
r ENETATIONMPAGEForm ApprovedAENTATION PAGE OPM No. 0704-0188

aveae 1 hour per reepone. inclukd t time for reirlowkn Inetrutlorta. eawknl exitng ata mce gathe" ard makitaini te oata
padklgths time or estimate or any ott -pe of th

i
s collection of Wionnalbn inckdn su estio for reingx l this burden, to WashingonAD-A 233 786 i.1215 Jeflemon Davi HiWay. Su 1204. Arhgon. VA -4302 and to the Office of Intonation and Regulatory Affais. Office

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I IFinal: 7 Feb 1991 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Silicon Graphics, 4D ADA, Iris-4D/220S
(Host & Target), 900703W1.11015

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-384.0291
Wright-Patterson AFB
Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Silicon Graphics, 4D ADA, Wright-Patterson AFB, OH, Iris-4D/220S, IRIX Release 4D-3.3 (Host & Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, AN'S'.'?.!L-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

:-~j: ~ . . " ~ .," Prescribed by ANSI Std. 239-128

AVF Control Number: AVF-VSR-384.0291
7 February 1991

90-03-16-SIL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900703W1. 11015
Silicon Graphics

4D ADA
Iris-4D/220S => Iris-4D/220S

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 3 July 1990.

Compiler Name and Version: 4D ADA 3.0

Host Computer System: Iris-4D/220S, IRIX Release 4D-3.3

Target Computer System: Iris-4D/220S, IRIX Release 4D-3.3

Customer Agreement Number: 90-03-16-SIL

A more detailed description of this Ada implementation is found in section
3.1 of this report.

As a result of this validation effort, Validation Certificate
900703WI.11015 is awarded to Silicon Graphics. This certificate expires on
1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility Ada Validatiorr Organization
Steven P. Wilson Director, oCmputer & Software
Technical Director Engineering Division
ASD/SCEL Institute for Defense Analyses
Wright-Patterson AFB OH 45433-6503 Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

DECIARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer: Silicon Graphics

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFR OF 49433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: 4D ADA 3.0

Host Computer System: Iris-4D/220S, IRIX Release 4D-3.3

Target Computer System: Iris-4D/220S, IRIX Release 4D-3.3

Customer's Declaration

I, the undersigned, representing Silicon graphics, declare that Silicon Graphics
has no knowledge of deliberate deviations from the Ada Language Standard
ANSIIMIL-STD-1815A in the implementation listed in this declaration. I declare
that Silicon Graphics is the owner of the above implementation and the
certificates shall be awarded in the name of the owner's corporate name.

" ' 6 LA ---.. Date: __ 1:
Robert Olson, Director
Programming Products, SSD
Silicon Graphics Computer Systems
2011 N Shoreline Blvd
PO Box 7311
Mountian View, CA 94039-7311

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 TEST EXECUTION 3-1

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90J against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC nay be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
O-ice, August 1990.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity ot an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 71 tests had been withdrawn by the Ada
Validation Organization (AVO) at the time of validation testing. The
rationale for withdrawing each test is available from either the AVO or the
AVF. The publication date for this list of withdrawn tests is 18 May 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B C83026A
C83041A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B AD1B08A
BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E
CD2A87A CD2B15C BD3006A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4O51D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA2O1E
CE21071 CE2119B CE2205B CE2405A CE3111C CE3118A
CE3411B CE3412B CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMNTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55BO7A B55B09C B86001W C86006C
CD7101F

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B8600lZ check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete. For this implementation, the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84i, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method:

Test File Operation Mode File Access Method
CE210ZD CREATE INFILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT_10IO
CE2102I CREATE IN FILE DIRECT_10

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL 10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT_10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET INFILE DIRECT_10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE 7IRECT 10
CE3102E CREATE IN FILE TEXT I0
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-IO

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for tFie external
file. THis implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 28 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B22003A B22004A B22004B B22004C B23004A B24005A
B24005B B24009A B32201A B33301B B38003A B38003B
B38009A B38009B B85008G B85008H BC1303F BC3005B
BD2BO3A BD203A BD4003A

CD1009A, CD1009I, CD1CO3A, CD2A24A, and CD2A31A..C (3 tests) use
instantiations of the support procedure LENGTH CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that th's interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce FAILED messages only from the
instantiations of LENGTH CHECK --i.e., the allowed REPORT.FAILED messages
have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Wesley Embry
Silicon Graphics
2011 N. Shoreline Blvd.
Mountain View CA 94043

For a point of contact for sales information about this Ada implementation
system, see:

Wesley Embry
Silicon Graphics
2011 N. Shoreline Blvd.
Mountain View CA 94043

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3826
b) Total Number of Withdrawn Tests 71
c) Processed Inapplicable Tests 72
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 273

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 273 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a system equipped with a 9-track tape
driver, and the tests were then copied via NFS to the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host computer system,
as appropriate. The results were captured on the host computer system.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option Effect

-02 Invoke full optimization for Ada.

-Olimit num Specify the maximum size, in basic blocks,
of a routine that will be optimized by the
global optimizer. If a routine has more
than this number of basic blocks, it will
not be optimized, and a message will be
printed. An option specifying that the
global optimizer is to be run (-0, -02, or
-03) must also be specified. num is assumed
to be a decimal number. The default value
for num is 500 basic blocks.
For ACVC 1.11 validation, -Olimit 1500 is
applied to ensure that all test are optimized.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9J. The
following macro parameters are defined in terms of the value V of
$MAXIN LEN which is the maximum input line length permitted for the tested
implemenltation. For these parameters, Ada string expressions are given
rather than the macro values themselves.

Macro Parameter Macro Value

$BIGIDi (1..V-1 =>'A', V Ill'1)

$BIG_1D2 (l..V-l = 'A', V u> 2')

$BIG_1D3 (1..V/2 ->'A') & '3' &
(1..V-l-V/2 -> 'At)

$BIG_1D4 (1..V/2 -> 'A') & '4' &

(1..V-l-V/2 -r> 'A')

$BIGINTLIT (1..V-3 -> 0') & "298"

$BIGREALLIT (1. .V-5 1 0') & "690.0"

$BIG STRINGi " & (1..V/2 -.> 'A') & '"'

$BIGSTRING2 ''& (1..V-l-V/2 => 'A') & '1' & '"'

$BLANKS (1..V-20 =>'

$MXLNITBAE-IEA
"12:"1 & (1..V-5 1 0') & 111:11

$MAXLENREALBASEDLITERAL
"116:"1 & (1..V-7 a.10') & "1F.E:"1

$MAXSTRINGLITERAL I'll & (1. .V-2 => 'A') & "

A-1

MACRO PARAMETERS

The following table contains the values for the remaining macro parameters:

Macro Parameter Macro Value

$MAXINLEN 499

$ACCSIZE 32

$ALIGNMENT 4

SCOUNTLAST 2_147_483_647

$DEFAULTMENSIZE 16_777216

$DEFAULT STOR UNIT 8

$DEFAULTSYSNAME RISCOS

$DELTADOC 0.0000000004656612873077392578125

$ENTRYADDRESS SYSTEM."1+"(16)

$ENTRY ADDRESS1 SYSTEM."1+"(17)

$ENTRYADDRESS2 SYSTEM."1+"(2)

$FIELDLAST 2_147_483_647

$FILETERMINATOR '1

$ FIXEDNAME NOSUCHFIXED TYPE

$ FLOATNAME NO SUCHTYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

$GREATER THANDURATION 100.

$GREATERTHANDURATION BASE LAST

$GREATERTANFLOAT BASE LAST

_ - 1.?E308

$GREATERTHANSTFLOAT SAFE LARGE

9.0f37-

A- 2

MACRO PARAMETERS

$HIGHPRIORITY 99

$1 LLEGAL-EXTERNAL FILE NAMEl
WI/illegal/file name/2(J$Z2102C.DAT"

$ILLEGALEXTERNAL FILE NAME2
W1/illegal/file name/CE2IO2C* .DAT"

$INAPPROPRIATELINE LENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")

$INTEGER-FIRST -2 147_483_648

$INTEGERLAST 2_147_483_647

$INTEGERLASTPLUS_1 2_147_483_648

$INTERFACE-LANGUAGE C

SLESS THAN DURATION -100000.0

$LESSTANDURTION-BASE FIRST
-10_000_000.0

$LINE-TERMINATOR ASCII .LF

$LOW-PRIORITY 0

$MACHINE CODESTATEMENT
CODE- O'(OP.>NOP)

$MACHINECODETYPE CODE_0

$MANTISSADOC 31

$MAX-DIGITS 15

$MAX-INT 2147483647

$MAXINTPLUS_1 2_147_483_648

$MIN INT -2147483648

$NAME TINYINTEGER

SNAMELIST RISCOS

A-3

MACRO PARAMETERS

$NAMESPECIFICATIONi /cmplrs/acvcl.11/tests. 4d220/L/e/X2120A

SNAKESPECIFICATION2 /emplrs/acvcl. 11/tests. 4d220/L/e/X2120B

$NAMESPECIFICATION3 /cmplrs/acvcl.11/tests .4d220/L/e/X3119A

$NEG BASEDINT 16#FFFFFFFD#

$NETJ I'EK SIZE 16 777_216

$NEW STORUNIT 8

SNEW SYS NAME RISCOS

$PAGETERMINATOR ASCII.LF & ASCII.FF

$RECORDDEFINITION RECORD NULL; END RECORD;

$RECORDNAME NOSUCHKACHINECODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLEADDRESS VAR_1'ADDRESS

$VARIABLE-ADDRESS1 VAR_2' ADDRESS

$VARIABLEADDRESS2 VAR_3'ADDRESS

$YOURPRAGMA PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
,oi. o this report.

ada

Ada compiler

Syntax

ada [options] [sourcefile]... [linker_options]
[object file.o]...

Options

-# identifier type value (define) Define an identifier of a
specified type and value.

-a file name (archive) Treat file name as an object
archive file created by ar. Since some archive files end
with .a, -a is used to distinguish archive files from Ada
source files.

-d (dependencies) Analyze for dependencies only. Do not do
semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.

-e (error) Process compilation error messages using a.error
and send it to standard output. Only the source lines
containing errors are listed. Only one -e or -E option
should be used.

-E

B-i

COMPILATION SYSTEM OPTIONS

-E file

-E directory (error output) Without a file or directory
argument, ada processes error messages using a.error and
directs a brief output to standard output; the raw error
messages are left in ada source.err. If a file pathname is
given, the raw error messages are placed in that file. If a
directory argument is supplied, the raw error output is
placed in dir/source.

-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-El

-El file

-El directory (error listing) Same as the -E option, except
that source listing with errors is produced.

-ev (error vi(l)) Process syntax error messages using
a.error, embed them in the source file, and call the
environment editor ERROR EDITOR. (If ERROR EDITOR is
defined, the environment variable ERROR PATTERN should also
be defined. ERROR PATTERN is an editor search command that
locates the first occurrence of '###' in the error file.) If
no editor is specified, vi(1) is invoked.

-K (keep) Keep the Intermediate Language (IL) file
produced by the compiler front end. The IL file will be
placed in the .objects directory, with the file name Ada source.i

-L libraryname (library) Operate in VADS library
library-name (the current working directory is the default).

-ifile abbreviation (library search) This is an option
passed-to the UNIX linker, ld(l), telling it to search the
specified library file. (No space between the -1 and the
file abbreviation.)

For a description of the file abbreviations, see also
Operating System documentation, ld(1).

-M unit name (main) Produce an executable program by
linking the named unit as the main program. unit name must
already be compiled. It must be either a parameterless
procedure or a parameterless function returning an integer.
The executable program will be named a.out unless overridden
with the -o option.

-M source file (main) Produce an executable program by
compiling-and linking source file. The main unit of the
program is assumed to be the-root name of the .a file (for

B-2

COMPILATION SYSTEM OPTIONS

foo.a the unit is foo). Only one .a file may be preceded by
-M. The executable program will be named a.out unless
overridden with the -o option.

-o executable file (output) This option is to be used in
conjunction with the -M option. executable file is the name
of the executable rather than the default a.out.

-0[0-2] (optimize) Invoke the code optimization. An
optional digit (there is no space before the digit) provides
the level of optimization. The default is -02.

-0 full optimization

-00 prevents optimization

-01 low level optimization

-02 full optimization

-P Invoke the Ada Preprocessor.

-R VADS library (recompile instantiation) Force analysis
of all generic instantiations, causing reinstantiation of
any that are out of date.

-S (suppress) Apply pragma SUPPRESS to the entire
compilation for all suppressible checks. See also pragma
SUPPRESS(ALL_CHECKS).

-sh (show) Display the name of the tool executable but do

not execute it.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time
of compilation, name of file compiled, command input line,
total compilation time, and error summary line. Storage
usage information about the object file is provided. With
OPTIM3 the output format of compression (the size of
optimized instructions) is as a percentage of input
(unoptimized instructions).

-w (warnings) Suppress warning diagnostics.

Description

The command ada executes the Ada compiler and compiles the
named Ada source file, ending with the .a suffix. The file
must reside in a VADS library directory. The ada.lib file in
this directory is modified after each Ada unit is compiled.

By default, ada produces only object and net files. If the

B-3

COMPILATION SYSTEM OPTIONS

-M option is used, the compiler automatically invokes a.ld
and builds a complete program with the named library unit as
the main program.

Non-Ada object files (.o files produced by a compiler for
another language) may be given as arguments to ada. These
files will be passed on to the linker and will be linked
with the specified Ada object files.

Command line options may be specified in any order, but the
order of compilation and the order of the files to be passed
to the linker can be significant.

Several VADS compilers may be simultaneously available on a
single system. Because the ada command in any
VADS location/bin on a system will execute the correct
compiler components based upon visible library directives,
the option -sh is provided to print the name of the
components actually executed.

Program listings with a disassembly of machine code
instructions are generated by a.db or a.das.

See also a.das; a.db; a.error; a.ld; a.mklib, and Operating
System reference documentation for the ld(1) utility.

Diagnostics

The diagnostics produced by the VADS compiler are intended
to be self-explanatory. Most refer to the RM. Each RM reference
includes a section number and optionally, a paragraph number
enclosed in parentheses.

B-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 15

range -1.79769313486232E+308 .. 1.79769313486232E+308;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma

Pragma INLINE ONLY, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space.

1.2. BUILT IN Pragma

Pragma BUILT IN is used in the implementation of some
predefined Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual Ada
body can be provided.

1.3. SHARE CODE Pragma

Pragma SHARE CODE takes the name of a generic instantiation
or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit, the pragma
applies to all instantiations of that generic. When the
first argument is the name of a generic instantiation, the
pragma applies only to the specified instantiation, or over-
loaded instantiations.

If the second argument is TRUE, the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second argument is FALSE, each instantiation will

C-2

APPENDIX F OF THE Ada STANDARD

get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has The same effect as SHARE CODE. It is
included for compatibility with earlier versions of 4D
ADA.

1.4. NO IMAGE Pragma

Pragma NO IMAGE suppresses the generation of the image array
used for the IMAGE attribute of enumeration types. This
eliminates the overhead required to store the array in the
executable image. A reference to XIMAGE will be accepted
by the compiler if the pragma NO IMAGE has been given.

1.5. EXTERNALNAME Pragma

Pragma EXTERNAL NAME takes the name of a subprogram or
variable definea in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.6. INTERFACEOBJECT Pragma

Pragma INTERFACE OBJECT takes the name of a variable defined
in another language and allows it to be referenced directly
in Ada. The pragma will replace all occurrences of the
variable name with an external reference to the second,
link argument. The pragma is allowed at the place of a
declirative item in a package specification and must apply
to an object declared earlier in the same package specifica-
tion. The object must be declared as a scalar or an access
type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICITCODE Pragma

Pragma IMPLICIT CODE takes one of the identifiers ON or OFF
as the single argument. This pragma is only allowed within
a machine code procedure. It specifies that implicit code
generated by the compiler be allowed or disallowed. A

C-3

APENDIX F OF THE Ada STANDARD

warning is issued if OFF is used and any implicit code needs
to be generated. The default is ON.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

Pragma CONTROLLED is recognized by the implementation but
has no effect.

2.2. ELABORATE

Pragma ELABORATE is implemented as described in Appendix B
of the Ada RM.

2.3. INLINE

Pragma INLINE is implemented as described in Appendix B of
the Ada RM.

2.4. INTERFACE

Pragma INTERFACE supports calls to 'C' and FORTRAN
functions. The Ada subprograms can be either functions or
procedures. The types of parameters and the result type for
functions must be scalar, access or the predefined type
ADDRESS in SYSTEM. All parameters must have mode IN.
Record and array objects can be passed by reference using
the ADDRESS attribute.

2.5. LIST

Pragma LIST is implemented as described in Appendix B of the
Ada RM.

2.6. MEMORYSIZE

Pragma MEMORY SIZE is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by means
of pragmas, the SYSTEM package must be recompiled.

2.7. NOTELABORATED

Pragma NOT ELABORATED can only appear in _ library package
specification. It indicates that the package will not be
elaborated because it is either part of the RTS, a config-
uration package, or an Ada package that is referenced from a
language other than Ada. The presence of this pragma
suppresses the generation of elaboration code and issues
warnings if elaboration code is required.

C-4

APPENDIX F OF THE Ada STANDARD

2.8. OPTIMIZE

Pragma OPTIMIZE is recognized by the implementation but has
no effect.

2.9. PACK

Pragma PACK vill cause the compiler to choose a non-aligned
representation for composite types. It vill not cause
objects to be packed at the bit level.

2.10. PAGE

Pragma PAGE is implemented as described in Appendix B of the
Ada RM.

2.11. PRIORITY

Pragma PRIORITY is implemented as described in Appendix B of
the Ada RM.

2.12. SHARED

Pragma SHARED is recognized by the implementation but has no
effect.

2.13. STORAGEUNIT

Pragma STORAGE UNIT is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by means
of pragmas, the SYSTEM package must be recompiled.

2.14. SUPPRESS

Pragma SUPPRESS is implemented as described, except that
RANGECHECK and DIVISION CHECK cannot be supressed.

2.15. SYSTEMNAME

Pragma SYSTEM NAME is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by means
of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

Attribute P'REF can be used to convert an integer to an
address.

C-5

APPENDIX F OF THE Ada STANDARD

4. Specification of Package SYSTEM

vith UNSIGNED TYPES;
package SYSTEM is

pragma SUPPRESS(ALL CHECKS);
pragma SUPPRESS(EXCiPTION TABLES);
pragma NOTELABORATED;

type NAME is (RISCos);

SYSTEMNAME : constant NAME := RISCos;

STORAGE UNIT : constant :, 8;
MEMORYSIZE : constant := 16_777_216;

-- System-Dependent Named Numbers

MIN INT : constant :- -2 147 483 648;
MAXINT : constant := 2 147 '83_'47;
MAXDIGITS : constant := 15;
MAX-MANTISSA : constant := 31;
FINE DELTA : constant :-2.0**(-31);
TICK- : constant := 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer := 64*1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS renames "+";

NOADDR : constant ADDRESS;

C-6

APPENDIX F OF THE Ada STANDARD

type TASKID is private;
NOTASKID : constant TASKID;

type PROGRAM ID is private;

NOPROGRAMID : constant PROGRAMID;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNED INTEGER;

NOADDR : constant ADDRESS := 0;

pragma BUILT IN(">");
pragma BUILTIN("<");
pragma BUILT IN(">.");
pragma BUILT IN("<=");
pragma BUILT IN("-");
pragma BUILTIN("+");

type TASK ID is new UNSIGNEDTYPES.UNSIGNEDINTEGER;
NOTASK ID : constant TASKID := 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NOPROGRAMID : constant PROGRAM ID := 0;

end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK, record components are padded
so as to provide for efficient access by the target
hardware; pragma PACK applied to a record eliminates the
padding where possible. Pragma PACK has no other effect on
the storage allocated for record components a record repre-
sentation is required.

5.2. Record Representation Clauses

For scalar types, a represenation clause will pack to the
number of bits required to represent the range of the sub-
type. A record representation applied to a composite type
will not cause the object to be packed to fit in the space
required. An explicit representation clause must be given
for the component type. An error will be issued if there is
insufficient space allocated.

C-7

APPENDIX F OF THE Ada STANDARD

5.3. Address Clauses

Address clauses are supported for variables and constants

that have no initial values in their declaration.

5.4. Interrupts

Interrupt entries are supported through signals.

5.5. Representation Attributes

The ADDRESS attribute is supported for the following enti-
ties, but a meaningless value is returned.

Packages
Tasks
Labels
Entries

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) ihen-the size
of ELEMENT TYPE exceeds that value. For-example, for uncon-
strained arrays such as string, where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAX RECORD SIZE
is defined in SYSTEM and can be changed by a program before
instantiating DIRECT 10 to provide an upper limit on the
record size. In any case, the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USEERROR
if MAXRECSIZE exceeds this absolute limit.

C-8

APPENDIX F OF THE Ada STANDARD

Instantiations of SEQUENTIAL 10 use the value MAXREC SIZE
as the record size (expressed in STORAGE UNITS) vhein the
size of ELEMENT TYPE exceeds that value. For example, for
unconstrained arrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used instead.
MAX RECORD SIZE is defineU in-SYSTEM and can be changed by a
program before instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIALIO imposes no limit on
MAXRECSIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
24,000,000 x STORAGE UNITS. The maximum size of a stati-
cally sized record type is 24,000,000 x STORAGE UNITS. A
record type or array type declaration that exceeds these
limits will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specifica-
tion, every task except the main-program is allocated a
fixed size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGESIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute,
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded, the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-9

