with such a badly behaved function?
Because if one confines the entries of the matrix A to either O's or l's and then considers
the resulting binary matrix to be the bi-adjacency matrix of a bipartite graph G on 2n
points, the permanent of the resulting matrix is exactly f(G)!

But since Valiant proved that evaluating the permanent is #P-complete, what good
does all this do us? Quite recently, there has been a flurry of activity in the area of
approximating the permanent. Of course, questions always beget questions. What do
we mean by "approximation"? And then what shall we adopt as a measure of "good"
approximation? We shall give the briefest of reports on this. For more a more detailed
survey of this topic the reader is directed to the recent paper of Luby [116].

Let us begin with a few definitions. An (c, 6) approximation algorithm for per (A)
is a probabilistic (Monte Carlo) algorithm which accepts as input the matrix A and the
two positive real numbers, c and 6. The algorithm then outputs a number Y as an estimate
of per (A) which satisfies:

Prob[(l - e)per (A) S Y < (I + e)per (A)] > 1 - 6.

An (e,6) approximation algorithm is said to be a fully-polynomial randomized
approximation scheme (fpras) (or simply fully polynomial) if its running time is
polynomial in n, 1/iE and 1/6.

It is an open question as to whether or not there exists a fpras for the permanent
function.

Very recently, two major lines of research on this question have begun. The first of
these has resulted in an approximation algorithm which meets the accuracy demand of a
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fpras, but in superpolynomial time. More specifically, Karmarkar, Karp, Lipton, Lov~sz
and Luby 181] have designed a Monte Carlo algorithm which yields the desired output in
time 2n/2(1/e2) log(1/6)p(n), where p(n) is a polynomial in n. For fixed e and 6 this is
about the square root of the time bound for Ryser's algorithm.

The five authors of this work also pose the following open question: Is there a deter-
ministic algorithm with running time o(2n) which accepts as input matrix A, positive real
e and outputs Y such that

(1 - e)per (A) : Y < (1 + e)per (A) ?

The second approach which seems to have originated with an idea of Broder [22]
and been completed by Jerrum and Sinclair 177; 78]. The latter two authors succeeded
in finding a fpras for dese permanents, that is, for dense bipartite graphs. The Jerrum-
Sinclair paper (and several other companion papers) are not only important for this result,
but perhaps even me. e so for introducing novel approaches using such esoteric concepts
from probability theory as rapidly mixing Markov Chains and conductance. (Broder,
too, deals with slightly modified versions of same.) In general, their common approach
deals with reducing the problem of approximately counting perfect matchings to that of
generating them randomly from an almost uniform distribution.

Using these ideas, Dagum, Luby, Mihail and U.V. Vazirani [27] (see also Dagum and
Luby [26]) have achieved a polynomial speed up of the algorithm of Jerrum and Sinclair
and used it to show that there is also a fpras for bipartite graphs with large factor size.
The factor size of a bipartite graph G = A U B (where still JAI = IBI = n) is the
maximum number of line disjoint perfect matchings in G. (Observe that a graph with an
an-factor must have minimum degree at least an, but not necessarily vice-versa.) In this
area, Dagum and Luby have shown that there is a fpras for bipartite graphs with factor
size at least an for any constant a > 0.

These results are even more interesting when compared to some related new com-
pleteness results. Broder [22] has shown that ezact counting in dense graphs is as hard as
exact counting in general and so is #P-complete. Dagum and Luby [26] and Dagum, Luby,
Mihail and U.V. Vazirani [27] have shown that exact counting in f(n)-regular bipartite
graphs is #P-complete for any f(n) such that 3 < f(n) n - 3. In fact they show that
for any c > 0, for any function f(n) such that 3 < f(n) n 1- ', a fpras for f(n)-regular
bipartite graphs would imply the existence of a fpras for all bipartite graphs!

Before leaving the subject of algorithms and matching, we would be remiss if we did
not at least mention the important problem of lower bounds on computational complexity.
To this point, our emphasis has been on searching for upper bounds in series and parallel
for such problems as deciding the existence of a perfect matching, searching for maximal
and maximum matchings, counting the number of perfect matchings, etc. Moreover, the
criterion for success normally adopted has been the discovery of a polynomial algorithm.
Of course, we have not always succeeded! The main problem discussed for which success
has eluded us (at least so far) is the exact determination of O(G).

On the other hand, we have the P = NP question. Should equality hold here, we will
instantaneously have polynomial algorithms for literally hundreds of problems in grayen
theory and many other areas of computation; not just those problems with which we have
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dealt in this paper involving matchings. But most people involved in computation believe
that P # NP. How can we possibly approach a proof that equality does not hold?

Perhaps someone someday will succeed in proving that certain problems in NP cannot
possibly have a polynomial algorithm. It would seem at the moment, however, that we are
very far from accomplishing this. But a first step recently taken by A.A. Razborov [148;
149] has generated a strong ripple of excitement in the world of computational complexity.
In order to give a good explanation of Razborov's accomplishments, we must deal with a
model for measuring complexity quite different (at least formally) from the RAM or Turing
machine models we have dealt with without exception in this paper so far. This is the
so-called Boolean circuit model. Here, once again, our overview will be very superficial,
due to space constraints. We direct the reader to Boppana and Sipser [20] for an excellent
overview of the subject, including the Razborov results we are about to describe.

The circuit model seems to have been first introduced as a measure of computational
complexity by Shannon [156]. A Boolean circuit is essentially an acyclic directed graph.
The points having indegree 0 are called inputs and those having indegree greater than 0
are called gates. Normally these gates act as one of the Boolean functions AND, OR or
NOT. One of these is distinguished and designated as the output gate. The size of the
circuit is the number of gates. The circuit complexity of a Boolean function f is the size
of a smallest Boolean circuit which, given binary input to the input points of the circuit,
will compute the value of f. In particular, a problem (function) has polynomial circuit
complexity if its circuit complexity is a polynomial in the number of gates in some circuit
representing f. It would be very nice indeed for our purposes if a problem were in P if
and only if it had polynomial circuit complexity. This is not quite the case unless one
inserts the concept of uniformity into the discussion of circuits. We will avoid this by
simply noting that it is true in general that every problem in P has polynomial circuit
complexity. In order to approach Razborov's results, it is perhaps better to think in terms
of the contrapositive of the preceding fact. Namely, if one can show that a problem has
superpolynomial circuit complexity, then it is not in P. More specifically for our purposes,
if one could show that a problem in NP has superpolynomial circuit complexity, then P

NP!
Clearly, no one has succeeded in accomplishing this to date. But an interesting ap-

proach has been taken involving the concept of a monotone circuit. Simply put, a Boolean
circuit is monotone if it contains no NOT gates. Razborov's result on the matching
problem can now be simply stated. The decision problem for perfect matchings in bipartite
graphs has auperpolynomial monotone circuit complexity. But this matching problem is
well-known to be in P, so what is the significance of Razborov's result for us?

We should mention that Razborov has also shown that the clique problem for graphs
also has superpolynomial monotone circuit complexity [148]. So the clique problem serves
as an example of an NP-complete problem with a superpolynomial monotone circuit lower
bound. The fact that this also can happen for the matching problem - a problem in P
- may be more of an indication of just how much monotone and non-monotone circuits
differ in power, rather than an indication of the fundamental differences, if any, between
P and NP. Be that as it may, whether or not the monotone circuit approach will serve as
a useful tool in the ultimate resolution of the P = NP conundrum only time will tell, of
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course.
This brings us to the end of our Sampler and more or less, up to date in the field of

matching theory. As we have said several times above, it is truly only a Sampler, for a
number of important matching topics, such as weighted matching, b-matching, matching
polynomials, matroid matching, etc., etc, have not been addressed. However, a number
of other problems on maximal, maximum and perfect matchings and their relatives, to-
gether with analogous problems for independent sets (i,e, vertex packing) will be treated
in forthcoming paper [140]. The emphasis there will be on complexity.

It is likely that by the time the present paper appears in print, new and even more
interesting results will have been discovered which deserve to be included in our Chronology
and Sampler. We certainly hope so.
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Postscripts

Remark 1. After, the completion of this paper, the author became aware of two preprints
of F. Barahona (See [173; 174]). Here Barahona addresses the as yet unsolved problem of
formulating the weighted matching problem as a linear program with a polynomial number
of facets. In [173], he shows that this can be done for the weighted matching problem in
planar graphs, while in [174], he obtains a partial solution to the general problem by
showing that the problem of weighted matching in general can be solved by a polynomial
sequence of linear programs each of which has a polynomial number of facets.
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