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SUMMARY

‘This paper presents a computer+aided design procedure for generating bevel
gears. The development is based on examining a perfectly plastic, cone-shaped
gear blank rolling over a cutting tooth on a plane crown rack. The resulting
impression on the plastic gear blank Is the envelope of the cutting tooth.

This impressicn and envelope thus form a conjugate tooth surface. Equations
are presented for the locus of points on the tooth surface. The same proce-
dures are then extended to simulate the generation of a spiral bevel gear.
The corresponding governing equations are presented. ~.. 5. /
¥ . T an e

INTRODUCTION - ' o

Beve! gears are the principle means of motion and power transmission
between intersecting shafts. Their use is widespread. The geometrical cha-
racteristics of beve! gears have long been documented by the American Gear
Manufacturers' Association (AGMA, 1964) and others (Dudley, 1962, Dyson, 1969,
Bonsignore, 1976; Litvin et a)., 1975, 1982, 1983, Baxter, 1966; Huston and
Coy, 1981,1982a,b). Recent advances in computer-aided design present opportu-
nities for a new look at the geometry of these gears. These computer-based
procedures also provide a means for optimizing the geometry.

In a previous paper (Chang, Huston, and Coy, 1984) we have demonstrated
the feasibility of this procedure to determine a spur gear tooth profile. The
basic idea was to use the envelope of a family of curves to develop an invo-
lute spur gear tooth profile. The study demonstrated that the envelope of an
inclined straight-1ine segment on a rolling gear blank is an involute of a cir-
cle. The inclined 1ine segment in turn represented the rack tooth of a hob
cutter. Such a procedure provides a means for analytically and numerically
determining the tooth profile, glven a cutter profile.

"Work funded under NASA Grant NAG3-188.




In the current paper we extend these ideas to the generation of both
straight and spiral bevel gears. The paper itself is divided into four sec-
tions with the section following the Symbols providing preliminary ideas use-
ful in this sequel. 1lhe next two sections describe the formulation of string
and spiral bevel gear tooth surfaces. This is followed by a discussion of
applications.

SYMBOLS

The following symbols are used in the section for development of a
straight bevel gear tooth.

Rm Mean radius of crown gear in pitch plane

(R] Coordinate transformation matrix; from S to §
(Ry] Coordinate transformation matrix; from Sy to S
(R21 Coordinate transformation matrix; from Sy to $
[R3) Coordinate transformation matrix; from § to S
r Position vector in S

Fq Position vector tn §

i) Components of [R]

S(X, Y., ) Cartesian coordinate system stationary with ground
§ YD Cartestan system stationary with generated gear

S1(X1.Y1.21) Intermedtate Cartestan coordinate system

S2(X2,Y2,232) Intermediate Cartesian coordinate system

Xp Projection of X axis on crown gear pitch plane
a Angular position of gear referenced to system S
aQ Initial angular position of gear

Y Pitch angle of pinion

8 Angle of rotation of generated gear

¢ Complement of pressure angle of cutter

v Cutter's orientation angle on pitch plane

The following symbols are used in the section for development of a spiral
bevel gear tooth.

B Dertvative of T with respect to ¢




by Components of 8

dij ae1j/a¢2

(€] Coordinate transformation matrix; from S to S.
ey} Components of (E)

H Horizontal machine setting of cutter

h Addendum of cutter tooth (pitch to tip)

Ng Number of teeth in crown gear

Np Number of teeth in generated gear

(Re1l Coordinate transformation matrix; from S; to S¢
(Rig] Coordinate transformation matrix; from Sg to S
(Rgp] Coordinate transformation matrix; from Sp to Sg
(Rp2] Coordinate transformation matrix; from S; to Sy
re Mean radius of cutter in pitch plane

e Position vector in S¢

Fq Position vector in Sg

o Position vector in Sp

" Position vector in S

) Posttion vector in $S3

Sc(Xe,Yeile) Cartesian coordinate system stationary with cutter with origin
at O

S1(Xy1,Y1,21) Cartestan coordinate system stationary with gear with origin
at O

S2(X3,Y2,23) Cartesian coordinate system stationary with pinton with
origin at 0y

Sg(xg,Yg,Zg) Cartestan coordinate system stationary with ground with
origin at Og

Sp{Xp,Yp.2Zp) Carteslan coordinate system stationary with ground with origin
at o
p

Coordinate translation transformation matrix; from S; to S¢




¢ Coordinate translation transformation matrix; from S to §

Tgp Coordinate translation transformation matrix; from Sy to Sg
ty Components of T

Vv Vertical machine setting of cutter

W Angular speed ratto

20 Zc Intercept of cutter surface

% Surface coordinate of cutter

Y Root angle of pinion

Yo Pitch angle of pinion

e Angle of rotation of system S, reference to S
LY Angle of rotation of gear

$2 Angle of rotation of gear blank

$10 Intttal angular position of gear

Vo Complement cf pressure angle of cutter edge

wg Rotation rate of gear

wp Rotation rate of pinion

ENVELOPE OF A FAMILY OF SURFACES

Consider a family of surfaces represented by an equation of the form
F(xy,x2,x3,t) = 0 with a parameter t. Llet S be a surface of the family and
let 1t be intersected by neighboring surfaces S'. If S and S' correspond
to the values t and t + At, the curve is represented by the simultaneous
equations

Fxy,x2,%3.t) = 0
(1,

Fixy,x2,%3,t + &t) = O
It may also be represented by the equations

F(xy,x2.x3.t) = 0
(2)

F(x],xz,x3.t + At) - F(x],xz,xa.t)

at




The surface [F(xj,xp.x3,t + at) - Fixy,x2,x3,t)1/8t « O goes through the curve
common to the two surfaces F(xj,xp,x3,t) = 0 and Flxy,xp,x3,t + At) = O.

When S' approaches S as a 1'mit (i.e., when At upproaches 2erd) the inter-
section curve will approacht a !imiting furve. This ¢urve 1s given by

F(X].XZ.X3.t) =0

F
3t (x1.x2.x3.t) -« 0]

(3)

Equation (3), when t s fixed, represents a curve on the surface of the fam-
i1y, The same equation, with t variable, will rgyresaent & family of curves
and will generate a surface. This surface Is thes envelope of the given fam-
11y, The result of eliminating t s the vquation of the envelope (Graustein,
1935). , o

In the two-dimensional case the envelcpe of a family ot curves Is a curve tan-
gent to the given fam'ly. For vxample, the envelope given by an inclined
straight-1ine segment on a rolling gear blank is founu to be an involute of a
circle (Chang, Huston, and Coy, 1934).

In the following sertions these procedures are generalized to simulate the
stralght bevel and spirel bevel yegar tooth surrace generation process. The
family of surfaces created hy the cutter generates an envelope in the gear
blank. The envelope in the gear blank then forms a conjugate tooth surface.

DEVELOPMENT OF A STRAIGHT BEVEL GEAR TOOTH SURFACE

The cutter used for the surface generation of a straight bevel gear tooth
is called the basic crown rack. Fligure | depicts the machining model of the
stralght beve!l gear tooth generation process. The basic crown rack R |s con-
sidered to be fixed on the imaginary crown gear pitch plane C as a rack step,
as depicted in Fig. 2. The generated gear blank G is a cone with the vertex
at the machine center 0. The gear blank 1s allowed to roll on the crown gear
pttch plane C. The ¢rown gear pitch plane is an imaginary fixed plane. When
the gear blank rolls over the crown rack step, the envelope of the basic crown
rack forms the tooth surface of the straight bevel gear.

The coordinate system used to de;cr1$e the crown gear 1s S(X,Y,Z,) with
origin at 0. The coordinate system S(X,Y,2) is fixed on the gear blank with
grigin at 0. The gear blank is allowed to rotate through an angle © about
. The pitch angle of the gear blank s denoted as y. The initial position
of the gear blank is defined by ang1§ a0, which is the angle between the
axis X and_the projection of the axis on the crown gear pitch plane,
denoted by X,. During the gear blank rolling motion the angular posl%ion of
the gear blanE s defined by angle «, where o 15 measured between Xp and
X. From this geometry we obtain the relation between 6 and a as

a = ap - O tan y (4)

The coordinate system § may be obtained by coordinate transformation of
the system S in the following steps:




Step | Axis of Angle Coordinate Rotation
rotation | turned system matrix
0 - - At XYZ initially -
1 4 a X123 R}
2 Y -y Xo¥.-2 ‘ R2
3 X2 G XYZ 17 R3
The indicated rotation matrices are
} Cosa =-Sinea O
[R]] = [sin a cosa O (%)
0 0 1
cosy O -siny
[RZJ « | 0 1 0 (6)
siny 0 €os vy
o 0 |
[R3] = |0 cos® -sin® (7
0 sin® cos ©
The position vectors ¥ with the components (x,y z) and_ with the
components (X,y,2) locating a typical point in and § gre related by the
expression
F = [Ry] [R2] [:3]Fg = [RIfg (8)
From Eqs. (5) to (7) the elements of [R], ryy(1,] « 1,3), are
ry) = cos a COS vy
ri2 = -€os a $1n y sin ® - stn « cos ©
ri3 = -€os a 8in y cos © + sin a sin ®
ra1 = sina cos y
rg2 = =sin a sin y sin ® + cos « cos © (9)
rg3 w -sin a sin y ¢cos & - ¢cos a sin ®
rq) = siny
ry2 = sin © cos vy
r33 = COs O COs vy




EQUATION FOR CROWN RACK AND STRAIGHT BEVEL GEAR TOOTH SURFACE

The hasic crown rack may be viewed as a straight cutting blade reciprocat-
ing in the radial direction. The tooth surface of the rack thus forms an
inclined plane passing through the crown gear center. The pitch plane of the
cutter surface !s shown in Fig. 2. The normal plane view in Fig. 3 shows the
rack profile. The equation of the rack surface may be expresses in terms of
system S as

X tany -y -2¢cot ¢ =0 ao

where ¢ 15 the angle between the cutter face and the XZ plane, and ¢ s
the complement of the pressure angle of the cutter as shown in Fig. 2. -
The cutter's surface may be expressed in terms of the gear blank's system S
by substituting Egqs. (8) and (9) into Eq. (10). This leads to

X[(tan y cos a - sin a)cos y - cot & sin y)
Jisin y sin 6(sin a - tan y cos a) - €Os 6(cos a + tan y sin a)
cot ¢ cos y sin 8]

2(sin y cos ©(stn o - tan ¢ cos «) - sin B(cos o + tan y sin &)
cot ¢ cos y cos 8] = 0 = F(X,y,2,0 Q)

+

+

Following this procedura, to determine the envelope of the cutter surface
on the generated gear blank, we evaluate the partial derivative of Eq. (11)
with respect to parameter ©, the rotation angle of the gear blank. This
produces the relation

x[3in y(tan ¢ sin a + cos a))
+ ylsin 8 (1 - sin y tan y)(cos « + tan y sin a)
cos O(sin y - tan y)(sin a - tan ¢ €os a) - cot ¢ cos y cos O]

+

+ 2[cos O(1 - sin y tan y)(cos a + tan y sin a)

- sin ©(sin y - tan y)(sin a - tan ¢ €0s a) + cot ¢ cos y sin 8] « 0 (2
Let % be an Independent variable. Then, from Eqs. (11) and (12),
and Z may be evaluated in terms of Xx. Observe that since the coefficients

are functions of ©, the tooth surface has the parametric form
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where x and O are the surface coordinates. Equation (13) represents the
envelcpe of the rack relative to the gear blank. This represents the tocth
surface of the stralght bevel gear.

DEVELOPMENT OF A SPIRAL BEVEL GEAR TOOTH SURFACE

A spiral bevel gear tooth surface is developed in a similar manner. Fig-
ure 4 depicts a circular cutter generating a spiral bevel gear. The cutter is
mounted on the cradel of a generating machine. When the cutter rotates about
1ts own axis, it forms a surface that simulates a crown gear. As the cradle,
and hence the cutter, rotates about at the rate wgq and the gear blank
rotates about Zp at the rate wp, thg cutter will genérate a spiral bevel
gear. The cutting speed is independent of wg and wp . It s not related to
the ﬁinematics of tooth generation. The relation between wg and wp is
simply

where and Np are the numbers of teeth in the crown gear and generated
gear, regpect1vely.

The coordinate system used to describe the crown gear 1s S1(X;,Yqy,2p)
with origin at 0y. The crown gear G with frame S; fixed in G rotates
through an angle ¢} about Zg with respect to a global coordinate system

(Xy,Y Z ) with the origin a% 0g as_in Fig. 4. The position vectors 1
w?th th components (x1.,¥1.217, gd with the components (x gy ocat-
ing a point in S) and Sg are relatgd by the expression (see r18 g)

where [Ryg] s an orthogonal transformation matrix given by

cos ¢, sin 2 0
[R|g] = |-s5in ¢, cos &, 0 (16)
0 0 1

Let a coordinate system Sc(X¢,Ye.Zle) be fixed on the cutter with origin
at Oc(H,V,0). Let H and V be the hor1zonta1 and vertical machine sattings
(see Fig. §). The sutter rotates through an angle © about axis Posi-
tion vectors re, with the components (xc¢,xc,2¢) locating a point re?at\ve to
Sc. and Ty are related by the expression

1+ IR ‘] TIc (7




where [R:1] and Ty are

cos ® sine 0

[Rcl] = |-sin® <cos® O (18)
0 0 ]
and
H
T]c e |V (19
0

Let the coordinate system S (x%. i ,22) be fixed in the gear blank. Let
S2 rotate through an angle ¢ agou with respect to a second global
coordinate system Sp(Xp,Y % (see Flgs 4, 6, and 7). The position vec-
tors with the componeﬁts (xp.¥pi2p), and ¥2, with the components
(x2,y2, gz) locating a point in Sp aRd S are related by the expression
fp = [Rp2l F2 (20)

where the transformation matrix ([Rp2) from S; to Sp 1s glven by

cos ¢2 -sin ¢, 0
[szl = |sin ¢, oS ¢, 0 (21)
0 0 |
The two global coordinate systems ad and S are related by the root
e

angle y of the generated gear and the addendum o the cutter tooth h (see
Figs. 4, 6, and 8.) Hence, rg and rp are related by the expression

where
1 0 0
[Rgp] e |0 sihy -cosy (23)
0 cosy siny
and




- 0
T .= (24
9 " |

During the cutting process the simulated crown gear rotates in such a way
that the motion is conjugate with the generated gear blank. In Fig. 6 the
pitch element 0P 15 an instantaneous axis for these "conjugate gears.'

Hence, their angular velocity components on the pitch element are equal. That
is,

62 sin vy = &1 cosCygy - v) (25)

where vyg 1s the pitch angle of the generated gear. Integrating Eq. (25)
with respect to time then leads to the relation

stn y

= sty - v 2t %0 (26

where ¢10 1s a constant determined by initial conditions.

Let the constant parameter w be defined as

sin Yo
W m 27
Combining Eqs. (14), (25), and (27) leads to the relation
N W ¢
ig a2l (28)
Y Wg ‘1’] ¥

CIRCULAR CUTTER SURFACE

In Fig. 9 the rotation of the cutter with a straight blade decribes a con-
fcal surface of revolution with vertex angle (v - 2yg). The mean radius of
the head cutter measured in the plane 2. = 0 Is r.. The apex of the cone is
at Vv with coordinates €0,0,29) in S¢. The coordfnates (ve, Yoo 2¢) of an
arbitrary point C on the surface of revolution can then be expressed by the
surface coordinates 2. and o« as

Ko = (zo - zc)cot Yo €OS a
(29)

e = (zO - zc)cot Yo sin o




Equation (29) may also be expressed in the form

2 2 2 2
f(xc,yc.zc) = tan \yo(xc + yc) - (z0 -2.)

- 0 (30

The cutter surface may be expressed in the gear blank system Sy Dby
substituting from Eqs. (15), (20), and (22) into Eq. (17). This leaés to

Fo = ROIR IIRIR,IF, ¢ [REy IR (T o0+ TRy 1Ty = (EDT, T

gp
(3N
where (E)] and T are defined as
and
T e IR IR IT ) » IR IT, (33)

By substituting from £qs. (16), (18), (19), (23), and (24) into Eqs. (32) and
(33), the elements of (E] and T, eyy and ty(1,3, = 1,3), are found to be

€ = ¢os ¢, cos(O + ¢]) + sin y sin ¢, sin(e + ¢])

€, = -sin ¢2 cos(o + ¢1> + 8$in y cos ¢, sin(e « ¢])

€5 = -COS v $In(O + ¢)

€y = -COS ¢2 sin(e + ¢]) + $in vy sin ¢y cos(® + ¢,)

€y, = sin ¢2 sin(® + ¢1) + sin y cos ¢2 Cos(® + ¢1) (34)
@)y = -COS ¥ COS(O + ¢))

€4, = COS ¥ sin ¢2

@,, = COS y COS &,

933 a §in Y

and
t] = Hcos & +Vsinéd
tz w -H sin® +V cos © (3%

t, = -h

3




Hence, the cutter surface expressed in the Sy coordirate system may be
nbtained :v substituting from Eqs. (31), (34), and (3%) into Eg. (29). That
is,

(e]]tan Yo * €4,€0S a)x2 + (e12tan Yo + €qC0S a)y2 + (e]3tan Yo * 844008 q)z2
- (zo - t3)cos o - t1 tan ¥o

and
(eZItan Yo * e3lsin a.)x2 + (elztan Yo * e3zs1n a)y2 + (e]3tan Yo * e33sln a)z2

-t )8in o - ¢

- (z0 3 2 tan ¥

(36)

SPIRAL BEVEL GEAR TOOTH SURFACE EQUATION
Equations (36) represent the generating surface seen by the gear blank.
In determining the envelope of the cutter surface on the gear blank, 1t is
useful to evaluate the partia' derivative of ro in Eq. (31) with respect to
the parameter ¢p. That is,

ar .
el N AN { § e

a¢2'

m
[=3]
-

[\

io,v

(37

The second term is zero since rp 1is fixed in Sp. From Eq. (35) the last
term is also zero because the cutting speed is 1n§ependent of the gear blank
rotation. Let the component of the first term be dy3. Then dyj can be
determined from €q. (34), and Eg. (37) may be rewrittgn in the form

ar
c "~
where
d11 = -5in ¢2 cos(o « ¢])(1 - wsiny) +« (sin y - wicos ¢2 sin(@ «+ ¢])

cl12 a -COS ¢2 ccs(e + ¢1)(1 -wsiny) - (sin y - w) sin ¢2 sin(e + ¢])

13 = ~W Cos y tos(6 + ¢1)

d2] = sin ¢2 sin(e + ¢])(1 - W siny) + (sin y - W) ¢os ¢2 cos(O « ¢])

2y = COS ¢2 51n(0 + ¢])(1 - wsiny) - (sin y - wsin ¢2 cos(o + ¢]) 39
d23 = -W CoS y sin(@ «+ ¢])

31 * €Os v COS ¢,

-c0s vy sin ¢2

0




Equation (38) represents the derivative of the equation giving transforma-
tion from the cutter system to the gear blank system. It is useful for deriv-
ing the constraint equation of the cutter's motion. The derivative of the
cutter conical surface with respect to ¢, the rotation angle of the gear
blank, 1s (from Eq. (30))

3 ¢ 5 axC ayC ) 8zc 0 .
53; (Xc.yc.zc) =« 2 tan Yo | %e —sz + Y, §$E + 2(20 - 2, 53; - (40

If 2¢ 1s not equal to 2o, we may substitute from Eqs. (29) and (38)
into Eq. (40). This leads to

+ O3aly, + [tan yo(d) 3 COs a + dyq sina) + dyalz, = 0 (41)

Equation (41) 1s the constraint equation of the cutter motion on the gear
blank. Combining Eqs. (36) and (41) forms a set of simultaneous equations
representing the envelope of the cutter relative to the gear blank. The solu-
tion of the simultaneous equations describes the tooth surface impression cre-
ated by the cutter. OCbserve that since the coefficients are functions of («,
¢1), the solution has the parametric form

Xy = xz(q.¢])
Yy = y2<a.¢]) (42)
22 - ZZ(O.. ¢'|)

where a and ¢ are the surface coordinates

DISCUSSION

Equattons (11) to (13) and Eqs. (36), (41), and (42) determine the cutter
envelopes and hence the gear tooth surface for straight and spiial bevel
gears, respectively. They form the basis for a numerical and computer graphic
representation of the tooth surface. In this context these equations repre-
sent an extension of the procedure described earlier (Chang, Huston, and Coy,
1984) from spur gear to bevel gear. The difference here, however, is that the
equations are more detalled and extensive. Hence, numerical and computer
graphic analyses are needed.

In a general sense the method simulates the kinematic relation of a
cone-shaped gear blank and the cutter. With the rotation angle of the gear
blank being the parameter, the envelope c¢f the cutter profile on the gear
blank describes the gear tooth profile. The straight and spiral bevel gear
tooth surfaces are the forms given in Egs. (13) and (42). The machine set-
tings, the cutter radius, and the mean cone distance are the paramete-s that
can be varted in a design optimization analysts. An accurate finite element
mesh can also be obtained by discretizing the tooth surface.




In summary, it ts belteved by the authors that the analysis presented
herein can form a basis for numerical desigr studies as well as for stress and
deformation studies. Finally, the methcd may be -eadily extended to the study
of nonintersecting shaft (hypold) gears.
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Fig. 8. Relation of Coordinate System
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