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PREFACE

The noncooperative target recognition program of the Radar Technology Branch of
the Advanced Sensors Directorate is barely three years old. Though one may benevolently
characterize our early activities as exploratory in nature, in the past couple of years
we have made significant progress, through both in-house and contracted research, in
some areas of this program. We believe that the contributions to target and system
identification theory made in one contractual effort are momentous and should be made
available to the public in a timely fashion. Therefore, in Secs. 1-4 below, we reproduce
the final report "Theory of Radar Target Discrimination," by Professor E. T. Jaynes
whose services were obtained through the Army Research Office under Contract No.
DAAL03-86-D-0001, D. 0. 1515.

The format selected for releasing the aforementioned material does not allow us to
provide technical background, to expand upon topics as they are developed in the report,
as well as to discuss recent extensions of the theory and the performance of algorithms
based on the theory. Instead, we have included the following: In the remainder of this
Preface, some general comments and an explanation of the approach we have taken in
this program; in Sees. 1-4, Jaynes' report; in Sec. 5, a few remarks about some planned
extensions of the theory; and, in Sec. 6, an annotated bibliography designed to assist the
reader in finding background material on the probability theory used in Secs. 1-4.

The importance of target identification to military defense is fully recognized, but
one can think of scores of other activities in which a capability for target or system
identification could be put to good use: air traffic control, border patrol, security and
surveillance systems, robotics, and inspection on an assembly line, to name a few. For
use in the outdoor environment, the unique all-weather propagation characteristics of
microwave radiation would immediately attract attention to radar as a possible means
for identifying targets. Now the fact that target identification has not evolved along
with radar principles and technology supplies compelling evidence that the problem is
nontrivial and will require some dedicated effort. After working on the problem for a
while, we have found this first impression was on the mark.

We had planned for our initial efforts to be concerned with theoretical studies of
the feasibility of active radar for identifying targets. But this was not to be: There was
no suitable theoretical framework for assessing the inherent capability of active radar for
identifying targets (a system-level analysis does not address the physical or information-
theoretic questions of interest to us). Turning to empirical evidence for the potential of
target identification with radar, we surveyed the more mature and promising approaches
to radar target identification under study, and even under development, in other DOD
programs. The approaches we have examined include: (1) inverse synthetic aperture
radar, (2) resonance (natural mode or transient) response to short radar pulses, (3) radar
signal modulation, and (4) high-range resolution radar. It became eniinently clear that
target identification with radar is possible. Therefore, under some circumstances radar
returns can contain enough information to allow some degree of target identification.
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This provided additional impetus for us to adhere to our original plans.
As noted above, it appears that radar target identification has not become a well-

defined mathematical discipline; instead, a potpourri of approaches was found, as might
be expected in the development of any new subject. But we wondered wV,:.-her target
identification can be infused with an underlying structure (in the same sez.se that either
target detection or target ranging and tracking can be said to have an underlying struc-
ture), so we turned our attention to the problem of formulating an approach based on
first principles. To help us in this endeavor, we obtained the services of Professor E. T.
Jaynes through an ARO contract.

To see how one might proceed, observe that in any practical situation the interaction
of a radar signal and a target is a linear phenomenon. The description of the interaction
that supplies useful insight for this ;nvestigation is based on the concept of the target im-
pulse response function. Already in studies of both the resonance response and the range
profile it has proved convenient to use the target impulse response function. Professor
Jaynes saw that the concept of the target impulse response function provided a useful
starting point for the development of a theory of target identification. Because the full
presentation of the resulting theory given by Professor Jaynes is reproduced in the next
four sections, further comment here is unnecessary.

vi



1. INTRODUCTION

If radar systems could distinguish different targets from each other, there would be big advantages
in air safety. Airport traffic controllers have made serious errors from their inability to determine
which echo on their screen represents which flight. In the recent Persian Gulf incident, it appears
that a passenger plane was shot down because a shipboard radar could not distinguish its echo
from that of a fighter plane. In the near future it will become important to identify different
space vehicles. Presumably, good target discrimination would be helpful also in radar weather
forecasting; and the same principles will apply as well in ultrasound imaging for medical diagnosis.
But although the technical problem of target discrimination has been well recognized and studied
for many years, no good solutions have been forthcoming.

With recent renewed emphasis on the importance of the problem, it appeared that better un-
derstanding of the theoretical problem is a prerequisite for any practical hardware improvements.
Past efforts have tended to consider the problem as one of physics (electromagnetic/acoustic scat-
tering theory, etc.). But although the physics is well understood, this alone has not led to progress.
More fundamentally, it is a problem of information processing, calling for a full application of prob-
ability theory. There have been few past efforts to use probability theory, and they have been based
on "sampling theory" methods which are unable to deal with nuisance parameters such as aspect
angle, or to make use of all the supplementary information available to a radar operator or system.

In the present work we go back to fundamentals and consider the problem from the start as
one of probabilistic inference, in which the knowledge from physics is taken for granted and used
to tell us how to formulate the problem. Most important, we use full Bayesian probability theory,
which overcomes the limitations of sampling theory.

A transmitted pulse f(t) gives rise to an echo from a target, of the forrn

y(t) =/r(t - t')f(t')dt' (1 - 1)

where r(t) is the "impulse response function", or as we shall call it, the reflection function , of the
target, which we consider defined for all time. Presumably,

r(t)=O whent<2d/c (1-2)

where d is the distance to the nearest part of the target, c the velocity of light. In the theory,
however, we do not assume this; the final formulas turn out to have the same general form whether
or not (2) is satisfied. Thus our results would hold also in discrimination problems where the
variable t is not a time, and the physical causality condition (1-2) need not hold.

More important are the meanings of f(t) and y(t). One could take these to be the forms of the
actual electromagnetic fields in space; if so, practically all of the following theory would remain valid
but for the addition of position variables as parameters: f(x,t), y(x,t). However, these results
would then need to be convolved with the properties of antennas and matching circuits before tLey
would be expressed in terms of the easily measurable quantities, the voltages and currents at the
actual transmitter and receiver terminals.

It is much more convenient to take f(t) to be the transmitted pulse as measured at the
transmitter terminals (presumably a certain reference plane in a coaxial line or waveguide); and
y(t) to be the echo part of the received signal as measured similarly at the receiver terminals. With
this interpretation the following theory is exact as given, and all the functions needed to apply it
are directly measurable with standard laboratory equipment.
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Our reflection functions are then convolutions:

r(t) = (transmitter function) * (echo in space) * (receiver function). (1 - 3)

But in the frequency domain this reduces to a simple product

R(w) = AT(w) E(w) AR(w), (1 - 4)

and the effects that depend only on the target are separated automatically from the radar design
parameters. In any event, the properties of our targets that are relevant for discrimination with a
given (i.e., already built) antenna system are the R(w) functions, not the E(w) functions.

Note also that the physics of the problem (both electromagnetic scattering theory and antenna,
theory) is contained entirely in the r(t) or R(w) functions. Whether these are expressed in a
modal expansion, singularity expansion, creeping wave analysis, or just measured experimen tally,
makes no difference. What is relevant to the problem before us (decide between a set of possible
targets) is simply the numerical values of the r(t) functions themselves, because they carry all the
information about the target that is in the echoes.

We stress this point because of a widespread belief that determining the poles of the singularity
expansion is essential to target identification, because they are aspect independent. Indeed, if a
few poles could be determined from the received echo, that would lead to the desired identification.
However, separate identification of the poles does not appear feasible in practice because of receiver
noise and the rapid decay of the echo. But it seems obvious that separate pole identification, while
sufficient if it could be accomplished, cannot be necessary.

The reason for this is that probability theory will give us its final verdict on any particular target
in the form of a single number, the probability that it is the one present. In calculating it, probability
theory will automatically take into account all the information in the data that is relevant to
this question, and whatever prior information is available. The result will be, presumably, some
average over the joint probability distribution for all the pole positions. To channel the analysis
through a phase of estimating the separate pole positions is not only a larger calculation, but a
less informative one, for this ignores not only correlations in that joint probability distribution, but
also other relevant information that may be in the data.

Indeed, if the returned echoes depend on aspect, it follows that any prior information about
aspect that we have, will help us to make target identification. But once the course of a target
is known, we know a great deal about its aspect. It would be self-defeating to concentrate our
attention on the poles because they are aspect-independent, so strongly that we ignore this highly
cogent information about aspect.

When the physics has been done, in whatever way, and we have the reflection. functions r(t)
for our targets, then the real problem (probability analysis of incomplete information) is ready to
begin. If the poles are indeed the essential factor in target identification, this analysis will tell us
so automatically; and it will tell us also the quantitative way in which they enter into the problem.
Until the results of this analysis are at hand, we are not in a position to judge what role the poles
may play in the problem, beyond intuitive guesswork.

The total data set D _{d(t)} available for processing is not just the target echo y(t). It has
in general two other unavoidable components:

d(t) = y(t) + h(t) + n(t) (1-5)
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where h(t) is "hash", representing ground clutter and echoes from any other objects in the antenna
beam or side lobes:

h(f) =/rH(t -- tf)f(tf)dt' (1 -6)

and n(t) is noise. This always includes at least the universal noise from thermal radiation falling on
the antenna. At the frequencies and temperatures of concern to us, (hf << kT), thermal radiation
follows the Rayleigh-Jeans equipartition law for the normal modes of space, leading to the Nyquist
thermal noise law corresponding to the antenna radiation resistance [mean-square open circuit
voltage in a bandwidth Af Hz of 6V 2 = 4RradkTAf, where k is Boltzmann's constant, 1.36
E-23 joules/degree Kelvin]. In addition, n(t) may have contributions from the internally generated
noise of an imperfect receiver, as discussed in Sec. 2 below, as well as atmospheric disturbances
and jamming signals.

For our purposes, the functional distinction between hash and noise is not that they have
different physical origins, but that they have different effects on target discrimination, because h(t)
is systematic (i.e., the same on successive pulses) while n(t) varies from one pulse to the next in a
way that we can neither predict nor control.

Of course, any data function d(t) which can be recorded for computer processing will be
digitized and sampled only at discrete times; but we expect this digitizing to be so good that the
continuum approximation used here is accurate enough for all practical purposes. In any event, the
final results are such that the effects of coarse digitizing are evident.

Consider now the simplest imaginable problem of discrimination; to decide between two possi-
ble fixed targets, without the complications of aspect angle and hash; and we analyze only the data
from a single pulse. Almost all the conceptual subtleties that have been troublesome in the past
are present already in this simple "baby" version of the problem. After we have worked out its full
solution and understood it thoroughly, we shall find it relatively easy to deal with the complications
of the real world, which are matters of technical detail rather than basic understanding.

2. DISCRIMINATION BETWEEN TWO TARGETS

If target A is present, the echo function is

YA(t) = rA(t - t')f(t')dt', (2- la)

while if target B is present it is

Yu( = /rB(t - t')f(t')dt'. (2 - lb)

Then our Jata from a single pulse will be

d(t) = YA(t) + n(7), if the target is A, (2 - 2a)

d(t) = yB(t) + n(t), if the target is B. (2 - 2b)

We shall take n(t) to be white Gaussian noise, with expected square a 2 ; i.e., we take the probability
of a given noise function n(t) to be proportional to

P(n(t)a) c exp I - I n2( t)dt (2-3)

2or2
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We indicate this as a conditional probability, conditional on knowledge of a. If a is unknown, it
must be estimated from the data and p-obability theory tells us the proper way of doing this, as
shown by Bretthorst (1988). But in the present problem, a will be known in advance because it
is essentially the noise temperature of the receiver [see Eq. (2-54) below], and one will surely have
determined this before trying to test the system at all. This simplifies our calculation.

Now if we knew that A is in fact the true target present, then the probability of getting a
given data function d(t) would be just the probability that the noise would make up the difference
in (2-3):

p(DIAa) ox exp {-2iJ[d(t) - YA(t)I2 dt} (2- 4a)

while if B is true, this probability is

p(Df Ba) oc exp {-2-I [d(t) - yB(t)] 2 dt} (2- 4b)

where we are using D as an abbreviation for the entire run of data d(t). These are the "sampling
probabilities" for our problem.

But the probabilities we need are the other way around: what is the probability, given the
data, that A is the true target? These are

p(AjDa), p(BlDc). (2 - 5)

Probability theory tells us how to obtain them from the sampling probabilities (2-4). By the
product rule, the probability that both A and D are true is

p(ADJa) = p(Ala)p(DIAa) = p(DJnr)p(AJDu) (2 - 6)

since the proposition 'AD' on the left-hand side is the same as 'DA' (i.e., Boolean logic is commu-
tati ve). Therefore,

p(AlnDr) = p(Ala) p(DJa) (2 - 7a)p(Djo,)"(2 )

'rhe first factor on the right is the "prior probability" p(Ala), which is clearly necessary in all
inference from data. That is, to ask "What do you know about A after getting the data D?" does
not make sense - it is not a well posed question - unless we take into account, "What did you
know about A before getting D?". The second factor is the "likelihood", which shows how the prior
probability is updated as a result of getting the evidence of the data D. Likewise, the probability
that B is the true target, is

p(BlDa) = p(B3a) p(DlBa) (2 - 7b)
p(Dja)"

Now in the simple problem being considered, we are given at the outset that there are only
two possible targets, A and B. Therefore

p(Ala) + p(Bja) = 1, (2- 8)

and this is still true after getting the data, so

p(AlDa) + p(BfDa) = 1. (2- 9)
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Then (2-7) and (2-9) give us

p(DIa) = p(DIAa)p(AIa) + p(DIBo) p(BIa), (2- 10)

which is a special case of a more general probability rule: given a set of any mutually exclusive and
exhaustive propositions {Ai,... ,A,7 } and any propositions X, Y,

p(XZY) = E p(XAiIY) = jp(XIAjY)p(AjiY), ('- 11)
i=1 i

which we shall need later in dealing with multiple targets.

For many purposes we can eliminate p(Dja) by considering probability ratios, or odds, instead
of probabilities. In the present binary problem these are the same thing; the ratio of probabilities
of A and B is

p(AIDa) p(Ala) p(DfAa)

p(BIDa) = p(Bla) p(DIBa)' (2- 12)

while the odds on any proposition X with probability p(X) are o(X) = p/(1 - p). But because of
(2-8), (2-9)

p(AIDa) p(AIDcD) o- -= = o(A IDo,) (2- 13)
p(B(Da) 1 - p(AIDa)

so it does not matter which terminology we use. With multiple targets, odds and probability ratios
are no longer the same.

Using (2-7), the normalization constants that we left out of (2-3) cancel out anyway and the
odds on target A reduce to

o(AIDa) = o(Ala) exp [-d. (YA - YB) + 1(YB" YB - YA" YA)] (2- 14)

where we have used the abbreviations

d YA - Jd(t) YA(t) dt, (2- 15)

YA"' A JYA(t) YA(t)dt,

etc. A term (d . d) has cancelled out. If we have any prior information about which target is likely
to be present, this should be expressed in the prior odds term o(AJ a). If, as usual, we have no such
information, this term is equal to unity. In either case, a 2 log[o(AjDa)/o(A Ia)] is the fundamental
quadratic form, on which all depends.

One reason for past confusion is that different workers have appealed only to their differing
intuitions about how the data should be analyzed, without making any attempt to see what prob-
ability theory has to tell us about the problem. Intuition can give us bits and pieces of the truth;
but it almost never gives us the whole truth.

Now we see from (2-12) that, since the data appear nowhere else, the import of the data for
this problem resides entirely in the "likelihood ratio" L = p(DjAa)/p(DjBa). All other aspects
of the data are irrelevant for the problem of deciding between A and B; few people have perceived
this intuitively. Probability theory tells us, in (2-14), how the data should be processed for optimal
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discrimination between targets. With Gaussian noise, a simple linear operation on the data is the
optimal computation which generates the posterior log-odds in favor of one target over the other.

Now if A is in fact the true target present, then d(t) = YA(t) + n(t), and the result of this data
processing will be

1
a 2 logo(AlD U) = n. (YA - YB) + YA (YA - YB) + -(YB YB - YA - YA) (2-16)

or,

0 2 logo(AIDa) = n (YA - YB) + 1 (YA - YB) (YA - YB) (2 - 17a)

a "random noise" part and a systematic part. If B is the true target, our computer will find instead
the log-odds in favor of A of

1

a 2 log o(AIDa) = n .(YA - YB) -- (YA - YD) (YA - YB) (2 - 17b)
2

in which the systematic term has a reversed sign.
The term n (YA - YB) represents an unavoidable confusion due to noise. Eqs. (2-17) tell us

that if n(t) happens to resemble (YA - YB ), this term will be positive and it will incline us in the
direction of favoring A. If n(t) happens to have the opposite sign, so it resembles (YB - YA), it
will make us tend to favor B. We shall estimate the magnitude of this term presently [Eq. (2-57)];
but from symmetry it is as likely to be positive as negative, so the expected log-odds in favor of A
comes from the systematic term alone:

O2 (logo(AlDa)) = 2- (YA - YB) (YA - YB) (2- 18)

with the plus sign if A is true.
Evidently, for best discrimination between A and B we want to make the magnitude of (2- 18)

as large as possible. To see how this depends on the reflection functions and the transmitted pulse,
write the difference in reflection functions (2-1) as

r(t- t') E rA(t - t') - rB(t - t'). (2 - 19)

We have from (2-1),

(YA - YB) "(YA - YB) dt [J dt' r(t - t') f(t')] [/ dt" r(t - t") f(t")]

- J f (t')g(t', t")f(t")dt'dt" (2- 20)

where

Xt' tt) dtrt - t') r(t - t"t). (2-- 21)

Abbreviating the integral in (2-20) by 'f f fgf ', this is

(VA -YB) IY - YB) Jf-f (2- 20')

We discuss the maximization problem first in the time domain, then in the frequency domain.

6



Time Domain
The condition that (2-20) be a maximum for a given total amount of energy radiated, ' ff 2 , =

f [f(t)]2dt, is found by Lagrange multipliers: in our shorthand notation,

0 = b [JfIfgf _ AJf2] = 126f.- [Jf g -Afj (2-22)

or, the condition for stationarity of f f fgf is the integral equation

I g(t - t') f(t')dt' = Af(t). (2-- 23)

T(o understand the condition for a maximum, note that if this integral equation had a discrete set
of eigeen values and normalized eigenfunctions:

fg(t -t')Oi (t')dt' = A ~(t), i = 1,2,""- (2- 24)

then we could view it in a very simple way. Given any function f(t), expand it in the eigenfunctions:

f(t) = Z Oai €(t) (2- 25)

Then we find that
f f fgf _ j Jail2 Ai (2-26)

f f 2  Ei Jail'

is a weighted average of the eigenvalues. This makes it obvious that the absolute maximum is
achieved when f(t) is proportional to that eigenfunction belonging to the greatest eigenvalue, and
(2-26) shows how much the performance will deteriorate when f(t) is not optimal. This would give
us essentially complete understanding of the problem.

However, our g(t, t') is not of this type; it has continuous eigenvalues and non-normalizable
cigenfunctions. To see this, note from (2-21) that it is translationally invariant:

g(t', t") = g(t' - t") (2- 27)

and so, if f(t) was an eigenfunction of (2-23), then f(t - s) would be one also for all real s. There
are two possibilities: (1) there is an infinite degeneracy; (2) f(t) is an exponential function. This
is symptomatic that things will be simpler in the frequency domain.

7



Frequency Domain

Taking note of (2-27), define the fourier transforms

G(w) g(t)e"'dt (2 - 28)

F(w) J f(t)et'tdt (2-29)

Then we need some Parseval-type formulas:

g(t' - )f (t")dt"= dt"f(t")rJI G(w)e-iw(t'-t") = J _ G(w)F(w)e-t' (2-30)

and JJd fgf = Jdt'f(t') / G(w)F(w)e-iWt' = J wG(w)IF(w)12 (2-31)

and the conventional Parseval theorem:

I f 2 (t)dt = j -• F(w),2. (2-32)

The ratio to be maximized is now

f f fgf _ f dw IF(w) 2G ) (21-- 33)
f f 2  f dw IF(w)12

which is, analogous to (2-26), a weighted average of the values of G(w), weighted according to
the power density of the transmitted pulse at frequency w. This makes it, again, obvious how the
quality of discrimination for a given transmitted energy depends on the properties of the targets
as described by G(w), and on the spectrum of the transmitted pulse as described by F(w).

Now let us relate G(w) more directly to the target reflection functions. Referring to Equations
(2 - 19) - (2 - 21), we can make another Parseval-type relation:

g(t',t") = dtr(t -- t') / jR(w)etiw(t,-t )= dw I R(w)12 eiW(t,_t") (2-34)

In other words, we have simply
G(w) = IRA(w) - RB(w)l2  (2 - 35)

which makes (2-33) appear very cogent and sensible. This is the usual outcome of a Bayesian
probability analysis; a final result that intuition would never have found for us, but which seems
intuitively right after a little meditation.

The transmitted pulse that is optimal for purposes of target discrimination will then have its
spectrum concentrated near the frequency where IRA(w) - RB(w)j reaches its absolute maximum.
In fact, however, in existing radar systems the transmitted pulse will have a spectrum concentrated
rather sharply near some carrier frequency w, which was not chosen with this problem in mind at
all. Then the combined result of the above equations is that, if A is the true target, a single pulse
will give us an expected log-odds in favor of A of approximately

(logo(AllDa)) f f2f(t)dt
2_ , IRA(,wo) - 118(,,,)! 2 , (2 - 36)
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provided that G(w) is not rapidly varying in the neighborhood of W,. The first factor on the right
is a kind of signal/noise ratio; i.e., it is something vaguely like

(energy radiated in a pulse) (2-37)
(noise energy incident on the receiver)

But to make this precise we must now examine the noise term n(t), its probability distribution,
and some of the facts of life concerning receiver operation, a little more closely. The term a2 in
(2-36) is essentially the receiver noise temperature TN, but with a conversion factor that requires
some effort to derive. Previously we defined a only by the probability distribution (2-3).

To find this conversion factor exactly, we need first a short digression on the meaning of our
transmitter and receiver signals f(t), y(t), n(t). We decided before to define these as the values
measured at certain reference planes in the coaxial cables or waveguides connecting transmitter
and receiver to their antennas; but until now we did not need to decide whether they are voltages,
currents, travelling wave amplitudes, etc.

Transmission Lines and Receivers
In a transmission line of characteristic impedance Z (which might be the wave impedance of
a waveguide mode), there is a voltage and current v(t), i(t) at this reference plane (which in a
waveguide represent the amplitudes of the transverse electric and magnetic fields of the mode being
used). The forward and backward traveling wave amplitudes are

f±(t) = 1 +t . i(t) , (2-38)

with the meaning that f. and f2 are the instantaneous powers in watts, carried by the forward
and backward waves. We verify that, indeed, the difference

f4(t) - f2 (t) = v(t)i(t) (2 - 39)

is the net instantaneous power flow.
Now we define the transmitter pulse f(t) as the forward wave amplitude, at the transmitter

reference plane, travelling from transmitter to transmitting antenna. Likewise, by y(t) and n(t) we
mean the components of the travelling wave amplitudes at the receiver reference plane, travelling
from receiving antenna to receiver.

We should be aware that there is a difference in the circuit conditions for these two waves. In
the transmitter, one will take pains to match the transmission system to the antenna so that all
the energy in the forward wave f(t) is radiated out into space instead of being wasted setting up
standing waves in the transmission line. It will be desirable also to match the receiver transmission
line to the receiving antenna, and we assume henceforth that this has been done.

One might then think na'ively that we should take equal care to match the receiver to its
transmission line so that all the energy captured by the receiving antenna is actually delivered to
the receiver. However, this is not the case for a good receiver. In order to detect radiation it is
not necessary to absorb it; for a magnetic field can deflect a charged particle in an observable way
without delivering any energy to it. An electric field can deflect a charged particle in an observable
way while actually removing energy from it. In fact, an ideal receiver does not run on energy at

all, but reflects back all the energy incident on it!

The point here is that the receiver is designed not for maximum energy, but for maximum
signal/noise ratio, at its output. Matching the receiver to its transmission line would indeed give
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maximum output energy for a given gain; but that is not what we want. How much of the noise at
the receiver output is amplified noise presented to its input, how much is generated internally by
imperfections (Nyquist thermal noise, shot noise, etc.) in the receiver?

An ideal receiver is one that generates no internal noise, but delivers at the output a sig-
nal/noise ratio equal to that at the input. Suppose, then, that there is a desired signal y(t) and
unwanted noise n(t), which are wave amplitudes travelling toward the receiver, giving an incident
signal/noise ratio (S/N)i.. = y2/n 2 . If the receiver presents an infinite impedance at this reference
plane [i(t) = 0], then from (2-38) there is a signal voltage v8i9(t) = 2V/' y(t) and a noise volt-
age voise(t) = 2V- n(t), leading to a signal/noise ratio v iq/v2 ,ol = (S/N)~i,,, which the ideal
receiver amplifies and delivers to its output. If the incident noise n(t) is Nyquist noise, carrying
average power P = (n 2 ) = kTAf in a bandwidth Af, then the average V2ýOi' is 4Z kTAf.

Now if we match the receiver to the input transmission line, the signal voltage is cut in half but
the noise voltage is not because we must reckon with a new source of thermal noise, that generated
by the receiver input impedance Z. The impedance which determines the total noise voltage at the
reference plane is now Z/2, the parallel combination of the impedances looking toward receiver and
antenna, and the RMS noise voltage at the reference plane will be reduced only by a factor V'2
rather than 2. Even if the receiver is ideal from this point on, its output signal/noise ratio cannot
be better than that at the input reference plane, which is now 3 db lower than (S/N)inc.

So, if the receiver generates no internal noise, we would lose 3 db in output signal/noise ratio
by matching it to its transmission line. If the receiver input impedance at the reference plane is
zero rather than infinite, interchange voltage and current in the above arguments and the 3 db loss
conclusion still holds. If the receiver input impedance is purely reactive, then it will appear infinite
or zero at some other reference plane, at which these arguments will apply. So quite generally, in
order to deliver the maximum signal/noise ratio at its output, an ideal receiver must reflect all the
energy i4icident upon it.

It is only in the limit of an "infinitely bad" receiver, in which all the output noise is generated
internally, that matched input impedance becomes the condition for maximum signal/noise ratio at
the output. Actual receivers are somewhere between ideal and infinitely bad, and so they perform
best when partially matched, so that a part of the incident energy is reflected and radiated back
out the receiver antenna.

This fact surprises many people on first hearing; but we note that it is so general that it remains
true in quantum theory, at optical frequencies where hf > kT and the Nyquist noise formula no
longer holds. For initiation of a photochemical reaction it is not necessary that the light energy
be absorbed. For example, it might be thought that the eyes of animals adapted to seeing in the
dark would have pupils that act as perfect black bodies, absorbing all the incident light energy. On
the contrary, it is a familiar fact that the animals with best night vision have eyes that reflect the
incident light strongly, looking like search-lights in the dark.

The result of this little digression is that while the transmitted signal f(t) is looking into a
matched transmission line, the received signal y(t) 4- n(i) will not be in general, and the noise
which interferes with target discrimination does not come entirely down the transmission line from
the receiving antenna.
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Receiver Noise Considerations
The noise performance of receivers must be specified in a way that includes both the noise actually
incident on the receiver terminals, and the internally generated noise. In effect, we note the output
signal/noise ratio and then imagine an ideal receiver, which would have the same S/N ratio at
its input. The input noise of this ideal receiver is greater than the Nyquist value for the ambient
temperature; but of course it can be written in the Nyquist form with some higher temperature.

Thus we take for the effective average of n 2(t)

(n2(t)) = kUN Af (2 - 40)

where Af is the bandwidth amplified by the receiver, and TN its "noise temperature". One also
speaks of the "noise figure" of a receiver, being the ratio of its noise temperature to the ambient
temperature. Thus a receiver with a "6 db noise figure" is one whose noise temperature is four
times room temperature.

The fact that we are concerned with a finite bandwidth greatly simplifies the probability
description of the noise, because it means that the sampling theorem representation is available.
Given a fourier transform pair

F(w) f(t)ei'wtdt, (2-41)

f(t) = /2F(w)e-i& t (2-42)

if it is band limited to frequencies less than f1:

F(w) = 0, IwI > Q (2-43)

then define the Nyquist sampling times and sampling functions:
,rk

tk = rk k = o, ±1, ±2,... (2-44)

sin Q(t - tk) (2-45)Sk(t) - (t- tk)

Then the theorem is that a band-limited function is a sum of (sinx/x) functions:

00

ft) = 1 f(tk)sk(t) (2-46)

Furthermore, this is an expansion in orthogonal functions, for

] sj(t)sk(t)dt = "jj(tk) = "jjk. (2-47)

Then the integral of a product of band-limited functions is

n(t)g(t)dt = dti njgksj(t)sk(t) = (2-48)

jk j
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and, in the special case g(t) = n(t),

Jn(t)dt n (2-49)
I

Note that (2-48) and (2-49) are not merely discrete sum approximations to the integrals; for band-
limited functions they are exact.

Now we defined the quantity a in (2-3) by saying that the noise is supposed white, and the
probability of a noise function n(t) shall be

p(n(t)jcr) (x exp {. 2• n2(t)dt}" (2-50)

This is now, from (2-49),

exP{-27 7 }. (2- 51)

But this states that the variables nj = n(tj) are assigned independent Gaussian distributions with
means (nj) = 0 and second moments

(n•nk) = _ a2 6 k (2- 52)
7r"

In other words, our definition (2-50) plus the band-limited condition implies white noise in the
sense that values of n(t) separated by Nyquist intervals are independent. The noise is as "white"
as it can be in view of the band limiting.

This enables us to find the missing conversion factor between a and the noise temperature
TN. From our definition of n(t) as the amplitude of a travelling wave, the expectation of energy
carried by it in the frequency bandwidth Af = S2/2r in some long time interval T is from (2-49),
(2-52),

7r k = N. - (2- 53)
ti=o

The number of terms in the sum is r/bt = fŽr/r, where it = 7r/Q is the Nyquist sampling interval.
By (2-52) these terms are all equal. Therefore QŽ and r cancel out, and (2-53) becomes simply

a2 = -kTN (2- 5,1)
2

just the average thermal energy per degree of freedom according to the Rayleigh-Jeans law, at
temperature TN. Although the argument leading to this result has been long, we are rewarded in
the end with a pleasant surprise: a beautifully simple formula.

Another equally nice result is the estimated value of the integral (2-48). As we noted before
[Eqs. (2-17), (2-18)] its expectation is, trivially ((n-g)) = 0; but now we can calculate its expected
square. Using (2-48) we have

r "2 "2 2

((n - g)') - E2 (7znk~gjgk U 2 Zg
jk

or, in view of (2-49),

(( .Y)2) = 0,2 J g2(t)dt. (2 - 55)

T'hat this turns out so simple and neat is another pleasant surprise. Now we can return to the
log-odds calculation (2-17), (2-36) with all factors known.
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Final Results:
The approximate expected log-odds (2-36) in favor of target A is now simply

(log o(AIDa)) = (Energy radiated per pulse) IRA(Wo) - RB(Wo)2 , (2-56)
kTN

the product of two dimensionless factors, one enormously large and one enormously small; we
estimate them separately below. But how much can the calculated log-odds (2-17) vary due to
noise? For reliable discrimination the systematic part (2-56) of the log-odds must be large compared
to its random variability. In (2-17) we saw that the noise contributes a random confusion term to
the log-odds of ,- 2n• (YA - YB), and from (2-55) we can estimate this as

J[f[YA(t) - YB(t)]Idt1/2 (2-57

But this integral is just the' f f fgf ' that we have evaluated in (2 - 31) and (2 - 35):

[YA(t) - YB(t)] 2 dt dw IF(w)12 G(w) s- IRA(wo) - RB(wo)12 J f2(t)dt (2- 58)

and we have yet another pleasant surprise: the square of (2-57) is just twice the expected log-odds
(2-56).

Therefore our final conclusion for this "baby" version of the problem can be stated very simply:
given the echo functions yA(t) and YB(t) for the two possible t'-rgets and the data d(t) obtained
by the receiver from a pulse echo, calculate the dimensionless number

[d. (YA -- YB) + -(YB "YB - YA" YA)] (2-59)
kTN

This is the log odds in favor of target A given by a single pulse. The mean value, or "expected
value" of LA is given by (2-18), (2-54) as

M = (LA) = (YA - YB)' (YA -- YB) (2-60)
kTN

Different pulses, with randomly varying samples of noise, will yield varying conclusions given ap-
proximately by

logo(AlDa) ý- M ± VTX7. (2 -61)

Thus if M > 10 the targets can be distinguished quite reliably. We could hardly have hoped for
an easier prescription. Note that (2-59) and (2-60) are exact; they do not have the approximation
made in (2-36) and (2-56) which supposed that the transmitted pulse spectrum is sharply peaked
at a frequency where G(w) is not rapidly varying.
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Numerical Estimates:
It remains to estimate the numerical values that we might hope for in a real situation. For example,
if the transmitter radiates one Megw for one microsecond and the receiver has a noise temperature
of 1000K, the energy ratio in (2-56) is about

1 joule1 10 e-- 0.75 x 1022. (2 - 62)1.36 ,10-23.• 1000 joules

Then to achieve reliable discrimination between any two targets A and B, the reflection function
factor in (2-56) must be large compared to 10-22.

To estimate magnitudes for this small factor, we need reasonable guesses for our antenna gains
and the scattering cross-section of a target. Suppose our transmitter radiates the total power Prad
watts. The antenna concentrates the energy as much as possible in the direction of the target, so
the power density incident on the target at distance d is

Pi,= G d watts/m 2 . (2 - 63)

where G is the antenna gain, relative to an isotropic radiator. It can be estimated two ways, from
the beam widtth or, using the reciprocity theorem, from its absorption cross-sectioai. We illustrate
both methods.

Suppose our antenna is a parabolic dish of diameter 2a, operating at a wavelength A. Its beam
width is, crudely, 69 s A/2a, so its main beam fills in space a solid angle of about Q ý_ 7r(i0/2) 2 .
Thus we estimate its gain as

G " (2-64)

On the other hand, consider its absorption properties. An infinitesimal dipole has an absorption
cross section of 3A 2/87r; i.e. the maximum power that it can extract from a passing plane wave
is the power incident on this area. But this has a gain of 3/2 because of the slight concentration
of fields in the dipole's equatorial plane (the average of sin2 0 over a sphere is 2/3). Therefore the
hypothetical but nonexistent isotropic radiator would have an absorption cross-section of A2/4ir.
Now the absorption cross-st-tion of our dish antenna is about equal to its area, ira 2 (actually,
slightly less because the dish is not uniformly illuminated by the feeder), and so we estimate the
gain as

G 7ra 2  2ra 2 (2-65)
T2 -/4ir = ( _T

in approximate agreement with (2-64). For example, for an 18 inch dish at X band (A = 3 cm) we
estimate a gain of about G • 2000.

To get crude estimates of scattering cross-sections, suppose that our target is a perfectly
conducting sphere of radius r, large compared to A so that we can use geometrical optics. Consider
the radiation of density Pi,, incident on a small area A of the spherical surface. This area fills a
solid angle, as seen from the center of the sphere, of 11 = A/r 2 . But it is reflected back at twice
the angle of incidence, thus going into a solid angle 4fQ. Thus the reflected energy appears at a
distance d from the sphere with a density

Pinc A 7r r2

PrI= PJ,- 4--7 ' (2- 66)
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confirming our intuitive feeling that in the geometrical optics limit the back scattering cross-section
E of a perfectly conducting sphere should be just its projected shadow area: E = irr 2 . Indeed, in
this limit the back scattering cross-section of a perfectly conducting object of any shape, integrated
over all angles, should be its shadow area, because that is intuitively the amount of energy it
intercepts [However, this intuition fails in the exact forward direction, because of some subtleties
about creeping waves, the Arago bright spot, etc. which do not concern us here].

Then in practice, we expect that the strongest echoes from a metallic target will come from
that part of its surface which presents a perpendicular aspect to the radar system, and has the
greatest radius of curvature. If that flattest perpendicular surface has principal radii of curvature
rl, r2, then we estimate the back scattering cross-section from it to be

E 7rrlr 2 . (2-67)

If there is more than one such surface, their echoes will interfere, varying the net backward cross-
section in a way critically dependent on aspect angle.

For a small airplane the single-surface cross-section (2-67) might be, conceivably, less than
one square meter; perhaps 2 or 3 square meters is a reasonable average guess. Of course, at much
lower frequencies, where the geometric optics approximation does not hold and the wing dipole
resonance appears, the back scattering cross-section can be much greater than this, of the order
of the aforementioned 3A2 /Sr. If the wing dipole resonance of a large airplane is at 6 MlIz, this
would lead to E "• 300 rn2 .

Now combining Equations (2-63) - (2-67), we estimate the reflected energy density back at the
radar system to be

PrePGt E watts/mr2  (2 - 68)
4Prd 2  41rd 2

where Gi is the gain of the transmitting antenna. The power intercepted by the receiver antenna
will be Prfe times its absorption cross-section, which is by (2-65), A, = GrA 2 /4r. Finally, the
power delivered to the receiver is, in terms of antenna absorption cross-sections,

E2 AtAr
Prec '• Ptrana " 4 Y_ d4 , (2-69)

which is separated into two dimensionless factors, one depending on the target, the other on the
radar antenna design. We compare this with our previous theoretical results. From the definition
(1-1) of our reflection functions, we have

(Energy received) f dw IF(w)J2 IR(w) 12  (2- 70)
(Energy transmitted) f dw IF(w)12

Therefore, if the transmitted energy spectrum is concentrated near w,, we have the estimate

)12wE )i2 r.(2 A-A71

I R()_4irA 2  d4(2-71)

in which A = 2rc/w,.

For example, if E = 3 mi2 , A = 10 cm, Ai = Ar = 1 M 2 , d = 10 km, then (2-71) is about

3x l0 4  14r X 100 - 2x 1 . (2-72)
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The aforementioned receiver with noise temperature of 1000 K has in a bandwidth 1 MHz an

effective input noise power of

kTAf = 1.36 x 10-23 x 1000 X 106 = 1.36 x 10-14 watts, (2 - 73)

so if the transmitter radiates 1 Megw, we estimate that the echo can be detected with a signal/noise
ratio

S/N = 106 X 2 x 10- 1  (2-74)
1.36 x 10-14 1.5x 1

or about 52 db, about as good as an audio cassette tape recording. This means that small differences
in the echo from different targets should be easily detectable, as far as noise is concerned. The
problem is with the information aspect; we need to know in advance what difference to look for.

3. GENERALIZATION TO ASPECT ANGLE

Eq. (2-59) represents the solution to the data processing problem which takes full account of the
noise, but applies only to the special case where the echo from a target is always the same function
y(t) and there is no background hash interference h(t). Before we have a useful solution for real
problems, we need to make allowance for three complicating features. The echo function always
depends on at least two parameters, the target range and aspect angle; and our signal will always
be contaminated with hash (ground returns from fixed nearby objects).

We shall consider the hash problem relatively trivial, because we can always see some returns,
which we know aie pure hash, when no target is in the beam. Therefore the hash, for a given
orientation direction of the antenna, can be known very accurately, and it is rather clear how to
make allowance for it; just subtract the hash h(t) from the data d(t).

Indeed, when any complicating feature is known very accurately, then probability theory will
tell us simply to adjust the data by subtracting off its effect (or dividing it out, etc.) so as to
take it into account; and then to proceed as if the complication were not present. This has seemed
intuitively obvious to most people without any theoretical analysis (such as when economists do
detrending or seasonal adjustment on their data before analyzing for other effects), although we do
not think that anyone has been able to see intuitively the exact conditions under which this "data
fudging" rule is valid, much less what to do when it is not.

It is when a complication is not known accurately that new difficulties of principle arise, and
we need to re-examine from the start what probability theory has to say about the problem; what
is the optimal way to make allowance for its possible disturbing effects, while still extracting from
the data all the information possible bearing on the question of interest?

First let us look at the "new complica.ions" problem in a very general way, to see how proba-
bility theory supports the above statements. Suppose that the reflection function r(t) from target
A depends on some additional parameter a, so that the received echo function y(t) depends on it.
Thus when A is the true target present,in place of (1-1) we have

YA(t, a) = J rA(t - s; a) f(s) ds (3-1a)

and the probability of getting a data set D = {d(t)} becomes, in place of (2-4a)

p(DIAaa) c exp { - J[d(t) - YA(t,ca)12 dt} (3-2a)
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Likewise, target B has another parameter /f, and we have

IB(t,13) JrB(t- ;3)f(s)ds (3-1b)

p(DIBIo) x exp { - - [d(t) - YB(t, 0)]' dt} (3-2b)

But how do we deal with the fact that a and /# are unknown?
There are two different ways of organizing the probability calculation to answer this. First,

note that the basic rule (2-7) is still valid without change:

p(AlDu) = p(Ala) p(DIAa) (3-3)
p(DIa)

But now the sampling probability that we have, p(DjAa•a) contains a and the sampling probability
that we want, p(DIAo), does not; and similarly for target B. To get from one to the other, apply
the sum rule and then the product rule:

p(DfAa) = J p(Da[Aar)da = Jp(DIAao)p(o[Aoa)da (3-4)

This is a weighted average of all possible values of p(DIAaa), weighted according to the prior
probability p(alAa).

Therefore the odds ratio for comparing target A with target B still takes the form (2-12):

"p(AIDr) = p(Aloa) f p(DOAcoa) p(alAa) dap(B IDor) =p(B Iao) f p(aIB~a) p(O•IBO) dP 35

Thus probability theory tells us, very sensibly, that if a is unknown, then the best we can do
is to "hedge our bets" by making allowance for all possible values that it might have, taking into

account any information about how likely the different possible values are.

The calculation could be organized differently by applying the sum rule and product rule
directly to the final probability f(AiDa):

p(AjDa) = I p(AaIDa) da = f p(AIDaoa)p(alDar) da (3-6)

which is a weighted average, now using probabilities of a conditional on the data. Then we apply
the rule (3-3) with a different choice of propositions:

p(AjDaou pAa) p(DIAaor) (3-7)
p(Djaa)

Of course, the calculation via (3-3) - (3-5) is entirely equivalent to the one using (3-6), (3-7),
and we are free to choose whichever one is more convenient computationally. But let us view this
another way. Suppose our aim were to estimate a from returns known to originate from target A.
Then probability theory would tell us to do the calculation

p(afDAa) = p(alAot) p(DIAaa) (3-8)

p(D Au)
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Now in the right-hand side of (3-8) we recognize the integrand of (3-4). That integrand is just
proportional to the probability density for a, given the data D. Therefore we recognize three
cases:

I. The prior information alone (for example, information obtained from the returns of
previous pulses) is enough to determine a quite accurately. Then in (3-4) the prior
probability p(alAa) is not far from a delta function peaking at the indicated value
&, and we should act as if we knew a. This is rather accurately the situation when a
represents some property of the hash (in which case a and 0 are the same parameter).

II. The data D contain enough information to determine a accurately, even though
the prior information does not. Then (3-8) is sharply peaked at the indicated value
&, and most of the contribution from the integral (3-4) comes from the immediate
neighborhood of this peak. This is the case if a is the target range R; which is very
accurately known from the echo time even when we have no prior information about
it.

III. The data and prior information are not sufficient to determine a very well. Then the
integrand of (3-5) remains broad, and we have no choice but to use the full integral
formula. In this case, failure to know a is almost sure to cause a deterioration in our
ability to resolve targets. Therefore it becomes crucially important that we make use
of every bit of prior information about a that we can acquire. This may be the case
if a' is the aspect angle of the target.

Of course, everything we have said about a applies equally well to ,3.

What Happened to the Poles? Note that the effect of poles in the singularity expansion of the
scattering, although not explicitly visible in the above, has been taken into account automatically
by probability theory - but in much greater generality than just poles. For if there is any feature
of the likelihood p(DIAaa) that does not depend on a, then that feature will come through the
averaging over a in (3-4) unchanged. Then if this feature is different for target A and target B,
it will be part of the information in the odds ratio (3-5) and in the final log-likelihood for A over
B.

Indeed, if this a-independent feature is the only significant difference between target A and
target B, then it will become automatically the only thing that is contributing to that log-likelihood;
in that case the target identification will arise just from the difference in the poles; and from nothing
else.

Thus our very different basic approach to the target identification problem has not in any way
disregarded the perfectly valid argument that poles, being independent of aspect, may provide an
important clue to identification. Rather, our analysis will complete that argument by showing in
exactly what way pole information is to be used optimally in analyzing the data (i.e., what specific
function of the pole positions is the one relevant to the identification), and by recognizing tha. in
general other information might also be cogent for target identification, and it should of course be
taken into account,

But we stress again that, if returned echoes depend on aspect, this does not mean that we
should look only for aspect-independent features. On the contrary, prior information about aspect
may become necessary for target identificatioin.
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4. CONCLUSION

The above analysis has indicated in a veiy general way the calculations that should be performed by
a computer analyzing radar data, in order to achieve the maximum possible discrimination between
different targets. Still to be done is to find more explicitly: (1) What are the actual reflection
functions r(t; a) for various targets and aspect angles? In what detail must this information be
stored in the computer in order to achieve near-optimal performance? (2) What prior information
is available about aspect in real situations? Then one would be in a position to write the explicit
computer programs which draw on the stored information and carry out the calculations indicated
above.

It is not possible to predict, at present, exactly how well the resulting systems will perform,
because this depends on information about details of the reflection functions (how much do they
differ for different targets) that we do not have. However, from the way this theory has been derived
directly from fundamentals, we can say confidently that the data processing indicated here will yield
the best performance that it is possible to obtain from the information assumed. Therefore major
efforts to obtain the reflection function information for the targets anticipated and wavelengths
available are justified. Once that information is at hand, we would be in a position to predict the
discrimination performance from the theory given here.

It is the writer's belief that, since the signal/noise considerations turned out to be quite favor-
able, very reliable target discrimination is possible in principle, using existing memory capacities
and computing power. For its realization in practice, the present top priority job is to obtain the
aforementioned reflection function information.
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5. REMAINING PROBLEMS

The manuscript reproduced in Secs. 1-4 concentrates on fundamental concepts and
therefore does not touch upon several questions of secondary conceptual relevance, but
which a complete theory will entail and which algorithm development will confront. These
problem areas are discussed in greater detail in a forthcoming report, so here we merely
list without comment, most of the problems currently under investigation.

Impulse response function

Aspect dependence
Models (scattering centers; damped sinusoids)
Radar signal modulation
Polarization

Many-target identification

Unknowns

Clutter

Detection

Tracking

Ranging

Initialization time

Noise

Multiple-frequency radars

Waveform variations

Multiple-sensor data fusion

Signature library

Algorithm development
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6. ANNOTATED BIBLIOGRAPHY

The analysis in Secs. 1-4 assumes an understanding of the foundations of Bayesian
prohability theory and some familiarity with Bayesian analysis. An introductory textbook
that can supply this background does not exist-yet. In this bibliography, we give a short
list of references that we feel are both relevant and readable. We start with elementary,
tutorial, and historically important references. In the order in which we recommend they
lb read, they are:

1. Jaynes, E. T. (1957), "How Does the Brain Do Plausible Reasoning?" Stanford
Unversity Microwave Laboratory Report 421. Reprinted in G. J. Erickson and
C. R.. Smith, eds. (1.988), Maximum Entropy and Bayesian Methods in Science
and Engineering. I. Foundations, Kluwer Academic Publishers, Dordrecht, pp.
1-23.

2. Polya, George (1954), Patterns of Plau.sibl, Inference (Vol II of Mathematics
and Plausible Reasoning), Princeton University Press, Princeton, New Jersey.

3. Cox, R.. T. (1946), "Probability, Frequency, and Reasonable Expectation," Amer-
ican Journal of Physics, 14, pp. 1-13. See also Cox, R. T. (1961), The Algebra
of Probable Inference, The Johns Hopkins Press, Baltimore, Maryland.

With the above as background, one can find in the following two references (both
are pedagogical in nature) further discussion of some of the fundamental developments
in the above references:

4. Smith, C. Ray, and G. J. Erickson (1988), "From. Rationality and Consistency to
Bayesian Probability, " in Maximum Entropy and Bayesian Methods, J. Skilling,
ed., Kluwer Academic Publishers, Dordrecht, pp. 29-44.

5. Smith, C. Ray, and G. J. Erickson (1990), "Probability Theory and the Associa-
tivity Equation, " in Maximum Entropy and Bayesian Methods, P. F. Fougere,
ed., Kluwer Academic Publishers, Dordrecht, pp. 17-30.

An excellent textbook covering some of the background material, out of print but
available at many libraries, is

6. Tribus, Myron (1969), Rational Descriptions, Decisions and Designs, Pergamon
Press, New York.
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The following tutorial should help bridge the gap between fundamentals and appli-
cations:

7. Loredo, T. J. (1990), "From Laplace to Supernova SN 1987A: Bayesian In-
ference in Astrophysics," in Maximum Entropy and Bayesian Methods, P. F.
Fougere, ed., Kluwer Academic Publishers, Dordrecht, pp. 81-142.

As one moves into the actual subject of Secs. 1-4, one slim textbook (consisting of
125 pages) is essential reading:

8. Woodward, P. M. (1953), Probability and Information Theory, with Applications
to Radar, Pergamon Press, New York.

Curiously, this classic seems only recently to have been discovered by many of us con-
cerned with radar signal analysis. Its exposition and selection of material, including some
Bayesian analysis, make it indispensible reading as background for the presentation in
Secs. 1-4.

Another classic, in a sense the first textbook on Bayesian probability theory, that
contains extremely valuable background and applications is

9. Jeffreys, H. (1939), Theory of Probability, Oxford. Second edition 1948, third
edition 1961.

Next, one will want to move into more in-depth and recent applications of probability
theory to signal analysis and parameter estimation. One should consult

10. Jaynes, E. T. (1987), "Bayesian Spectrum and Chirp Analysis," in Smith, C.
Ray, and G. J. Erickson, eds.,Maximum Entropy and Bayesian Spectral Analysis
and Estimation Problems, D. Reidel, Dordrecht, pp. 1-37.

11. Bretthorst, G. L. (1988), "Bayesian Spectrum Analysis and Parameter Estima-
tion, " Lecture Notes in Statistics 48, Springer-Verlag, Berlin.

An elementary, tutorial analysis of a chirped signal is given in

12. Smith, C. Ray, G. J. Erickson, and Paul O. Neudorfer (1989), "A Bayesian Anal-
ys.,s of a Chirped Signal, " in Applied Time Series Analysis, C. H. Chen, ed.,
World Scientific Publishing, Teaneck, New Jersey, pp. 105-108.
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Unfortunately, there are no references known to us that will supply background to
or a survey of the target identification problem. However, the related subject of system
identification theory has been around for some time. A nice survey is given by

13. Ljung, L. (1987), System Identification: Theory for the User, Prentice-Hall, En-
glewood Cliffs, New Jersey.

This book concentrates on modelling techniques; the analysis of the type of problem we
are concerned with is not suitable for our purposes.

Finally, for those ready to pursue this subject in even greater depth, we recommend
the following:

14. Jaynes, E. T. (1983), Papers on Probability, Statistics and Statistical Physics,
R. D. Rosenkrantz, ed., D. Reidel, Dordrecht.

15. Jaynes, E. T. (1988), "Clearing Up Mysteries - the Original Goal,"in Maximum
Entropy and Bayesian Methods, J. Skilling, ed., Kluwer Academic Publishers,
Dordrecht, pp. 1-27.

16. Jaynes, E. T. (1990), "Probability Theory as Logic," in Maximum Entropy and
Bayesian Methods, P. F. Fougere, ed., Kluwer Academic Publishers, Dordrecht,
pp. 1-16.

17. Bretthorst, G. L. (1987), "Bayesian Spectrum Analysis and Parameter Esti-
mation," Ph.D. Thesis, Washington University, St. Louis, Missouri - available
from University Microfilms, Ann Arbor, Michigan. Excerpts of this thesis are
available in Erickson, G. J., and C. Ray Smith, eds. (1988), Maximum Entropy
and Bayesian Methods in Science and Engineering. L Foundations, Kluwer Aca-
demic Publishers, Dordrecht, pp. 75-145.

18. Bretthorst, G. L. (1990), "An Introduction to Parameter Estimation Using
Bayesian Probability Theory," in Maximum Entropy and Bayesian Methods,
P. F. Fougere, ed., Kluwer Academic Publishers, Dordrecht, pp. 53-79.

19. Bretthorst, G. L. (1990), "Bayesian Analysis. I. Parameter Estimation Using
Quadrature NMR Models," J. Magn. Reson. 88, pp. 533-551; "Bayesian Analy-
sis. II. Signal Detection and Model Selection, " J. Magn. Reson. 88, pp. 552-570;
"Bayesian Analysis. III. Applications to NMR Signal Detection, Model Selec-
tion, and Parameter Estimation," J. Magn. Reson. 88, pp. 571-595.

20. Smith, C. Ray, and W. T. Grandy, Jr., eds. (1985), Maximum Entropy and
Bayesian Methods in Inverse Problems, D. Reidel, Dordrecht.

21. Justice, J. H., ed. (1986), Maximum Entropy and Bayesian Methods in Applied
Statistics, Cambridge University Press, Cambridge.

22. Smith, C. Ray, and G. J. Erickson, eds. (1987), Maximum Entropy and Bayesian
Spectral Analysis and Estimation Problems, D. Reidel, Dordrecht.

23. Erickson, Gary J., and C. Ray Smith, eds. (1988), Maximum Entropy and
Bayesian Methods in Science and Engineering. I. Foundations and II. Appli-
cations, Kluwer Academic Publishers, Dordrecht.
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24. Skilling, J., ed. (1989), Maximum Entropy and Bayesian Methods, KIuwer Aca-
demic Publishers, Dordrecht.

25. Fougere, P. F., ed. (1990), Maximum Entropy and Bayesian Methods, KIluwer
Academic Publishers, Dordrecht.

26. Grandy, W. T., Jr., and L. H. Schick, eds. (1991), Maximum Entropy and
Bayesian Methods, Kluwer Acadclnic Publishers, Dordrecht.

24



REQUIRED INITIAL DISTRIBUTION

Copies

U.S. Army Materiel System Analysis 1

Activity
ATTN: AMXSY-MP (Herbert Cohen)
Aberdeen Proving Ground, MD 21005

lIT Research Institute 1

ATTN: GACIAC
10 W. 35th Street
Chicago, IL 60616

Professor E. T. Jaynes 25
Physics Dept
Washington University
St. Louis, MO 63130

AMSMI-RD 1

AMSMI-RD-AS-RA 75

ATTN: C. Ray Smith
AMSMI-RCS-R 15

AMSMI-RD-CS-T 1
AMSMI-GC-IP, Mr. Fred M. Bush I

DIST-1/(DIST-2 blank)


