
nT f , 'MFNTATION PAGE Form ApprovedOPM No. 0704-0188

r pw response, including the time for reviewing Instrictons searchinq existing data sources gathering and maintaining the datan7 urdon e unat or anry other asped of this collectin of Information. inckding suggestions for reducing this burden, to Wasrington
He ferton Davis Highway, Suite 1204, Arlkon, VA 22202-4302. and to the Office of Information arid Regulatory Affairs. Office of
Ma

1.7 "D-A 2 3 799 :IT DATE 3. REPORT TYPE AND UATES COVERED

Final: 03 Feb 1991 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Aitech Defense Systems Inc.,
AI-ADA/88K Version 2.4, VAXstation 3100 cluster (Host) to Tadpole TP88OV(88100
based VME board)(bare machine) (Target), 900930W1. 11030

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-390.0291
Wright-Patterson AFB
Dayton, OH 45433
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Aitech Defense Systems Inc., AI-ADA(88K Version 2.4, Wright-Patterson AFB, OH, VAXstation 3100 cluster VMS Version
5.3 (Host) to Tadpole TP880V (88100 based VM E board)(bare machine)(Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSINMII -STD-181 5A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Sid. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 30 September 1990.

Compiler Name and Version: AI-ADA/88K Version 2.4

Host Computer System: VAXstation 3100 cluster
VMS Version 5.3

Target Computer System: Tadpole TP880V (88100 based VME board)
Bare machine

Customer Agreement Number: 90-03-12-AIT

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900930W1.11030 is awarded to Aitech Defense Systems Inc. This certificate
expires on 1 March 1993.

This report has been reviewed and is approved.

Ada Validaton Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Aria Valdatibn Organization
i2 Director, Computer & Software Engineering Division

Institute for Defense Analyses .
Alexandria VA 22311

a Joint Program Office
Dr. John Solomond, Director
Department of Defense .
Washington DC 20301

AVF Control Number: AVF-VSR-390.0291
3 February 1991

90-03-12-AIT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900930W1.11030
Aitech Defense Systems Inc.

AI-ADA/88K Version 2.4
VAXstation 3100 cluster .> Tadpole TP880V (88100 based VME board)

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

hitech
Declaration of Conformance

Customer. Aitech Defense Systems Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB

ACVC Version: 1.11

Ada Implementation:
Compiler Name and Version: AI-ADA/88K Version 2.4

Host Computer System: VAXstation 3100 cluster, VMS 5.3
Target Computer System: Tadpole TP880V (88100 based VME board)

Bare machine

Customer's Declaration
I, the undersigned, representing Aitech Defense Systems, declare that Aitech Defense
Systems has no knowledge of deliberate deviations from the Ada Language Standard

ANSI/MIL-STD-1815A in the implementation listed in this declaration.

" -Date: September 27, 1990

Gabriel Leemor

Aitech Defense Systems Inc.

1250 Oakmead Parkway

Sunnyvale, CA 94086

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG891.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-- 5A--X-Fe-ua ry 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Oice, AugusFt 990.

tUG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementation's is tested by means of the ACVC. The
ACVC contains a collection of test programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable.
Class B and class L tests are expected to produce errors at compile time
and link time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and tUG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 September 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B B85001L
C83026A C83041A C97116A C98003B BA2O11A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1BO2B BD1B06A AD1BO8A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B BD8002A BD8004C
CD9OO5A CD9005B CDA201E CE2107I CE2119B CE2205B
CE2405A CE3111C CE3118A CE3411B CE3412B CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

C24113I..K (3 tests) contain lines greater than the implementations
maximum line length of 126 characters.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35404D, C45231D, B86001X, C86006E, and CD71O1G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORTINTEGER.

C35713D and B8600lZ check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) use a value for
SYSTEM.MAX MANTISSA of 47 or greater.

C45536A, C46013B, C46031B, C46033B, and C46034B contain 'SMALL
representation clauses which are not powers of two or ten.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C4AOl3B contains the evaluation of an expression involving
'MACHINE RADIX applied to the most precise floating-point type. This
expression would raise an exception. Since the expression must be
static, it is rejected at compile time.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CA2009C and CA2009F instantiate generic units before their bodies are
compiled. This implementation creates a dependence on generic unit as
allowed by AI-00408 and AI-00530 such that the compilation of the
generic unit bodies makes the instantiating units obsolete.

LA3OO4h: LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8O11A use machine code
insertions.

The following 272 tests check for sequential, text, and direct access
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE21O5A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2117A..B (2)
CE2120A..B (2) CE2201A..C (3) EE2201D..E (2) CE2202A
CE2201F..N (9) CE2203A CE2204A..D (4) CE2205A
CE2206A CE2208B CE2401A..C (3) EE2401D
CE2401E..F (2) EE2401G CE24O1H..L (5) CE2403A
CE2404A..B (2) CE2405B CE2406A CE2407A..B (2)
CE2408A..B (2) CE2409A..B (2) CE2410A..B (2) CE2411A
CE3102A..C (3) CE3102F..H (3) CE3102J..K (2) CE3103A
CE3104A..C (3) CE3106A..B (2) CE3107A..B (2) CE3108A..B (2)
CE3109A CE3110A CE3111A..B (2) CE3111D..E (2)
CE3112A..D (4) CE3114A..B (2) CE3115A CE3116A
CE3119A EE3203A EE3204A CE3207A
CE3208A CE3301A EE3301B CE3302A
CE3304A CE3305A CE3401A CE3402A
EE3402B CE3402C..D (2) CE3403A..C (3) CE3403E..F (2)
CE3404B..D (3) CE3405A EE3405B CE3405C..D (2)
CE3406A..D (4) CE3407A..C (3) CE3408A..C (3) CE3409A
CE3409C..E (3) EE3409F CE3410A CE3410C..E (3)
EE341OF CE3411A CE3411C CE3412A
EE3412C CE3413A..C (3) CE3414A CE3602A..D (4)
CE3603A CE3604A..B (2) CE3605A..E (5) CE3606A..B (2)
CE3607B..D (3) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 19 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B33301B B35701A B38003A B38003B B55AOlA B83EOIC
B83EOlD B83EOlE BA1001A BA1101B BC1109A BC1109C

2-3

IMPLEMENTATION DEPENDENCIES

C85006A..E (5 tests) were each split into 2 tests in which either of
approximately half of the lines in the main sequence of statements
were commented out. These Test Modifications were necessary because
the compiler exhausts the system's memory resources otherwise.

Pragma ELABORATE was added to C83030C and C86007A to force the
elaboration of package REPORT.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Gabriel Leemor
1250 Oakmead Parkway
Suite 210
Sunnyvale CA 94086

For a point of contact for sales information about this Ada implementation
system, see:

Gabriel Leemor
1250 Oakmead Par!tway
Suite 210
Sunnyvale CA 94086

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90.

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

Total Number of Applicable Tests 3579
Total Number of Withdrawn Tests 74
Processed Inapplicable Tests 44
Non-Processed IO Tests 272
Non-Processed Floating-Point

Precision Tests 201

Total Number of Inapplicable Tests 517

Total Number of Tests for ACVC 1.11 4170

The above number of I/O tests were not processed because this
implementation does not support a file system. The above number of
floating-point tests were not processed because they used floating-point
precision exceeding that supported by the implementation. When this
compiler was tested, the tests listed in section 2.1 had been withdrawn
because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 517 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation and 272 executable tests
that use file operations not supported by the implementation. In addition,
the modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a disk of a VAX-11/750 computer. The disk
was then connected to the cluster, and all files were copied to the
VAXstation 3100 disk.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. Executable modules were
downloaded to the target board via a RS-232 serial link using the AI-ADA
Cross Debugger.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Switch Effect

/lis Produced a compilation list file.

/progressreport Prints the compiler passes during
compilation.

Test output, compiler and linker listings, and job logs were captured on
disk and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89J. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIG_IDi (1..V-1 => 'A', V -> '1')

$BIGID2 (1..V-1 => 'A', V > '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(l..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-1-V/2 -> 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

SBIGREAL LIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (I..V-l-V/2 -> 'A') & 'I' & I"?

SBELANKS (1..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (..V-5 > '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAXINLEN 126

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_647

$DEFAULTHEMSIZE 2097152

$DEFAULT STOR-UNIT 8

$DEFAULTSYSNAME MC88000

$DELTADOC 2#1.0#E-31

$ENTRYADDRESS 16#0#

$ENTRY-ADDRESSl 16#4#

$ENTRYADDRESS2 16#10#

$FIELDLAST 50

$FILETERMINATOR fI

$FIXEDNAME NOSUCHFILETYPE

SPLOATNAME NOSUCHTYPE

$ PORNSTRING to it

$FORMSTRING2 "CANNOTRESTRICT FILE CAPACITY"

$GREATERTHANDURATION
75000.0

SCREATERTHANDURATION BASE LAST
131O71.O

$GREATERTHANFLOAT BASE LAST
-1.90141E+38

$GREATER THANFLOAT SAFE LARGE
_ - 1. UE3O8

A-2

MACRO PARAMETERS

$GRE.ATERTHANSHORTFLOAT SAFE LARGE
1.O"E3O8-

$HIGHPRIORITY 23

$ILLEGALETERAL-FILE NAME1
' NODIRECTORY\ FILENAME

$ILLEGALETERAL-FILE NAME2
THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM

$INAPPROPRIATE LINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

SINCLUDEPRAGMAl PRAGMA INCLUDE ("IA28006D . ADA"I)

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006Fl.ADA")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGERLAST PLUS_1 32768

$ INTERFACELANGUAGE ASH

$LESSTHANDURATION -75000.0

$LESSTHANDRTION-BASE FIRST
-1'51073.0

$LINE-TERMINATOR ASCII.LF

SLOW-PRIORITY 1

$KACHINECODESTATEMENT
NULL;

$MACHINECODETYPE NOSUCH TYPE

$MANTISSADOC 31

SKAX-DIGITS 15

$MAXINT 2147483647

SMAXINTPLUS_1 2147483648

SHIN INT -2147483648

A-3

MACRO PARAMETERS

$NAMRF NO SUCHTYPEAVAILABLE

$NAMELIST MC68020, MC88000, 1860

$NAMESPECIFICATIONi [CRICKETTL. ACVC11.DEVELOPMENTJX212OA.

$NAMESPECIFICATION2 [CRICKETTL.ACVC11 .DEVELOPMENT]X2120B.

$NAMESPECIFICATION3 [CRICKETTL.ACVC11 .DEVELOPMENTJX212OC.

SNEGBASEDINT 16#FOOOOOOE#

$NEW-HEM SIZE 65535

$NEW-STORUNIT 8

$NEWSYSNAME MC68020

$PAGETERMINATOR ASCII.FF

SRECORDDEFINITION NEW INTEGER;

$RECORDNAME NOSUCHMACHINE CODETYPE

$TASKSIZE 32

$TASKSTORAGESIZE 4096

$TICK 0.000001

$VARIABLEADDRESS 16#0420#

$VARIABLEADDRESS1 16#0424#

$VARIABLEADDRESS2 16#0428#

$YOURPRAGMA INTERFACE-PACKAGE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not. to this report.

1 The Ada Cross Compiler

1.1 The Invocation Command

Command syntax: ADA88K <source-file-spec>

Command parameters: source-file-spec

The text file contains the source text that is to be
compiled. If the file type is omitted in the source file
specification, the file type ADA is assumed by default.
The source-file-spec is required or otherwise the
following prompt will appear.

FILE:

Command qualifiers: /asm list (default)
/noasm list

Only when invoked will an assembler file be generated
for the compilation unit. The file name corresponds to
the name of the compilation unit and suffix. The suffix
"S" is given to a specification and " B" to a body. The
file type is ASM.

/list
/nolist (default)

A source listing will be generated by the compilers. The
file name will correspond to the source-file-spec name
with the file type .LIS.

If /nolist is active, no source listing is produced,

B-I

COMPILATION SYSTEM OPTIONS

regardless of any LIST pragmas in the program or any
diagnostic messages produced.

/progress
/noprogress (default)

Data about which pass the compiler is performing will be
output to SYS$OUTPUT.

/xref
/noxref (default)

Requests that a cross-reference listing be generated. If
no severe or fatal errors are found during the
compilation, the cross-reference listing is written to list
file (see section The Cross-Reference Listing).

/library=<file-spec>

The current sublibrary in which the compilation is
performed. If the qualifier is omitted, the sublibrary
designated by the logical name ADALIBRARY is used
as the current sublibrary.

/configurationfile=<file-spec>

Specifies the configuration file to be used by the
compiler. If the qualifier is omitted the configuration file
designated by the logical name ADA88KCONFIG is the
default.

/trace
/notrace (default)

Specifies whether trace-back information should be
generated. For more information, refer to the chapter on
Trace-Back Information.

/suppress all
/nosuppress_all (default)

Requests that generated code should not perform the
checking described in the ARM. /SUPPRESS ALL
specifies that no checking at all should be performed at
run time. This qualifier does not override pragma
SUPPRESS ALL. The default provides all the checks
that the ARM requires.

B-2

COMPILATION SYSTEM OPTIONS

/save source (default)
/nosave source

Specifies whether the source text of the compilation unit
is stored in the program library. In case the source
text file contains several compilation units, the source
text for each compilation unit is stored in the program
library. The source texts stored in the program library
can be extracted using the PLU (refer to the TYPE
command in the Program Library Utility Section).

B-3

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

2 The AI-ADA Cross Linker

2.1 The Invocation Command

Command format: ada88k/link <unit-name> [<recompilation-spec>]
<recompilation-spec> ::= <unit-spec>

(+<unit-spec>)
<unit-spec> ::= <unit-name> I

<unit-name>/SPECIFICATION
<unit-name>/BODY

Command parameters: unit-name

If a link is requested, unit-name must specify a main
program which is a library unit found in the current
program library, but not necessarily in the current library.
The library unit must be a parameterless procedure. If
the main procedure has parameters, then the execution
of the program is undefined.

If examination of the consequences of recompilations is
requested, unit-name specifies a set of program library
units for which the consistency will be checked as they
appear after the hypothetical recompilations.

The specified unit-name may include vildcard
characters, which will be interpreted according to
VAX/VMS rules for wildcard characters.
The following applies to the different kinds of unit
names, with and without wildcard characters:

a) without vildcard characters.

Unit-name designates the visible unit of the specified
name. The designated unit must be a parameterless
procedure.

b) with wildcard characters.

Unit-name designates all library units in the current
library with names matching the specified unit-name.
All types of library units may be designated.

B-4

COMPILATION SYSTEM OPTIONS

recompilation-spec

A sequence of unit-spec separated by '1' (plus) or ','

(comma). A unit-spec is a unit-name which may have
a /SPECIFICATION or /BODY qualifier. If this
parameter is given, the linker will analyze the
consequences of hypothetical recompilations of the unit
or units given by the recompilation specification. The
parameter is a list of unit-names (possibly with
wildcards) separated by comma or +. Each unit-name
may have a positional qualifier indicating whether the
body or the specification is to be considered compiled.
If a unit-name does not have this qualifier,
/SPECIFICATION is assumed.

Command qualifiers: /first address=<address>
/first-address=20000 (default)

Directs the linker to allocate memory to the application
starting at the specified (hexadecimal) address. This
qualifier must be used in accordance with the memory
allocated to the Run-Time System (refer to Chapter
15, AI-ARTOS Target Configuration Kit, in the AI-ADA/88K
User's Guide).

/last address-<address>
/last-address-3FOO00 (default)

This qualifier informs the linker of the (hexadecimal)
value of the last address in the target hardware's RAM
address space. The memory contained between the
END DATA section and LAST ADDRESS is used by
the AI-ARTOS storage manager to allocate space for
stacks and heaps. If a directives file is used, the
definition of the Memory top parameter given in the file
will override this qualifier.

/directives file-<filespec>

This optional qualifier specifies the name of a "directives"
file for the linker. The directives file contains
information regarding the memory configuration of the
target hardware.

The structure of the directives file is described in
Chapter 15, AI-ARTOS Target Configuration Kit, in the
AI-ADA/88K User's Guide.

If this qualifier is omitted, the linker will assume that
the target has a contiguous RAM address space starting at
the (default) value of qualifier FIRST ADDRESS and ending
at LAST ADDRESS. The order of the sections will be the

B-5

COMPILATION SYSTEM OPTIONS

default order.

/log[=<file-spec>]
/nolog (default)

Generates a log file in the file name file-spec. If there
is no file specification, a log file named unit-name.LOG
or LINK.LOG is created in the current default directory.
The log file name LINK.LOG is used if the unit-name
contains wildcard characters.

If a file specification is given, this file will be used as
the log file.

In any case, the name of the log file is displayed on

SYS$OUTPUT.

/target=<target-id>

Targetid is an INTEGER value that identifies a
particular target and can be checked by the target-
dependent parts of the RTS. This qualifier identifies the
target hardware on which the executable image will run.
It instructs the linker to use the proper configuration
module while linking.

As supplied, the Run-Time System is configured to
support the Motorola MVME180 and MVME181, and the
Tadpole TP880V CPU boards.

/progress
/noprogress (default)

Displays the object file names included in the
executable image.

/with rts
/nowifh rts (default)

This qualifier instructs the linker to create an executable
image that includes all the modules of the Run-Time
System necessary for the execution of the Ada program.
The image created constitutes a complete,
self-contained Ada application. The default value of this
qualifier, nowith rts, causes the linker to include only an
interface to the RTS in the executable image, on the
assumption that the Run-Time System has been
previously downloaded, or resides permanently in the
target in the form of firmware.

B-6

COMPILATION SYSTEM OPTIONS

/trace
/notrace (default)

This qualifier is used to enable different tracing functions
in the Run-Time System. In the current version, linking
with the qualifier /trace anables the exception traceback
mechanism which causes the RTS to print a trace for
every exception raised (whether it is handled by the
program or not). Note that the trace will be meaningful
only for the units that were compiled using the qualifier
/trace. Otherwise, the code that supports this feature is
not generated. Refer to the section on Traceback
Information in this guide.

/library=<file_spec>

Specifies the current sublibrary and also the current
program library, which consists of the current sublibrary
and its ancestor sublibraries.

If the qualifier is omitted, the sublibrary designated by
the logical name ADA88KLIBRARY used as the
current library.

/map (default)
/nomap

Generates a map file with a file name corresponding to
the executable image name, with the suffix .MAP.
Information pertaining to module size and location, and
location of variables is detailed in the MAP file.

/externalmodule=(modulel,module2,...)

Instructs the linker to include the object files of the
given modules in the link. This qualifier is used when
compilation units included in the link contain references
to assembly subprograms whose specifications are
given using pragma INTERFACE.

The linker searches for the modules in the current
default directory, unless a full path name is provided.

/rts size=<size>
/rts-size=10000 (default)

Determines the maximum size in bytes (hexadecimal) of
the Run-Time System. For further information, refer to
Chapter 15, AI-ARTOS Target Configuration Kit,
in the AI-ADA/88K User's Guide.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type DURATION is delta 0.000061 range -131072.0 .. 131071.0;

type SHORTINTEGER is range -128 .. 127;

type LONGINTEGER is range -2147483648 .. 2147483647;

type SHORTFLOAT is digits 4 range -3.403E+38 .. -3.403E+38;

type LONGFLOAT is digits 15 range
-1.79769313486232E+308 .. 1.79769313486232E+308;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

This appendix describes the implementation-dependent characteristics of
the AI-ADA/88K Cross Compiler System, as required in the Appendix F frame of
the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

The following implementation dependent pragmas are defined in the compiler:

* suppress all
* interface_package
* externalsubprogramname

Refer to the section on Implementation-Dependent Pragmas in this guide for
further information.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined for this version.

F.3 Package SYSTEM

The specification of the package SYSTEM:

package SYSTEM is
type ADDRESS is new LONG INTEGER;
subtype PRIORITY is INTEGER range 0..23;

-- Priority 0 is reserved for the Null Task
-- Priority 24 is reserved for System Tasks
-- Priorities 25..31 are for interrupts

type-NAME is (MC68020, MC88000, i860);
SYSTEM NAME: constant NAME :- MC88000;
STORAGE UNIT: constant := 8;
MEMORY SIZE: constant := 2048 * 1024;
MIN INT: constant := -2 147 483 647-1;
MAX-INT: constant :- 2 147_ 83 _47;
MAX-DIGITS: constant := 15;-
MAX MANTISSA: constant :- 31;
FIN! DELTA: constant:. 2#1.0#E-31;
TICK: constant :. 0.000001;

type INTERFACE LANGUAGE is (ASM, C, RTS);

end SYSTEM;

C-2

APPENDIX F OF THE Ada STANDARD

F.4 Representation Clauses

F.4.1 Length Clauses

The following kinds of length clauses are supported:

1. Size specification: T'size

Supported as described in ARM. For scalar objects residing in the frame,
the smallest possible size (in complete bytes) will always be chosen by
the compiler.

2. Specification of a collection size: T'storage_size

Specifies the number of storage units allocated to the collection
associated with access type T.

If a storage size of 0 is given for an access type, then no collection
will be created for objects of the accessed type. This feature can be
used to create access types that point to external (non-Ada) data
structures.

3. Specification of task size: T'storage_size

Specifies the number of storage units allocated for each activation of a
task of type T. This size includes space for the task's stack, as well
as some RTS overhead (approximately 450 bytes).

4. Specification of small for a fixed point type: T'small

The effect of the length clause is to use this value of small for the
representation of values of the fixed point base type.

F.4.2 Enumeration Representation Clause

Enumeration representation clauses may specify representations in the range of
the predefined type LONG INTEGER.

F.4.3 Record Representation Clause

Record representation clauses are supported as detailed in Section 13.4 of the
ARM.

F.5 Implementation-Dependent Names for Implementation-Dependent
Components

None defined by the compiler.

C-3

APPENDIX F OF THE Ada STANDARD

F.6 Address Clauses

Address clauses are supported for objects (variables or constants) and task
entries (linkage to hardware interrupt); refer to Section 15.8, "Connecting
External Interrupts to Ada Rendezvous."

Address clauses for objects are interpreted as absolute addresses, and code is
generated using the ORG directive. The compiler does not check for possible
overlap.

F.7 Unchecked Conversion

No warning is issued when conversion between objects of different sizes is
performed. The result of such a conversion is unpredictable.

F.8 Input-Output Packages

Input-Output packages are supplied with the AI-ADA/88K Cross Compiler System.

Standardinput and Standard output are supported. External files and file
objects are implementation-aependent, and therefore are handled as specified
in the ARM. F.8.1.Specification of the Package SequentialIO

with BASIC 10 TYPES;
with 10_EXCEPTIONS;
generic

type ELEMENT TYPE is private;
package SEQUENTIAL TO is

type FILE TYPE is limited private;
type FILEMODE is (INFILE, OUTFILE);

-- File management
procedure CREATE (

FILE : in out FILE TYPE;
MODE : in FILE MODE :- OUT FILE;
NAME : in STRING := "";-FORM : in

STRING :- "");

procedure OPEN (
FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING vivo)

procedure CLOSE (FILE in out FILE TYPE);
procedure DELETE (FILE in out FILETYPE);
procedure RESET (

FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILE TYPE);

C-4

APPENDIX F OF THE Ada STANDARD

function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : In FILE-TYPE) return STRING;

function FORM (FILE : in FILE TYPE) return STRING;
function IS OPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- input and output operations

procedure READ (
FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (
FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE);

function ENDOFFILE (FILE : in FILE-TYPE)
return BOOLEAN;

-- exceptions
STATUSERROR : exception renames

10 EXCEPTIONS.STATUSERROR;
MODEERROR : exception renames

10 EXCEPTIONS.MODEERROR;
NAMEERROR : exception renames

10_EXCEPTIONS.NAMEERROR;
USEERROR : exception renames

10 EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception-renames

10 EXCEPTIONS.DEVICEERROR;
ENDERROR- . exception renames

10 EXCEPTIONS.END ERROR;
DATA_ERROR : exception-renames

IOEXCEPTIONS.DATA ERROR;

private
type FILETYPE is new BASICIO TYPES.FILETYPE;

end SEQUENTIALIO;

F.8.2 Specification for Package Direct Input-Output

with BASIC 10 TYPES;
with IO EXCEPTIONS;
generic-

type ELEMENT TYPE is private;
package DIRECTIO is

type FILE TYPE is limited private;
type FILE-MODE is (INFILE, INOUT FILE, OUTFILE);
type COUNT is range .LONG INTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1..r'OUNT'LAST;

-- File management

C-5

APPENDIX F OF THE Ada STANDARD

procedure CREATE (
FILE : in out FILE TYPE;
MODE : in FILE MODE :- INOUTFILE;
NAME : in STRING := ""-
FORM : in STRING :=

procedure OPEN (
FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :=

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (FILE : in out FILE TYPE;

MODE : in FILEMODE);

procedure RESET (FILE : in out FILE TYPE);
function MODE (FILE : in FILETYPE) return FILE MODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILETYPE) return STRING;
function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- input and output operations

procedure READ (
FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE;
FROM : in POSITIVE7COUNT);

procedure READ (
FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (
FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE;
TO : in POSITIVICOUNT);

procedure WRITE (
FILE : in FILE TYPE;
ITEM : in ELEMENTTYPE);

procedure SET INDEX(
FILE :-in FILE TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILETYPE) return
POSITIVECOUNT;

function SIZE (FILE : in FILE TYPE) return COUNT;
function END OF FILE(FILE : in FILETYPE)

return BOOLEAN;

C-6

APPENDIX F OF THE Ada STANDARD

-- exceptions

STATUSERROR : exception renames
10 EXCEPTIONS.STATUSERROR;

MODE-ERROR : exception renames
10 EXCEPTIONS.MODE ERROR;

NAMEERROK : exception renames
10 EXCEPTIONS.NAMEERROR;

USEERROR- : exception renames
10 EXCEPTIONS.USE ERROR;

DEVICEERROR : exception-renames
10 EXCEPTIONS.DEVICEERROR;

ENDERROR- : exception renames
10 EXCEPTIONS.END ERROR;

DATA ERROR : exception-renames
IOEXCEPTIONS.DATAERROR;

private
type FILETYPE is new BASICIOTYPES.FILETYPE;

end DIRECTIO;

F.8.3 Specification of Package Text Input-Output

with BASIC 10 TYPES;
with 10 EXCEPTIONS;
package TEXT 10 is
type FILE TYPE is limited private;
type FILE-MODE is (IN FILE, OUT FILE);
type COUNT is range 0-.. LONG INTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1 .. COUNT'LAST;

UNBOUNDED: constant COUNT:- 0; -- line and page length
subtype FIELD is INTEGER range 0 .. 50;
subtype NUMBER BASE is INTEGER range 2 .. 16;
type TYPESET Ts (LOWERCASE, UPPER-CASE);

-- File Management

procedure CREATE (
FILE : in out FILE TYPE;
MODE : in FILE MODE :. OUTFILE;
NAME : in STRING life
FORM : in STRING :"

procedure OPEN (
FILE : in out FILETYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :fl);

C-7

APPENDIX F OF THE Ada STANDARD

procedure CLOSE (FILE : in out FILETYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (

FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);
function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;
function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET INPUT (FILE : in FILE TYPE);
procedure SET OUTPUT (FILE : in FILETYPE);
function STANDARD INPUT return FILE TYPE;
function STANDARD OUTPUT return FILE TYPE;
function CURRENT INPUT return FILETYPE;
function CURRENT-OUTPUT return FILE-TYPE;

-- specification of line and page lengths

procedure SET LINE LENGTH (
FILE :in FILE TYPE;
TO : in COUNT);

procedure SET LINE LENGTH (TO : in COUNT);
procedure SET-PAGE-LENGTH (

FILE :-in FILE TYPE;
TO : in COUNT);

procedure SET PAGE LENGTH (TO : in COUNT);
function LINE LENGTH (FILE : in FILETYPE)

return COUNT;
function LINE LENGTH return COUNT;
function PAGE-LENGTH (FILE : in FILETYPE)

return COUNT;
function PAGE LENGTH return COUNT;

-- Column, Line, and Page Control

procedure NEW LINE (
FILE : in FILE TYPE;
SPACING : in POSITIVECOUNT := 1);

procedure NEW LINE (SPACING : in POSITIVE COUNT :- 1);

procedure SKIP LINE (
FILE : in FILE TYPE;
SPACING : in POSITIVECOUNT 1);

procedure SKIP LINE (SPACING : in POSITIVE COUNT := 1);
function ENDOFLINE (FILE : in FILE-TYPE) -return BOOLEAN;

C-8

APPENDIX F OF THE Ada STANDARD

function ENDOFLINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEW-PAGE

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIP PAGE
function END OF PAGE (FILE : in FILE TYPE) return BOOLEAN;
function END OF PAGE return BOOLEAN;
function END OF FILE (FILE : in FILE TYPE) return BOOLEAN;
function END_ FFILE return BOOLEANT

procedure SETCOL (FILE : in FILE TYPE;
(TO : in POSITIVECOUNT);

procedure SET COL (TO : in POSITIVE COUNT);*
procedure SET-LINE (FILE : in FILE TYPE;

(TO : in POSITITE_COUNTT;

procedure SET LINE (TO : in POSITIVE COUNT);
function COL (FILE : in FILETYPE)

return POSITIVE COUNT;
function COL return-POSITIVECOUNT;

function LINE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function LINE return POSITIVE-COUNT;

function PAGE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function PAGE return POSITIVECOUNT;

-- Character Input-Output

procedure GET (
FILE : in FILE TYPE;
ITEM : out CHARACTER);

procedure GET (ITEM : out CHARACTER);

procedure PUT (
FILE : in FILE TYPE;
ITEM : in CHARATCTER);

procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (
FILE : in FILE TYPE;
ITEM : out STRING);

procedure GET (ITEM : out STRING);

C-9

APPENDIX F OF THE Ada STANDARD

procedure PUT (
FILE : in FILE TYPE;
ITEM : in STRING);

procedure PUT (ITEM : in STRING);
procedure GET LINE (

FILE : in FILE TYPE;
ITEM : out STRING;
LAST : out NATUPAL);

procedure GET LINE (
ITEM : out STRING;
LAST : out NATURAL);

procedure PUT LINE (
FILE :-in FILE TYPE;
ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

-- Generic Package for Input-Output of Integer Types

generic

type NUM is range <>;

package INTEGER 10 is
DEFAULT _IDTH : FIELD := NUM'WIDTH;
DEFAULT-BASE : NUMBERBASE := 10;

procedure GET (
FILE : in FILE TYPE;
ITEM : out NUM
WIDTH : in FIELD := 0);

procedure GET (
ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (
FILE : in FILE TYPE;
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT WIDTH;
BASE : in NUMBERBASE := DEFAULTBASE);

procedure PUT (
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT WIDTH;
BASE : in NUMBERBASE := DEFAULTBASE);

procedure GET (
FROM : in STRING;

C-10

APPENDIX F OF THE Ada STANDARD

ITEM : out NUM;
LAST : out POSITIVL);

procedure PUT (
TO : out STRING;
ITEM : in NUM;
BASE : in NUMBERBASE := DEFAULTBASE);

end INTEGERIO;

-- Generic Packages for Input-Output of Real Types

generic

type NUM is digits <>;
package FLOATIO is

DEFAULT FORE : FIELD := 2;
DEFAULT AFT : FIELD := NUM'digits - 1;
DEFAULT-EXP : FIELD :- 3;

procedure GET (
FILE : in FILE TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (
ITEM : out NUM;
WIDTH : in FIELD :0 0);

procedure PUT (
FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD :- DEFAULT FORE;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

procedure PUT (
ITEM : in NUM;
FORE : in FIELD :- DEFAULT FORE;
AFT : in FIELD :- DEFAULT AFT;
EXP : in FIELD :- DEFAULTEXP);

procedure GET (
FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

end FLOATIO;

c-11

APPENDIX F OF THE Ada STANDARD

generic
type NUM is delta <>;
package FIXED 10 is
DEFAULT FORE : FIELD := NUM'FORE;
DEFAULT-AFT : FIELD := NUM'AFT;
DEFAULT-EXP FIELD 0;
proceduie GET (FILE : in FILE TYPE;

ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (
ITEM : out NUM;
WIDTH : in FIELD :- 0);

procedure PUT (
FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULT FORE;
AFT : in FIELD := DEFAULT-AFT;
EXP : in FIELD := DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD :- DEFAULT FORE;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD :. DEFAULTEXP);

procedure GET (
FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (
TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD :- DEFAULTEXP);

end FIXEDIO;

-- Generic package for Input-Output of Enumeration Types

generic

type ENUM is (<>);
package ENUMERATION 10 is
DEFAULT WIDTH : FIELD 0;
DEFAULT-SETTING : TYPE SET UPPERCASE;
procedure GET (

FILE : in FILE TYPE;
ITEM : out ENUM);

procedure GET (ITEM : out ENUM);
procedure PUT (

C-12

APPENDIX F OF THE Ada STANDARD

FILE : in FILE TYPE;
ITEM : in ENUM;
WIDTH : in FIELD :. DEFAULT WIDTH;
SET : in TYPE-SET := DEFAULTSETTING);

procedure PUT (
ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT WIDTH;
SET : in TYPESET DEFAULTSETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPESET := DEFAULTSETTING);

end ENUMERATIONIO;

-- Exceptions

STATUSERROR : exception renames
10 EXCEPTIONS.STATUSERROR;

MODEERROR : exception renames
10 EXCEPTIONS.MODE ERROR;

NAME-ERROR : exception ienames
10 EXCEPTIONS.NAME ERROR;

USEERROR : exception renames
IOEXCEPTIONS.USE ERROR;

DEVICEERROR : exception-renames
10 EXCEPTIONS.DEVICEERROR;

ENDERROR- : exception renames
10 EXCEPTIONS.END ERROR;

DATA_ERROR : exception-renames
10 EXCEPTIONS.DATAERROR;

LAYOUTERROR : exception renames
IOEXCEPTIONS.LAYOUTERROR;

private

type FILE-TYPE is new BASICIOTYPES.FILETYPE;

end TEXTIO;

C-13

