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ABSTRACT

The definitions of the reflection coefficients, in the absence of ribs and due
to ribs, of an incident pressure wave on a plane at the surface of a ribbed fluid
loaded panel are defined, examined, and computed. The incident pressure wave is
described by a plane wave and by a collimated beam. The results of representative
computations are displayed. Through these displays, some aspects of the influence
on the reflection coefficients caused by changes in the parameters that describe the
ribbed panel, the fluid loading, and the incidence are investigated. These aspects
include wavenumber aliasings and symmetries in some of the terms and factors that
compose the expressions for the reflection coefficients; the wavenumber of concern
lies across the ribs. Aliasings are present, however, only when the separations
between adjacent ribs are conditioned to be equal. Moreover, in some of these
aliased terms and factors, symmetry is present only when the incidence obeys
specific conditions. Disturbing either of these conditions tends to spoil the aliasing
and/or the symmetries in these terms and factors. It is shown, however, that the
aliasing and symmetry properties are invariant to changes in the parameters that
describe the ribbed panel and/or the fluid loading to which it is subjected.

The role that the phenomenon of pass and stop bands (bands in reference to
the frequency domain) plays in the reflection properties of ribbed fluid loaded
panels is of particular interest here. It is illustrated that in the frequency ranges of
pass bands, diffraction orders and aliasings tend to fade, and in the frequency
ranges of stop bands they are enhanced. Fluid loading subdues the pass and stop
bands; however, even substantial fluid loading does not eliminate these bands.
Finally, the relationship between the reflection coefficients defined on the surface of
the panel and on a control surface placed in the far-field is formulated and
discussed.
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INTRODUCTION
Recently the authors developed a formalism to account for the response of a ribbed panel
that may or may not be stratified by composite layers and which is subjected to external drives [1].
Herein the simplest model of a ribbed panel is considered and some aspects of the reflection of an
incident pressure wave by its surface is explored. The formalism is cast in terms of the "impulse
reflection function" R, (k | k, k, | ky , © | @) of the panel so that an incident pressure wave
P, (K, ky, @) yields the reflected pressure wave Py, (k, ky, ©) in the form

Pr,(k, ky, 03 = | Ry (KK, K, k), 0| 0) dk'dk) dor’ Py (K, K, @) "

where the wave vector variable {k, k,} lies in the plane of the panzl and is the Fourier conjugate of
the spatial vector variable {x, y}, and the frequency variable w is the Fourier conjugate of the
temporal variable t, see Figs. 1 and 2. Both the incident pressure wave P}, and the reflected
pressure wave Py, are pressures assessed in the fluid on a plane that is adjacent to the top surface
of the panel. Quantities in reference to the top surface of the pane!l are dcsignated by a unit
subscript [1]. To assess the reflected pressure wave on a parallel control plane off the surface of
the panel, a simple propagation process needs to be applied [1]. It is further noted that the spectral
vector {k, ky, w} defines the reflected pressure wave. If the unribbed panel is uniform, the
attached ribs are uniform, parallel, and lie in the y-direction, and the ribbed panel and its
environment are temporally stationary, then

R, (kK k 1ky,0]@) >R, (k|K,@,) 8k, -k) s@-0) , 2

where @, = {ky, w}. Using Eq. (2), Eq. (1) reduces to

Po,(k, @) = | Ry(k|K, @,) dK’ P, (K, @,) o

As expected, the integration remains only in the domain in which nonuniformities exist. It is




convenient to abbreviate Eq. (3) in the form

P, (k) = J-R“(klk') dk’ Py, (k) @

where the spectral vector @, is suppressed as obvious. This kind of abbreviation is extensively

used in this paper. The functional form of R, (k | k') is derived in Reference 1 to be

Ry(k|k) = Ry (k) 8(k-k)+Ry, (k|k) , )
where!
Ry (K) = [1-Z,(0) {2Y,,(K) + S,,(®) G, (k) 28, (0}] ©)
Ry, (k) = Z(k) S,,(k) Gy(k k) 28,k 7
The factors G, (k) and G,(k | k') combine in the form
G(klk) = G, (k) 8(k-k) -Gy (k|k) , (8)

to yield the impulse response function of the ribbed panel so that the acceleration A(k) of the panel

to an external drive P,(k’) is obtained

Ak) = ioV(E) ; V (k) =IG(k|k’) dk’ P,(k) |, o)
where V(k) is clearly the corresponding velocity of the panel. The factors Slp(k) and Spl(k) are
transfer functions from the surface of the panel to the surface that is in contact with the fluid at the

top, and vice versa, respectively [1]. The surface impedance Z (k) is that of the fluid atop the

1The opportunity is taken to issue an erratum to Eq. (39a) of Ref. 1. In the third term of the first
of this equation, a factor of 2 was inadvertently omitted in front of the factor Spa(k). Equation (7),
in the text, stands corrected.




panel and, finally, Y, (k) is the (1,1)th element in the inverse of the surface impedance matrix
describing the stratified (composite) panel; the layers are defined by lumped surface impedances
and the panel itself is rendercd blocked [1].

A BARE PANEL
In this paper a simple model is constructed of the ribbed panel. The model incorporates a

bare panel. For such a mode! one obtains

Yu(k) =0 ; S,k =S,k =1, (10)

so that Egs. (6) and (7) reduce to
Ruy(k) = 1-2Z,(k) G (k) , (11)
Ry (k1K) = 2Z,(k) G (k|K) , (12)

respectively. From Egs. (5), (11), and (12) one obtains for this model

Ry (k|K) = [1-2Zk) G (0] 8(k-K)+2Z,(0) Gy(kIK) . 3

To derive the explicit form of R, (k| k) one needs to determine the explicit forms of Z(k), G, (k),

and G (k| k).

FLUID LOADED ISOTROPIC MEMBRANE-LIKE PANEL
In the model considered here, the panel is assumed to face a uniform fluid that occupies the

semi-infinite space atop, and below a vacuum prevails; see Fig. 1. For such an environment

Go(k) = [Z,0+Z,0] ;  Z,0) =2, +Z, k)

Z, 1= Zlf(k) > Zbl(k) =0 ’ (14)




where Z (k) is the surface impedance of the fluid in the plane of the panel

Z,®) = (pa/ky) ; k=K +k?} ;
k= [@ler -1k 12]" Ulhey - 1k 12] + i [ 1617 - @/ 1 U 1k1P - @/e?] | g5,

and Z, (k) is the mechanical surface impedance of the uniform panel and Z , is the loading on the
panel; Z, , on the top and Z, , on the bottom. In Eq. (15), p and ¢ are the density and speed of
sound of the fluid and U is the unit step function. It is further assumed that the unribbed (uniform)

panel is membrane-like so that the mechanical surface impedance may be approximated in the form

Z, (&) =iom[1 - { &k/k,)* + G, /k,)*}]

kp =kp(1=inp) 5 Ky =k -ing,) (16)

where m is the mass per unit area and {kp, kpy} is the free wavevector of the panel. Fora

membrane respoiding 1. Jexure or longiudinally
kpo=(@/ey) 3 kpyo=(wlcy) (17a)

in which {c,, ¢, y} is the velocity of free wave piopagation in the relevant typc of the response

and for a membrane simulating a plate responding in flexure

K2 = (@ /c)® 5 Kyy=(00y/c?) | (17b)

in which @ and @, are the critical frequencies with respect to the speed of sound c of the fluid, in
the x-domain and y-domain, respectively. A membrane-like panel cannot support a moment
response. Thus, this choice for a panel greatly simplifies not only the expression for the
mechanical surface impedance of the uniform pane but, more significantly, it simplifies the
expression for the impulse response function G (k | k') of the ribs. This function may then be

stated in the form




G,(k|K) = @m)? £ G, (k) exp(ikx,) R, Cy, [Goo (K)/go ] exp(-ik'x) . (182)

where
-1

Boo(X) = %) = [8oa(X = X)/Bea] 5 Boo = Bea2) = 80, @)

12

—- — -1 _ R
Ri=gi[1+gi] ; B=Qrn)yZg, (19)

g% - x) = @02 [ 6,00 dkexp[-k(x; - x)] o0)

In Egs. (18) through (20) x,, is the position in the x-domain of the (n)th rib; g, (x; - x;) is the line
transfer admittance on the uniform panel from a line positioned at x; to a line positioned at x;; Z; is
the line impedance of the (i)th rib; and R, is the reflection coefficient of the (i)th rib to an incident
wave in the panel. Again, the dependence of quantities on the spectral vector @, is suppressed
[e.g., R,(wy) = Ri] as a matter of abbreviation. When the panel is regularly ribbed (i.e., when the
ribs are identical, infinite in number, and the separations between adjacent ones are equal) Eq. (18)

becomes

Gy(k 1K) = o) [1+ X FoGes )] Hat) E 8k +,-K)

(21a)

where it is selected that x,=0 and
|Xgo1 = Xgl=b 5 XK= LT 2r/b) , 22)
H =@t Gk ; Z,=Z=2Z . 23)

Since the panel and its environment are simplistic -- a bare panel that is fluid loaded from atop




or'y — one may dispense with the single and double subscripts of unity; e.g., in Eqs. (11) and
(12), Ry, =R, R, =R, and Z (= Z, .

In Eq. (21a) the restriction that the panel needs to be membrane-like may be readily
removed. Indeed, the modification that needs to be made in Eq. (21a) to accommodate a plate-like
panel — a panel that can support a moment response — is that the equation for the mechanical

surface impedance of the panel be extended to include the flexural response of a plate; namely,
Z (&) = iom [1- {&/Kk)? + k. /k )}
o) = iom [1- {(k/k)" + (& /K, )}] 24)

and the surface impedance ratio ﬁm (k) to include the line moment impedance Zy, of the ribs;

namely,

H, (k) = [(Z-ikZy)/b] G (k) . (25)

[cf. Egs. (16) and (23), respectively, and References 2 and 3.] Removing the corresponding

restrictions in the case of Eq. (18a) is more complicated [1,2].

FIRST ORDER MODELS
Situations arise in which models of ribbed panels may be devised in a manner that

suppresses natural phenomena so that simplified descriptions are obtained. Situations of this kind
may be instituted to derive a formalism from which approximations to more complicated
descriptions may be initiated. However, these situations may also be instituted to derive a contrast
with the corresponding more complicated descriptions so that phenomena of particular interest may
be pin pointed [4,5]. The first order models considered here generally fall into the second category
for the deployment of simplified models. In the first order models, all interactions among ribs are

artificially removed [4]. The removal of all interactions, as specified, renders Eq. (18a) to be




G (k1K) = @) £ G (R, [G. () g explix,(k-k)] ; Ry =8 » (1gp

and renders Eq. (21a) to be

G (k|K) = Goy() [1 48] Hu(®) F 8k +K,~K) 5 Bo=E; > 21b)

where the quantities and parameters were just defined in the preceding sections. A few
computations involving Egs. (18b) and (21b) are carried out for contrast with those involving Egs.
(18a) and (21a), respectively; the latter set describes the more natural model.2 [It is noted that the
transition from Eq. (18b) to Eq. (21b), as the appropriate conditions of regularity are finally
reached, is much simpler than the corresponding transition from Eq. (18a) to Eq. (21a); the

transition in the former set is a snap.]

PLANE AND COLLIMATED BEAM OF INCIDENT PRESSURE WAVES
The pressure due to a plane incident wave on a control plane placed parallel to the surface

of the panel may be stated in the forin
P, x’, W,) =P[0 8(1('-—1(1) 8(1(; “ky]) 8(0)"‘0)]) ’ (26)

where
k; = (w;/c) sin(6;) cos(¢y) ; ky = (w;/c) sin(8;) sin(¢;) @n

the angular vector {8;, ¢, } defines the angles of incidence and cy is the tone of the wave, see

2]t is to be understood that situations may be conceived in which a proper model and its
corresponding first order model may, in the limit, coincide. For example, if the panel is assigned a
point reacting surface admittance G, that is independent of the wavenumber k, then the proper
model and its corresponding first order model coincide. This subject matter is not pursued here
any further.




Fig. 2. It may be convenient and instructive to employ also a collimated beam of incident pressure

wave. In a simple case of collimation, the expression for P, k', (, ) remains separable in the form
P] (k” Qé ) = P]o Fx(k' - k[) Fy(k; - ky[) Ft(m' - (D]) ’ (28)
where, for example,

F,(z) = exp(-iq,2z) (1tz)'l sin(Lz/2) ; 0=X,Y,0rt ; Q,=XcYeOr—t . (29)

In Eq. (29), the constants x,, Y., and t. indicate the "center of the coordinate” in the x—, y—, and t—
domain, respectively; the lengths.L, and L, are the spatial apertures in the x-and y-direction,
respectively, and the time L, is the "temperal aperture” of the collimated beam It is noted that

exp(-iquz) (nz)™ sin(L z/2) = 8(z) (30)
=> 00
a
so that if L,, Ly, and L, ave carried to infinity, in the limit Eq. (28) approaches and becomes
Eq. (26). Itis noted that F(z) has the dimensionality of L. It is, therefore, convenient to define

Fy(@) = Qn/L,)F, ; Fu2)8@)=38@ , (31)

where F_(2) is a dimensionless quantity.

REFLECTION COEFFICIENTS DUE TO RIBS
If the plane incident pressure wave P; is as stated in Eq. (26), then the reflected pressure
wave Py is derived from Egs. (2), (4), and (5) in the form

Pr(k, @,) = P (@R | k;, @,)) 8k, —ky;) d(0-ay) (32a)




where

Rk |k, W,p) = R, (k| k, W) + R (k| kp, @, 5
R, (k| kp, @) = R (kpp @) 8k -ky) . (33a)

Again, provided the Jependence of quantities on @, [= {kyp, ®,}] is obvious, this dependence
may be suppressed and the quantity be superscripted by I to indicate this specific dependence; e.g.,
R,(k | k;, kyp, @) = Ry(k | k). In this abbreviation, Eq. (32a) may be stated as

Pp(k, @) =Py, R'(k | kp) 8k, ~ky) Sw-ayp) (32b)
where

RikIk) =R () +R(klk) ;5 Roklk)=RoG)dk-k) . (33

The quantity R(I,(k,) is commonly referred to as the specular reflection coefficient of the uniform

panel. In the absence of ribs, this quantity may be defined in the form
=I oo
R.lqlkp) = @u/LY) R lk) o Rk 3 Ryklk)=0 , 34

where L is "the aperture” of the uniform panel in the x-domain. In analogy, the reflection
coefficient R (k | k;) in lieu of the ribs may be defined as

Ry&lk) = @a/L) Riklk) , (35)
where L_ is the total aperture of the ribs; namely
L'x = |XP—le = §(xn+l_xn) . (36)

In Eq. (36) xp designates the position of one end-rib and xy the position of the other end-rib. It is

apparent that the normalization of _ﬁi and K: is usually different, except when the ribs span the

10




entire extent of the uniform panel; e.g., when the panel is regularly ribbed. However, even when
the normalization is different, the estimation of the reflection in terms of the reflection coefficient
does not cause any difficulty. Excepting specular reflection, the reflection is entirely described in
terms of the reflection coefficient ﬁi (k | k;) due to ribs. Indeed, in this paper many of the
computed illustrations are centered on ﬁz (k | k) and the normalization stated in Eqs. (35) and (36)
is then used.

The measure of incompatibility that besets the definition of the reflection coefficients, when
the aperture of the ribs is finite, may be removed somewhat by using a collimated form for the
incident pressure wave. Moreover, the use of this type of incident pressure wave may render the
model phenomenologically more like to actual situations. For the purpose of this paper it suffices
to introduce collimation in the x-domain only. (The generalization to include collimations in the y-
domain and the t-domain can be readily introduced at a cost of some increase in cumbersomeness.)

The incident pressure wave is thus stated in the form
P (K, @3 ) =P, F (K -k) 8(k}f—ky1) S -ay) . G7)
[cf. Egs. (26) and (28).] From Egs. (2), (4), (5), and (37), one obtains Eq. (32b) with

R (k|k) = Ry (k|k)+ R, (k|k) ;
Re, (k| k) =Ry®) Fyk-k) ;

R (k|k) = RUk|K) dK'F,('-k,) a5

replacing Eq. (33b). The reflection coefficient il(k | k;) of the ribbed panel to an incident

pressure wave of the form expressed in Eq. (37) is then simply

R'k|k)=R(k!|k) = @r/L)RiKk|k) ;
Rey(kIk) = @r/L)RLKIk) ; Ry kik)=@ru/L)R,&Ik) . (39

11




The term i;x is the reflection coefficient in the absence of ribs and ﬁix is the reflection coefficient
due to ribs. In the formalism here developed, these terms can be so separated, which is a
substantial simplification. It is observed that the reflection coefficient Ei (k | k;), as defined in

Eq. (38), is dependent on the structure of the incident pressure wave. The definition in Eq. (39) is
particularly useful if L, = L, where L_is as stated in Eq. (36). In this case the aperture of the
incident pressure wave matches the aperture of the ribs on the panel and, therefore, the normalizing
apertures in the first and the second terms in the first of Eq. (38) are identical.

It is interesting to note that Eq. (38) may be alternately obtained. In this derivation one
starts with Eq. (33) and proceeds to impose on this equation a filtering window in the x-domain.
If the window is similar to that imposed on the plane incident pressure wave described in Eq. (37),
Eq. (38) is derived from Eq. (33). In this alternate procedure, the physical interpretation of
Eq. (38) is slightly modified. The modification is commensurate with that resulting from inserting

a filter in the iaput versus inserting the same filter in the output.

EXPLICIT EXPRESSIONS FOR THE REFLECTION
COEFFICIENTS AND COMPUTATIONAL PROCEDURES

Using Eqgs. (12) and (35), and Eqs. (18a) and (18b) one obtains

— I =
R, (kli) = A R, Gk “0)

H
ALK) = Z0) GL@) (41)

» T2 R Cexplitkx,~k;x)], (42a)
R, (k k) = 8m)"* [ GL)/gl L ]
\§ R} exp[ix(k-k)] (42b)

where Z}, GL, gL ,R!, C! , and L}, are defined explicitly in Eqs. (14) through (20), and

nr?

(36).

12




Using Eqgs. (11) through (15), (21), (38), (39), and (41), one obtains

Ry(k | ky) = Roa(k | Kp) +Rg (ke 1 kp) 43)

— I _
Rox(k [ k) = [1 - 24,001 Fy(k - ky) (44)

— I =
R}, (klky) = ALG) R, (k) @5)
=1 ’ 46
Ry (k) =2 2, k4 1) F, R+, - k) B uee
130 , (46b)

. ~ S ~17°!
Bs(k)=[l+JZHw(k+Kj)] ; Bo=[1+3,] (472)

where Z!, GL., FiL., F!, and g, are defined explicitly in Eqgs. (14) through (17), (21) through
(23), (31), and (39).

The dual representation of the reflection coefficients as expressed in Egs. (40) and (42) and
Eqgs. (43) through (46) may assist in examining, among other features, the relationship between
introducing the finiteness of the structure in terms a finite aperture of ribs, on the one hand, and in
terms of a collimated incidence of a finite aperture on the other. However, comparing results
issued by Eqgs. (40) and (42) with those issued by Eqs.(43) through (46), one finds a fundamental
difficulty. Equations (43) through (46) readily accounts for fluid loading; fluid loading in spectral
space is, with the exception of the factor B}, in Eq. (46b), accounted for simply by an algebraic
term in the surface admittance of the panel. On the other hand, the evaluation of the line transfer
admittance 8..(X; - x;), with fluid loading in place, presents a layer of computational difficulties.
[cf. Eq. (20).] In this sense the evaluations of gf,, and RL and, in particular, the evaluations of C:,r

in Eq. (42) are cumbersome [6,7]. In order to afford a comparison between the computational

13




results of Egs. (40) and (42) and those of Eqs. (43) through (45), without completely ignoring
fluid loading in Eq. (42) and in B(l,, it is necessary to modify this equation and B(l, to accommodate
some aspects of fluid loading even if only heuristically and over a limited range in the
wavenumber-frequency (k—®) domain. . Fluid loading may be largely accounted for by evaluating
g, RL, and C:n, which appear in Eq. (42), and by evaluating g, in Bf,, which appears in

Eq. (45b), as if fluid loading is absent and then merely modifying, in these quantities, the mass per

unit area m and the free wavenumber kj, of the uniform panel as follows:

m—m[1+(/o)?%] ; ko = ko [1+ (coc/m)lfzt»:c]v2 . 48)

[cf. Reference 3.] In this paper the reflection of a pressure wave by the surface of a ribbed panel is
examined by performing computations of _ﬁ: (k|k;), as stated in Eqs. (40) and (42), and of
ﬁlsx(k |k;) and ﬁi(k |k;), as stated in Eqs. (43) through (46). However, before starting
computations the nature of a few individual factors in the expressions for these quantities need
examining. This examination may help readers to decipher the subsequent displays of the
computations of these quantities. Also, it may allow for a few observations of import to be made a
priori. Such observations correspond to those already made in References 2 and 3, again
emphasizing the basic significance and the common ground that the impulse response function
plays in the formalism dealing with all the various responses of a structure. The various responses
are generated, in the main, in consequence of differing drives to which the structure is subjected.
If the unribbed panel is subjected to an external drive Pi(k), then the drive (pressure) P}(k)

that the motion of the panel will generate on its surface is given by

PH(k) = AL) Pe(k) 49)

This example may be used to interpret the physical meaning of AL(k) which appear in Eqs. (40),
(41), (44), and (45). It is thus clear that AL(k) is, as is the specular reflection term, a property of

14




the uniform panel; the ribs do not influence this factor. It is noted that Z}(k) and GL(k), as stated

in Egs. (14) through (25), are symmetric in k and, therefore, so is Al (k); that is
Zek) =Zi-k) ; Go®)=G.(k) 5 ALK)=ALEK) . (50)

[cf. Eq. (41).] Typical characteristics of AL,(k) are illustrated in Fig. 3. In this figure the
magnitude of AL (k) is displayed as a function of the normalized wavenumber (k/x;), where X is a
wavenumber scale factor. In Fig. 3 the frequency is fixed at (w/w.) = 0.4, the angle ¢; of
incidence is fixed at zero; ky; = 0, and the panel is membrane-like and isotropic; k; = Ky, with ky,
as specified in Eq. (17b) and the mechanical loss factor 1, is set at 0.005. In Fig. 3a the fluid
loading parameter €, is fixed at 0.1 and in Fig. 3b, at 0.001. Of interest are the peaks at the sonic
and at the free wavenumbers; at the sonic wavenumber, AL.(k) = 1. The ridges associated with the
peaks at the sonic wavenumber are more prominent when the value of the fluid loading parameter
is lower. On the other hand, the free wavenumber decreases as the fluid loading is decreased.
Beyond the free wavenumber, the magnitude of AL,(k) diminishes quickly with increase in the
wavenumber (k/x,); the mechanical surface impedance of the panel increases and the fluid loading
decreases with increase in the wavenumber beyond the free wavenumber. The symmetry of AL,(k)
in k is evidenced in Fig. 3.

The factors R.(k | k;) and R,k | k;) are influenced directly and critically by the properties
of the ribs; this is in addition to their dependence on the properties of the panel. Examining the
factor R, (k | k;) first, it is noted that this quantity is aliased in k with respect to the harmonics
K;(= jKy) of the separation wavenumber k; between adjacent ribs; k) = (2n/b). This aliasing is

defined by

=I =l
R klk) =R k+x k) - (51a)

=l
Typical characteristics of this factor are illustrated in Fig. 4, where the magnitude of R, (k | k;),
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stated in Eq. (46), is displayed as a function of the normalized wavenumber (k/x;) with the
normalized frequency (/@) fixed at 0.4, the angle ¢; of incidence fixed at zero; ky; =0, the
panel is membrane-like and isotropic; k;, = ky, the free wavenumber k;,, is specified in Eq. (17b)
and the mechanical loss factor 1, is set at 0.005; the line impedance of the ribs is assumed to be
mass controlled; Zj = Z = ioM, with (M/bm) set at 0.3, the separations between adjacent ribs is
fixed at (bw./c) = 16, the aperture in the collimated incident pressure wave is 20b, and the fluid
loading parameter € is fixed at 0.1. In Figs. 4a and b Eq. (46a) is employed with 8; = 0.9 and
zero, respectively. In Fig. 4c Eq. (46b) is employed with 8; = 0.9. The aliasing of ﬁ:x(k I kp) in
k is clearly apparent in Fig. 4.3 In Fig. 4b, in addition, the factor E_: Lk | k;) is symmetric.

Indeed, this factor is symmetric whenever k; = nx;; namely
=1 =l
Rk k) =R (~klk) ; k=nx; . (52a)

[1t is noted that AL,(k) is symmetric in k as specified in Eq. (50); however, this quantity is not
aliased in k. Consequently, the reflection coefficients due to ribs are not aliased; i.e., neither

K. (k|k;) nor R (k |k;) is aliased, whether R .. (k | k;) or R ,(k | ky) are aliased or not.] Featurcs of
interest in Fig. 4 are the peaks at the diffraction orders (including the zeroth). In Fig. 4b the zeroth
diffraction order is located at (k/x;) = 0, and symmetry, and not only aliasing, reigns. It is
observed that Figs, 4a and c differ with respect to the wavenumber variable k. This difference is
completely accounted for by the factor Bls (k), which, in turn, accounts completely for the

wavenumber dependence of the interactions among the ribs. (It is noted that the factor Bf, is

independent of the wavenumber k.) The factor BIs (k) is clearly aliased and symmetric in k; namely

3The general values, aliasings, and symmetries shown in the displays of the computations
performed in this paper are valid only to within the finiteness of the samples and the rounding
errors that are built into the computer program employed in the calculations and in the graphical
presentations.
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B,(k) = By(-k) = Bi(k + k) . (53)

Figure 4d depicts the magnitude of the factor Bi (k), stated in Eq. (47a), as a function of the
normalized wavenumber (k/x;) for the corresponding conditions and parametric values used in
Fig. 4a. Interesting features are the considerable excursions in the values of Bls(k) as a function of
(k/x;). Yet, the aliasing and the symmetry in k are clearly visible. Close observation indicates that
Bls (k) substantially accounts for the differences in Figs. 4a and c. The more profound significance
of this factor is subsequently discussed .

Tue factor ﬁs(‘s | k;) is examined next. In general, this factor is neither aliased nor

=I
symmetric in k. However, if the separations between adjacent ribs are equal then R (k | k) is

aliased in k; i.e.,

=I =I
Ri&k|k)=R&k+x k) ; Ix5,;-%x,/=b . (51b)

[cf. Eq. (51a).] Moreover, if the incidence wavenumber k; is harmonic in x; then the factor

=I
R, (k| k) is also symmetric in k; i.e.,
=I =I
Rk|k)=RiCklk) i % -%,l=b, k=nx . (52b)

[cf. Eq. (52a).] Figure 5 shows typical characteristics of this factor . In this figure the magnitude
of f:(k | ki), stated in Eq. (42), is displayed as a function of the normalized wavenumber &/xy)
with the normalized frequency (wy/w,) fixed at 0.4; the angles 6; and ¢y of incidence of a plane
pressure wave are fixed at 0.9 and zero, respectively; the panel is membrane-like and isotropic;

k, = k;,, the free wavenumber k, is specified in Eq. (17b) and the mechanical loss factor 7, is
set at 0.005, the line impedance of the ribs are assumed to be mass controlled; Z; = Z = ioM, with
(M/bm) set at 0.3, where b is a typical (averaged) separation between adjacent ribs and (ba,./c) =

16, the aperture is 21 ribs (= 20b), and the fluid loading parameter is fixed at 0.1 and Eq. (48) is
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applied. In Fig. 5a the variations in the separations between adjacent ribs are randomly selected
but not to exceed 0.1b. In Fig. 5b the separations between adjacent ribs are selected to be equal.
Features of interest are the lack of aliasing, especially at the higher wavenumber range, shown in
Fig. 5a. Also of interest is the favorable comparison between the prominences in Fig. 5b and the
corresponding prominences in Fig. 4a.3

From the nature of Eqgs. (40) through (47) in the formalism here developed, it emerges that
changes in the parameters that define the uniform panel, the fluid loading, the separation
wavenumber of the uniform ribs, and the incident pressure wave do not cause modifications in the
aliasing and the symmetry of the quantities and factors that describe the reflection coefficients. The
invariance of symmetry and aliasing, however, is limited to the particular models of the structure
and to the uniformity of the environmental loading. As Eq. (38) indicates, even within the confine
of simplified models, there are models for which this invariance may not be relevant. With this
final observation attention is now turned to a more thorough examination of the nature of the

reflection coefficients of ribbed panels immersed in uniform fluids.

COMPUTATIONS AND DISPLAYS OF THE REFLECTION COEFFICIENTS
The computations of the reflection coefficients performed and displayed herein are by no

means exhaustive of either the capabilities of the formalism or the interest; they are merely
representative. Thus, the quantities and parameters that describe the uniform panel and the ribs are
kept simple, for the most part, ; e.g., the line impedances of the ribs are considered to be mostly
mass controlled {2, 3]. It follows that the displays exhibit only some of the features in the
reflection coefficients. In addition, only the magnitudes of these quantities are shown. These
magnitudes are displayed as functions of the normalized wavenumber (k/x; ) at successive and
equal increments of the normalized frequency (wy/w,) for a number of fixed values of (k; | ;).
(It is noted that (k; /kp) = tan(¢y).] To reduce the information in the displays, only prominences
are exhibited; this is achieved by clipping the magnitudes by a threshold. In the displays here
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presented, the threshold t is a constant number assigned to each figure. The format of such
computations and displays was adopted in recent papers by the authors. In these papers the
response of ribbed panels that are driven by external mechanical line drives are described [2,3].
Nonetheless, the format is akin and suitable to be used for the purposes of this paper. Here then
this format is standard. It is more usual to confine displays of the reflection coefficients only to the
supersonic region of the spectral domain. This region is defined by &%+ kil) < (/i c)?,
Moreover, often only the evaluations of the peaks at the specular and the diffraction orders are of
concemn [4]. The displays presented in Figs. 6 through 10 cover the lower wavenumber portions
of the subsonic regions as well as the entire supersonic regions. In addition, the distributions, —
not just the peaks — of the prominences in the reflection coefficients are displayed. Included in
these displays are prominences that are not strictly of the diffraction orders . These prominences
are induced by the excitation of the structural resonances that are excited, on the one hand, by the
spectral distributions in the incident pressure waves and, on the other, by the wavenumber
conversion induced by the ribs for the ribs. The prominences at the spectral region defined by the
free wavenumber in the panel and their aliasings, generated by the periodicity in the spacing of the
ribs, are of particular significance in this category [2,3].

To avoid repetitions in the figure captions and to help with the interpretation of and
comparison between figures, it is convenient to set standard conditions and values of quantities and
parameters so that only deviations from these standards need be specified. Thus, the standard
panel is an isotropic membrane that simulates the response of a plate responding in flexure;

namely,

K=k, 5k =k(l=iny) 5 ko=(@ofch) ; o.=o, .

The standard loss factor 1, of the membrane is equal to 0.005, the standard free wavenumber k.

[=(co./c)] at the critical frequency is set equal to (bk,) = 16; the separations between adjacent ribs
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are equal and designated by b, the standard fluid loading parameter €_[= (pc/m_m)] is equal to 0.1;
the standard line impedances of the ribs are equal, Z; = Z, and are mass controlled, Z = ioM, with
(M/bm) = 0.3; the standard angles {6;, ¢} of incidence are equal to {0.9, 0}; and the standard
aperture is 20b which typically spans 21 ribs. The standard coverage in the wavenumber-
frequency domain is extended over the range - 1.5 < (k/x;) < 3.0 and 0 < (w/w_) < 0.6.

[cf. Figs. 3 through 5.]

Figure 6a displays the magnitude of the reflection coefficient ﬁls(k [k;) in the standard
format and under the standard conditions for a first order model of the ribbed panel. [cf. Eq. (42b)
and (47).] The diffraction orders are clearly discernible, as is the scattering of the incident pressure
wave into (subsonic) components that drive the (resonance) free waves in the panel. In this case
the free waves are dispersive as stated in Eq. (17b). This dispersion is readily recognized in Fig.
6a when the free waves are compared with the negative first order diffraction loci. Both
prominences that are associated with the diffraction orders and the free waves will be absent in the
absence of ribs; see Eq. (33b). Figure 6b displays the magnitude of the reflection coefficient
ﬁi (k| k;) in the standard format and under the standard conditions for a proper model of the ribbed
panel. A major difference between Figs. 6a and 6b emerges. In Fig. 6b the phenomenon of "pass
and stop bands" is outstanding; this phenomenon is directly related to the full interactions among
the regularly spaced ribs [5]). Clearly, in a pass band the influence of the ribs is faded, and
enhanced in a stop band . The fadings and the enhancements are not confined to the diffraction
orders, but to all the forms of scatterings; e.g., to the generation of the free waves and the aliasings
thereof. The influence of the pass and stop bands on the reflective properties of ribbed panels are
thus reminiscent of the influence of this phenomenon on the response of ribbed panels to localized
drives [2,3]. In the former the "drive” is localized in the wavenumber domain (k—-domain) and in
the latter in the spatial domain (x-domain). The pass and stop bands manifest characteristics of the
ribbed panel, be it excited by one drive form or another. The reminiscence is expected. Fig. 6¢

displays the effect of introducing a 10% randomly selected variations in the separations between
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adjacent ribs; (Ab/b) < 10"}, where Abis a typical variation in the separation between adjacent
ribs. The spoiling, by these variations, of the pass and stop bands and the aliasing is demonstrated
in this figure, notwithstanding that only the low wavenumber range, namely (kAb )2 < 1, is used
in the display.4 The spoiling is severe in the higher wavenumber range, where (kAb)2 >1,and
the spoiling is more severe the higher the inequality. [cf. Fig. 5a.]

Figures 7a and b correspond to Fig. 6b except that in these two figures the normalized
wavenumber at the critical frequency is changed from that of the standard value of (bk.) = 16 in
Fig. 6b, to (bk.) = 8 and (bk.) = 24, respectively. This change is commensurate with a change in
the separation b between two adjacent ribs and a corresponding change in the mass per unit length
M of the ribs so that (M/bm) is maintained at the standard value of 0.3 [2]. To 1naintain a decor,
the normalized wavenumber scale is appropriately changed in Figs. 7a and b. The observed
changes born by these figures as compared with Fig. 6b, are as expected.

Figures 8a and b display the results of computing the magnitude of R—Is «(klk;) in the
standard format and under standard conditions for a first order model and a proper model of a
ribbed panel, respectively. Figure 8a should then be comparable with Fig. 6a, and Fig. 8b with
Fig.6b. Clearly major correspondence is found in these comparisons. However, some details do
not correspond in these comparisons. What is different in the two sets of descriptions of the
panels and the incident pressure waves that may contribute to the observed disparities? In the first

set, Figs. 6a and b, the aperture is related to the finite number of ribs; beyond this aperture the

4The aliasing in k is a phenomenon that is wavenumber (and, therefore, also spatially in x) related.
On the other hand, the pass and stop bands is a phenomenon that is often viewed as frequency
related. However, as is apparent from comparison of Eqgs. (42a) and (46a) with Eq. (42b) and
(46b), the interactions among the ribs are wavcnumbcr k (and, therefore, also spatially x)
dependent; e.g., the factor B, (k) versus the factor B Indeed, the spatial regularity that is essential
to the phenomenon of ahasmg is also essential in thesc interactions for the phenomenon of pass
and stop bands to arise. Thus, disturbing the regularity of the separations between adjacent ribs is
bound to influence both these phenomena. In this sense the two phenomena are related.
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panel is bold of ribs. In the second set, Figs. 8a and b, the aperture is related to the incident
pressure wave and beyond this aperture the panel is regularly studded with ribs. It is thus not
surprising that details do not correspond in the two sets, even if the quantities displayed are in
terms of magnitudes and prominences, notwithstanding that the absence of pass and stop bands
in Fig. 8a is recovered in Fig. 8b, as is the case with respect to Figs. 6a and b, respectively.

The interactions among ribs that are regularly separated give rise to the phenomenon of pass and
stop bands which in turn are clearly visible in the reflections and scatterings that are caused by the
ribs [5].

Figure 9a displays in the standard format the co 1putational results of the magnitude of the
reflection coefficient R(l,x (k|k;) in the absence of ribs, as stated in Eq. (44), for the standard angles
of incidence; {6}, ¢;} ={0.9, 0.0}. It shows that the distribution with respect to the normalized
wavenumber (k/x; ) is fairly wide and contains even subsonic components of significant
magnitudes. Of course, the distribution in the reflection in the absence of ribs bears a factorial
correspondence to the distribution in the incident pressure wave. Indeed, the distribution is largely
determined by the normalized aperture function ?x (k—k;) in Eq. (44). It is observed that whereas
the incident pressure wave with respect to Fig. 6 is highly localized in the k-domain, with respect
to Fig. 8, it is broad and contains significant components even in the subsonic range. In this sense
the remark made with respect to the lack of detailed correspondence between Figs. 6 and 8 is
further strengthened. Indeed, some of the discrepancies in details between Figs. 6 and 8 may be
explained taking account of these very differences in the respective incident pressure waves. [cf.
Section V.] In Figs. 9b, c, and d the standard angles of incidence are changed from {0.9, 0.0} to
{0.3, 0.0}, {0.9, 0.3}, and {0.3, 0.3}, respectively. Of particular interest are Figs. 9c and d,
where the introduction of a none-zero ¢ is accommodated. The results of this introduction
conform to expectation.

Figure 10 displays in the standard format the magnitude of the reflection coefficient

'ﬁ:(k {k;) for three of the four incident pressure waves that are covered in Fig. 9. A comparison of
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Fig. 10a with Fig. 8b illustrates the influence of including the reflection in the absence of ribs in
the displays. The changes that occur with changes in the incidence angles may be deduced from
comparisons of Fig. 10a with Figs. 10b and c. A point of interest is that the peaks at and in the
vicinity of the specular angles are influenced by the reflection coefficients due to ribs indicating that
the zeroth order diffraction by the ribs may be significant. The significance, however, varies with
frequency.

There are many more issues that arise in the investigation of the reflective properties of
ribbed structures. It may be proper to discuss a number of these issues in this paper. The purpose
is to show that such issues can be conveniently and further addressed within the reaim of the
formalism and computational procedures herein developed. The issues to be singled out and
briefly discussed are related to the effects that are associated with changes in aperture, with
focussing and extension of the ranges displayed, with fluid loading, and, finally, with reflection to

the far-field.

APERTURE EFFECTS
The larger the aperture the sharper are the distributions in the reflection and response, as a
function of the wavenumber that lies in the direction of the aperture. Figure 11 illustrates this
statement. This figure repeats Fig. 10a with a change in the aperture from its standard value of 20b
(= 21 1ibs) to 42b (= 43 ribs). Comparing Fig. 11 with Fig. 10a indeed illustrates the increase in
sharpness of the distributions of the reflection coefficients defined in Eqs. (43) through (46).

FOCUSSING AND EXTENSION OF THE DISPLAYED RANGES
The displayed figures (Figs. 6 through 11) are limited to the standard wavenumber -
frequency range defined by — 1.5 < (k/x,) < 3.0 and 0 < (©;/®,) < 0.6. An occasion may arise in
which one may wish to focus the display on a specific sub-range. In Fig. 12a the display focuses

on the sub-range — .75 < (k/Kl) <l5and0< ((ol/coc) < 0.06 of Fig. 10a. The focussing
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increases the details in the reflection coefficient that pertain to the selected sub-range. On the other
hand, an occasion may arise in which one may desire to display the reflection coefficient more
extensively than is displayed in a standard figure. Figure 12b extends the display depicted in

Fig. 10a from its standard range to the wavenumber-frequency range defined by

-3.0 < (k/x;) £ 6.0and 0 < (w;/®,) < 2.4. Of particular interest is the extension into the
frequency above the critical frequency; i.e., into the frequency range (a;/w.) 2 1. In this range the
free waves in the panel approach and become supersonic. The process of taking the free waves
from just below the sonic range to that above it is compounded but of special interest. Such
specific considerations are, however, beyond the scope of this paper. Again, the purpose is
merely to point out that such considerations lie within the realm of the formalism and within the

computational capabilities employed herein.

FLUID LOADING EFFECTS

Fluid loading effects on the reflective properties, in particular, and on the response
properties, in general, are of interest to the investigation of the vibro-acoustics of ribbed panels.
Many questionable rule-of-thumbs exist in this regard. Can the reflective and response properties
of ribbed panels be estimated by ignoring fluid loading in some, but not in other, terms and factors
in the formalism that accounts for these properties? Does fluid loading dull the sharpness of the
patterns of the prominences (and valleys) in the displays of the reflection and response quantities of
ribbed panels? Does fluid loading effects favor supersonic and disfavor subsonic components in
these quantities? In what manner does fluid loading influence the phenomenon of pass and stop
bands? Obviously, the answers to these and other relevant questions cannot be given within this
paper. However, an attempt will be made to illustrate elements that may be involved in formulating
these kind of questions and providing such answers.

It is apparent that some of the discrepancies in details between Figs. 6 and 8 are related to

the fact that whereas fluid loading is introduced cavalierly and heuristically in the computations
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leading to Fig. 6 via Eq. (48), in the computations leading to Fig. 8, fluid loading is properly
accounted for. The measure of the influence of fluid loading on the reflective properties of a ribbed
panel is made clear by comparing Figs. 6b and 8b with Figs. 13a and b, respectively. In the latter
set of figures, the fluid loading parameter €, and, by necessity, also the threshold , are changed
from the standard values of 0.1 and 0.03, respectively, to 0.001 and 0.001, respectively. The
changes in the patterns in the two sets of figures are clearly significant However, these changes
can be readily accounted for; e.g., the observed decrease in the free wavenumber k,, as one
proceeds from Fig. 6b to Fig. 13a, is as specified in Eq. (48). The corresponding decrease in Koos
as one proceeds from Fig. 8b to Fig. 13b is more naturally, but less explicitly, accounted for. It is
interesting that, by and large, the correspondence between Figs. 13a and b is better than that
between Figs. 6b and 8b. The ridge at the sonic loci, which is more visible in Fig. 13b than in
Fig. 13a, is not an artifact. It is governed by the factor AL,(k), stated in Eq. (41) and relevantly
illustrated in Fig. 3. [cf. the next section and Ref. 6.] The prominences in the reflection
coefficients illustrated in Fig. 14 are computed with fluid loading only partially accounted for. In
this figure the fluid loading is accounted for only in the factor AL(k), in Eqs. (42a) and (46a); in
the remaining factors fluid loading is neglected; namely, €, is set equal to zero in f:(k | k;) and
ﬁ:x(k | k;), stated in Eqs. (40) and (45a), respectively. The comparison between Figs. 14a and b
is reminiscent of that between Figs. 6b and 8b, or even between Figs. 13a and b, respectively. It
is observed that the specified neglect of fluid loading does not undermine the overhaul
correspondence between Figs. 14a and b; except for details, the patterns in these figures are fairly
identical. However, comparison between Figs. 6b and 13a and Fig. 14a, and between Figs. 8b
and 13b and Fig. 14b indicate the dangers that beset the partial negligence of fluid loading in these
specific and other manners. In the first comparisons, between Figs. 6b and 8b, and Fig. 14, the
free wavenumber appears satisfactory, but not the positions of the pass and stop bands. In the
second comparisons, between Figs. 13a and 13b, and Fig. 14, the situation is the reverse of the

first. Again, it is noted that except for details, Figs. 14a and b bear between them a resemblance as
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good as the resemblances between Figs. 6b and 8b and Figs. 13a and b, respectively. Thus, there
are partial and mixed agreements and disagreements; hence, the caution for the dangers.

The comparisons between the various figures and set of figures that the reader was asked to
perform were not simple, primarily because each figure contained a large volume of information.
Some relief is provided by employing thresholds; further relief is afforded by the similarities of the
patterns in the compared figures. Will it not be useful and of interest to investigate the influence of
fluid loading on major characteristics of the reflective (and the response) properties of ribbed

panels without the clutter of excessive information? An opportunity for such an investigation lies

in Eq. (47a). It is noted that the factor B, (k), defined by
- | -1
B,& =Bl [BI]™ (47b)

accounts completely for the interactions among the ribs, and hence, in turn, the description of the
pass and stop bands lie completely within this quantity, despite that not all the interactions among
the ribs contribute directly to the phenomenon of pass and stop bands [5]. One may then use '§: k)
to investigate the extent and the manner by which fluid loading may influence the pass and stop
bands, notwithstanding that this quantity is locked into a model in which the panel is regularly
ribbed so that situations in which the equality in the separations between adjacent ribs is disturbed
cannot be investigated with 'ﬁ: (k). (To investigate how the influence of fluid loading is coupled to
variations in the separations between ribs, one needs to switch from Eq. (21) to Eq. (18). Such
considerations, however, lie outside the scope of this paper.) Since the factor B}, is independent of
k, the quantity E: (k) is aliased and symmetric in k in the manner specified for Bi (k) in Eq. (53).
Figure 15 is intended to illustrate the invariance of these properties to changes in the parameters
that describe the regularly ribbed fluid loaded panel. Indirectly, but clearly, the influence of the
same changes on the phenomenon of the pass and stop bands is also illustrated in this figure.4

The magnitudes of ﬁf (k) as functions of the normalized wavenumber (k/x,) for discrete,
successive, and equal increments of the normalized frequency (o /@) are displayed in Fig. 15. In
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Fig. 15 the threshold s conveniently chosen to be 1.5. [cf. Fig. 4d.] In Fig. 15a, the standard
conditions are maintained. In Fig. 15b the fluid loading parameter €, is changed from its standard
value of 0.1 to the much lower value of 0.001. Although the phenomenon of pass and stop bands
is manifested more distinctly in Fig. 15b than in Fig. 15a, it is still amply evident in the latter
figure. Figures 15¢ and d depict situations which correspond to those depicted in Figs. 15a and b,
respectively, except that the standard value of the surface mass ratio (M/bm) is changed from its
standard value of 0.3 to the high value of 3x103; in this case, the magnitude of the line impedance
Z! of the ribs exceeds by far the magnitude of the line impedance gL of the uniform panel. Even in
this extreme case, the pass and stop bands are evidenced and, again, the fluid loading does not
substantially suppress this phenomenon. Figures 15a and b are repeated in Figs. 15¢ and f for
situations in which the separation b between adjacent ribs is decreased so that bk, =4 and the
mass per unit length of the ribs is proportionately decreased so that (M/bm) is maintained at its
standard value of 0.3. The phenomenon of pass and stop bands is present in Figs. 15d and e, in a
similar fashion to its presence in Figs. 15a and b, respectively. The aliasing and the symmetry of
BIs (k) in k are evidenced throughout Fig. 15, thus confirming the invariance of these properties in
this factor to changes in the parameters that describe a regularly ribbed fluid loaded panel. Finally,
the invariance of aliasing in B: (k) in k indicates that the introduction of fluid loading does not
cause biases in the k-domain in favor or disfavor of low and high wavenumber distributions.
Thus, one may conclude that the interactions among the ribs cannot be made to distinguish between

low and high wavenumber components in the k-domain. [cf. Appendix A.]

REFLECTION COEFFICIENT IN THE FAR-FIELD
The reflection coefficients defined in the preceeding sections are related to the pressure
waves perceived on a plane that is placed on the surface of the panel. One may ask for the
corresponding reflection coefficients were one to assess the reflected pressure waves on a control-

semi-cylindrical surface in the far-field. The far-field reflected pressure wave due to the collimated
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incident pressure wave specified in Eq. (37), say, is given by

pL(x.8) = Py, TL(®) (/22 HP [(Yiwy/o)1] ;

r=2+A? 5 (@rie)>> 1, (55

where ng) is the Hankel function of the second kind and of order zero [6]. Explicitly, the factors
ri(e) and Yf, are of the forms

r'®)=vicos(®) RA(d k) ; ¥ =(Y}w/c)sin(6) , (56)

Yi=01-&k,clo)1? 5 kpelo)®<t 57

1
and Ri(k | k) is as stated in Eq. (38). The quantity I', (0) is limited to the supersonic components
in Ri(k | k;) only. The subsonic components do not reach the far-field; they are filtered out by the
passage through the fluid from the surface of the panel to the far-field locations. The far-field

reflection coefficient f‘x (0) is defined

T (8)=(n/L)Ti®0) . (58)

[cf. Eq. (39).] This quantity is, in fact, merely a directivity factor describing the directivity of the
reflected pressure waves in the far-field. [I-"x (0) is related generically to the reflection "form-
function” in cylindrical geometry [8].] The regularly ribbed fluid loaded panel is chosen as a
computational example. Accordingly Egs. (43) through (46) are substituted in Eqs. (56) to obtain

1““:(9) = 1"},(6) + 1“:,(9) , (59)

To(8) = Yicos(9) [1 - 2ALGO] (' - Ky) ©0)
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T'1(8) = Yicos(®) A" R, 1K) 61)

=l
where R, (k | k) is defined in Eq. (46) and it is noted that

AL = [{Z,<")/pc} Yicos(0) + 1]'l , ©2)

where Zp(k) is defined and stated in Egs. (16) and (17). The magnitude of f‘i (0), as stated in
Eqgs. (59) through (61), is displayed as a function of 0 in Fig. 16. In Figs. 16a, b, and ¢ the
normalized frequency (o /@) is set at 0.25, 0.4, and 0.5, respectively, the standard conditions are
imposed, and the first order model is assumed; i.e., I__{-:x(k [ k) in these figures is expressed in

Eq. (46b). In Figs. 16d, e, and f the respective normalized frequencies and standard conditions
are imposed, however and notably, the proper model is assumed; i.e., ﬁ:x(k | ;) in these figures
is expressed in Eq. (46a). The normalized frequency (wy /®,) = 0.25 is chosen so that the first
negative diffraction order coincides approximately with a monostatic return, and the normalized
frequency (wy/@,) = 0.5 is chosen so that the second negative diffraction order coincides
approximately with a monostatic return. [In the latter case the first negative diffraction order
coincides approximately with a normal return, see Figs. 16c and f.] The differences between the
figures in the three pairs: Figs. 16a and d; Figs. 16b and e; and Figs. 16c and f, can be attributed to
the phenomenon of pass and stop bands. This phenomenon influences significantly the highlights
in the results reported in Figs. 16d, e, and f. Features of significance in Figs. 16a, b, and ¢ are
largely modified, and are even absent, in Figs. 16d, e, and f. [cf. Figs. 8b and a.] Thus, when
structural regularities are present in a structure, the reflection of pressure waves by the structure to
the far-field may depend critically on the existence and disposition of the phenomenon of pass and

stop bands. Since the pass and stop bands phenomenon is sensitive to various parameters that
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describe the structure and its environmental loading, the determination of the highlights in the
reflection from such a structure cannot be cavalierly approximated.

Figure 16g repeats Fig. 16e except that the fluid loading parameter € is changed from the
standard value of 0.1 to 0.001. By comparing these figures and consulting previous figures, e.g.,
Figs.8b, 10b, aad 13b, it is clear that in Fig. 16g the contribution to the far-field reflection
coefficient 1“,1(9) by the term I_'Jx(e) is overriding. This statement is made clear by presenting
Fig. 16h, in which the term f}x(e) only is displayed. Thus, when structural regularities are
present in a structure, the reflection of pressure waves by the structure to the far-field may not
necessarily exhibit a dependence on the phenomenon of pass and stop bands; other diffraction
mechanism may be dominant. Even in this simplified model of the structure it appears that
multiplicity of angular variations occur in the reflection and that these variations are sensitive to
parameters that describe the structural form, e.g., apertures in the structure and in the incident

pressure wave.
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APPENDIX A
There are some advantages in investigating the nature of the factor Es (k, @,) in the spatial
domain. If one denotes by g (x| X/, W,) the impulse response function for a first order model of a
regularly ribbed fluid loaded panel and the corresponding impulse response function for a proper
model by g (x | X', ®,),then by definition

8, (1%, 09 = | B (x=x, @) a2, (" X, @) A

where [1]

B, (x, @,) = @m)™2 | B, (k, ®,) dk exp(-ikx) , (A2)

g (x1x, @) = 2n [ G, K, @) dx ¥’ exp itk -x'K)] A3)

Using the aliasing and symmetry properties of §s (k, @,) ink, one may state Eq. (A2) in the form
Es(x, W,) = (21t)1/2 ? ﬁs(xj, ©,) O(x - Xj) ; gs(xj» 0,) = ﬁs(-"j, W) , (A%)

where

= X
b,(x;, @,) = (k) fo B, (k, @) dk exp(~ ikx;) . (A5)

It is recalled that the aliasing and symmetry of §s (k, ©,) in k is invariant to reasonable changes in
the parameters that describe the regularly ribbed fluid loaded panel and, therefore, Eqs. (A4) and

(A5) are similarly invariant. A Fourier transformation of Eq. (A4) yields
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§s(k, W) = Jz Es(xj, ©,) exp(ikxj) ’ (A6)

Thus, ﬁs(xj, @,) is the (j)th coefficient in the Fourier series expansion of ﬁs (k, ©,) with respect

to k. For the records, it may be noted that

2 Ho (k4 % 09) = B@9) T Bulx;, @) xp (i)

(AT)
From Egs. (A1) and (A4), one obtains
8 (xIx, 0= By (X;s @) 8s(x— X; 1 X, ;) “8)
A Fourier transformation of Eq. (A8) yields
G,(k | K, @,) = B (k, @) Gs (k| K, ;) , (A9)

where use is made of Eq. (A6). The factorial relationship in Eq. (A9) between G; and G, in the k-
domain is convenient, as the material in the text made clear. [cf. Eqgs. (21) and (46).] Can one
obtain a similar factorial relationship between g, and g, in the x-domain? One may, in this vein,

construct from Eq. (A8) the form

g, (x1x’, @) = [ B,(0, @g) + Y, (x X", @;)] gs(x1x’, @) . (A10)

where

Y(xIX, @) = B By(x; @) {8,(x - %1 X, @,)/ g (x 1%, 90} ALD
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It is apparent that Eq. (A10) is not as elegant and straightforward as Eq. (A9) is. However, itis
asserted that the term ﬁs (0, @,) is a significant term in the bracketed factor in Eq. (A10) and,
therefore, its behavior is significant to the relationship expressed in Eq. (A10). At least Eq. (A10)
is more compact than is the equation obtained d.rectly by a Fourier transformation of Eq. (18).
The magnitude of the zeroth coefficient —f;: (0) as a function of the normalized frequency (uy/w,)
under standard conditions is computed and displayed in Fig. Al. In Fig. A2 the fluid loading
parameter €_ is changed from its standard value of 0.1 to 0.001. The pass and stop bands
phenomenon is made apparent in this zeroth coefficient. It is also apparent that increase in fluid
loading tends to dull this phenomenon. The investigation here proposed remains incomplete
without some examination of the behavior of ¥, in Egs. (A10) and (A11). However, this
examination lies outside the scope of the paper in which Eq. (A9), rather than Eq. (A8), is basic.
In this sense, Fig. A, displaying i: (0), may be viewed as the integrated measure of Fig. 15,
displaying B, (k).
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Fig. 1. A sketch of a ribbed fluid loaded panel showing the coordinate system and
the orientation of the ribs.

. Top Fluid N
Incidence N
2 © ) N ,
7,  * Reflection
//

Interface of the panel
with the top fluid

Fig. 2. Incident pressure P;;(k’.00") and reflected pressure Py, (k,w) on the interface
between the top fluid and the panel.
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Fig. 3. The magnitude of the factor A’_(k) [Eq. (41)) as a function of the normalized
wavenumber (k/x,) at the fixed normalized frequency (w/w ) = 0.4 with 0, = 0. The
panel 15 an isotropic membrane that simulates a plate responding in flexure. The free

wavenumber k, = (@@ /c)"” (1 + i) and the loss factor , is chosen equal 10 0.005.
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Fig. 5. The magnitude of the factor E.}klkl) [Eq. (423)] 1n the reflection coeflicient due o
the ribs as a function of the normalized wavenumber (k/k,) at the fixed normalized {requency
(wyw,) = 0.4 with 8; = 0.9 and ¢, = 0.0. Incident pressure wave is a planc wave. The

pancl is as in Fig. 3a. The linc impedance of the ribs is mass controlled Z = Z = iwM, with
(Mbm) =03, g = 0.1, and (bw Jc) = 16, where m is the mass per unit area of the panel and
b is a typical separation baaween adjacent ribs. A typical deviation in b is designated by Ab.
The array consists of 21 ribs.
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d) The factor | B:(k) | [Eqn. 47a] as a function of the normalized wavenumber /x,)
for the conditions used in Fig. 4a.

Fig.4 The magnitudes of E,: and the factor B: [Eq. (463)] in the reflection coefficient
due to the ribs as a function of the normalized wavenumber (k/x,) at the normalized
frequency (wyw0,) = 0.4 with ¢, = 0. The incident pressure wave is collimated with an
aperture of 21 ribs. The panel is as in Fig. 3a. The line impedances of the ribs are mass
controlled, Zj =Z =iwM, with (M/bm) = 0.3, and (bw Jc) = 16, where m is the mass
per unit area of the panel and b is a 1ypical separation between ribs.
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Fig. €. Magnitude of the reflection coefficient E:(klk,) due to the ribs (Eq. (42)] as s
function of the normalized wavenumber (k/x,) in the fandard format and under standard
conditions.
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Fig. 8. Magnitude of the reflection coefficient R . (kik;) due to ribs [Eq.(46)} as a
function of the normalized wavenumber (k/x,) in the standard format and under standard
conditions.
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Fig.9. Magnitude of the reflection coefficient Ry, (kiky) in the absence of ribs [Eq. (42)] as
function of the normalized wavenumber (k/x,) in the siandard format and under standard
conditions.for the panel except for the angles of incidence as noted.
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Fig. 10. Magnitude of the reflection coefficient K:(Idkl) [Eq.(43)] as a function of the
normalized wavenumber (k/x,) in the sandard format and under siandard conditions

except for the angle of incidence as noted.
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Fig. 13. Magnitude of the reflection coefficient except that the value
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and 0.001, respectively.




1
#) | Rl | [ef. Eq.(40) and Fig. 6b) */x,) —>

(0f0) =06

1 0 1 2 3
b) | RE®K) | fcs. Bq.(45) and Fig. 8b) ) ——>

Fig. 14. Magnitude of the reflection coefficient where the fluid loading is
partially accounted for; namely only in the factor Af_(k).
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Fig. A2 Repeats Fig. Al except that the fluid loading parameter €, is changed from the
standard value of 0.1 to 0.001.
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