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Abstract

In this paper, we first discuss computational experience using the SR1 up-
date in conventional line search and trust region algorithms for unconstrained
optimization. Our experiments show that the SR1 is very competitive with
the widely used BFGS method. They also indicate two interesting features:
the final Hessian approximations produced by the SR1 method are not gener-
ally appreciably better than those produced by the BFGS, and the sequences
of steps produced by the SR1 do not usually seem to have the "uniform linear
independence” property that is assumed in some recent convergen.e analysis.
‘We present a new analysis that shows that the SR1 method with a line search
is n+1 step g-superlinearly convergent without the assumption of linearly in-
dependent iterates. This analysis assumes that the Hessian approximations
are positive definite and bounded asymptotically, which from our computa-

tional experience are reasonable assumptions.
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1. Introduction

This paper is concerned with secant (quasi-Newton) methods for finding a local minimum
of the unconstrained optimization problem
min f(zx). 1.1
min f(2) (1.1)
It will be assumed that f(r) is at least twice continuously differentiable, and that the
number of variables n is sufficiently small to permit storage of an n X n matrix, and
O(n?) or possibly O(n®) arithmetic operations per iteration.
Algorithins for solving (1.1) are iterative, and the basic framework of an iteration of
a secant method is:

Given current iterate z., f(z.), Vf(z.) or finite difference approximation, and
B. € R™*" symmetric (secant approximation to V2 f(z.)):

Select new iterate 4 by aline search or t~1st region method based on quadratic
model m(z; +d) = f(z.) + V f(zc)7d + 1dTB.d.

Update B. to B such that B, is symmetric and satisfies the secant equation
Bisc =y., wheres. =4 —z.and y. = Vf(z4) - Vf(z,).

In this paper, we consider the SR1 update for the Hessian approximation,

(yc — Bcsc)(]/c - Bcsc)T

B, = B. 1.2
N sT(ye = Bese) (1.2)
and, for purpose of comparison, the BFGS update
T T
Yels BCSCSC Bc
B, =B + . 1.3)
* ‘ vZ ye sTye (

For background on these updates and others see Fletcher [1980], Gill, Murray, and
Wright {1981]. and Dennis and Schnabel [1983].

The BFGS update has been the most commonly used secant update for many years.
It makes a symmetric. rank two change to the previous Hessian approximation B, and
if B, is positive definite and scTyc > 0, then By is positive definite.

The BFGS method has been shown by Broyden, Dennis, and Moré {1973] to be locally
q-superlinearly convergent provided that the initial Hessian approximation is sufficiently
accurate. Powell [1976] proved a global superlinear convergence result for the BFGS
method when appiied to strictly convex functions and used in conjunction with line
searches that satisfy the conditions of Wolfe {1968]. The BFGS update has been used
successfully in many production codes for unconstrained optimization.

The SR1 formula, on the other hand, makes a symmetric rank one change to the
previous Hessian approximation B.. Compared with other secant updates, the SR1 up-
date is simpler and may require less computation per iteration when unfactored forms
of updates are used. (Factored updates are those in which a decomposition of B, is
updated ai each iteration.) A basic disadvantage to the SR1 update, however, is the
fact that its denominator may be zero or nearly zero, which causes numerical instability.
A simple remedy to this problem is to set By = B, whenever this difficulty arises. but
this may prevent fast convergence. Another problem is that the SR1 update may not




preserve positive definiteness even if this is possible, i.e., when B, is positive definite and
sZyc > 0.

Fiacco and McCormick [1963] showed that if the SR1 update is applied to a positive
definite quadratic function in a line search method, then, provided that the updates are
all well defined, the solution is reached in at most n + 1 iterations. Furthermore, if n 41
iterations are required, then the final Hessian approximation is the actual Hessian at the
solution. This result is not true, in general, for the BFGS update or other members of
the Broyden family, unless exact line searches are used.

For nonquadratic functions, however, convergence of the SR 1 is not as well understood
as convergence of the BFGS method. In fact, Broyden, Dennis, and Moré [1973] have
shown that under their assumptions the SR1 update can be undefined, and thus their
convergance analyvsis can not be cpplicd i Uas case. Also, no global convergence result
similar to that for the BFGS method given by Powell [1976] exists, so far, for the SR1
method when applied to a non-quadratic function.

Recent work by Conn, Gould, and Toint [1988a, 1988b, 1991] has sparked renewed
interest in the SR1 update. Conn, Gould, and Toint [1991] proved that the sequence of
matrices generated by the SR1 formula converges to the actual Hessian at the solution
V2f(r.), provided that the steps taken are uniformly linearly independent, that the SR1
update denominator is always sufficiently different from zero, and that the iterates con-
verge to a finite limit. (Using this result it is simple to prove that the rate of convergence
is ¢-superlinear.) On the other hand, for the BEGS method Ge and Powell [1983] proved,
under a different set of assumptions, that the sequence of generated matrices converges
but not necessarily to V2 f(z.).

The numerical experiments of Conn, Gould, and Toint [1988b] indicate that minimiza-
tion algorithms based on the SR1 update may be competitive computationally with meth-
ods using the BFGS formula. The algorithm used by Conn, Gould, and Toint {1988b] is
designed to solve problems with simple bound constraints,ie, ; < z; < u;, 1=1,2,...,n.
The bound constraints are incorporated into a box constrained trust region strategy for
calculating global steps, in which an inexact Newton’s method oriented towards large
scale problems is used. This method uses a conjugate gradient method to approximately
solve the trust region problem at each iteration. and also incorporates a new procedure
that allows the set of active bound constraints to change substantially at each iteration.
In this context, Conn, Gould, and Toint [1988b] conclude that the SR1 performance is, in
general, somewhat better than the BFGS in terms of iterations and function evaluations
on their test prokblems. They point out that the use of a trust region removes a main
disadvantage of SR1 methods by allowing a meaningful step to be taken even when the
approximation is indefinite. They also point out that the skipping technique used when
the SR1 denominator is nearly zero was almost never used in their tests. They attribute
part of the success of the SR1 to the possible convergence of the updates to the true
second derivatives as discussed above. In Conn, Gould, and Toint [1991], they tested
this convergence using random search directions. These tests showed that, in comparison
with other updates such as the BFGS, the DFP, or the PSB. the SR1 generates more
accurate Hessian approximations.

The purpose of this paper is to better understand the computational and theoretical
properties of the SR1 update in the context of basic line search and trust region methods
for uneonstrained optimization. In the next section. we present computational results we
obtained for the SR1 and the BFGS methods using standard line <earch and trust region
algorithms for <mall to medinum sized unconstrained optimization problems. We also




report on tests of the convergence of the sequence of Hessian approximation matrices,
{Bk}. generated by the SR1 and BFGS formulas, and of the condition of uniform linear
independence of the sequence of steps which is required by the theory of Conn, Gould,
and Toint [1991]. These results indicate that this assumption may not be satisfied for
many problems. Therefore in Section 3, we prove a new convergence result without the
assumption of uniform linear independence of steps. Instead, it requires the assumption
of boundedness and positive definiteness of the Hessian approximation. In Section 4,
we present computational results regarding the positive definiteness of the SR1 update,
and an interesting example. Finally, in Section 5 we make some brief conclusions and
comments regarding future research.

2. Computational Results and Algorithms

In this section, we present and discuss some numerical experiments that were conducted
in order to test the performance of secant methods for unconstrained optimization using
the SR1 formula against ilwse using the BFGS update.

The algorithms we used are from the UNCMIN unconstrained optimization software
package (Schnabel, Koontz, and Weiss [1985]) which provides the options of both line
search and trust region strategies for calculating global steps. The line search is based on
backtracking, using quadratic or cubic modeling of f(z) in the direction of search, and the
trust region step is determined using the “hook step” method to approximately minimize
the quadratic model within the trust region. The frameworks of these algorithms are
given below.

Algorithm 2.1 Quasi-Newton method (Line Search)

Step 0 Given an initial point zo, an initial positive definite matrix Bp, and a = 1074, set
k (iteration number)= 0.

Step 1 If a convergence criterion is achieved, then stop.

Step 2 Compute a quasi-Newton direction

pe = —(Bi + pid) 7' f(z1)

where u; is a nonnegative scalar such that px = 0 if By is safely positive definite,
else py > 0 is such that By + 1 is safely positive definite.

Step 3 {Using a backtracking line search, find an acceptable steplength.}

(3-1) Set A\ = 1.

(3.2) If f(rigr) < f(xr) + aXe N f(2i)T pi, then go to Step 4.

(3.3) If first backtrack, then select the new Ay such that zx4q(Ax) is the local min-
imizer of the one-dimensional quadratic interpolating f(zi), V f(zx)7 ps, and
f(z + pi) but constrain the new A; to be > 0.1, else select the new A such
that rea1(Ag) is the local minimizer of the one-dimensional cubic interpolating

S(2e)e N f(xe) pey f(2hat(Nprev)), and f(zrs1(A2prey)) but constrain the new
Ak to bein (0150, 0.3, ).

((Tipt(A)=ri+ Ap, and A, Agprpy = previous two steplengths.)
(3.1) Goto (3.2).




Step 4 Set ziqy = zx + APk
Step 3 Compnte the next Ilessian approximation Byy;.

Step 6 Set £ =k + 1, and go to Step 1.

Algorithm 2.2 Quasi-Newton method (Trust Region)

Step 0 Given an initial point rg, an initial positive definite matrix Bp, an initial trust
region radius Ng, i € (0,1) and 7, > 1, set & = 0.

Step 1 If a convergence criterion is achieved, then stop.

Step 2 If By is not positive definite set By = Bj+ pi I where py is such that B, = B + il
is safely positive definite, else set B, = By.

Step 3 {Compute trust region step by hook step approximation.}
Find an approximate solution to

3

. 1 72
min Viz) s+ §sTBks subject to ||s]] < Ag
L=

by selecting
sk = —(Br + v )7V f(z4), v 2 0
such that |[sk|| € [0.75A%, 1.5A], or
sk = =BV f(z),
if | BV f(z)ll € 1534k
Step 4 Set aredx = f(zk + sx) — f(zk).
Step 5 If ared; < 1074V f(2x)7 5%, then

(5.1) set zrq1 = Tk + Sk;
(5.2) calculate predy = V f(z) sk + %s{Bksk;

ared; ared;

(5.3) if Sred, < 0.1, then set Appy = Ag/2, else if pred,

22, otherwise Ay = Ay

> 0.75, then set Agyy =

(5.1) go to Step T;
Step 6 else

(6.1) if relative steplength is too small, then stop; else calculate the Ay for which
Ti + Mise is the minimizer of the one-dimensional quadratic interpolating
flze). flzi + sk), and V f(zx)T sk; set new Ay = Akllskl], but constrain new
A to he between 0.1 and 0.5 times current Ag.

(6.2) go to Step 3.
Step 7 Compute the next Iessian approximation. Byy;.

Step 8 Set A =k + 1. and go to Step 1.

by )




Procedures for updating Ag in Step 3 of the line search algorithm are found in Algo-
rithm A6.3.1 of Dennis and Schnabel [1983]. While a steplength A; > 1 is not considered
in the reported results, in our experience permitting A; > 1 makes very little difference
on these test problems. Procedures for finding v in Step 3 of the trust region algorithm
are found in Algorithm A6.4.2 of Dennis and Schnabel [1983], and are based on Heb-
den [1973] and Moré (1977]. In both algorithms, the procedure for selecting ux in Step
2 is found in Gill, Murray, and Wright [1981]. (They give an algorithm for finding 2
diagonal matrix D, such that By + D is safely positive definite. If D = 0, then yu is set
to 0, else an upper bound b; on py is calculated using the Gerschgorin circle theorem,
and pi is set to min{by,b,} where b2 = max{[D];;,1 < i < n}.) In our experience, when
By is indefinite, pi is quite close to the most negative eigenvalue of By, so that the
algorithm usually finds an approximate minimizer of the quadratic model subject to the
trust region constraint.

Both algorithms terminate if one of the following stopping criteria is met.

(1) The number of iterations exceeds a given upper limit.

max{|[zx41)i], 1}
max{|f(zx+1)[,1}

(2) The relative gradient, max {|[Vf(xk)]i|

gradient tolerance.

}, is less than a given

{nl&Y{][Ik+1]i = [z«]i]}

3} The relative step, max
® P max{[[zxs 1.1}

ma; }, is less than a given step toler-
_x_n.

ance.

A'l the algorithms used By = 1.

2.1. Comparison of the SR1 and the BFGS Methods

Using the above outlined algorithms, we tested the SR1 method and the BFGS method
on a variety of test problenis selected from Moré, Garbow, and Hillstrom [1981] and from
Conn, Gould, and Toint [1988b] (see Table Al in the appendix.) First derivatives were
approximated using finite differences. The gradient stopping tolerance used was 1073,
and the step tolerance was (machine epsilon)!/2, The upper bound used on the number
of iterations was 500. As done in Conn, Gould, and Toint [1988b], we skipped the SR1
update if either
|s& (yx = Bisi)] < rllsillllye — Bisill,

where r = 107%, or if ||Bxy1 — Bkl > 10%. The BFGS update was skipped if s?y <
(machine epsilon)!/2)|skll||yx||. All experiments were run using double precision arith-
metic on a Pyramid P90 computer that has a machine epsilon of order 10~16,

For each test function, Tables A2 and A3 in the appendix report the performance
of the SR1 and BFGS methads using line search and trust region respectively. The
tables contain the number of the function as given in the original source (see Table A1),
the dimension of the problem (n), the number of iterations required to solve the problem
(itrn.). the number of function evaluations, (f-eval.), required to solve the problem (which
includes n for each finite difference gradient evaluation), and the relative gradient at the
solution (rgx). The last column (sp) indicates whether the starting point used is zg.
10zy, or 100r,, where zg is the standard starting point.

[ order to compare the performance of the two methods with respect to the number
of iterations and the number of function evaluations required to soive these problems.
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we consider problems solved by both metiods and calculate the ratio of the mean of the
number of iterations {or function evaluations) required to solve these problems by the
SR1 method to the corresponding mean for the BFGS method. Table 1 below reports the
ratios of these means, using both arithmetic mean and geometric mean. These numbers
indicate that on the set of test problems we used, the SR1 is 10% to 15% faster and
cheaper than the BFGS method.

Table 2 gives the numbver of problems where the SR1 method requires at least 5, 10,
20, 30, 40, 30 iterations less than the BFGS method, and vice versa. This table, which
is based on numbers from Table A2, also indicates the superiority of the SR1 on these
problems.

Table 1: Ratio of SR1 Cost to BEGS Cost

Mean Line Search Trust Region

Itrn. | Function Evaluations | Itrn. | Function Evaluatiors
Arithmetic | 0.82 - 083 0.84 0.]8
Geometric | 0.83 0.85 0.84 0.92

Table 2: Comparisons of Iterations

Line Search Trust Region
[terations Different | 5 [ 101203040 30| 5 | 10|20} 30| 401 50
SR1 Better 2612011310} 7 | 3 |27(20(11} 9|35 |1
BI'GS Better T3 2|2 1 1 816 1| 3 1 1

2.2. Error in the Hessian Approximation and Uniform Linear Independence

In an attempt to understand the difference between the SR1 and the BFGS, we tested
how closely the final Hessian approximations produced by the line search and trust region
SR1 and BFGS algorithms come to the exact Hessians at the final iterates. Recall that
the Hessian error for the SR1 is analyzed by Conn, Gould, and Toint {1991] under the
assumption of uniform linear independence which we redefine here.

Definition A sequence of vectors {s¢} in R™ is said to be uniformly lincarly independent
if there exist ¢ > 0, ko and m > n such that, for each k& > kg, one can choose n distinct
indices k < ky < ... < kn £k + m such that the minimum singular value of the matrix

Sk = [ /llsky Il osea/llskall] is 2 €
Using this definition, Theorem 2 of Conn, Gould, and Toint {1991] proves the follow-

ing.

Theorem 2.1 (Conn, Gould, and Toint [1991]) Suppose that f(z) is twice continuously
differentiable everywhere, and that $2 f(r) is bounded and Lipschitz continuous, that is,
there exist constants M > 0 and v > 0 such that forall r,y € R™,

N2 A < M oand [[T2F00 - YA € iz -yl




Let rp4y1 = 4 + sk, where {s} is a uniformly linearly independent sequence of steps,
and suppose that Llim {zx} = z. for some z.eR™. Let {B;} be generated by the SR1
¢ — 00

formula -
(Yi — Brse)(yx — Brsk)

s¥(yx — Bisk)

where By is symmetric, and suppose that Vk > 0, yx and si satisfy

Biy1 = Bk +

b

[£ (o = Brsil 2 rllsilllly = Bl (2.1)
for some fixed r € (0,1). Then klim 1By — VEf(z.))| = 0.

e now present some computational tests to determine to what extent such Hessian
convergence occurs in practice. For these tests we used analytic gradients and a gradient
stopping tolerance of 10712 and computed the quantity

1Bt = V2 f(@)ll/IV (20,

where r; is the solution obtained by the algorithm, and By is the Hessian approximation
at r;. These results are reported in Tables A4 and A5 in the appendix and summarized
in Tables 3 and 4 below. Tables 3 and 4 list for each method, the number of problems
for which ||B; — V2 f(z)I/IIV2f(z1)|] Lies in a given range.

Table 3: Number of Problems with || B; — V2 f(2)|}/||V2f(z))]| in Indicated Range (Line
Search Methods)

<107 | [107%,107°) | {1073,10"2) [ [10-%,10- D) (10, ) [ > 1
SR1 4 3 2 8 3] 8
{ BIG3 o | 0 L 10 6] 8

Table 4: Number of Problems with [[B;— V2 f(z))|l/[IV2f(«0)}] in Lidicated Range {Trust
Region Methods)

<107t [ 1074107 T (1073, 1073 [ [10-Z,10°) 10", ) [ > 1
SR1i 5] 0 4 5 4 10
BFGS | 0 0 5 7 7 9

While the SR1 scems to produce slightly better final approximations than the BFGS.
there is no evidence from these tables that it significantly outperforms the BFGS with
respect to convergence to the actual Hessian at the solution. Also. in a good number of
cases, neither method comes close to the correct Iessian.

The lack of convergence of the SR1 Hessian approximations to the correct value in
many of these problems may appear to conflict with the analysis of Conn, Gould and
Toint [1991] given in Theorem 2.1. In fact, there are two possible explanations for
this apparent contlict: either the algoritlin has not converged closely enongh for the
final convergence of the matrices to be apparent { thi- i+ hard to test in finite prciision




arithmetic) or an assumption of Theorem 2.1 must be violated. The two assumptions of
Thieorem 2.1 that could possibly be invalid are that the denominator of the SR is not
too small {2.1). and the uniform linear independence condition. In onr experiments, (2.1)
was violated at most once for each test problem, and so this assumption does not appear
to be a problem in the SR! method. Thus, we decided to test whether the uniform linear
independence condition is satisfied for these problems.

Since the uniform lincar independence condition would be very hard to test due to
the freedom to chuose m and 7, we have tested a weaker condition. For each value
r=10"'i=1,2,....8, we computed the number of steps (say m) required so that the
smallest singular value of the matrix, Sm. composed of the final normalized m steps of the
aleorithm. is > 7 (S, = (so/llsdllssica/llsically - o Sicgmeny /1S (m~1)], where m > n).
Tables A6 and AT contain the results of these experiments, which are summarized in
Tables 3 and 6 below. A =*” entry in Tables A6 and A7 means that the smallest singuiar
vilue is < r even if all the iterates are used.

These results indicate that the uniform linear independence assumption does not seem
to hold for all problems, especially those with large dimensions. Therefore in the next
section we develop a convergence result for the SR1 method that does not make this
assnmption.

Table 5: Number of Problems where om0 (9.,) > 7 for m/n in Indicated Range. - Line
Search SR1 Method

m/n in
7 L2y 2.0 B-4)T -5 ][5-10)] Never
10-1 7 1 3 3] 6 8
- 12 1 0 3 5 il
1078 ] 12 1 0 4 4 7]

Table 6: Number of Problems where 0,30 (S, ) > 7 for m/n in Indicated Range. - Trust

Region SR1 Method

T TWIZ m—
T L2y Ry iB-HTH=-5)][5-10) | Never
1071 ! 3 0| 3! 6 12
1072 12 1 0 31 5 T
1078 13 0 0 3 5 T

3. Convergence Rate of the SR1 Without Uniform Linear Indepen-
dence

As was indicated at the end of the previous section, the condition of uniform linear
independence of the sequence {s¢} under which Conn, Gould. and Toint [1991] analvze
the performance of the SRI method may be too strong in practice. Therefore in this
section we consider the convergenee rate of the SR1 method without this condition. We
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will show tha: it we drop the condition of uniform linear independence of {si} but add
instead the assumption that the sequence {3} remains positive definite and bounded.
thon he line search Algorithm 2.1 generates at least p g-superlinear steps out of every
n & psteps. This will enable us to prove that convergence is 2n-step ¢-quadratic.

The basic idea behind our proof is that, if any step falls close enough to a subspace
spauned by m < n recent steps, then the Hesslan approximation must be quite accurate
in this subspace. Thus. if in addition the step is the full secant step —-B;lVf(r,;.). it
should be a superlinear step. But in a line search method, for the step to be the full
secant step. By must be positive definite, which accounts for the new assumption of
positive definiteness of By at the good steps. In Section 4 we will show that empirically
this assumption seems very sound. although counterexamples are possible.

Throughout this section the following assumptions will frequently be made:
Assumptions

5.1 The function f has a local minimizer at a point r. such that V2 f(z.) is positive
definite, and its Hessian ©2 f(z) is Lipschitz continuous near z., that is, there exists
a coustant v > 0 such that for all r,y in some neighborhood of r.,

WS () = S2Fl < )l =yl

3.2 The sequence {r;} converges to the local minimizer z..

Weo fizst state the following result. due to Conn, Gould, and Toint [1991]. which does not
assume lincar independence of the step directions and which will be used in the proof of
the next lemma.

Lemma 3.1 Let {r:} be a sequence of iterates defined by zi41 = 24 + k. Suppose that
Assumptions 3.1 and 3.2 hold. that the sequence of 1hatrices { By} is generated from {z4}
hv the SR1 update, and that for each iteration

T = Bisi)l 2 rllsellllye — Besel (3.1)

where ris a constant € (0.1). Then. for each J. ||y, — B,4+1s,/| = 0. and

. e e
ll«'/J - Hts;il < = (“ + 1) 771.1”31” (3.2)
r\r
for all ¢ > j + 2, where n,, = max{|lz, — z,]| | J £ s € p < i}. and 7 is the Lipschitz
constant from Assumption 3.1.

Actually. it is apparent from the proof of Lemma 3.1 by Conn, Gould, and Toint
that, if the update is skipped whenever (3.1) is violated. then {3.2) stili holds for all J
for whiclo (3.1 45 true.

[n the lemma below, we show that if the sequence of steps generated by an iterative
process using the SRU update satisfies (3.1). and the sequence of matrices is bounded,
then ont of any set of n 4 1 steps. at least one is very good. As in the previons lemma.
condition 130y actnally needs only hold ar this set of n + 1 steps, as long as the update

1= not moade when that condition fails.




Lemma 3.2 Suppose the assumptions of Lemma 3.1 are satisfied for the sequences {4}
and {8,} aud that in addition there exists M for which || Bx|| € M for all . Then there
exists A > 0 such that for any set of n + 1 steps § = {sg, : K’ < by < -++ < kpyq} there
exists an index b, with m e {2,3,...,n 4+ 1} such that

(B = V3 f(2 )50 l] < &
skl l
where
es = max {llzx, -z}
and

- /o knpr—ki—2
c=1 [7 + V- <1 + 1) + M+ !IVQf(I-)lI} -

r r

Proof. Given &, for j =1,2,...,n+ 1 define

S. = Sky Sky Sk,
T sk i s

We will first show that 3m € [2,n + 1] such that sg, /|lsk.ll = Smo1v — w, Sy has
fiuil column rank and is well conditioned, and ||w|| is very small. (In essence either
m =n+1.8,_, spans n-space well, and w = 0, or m < n+ 1, Sr_; has full rank and
is well conditioned, and si,, is nearly in the space spanned by S,,-;.) Then, using the
fact that (B, — V2 f(£.))Sm_y is small due to the Hessian approximating properties of
the SRI update given in Lemma 3.1 above, and that w is small by this construction, we
will have the desired resuit.

For j € {1....,n}, let 7; be the smallest singular value of §; and define 4 = 0.
Note that

1l=m7 ZT‘Z-'-ZTVH-I =0

Let m be the smallest integer for which

Tm 1/n

< 65 . (33)

Tm-1

Then since m < n+1and 7 = 1.

_ b Tm~1
Trm—-1 = 7 ol I W
"1 m—2

> 6‘(sm—Z)/n
> el (3.4)
Sinen ry = .. we may assume without loss of generality that es € (0.(})") for all
A, Now we choose € 7™ such that
[Smzll = mll=ll. {3.3)

atil




where u € R™~!. (The last component of z is nonzero due to (3.3).) Let w = S 2. Then,
from the definition of §,, and z,

Skum
Il skl

Since 7,,_1 is the smallest singular value of §,,—1 we have that

1

Tm—1

= Sm._lu - w. (36)

]

IN

| Sm-1u]

1 Sk
= lw + —=l
Tm-1 l$km

Jwll+ 1

Tm-1

IA

By (3.4) this implies that

[lwll +1

full < p=e
s

(3.8)

Also, using (3.5) and (3.7), we have that
el = [1Smzll?
2
= Toll=l

= Th(1+ )

2
< o () e+ 0y

Tm~1
Therefore, since (3.3) implies that 7, < e;/n, using (3.3),
ol < ™+ ()l + 1)?
< 4wl + D (3.9)

This implies that
lell(r - 26§™) < 26"
and hence, |luj] < 1, since €s < (3)". Therefore, (3.8) and (3.9) imply that
(3.10)

_2
6(S'n.—l)/'n.

[u]] <
lJwl < 4es/™. (3.11)

This gives the desired result that w is small, as well as a necessary bound on |Jul].
Now we show that ||(Bg, — V2f(2N)S;-1lly 7 € [2,n + 1], is small. Note that this
result is independent of the choice of j. By Lemma 3.1 we have that

e k,~i=2
= Besl < 2(240)7T m s
2 kvl+1"'l"l—2
< 2X(T+1) eslhsil (3.12)
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for all i € {ky,k2,...,k,_1}. Also, letting

1
Gi = / T2 f(z; + tsi)dt,
0

we have
Gis; = /01 sz(z,- + ts;)s;dt
= Vf(zit1) = Vf(z:)
= ¥,
and by the Lipschitz continuity of V2 f(z),
lye = V2f(z)sill = (G = V2 f(z2))sil

1
= | /0 (V2f(z: +1s;) = V2 f(2.))sidt]

1
< sl [ IV2 Gt ts0) = Vo)t
1
< llsdl [ e+ tsi - 2l
< llsidles, (3.13)

where v is the Lipschitz constant. Therefore, using the triangle inequality, and (3.12)
and (3.13) we have

ll(Br, - sz(z-))ﬂz—i“ll

l(y: = Bx,)
(2¢ + 7v)es,

s '“II (y: — Vf(z. ))” ”H

IN

7 k"+1 ‘k] 2
where ¢ = = (r + 1) , and hence for any j € [2,n + 1]

I(Br, = V2 f(z.))Si-1ll < vn(2c+ 7)es. (3.14)
Finally, using (3.6), (3.14) witt ' = m, (3.11) and (3.10) we have that

(Bip = V2 f(2))(Sm-ru = w)|

|Er.
< Bk — V2 f(22))Sm-1lll]ull
+ || Bk = V2 f(z I l]
< ”Ul|\/’_(°c + 7)es + [[wll(| Bl + 152 f(z)I])

< ( T >\/—(2c+‘7)fa

S
+ 4"+ I (2ol

< 4 [Viate+ )+ 2+ |9 ()l

_1/n
= Cfs D

In order to use this lemma to establish a rate of convergence we need the following
result which is closely related to the well-known superlinear convergence characterization
of Derais and Moré [1971].




Lemma 3.3 Suppose the function f satisfies Assumption 3.1. If the quantities ey =
(B = V2 f(z))skl

llsl

|z = z.|| and are sufficiently small, and if Bysi = —V f(z), then

s poy-1y [ lBe= S EDsill
ik + 55 = 2]l < 192207 [z e, o 5&] -

Proof. By the definition of s
V3 f(z)se = (VEf(2.) = Bi)si — V (i)
so that
sk = —(zi=a0)+ T f(2) 7 (V2 f(22) = Bi)sk - Vf(ax) + V(2 )2k — 2.)] . (3.15)
Therefore, using Taylor’s theorem and Assumption 3.1,

ok — 2+ sill S V2 f(z)7 [H(V"’f(z-) ~ Bosill + gk] . (3.16)

Now it follows from (3.15) that if ||VZf(z.) H|1(Bx — V2f(z.))skl|/llskll < 3 then by
Taylor’s theorem,

llsell <

W

2k = 22l + 197 £(2) I lize = 2l?] < 21z — 2.

if ex is sufficiently small. Using this inequality together with (3.16) gives the result.

Using these two lemmas one can show that for any p > n, Algorithm 2.1 will generate
at least p — n superlinear steps every p iterations provided that By is safely positive
definite, which implies that By is not perturbed in Step 2 and yt = 0. In the following
theorem, this is proved and used to establish a rate of convergence for Algorithm 2.1
under the assumption that the sequence {B;} becomes, and stays, positive definite. In
a corollary we show that this implies that the rate of convergence for Algorithm 2.1 is
2n-step g-quadratic. As we will see in the next section, our test results show that the
positive definiteness condition is generally satisfied in practice. We are assuming here
that if By is positive definite, then it is not perturbed in Step 2, i.e., we are assuming
that “safely positive definite” just means positive definite.

Theorem 3.1 Consider Algorithm 2.1 and suppose that Assumptions 3.1 and 3.2 hold.
Assume also that for all & > 0,

IsT(yk = Bisk)l > rllsellllye — Brsill,

for a fixed r € (0.1), and that 3 for which || Bi]| < M Vk. Then, if 3K such that By
is positive definite for all k > R'g, then for any p > n + 1 there exists K’y such that for
all £ > Iy,

errp < aell™ (3.17)

where a is a constant and ¢ is defined as [|r; - z.|].

J
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Proof. Since V? f(z.) is positive definite, there exists Ay, 8, > 0 and 32 > 0 such that

Bilf(2x) = f]F < llak = 2.1l < Balf(2x) = f(=2)]2 (3.18)
for all k > k). Therefore, since we have a descent method, forall{ > k > K}, ||[z;-1.]| <
éﬁ”u — z.||. Now, given & > L, we apply Lemma 3.2 to the set {sk,Sk41,.-.)Sk+n}-
Tims, there exists [y € {k+ 1,...,k 4+ n} such that

(B, = V2 f(zNsull _ E(Qz_ek)‘/"_
llsi I B

(If there is more than one such index !;, we choose the smallest.) Equation (3.19) implies
that for ||z;, —z.|| sufficiently small, by Theorem 6.4 of Dennis and Moré [1977], Algorithm
2.1 will choose A, = 1 so that z;,4; = 2, + s;;. This fact, together with Lemma 3.3 and
(3.19), implies that if e is sufficiently small then

(3.19)

e 41 < aer/"ey, (3.20)
for some constant &. Now we can apply Lemma 3.2 to the set

{SksSk41,- - -,Sk+n,3k+n+1} - {311}

to get ;. Repeating this n — p times we get a set of integers [, < Iy < ... < [,_,, with
Iy > kand l[,_, < k + p such that

er41 < Gell ey, (3.21)
for each I;. Now letting h; = [f(z;) - f(a:.)]%, since we have a descent method,

and using (3.18) we have that for our arbitrary k£ > K,

hiy1 < 'B‘l‘el.+1
< =g,
1
Y
< ZZ2e/mn, (3.23)
B

for i = 1.2,...,p — n. Therefore using (3.22) and (3.23) we have that
., p—n
hiyp < (a—szez/n) hy
61
which, by (3.18) implies that

B2 (635 1/n)\P"
€kyp S E_f- (,5—1261/ ) €.

Therefore.

- 1
pen (32\PTF
Ck+p S apP™n (; ez/nw
71

and 3.17 follows. 4
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Corollary 3.1 Under the assumptions of Theorem 3.1 the sequence {xx} generated by
Algorithm 2.1 is n + 1-step g-superlinear, i.e.,

Ek+n+l 0
ex '
and is 2n-step g-quadratic, i.e.,

. e
lim sup k+22n <oc

k—oc €L

Proof. Let p=n+1, and p = 2n in Theorem 3.1. 5

1
Note that a 2n-step ¢ quadratically convergent sequence has an r order of (\/?) ".
Since the integer p in the theorem is arbitrary, an interesting, purely theoretical question
is what value of p will prove the highest r-convergence order for the sequence. It is not
hz}rd to sholw that, by choosing p to be an integer close to en, the r order approaches
e=n = 1.14n for n sufficiently large, and that this value is optimal for this technique of
analysis.

4. Positive Definiteness of the SR1 Update

One of the requirements in Theorem 3.1 for the rate of convergence to be p-step g¢-
superlinear, is that the sequence { B} generated by the SR1 method be positive definite.
Actually, the proof of Theorem 3.1 only requires positive definiteness of By at the p—n
out of p "good iterations.” In this section, we present computational results to confirm
that in practice, the SR1 method generally satisfies this requirement.

In Table A8 in the appendix, in the fourth column, we report for each iteration
whether By is positive definite or not. The 5th column reports the percentage of iterates
at which the SR1 update is positive definite, and the 6th column contains the largest
number j for which all of Bi_(j-1). .., Bi are positive definite, where B is the Hessian
approximation at the final iterate. The results of Table A8 are summarized in Table 4,
which indicates that the SR1 formula was positive definite at least 70% of the time
on every one of our test problems. In light of this, and since Theorem 3.1 really only
requires positive definiteness at the “good steps™ (at other steps all that is needed is that
f be reduced), chances that superlinear steps will be taken at least every n steps by the
algorithm seem good. Another way of viewing this is that, we know from Theorem 3.1
that out of everv 2n steps, at least n will Le "good steps” so long as By, is positive definite
at these iterations. Thus, if for example By is positive definite at 80% of these 2n steps,
at least 30% of the 2n iterates must be "good steps.”

Table 7: Percentage of Iterations with By Positive Definite
% <70 | [70,90) | [80,90) | [90,100) | 100
problems 0 3 12 6 5

We also tested the denominator condition that

|sE (g = Brswd) 2 rllsellllye ~ Brsel] (+.1)
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where r = 107% using standard initial points. The last column in Table A8, which reports
the number of times this condition was violated, indicates that this condition rarely is
violated in practice. This finding is consistent with the results of Conn, Gould, and
Toint [1988b].

Finally we present an example that shows that it is possible for a line search SR1
algorithm to fail to have By positive definite at all iterations, and to converge linearly to
the minimizer z.. This shows that the assumptions of Theorem 3.1 cannot be guaranteed
to hold. We then consider the same example in a trust region SR1 algorithm, and show
that it does not suffer from the same problems. This leads us to feel that it may not be
necessary to assume { By} positive definite in order to prove superlinear convergence for
a trust region SR1 method.

Example 4.1 Let

f(»r)_é-a: T, zo_{o],andl}o—{o 0]

where o < 0. At the first iteration, the algorithm will compute

-1
_ 1+é 0 , &

for some &g > —o, and accept this point as the next iterate. The SR1 update will produce
Yo — Bosg = 0, so that B; = Bp. The remaining iterates proceed analogously, so that for
each k, By = Bp and

bk
Tkl = T
* 146 °
for some 6 > —o, meaning that the rate of convergence is no better than linear with
constant .
1+ |o|

It is interesting to consider the behavior on the same problem of a trust region SR1
algorithm that exactly solves the problem

1
rgii{n Vf(zx)Ts + ;z—sTBks subject to [|s]] < Ak (4+.2)
s n

at each iteration. If there exists uo such that By + pol is positive definite and ||(Bo +
ol )"V f(z0)|l = Ao, then as in the line search method, z; = 1+0# zo and By = By.

0

Since aredp =predp, the trust region radius is not decreased. Thus eventually at some
iterate k. we must have ||(Bx + pxI) 7'V f(zi)l| < Ak for all ux > — A, where Ap < 0 is
the smallest eigenvalue of By. In this case the solution to (4.2) is the step

Tipr = Tk — (B = MI)TV f(zi) — ve,

1
= xk—( )rk—uez
1-0

for a v # 0 that makes ||sk]] = A. (Here e; = (0,1)7 is the eigenvector of By
corresponding to the negative eigenvalue.) It is then straightforward to verify that
Ye = Besg = v(o = D)ea. By = 1 = VEif(x) and Tppg = I,
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A practical trust region algorithm will not solve (-1.2) exactly, but any algorithm that
deals with the "hard case” (when ||(Bx — M )YV f(zi)|l < Ag) well, such as algorithms
of Moré and Sorenson [1982], will have the same effect. That is, at some point it will set

Zee1 = Tk = (B + D)7V fak) — v

where vy is a negative curvature direction for By. This implies that vgeg # 0, which in
turn leads to Biyy = I and zg4e = z.. Thus the trust region method has the ability,
for this example, to correct negative eigenvalues in the Hessian approximation. This
indicates that it may be possible to establish superlinear convergence of a trust region
SR1 algorithm without assuming a priori either strong linear independence of the iterates
or positive definiteness of { B;}. This issue is currently under investigation.

5. Conclusions and Future Research

We have attempted, in this paper, to investigate theoretical and numerical aspects of
quasi-Newton methods that are based on the SR1 formula for the Hessian approximation.
We considered both line search and trust region algorithms.

We tested the SR1 method on a fairly large number of standard test problems from
Moré, Garbow, and Hillstorm [1981], and Conn, Gould, and Toint {1988b]. Our test
results show that on the set of problems we tried, the SR1 method, on the average,
requires somewhat fewer iterations and function evaluations than the BFGS method
in both line search and trust region algorithms. Although there is no result for the
BFGS method concerning the convergence of the sequence of approximating matrices to
the correct Hessian like the one given by Conn, Gould, and Toint [1991] for the SR1,
numerical tests do not show that the SR1 method is more accurate than the BFGS
method in this regard. One reason for this, as indicated by our numerical experiments,
is that the requirement of uniform linear independence that is needed by the theory of
Conn, Gould, and Toint [1991] often fails to be satisfied in practice.

Under conditions that do not assume uniform linear independence of the generated
steps, but do assume positive definiteness and boundedness of the Hessian approxima-
tions, we were able to prove n + 1-step g-superlinear convergence, and 2n step quadratic
convergence, of a line search SR1 method. We also gave numerical evidence that the SR1
update is positive definite most of the time, and that one of the potential problems of
the formula, that of the denominator being zero, is rarely encountered in practice.

An interesting topic for future research that was mentioned in Section 4 is the con-
vergence analysis of a trust region SR1 method, again without the assumption of uniform
linear independence of steps. It is possible that the assumption of the positive definite-
ness of the Hessian approximations, which we showed is necessary and sufficient to prove
superlinear convergence in the line search SR1 method, may not be necessary to prove
superlinear convergence for a properly chosen trust region SR1 algorithm.
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Apnendix

Table Al: List of Test Functions Numbers and Names.

Number

MGHO05
MGHO7
MGHO09
MGHI12
MGHI14
MGH16
MGH18
MGIH?20
MGH?21
MGH?22
MGH23
MGH2¢
MGH25
MGH26
MGH33
CGTot
CGTo02
CGTo4
CGTO05
CGTo7
CGTO08
CGT10
CGT11
CGT12
CGT14

CGT16
CGTI17
CGT21

Dimension

DOEE D00 O R WWWNN

CECRT
PSS

8
30
30
30
30

30
8
30

Name

Beale Function.

Helical Valley Function.

Gaussian Function.

Box 3-Dimensional Function.

Wood Function.

Brown and Dennis Function.

Biggs Exp6 Function.

Watson Function.

Extended Rosenbrock Function.

Extended Powell Singular Function.

Penalty Function I.

Penalty Function II.

Variably Dimensioned Function.
Trigonometric Function.

Chebyquad Function.

Generalized Rosenbrock Function.

Chained Rosenbrock Function.

Generalized Singular Function.

Chained Singular Function.

Generalized Wood Function.

Chained Wood Function.

A Generalized Broyden Tridiagonal Function.
Another Generalized Brovden Tridiagonal Function.
Generalized Broyden Banded Function.
Toint’s 7-diagonal generalization of Broyden Tri-
diagonal Function (see Toint 1978).
Trigonometric Function (Toint, 1978).

A Generalized Cragg and Levy Function.

A Generalized Brown Function.

MGH: problems from Moré, Garbow, and Hillstrom [1981].
CGT: problems from Conn, Gould, and Toint [1987].
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Table A2

: Iterations and Function

Evaluations - Line Search

Function | n BEFGS SR1 sp
itrn. | f-eval rgx itrn. | f-eval IgX
MGHO5 | 2 | 16 58 | 0.7E-06 | 14 52 | 0.1E-05| 1
MGHO7 | 3 | 26 141 | 0.4E-05 | 30 142 { 04E-06 | 1
MGH09 | 3 5 3+ | 0.3E-05| 3 26 | 0.2E-07 | 1
MGH12 | 3 | 35 157 | 0.5E-06 | 21 99 | 0.6E-06 | 1
MGHI4 | 4 | 32 186 | 0.7E-05 | 26 160 | 0.5E-05| 1
MGH16 | 4 | 31 183 | 0.1E-05 | 21 133 | 0.3E-07 | 1
MGHI18 | 6 | 43 336 | 0.2E-05| 37 302 | 0.6E-00 | 1
MGH20 | 9 | 95 | 1020 | 0.2E-05 | 46 532 | 0.8E-05! 1
MGH21 |10 34 461 | 0.9E-05| 34 462 | 0.3E-05 | 1
MGH22 | 8 | 45 464 | 0.7E-05 | 36 382 | 04E-05 | 1
MGH23 |10} 135 | 1604 | 0.9E-05 | 204 | 2377 | 0.6E-05 | 1
MGH24 [ 10} 25 358 | 0.7E-05 | 25 362 | 0.8E-05 ] 1
MGH25 [ 10} 16 259 | 0.7E-06 | 16 259 | 0.7E-06 | 1
MGH26 | 10 7 374 | 0.3E-05 | 27 3753 | 0.2E-05| 1
MGH33 | 9 | 25 320 | 0.2E-05| 25 320 { 0.3E-06 | 1
MGHO05 | 2 | 47 154 | 0.3E-07 { 41 139 | 0.1E-06 | 10
MGHO7T | 3 | 29 136 | 0.6E-06 | 38 175 | 0.4E-07 | 10
MGHO09 | 3 | 20 98 | 0.1E-05 | 17 102 | 0.3E-06 | 10
MGH12 | 3 | 66 286 | 0.3E-05| 55 259 | 0.5E-05 | 10
MGHI14 | 4 | 58 316 | 0.6E-05 | 69 379 | 0.1E-06 | 10
MGHI16 | 4 | 39 322 | 0.3E-05| 37 212 | 0.1E-05 | 10
MGHI8 | 6 | 43 361 | 0.3E-05 | 46 369 | 0.1E-05 | 10
MGH20 | 9 | 95 | 1020 | 0.2E-05 | 46 532 | 0.8E-05 ] 10
MGH21 | 10| 57 775 | 0.3E-05 | 60 813 | C.4E-07 | 10
MGH22 | 8 | 88 977 | 0.9E-05 | 67 793 | 0.3E-05 | 10
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Table A2 (continued)

Function | n BEGS SR1 sp
itrn. | f-eval rgx itrn. | f-eval rgx
MGH23 [ 10| 177 | 2080 | 0.9E-05 | 192 | 2235 [ 0.9E-05| 10
MGH25 [ 10| 41 | 535 [0.3E-05| 23 | 337 [ 0.3E-05] 10
MGH26 [10] 72 876 [0.7E-05| 43 | 360 | 0.9E-06 | 10
MGHOT | 3] 31 174 | 0.4E-06 | 23 113 | 0.6E-07 | 100
MGHI4 | 4] 118 | 625 [0.3E-06 | 104 | 367 | 0.5E-05] 100
MGHI6 | 4] 8 | 472 [0.2E-05] 35 | 303 | 0.3E-06 | 100
MGH20 | 9 [ 95 | 1020 [ 0.2E-05| 46 | 532 | 0.SE-05 | 100
MGH2U | 101 1553 [ 2185 [ 0.8E-03 | 154 | 1906 | 0.5E-06 | 100
MGH22 | 3 | 129 | 1227 [ 0.4E-05] 90 | 875 | 0.9E-05] 100
MGH25 110 472 ] 5276 | 0.1E-04 | 335 | 3769 | 0.1E-04 | 100
CGT0l | 8| 71 | 707 |0.5E-05]| 81 | 843 | 0.4E-06]| 1
CGTO02 [ 25| 36 | 1315 | 0.7E-05| 43 | 1505 | 0.6E-05 | 1
CGTO4 [20] 85 | 2049 [ 0.9E-05] 49 | 1291 | 0.5E-05| 1
CGTO05 |20 311 | 6767 | 0.8E-05] 130 | 4055 | 0.9E-05 | 1
CGTO7 | 8 | 129 [ 1273 [ 0.3E-05 | 116 | 1132 | 04E-06 | 1
CGTOR | 8 | 141 [ 1348 [ 0.3E-05 | 140 | 1347 [ 0.1E-05| 1
CGTI10 |30] 53 | 2328 | 0.9E-05| 40 | 1770 | 0.;E-05| 1
CGTI11 (30| 37 | 1686 [ 0.3E-051 32 | 1526 | 0.8E-05] 1
CGTI12 [301] 264 | 8734 [ 0.6E-05| 199 | 6724 | 0.5E-05 | 1
CGTI4 [30] 70 | 2699 [ 0.5E-05] 100 | 3640 | 0.9E-05 | 1
CGTI16 [10] 1L | 203 |[04E-05| 11 | 204 | 0.2E-05| 1
CGTi7 ! 8 | 134 ] 1269 | 0.8E-05| 92 | 892 | 0.3E-05| |
CGT21 [20] 12 | 504 [0.2E-05] 11 | 483 [0.3E-09] 1
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Table A3: [terations and Function Evaluations - Trust Region

" Function | n BEGS SR1 sp
itrn. | f-eval rgx itrn. | f-eval rgx
MGHOS | 2] 15 57 | 0.3E-06] 16 | 68 |0.5E-05] 1
MGHOT [ 31 27 1T 133 [ 0.1E-05] 29 | 150 | 0.4E-06 | 1
MGHOY [ 3] 5 33 [ 03E-05] 3 31 | 0.2E-07 ] 1
| MGHI2 | 3] 32 | 150 | 03E-05} 26 | 146 | 0.8E-05 | 1
MGHIY |+ 0 46 [ 265 | 0.4E-07 | 31 | 247 [ 0.3E-05 | 1
MGHIG | 4] 33 | 1% ] 0.1E-05] 20 | 133 | 0.7TE-05| 1
MGHIS [ 6 | 43 [ 341 [09E-05] 40 | 344 [0.8E-05] 1
CMGH20 T 9] 8 | 957 [03E-05] 46 | 534 [ 0.3E-05] 1
MGIH21 [ 10 42 | 535 [0.2E-05] 49 | 671 [0.2E-06 | 1
MGIR2 T 2] 41 | 423 J06E05] 26 | 204 [0.8E-05| 1
MGH2 T10] 24 [ 344 [02E-05] 24 | 357 [ 0.8E-05 1
[ MGH25 710 ] 14 | 236 [0.6E-05] 14 | 236 | 0.6E-05 | 1
MGIH26 |10 27 | 373 | 0.2E-05| 24 | 349 | 0.1E-05] 1
MGH35 | 9 [ 24 [ 308 | 0.4E-05| 21 | 285 | 0.3E-05 | 1
MGHO5 12 [ 45 | 160 | 0.9E-05| 36 | 147 | 0.9E-06 | 10
CMGHOT [ 3 ] 20 | 141 [0.1E-05] 33 | 171 | 01E-05 | 10 |
MGHOY |3 { 20 | 112 [03E-05) 15 | & [0.9E-05] 10
MGHI2 [ 3 ) 62 | 292 [09E-06] 19 | 122 | 0.7E-05 | 10
MGHIY ]+ [ 82 | 443 [0.6E-06] 74 | 467 | 0.3E-06 | 10
MGHIG | 4 [ 30 | 32¢ [ 03E-061 35 | 222 [0.8E-07 | 10
MGHIS |6 1 39 | 323 [05E-05] 51 | 437 [0.6E-07 | 10
[ MGH20 T9 | 8T 957 | 0.3E-05| 46 | 534 | 0.3E-05 | 10
MGH2D 1107 63 | 785 [0.3E-05 58 | 800 | 0.2E-05 | 10
CMGH22 | %] 94 [ 913 [05E05] 56 | 575 [0.8E-05] 10

21




Table A3 (continued)

Function

BFGS

n SR1 sp
itrn. | f-eval rgx itrn. | f-eval rgx

MGH23 10 22 | 337 [0.4E-05] 113 [ 1335 [ 0.8E-05 | 10
MGH24 [ 10 ] 224 [ 2609 | 0.1E-01 | 253 | 3140 | 0.1E-04 | 10
MGH25 [ 10] 36 | 483 [O0.7E-05| 25 | 371 [0.3E-05] 10
MGH26 10| 37 [ 1040 [0.7E-05] 48 | 650 | 0.1E-05| 10
MGHOT | 3 ] 34 | 153 [02E-05] 22 | 113 [0.2E-05 | 100
MGHI4 | 4 | »5 | 471 [0.1E-05]| 69 | 426 | 0.3E-05 | 100
MGHI6 | 4| 89 | 472 [04E-06| 52 | 311 | 0.1E-04 | 100
MGH20 | 9 | 83 | 957 | 0.3E-05] 46 | 384 | 0.3E-05] 100
MGH21 10 165 | 1941 [0.2E-05 | 149 | 2139 | 0.3E-06 | 100
MGH22 [ % [ 116 [ 1127 [ 6.3E-05 | 80 | 840 | 0.2E-05 | 100
CGTOl [ 3] 53 | 334 JO.TE-05] 80 | 84S [0.3E-05] 1
CGT02 [25] 45 [ 1550 [ 0.4E-05| 46 [ 1597 [ 0.2E-05 | 1
CGTO04+ [20] 110 | 2579 J0.3E-05 | 89 | 2195 [ 0.5E-05] 1
CGTO0> [20] 323 | 7048 | 0.5E-05 | 156 ; 3645 [ 0.8E-05] 1
CGTO7 | 8| 123 | 1190 | 0.4E-05 | 139 | 1429 [ 0.3E-06 | 1
CGTOs | R | 130 { 1255 [ 0.9E-05 | 146 | 1524 | 0.50-05 | 1
CGT10 [30] 33 | 2326 [0.9E-05| 42 | 1832 [ 0.7TE-05] 1
CGTIL [30] 35 | 1619 [0.3E-05] 31 | 1493 | 0.3E-05| 1
CGTI12 130] 62 [ 2154 [0.3E-05] 41 | 1916 | 0.5E-05 | 1
CGTIt [307 34 | 1532 [O.SE-05| 29 | 1452 | 0.5E-05] 1
CGTi6 [ 10] 11 | 204 [0.4E-05] 11 | 206 | 0.3E-05| 1
CGTI7 | 8] 83 | 813 [09E-05] 74 [ 802 | 0.SE-05| 1
CGT21 [20] 12 | 504 [O2E-051 11 [ 433 J0.3E-09] 1




Table A4: Testing Convergence of {B;} to V2f(z.) - Line Search

Function | n BFGS SR1
itr | ([44 = Bil/I0| | ier | |1 = Bill/[[Hi|

MGHO05 2 19 0.458E-04 16 0.686E-05
MGHO7 3 28 0.274E-04 33 0.175E-06
MGHO09 3 9 0.918E+00 4 0.918E+00
MGHL2 3 38 0.545E-04 24 0.147E-03
MGH14 4 35 0.830E-02 29 0.154E-04
MGH!16 4 34 0.928E-01 23 0.343E-04
MGHIR 6 | 47 0.234E+401 40 0.234E+01
MGH?20 9 175 0.105E+00 100 0.264E-02
MGH21 101 35 0.804L-01 34 0.645E-01
MGH22 8 74 0.161E+401 49 0.160E+01
MGH23 10 ] 178 0.167TE+0+1 215 0.167TE+04
MGII24 10 | 348 0.177E-01 330 0.140E-03
MGH25 | 10} 16 0.748E+04 16 0.748E+04
MGH26 10 ] 31 0.689E-01 31 0.468E-01
MGH35 | 9 | 28 0.834E+00 26 0.833E+00
CGTo1 8 73 0.393E-01 83 0.144E-01
CGTo02 251 43 0.570E-01 50 0.317E-01
CGTO4 20 | 500 0.133E+04 500 0.133E+04
CGTo05 20 | 500 0.582E+03 500 0.503E+03
CGTo7 8 | 138 0.691E-01 124 0.111E-01
CGTo08 8 | 147 0.425E-01 146 0.492E-02
CGT10 30 | 150 0.134E+03 8- 0.185E+03
CGT11 30| 44 0.781E-01 37 0.448E-01
CGT12 30 | 273 0.384E+00 210 0.691E-01
CGT14 30| 86 0.279E+00 107 0.303E+00
CGT16 10| 18 0.466E-01 16 0.385E-03
CGT1v 8 | 216 0.162E+00 125 0.566E-01
CGT21 20 16 0.124E401 12 0.120E+01




Table A5: Testing Convergence of { B} to V2f(z.) - Trust Region

Function { n BFGS SR1
itr | | Hi = B[/l | e | | Hi = Bi||/1|Hil

MGHO05 2 17 0.235E-02 18 0.102E-05
MGHOT 3 | 30 0.-100E-02 31 0.172E-05
MGHO09 3 9 0.918E+00 4 0.918E+00
MGHI12 3| 36 0.396E-02 30 0.473E-02
MGHI14 4 | 47 0.216E-02 41 0.290E-05
MGHI16 4| 36 0.809E-01 22 0.369E-04
MGHIS 6 | 47 0.234E+01 40 0.234E+01
MGH?20 9 | 157 0.261E-01 99 0.176E-02
MGH21 101 47 0.999E+00 51 0.999E+00
MGH22 8 | 77 0.277E+01 43 0.276E+01
MGH23 | 10§ 500 0.154E+04 149 0.218E+04
MGH24 | 10 ] 287 0.391E-02 202 0.173E+02
MGH?25 | 10| 15 0.103E405 15 0.103E+05
MGH26 | 10| 31 0.906E-01 28 0.234E-01
MGH353 9 | 28 0.880E+00 23 0.880E+00
CGTo1 8 | 61 0.110E+00 81 0.275E-01
CGTO02 25 ] 51 0.228E+4-00 50 0.107E+00
CGTo4 20 1 500 0.311E+404 500 0.248E+04
CGTO05 20 | 500 0.104E404 500 0.671E+03
CGTO7 8 1122 0.334E-01 138 0.579E-02
CGTO0R S | 138 0.532E-01 139 0.405E-04
CGT10 301 115 0.109E+4+03 82 0.112E+03
CGT11 30| 40 0.982E-01 34 0.690E-01
CGTI12 30| 97 0.77T0E+03 66 0.756E+03
CGT14 30| 46 0.220E+00 40 0.160E-01
CGTI16 10§ 16 0.523E-01 15 0.298E-02
CGT17 S {200 0.250E+00 123 0.117E-01
CGT21 20 16 0.124E4-01 12 0.120E+01

[}
-1




Table A6: Testing Uniform Linear Independence of {sx} — Line Search

f(x) n | Itr. No. of steps so that g,in(Sm)* >
10°Tj10° 271031010 ]100°] 107" [ 10°®
MGHO0O5 | 2 16 3 2 2 2 2 2 2 2
MGHOT | 3§ 33 4 3 3 3 3 3 3 3
A\’IGI‘{OQ 3 4 * * * * * * * *
MGHI12| 3 | 24 14 5 3 3 3 3 3 3
MGH14 | 4 | 29 10 5 5 4 4 4 4 4
MGHI16 | 4 23 6 4 4 4 4 4 4 4
MGHIS | 6 40 * * * * * * * *
MGH20{ 9 | 100 74 70 67 64 63 62 61 60
MGH21 | 10| 34 * * * * * * * *
MGH22 | 8 | 49 * * * * * * * *
MGH23 | 10| 215 7 77 77 77 77 77 77 77
MGH24 10330 79 7 79 79 7 79 79 79
MGH25 | 10| 16 * * * * * * * *
MGH26 | 10§ 31 30 16 10 10 10 10 10 10
MGH35| 9 | 26 * * * * * * * *
CGTo1 8 83 26 15 13 13 13 13 13 13
CGTO02 { 25| 50 47 28 25 25 25 25 3 25
CGTo04 | 20| 300 87 7 87 7 87 7 7 87
CGTO05 | 201 500 87 87 87 87 87 87 87 87
CGTo7 | 8 | 124 76 76 76 42 34 34 34 34
CGTo8 | 8 | 146 45 45 45 45 45 45 43 45
CGTI10 | 30| 84 * * 60 34 30 30 30 30
CGT11 |30} 37 35 33 30 30 30 30 30 30
CGT12 | 30| 210 | 98 98 88 88 88 88 88 88
CGT14 | 30| 107 39 36 36 36 36 36 36 36
CGTI16 | 10| 16 11 10 10 10 10 10 10 10
CGTI1v | 8 | 125 67 45 42 34 34 34 34 34
CGT21 | 204 12 * * * * * * * *

* S = [si/llsills sica/llsicall
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Table A7: Testing Uniform Linear Independence of {s;} — Trust Region

f(x) n | Itr. No. of steps so that o,in(Sm)* >

10°TJ1072j10°j10-f[10°J10°®f10-"[ 1078
MGHO5 | 2 18 3 2 2 2 2 2 2 2
MGHOT | 3 31 3 3 3 3 3 3 3 3
MGH09 | 3 4 * * * * * * * *
MGHI2} 3 30 T 6 3 3 3 3 3 3
MGHI14 | 4 41 8 3 4 4 4 4 4 4
MGHI16 | 4 22 5 4 4 4 4 4 4 4
MGHIS | 6 40 * * * * * * * *
MGH20 | 9 99 75 64 63 62 62 61 61 61
MGH?21 | 10 51 * * * * * * * *
MGH?22 | 8 43 * * * * * * * *
MGH23 ] 10 | 149 TV 7T T 77 77 77 77 T
MGH24 | 10 | 202 79 ¥0 79 74 74 74 74 74
MGH25 | 10 ] 15 * * * * * * * *
MGH26 | 10| 28 26 18 10 10 10 10 10 10
MGH35 | 9 23 * * * * * * * *
CGTo1 8 81 32 17 13 12 12 12 12 12
CGTO02 | 25} 30 * 29 26 25 25 25 25 25
CGT04 | 20 500 | 88 88 83 88 88 88 88 88
CGTO05 | 20 | 500 88 87 87 87 87 87 87 87
CGTo7 S | 138 76 7 30 43 41 41 41 41
CGTOs 8 | 139 41 41 41 41 41 41 41 41
CGTI10 | 30| 82 * * 59 36 32 30 30 30
CGTI11 | 30| 34 * 31 30 30 30 30 30 30
CGT12 | 30| 66 * * * 60 40 31 30 30
CGTI4 | 30| 40 * 33 30 30 30 30 30 30
CGTIi6 {10} 15 12 10 10 10 10 10 10 10
CGTI7 | 8 | 123 73 49 39 3 33 33 33 33
CGT21 (201 12 * * * * * * * *

¥ Semo= [st/ilsilsi=1/lsi=alls - ooy Siem/ | s1=mll], where m > n.
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Table A8: Testing Positive Definiteness — Line Search

f(z) n | Itr. | O: Indefinite ; 1: Positive Definite %pd { 1% | 2*
MGHO5 | 2 | 14 | 1111111111111 1.00 |13 1
MGHO7| 3 | 30 | 11111101111011110111111111111 090 |12] 1
MGHO09 | 3 3 |11 1.00] 2 |1
MGHI12 | 3 | 21 | 1i111111111111113111 1.00 (20 1
MGH14({ 4 | 26 | 1111111101111110111110111 088 | 3 1
MGH16 | 4 21 [ 10111111111111111111 095 18] 1
MGHI18 | 6 | 37 | 111111100111111111111111011111111111 {092 | 11| 1
MGH20 | 9 | 46 | 1111011111111111011111011101101111110

11111011 0841} 2 1
MGH21 [ 10| 34 [ 111011111110111101001111111111111 085|131

MGH22 | 8 | 36 | 11111101011111111111111110111111111 091911
MGH23 | 10| 204} 111111111111111111101111111111101111
111011101101101001101001111011110111
111111011010001111100111111101110011
111101011111101111010100110101111110
111101101111111010011011101111011001

11111011111101111110111 0.7713 ] 0
MGH24 | 10| 25 | 111111101110111110111111 08816 |1
MGH25 10| 16 | 111111111111111 1.00 {15 O
MGH26 | 10 | 27 | 11101110111011101101110111 0.771 3 | 1
MGH35| 9 | 25 | 111110110111110111111111 081911
CGTo1 | 8 | 81 | 111111110011010011110101101111110100

110111111011011101100110111011111011

11111111 075110 1
CGTO02 {25 43 | 111111110011111110011011011011011111

111111 081111} 1
CGTO4 | 20| 49 | 111111111101111111011111101111111111

111111111111 094 | 22| 1

1*: Number of consecutive iterations where By was positive definite immediately prior
to the termination of the algorithm.

2*: Number of iterations where the SR1 update is skipped because condition (4.1) was
violated.
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Table A8 {continued)
f(z) n | Itr | 0: Indefinite ; 1: Positive Definite %pd | 1* | 2*
CGTO05 (20| 180 111111111011111011111111111101110111
111111111111111010111101111111110111
111111110111011010001110111111101111
111111111010111111011011111001110111
111111111111101111111111111111112111 | 0.87 [ 21| 1
CGTo7 | 8 | 116 111111111111111110111111101000011011
010010011111101011010011011101111011
011111111111111101111011110110111111
1111111 078 113 1
CGTo8 | 8 | 1401 111111110110111110111011111101101101
111110011011111101101110011011110100
1101100000000111101111211001120100111

1110110011010011011111010111111 070 6 | 1
CGT10 (30| 40 | 111111111111111111111111101111111111

001 0921111
CGT11 | 30| 32 | 1111011101111111110111011111111 087 | 8

CGT12 {30 | 199 | 111111111110111111110110111101111111
111110110111110111011101110111110111
011111111110111011111101100111111010
110011111111111010101101111111101011
101111110011111011111110110011011111
110101011101111101 08011
CGT14 { 30| 100 | 111010111110111011101110011110110111
111111101110111101101111111010101111
111111111111110111111111111 083|121
CGT16 | 10| 11 | 1111111111 1.00 |10} 1
CGT17| 8 | 92 | 111111011111111101111110111101101111
011111100111111111101111101111111101
1111111110111111111 0871911
CGT21| 20| 11 | 1110101111 080 4|1

1*: Number of consecutive iterations where By was positive definite immediately prior
to the termination of the algorithm.

2*: Number of iterations where the SR1 update is skipped because condition (4.1) was
violated.
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