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Abstract ~ In this paper we investigate the effect of an inelastic interface layer on the
mechanical behavior of a transversely loaded fiber-reinforced composite. A simple linearly
viscoelastic model is used to characlenize the stiffness and viscosity of the interface separating
the fiber and matrix phases. The mechanical response is obtained using the finite clement
method and calculations are carried out for a unit cell in a periodic array of hexagonally packed
fibers. An approximate representation of the time dependent macroscopic behavior of the
composite is derived analytictlly and compared with the numerical results.  From a
micromechanical perspective, the miic-nce of interfacial stress relaxation on the stress ficlds
in the matnx material contiguous to the intcrface is examined.

1. INTRODUCTION

Since the advent of the moderm fiber-reinforced composite, the determination of the
mechanical properties of these materials has become of significant practical importance.
Unlike the axial strength and stiffness properties which are primarily governed by the axial
properties of the fiber, the behavior of the fiber-reinforced composite in the transverse
direction is dominated by a relatively low stiffness matrix material and the fiber/matrix
interface. This may place severe limitations on the overall performance of the composite
and thus it is desirable to accurately characterize the transvers - uperties.

In most analytical and numerical work, investigators have assumed a perfect bond
between the fibers and the matrix material which is modeled by continuity of interfacial :
tractions and displacements. In reality, however, a more complex state exists between thé\/
fiber and matrix constituents, and the assumption of perfect bonding may not be suitable in
the presence of a thin interfacial zone which connects the two phases (e.g. fiber coating or
intermolecular bonding). In this analysis it is assumed that the interface layer is
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infinitesimally thin and supports a traction field having both normal and tangential
components. Continuity of tractions is assumed across the interface, however, fiber and
matrix phase separation is simulated by allowing for displacement discontinuities across the
interface. Such a model, assuming a linear relationship between the displacement
difference across the interface and the conjugate tractions, is employed by Aboudi (1987),

DIST A PER TELECON MR. Y BARSOUM

ONR/CODE 1132 SM
4/1/91 CG P\_\

e e




Steif and Hoysan (1987), Achenbach and Zhu (1989a,89b) and Hashin (1989).
Needleman (1987) utilizes this model to simulate the bond between rigid spherical
inclusions embedded in an isotropically hardening elastic-viscoplastic matrix and considers
a more general interfacial constitutive relation.

In implementing the above mentioned interface model, care must be taken in order to
avoid an unrealistic interpenetration of the matrix and fiber phases which can occur in local
regions of compression. As will be seen later, the imposition of such a constraint
significantly influences the transverse mechanical behavior of the composite with a
relatively low stiffness interfacial zone.

In the present paper, the role of an inelastic interface on the transverse properties of
the fiber-reinforced composite is consi‘ered from both a macroscopic and a microscopic
perspective. The choice of a relatively simple linearly viscoelastic interface model allows
us to derive a1 approximate representation for the transverse relaxation moduli of the
composite with which to compare our numerical results. We note that this analytical model
does not incorporate the aforementioned impenetrability constraint, and of primary interest
1s how well it compares with the numerical results vver a range of interfacial stiffness
parameters. In addition, the influence of interfacial stress relaxation on the stress fields in
the matrix material contiguous to the interface is examined from a micromechanical
viewpoint.

In the following section, the model which is chosen to represent the behavior of a
unidirectional, fiber-reinforced composite is described and the boundary value problem is
formulated. Discussed in section 3 are implementational details of the finite element
method, the numerical procedure employed in this analysis. In section 4, the analytic
model which approximates the transverse relaxation moduli of the fiber-reinforced
composite 1s described and compared with the numerical results. In section 5, a qualitative
discussion is presented regarding the effect of interfacial stress relaxation on the resulting
stress fields in the matrix material near the fiber/matrix interface. Finally, some concluding

remarks are stated in section 6.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A cross-sectional view of the model employed in this analysis is illustrated in tigure 1.
It is assumed that the fibers, all of equal radius, a, are periodically spaced in a regular

hexagonal array and are ~mbedded in an infinite matrix. Two loading directions are




considered in this analysis, the closest packing direction (CPD) and the mid-closest packing
direction (Mid-CPD). The Mid-CPD loading direction which bisects the angle formed by
two closest packing directions is illustrated in figure 1.

Through arguments of symmetry, it is only necessary to analyze the rectangular region
outlined in figure 1 and shown in detail in figure 2. Neglecting all rigid body motion, the
point O, located at the origin of the Cartesian cocrdinate system shown in the figure, is
considered fixed throughout the analysis. By imposing the appropriate boundary

quarter of a regular hexagon with sides of length b, the state of stress and strain for the

entire model may be completely charactenzed.

2.1. Boundury Conditions

The relevant boundary conditions for the case of CPD loading are given below. The
correspeonding expressions for the case of Mid-CPD loading are obtained similarly, see e.g.
Achenbach and Zhu (1989b). Referring again to figure 2, the loading direction is parallel
to the x; axis of the Canesian reference frame centered at O. Relative to this frame, the
boundary conditions along the external boundaries AB, EF, and AF respectively are

expressed as follows:

V3
x16[—37b‘,g' Lo xo=-7b: 021 =0, up = -4 (1)
\/
X1€[~§;,[2,—g], x3=+73b, Oz =0, uz = +4; (2)
V3 V3
Gel-Gh v bl == oy =0,u= -4 3

where u; and u; are the displacement components in the x; and x; directions and 4; 1s the

magnitude of the prescribed displacement in the x, direction along AB and L. The
quantity A; is the magnitude of the unknown displacement in the x; direction along AF to

be determined as part of the numerical solution. Along BE, the following displacement

condition must hold:
up(=xp,~x2) = uy(xpx2),  ua(=x;,-x2) = uz(x;,x2). (4)

One additional relevant condition for this case of loading is obtained through equilibriuin

considerations in the x> directicn and is stated as




jAB Ty, ds + _[EF Trds = > O (5)

where 75 is the traction component in the x; direction on the external boundaries AB and
EF. This condition allows for the numerical determination of the remote applied stress O...

2.2, Constitutive Relations

Now that the relevant conditions that must be satisfied on the external boundaries of
the trapezoidal region ABEF have been given, we turn our attention to the individual
material phases comprising the interior of the trapezoidal region. In the present analysis, a
graphite/epoxy composite material system is considered, and a description ol the

constitutive law which governs the behavior of each phase follows.

Epoxy Matrix and Graphite Fiber Phases. It is assumed that the matnix i iotapic
and linearly elastic. The fiber is taken to be linearly elastic and transversely isotropic. The
elastic constants employed in this analysis were obtained by Kriz and Stinchcomb (1979
and are given in table 1. For the case of plane strain, the stress-strain relations tor the

matrix phase can be written as
E3=€3=¢€63=0 (6)
O13=023=10
033 = M€ + €22)
Oap = 2HEap + AeyDap

where the parameters A and u are the Lame' constants and the Greek indices «, 3, and y
range over | and 2. For the transversely isotropic fiber phase, the elastic stress-strain
relations for the case of plane strain are given by Hashin (1979). The non-zero

components are written as
O33 = I(E” + £22) o
Oup = (K1~ Grlegay + 2G1ap

where the constant [ is related to the axial Poisson's ratio,v,, and the transverse bulk

modulus, K7, by
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[ = 2KV, (8)

In addition, the transverse bulk modulus, Ky, is related to the engineering constants by the

relation

Kr = ETEAGT ©)

4GE s~ ErEs— 4E7GTVA®

where E7 and E4 are the ransverse and axial Young's moduli of the fiber and Gy 1s the

transverse shear modulus.

Interface Model. Both a linearly elastic and a linearly viscoelastic consttutive relation
are considered for the interfacial zone. For the linearly elastic interface, it is assumed that
the normal traction between the fiber and matrix phases is proportional to the corresponding
normal relative displ: cement across the interface. Similarly, the tangential traction is tuken

to be proportional to the tangential relative displacement across the interface. Thus,

T = knlunls (10)
T, = kiuly
where
u, = winin and T, = (oyninjn (i

y,=u-up,and T, =T-T,

are the normal and tangential displacement and traction vectors respectively, [ . |; denotes
the jump in the relative quantity across the interface, k, and k; are normal and tangential
stiffness parameters arbitrarily taken to be equal in this analysis, and T is the traction
vector (T; = oyn;). Here 0j; = oj; is the Cauchy stress tensor. Since we are considering
the plane strain problem, the indices i and j in (11) take on the values 1 and 2 referring to
the Cartesian coordinate system shown in figure 2. A positive normal relative displacement
[u,]; denotes normal separation between the fiber and matrix phases. However, we
assume that a negative normal relative displacement [u,]; allows for a physically unrealistic
interpenetration of the matrix phase into the fiber phase and, thus, we enforce the

impenetrability constraint

N




(a2 0. (12)

For the linearly viscoclastic interface, the time dependent response of the interfacial
zone is taken into account. At each point of the interface, the material response in both the
normal and tangential directions is considered to be that of a standard liiicar solid (SLS).
The SLS qualitatively represents the behavior of an idealized cross-linked polymer and can
be viewed as a spring in parallel with a spring and a dashpot. The normal and tangential
tractions 1, and 7 are then related to the relative displacement differences [u,]; and (1],
across the interface by

. T Lo, 2. k!
Ty + = = (ki +k))u] +~Huy) (13)
T T
where the subscript i is replaced by n and ¢ respectively. As for the linearly elastic

interface, the normal and tangential stiffness parameters are tiken to be equal. Thus,
) 1 2 2
kn = k[ and kn = k( .

For convenience, the time constant, 7, in expression (13) is taken to be unity throughout.

3. FINITE ELEMENT IMPLEMENTATION

In order to solve the now formulated boundary value problem, the finite element
method is employed. Throughout, we assume small displacements. The strain

displacement relation then takes the usual form
&= (uij + u;)2 (14
and the equilibrium equation is written as
o = 0. (15)

For the fiber-reinforced composite with an interfacial zone, the Principle of Virtual

Work is written as




where €2 denotes the interior of the trapezoidal region shown in figure 2, I'is the external
traction boundary, and § is the interfacial traction boundary. The du; are the kinematically
admissible displacements (satisfying the periodic displacement boundary conditions
outlined in section 2 and vanishing on the prescribed displacement boundary). The second

term in (16) is the virtual work of separation of the matrix and fiber phases, 1.¢.
0¢ = TpOlupl; + T.0lul;. (17)

Note that for the case of a linearly viscoelastic interface, the time dependence of the
interrace enters into the formulation, and (16) miust be discretized in both space and time.
A dewiled formulation of this discretizaton is found in Appendix B.

In order to approximately satisfy the impenetrability constraint {12) full Newton
Raphson equilibrium iteration is employed with a penalty-like stress update scheme in
which the interface is taken to have a suitably high nommal stiffness parameter in

compression.

4. MACROSCOPIC BEHAVIOR

The numerical results of the present analysis provide a direct method for calculating
the effective mansverse properties of the riber-reinforced composite. For the composite
with a linearly elastic interface, the numerical results for the effective transverse bulk an
shear moduli are compared with the results of Hashin (1989) where the composite cylinder
assemblage (CCA) model is employed to obtain the effective transverse bulk modulus, and
the generalized self consistent scheme (GSCS) model is used to determine the effective
transverse shear modulus. It is noted that the CCA model has been introduced in Hashin
and Rosen (1964) and generalized to transversely isotropic fibers and matrix in Hashin
(1979). In the context of pericct interface conditions the GSCS model has been applied by
Chnistensen and Lo (1979) to obtain the transverse shear modulus. For the linearly
viscoelastic interface, the numerical results are compared with approximate expressions

derived analytically for the time dependent transverse properties of the composite.

4.1 Linearly Elustic Fiber/Matrix Interface
It can be shown analytically, that due to its inherent elastic symmetry, the hexagonal
array composite with linearly elastic constituents is transversely isotropic, see Love (1927),

Lekhnitskii (1963). Therefore, we assumme that the effective elastic moduli C*gu are related




to the Cartesian components of the macroscopic or average stress and strain tensors 0,

and £ in the form

_ . - .
Gy = Ciju €Eu. (18)

and that this relation takes the form (7) where the quantities in each expression are replaced
by their respective averaged or macroscopic counterparts (eg., €y is substituted for &,
Ky™ for Kp etc.). We note that when the impenetrability constraint (12) is imposed. the
response of the composite is observed to deviate rrom transverse isotropy when the
interface stiffness is low, particularly when it is compared for tensile and compressive

loading. For purely tensile loading conditions. this deviuation is slight however.

Numericai Procedure. Under the condition of CPD loading, the effective transverse
shear and bulk moduli of the composite are obtained in the following manner. First, a
constant displacement, Az, is applied along the external boundary EF and the displacement,
—A>, 1s appiied alorng the external boundary AB (see fig. 2). The solution of the finite
element equations yields the unknown, constant displacement A; along the external

boundary AF. The average strain in the x; direction is then given by

e = 34 (1%)
3b ’
The average strain in the x; direction is given by
— -4 A
£ = =2 (20)
V3 b |

By employing the relation (5), the finite element solution also yields the remote applied
stress. This is equal to the average stress component G, of the composite. Since there is
no applied loading in the x; direction, the average stress component &;; = 0. Finally, by
substituting these averaged quantities into the plane strain constitutive relation (7), the

effective transverse shear and bulk moduli ure found to be

Gt =021 (21)
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Ky’ = -t 22)
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Effective Transverse Bulk Modulus. The numerical results for the effective
transverse bulk modulus, Ky®, are compared with the results of Hashin (1989) where the

CCA modelis employed. The CCA expression is given as

19
ad

, Vy
N N R <

where Kym and G, are the transverse bulk and shear moduli ot the matrix, andV ', and b
are the matrix and fiber volume fractions. The quantity, Ky, is the equivalent transverse
butk modulus of the fiber-interface combination and cun be expressed as
> akykn N
Ky~ AR Tn (24
/" akn + 2Ky
where &, 1s the norraal intertacial stiffness parameter, Kyy is the transverse bulk modulus
of the fiber, and. g, is the fiber radius. The numericai and CCA results for the effective

trancverse bulk modulus are shown in figure 3. The effective modulus K;* is plotted

versus normalized interfacial stiffness. The normalization is chosen such that

kn
k= 67‘,,,/a

(25
where a 1s the radius of the fiber. As expected, when the impenetrability constraint (12 1s
not enforced, the numerical and CCA rcsults virtually coincide over the entire spectrum of
interface stiffness parameters. However, when this constraint is enforced, the numerical
results deviate from the CCA results at relatively low interfacial stiffness parameters. The
magnitude of this deviation depends on the loading condition considered in the numerical
procedure. It is recalled that in the present analysis K" is determined by subjecting the
hexagonal array model to tensile uniaxial loading. It is noted that when the condition (12)
Is not imposed, the numericai value obtained for K* is independent of the eading

condition considered.




Frrecove ey crse yocar Modidws. As pointed out by Hashin (1959, e ettecin e
transs erse shear moduius cannot in general be determined by employing the equivalent
fiber nterfuce concept. niike the CCA expression for the effecnive transsere bulk
modulus which s completely independent of the tangential intertace stiffness parameter, the
Tective tunsverse shear nmdulus is highly dependent on both stitfness component.
Howeser, for the case when both the normal and tangential sttfness parameters are ke,
to be cguen 1t tound thae the expression for the etffective transverse shear modal
ohined by suisotainye approximdte models tor the tiber-interfoce sheor miode,
HVATDIC PO IO e T CRPICSSIons serves as a good approximation over aoldarce e oo
e facial st ess vadues,

i the prosent anadvais, we cimploy dn approximate exprensien tor e sheer moniin.

aof e SHer neertace cCombiaaiion wintch s wntten as

d (l ' I([ )
LI ST T TR s [

ak, + 20,

where & s the tanvent tertacied suffness parameter, (s the ransverse shear

Mot of the tiher phase. ards g, s the tiber radius, [tis noted that when the sonmad and

tangential suliess parametens are When to be equal, the rescit obtined by ~ubntititing (26,

fouthe transverse shear modelus of the fiber in the expression of Christensen and Lo
C1G79;5 15 idistinguishable from the GSCS result of Hashin (1989), In ficure 4, the GSCS

clts obtamned by Hashin (1989) are compared with the numerical results. Resalis
ontined Beosubstituting (260 tor the shear modulus of the tiber phase in the fower hound
~xpression for arbitrary phase geometry given by Hashin {1979 are also shown i the
fionre The eftective ransverse shear modulus normalized with respect to the shear
modubis of the matrix s plotted versus normalized interfacial suttness. Again, the
normalization - chosen as in (25). When the impenetrability constraint (127 15 eniciced,
the numeric i resalis deviate significantly from the GSCS results at relatively low intertacial
A

stiftness paramicters. When the constraint (123 1s not enforced, the deviation at low

stitfnes ws s less sigmiticant. Again, when (12) is entoreed, the magnitude o the deviation
depends on the loading condition imposed on the hexagonal array model in the numcerical
prococare 10 noticed that under these circumstances the modified Tower bound
expression ser.es ay 4 good model for the effective transverse shear modulus of the
composite. The corresponding rexalts for the effective transverse bulk and sheas moduios
versus tther velume fruction for o fixed normalized interfacial stiffness parameter oo 1873

are shown n brgure S




3.2 Loicorty Visoodsue FiberiMairix Interjace

Spia enpressions tor the effective moduli of the composite with o lincaily

In puncry

clasuc intertuce wre koown, the correspendence principle can be employed i arder o
calculate the effective time dependent expressions for the composite with 4 lincuriy
viscoclastic intertace. U ntorwnately, the exact elastic expression for the composite under
consideration renins 1o be determined. However, 1t is noticed that the CCA resuits for the

etfective transverse bulk modulus given in the previous section compare closely with the
aumerical resuity for a wide range of stiffness parameters over the entire range of volume
fracions constdered We thus choose the linearly elastic CCA expression and ciploy the
correspondence principle (o obtain @ model tor the time dependent eftective modnlas
K"t of the tiber roinfurced cemposite with 2 lnearly viscoelastic interfacial cone.

order to obtamn an anaiytic expression for the time dependent effeciive tarsverse whoea

modulus, G 7, the modified lower bound expression obtained in the previcus seotivn

chosen since it s algebratcally simple and lends 1tself well o analyue Laplace srarstonn

inversion. However, itis noted that the usetulness of the resulting ume dependont tnde
for the effective wansverse shear modulus 1s Iimited since it is only good for the specta
case when the normal and tangental interfacial suffness parameters are assed o be

svichronous during interfacial stress relaxation.

Analviical Model. By substitating the transformed relaxation tunciion of the ST

sTrts ), nio (24 and (26), the transformed expressions .sKy-j-(s) and s (}/-ﬂx) are obtained.

-

The substitution ¢f these expressions forKyy andGyyin the CCA result (23) and tic lower

bound result of Hashin (1979) yields sK;"(s) and sG7*(s). Generally a probiem arises
here 1 inverting back iuto the time domain. However, for this relatvely simple
viscoclastic interface model, the relations for K77(s) and G1*(s) are easily inverted vielding
a model for the time dependent effective moduli K77(1) and G¥(1). The etfective relaxution
function in hu'k can be expressed as
-y * JES . * —{/TK Sy
Krin=Kp. + (K [e - Ky e {2
while the etfootin o relaxetion function in shear can be written as

T,

(;'['*(l) = G[’w* + (G'['g* - G'['m* Yo LN

: - * .- L4 . - . .
where Kppoand Gy are the glassy or instantaneous values for the eticetive o oo

: : . . ox * :
shear and bulk modalt of the composite, K" and G.. are the corresponding 000 erim




values obtained as time approaches infinity, and T and T; are the respective time
constants in t.ansverse bulk and shear. These quantities are defined in Appendix A.

Comparison of Analytical Model With Numerical Results. The numerical procedure
employed to determine the effective relaxation moduli K7*(¢) and Gr*(¢) is almost identical
to that used in the numerical determination of the elastic transverse moduli. The step
displacement A;H (¢) is applied along the external boundary EF, and —A,H(1) is applied
along the external boundary AB (see fig.2). Using the relations (21) and (22), the effective
moduli are computed and plotted as a function of time. The effective relaxation moduli
K (ryand G1' () predicted by the analytical model and those obtained numerically are
plotted for a fixed fiber volume fraction (Vy=0.5) as shown in figure 6. The normalized
stiffness parameters k" and &% are varied such that the glassy stiffness of the interface
ranges from a normalized value of (kg=10) to a normalized value of (kg:]). Throughout,
the ratio of glassy to long~term interfacial stiffness is taken to be (kolko=10). The

normalization is chosen such that

ik,
T Grmla

(29)

where a is the fiber radius and the superscript i takes on the values / and 2 referring to the
respective chains of the SLS. As shown in the figure, the approximate analytical model
compares e.i'remely well with the numerical results over the range where the interfacial
stitfness is relatively high. As expected, when the constraint (12) is enforced, for the
relatively low glassy stiffness value (k,=1), the numerical results lie below the derived
results for the transverse bulk relaxation modulus, and above the derived results for the
transverse shear relaxation modulus. It is interesting to note that when the impenetrability
constraint (12) is relaxed, the numerical results virtually coincide with the model over the
entire range. These results for the Mid-CPD loading direction do not differ significantly.

5. MICROSCOPIC BEHAVIOR

In this section, we turn from a macroscopic perspective and focus on the local or
microscopic behavior of the transversely loaded fiber-reinforced composite. In particular,
we examine the influence of interfacial stress relaxation on the stress fields in the matrix
material contiguous to the interface. Throughout, the composite is subjected to a step

displacement in the Mid-CPD loading direction, the more severe of the two loading cases




constdered, and normalized circumnferential stress distributions in the matrix material just
outside of the interface are obtained dunng the numerical simulation of stress relaxation.
During the interfacial stress relaxation, the circumferential stress, Oy, nornalized with
respect to the remote applied stress, 0. is plotted versus angle, 6, as shown 1n figure 7.
In the upper diagram, the normalized glassy stiffness of the composite is taken to be
(kg=10) and the ration of glassy to long-term stiffness is taken to be (k,/k.=10). Again,
the time constant, 7, is taken to be unity for convenience. As shown in the figure, the
normalized circumferential stress increases substantially as time progresses and as the
effective stiffness of the interface decreases. Note that as the interface relaxes, a relatively
abrupt change in the distributions occurs at approximately 75 degrecs. This is due to a
local stress concentration at the transitional point where the compressive region of the
interface begins. The resulting distributions, as interfacial stress relaxation proceeds, are
shown in the lower diagram where the normalized glassy stiffness of the interface is taken
to be (kg=1). As time progresses, a noticeable shift occurs in the distributions. The
maximum normalized circumferential stress gradually relocates from approximately 75
degrees to approximately the 45 degree mark. In a recent experimental study by Daniel er
al., (1989), when a silicon carbide/glass-ceramic composite having closely spaced, near
hexagonally packed fibers was transversely loaded, fracture was observed to initiate in the

form of radial cracks in the matrix at this 45 degree location.

6. CONCLUDING REMARKS

In the present work, the transverse loading of the hexagonal array composite is
examined fr>—1 both a macroscopic and a microscopic point of view. In the macroscopic
analysis, the composite is subjected to tensile loading and the effective transverse properties
are obtained. For the case of a linearly elastic interface, the numerical results are compared
with expressions obtained from the composite cylinder assemblage and generalized self
consistent scheme models. It is found that when the impenetrability constraint is imposed,
the mechanical behavior of the hexagonal array composite deviates slightly from transverse
1sotropy and the numerical results deviate significantly from the analytic expressions at low
interfacial stiffness values. The magnitude of this deviation depends on the loading
configuration considered in the numerical procedure. Note that we impose this constraint
to avoid an unrealistic interpenetration of the matrix phase into the fiber phase. For the case
of a linearly viscoelastic interface the numerical results for the time dependent transverse

moduli are compared with approximate expressions derived analytically. Good agreement
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i1s found among the results over a large range of interfacial stiffnesses. In the
micromechanical analysis. normalized circumferential stress distributions are obtained in
the matrix material contiguous to the interface during interfacial stress relaxation. It is
found that these distributions change substantially as the effective stiffness of the interface
decreases. The maximum circumferential stress concentration is found to occur at

approximately 45 degrees at relatively low interfacial stiffness values.
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APPENDIX A: DEFINITIONS

In this appendix, we define the quantities contained within the derived expressions
(27 and 28) for the time dependent relaxation moduli. The expressions for Kr,* and Gr,”*
are obtained by making the following substitutions:

1. Substitute for &, in (24) the sum (k,,1+ k,,z) of the stiffness parameters of the SLS
obtaining the intermediate expression Ky, for the glassy effective bulk modulus of the
fiber-interface combination. Similarly, substitute for k, in (26) the sum (k,1+ k,z) for

the glassy effective shear modulus Gr,.

2. Substitute the expression Kr, into the CCA result (23) and Gr, into the lower bound
expression for arbitrary phase geometry of Hashin (1979).

Thus, the effective glassy moduli are written as

* Vv
Krg" = Krm + ; — (A1)
+
ETg ~KTm Krm + Grm
*_ Vf
Cts =Gt T (K7n + 2G7,)Vm (42
GTg _ GTm ZGTm (Ktm + G1m).
where
! 2
> Krrkn + k
Krg = . 1”( 2 = (A3)
akn + kn) + 2K7y
- aGry (k' + &)
Gry - ~45 1t 1 b a9
a (kt + k¢ )+ ZGTf
and the long-term effective moduli are expressed as
* |4
K1" = Kgm + A —T (AS)

+
ET«. - Krm Ktm + GTm
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Vi

Cree'= G1m ] Kom + 2610Vn

- T+2@th+Gm)

where

(A6)

(A7)

(A8)

Finally, the time constants Ty and T are written in terms of the time constant, 7, of the

SLS as
i 2. -
(kn' + k) KTe 1+ m (KTeo — K1)
Ty = 1 T -
_— i+ k7 G114 1 (Greo = G1m)
G~ ] ~ —
ki Grg 1+ n (Grg— GTm)
where

M= Ktm+ Grm

= Krmt 2GTm)Vm
ZGTm (KTm+ GTm) )

APPENDIX B: FINITE ELEMENT FORMULATION FOR LINEARLY

VISCOELASTIC INTERFACE

(A9)

(A10)

(All1)

(A12)

For the case of a linearly viscoelastic interface, the time dependence of the interface

enters into the formulation, and the Principle of Virtual Work

J‘-Q o;,-&‘,-j ds2 + JS o¢p dS = J.rT"au,' ar

16
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must be discretized both in space and time. The following implementational details are
based on a solution procedure that has been discussed by Taylor, Pister and Goudreau
(1970). Writing (B1) in incremental form at time #,,; yields

J—Q AO’,‘j&E,’j dQ + J'S AT 6[u;]; dS =
J-FAT,-éu,- ar - [ J.-Q O','j5£,‘j s + J‘S T,-5[u,-]1 as — J.FT‘-&t,- ar ] n (BZ)

where (0j)n+1 = (Oi)n + (A0y)n and T4y = (T))p + (AT}),. Using (B2) as our starting
point, we now express the components T; of the interfacial traction vector in terms of the
[u;l; as follows. The standard linear solid can be viewed as being comprised of two
Maxwell elements in parallel, one of which has an infinite time constant 7. The governing

differential equation for one Maxwell element is simply expressed as
ST
Ti+ —5 = (k)i (B3)
T

where the superscript j refers to the j;; Maxwell element of the SLS. For extension at a
constant rate, [i;]; the exact solution of (B3) is

T/(t) = (Didr’ U-exp (—1 7)) (B4)

Letting (A{4;]Dn = (i) Dn+1 — (uilDn and At = 1,4 — t,,, the interfacial traction components
T; at time ¢,4 are obtained by expressing (B4) in incremental form and summing the partial
stresses. Thus

2 . )
Tnsi= 3, [ Tiexp aei 7y + kA (dn ] (BS)
J:
where
WAt = t/(1-exp (<At 1 ) )1 At . (B6)

Note that as the time constant, tj , approaches infinity, h(At) in (B6) approaches unity.
Referring back to equation (B2), we introduce standard finite element shape functions, N,
and use the arbitrariness of the variations in the nodal displacements to obtain the discrete
form

17




fte T T -~
21 [ J-_QBe D.B, df2 + sB. D.B.dS ] n+1 Ad, =
e=

Ne
y [ ‘[rz\u_,TT,,+ , dIr - Js B'T,. ds - _[QBTon iQ ] (B7)
e=

where, the vector Ad, contains the discrete nodal displacement increments and n, refers to
the number of elements in the model. The first term on the left side of (B7) contains the
symmetric gradient operator matrix B, and the plane strain constitutive matrix D,. The
second term on the left side of (B7) constitutes the interface stiffness contribution of the
interface layer, see Gosz (1989) for interface element formulation. Here, the interface
constitutive matrix D, is a 2 x 2 diagonal matrix whose components are given by

2

D=3 h(ADK,] (BS)
J:

2 )
Dy= Y h(ADk!
J=1

where k,.j and k,j are the normal and tangential stiffness parameters associated with the j;,
element of the SLS and A(Ar) is defined by (B6). Note that this entire procedure can be

easily extended for more general constitutive relations, for example, by modeling the
normal and tangential material response of the interface with a greater number of Maxwell

elements.
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Table 1. Elastic constants of the graphite/epoxy material system considered.

Es(Gpa) VA E7 (Gpa) vr Ga(Gpa) Gr(Gpa) K7 (Gpa)
Graphite fiber 232 0.279 15.0 0.490 24.0 5.03 15.0
Epoxy matrix 5.35 0.354 5.35 0.354 1.976 1.976 6.76

~0O O _0O-—
o

"‘OOCJOO_'GOO

O O 0O-

Fig. 1. Mid-CPD loading configuration for the hexagonal array composite.

N

¢ a N—] 1
6
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b

Fig. 2. Schematic of the representative cell of the hexagonal array composite.
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Fig. 3. Normalized effective transverse bulk modulus versus interface stiffness.
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Fig. 4. Normalized effective transverse shear modulus versus interface stiffness.
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Fig. 5. Normalized transverse bulk and shear moduli versus fiber volume fraction.
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Fig. 6. Comparison of relaxation model in transverse bulk and shear with the numerical results
(linearly viscoelastic interfacial zone).
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Fig. 7. Normalized hoop stress distributions in the matrix material just outside the interface
during stress relaxation.




