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Abstract -. In this paper we investigate the effect of an inelastic interface layer on the
mechanical behavior of a transversely loaded fiber-reinforced composite. A simple linearly
viscoelastic model is used to charactenze the stiffness and viscosity of the interface separating
the fiber and matrix phases. The mechanical response is obtained using the finite element
method and calculations are carried out for a unit cell in a periodic array of hexagonally packed
fibers. An approximate representation of' the time dependent macroscopic behavior of the
composite is derived analytic'illy and compared with the numerical results. From a
micromechanical perspective, th-. u,,:-nice of interfacial stress relaxation on the stress, field:s
in the matrix material contiguous to the interface is examined.

1. INTRODUCTION

Since the advent of the modem fiber-reinforced composite, the determination of the

mechanical properties of these materials has become of significant practical importance.

Unlike the axial strength and stiffness properties which are primarily governed by the axial

properties of the fiber, the behavior of the fiber-reinforced composite in the transverse

direction is dominated by a relatively low stiffness matrix material and the fiber/matrix

interface. This may place severe limitations on the overall performance of the composite

and thus it is desirable to accurately characterize the transvers operties.

In most analytical and numerical work, investigators have assumed a perfect bond

between the fibers and the matrix material which is modeled by continuity of interfacial- ± ,

tractions and displacements. In reality, however, a more complex state exists between the

fiber and matrix constituents, and the assumption of perfect bonding may not be suitable in

the presence of a thin interfacial zone which connects the two phases (e.g. fiber .coating or

intermolecular bonding). In this analysis it is assumed that the interface layer is

infinitesimally thin and supports a traction field having both normal and tangential
/

components. Continuity of tractions is assumed across the interface, however, fiber and

matrix phase separation is simulated by allowing for displacement discontinuities across the

interface. Such a model, assuming a linear relationship between the displacement

difference across the interface aid thc conjugate tractions, is employed by Aboudi (1987),
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Steif and floysan (1987), Achenbach and Zhu (1989a,89b) and Hashin (1989).

Needleman (1987) utilizes this model to simulate the bond between rigid spherical

inclusions embedded in an isotropically hardening elastic-viscoplastic matrix and considers

a more general interfacial constitutive relation.

In implementing the above mentioned interface model, care must be taken in order to

avoid an unrealistic interpenetration of the matrix and fiber phases which can occur in local

regions of compression. As will be seen later, the imposition of such a constraint

significantly influences the transverse mechanical behavior of the composite with a

relatively low stiffness interfacial zone.

In the present paper, the role of an inelastic interface on the transverse properties of

the fiber-reinforced composite is consiA'-red from both a macroscopic and a microscopic

perspective. The choice of a relatively simple linearly viscoelastic interface model allows

us to derive ai approximate representation for the trans-verse relaxation moduli of the

composite with which to compare our numerical results. We note that this analytical model

does not incorporate the aforementioned impenetrability constraint, and of primary interest

is how well it compares with the numerical results ,vcr a tange of interfacial stiffness

parameters. In addition, the influence of interfacial stress relaxation on the stress fields in

the matrix material contiguous to the interface is examined from a micromechanical

viewpoint.

In the following section, the model which is chosen to represent the behavior of a

unidirectional, fiber-reinforced composite is described and the boundary value problem is

formulated. Discussed in section 3 are implementational details of the finite element

method, the numerical procedure employed in this analysis. In section 4, the analytic

model which approximates the transverse relaxation moduli of the fiber-reinforced

composite is described and compared with the numerical results. In section 5, a qualitative

discussion is presented regarding the effect of interfacial stress relaxation on the resulting

stress fields in the matrix material near the fiber/matrix interface. Finally, some concluding

remarks are stated in section 6.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A cross-sectional view of the model employed in this analysis is illustrated in ligure 1.

It is assumed that the fibers, all of equal radius, a, are periodically spaced in a regular

hexagonal array and are -- bedded in an infinite matrix. Two loading directions are
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considered in this analysis, the closest packing direction (CPD) and the mid-closest packing

direction (Mid-CPD). The Mid-CPD loading direction which bisects the angle formed by

two closest packing directions is illustrated in figure 1.

Through arguments of symmetry, it is only necessary to analyze the rectangular region

outlined in figure I and shown in detail in figure 2. Neglecting all rigid body motion, the

point 0, located at the origin of the Cartesian coordinate system shown in the figure, is

considered fixed throughout the analysis. By imposing the appropriate boundary

conditions on one half of thl,; rert:f(TY1!Lr rtgion, i.e. the trapezoid ABEL '

quarter of a regular hexagon with sides of length b, the state of stress and strain for the

entire model may be completely characterized.

2. 1. Boundary Conditions

The relevant boundary conditions for the case of CPD loading are given below. The

corresponding expressions for the case of Mid-CPD loading are obtained similarly, see e.g.

Achenbach and Zhu (1989b). Referring again to figure 2, the loading direction is parallel

to the x2 axis of the Cartesian reference frame centered at 0. Relative to this frame, the

boundary conditions along the external boundaries AB, EF, and AF respectively are

expressed as follows:

3b b V3-- "e 4 1' X2 =  -- b,: U-21 I= 0, -2 = - 2 (1)

b b ] /
b,: (2)XI [-- 4-' - 2 ] ' x = +  b, 1 21 = 0, U2) = +A 2 (2

v3 V3' 3b
x. [-T b, + - b ,x = -,: = 0, ]u = -A] (3)

where it and u2 are the displacement components in the x, and x2 directions and A2 is the

magnitude of the prescribed displacement in the x2 direction along AB and EF. The

quantity A, is the magnitude of the unknown displacement in the x, direction along AF to

be determrined as part of the numerical solution. Along BE, the following displacement

condition must hold:

l(-Xl,--X2) = UI(X,-X2), u2(-X],-X 2) = u2(xI,x2). (4)

One additional relevant condition for this case of loading is obtained through equilibrium

considtrations in the x2 directi,-n and is stated as

3



f 3b
JB T2 ds + JEF T2 ds (5)

where T, is the traction component in the x2 direction on the external boundaries AB and
EF. This condition allows for the numerical determination of the remote applied stress (7.

2.2. Constiwtive Relations

Now that the relevant conditions that must be satisfied on the external boundaries of
the trapezoidal region ABEF have been given, we turn our attention to the individuad
material phases comprising the interior of the trapezoidal region. In the present analysis, a
graphite/epoxy composite material system is considered, and a description ( the

constitutive law which governs the behavior of each phase follows.

Epoxy Matrix and Graphlre Fiber Phases. It is assumed that the matrix :

and linearly elastic. The fiber is taken to be linearly elastic and transversely isotropic. The

elastic constants employed in this analysis were obtained by Kriz and Stinchcomb (1979)
and are given in table 1. For the case of plane strain, the stress-strain relation's for the

matrix phase can be written as

t:33 = e13 = = 0 (6)

U13 z- Q23 = 0

(733 = A-(EI + E2 2)

cap 2 .Waef + 2 r,

where the parameters A. and / are the Lame' constants and the Greek indices a, /3, and Y

range over 1 and 2. For the transversely isotropic Fiber phase, the elastic stress-strain

relations for the case of plane strain are given by Hashin (1979). The non-zero

components are written as

(733 = I (El + E22 ) (7)

(Tag = (KT GT)E-, 3 a + 2 G1cap

where the constant I is related to the axial Poisson's ratio,VA, and the transverse bulk

modulus, KT, by



I = 2 KrVA (8)

In addition, the transverse bulk modulus, KT, is related to the engineering constants by the

relation

KT ETEAG7 (9)
4GTEA - ETEA - 4ETGTVA2

where ET and EA are the transverse and axial Young's moduli of the fiber and Gr is the

transverse shear modulus.

Interface Model. Both a liiiearly elastic and a linearly viscoelastic constitutive relation

are considered for the interfacial zone. For the linearly elastic interface, it is assumed that

the normal traction between the fiber and matrix phases is proportional to the corresponding

normal relative disph cement across the interface. Similarly, the tangential traction is taken

to be proportional to the tangential relative displazement across the interface. Thus,

T, = k[uI 1  (10)

Tt = ktutlj

where

u, = uinin and T, = (qijninj)n (11)

ut= u - u, and Tt = T- T,

are the normal and tangential displacement and traction vectors respectively, [ ]i denotes

the jump in the relative quantity across the interface, kn and kt are normal and tangential

stiffness parameters arbitrarily taken to be equal in this analysis, and T is the traction

vector (Ti = uijnj). Here ao" = uji is the Cauchy stress tensor. Since we are considering

the plane strain problem, the indices i andj in (11) take on the values I and 2 referring to

the Cartesian coordinate system shown in figure 2. A positive normal relative displacement

[u,]j denotes normal separation between the fiber and matrix phases. However, we

assume that a negative normal relative displacement [u,], allows for a physically unrealistic

interpenetration of the matrix phase into the fiber phase and, thus, we enforce the

impenetrability constraint



[u,: ? 0. (12)

For the linearly viscoelastic interface, the time dependent response of the interfacial

zone is taken into account. At each point of the interface, the material response in both the

normal and tangential directions is considered to be that of a standard ii;,car solid (SLS).

The SLS qualitatively represents the behavior of an idealized cross-linked polymer and can

be viewed as a spring in parallel with a spring and a dashpot. The normal and tangential

tractions T,, and T, are then related to the relative displacement differences [u,11 and [u,1

across the interface by

Ti + T- (ki 1 +ki)[lii + k"2 [ui] (13)
r r

where the subscript i is replaced by n and t respectively. As for the linearly elastic

interiacc, the normal dad tangential stifness parameters are taken to bc equal. Thus,

1 1 2 2
k, = k, and k,, kt

For convenience, the time constant, z, in expression (13) is taken to be unity throughout.

3. FINITE ELEMENT IMPLEMENTATION

In order to solve the now formulated boundary value problem, the finite element

method is employed. Throughout, we assume small displacements. The strain

displacement relation then takes the usual form

Eij = (uij + uj,i)/2  (14)

and the equilibrium equation is written as

o'ijj = 0. (15)

For the fiber-reinforced composite with an interfacial zone, the Principle of Virtual

Work is written as

fn gj6Ej dQ + fS 60 dS = fJrTi~ui dY (16)
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where 2 denotcs the interior of the trapezoidal region shown in figure 2, ]'is the external

traction boundary, and S is the interfacial traction boundary. The 8Ui are the kinematically

admissible displacements (satisfying the periodic displacement boundary conditions

outlined in section 2 and vanishing on the prescribed displacement boundary). The second

term in (16) is the virtual work of separation of the matrix and fiber phases, i.e.

& = Tbri,] + Tt3-iut]l. (17)

Note that for the case of a linearly viscoelastic interface, the time dependence of the

interface enters into the formulation, and (16) must be discretized in both space aid time.

A detailed formulation of this discretization is found in Appendix 13.

tn order to approximately satisfy the impenetrabi!ity constraint (12) full Newton

Raphson equilibrium iteration is employed with a penalty-like stress update scheme in

which the interface is taken to have a suitably high normal stiffness parameter in

compression.

4. MACROSCOPIC BEHAVIOR

The nrmierical results of the present analysis provide a direct method for calculating

the effective transverse properties of the fiber-reinforced composite. For the composite

with a linearly elastic interface, the numerical results for the effective transverse bulk and

shear nioduli are compared with the results of Hashin (1989) where the composite cylinder

assemblage (CCA) model is employed to obtain the effective transverse bulk modulus, and

the generalized self consistent scheme (GSCS) model is used to determine the effective

transverse shear modulus. It is noted that the CCA model has been introduced in Hashin

and Rosen (1964) and generalized to transversely isotropic fibers and matrix in Hashin

(1979). In the context of perfect interface conditions the GSCS model has been applied by

Christensen and Lo (1979) to obtain the transverse shear modulus. For the linearly

viscoelastic interface, the numerical results are compared with approximate expressions

derived analytically for the time dependent transverse properties of the composite.

4.1 Linearly Elas tic Fiber/Matr x Interface

It can be shown analytically, that due to its inherent elastic symmetry, the hexagonal

array composite with linearly elastic constituents is transversely isotropic, see Love ( 1927),

Lekhnitskii (1963). Therefore, we assume that the effective elastic moduli C>,u aw, related
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to the Cartesian components of the macroscopic or average stress and strain tensors a,,

and kij in the form

(Tij = C*ijl E i. (18)

and that this relation takes the form (7) where the quantities in each expression are replaced

by their respective averaged or macroscopic counterparts (eg., ell is substituted for ell,

KI* for Ky etc.). We note that when the impenetrability constraint (12) is imposed, th,

response of the composite is observed to deviate from transverse isotropy when the

interface stiffness is low, particularly when it is compared for tensile and compressive

loading. For purely tensile loading conditions. this deviation is slight however.

Numerical Procedure. Under the condition of CPD loading, the effective transverse

shear and bulk moduli of the composite are obtained in the following manner. First, a

constant displacennt, A2, is applied along the externd houndary EF and the displacement,

-A 2, is applied along the external boundary AB (see fig. 2). The solution of the finite

element equations yields the unknown, constant displacement A, along the external

boundary AF. The average strain in the xl direction is then given by

-4l l= -b- (19Q)

'lhe average strain in the x2 direction is given by

i 21 - -4 A 2  (20)
V"- ,3 b (0

By employing the relation (5), the finite element solution also yields the remote applied

stress. This is equal to the average stress component 62 of the composite. Since there is

no applied loading in the x, direction, the average stress component Evi = 0. Finally, by

substituting these averaged quantities into the plane strain constitutive relation (7), the

tffective transverse shear and bulk moduli are found to be

r 2 2  (21)

2 (E22 - eII)
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KT* U22 (

2 (t22 + ell)

Effective Iransver, e Bulk Modulus. The numerical results for the effective

trmnsverse bulk modulus, KI'*, are compared with the results of' Hashin ( 1989) where the

CCA model is employed. The CCA expression is given as

K1,n + 2 - 23

Klf - KTin Kr,,. + Gjn

where K7'm arid Grm are the transverse bulk and shear moduli of the matrix, andt.,i an d .

are the matrix and fiber volume fractions. The quantity, Kl), is the equiC alent transvere

bulk modulus of the fiber-interface combination and can be expressed as
a K 1 / k , - ,

ak, + 2 K[ff (2 f

where k, is the normal interfacial stiffness parameter, Krf is the transverse bulk nodulus

of the fiber, and. a, is the fiber radius. The numerical and CCA results for the effective
transverse bulk modulus are shown in figure 3. The effective modulus K 1* is plotted
versus normalized interfacial stiffness. The normalization is chosen such that

k -- k
GTm/a (2

where a is the radius of the fiber. As expected, when the impenetrability constraint (12) is

not enforced, the numerical and CCA rcsults virtually coincide over the entire spectrum of
interface stiffness parameters. However, when this constraint is enforced, the numerical

results deviate from the CCA results at relatively low interfacial stiffness parameters. The

magnitude of this deviation depends on the loading condition considered in the numerical
procedure. It is recalled that in the present analysis Kl* is determined by subjecting the

hexagonal array model to tensile uniaxial loading. It is noted that when the condition (12)

is riot imposed, the nuneticai value obtained for KT* is independent of th X:;(mni~n

,ondition considered.
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values obtained as time approaches infinity, and TK and TG are the respective time

constants in Lansverse bulk and shear. These quantities are defined in Appendix A.

Comparison of Analytical Model With Numerical Results. The numerical procedure

employed to determine the effective relaxation moduli KT*(t) and GT*(t) is almost identical

to that used in the numerical determination of the elastic transverse moduli. The step

displacement A 2H (r) is applied along the external boundary EF, and -A 2H(t) is applied

along the external boundary AB (see fig.2). Using the relations (21) and (22), the effective

moduli are computed and plotted as a function of time. The effective relaxation moduli

KT*(t) and GTlit) predicted by the analytical model and those obtained numerically are

plotted for a fixed fiber volume fraction (Vf=0.5) as shown in figure 6. The normalized

stiffness parameters kI and k2 are varied such that the glassy stiffness of the interface

ranges from a normalized value of (kg=10) to a normalized value of (kg=). Throughout,
the ratio of glassy to long-term interfacial stiffness is taken to be (k./k_=l0). The

normalization is chosen such that

ki  k, (29)
GTm/a

where a is the fiber radius and the superscript i takes on the values I and 2 referring to the

respective chains of the SLS. As shown in the figure, the approximate analytical model

compares e. remely well with the numerical results over the range where the interfacial

stiffness is relatively high. As expected, when the constraint (12) is enforced, for the

relatively low glassy stiffness value (kg=1), the numerical results lie below the derived

results for the transverse bulk relaxation modulus, and above the derived results for the

transverse shear relaxation modulus. It is interesting to note that when the impenetrability

constraint (12) is relaxed, the numerical results virtually coincide with the model over the

entire range. These results for the Mid-CPD loading direction do not differ significantly.

5. MICROSCOPIC BEHAVIOR

In this section, we turn from a macroscopic perspective and focus on the local or

microscopic behavior of the transversely loaded fiber-reinforced composite. In particular,

we examine the influence of interfacial stress relaxation on the stress fields in the matrix

material contiguous to the interface. Throughout, the composite is subjected to a step

displacement in the Mid-CPD loading direction, the more severe of the two loading cases
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considered, and normializcd circumferential stress distributions in the matri: material just

outside of the interface are obtained during the numerical simulation of stress relaxation.

During the interfacial stress relaxation, the circumferential stress, oq,, normalized with

respect to the remote applied stress, cu-, is plotted versus angle, 0, as shown in figure 7.

In the upper digram, the normalized glassy stiffness of the composite is taken to be

(kg=lO) and the ration of glassy to long--term stiffness is taken to be (kg/k-=10). Again,

the time constant, 'r, is taken to be unity for convenience. As shown in the figure, the

normalized circumferential stress increases substantially as time progresses and as the

effective stiffness of the interface decreases. Note that as the interface relaxes, a relatively

abrupt change in the distributions occurs at approximately 75 degrees. This is due to a

local stress concentration at the transitional point where the compressive region of the

interface begins. The resulting distributions, as interfacial stress relaxation proceeds, are

shown in the lower diagram where the nonnalized glassy stiffness of the interface is taken

to be (kg=-1). As time progresses, a noticeable shift occurs in the distributions. The

maximum normalized circumferential stress gradually relocates from approximately 75

degrees to approximately the 45 degree mark. In a recent experimental study by Daniel et

al., (1989), when a silicon carbide/glass-ceramic composite having closely spaced, near

hexagonally packed fibers was transversely loaded, fracture was observed to initiate in the

form of radial cracks in the matrix at this 45 degree location.

6. CONCLUDING REMARKS

In the present work, the transverse loading of the hexagonal array composite is

examined fr- both a macroscopic and a microscopic point of view. In the macroscopic

analysis, the composite is subjected to tensile loading and the effective transverse properties

are obtained. For the case of a linearly elastic interface, the numerical results are compared

with expressions obtained from the composite cylinder assemblage and generalized self

consistent scheme models. It is found that when the impenetrability constraint is imposed,

the mechanical behavior of the hexagonal array composite deviates slightly from transverse

isotropy and the numerical results deviate significantly from the analytic expressions at low

interfacial stiffness values. The magnitude of this deviation depends on the loading

configuration considered in the numerical procedure. Note that we impose this constraint

to avoid an unrealistic interpenetration of the matrix phase into the fiber phase. For the case

of a linearly viscoelastic interface the numerical results for the time dependent transverse

moduli are compared with approximate expressions derived analytically. Good agreement
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is found among the results over a large range of interfacial stiffnesses. In the

nicromechanical analysis, normalized circumferential stress distributions are obtained in

the matrix material contiguous to the interface during interfacial stress relaxation. It is

found that these distributions change substantially as the effective stiffness of the interface

decreases. The maximum circumferential stress concentration is found to occur at

approximately 45 degrees at relatively low interfacial stiffness values.
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APPENDIX A: DEFINITIONS

In this appendix, we define the quantities contained within the derived expressions
(27 and 28) for the time dependent relaxation moduli. The expressions for KTg* and Gorg*

are obtained by making the following substitutions:

1. Substitute for k, in (24) the sum (k, + k,2 ) of the stiffness parameters of the SLS

obtaining the intermediate expression KI-g for the glassy effective bulk modulus of the
fiber-interface combination. Similarly, substitute for kt in (26) the sum (k I+ k 2) for

the glassy effective shear modulus Grg.

2. Substitute the expressionkTg into the CCA result (23) and Grg into the lower bound

expression for arbitrary phase geometry of Hashin (1979).

Thus, the effective glassy moduli are written as

KTg* = K7m + Vf Vm (Al)

+ KTm + GTmKTg - KT,.

GTg*= GTm + (K + + 2GTm)Vm (A2)

+ 2 GTm (KTm + GTm).aTg - GTrn

where

- aKTf (kI + k, ) (A3)
KTg 1 2a (k, + k, ) + 2 KTf

G aGTf (k I + kt2) (A4)
G~g 1 2 (4

a (k, + kt )+ 2GTf

and the long-term effective moduli are expressed as

KT* = KTm + Vf Vm (A5)

+ KTm + GTmKT1 - Km
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Vf (A6)

GT*= GTm I + (KTm + 2Grm)Vm

T- GTm 2GTm (KTm + GTm)

where

aKTfTk 
(A7)

ak I + 2KTf

aGTfktI(P o o -- ( A 8 )
aktI + 2 GTf

Finally, the time constants TK and TG are written in terms of the time constant, T , of the

SLS as

(knl+ kn) KT -1+ m ( KT -KTm)

TK - 1 M -" (A9)
kn 'KTg 1 + m (KTg KTm)

T_ O(kt+kt) I+ n (GT- GTrn) (AlO)
ktl aTg I+ n ( g -GTm)

where
M Vm

m - KTm+ GTm (All)

(KTm+ 2 GTm)Vm (A12)
n 2GTn (KTm+ GTm) "

APPENDIX B: FINITE ELEMENT FORMULATION FOR LINEARLY

VISCOELASTIC INTERFACE

For the case of a linearly viscoelastic interface, the time dependence of the interface

enters into the formulation, and the Principle of Virtual Work

fS2 aiii d.2 + JS 50 dS = f-Ti3ui dF (B1)
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must be discretized both in space and time. The following implementational details are
based on a solution procedure that has been discussed by Taylor, Pister and Goudreau

(1970). Writing (B1) in incremental form at time t,+j yields

fnA- aj 8Ej d-2 + fs ATi3i[ui]t dS =

JfrATiSui dF - [ f,2 aij5ij dQ2 + fs Ti5[ui]j dS - fTi ' ui dF ] n (B2)

where (crij)n+l = (aij)n + (Acrij). and (Ti)n+1 = (Ti), + (ATi),. Using (B2) as our starting

point, we now express the components Ti of the interfacial traction vector in terms of the
[ui]j as follows. The standard linear solid can be viewed as being comprised of two
Maxwell elements in parallel, one of which has an infinite time constant r. The governing

differential equation for one Maxwell element is simply expressed as

T + (B3)

where the superscript j refers to the jth Maxwell element of the SLS. For extension at a

constant rate, [uiij, the exact solution of (B3) is

T/(t ) = (k!)[ui],-rtJ[1-exp (-t / -)]. (B4)

Letting (A[uiji)n = ([ui]l)n+I - ([ui]t) n and At = t,+1 - t, the interfacial traction components

Ti at time tn,+l are obtained by expressing (B4) in incremental form and summing the partial

stresses. Thus
2

(Ti)n+l 2= [Tiexp (-At / r ) + k/A[ui]j h(At)] n (B5)j_-

where

h(At) = J(1- exp (-At / )) /At. (B6)

Note that as the time constant, r , approaches infinity, h(At) in (B6) approaches unity.

Referring back to equation (B2), we introduce standard finite element shape functions, N,
and use the arbitrariness of the variations in the nodal displacements to obtain the discrete

form
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I L efBe DeBe d(2 + S B eT 6eBe dS I + Mde:e=]

ne T fsBT ~ dSTIi.

eI I FNe Tn+I dF - Jr B Td.+ dS - f2B a, dQ2 (B7)
e=l

where, the vector Ade contains the discrete nodal displacement increments and ne refers to

the number of elements in the model. The first term on the left side of (B7) contains the

symmetric gradient operator matrix Be and the plane strain constitutive matrix De. The

second term on the left side of (B7) constitutes the interface stiffness contribution of the

interface layer, see Gosz (1989) for interface element formulation. Here, the interface

constitutive matrix De is a 2 x 2 diagonal matrix whose components are given by

2
DI1 = Y h(At)knj  (B8)

j=1

2
D22 = , h(At)k j

j=I

where k.' and k/ are the normal and tangential stiffness parameters associated with the ith

element of the SLS and h(At) is defined by (B6). Note that this entire procedure can be

easily extended for more general constitutive relations, for example, by modeling the

normal and tangential material response of the interface with a greater number of Maxwell

elements.
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Table 1. Elastic constants of the graphite/epoxy material system considered.

EA(Gpa) VA ET (Gpa) Vr GA(Gpa) GT (Gpa) KT (Gpa)

Graphite fiber 232 0.279 15.0 0.490 24.0 5.03 15.0

Epoxy matrix 5.35 0.354 5.35 0.354 1.976 1.976 6.76

-4-Q 0 0 0-40

0 O
4-0 000 0--

Fig. 1. Mid-CPD loading configuration for the hexagonal array composite.

x 2

F E D

A "iB C
b

Fig. 2. Schematic of the representative cell of the hexagonal array composite.
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Fig. 3. Normalized effective transverse bulk modulus versus interface stiffness.
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Fig. 4. Normalized effective transverse shear modulus versus interface stiffness.
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Fig. 5. Normalized transverse bulk and shear moduli versus fiber volume fraction.
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Fig. 6. Comparison of relaxation model in transverse bulk and shear with the numerical results
(linearly viscoelastic interfacial zone).
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Fig. 7. Normalized hoop stress distr-ibutions in the matrix material just outside the interface

during stress relaxation.
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