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ABSTRACT

By means of a consistent homogenization method for obtaining the overall properties of an

idealized class of metal-matrix composites with a periodic structure, the influence of anisotropy of

the individual constituents on the overall response of the material has been investigated. Two

classes of fibers are considered: boron (isotropic) and graphite (transversely isotropic). The plastic

induced anisotropy in the matrix is modeled by a combined isotropic-kinematic hardening

constitutive relation. In addition to a detailed discussion of the effect of the various components of

anisotropy on the predicted response of the composite, this paper comprises comments on the

computational method for determining the o.erall instantaneous moduli.--- --4-------
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INTRODUCTION

An important issue pertaining to the theoretical investigation of the constitutive response

of fibrous composites is to determine the nature of the influence of the properties of the

individual phases on the overall response of the material. This requires a consistent averaging

method for obtaining the macroscopic behavior of the composite from a knowledge of its

microstructure. Such an averaging technique must take account of the inhomogeneous

deformation which occurs in the scale of fiber spacing (microscale). This attribute of the

averaging technique becomes particularl) important when the moduli of the constituents are

dependent on deformation gradient. In such cases, there will both be a variation of the

deformation gradient and also a variation of the moduli on the microscale. Neglect of both

fluctuations leads to serious errors in satisfying equilibrium in the microscale.

The basic assumption in the averaging process is the existence of a representative volume

element (RVE) within the composite such that under conditions of an imposed overall

homogeneous stress or strain, the average of field variables over any RVE (away from the

boundaries of the medium) and the corresponding composite averages will be the same. In

this article attention is focused on an idealized class of composites which possesses periodic

microstructure. For such a class of composites, the RVE can be readily identified as the unit

cell which when repeated in a specific pattern, continuously covers the interior of the com-

posite. Overall properties can then be evaluated by analyzing the response of a unit cell to

the imposed boundary conditions which simulate homogeneous stressing or straining of the

composite. Currently there are two methods for utilizing the solution of the boundary value

problem over the unit cell for determining the instantaneous overall properties.
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In one method, the solution of the unit cell problem is used for correlating the local

strain rate or stress rate field to their corresponding composite averages ( Dvorak and Teply

(1985) and Teply and Dvorak (1988)). This is accomplished by minimizing the total energy

changes in the unit cell with respect to the difference between the local nodal velocities and

the composite velocity field (fluctuating component of the local velocity field). Upper bounds

Mo the overall instantaneous ili , an be evaluated from the displacement tinite element

formulation and the minimum principle for plastic strain rate, while lower bounds can be

obtained from the equilibrium model and the quasi-static minimum principle in plasticity

(Martin (1975)). For each minimum principle the corresponding bounds to the overall moduli

are obtained by equating the energy changes in the composite to those in the unit cell. While

the theoretical foundation of this method is influenced by the choice of the velocity distribution

inside the unit cell and the geometry of the microstructure, it has the capability of obtaining

bounds to the overall instantaneous moduli.

The second method for obtaining the overall instantaneous moduli of the composite

from the results of the unit cell problem uses a singular perturbation analysis based on the

multiple scales which exist in the composite: a global length scale which is associated with

the loading condition and the size of the medium, and a local length scale typical of the

dimensions of the unit cell (Bensoussan et al.(1978) and Sanchez-Palencia(1980)). In the

limit as the ratio of the local to the global length scales tends to zero, the overall (homogenized)

moduli of the periodic medium are obtained such that to the order 0(1) the average of the

equilibrium equations for the composite over the unit cell will be identical to those for a

material with the homogenized moduli. For a composite in which the constitutive behavior
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of either phase is non-linear, determination of the instantaneous homogenized moduli involves

utilizing the solution of the unit cell problem for obtaining the unknown functions which relate

the first order perturbed velocity field to the overall rate of deformation.

For linear elastic composites with both circular unit cells and fibers, because of the axial

symmetry of the problem, one can obtain explicit expressions for the homogenized constants

(Murakami and Hegemier (1986)). For non-linear elastic porous materials, Abeyaratne and

Triantafyllidis (1984), by using a large deformation homogenization method for obtaining the

overall instantaneous nominal moduli of the medium, have analyzed the onset of localization.

The most desirable feature of the homogenization method is that by being dependent on various

length scales which exist in the composite, it provides a rational basis for determining the

non-local terms which arise globally as a result of the macroscopic variations in the velocity

gradient of the composite. However in contrast to the energy method, there is yet no available

technique for bounding the homogenized moduli.

In fibrous metal matrix composites, there can be two types of anisotropy in the micro-

structure; one is due to the elastic anisotropy of individual phases and the other due to the

induced anisotropy as result of the plastic deformation in the matrix. The first type of

anisotropy can exist if one utilizes graphite or carbon fibers as reinforcement. The plastic

induced anisotropy can be associated with three different attributes of the plastic deformation

in the polycrystalline matrix: the kinematic shift of the yield surface, the distortion of the yield

surface, and the texture formation. The kinematic shift of the yield surface is representative

of the influence of the long range self-equilibrating internal stresses, which are associated

with the dislocation entanglements at junctions, grain-boundaries, or any other obstacle to

dislocation motion (for example strong interface in the B/Al system), together with the internal
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stresses generated as a result of the strain mismatch between the single crystals and/or the

diffeient constituents. The evolution law for the second-order internal variable (the back

stress) which represent the kinematic shift of the yield surface must comprise the influence

of the plastic strain rate, the dynamic recovery (Mroz et Al. (1976)), and the spin of the internal

variable (Lee et al. (1983), Agah-Tehrani et al. (1987)). The latter term will only influence

the growth of the back stress if the state of deformation is non-proportional. Although the

significance of incorporating the induced-spin due to the anisotropy in the evolution law of

the back stress has only been demonstrated for finite simple shearing of a rectangular block

(Lee et al. (1983)), such terms may also influence other non-proportional deformations if the

degree of non-proportionality is large enough.

The second component of the plastic induced anisotropy, which is the distortion of the

yield surface, arises as the result of the differential hardening of the slip systems due to the

anisotropic interaction between dislocations (Taylor and Elam (1923,1925), Kocks and Brown

(1966), and Franciosi ct al.(1980)). The third component of the plastic induced anisotropy,

namely the texture formation, is due to the rotation of the single crystals toward a common

axis. Such rotation restricts the choice of the available slip systems on which the plastic

deformation can take place. Although texture formation has been only observed in the

polycrystalline metals at finite strain, in certain fibrous metal-matrix composites (for example

in B/Al) it is possible that the almost rigid inclusions can also limit the choice of the slip

systems. Preliminary experimental observations by Dvorak et al. (1989) point to such pos-

sibility.

In the work presented here, the small displacement gradient version of the homoge-

nization method is utilized for analyzing the influence of the elastic anisotropy of the fiber
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and the plastic induced anisotropy in the matrix on the overall instantaneous moduli of the

composite. The latter form of induced anisotropy is modeled through a combined

isotropic-kinematic hardening. It is important to mention that the only reason for using a

small displacement gradient theory is to systematically analyze the influence of various aspects

of the deformation field in the microstructure on the overall moduli, and not because the failure

strain of the composite is small. In metal-matrix composites with almost rigid reinforcements,

like Boron-Aluminium, there can be large material rotations in the matrix adjacent to the

inclusion. We defer to later work investigation of the influence of such rotations on the overall

moduli of these material systems.
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2. DEVELOPMENT OF AVERAGING TECHNIQUE

2.1 Homogenization Theory

The composite is modeled as a continuum composed of an elastic-plastic matrix with

periodic distribution of long circular cylindrical elastic inclusions in a hexagonal array

geometry- see Fig. 1. The assumed packing of the inclusions leads to transverse isotropy

of the composite during elastic deformation. Two different composite systems will be con-

sidered: B/Al, Gr/Al. The matrix of both systems is assumed to be elastically isotropic while

their fibers will respectively be isotropic and transversely isotropic.

The planar periodicity of the continuum enables one to express the rate dependent field

variables as functions of the macroscopic independent variables (xi, i = 1,2, 3) which reflect

the influence of the overall boundary conditions and/or the dimensions of the composite, and

the microscopic variables (yi, i = 1,2) which represent the planar periodicity of the overall

medium (dimensions of the unit cell). The two coordinate systems can be related to each

other in the following manner:

xi
y = - i= 1,2, (2.1)E

with e as the ratio of the dimensions of the unit cell to the macroscopic dimensions of the

composite. By considering the coordinate system y to representative of the fast scale and the

coordinate system x to be representative of the slow scale (i.e. e < 1), multiple asymptotic

expansions can be applied to obtain a series of boundary value problems over the unit cell.

This provides a convenient means of separating the local variations within the unit cell from

the global variations within the composite. Neglecting the influence of the finite dimensions
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of the medium permits one to utilize a regular multi-scale expansion, and to discard the sin-

gularity of the asymptotic expansions which arise as a result of the lack of planar periodicity

close to the boundaries of the composite.

Since the aim of this investigation is to only analyze the effect of the anisotropy in the

microstructure on the overall moduli of the composite, the gradient of displacement inside

the unit cell is considered to be small. Thus, the rate equilibrium equations are represented in

terms of the material derivative of the Cauchy stress, &). These equations must then be

complemented by the constitutive relations which relate &) to its conjugate kinematic variable,

D (, the rate of deformation (strain rate). Thus in this study, the constitutive relations and the

rate equilibrium equations are, respectively, as follows:

C=CI,(X)D(F , (2.2)

"- 0 , (2.3)
a)xi

with D as the symmetric part of the velocity gradient (av' )/ax) and C(Z as hc stantaneous

moduli assumed to be functions only of yi. Note that we are only concerned with problems

in which the macroscopic field is homogeneous. Only constitutive relations that will lead to

the symmetry of C( ) with respect to ij < ki, and hence to the deduction of the instantaneous

moduli from a potential U() defined by

U W --e0D) (2.4)
2/
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will be considered. By expressing the 0 ) and ") as asymptotic expansions in terms of e, one

obtains

v ,c) = v Y°)(x,y) + evj'(x, y) + E2vi 2(x, y) +. ..... (2.5)

a=&)_(X, Y)+ E.- (1X Y) + E2&?)(x ,y) (2.6)

Substitution of (2.5,2.6) into (2.2,2.3) and comparison of equal powers of £ lead to the following

general conclusions-see Sanchez-Palencia(1980):

a) o) is independent of the microscopic variables, so that in the limit as £ -+ 0, D(O)

which is the symmetric part of ov 0°)/ix, can be considered to be the strain rate of the composite.

In determining the overall moduli of the composite, div 0°)/axj is assumed to be uniform.

b) Constitutive relations for &0) are

&0) -( (1) (2.7)
C

with D(') as the symmetric part of (av(')/ay,)

c) Micro-equilibrium equations for &0) and &) are

=0 (2.8)aYi

1) a& 0)
= j (2.9)

ayn , xi
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Since the overall strain rate (D °)) is independent of the local scale, (2.8) can be used to obtain

v(') in terms of the strain rate D (°) such that

, =xej )(x)+c,(x) (2.10)

with c, (x) as additive constants, and Viu(y) as functions which are the solution of the following

equations:

a y Dyk a,=  y, (2.11)

Since v0) is to be considered as the velocity of the homogenized medium, the boundary

values for v0') are such that

vO)-0 on , (2.12)

where aV is the overall boundary of the rmedium.

To satisfy the above boundary condition, one needs to have

c,(x)=-W*,D,,(x) on V (2.13)

However, this results in the dependence of c,(x) on E, which necessitates the introduction of

boundary layers (Lions (1978)). Since determination of c,(x) is only necessary in calculating

stress terms on the order of £, resolving the difficulties associated with these boundary layers

will not inter into an analysis based on 1).

In order to complete the formulation of the boundary value problem for determining the

functions V'", it is necessary to prescribe their value on the boundary of the unit cell- The
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'classical' homogenization method only requires that these boundary conditions to be periodic,

and hence leaves a degree of arbitrariness in the values of Ys on the boundary of the unit cell.

In the present study, this deficiency is removed by requiring that

VS'vi=O on A , (2.14)

where )A is the boundary of the unit cell, and vi is the normal to this boundary. As a result

of this boundary condition, the functions ijJ7 belong to a limited range of the periodic functions.

Thus the above formulation still falls within the theoretical frame work of the classical

homogenization method. The attractiveness of the proposed formulation is that it leads to

specific boundary conditions for determining the functions Vi".

Finally, it may be of some interest to note that since in the problem under consideration

the macroscopic strain rate (DT° )) is independent of the macroscale, the right hand side of (2.9)

will be zero. This together with the boundary condition (2.14), leads to the vanishing of v,).

Now by requiring that v 2) to be zero on the boundary of the unit ce'l, one can deduce that this

term and all the higher order terms in the expansion of the velocity field are zero everywhere

inside the unit cell.

2.2 Effective Moduli

Following Hill (1963), Willis (1982), and Nemat-Nasser et al. (1982), it is assumed that

the periodic continuum on the average over a representative volume element (RVE) behaves

similar to a homogeneous material with some moduli which are yet to be determined. These

moduli can be obtained by subjecting the boundaries of the RVE to the uniform strain rate

D10). That is

vi =D i(y XJy, X r= a V (2.15)
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By utilizing Gauss's theorem, one can show that the mean value of the strain rate over the

RVE will then be

IDjdV f v(vnj + vjn,)dS =.0 (2.16)

The overall instantaneous moduli are now defined by the relation

< ij> =C ZD, , (2.17)

with < aij > denoting the average of orj over the RVE. Now by defining < U > as the average

of U = !,,&iDij over the RVE, one obtains

< 2U> =-- ,dV. (2.18)

Application of Gauss's theorem and the boundary condition (2.12), together with the recog-

nition that &i, must satisfy the equilibrium equations in the RVE, enables one to utilize (2.18)

to obtain

1 (o)C

<U>= 1vD 1 f f&adV (2.19)

For the particular problem considered here, the representative volume element is a two-

dimensional unit cell; thus, instead of the volume integral in (2.19), one must consider an

integral over the area of the unit cell. Consequently, for the planar periodic medium under

consideration, the equivalent expression to (2.19) will be
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= (-D f &9dA, (2.20)

with &-) as the average of U( ) over the area of the unit cell. By substituting (2.6) in (2.20),

one obtains an asymptotic representation for U10. Since E has been assumed to be very small,

only the zero-order term in the representation will be considered. Recall that in problems

involving macroscopic homogeneous straining, stress terms on the order of O(e) will be

automatically zero. In other circumstances, neglecting terms on the order of e is equivalent

to assuming that as s -+ 0 the contribution of such terms to the average of the rate equilibrium

equations over the unit cell can be neglected. By utilizing this assumption and (2.17), one

obtains the following relation expressing 7( in terms of the overall moduli:

- D'; '-- Dn--) (2.21)

An alternative expression for YO can be obtained by substituting (2.5, 2.6) in (2.18),

utilizing (2.10), and following the previous argument for considering only the 0(1) terms.

This enables one to obtain an expression tor the overall moduli in the form of

-W A-. JAf (Im + S,,)C,.,,(y)(I,, + S,)dA , (2.22)

with

SUN- ay , ' (2.23)

and Iju as the fourth order identity tensor.



14

Thus, in order to determine the overall moduli, one needs to obtain both the variation

of C~jk and yk' in the microstructure, which can be accomplished by solving the unit cell

problem.

Comparison of (2.17) and (2.22) with (2.2) reveals that although the 0(1) homogenized

moduli is non-local (because it involves integrals over a region in the composite), it has the

same form as the constitutive relation in the microscale. This invariance of the form in going

from the microscale to the macroscale will disappear if the macroscopic strain rate is non-

homogeneous. As it is shown in Appendix A, in such cases the macroscopic constitutive

relation involves dependence on both the overall strain rate and the gradient of the overall

strain rate.
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3. FORMULATION OF THE BOUNDARY-VALUE PROBLEM

The rate equilibrium equations of the unit cell, (2.3), are formulated through the fol-

lowing principle of virtual work:

f aj8D.dA =1 tivfF , (3.1)

where A, DA, and dF are respectively the area, the surface, and the differential line element

on the boundary of the unit cell. For the problem under consideration, since the moduli of

the matrix are dependent on the state of deformation, the solution of the equilibrium equations

are needed in order to determine the variation of the Cok inside the unit cell.

Once the variation of the moduli of the individual phases inside the unit cell is determined,

one can obtain the functions 4 from the variational form of (2.11), which is

fC4Y)('- ).(' dA = 'I(Y (fdA ,(3.2)

with Oi as any kinematically admissible velocity field. For the current problem, this implies

that Oiv = 0 on the boundary of the unit cell.

The smallest repeating cell of the hexagonal array is shown in Fig. 1. For the problem

under consideration, the composite is undergoing tensile deformation in the x, direction while

preventing any strain in the fiber direction (x3) and keeping the lateral surface free of traction.

Due to the line symmetries within the unit cell, only analysis of a 1/4 cell is needed provided

that the boundary conditions on the reduced geometry reflect the existing symmetries. In light

of these symmetries, the boundary conditions for the rectangular region EFGH shown in Fig.

1 are:
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v- 2 t =0 at x1=O (3.3a)

U 3a
v=2 t,=O at x,= , (3.3b)

0) , = - (3.3c)

tr=0 at x,=0,x2= 2 (3.3d)

D~e)=O , *1 =.

=  t t= 2 = 0  at x3 
= const , (3.3e)

where ( is the prescribed displacement rate in the x, direction, and W is the unknown dis-

placement rate in the x2 direction which is determined by the zero average traction rate in the

x2 direction along the lateral surfaces. That is

t 2dr=O at x2 =0 , (3.4a)
=0

-- tzd]F=0 at x2= 2 (3.4b)

Further reductions of the 1/4 unit cell can be achieved by observing that if the rectangular

region EFGH in Fig. 1 is divided into two halves by a line through the central point 0, a 1800

rotation about the point 0 can cover the region EFGH with the region EFIK leaving the stresses

and strains unchanged. When 4 is a length which measures coordinate on the dividing line

IK, with 4 = 0 at point 0, the additional boundary conditions to be prescribed along this line
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are

u() = -u,(-), i = 1, 2 (3.5a)

ti(4) = t(- ), i = 1,2 (3.5b)

For the two dimensional problem under consideration, due to the prescribed deformation

state of the composite, the only periodic functions which can be determined are :V 1, 22I,12,

and 4?'. In light of the displacement boundary conditions of the unit cell problem, the boundary

conditions for these functions are

[ 3a '
0 at x,=O0xi 3a

atx=,x 2 = --2 forrs = 11,22,12,33. (3.6)

The boundary condition associated with the inversion symmetry will be

1 1,2 forrs = 11,22,12,33, (3.7)ti --- tii = 1, 2

with t" as the tractions along the side IK corresponding to the problem of determining the

V.SIS.

In order to complete the formulation of the boundary value problem, one needs to specify

the constitutive relations for the individual phases. Since the objective of this study is to

analyze the influence of the anisotropy of the microstructure on the overall response of the

composite, two types of fiber reinforcements will be considered, Boron and Graphite. Boron

is characterized by a linear isotropic elastic constitutive relation with two independent elastic
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constants, while Graphite is characterized by a transversely linear isotropic constitutive

relation with five independent elastic constants. The elastic properties of both types of fiber

along with those of matrix are shown in Table 1.

The constitutive relation for the aluminium matrix is developed by assuming that Y can

be expressed as

=C'*")':(D -Dp) , (3.8)

with C '(') as the elastic moduli of the matrix, and D P the rate of plastic deformation in the

matrix. The symbol in (3.8) represents the trace operator.

For the combined isotropic-kinematic hardening model, the von Mises yield condition

takes the form

(o", - (0:(o- W) = 23- ,(3.9)

where a' is the deviatoric part of the Cauchy stress, a the scalar representing the isotropic

component of the current tensile yield stress, and a the second order tensor representing the

kinematic shift of the yield surface.

By assuming the coincidence of the yield function and the plastic potential, D P can be

expressed as

D =m , (3.10)

where e is the generalized plastic strain rate (CP = N D P ), and m is the unit normal to

the yield surface expressed in (3.9)
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M a- a (3.11)

The constitutive relation for the evolution of a which takes account of both the direct

influence of the plastic strain rate and the embedded induced anisotropy is considered to be

&=cD P +Wca-czW , (3.12)

with

-=X (WDP -Dpcx) (3.13)

where c is the classical Prager-Ziegler hardening modulus, and X is a non-dimensional material

parameter which controls the contribution of the spin to the evolution of induced anisotropy

(Lee et al.(1988)). The latter component will be non-zero only if the principal axis of strain

tensor rotates in the body, i.e. if the state of deformation is non-proportional. For the case of

simple shearing, which is an example of non-proportional deformation, in order to ensure that

the spin of the eigentriad of the embedded anisotropy is not larger than the average spin of

the material particle, only negative values of X must be considered. Thus, for the structure of

the above evolution law to be physically appropriate for deformation modes, we are assuming

that the value of X is in general negative.

Utilization of (3.9-3.13) together with the consistency condition leads to the following

expression for D :
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Hl(m:') m (3.14)

with

n=-2h+c+ ( m+m -2 , (3.15)

and h as the isotropic hardening modulus. The parameters h and c are obtained from the

uniaxial true stress-natural strain curve. This curve is represented by a piecewise power law

C for 0:5 1
e , (3.16)

for a-aY

with e as the natural strain, a as the true stress, a as the uniaxial yield stress, F, as the uniaxial

yield strain, and n as the hardening exponent.

Substitution of (3.14) into (3.8) and inversion of the resulting equation lead to the fol-

lowing constitutive relation:

6=C'D , (3.17)

with

C4kj= 2 1(8 +8.+8A.)+ -V Al8An  - 22gmim], (3.18)
L2 1 -2v H+2g

0 1 if a=a, and a>ol (3.19)
I if a<a., or c<0 J

g and v are respectively the shear modulus and the Poisson's ratio of the matrix.



21

In the following, the parameter 03 will be referred to as the ratio of the isotropic to

kinematic hardening. During the actual computation, this parameter is considered to be equal

to

h = f3H, , , (3.20)

c = 2(1 - )Haj , (3.21)
3

with H,i as the uniaxial hardening modulus.

Thus, in a strict sense, I0 is not equal to h/c. However, within the range (0,1), the two

parameters are directly proportional to each other. So that P3 can be considered as the ratio of

the isotropic to kinematic hardening.
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4. FINITE ELEMENT FORMULATION

Due to the material non-linearities in the matrix and the geometry of the unit cell, finite

element analysis was used to solve the elasto-plastic boundary value problems formulated in

the previous section. Three different fiber volume fractions were considered: c1 = 20%,

cf = 45%, and cf = 60%. The finite element mesh for the 20% fiber volume fraction consisted

of 455 element, while that for the 45% and 60% fiber volume fray;ion consisted of 485 elements

- see Fig. 2. Eight-node isoparametric elements were utilized as velocity interpolation shape

functions. This type of element is particularly suited for capturing the large variations in the

stress and displacement gradient which take place across the interface between the fiber and

the matrix. A total of 18 steps were utilized for the analysis with the magnitude of the prescribed

transverse displacement increment (AU) at x, = 0 during each step being 0.001 a where a is

the size of the unit cell-see Fig. 1.

The mixed boundary conditions of the unit cell problem, which are stated in (3.3,3.5),

are prescribed in a manner similar to that proposed by Needleman(1970). This involves the

following steps:

a) Because of the velocity boundary condition (3.3c), the nodal values of the velocity

component v2 on the boundary x2 = 0 are set equal to each other. Utilizing this equality and

the fact that the average of t2 along this edge is zero ( see 3.4a), the unknown nodal values

corresponding to this velocity component can be then eliminated by adding the rows of the

stiffness matrix corresponding to these nodes and setting the sum of the nodal forces equal to

zero. The same procedure can used for the nodes on the edge x2 = ['3a/2. As a result of this

procedure, the nodal values of the velocity component v2 on the lateral surfaces can be rep-
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resented by only two unknowns. Since the value of these two unknowns are opposite to each

other, further reduction in the number of unknowns can be achieved by subtracting the columns

of the stiffness matrix associated to these two nodes.

b) Because of the traction boundary condition (3.5b), subtraction of the rows of the

stiffness matrix corresponding to the nodal values of the velocity components of the nodes

on the edge IK, see Fig. 1, leads to zero effective nodal force. By utilizing the boundary

condition (3.5a), one can then reduce by half the number of unknowns corresponding to the

edge IK.

It must be mentioned that although the above steps lead to substantial reductions in the

number of unknowns in the problem, they will cause an increase in the bandwidth of the

overall stiffness matrix. The boundary conditions of the problems for determining the W"'s

are similar to those associated with the unit cell, except that the lateral surfaces of the mesh

are considered to be fixed in the problems of finding the 'W"'s-see (3.6). This boundary

condition has the desired characteristic that the finite element mesh used to solve the unit cell

problem is identical to the mesh that was used to obtain V"'s. The new boundary conditions

are needed if the prescribed velocity field is to be identified with the zero-order term of the

asymptotic expansion of the v('). Because of the difference between the boundary conditions

of the unit cell problem and those of the problems for determining the V"'s, the stiffness

matrices which will be used to solve for the unknown nodal values in the two problems will

not be identical.

Due to the rate-independence of the constitutive relations, the finite element rate

equations can be considered to be incremental equations. These equations were solved through
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elasto-plastic constitutive relation in the matrix-see Mallett (1985), Suh et al.(1989).
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5. NUMERICAL RESULTS

5.1 Elastic Properties

Figures 3 through 7 present the variation of the predicted homogenized elastic properties

of both B/Al and Gr/Al with fiber volume fraction. Also shown in these figures are the results

of the Voigt and Kelvin models. These figures, in general, indicate that the relation of the

homogenized moduli to those predicted by the Kelvin and Voigt models is dependent on the

type of the material system considered. While all the components of the homogenized elastic

moduli of Gr/Al fall in between the results predicted by the Kelvin and Voigt models, the

same does not hold for those of B/Al. In order to explain this observation, we will next examine

the relation of each component of the homogenized moduli to the values predicted by the

Kelvin and Voigt models. Figure I indicates that the homogenized transverse modulus C111

of both Gr/Al and B/Al lies in between the values predicted by the Kelvin and Voigt models,

with the transverse homogenized modulus of B/Al being very close to the Kelvin model. The

relation of C'122 to those predicted by the Kelvin and Voigt models can be seen from Fig. 4.

It may be of some interest to note that this component of the homogenized moduli of B/Al

agrees almost identically with the Kelvin model, with the latter being higher in real numbers.

Figure 5 shows the variation of the transverse shear modulus with the fiber volume fraction.

The results indicate that although for small fiber volume fractions the homogenized transverse

shear modulus of B/Al is lower than that predicted by the Kelvin model, these values are in

general very close to the prediction of the Kelvin model. Based on the results of Figs 2-5,

one can conclude that the transverse homogenized elastic properties of the composite are more

closer to the predictions of the Kelvin model than to those of the Voigt model. Figure 6 shows
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that for all fiber volume fractions, the homogenized modulus e13 of B/Al is lower than that

predicted by the B/Al. Finally, Fig. 7 indicates that the homogenized axial modulus of both

B/Al and Gr/Al agrees well with the Voigt model.

In obtaining the overall elastic moduli, the Voigt model, by assuming the equality and

uniformity of the strain components in both phases, violates the equilibrium in the microscale

and the compatibility across the fiber/matrix interface. Because of the above characteristics,

the Voigt model provides an upper bound to the actual strain energy of the composite. Thus,

the overall moduli, which are determined based on this model, are supposed to provide an

upper bound to the actual moduli of the composite. In contrast to this, the Kelvin model, by

considering the equality and uniformity of stress components in both phases, violates the

equilibrium in the microscale and continuity of traction across the fiber/matrix interface. Since

the Kelvin model provides a lower bound to the actual strain energy of the composite, the

overall moduli obtained from this model has been identified with the lower bound to the actual

moduli of the composite. The current results suggest that for certain material systems there

is no one to one correspondence between obtaining bounds to the overall strain energy of the

composite and the individual components of the overall moduli. Moreover, they indicate that

the components of the homogenized moduli are not uniformly close to those predicted by

either the Kelvin or the Voigt model, and their relation to the so called upper and lower bounds

vary from one component to another. This poses questions with regard to the ability of

obtaining unique upper and lower bounds for all the components of the overall moduli.

5.2 Development of the Plastic Zone

In this section we will examine the influence of the type of the fiber and its volume

fraction on the development of the plastic zone. This is accomplished by presenting the
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contours of the effective stress during progressive stages of the deformation. Since the

initial tensile yield stress in the matrix is ay = 40000 psi, the contours of a greater than this

value belong to the plastic zone. The results shown are for the matrix in which n = 5, 0 = 0.5,

and X = 0.0. At small fiber volume fractions (cf = 20%), the B/Al composite initially yields

at the fiber/matrix interface along the x, axis-see Fig. 8. By increasing the fiber volume

fraction in the same material system, the location of the first yield point moves up the

fiber/matrix interface such that when cf = 45% initial yield takes place at 270 from the x, axis

(Fig. 9). The magnitude of this angle increases to 320 when cf = 60% (Fig. 10). This clearly

indicates that in dilute B/Al composites, the interaction between the fibers does not influence

the location of the material point at which plastic deformation initiates, while at large volume

fractions the interaction between the fibers alters the location of such a material point so that

it ultimately lies at the interface along the line that connects the fiber to its nearest neighbor.

In Gr/Al composites, since the transverse modulus of the fiber is significantly lower than that

of the matrix, during transverse deformation the fiber behaves similar to a void. For this

reason, the location of the material point at which plastic flow commences is not dependent

on the fiber volume fraction and yielding always initiates at the fiber/matrix interface along

the x2 axis (Figs. 11-13).

During the subsequent plastic deformation, the development of the plastic zone in B/Al

composites is also dependent on the fiber volume fraction. This is such that in c = 20%, there

will be a second plastic zone along the x2 axis at step 5th-see Fig. 14-followed by almost

general yielding of the unit cell in step 6th-see Fig. 15. The shape of the plastic zone for

this fiber volume fraction did not change following the subsequent transverse deformation.

In contrast to this, the plastic zone in c1 = 45%, 60% develops in a counter clockwise manner

from the x, to the x2 axis- see Figs. 16,17. The characteristic feature of the this zone is that
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up to step 18 there is a persistent elastic core around the fiber/matrix interface on the x2 axis.

In Gr/Al composites the development of the plastic zone is opposite to that in the B/Al

composites; that is, the plastic zone develops in a clockwise manner from the x2 axis toward

the x, axis-see Figs. 18-2 1. In contrast to B/Al composites, the extent of the plastic zone

in Gr/A1 composites decreases by increasing the fiber volume fraction.

Although the above observations are limited to the particular matrix considered, the

results for other types of the matrices indicate the same trend. Thus, the details of the plasticity

in the matrix has no significant influence on the development of the plastic zone, and it is the

type of the fiber and its volume fraction that influence the development of the such zone.



29

53 Stress-Strain Response

In this section we will discuss the influence of the anisotropy of the microstructure on

the variation of the transverse stress with transverse strain. Figures 22 through 24 represent

variation of the macroscopic transverse stress with the prescribed transverse strain in B/Al.

The parameter X was zero in all the matrix constitutive relations that were used to obtain the

results. These figures reflect the sensitivity of the macroscopic stress-strain relation to the

ratio of the isotropic to kinematic hardening 13. The results indicate that, irrespective of the

fiber volume fraction, reducing 13 leads to the softening of the predicted stress-strain curve.

This is not surprising since by decreasing 13, the contribution of the total hardening to the

increase in the radius of the yield surface decreases, which in turn leads to reduction in the

magnitude of the stress increment. Comparison of Fig. 22 and Fig. 24 indicates that the

influence of 13 becomes more pronounced by increasing the fiber volume fraction. This can

be explained by noting that i', which is a measure of the amount of the plastic deformation

taken place in the matrix, increases by increasing the fiber volume fraction. Thus, since the

back stress evolves from zero initial value, at small plastic strains the magnitude of the stress

increment is mostly controlled by the isotropic component of the total hardening, while at

large plastic strains, due to the generated back stress, the magnitude of the stress increment

is influenced by both the isotropic and the kinematic component of the total hardening. For

a given 13, the increase in fiber volume fraction leads to an increase in the level of the

stress-strain curve, compare Fig. 22 with Fig. 24. This can be explained in light of the fact

that the transverse elastic modulus of boron is larger than that of aluminum, so that an increase

in the fiber volume fraction leads to an increase in the stiffness of the composite in the transverse

direction and hence to the increase in the stress levels.
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Figures 25 through 27 represent the variation of the macroscopic transverse stress with

prescribed transverse strain in Gr/Al. The parameter X was zero in all the matrix constitutive

relations that were used to obtain the results. These figures in general indicate that increasing

the fiber volume fraction leads to softening of the material. This is in accordance with the

fact that the transverse elastic modulus of graphite is much smaller than that of aluminum so

that increase in the fiber volume fraction leads to a decrease in the transverse stiffness of the

composite and hence to a decrease of the transverse stress level. Similar to the case of B/Al,

the reduction in 03 leads to a decrease of the macroscopic transverse stress. The influence of

3 on the overall response is more apparent in small fiber volume fractions. Also similar to

the case of B/Al, the increased hardening in the matrix (which is represented by the decrease

in the hardening exponent n) leads to an increase in the stress level. The influence of changing

n is more dominant in small fiber volume fractions than in the large volume fractions.

Tables 2 through 4 represent the influence of the parameter X on the average transverse

stress at the 18th step. Prior to discussing these results, it is important to recall that in general,

incorporating the influence of the spin terms in the evolution of the back stress will alter the

stress analysis if and only if the state of deformation is non-proportional. The degree of this

influence increases with the increase in the degree of non-proportionality. In light of this

observation, we will now examine the results presented in Tables 2-4. First, note that the

parameter X has almost no influence on the results of Gr/Al. This is not surprising since, as

was explained previously, the macroscopic average stress of Gr/Al shows very little sensitivity

to the type of the plastic constitutive relations in the matrix. This behavior is in contrast to

the influence of X on the response of B/Al. There, incorporating X in the matrix constitutive

relation leads to a decrease of the predicted macroscopic stress. For a given hardening
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exponent, the magnitude of the softening is reduced by decreasing the fiber volume fraction.

This is in accordance with the fact that in large fiber volume fractions the degree of non-

proportionality of the deformation field in the matrix increases, leading to a more dominant

influence of the spin term. The results for n = 10 (not shown here) indicate that while in large

fiber volume fractions (c1 = 45%, 60% ) the influence of the softening due to the induced-spin

decreases by decreasing the amount of the hardening in the matrix, i.e. by increasing the

hardening exponent, in smaller fiber volume fractions, c1 = 20%, the amount of softening was

reduced witb decrease in the hardening exponent.

5.4 Overall Instantaneous Moduli

In this section, the influence of the microstructure on the variation of the overall

instantaneous moduli with prescribed transverse strain will be discussed. The results presented

in these figures are all for the case when X = 0. Figures 28 through 33 indicate that regardless

of the type of the reinforcement, there is a reduction in C't1 as a result of the plastic deformation

in the matrix. These figures also indicate that for each type of metal-matrix composite, the

reduction in this modulus will be more pronounced by decreasing 03, i.e. by decreasing the

isotropic component of the hardening. The numerical results for n = 10 show that the influence

of 13 on the overall modulus is more apparent in matrices with small hardening exponent. In

spite of the above similarity, there is a fundamental difference in the manner in which the

fiber volume fraction influences the reduction of CZim, in B/Al and in the Gr/Al. In B/Al,

increase of the fiber volume fraction increases the reduction of stiffness ( Figs. 28,30, and

32). However, in Gr/AI an increase in the fiber volume fraction from 20% to 45% leads to a

slight increase in the stiffness reduction, while from 45% to 60% leads to a significant decrease

in the reduction of C1 1. The fore-mentioned difference is indicative of the fact that in B/Al,
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since the transverse elastic modulus of boron is large compare to that of the matrix, an increase

in the fiber volume fraction intensifies the amount of the plastic deformation in the matrix

and hence increases the reduction in the overall stiffness, while in Gr/Al, since the transverse

modulus of the fiber is smaller than that of the fiber, an increase in the fiber volume fraction

lessens the amount of the plastic deformation in the matrix. For a given fiber volume fraction,

the type of the fiber has also a significant influence on the reduction of C111. In small fiber

volume fractions, there is a more dramatic stiffness reduction in Gr/Al compared to in B/Al-

see Figs. 28,29. However, this changes as the fiber volume fraction increases, such that in

cf = 60% there is more reduction in B/Al compare to Gr/Al- see 32,33. In view of the

previous discussion, this is to be expected, since the influence of the plastic deformation in

Gr/Al is more pronounced in small fiber volume fractions, while in B/Al it is more dramatic

in large fiber volume fractions.

Figures 34 through 39 show the variation of C2= with the prescribed transverse strain

in B/Al and Gr/Al. All of the above observations on the behavior of C111 also hold for C-iff.

Comparison of these figures with those corresponding to C111 indicates that following the

onset of the plastic deformation, the transverse isotropy of the effective moduli of the com-

posite will be lost. This implies that utilization of the transversely isotropic plastic potentials

in modeling the overall plastic deformation of the composite is not appropriate, and one has

to take account of the induced anisotropy in the transverse direction due to the asymmetric

development of the plastic zone.

Figures 40 through 45 represent the variation of C,, with the prescribed transverse

deformation in B/Al and Gr/Al. The results corresponding to B/Al indicate that the modulus
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C'122 increases by increasing the prescribed transverse strain. The magnitude of this increase

will be reduced by increasing 3. In contrast to this, the variation of C12 with prescribed

deformation in Gr/Al is very much dependent on the size of the fiber volume fraction. This

dependence is such that in c, = 20%, Fig. 41, and cf = 45%, Fig. 42, the CZ11 modulus slightly

decreases initially and then increases and finally drops, while in c1 = 60%, Fig. 45, it con-

tinuously drops. The magnitude of the final drop in the modulus decreases by increasing the

isotropic component of the total hardening.

Figures 46 through 51 show the variation of the transverse shear modulus, C 212 with

the prescribed transverse strain. In both composite systems, this modulus drops with the

monotonic increase in the prescribed deformation. The magnitude of this reduction decreases

by increasing the isotropic component of the hardening. For a given fiber volume fraction,

the drop of the transverse shear modulus is more pronounced in Gr/Al than in B/Al, for example

compare 46,47. For fiber volume fractions up to c1 = 45%, the reduction of the transverse

shear modulus of B/Al decreases monotonically by increasing the fiber volume fraction;

compare 46,48,50, while in Gr/Al, it increases. Further increase of the fiber volume fraction

leads to small changes in the overall transverse shear modulus.

Figures 52 through 57 show the variation of C1133 with prescribed transverse strain in

B/Al and Gr/A1. Figure 52 indicates that in B/Al this modulus initially increases and then

drops. In contrast to this, C' 133 of Gr/Al will continuously decrease with prescribed transverse

strain; see Fig. 53. In B/Al the magnitude of the total change of this modulus will not exceed

7%, while it can reach as high as 26% in Gr/Al. For both material systems, the drop of C 1 33

wiL decrease by increasing the isotropic component of the hardening. The variation of the
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axial modulus C'33 in both material systems was observed to be negligible.
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CONCLUSIONS

A consistent homogenization method has been used to study the influence of the ani-

sotropy in the microstructure on the overall response of fibrous metal-matrix composites. In

formulating the numerical method for determining the effective properties of the composite,

our study has shown that the prescribed boundary conditions of the periodic functions, which

are needed to relate the fluctuating velocity field inside the unit cell to the overall strain rate,

have a significant influence on the instantaneous overall properties. In the current study, we

chose the boundary conditions that led to the coincidence of the mesh for both the unit cell

problem and the micro-boundary value problem.

The results indicate that for a given fiber volume fraction, the type of the reinforcement

has the strongest influence on the overall response. This is not surprising since the properties

of the fiber strongly influence the concentration of the velocity gradient and stress field around

the fiber/matrix interface which in turn influence the average of the field variables over the

unit cell. The other parameter which can also influence the overall instantaneous moduli is

the hardening exponent of the matrix. This influence is such that decreasing the isotropic

component of the total hardening enhances reduction of the overall instantaneous moduli

which takes place during the prescribed transverse straining of the composite. For the par-

ticular deformation state considered here, the results clearly demonstrate that while inclusion

of the influence of the spin term in the evolution of the back stress softens the effective response

of B/Al composite in the transverse direction, such terms have very little influence on the

overall response of Gr/Al.
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An immediate extension of the current study is the inclusion of the influence of the

possible large material rotations which can take place at the inclusion/matrix interface of

certain fibrous metal-matrix composites, particularly those in which the transverse modulus

of the fiber is much higher than that of the matrix.

A more important contribution to the micromechanical analysis of fibrous metal-matrix

composites is the development of averaging methods in cases where the overall stress (strain)

field is nonhomogeneous. This problem poses a fundamental dilemma from the point of view

that in such cases one needs a discriminating criterion for assessing the influence of the higher

order terms in the asymptotic expansions that are used to obtain the effective moduli.
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APPENDIX A

In this Appendix we present some of the implications of the variation of macroscopic

velocity gradient on the development of the homogenization method. It is assumed that the

nature of these variations are such that one can still identify two length scales in the medium.

Thus, we are excluding problems which involve a macroscopic crack, or the emergence of

regions across which large changes in the velocity gradient takes place. In order for the

analysis to be valid for arbitrary deformations, the rate equilibrium equations will be expressed

in terms of the material derivative of the nominal stress, S. These equations will be com-

plemented by the constitutive relations which relate S to its conjugate kinematic variable F

which is the material derivative of the velocity gradient. It is assumed that these constitutive

relations can be obtained from the derivatives of a potential U(). By considering an updated

Lagrangian formulation these constitutive relations will be

5(e Lu (A.1)

or

Ci(k) = (X, I )LI( (A.2)

with Coj = Cu and L%) as the velocity gradient (av1()/xk).

It is important to note that because of the variations in the macroscopic velocity gradient

the potential U() depends on both the macroscopic and the microscopic coordinates. The rate

equilibrium equations will be

=0. (A.3)
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By expressing the above field variables as asymptotic expansions in terms of F and

substituting these series into the expression for the velocity gradient and (A. 1,2,3), one can

arrive at the following conclusions:

a()Iy =0, (A.4)

DYk

( ) ; ( ) ( ) 2 )vI + 
I ) +vv E( L

L = -Xk + k + Xk +yk (A.5)

( (1 ) (,0) ()

SIP= CAI( - -C +- ) I (A.6)

axC,(xk +y) (A.7)

U(C) I (o)-0 - o .t-" (j).+ ji)yC kJ v t1,).)+V,k(,10 -+

i .o I)(t) , ¢,(t() .+.V(2) ) +

N24.i~) + VjftiOijkVIOk(.) -- ,, l'k)(y), ... A8

! 9 ) (4¢1 ) a ¢ o )
- = 0 , -= - j(A.9)

By assuming periodicity of the variables over the unit cell, the 1st micro equilibrium

equation in (A.9) can be used to obtain

vi,) = T(x,y) L(,,°) ,(A. 10)



42

In the above representation, we have assumed that 'PI' are zero on the boundary of the unit

cell. This assumption eliminates the need for introducing the additional terms which only

depend on the macroscopic coordinates. By substituting (A. 10) into (A.7) and using the result

in the second micro equilibrium equation of (A.9), one obtains

a (2) (A.1y'i ('ijHvt'kOy) -=jq ° '* ' (A. 11)
aXk

where

Bj1 q. = -{~C4 a +Lp~ '~. Cj

-a [ + L raw (o+ -

,.,o,)L(O)

-V--Tv .') - ci, aLO) • L(, (A. 12)

If the above equation can be used to determine v(2) in terms of the variation of the overall

velocity gradient such that

I ax, (A.13)

then one can determine the average of U( ) to obtain

(o (o)

(or+0() , (A.14)
2 2L?*ax, ax,Mn

where

= PC,,Pa,dA , (A.15)
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Pfi, =1li,, +Pi ) , (A .16)

(A.16)
T.P, A3t' o'

A"I r, U(Oq)L(O) u +01,k(y)(A. 17)

The above expression for the average energy yields the following macroscopic con-

stitutive relation:

<~ Z 4- > -MIt +. e0 " a x, (A. 18)

The above equation reflects the fact that in materials with non-linear microstructure, the

non-homogeneity of the macroscopic field leads to the emergence of the non-local terms

whose structure were not present at the micro level. The macroscopic equilibrium equations

can be shown to be

+a =0 (A.19)ax, ax,
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(a)

1.0 0.7 0.5 0.2

0.0 65544.13 63158.44 61530.82 59030.76

-4.0 65544.13 63148.67 61512.12 58991.75

(b)

1.0 0.7 0.5 0.2

0.0 47282.44 46274.01 45581.17 44506.77

-4.0 47282.44 46274.96 45582.92 44510.04

Table 2

The dependence of the average stress < a,, > on x. The values are taken at

step 18. c1 = 20%, n = 5. (a) and (b), respectively, represent the results for

the B/Al and Gr/Al.



(a)

1.0 0.7 0.5 0.2

0.0 77099.26 73430.76 70935.57 67115.71

-4.0 77099.26 73348.54 70783.46 66819.03

(b)

1.0 0.7 0.5 0.2

0.0 34622.04 34166.45 33851.95 33362.94

-4.0 34622.04 34166.50 33852.06 33363.19

Table 3

The dependence of the average stress < o1 > on X. The values are taken at

step 18. c1 = 45%, n = 5. (a) and (b), respectively, represent the results for

the B/Al and Gr/AL.



(a)

1.0 0.7 0.5 0.2

0.0 90871.1 85519.4 81870.24 76267.33

-4.0 90871.1 85000.03 80902.69 74361.07

(b)

1.0 0.7 0.5 0.2xN 27260.81 29. 27 7 24 2

0.0 27260.81 26987.13 26794.79 26491.21

-4.0 27260.81 26987.15 26794.83 26491.38

Table 4

The dependence of the average stress < 71, > on X. The values are taken at

step 18. c1 = 60%, n = 5. (a) and (b), respectively, represent the results for
the B/Al and Gr/Al.
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