
LOAN DOCUMENT
PHOTOGRAPH THIS SHEET

If) LEVEL INVENTORV
z
z

m W)

DOCUMENT IDENTICATION

A A
I - ,.ubcN release;

] )n Unlimnited

DISTRIBUTION STATEMENT L

NTIS GRA&I E
D'TIC TRAC

UNANNOUNCED 0 -

JUSTIFICATION 
13

~'""

DISTRIBUTION!

AVAILABILITY CODES

DISINIBUION AVA1I.ABILITY AND/OR SECLAL.

DATE ACCESSIONED

DISTRIBUTION STAMP A

R
E

DATE RETURNED

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

DTIC JcO 70A DOCUMENT PROCESSING SIFVr PREVIOUS EDITIONS MAY BE USlH UNfI

STOCK IS EXHAUSTED

LOAN DOCUMENT



WL-TR-91-3033
Volume III AD-A233 569

CALCULATION OF HIGH ANGLE OF ATTACK AERODYNAMICS
OF FIGHTER CONFIGURATIONS; VOLUME TIT- UNSTEADY

C. Edward Lan, H. Emdad, Suei Chin
P. Sundaram, S. C. Mehrotra, and
R. K. Tripathi

Vigyan Research Associates, Inc.
30 Research Dr
Hampton VA 23666-1325

April 1991

Final Report for Period Aug 87 - Jan 90

Approved for public release; distribution is unlimited.

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

91 4 1Z 027

kh, |



NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

CHARLES B. HEATH
DesignPredictions Group

FOR THE COMMANDER

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/FIGC , WPAFB, OH 45433- 6553 to help us maintain a current
mailing list.

Copies of this report should not be-returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

!a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified :!one

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Anproved for Public Release, Distribution
2b DECLASSIFICATION, DOWNGRADING SCHEDULE is Unlimited

4 PER-ORMING ORGANiZATiON REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

WL-TR-91-3033

Volume III
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(If applicable) Flight Dynamics Directorate (WL /FTGC)
X'ioyan Pesearch Associates, Inc~1tLaoatr

I I Wright Laboratory

6c ADDR,-NS ,6, Stale, ad ZIPCod .) 1o ADDRESS(City, State, and ZIP Code)

3n Research Dr
Hlamnton VA 23666-1325 IT PAFB OH L5433-6553

8a NAME OF FUNDING 'SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

I _F33615-97-C-3616

8. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

65502F 3095 40 09

11 TITLE (Include Security Classification)

Calculation of High Ancle oF Attack Aerodynamics of Fighter Configurations,
Volume III - Unsteady

12 PERSONAL AUIIHOR(O)

C. E. Lan, IT. Endad, S. Chin, T. Sundaram, S. C. ehrotra. and R. K. Trinathv
13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FROM Au, 87 TO Tan 90 1 pril 1991 59

16 SUPPLEMENTARY NOTATION

This is a Small Business Innovative Research Program, Phase Ii report.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Stabilitv and Control

High Ann,]e of Attack Aerodvnamics

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
A computational method for unsteady aerodynamics of fighter configurations at high angles of attack is
developed. The leading-edge vortices are represented by free vortex filaments which are adjusted
iteratively to satisfy the force-free condition. The small-disturbance, unsteady potential equation is
solved in the frequency domain for motions in pitching, plunging, flapping, side movement, rolling, and
yawing oscillation in compressible flow. Computed results in rolling moment coefficients due to side
acceleration are compared with data for 60-deg and 80-deg delta wings. Lateral-directional
characteristics for an F-106b configuration are also compared with data obtained in forced-oscillations
tests. It is shown that reasonable results can be obtained by the present unsteady flow method, but
not by steady flow theory. Calculation of dynamic stall effects on a rectangular wing of aspect ratio 4
is demonstrated by using experimental section data. Although no data for the wing are available, the
results appear plausible. Industrial usage of this has produced mixed results. At this time, the use of
these methods in a production manner is recommended.

20 DISTRIBUTION/AVAILABILITY Or ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

' tJNCLASIF[INL',,,TVED E SAME AS RPT El DTIC USERS Uriclassi Fiedc

242a NAME OF RESPONSiBLE rNDIVIDiJAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Charles B. 1hath (513' 255-8480 1 ,/FICC

DD Form 1473. JUN 86 Prev,oui editions are obsolete SECURITY (ASSIFICAT'ON OF tHIS PA(_,E

UNCLASSIFIED



I
U

LIST OF SYMBOLS

I Usual

Symbol Definition Dimension

n b (Wing) span ft

3 c Chord ft

c% Section lift coefficient

3 CL  Lift coefficient

C y Side force coefficient

3 C, Rolling moment coefficient

C% I= 6CI/3(pb/2V=)

PUC 2  = 3 C/6( b/2V)

i r = 6C /3(rb/2V )

C = 3C /6( b/2V)n n

CN Normal force coefficient

Cn Yawing moment coefficient

C C n (/b/2V=)
n n

3 Cp Pressure coefficient

ACp Lifting pressure coefficient

I d Sideway displacement ft

h Plunging amplitude ft

I Reduced frequencyk= rReuce

I r Reference length ft

M Mach number

3 c  Number of chordwise discrete elements

N s  Number of spanwise strips

n Unit normal vector

I iii

U



I
i

TABLE OF CONTENTS

I Page

SUM1741ARY ............................................................ i

LIST OF SYMBOLS .................................................. iii

1 1. INTRODUCTION ................................................... 1

2. THEORETICAL APPROACH ........................................... 4

2.1 General Concept ........................................... 4

2.2 Unsteady Potential Flow Theory ............................ .

I2.3 Free Vortex Filaments ..................................... 11
3 2.4 Method of Solution with Vortex Flow ...................... 13

2.5 Calculation of Aerodynamic Characceristics ............... 14

3 2.6 Longitudinal Dynamic Stability Derivatives ............... 16

2.7 Lateral Dynamic Stability Derivatives .................... 16

2.8 Dynamic Stall Effect ..................................... 17

I 3. NUMERICAL RESULTS AND DISCUSSION .............................. 19

4. CONCLUSIONS ................................................... 24

3 5. RECOMMENDATIONS ............................................... 25

6. REFERENCES ................................................... 26

I FIGURES ........................................................... 28

3 APPENDIX A .................................. .................... A-I

I
i
I
I
I



SUMMARYU
A computational method for unsteady aerodynamics of fighter

3] configurations at high angles of attack is developed. The leading-

edge vortices are represented by free vortex filaments which are

I- adjusted iteratively to satisfy the force-free condition. The

small-disturbance, unsteady potential equation is solved in

frequency domain for motions in pitching, plunging, flapping, side

movement, rolling, and yawing oscillation in compressible flow.

Computed results in rolling moment coefficients due to side

U_ acceleration are compared with data for 60-deg and 80-deg delta

3 wings. Lateral-directional characteristics for an F-106 B

configuration are also compared with data obtained in forced-

oscillation test. It is shown that reasonable results can be

obtained by the present unsteady-flow method, but not by the steady-

I flow theory. Calculation of dynamic stall effect on a rectangular

* wing of aspect ratio 4 is demonstrated by using experimental

sectional data. Although no data for the wing are available for

3 comparison, the results appear to be plausible.

I
I
U
I
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1. INTRODUCTION

When a fighter aircraft performs maneuvers at high angles of

attack, the aerodynamic forces and moments acting on the aircraft

are, in general, dependent nonlinearly, not only on the motion

variables but also on the time rate of change of these motion

variables. To predict the dependency on motion variables, such as

the dihedral effect (C2 ), the VORSTAB-II code was developed (ref.

I). The code is based on a steady-flow theory, so that the unsteady

aerodynamic effect on stability parameters cannot be accounted

I for. This shortcoming is particularly serious in predicting dynamic

stability parameters, such as roll-damping derivatives, at high

angles of attack (ref. I). This is because i.n an unsteady rolling

motion about the body axis, dynamic change in sideslip will be

induced to result in rolling moment coefficient due to side

acceleration (i.e. C 2 ). The latter may provide additional damping

or undamping, depending on configurations. In fact, significant

U effect of C on flight dynamics has already been illustrated in the

past (refs. 2 and 3). These dynamic stability parameters can only

be calculated through the unsteady aerodynamic theory.

In general, the unsteady aerodynamic theory, relative to a

steady-flow theory, provides the following mechanisms to affect the

n dynanic stability parameters:

* S aerodynamic lag in attached flow;

0 vortex lag in vortex flow, including dynamic vortex-

3 breakdown effect;



0 dynamic boundary layer and stall effect in viscous flow.

I The aerodynamic lag in attached flow is produced by convective

effect of shed vortices and the finite speed of disturbance

propagation in a compressible flow. This effect is automatically

included in any appropriate inviscid unsteady aerodynamic theory in

compressible flow.

On the other hand, vortex lag effect is important when a wing

with edge-separated vortex flow is in an unsteady motion. Tnis

effect has been modeled in the past through the method of suction

analogy in compressible flow (ref. 4), the method of separated

vortex filaments in incompressible flow (refs. 5-7), and the

I solution of Navier-Stokes equations. The method of references 5-7

has been illustrated only for simple wing planforms in

incompressible flow and is based on a time-step integration for the

solution. The solution of Navier-Stokes equations for airplane

configurations is too "computation intensive" for applications to

m preliminary design.

n Several empirical modeling methods for dynamic stall effect on

airfoil sections have been proposed as summarized in reference 8.

Accuracy of Navier-Stokes solutions in two- and three-dimensional

flows is uncertain, in particular in deep dynamic stall regime.

In this investigation, the effect of vortex lag is modeled by

using unsteady discrete vortex filaments in compressible flow. This

-- is done by converting the VORSTAB-II code into an unsteady version

in frequency domain. The main objective is to calculate dynamic

3 2

Um
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stability parameters. For the dynamic stall effect on a wing, a

I method based on using 2-D test data is proposed.

I

I
I
I
U
I
I
I
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2. THEORETICAL APPROACH

2.1 General Concept

-- The basic methodology considered in the present investigation

is based on the subsonic unsteady potential equation with

correct- ns for steady boundary layer separation and embedded

I oscillatory free vortex filaments for vortex flow effects. The

*unsteady potential flow calculation is based on the small

disturbance equation. Only harmonic motions will be considered. By

the assumption of small amplitudes of motion, the solution can be

expressed as the sum of two components, one representing steady flow

and the other being oscillatory. It is assumed that the solution

for some sinusoidal motion of a wing with frequency w can be

I expressed in the form of

O(x, y, z, t) OS (x, y, Z) + *l(x, y, z)e i (t

where is the velocity potential, and s is the steady-state

solution, which is a function of the spatial coordinates x, y, and

z. is an unsteady component and is a complex function, thus

allowing for phase differences between the motion and the resulting

flow field.

In the present method the lifting surface is represented by a

distribution of oscillatory horseshoe vortex, which is the exact

solution of the unsteady small disturbance equation. The strength

of the vortex can be obtained by satisfying the boundary condition

on the lifting surfaces. To properly account for the leading-edge

I4
I
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singularity of pressure loading in the linear theory, and hence the

I" leading-edge thrust, the unsteady Quasi-Vortex-Lattice Method

(UQVLM) is used (ref. 4).

In addition, the oscillatory vortex flow arising from

separation along the leading and side edges of a low aspect ratio

wing is simulated by using discrete free oscillatory vortex

filaments. The mathematical expression for the latter will be

derived later.

Note that unsteady fuselage effect is not investigated in this

i study.

2.2 Unsteady Potential Flow Theory

The unsteady small disturbance potential equation in a moving

coordinate system is

I 2 2 a2 1 a2 2U 62'(1 - -4 -- +- -2------ 0 (2)

2 2 2)2 2 2 2 xt
a x, 6y z a .,t

By the application of the method found in reference 4, the above

equation can be reduced into the following integral equation:

i(xyZt) =4n f I Ap( , ,t - °,)()IM](OV )
s MR-x pOUC U r

M (3)

I where __-_M
~

/2 2 2
r =/ +yo + Z2

0 0

is actually the solution of equation (2) and represents a doublet

or oscillatory horseshoe vortex with the strength of AC. By

I5
I
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I

introducing the harmonic time variation such that for any t
I iwto

.A(& rj, t 0 Re[Ap( , r)e 01
I iwt

( i, t ) - Re[O(x, y, z)e 01 (4)

After substitution of (4) into (3):

I(X Y, z) 1 f Kp(,

I 4Y - - -P-f o(Xp y, z, K,M)d~d (5)

where K is defined as

CO iU (t+xo)

f -x +MR r

I-M
2

Since equation (3) is equivalent to a doublet, the solution of

equation (2) can be represented by doublet distributions. The thin

wing approximation is used throughout.

To calculate the induced velocity, due to a unit strength of

doublet at any (x, y, z) location, the method of reference 4 will be

followed. The resulting equations are

60x (& ( 60 1 0 2 dI 3z ~ ~ ¢ I tA2p a

x t
z . f AC (&)(E- + -- )d&

dy x PU

u = AC (&)(-x- + -- )d& (6)
ax x PP

i where

I6

I
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I

- f [ (  + --- )z exp[-iw(u r + x )/V )]dB
L r Rr 2 o

(X, y, z) = W f - l(x, y, z,T, I)dT

Lr 1

I(x, y, z, , r ) = f (1 - __ ' d___'

lr (ZTO,2 2 2 )exp[-iw(T' + x )/V.]dT'

I denotes the summation overall spanwise strips, and Xp and x. are

the x coordinates of the leading and trailing edges, respectively,

I of the chord through the collocation (or control) points.

With the transformation

= x + c(I - cosO)/2

equation (6) becomes

(X, y, z) =  ~pu(9)sinE(--z + )d9 (7)

etc.

Note that sin(e) cancels the square root singularities of AC at
Pu

the leading and trailing edges. Therefore equation (5) can be

I reduced to a finite sum through the midpoint trapezoidal rule.

Hence,

Io c N I 2k
-t (xYZ) = c AC k + ) (8)

where Nc is the number of integration points and

I ek = (2k - 1)7/(2N ).c

The location of the "bounded" element of the oscillating horseshoe

i vortices is given by

k = x% +- {I - cos[(2k - 1)n/2N ]}, k = 1, ... N

7



The x coordinates of end points of the bound elements are given

I by

Xlk = ik' X 2k = 2k (9)

To eliminate the Cauchy singularity in the chordwise integral

(ref. 4), a special set of control points is given:

x C = x + c(l - cos(in/N c)]/2 i = 1, ... , Nc

yj = b/2{1 - cos[Jlt/(Ns + 1)]}/2 j = 1, ... , N. (10)

where Ns is the number of spanwise strips.

i

Boundary Conditions

The boundary conditions for equation (2) are as follows: at an

infinite distance from the surface disturbance potential should go

i to zero; and on the wing surface, the normal velocity component to

the wing surface should be zero. Assuming that the wing surface can

be described as

Z = z(x, y, t)

where Z is height above the plane, (Z = 0), of the wing surface.

U Assume that during oscillation every point of the wing moves in the

vertical direction only. Thus, the velocity vector of a point on

the wing is

w = (11)1 t

*8
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The velocity vector of the fluid on the wing surface is

w2 I(U + u)i + vj + wk (12)

If these velocity vectors are resolved into tangential and

normal components on the wing surface, and by applying the flow

I tangency condition, the following equation will be obtained:

iz az

n= (13)

+ (z)2 6z 2

w I  n = w 2 * n (14)

by substituting (11), (12), and (13) into (14),

w z + z + z -

a. Longitudinal Motion

For a wing in plunging motion with displacement h(y, t), in

pitching with angular displacement 5(y, t) about x = Xa, and in

rolling oscillations with roll angle r (t), the total vertical

displacement Z(x, y, t) is given by

Z(x, y, t) = -h(y, t) - 5(y, t)(x - x a - yr(t) (15)

I dz
Note that v d can be ignored because of small perturbation

assumption.

it -h - (x - x ) - yo

ax= -(y, t)

Hence, the nondimensional normal velocity is given by

i9i



w = (x - x) - (16)

I UO

Assuming the harmonic time variation such that

I w(x, y, t) = Re[w(x, y)eit], etc.

equation (16) becomesIik ikk

-w(x, y) = Aa = - h + L- G(x - x ) + i - + e (17)
1 1 a 2Sr r r

The additional angle of attack (Aa) is added to the steady

3 angle of attack to produce the total normal velocity, (we) , which

is (ref. 4)

w=t_(x, y) =ax cosa - sin(a s + Aa) (18)

| az
- cosas - sinas - Aacosas

b. Lateral-Directional Notion:

For a wing in sideway motion with displacement d(t), and in

3 yawing with angular displacement (Qo t) about Tj x a the total

side displacement Y is given by

F(x, y, z, t) = Y - f(x, z, t), (19)

I where

wr Y = -d(t) - q,(t)(x - xa)

Noting that

- U- - v, (20)

the following side velocity contribution from the motion of aircraft

I will be obtained:

v a (x - x) (21)
U U a

I 10I
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If the wing has dihedral., the following normal velocity will appear

in boundary conditions; otherwise, it will be zero.

w v d +(x -x a )
cosT - IT- sinT = -ik[- sinT + a sinT] - 4sinT (22)

U r r

where T is dihedral angle.

The total normal velocity can be canceled on the wing by using

I a steady horseshoe vortex distribution for the first two terms on

the right-hand side of equation (18), and by a distribution of

doublet for the last term in equations (18) and (22).

I
2.3 Free Vortex FilamentsI

A method similar to steady free vortex filament is used to

model the unsteady leading-edge vortex separation. Here each vortex

filament will be divided into many segments, and each segment will

be called an oscillatory line vortex. The induced velocity due to

I an oscillatory line vortex of unit strength is derived in Appendix

A. The resulting induced velocity components due to an oscillatory

* line vortex are given as follows:

I __ I -- + -

ax ox ax

SZ__ -Z a1I 8z - z + 8-z

60 -01 + 2 (23)

Sy T y

where:

I



I

i i( tr +x)Ap v l

I - [(FI + F3  - F 4 )e L

-i- (rlrl+Xo

(---)F - (-irl+ x )e V r 10d+ )
L COo

x
f( + -- )z dr

r 2 Rr1

i z xgl=f o od-2 R, dj

rI

F3 = Arctan [ 
Z(X X

iy 1Y - Y)"(Xl x ) 2 +  2 (Yi - y)2 + 2 2

F4  Arctan [z(x 2 - x)

i 4 =Aca (Y2 - Y)v(x2 - x ) 2 + P2 (y2 - y) 2 + 0 2 z2

I 2i22 2

I 2 I f ' 1(x' y, &,)d

I where:

i0

f (1 - )exp[-iw(' + x )/V ]dt'
T r (W 2+ r) /2 x0[OD

i As mentioned before, small-amplitude harmonic motion is

assumed. Therefore, the effects of oscillatory free vortex

filaments and steady state free vortex filaments can be

3 superimposed. In both cases the force-free condition on vortex

filaments will be enforced. Also, partial separation along the

leading edge is allowed (ref. 1).

I

I



Note that the derivation of equation (23) is based on the

Iassumption that the vortex line is situated on the plane of z = 0.

Therefore, the induced velocity is always calculated first with

respect to a local plane of reference containing the vortex line;

and the results are then transferred to the fixed plane of

reference.I
2.4 Method of Solution with Vortex Flow

The problem is resolved into steady and unsteady components,

I through harmonic assumption. Then after a known steady state

solution is obtained, the solution for the unsteady motion will be

calculated and superimposed to the mean steady flow. The basic

unknowns of the problem are the strength of oscillatory horseshoe

vortices, strength of oscillatory leading-edge vortices, and the

I locations of the free elements. The problem is nonlinear because

the locations of the leading-edge vortices are unknown a priori.

Therefore, the solution procedures based on an iterative method

described below must be used:

a. Prescribe the doublet lattice for the wing surface, and

the steady-state locations of the free elements over the

wing.

b. By satisfying flow tangency condition on the wing surface,

obtain the doublet and oscillatory leading-edge vortex

strengths.

* c. Calculate all the aerodynamic characteristics.

!13



d. Enforce force-free condition on free elements by aligning

them in the direction of local velocity vector.

e. Repeat steps b through d until a converged solution is

obtained.

Note that typically the out-of-phase induced velocity on free vortex

filaments is quite small compared to the free stream.

ITherefore, C is calculated with the symmetric vortex shape. In

addition, in the vortex-breakdown region, it is assumed that the

phase angle is 90 deg, so that the in-phase force component without

breakdown effect becomes out of phase, and vice versa.

I 2.5 Calculation of Aerodynamic Characteristics

The pressure distribution on lifting surfaces is calculated by

applying unsteady compressible Bernoulli's equation (ref. 9), which

I has the following form:

l _$+ V$ . V p dPl U,.(4

t 2 (24)

I By using the isentropic relation, definition of pressure

coefficient, and finally linearizing the equation, the following

relationship between pressure coefficient and velocity potential is

derived (ref. 9):

c 2 2 30 (25)i~1 ap= x 2z at

To evaluate change in pressure coefficient, the relationship

I between velocity potential and circulation is used; then the

!14
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resulting equation in terms of vortex strength F becomes (ref. 9, p.

210)

AC= 2-k L6f U (26)

2

p - [ - 2 Ut x (26)

To solve equation (26), harmonic approach is used, to transform the

above partial differential equation (26) into a first-order ordinary

nonhomogenous differential equation, in which the circulation

amplitude is an unknown, i.e.:

Acp =- [iwlr + U (27)p U2  - x

U The solution of Equation (27) is

iWx iWx
"U U U

0 e WfAc e dx (28)

Finally, the lifting pressure due to oscillating bound elements

and chordwise vortex elements, based upon the following

relationship, will be obtained.

U (Ac ) = 2(u - v tanp) Y--- + 2ik r (29)pBr

(Ac) = 2r V + 2ik r (30)(p)T r F -
p 

0 r 
CO

Note that the calculated Ic is interpolated if necessary to obtain
P

Ac at integration stations. The calculated pressure forces are

then used to determine the aerodynamic characteristics in a way

similar to the steady flow.

I

I
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2.6 Longitudinal Dynamic Stability DerivativesI
In general, the amplitudes of lift and pitching moment

coefficients in oscillatory motion can be expressed in terms of

stability derivatives as follows (ref. 10)

C = ik Ch - k2C h + eC + ikOCx0 + " " " (31)

h 2 hr

C = ik- k2C.- r + C + ikCM5 + . . (32)

At zero frequency, C = C ; and at small frequencies,
m m

C = C + C (33)-- q

where C can be shown to be equal to C ..

2.7 Lateral Dynamic Stability Derivatives

I In a similar approach as in the longitudinal case, the

amplitudes of side forces, and rolling and yawing moment

coefficients, in each mode of oscillatory motion are expressed in

terms of stability derivatives. The results are as follows:

a. Sideslipping ( = d)

Cy = ik(C C )d - kC (34)y y.

Cn = ik(C n.)d - k 2dC (35)

C = ik(C - k2C )d - k 2dCZ. (36)
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b. Rolling Motion (p =

C = iko(C - k2C k - C + OC (37)y YP y )-k C(7
pppYy

C= ik (C - k2C ..) - k24 C + C(38)

n n n- n

CZ = iko(C I - k -2CI k2C + OC (39)

I p P P P

c. Yawing Motion (r = $)

I Cv = ik(C - k2C ) -k 2 C + ( C (40)
r Yr Y Y;

I C = ik U(C n - k2C n k2 C + pC n (41)
rr r N

I22 C.Z =ikcP(C -k2 I. -k 2,C~ +pG C (42)
r r r (

2.8 Dynamic Stall Effect

Dynamic stall effect is important in predicting dynamic

stability parameters for configurations with low-swept wing

planforms. Since theoretical calculations are very time-consuming

and may not be accurate, it is proposed to calculate three-

dimensional results by using 2-D test data. The concept is quite

similar to that in steady flow to account for the effect of boundary

layer separation (ref. 1). That is, iterative calculation is first

I made for steady separation effect to obtain local effective angles

of attack (ae). Local effective oscillation amplitudes are

calculated by using a three-dimensional unsteady attached-flow
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method (ref. 4). Two-dimensional test data are interpolated based

U on these local effective angles of attack and oscillation

amplitudes. To interpolate, the 2-D test data must be expressed in

terms of nonlinear functions of a and 1' which depends on

oscillation amplitudes. This is done by Fourier analysis. The

resulting mean value is a function of mean angles of attack (am)

I which are interpolated for the appropriate sets of data to be used

at the calculated ae" One set of calculations will be illustrated

later to expose this idea.

i
I
I

I

I
U
I
I
I
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3. NUMERICAL RESULTS AND DISCUSSION

In the following, calculated results for delta wings with sweep

I angles of 600 and 800 will be presented. In addition, calculated

results for the F-106B configuration will be compared with data.

All calculations are made in eight iterations to adjust free vortex

3 positions. The vortex breakdown effect is applied only at the last

iteration. Finally, calculated results for a rectangular wing with

dynamic stall effect will be illustrated.

Delta Wing with a Sweep Angle of 600

Lateral coefficients for this configuration are presented in

Fig. 1. The aerodynamic characteristics are significantly

3 influenced by free vortex position, the motion lag, and the bursting

locations. Typically, C,, is positive without vortex breakdown and

I becomes negative only with vortex bursting. As it can be seen, due

to early vortex breakdown for this configuration, the resulting

rolling moment coefficients due to become largely negative and

3 cause the roll damping derivatives to be more negative. Also as a

is increased, the effect of derivatives due to lag in motion is

more appreciable. As the reduced frequency is increased, the

magnitude of C will diminish but still is negative. The test data

indicate that vortex bursting occurred at a lower a than the

calculated value which was based on a steady-flow model. It should

also be noted that the vortex bursting point is known to be affected

by dynamic motion. Since a systematic set of data is not available,
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the dynamic effect on vortex bursting cannot be assessed at the

* present time.

i The discrepancy between the calculated results and experiments

is mainly due to prediction of vortex breakdown location.

Delta Wing with a Sweep Angle of 80 °

Lateral-directional derivatives for this configuration are

determined at a reduced frequency of 0.06 and an amplitude of 5*•

The calculated results show large positive rolling moment

i coefficients due to (see Fig. 2). For this configuration, the

vortex breakdown occurs at about a = 380. Therefore, this positive

rolling moment due to causes C to be more positive, which may
P

result in wing rock. The correlation between the experimental data

I and numerical results is good. At high angles of attack, the effect

3 of derivatives is more significant and is therefore important to

dynamic stability of airplanes, in particular those with highly

i swept wings. The present numerical results show that the

acceleration derivatives can be predicted within a reasonable

I accuracy for highly swept wings. Also, in a forced-oscillation

i test, it is not possible to decouple the effect of from the P

motion. However, by the present method, it is possible to decouple

i the effect of each mode separately.

i
i
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F-106B Configuration

This configuration has a conically cambered wing of 60-deg

sweep and a vertical tail. At a reduced frequency of 0.2, the

factor for the remaining vortex lift after breakdown is not applied,

I since not enough data on dynamic vortex breakdown are available for

guidance. The calculated results are presented in Fig. 3(a) for

roll stability derivatives and in Fig. 3(b) for yaw derivatives. It

is seen from Fig. 3 that predicted roll and yawing moment

derivatives are significantly improved by including p-derivatives.

Note that C at a = 35 deg is quite negative and is contributed by

the vertical tail. Since the dynamic fuselage effect is not

available in the current version of the code, it is not known

whether it will improve the predicted results at a = 35 deg.

Rectangular Wing of Aspect Ratio 4 with Dynamic Stall Effect

Some dynamic stall data on several airfoil sections are

fl available in reference 11. However, only data for the NACA 0012

airfoil are more complete and therefore will be used in the

following. This set of data was obtained by oscillating the airfoil

about the quarter-chord point at mean angles of attack (am) of 3, 4,

5, and 10 degs and an amplitude a, of 10 deg at a reduced frequency

(wc/2Vm) = 0.1 and a Mach number of 0.3. The sectional c' - a

curves are presented in Figure 4. These sectional data are then

analyzed through Fourier analysis to obtain cY as functions of a,

and a For example, at am = 5 deg, cZ can be written as
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c, = 0.4825 + (5.114 + 1.18 4a + 5.19 8a 2 + 79. 6 9 4a 3

4•_2a2,_ .22.2

42.47 4a - 0.005 - 0.2298a aI - 0.224I2)a

+ (0.007 + 0.0979a 1 - 0.051a 2 - 2.171a 3 _ 7.149a4
1 1 1

n0.006a a2 + 0.04 2.2 _ 0.001a _ 0.0328ia) I  (43)
+ .0=1 1 o0 1 1 11 1I

where the constant term on the right-hand side is the mean value

of c (i.e. cI ). In the calculation for a wing, this cI is
m m

linearly intc--polated with the effective angle of attack. In Figure

3 5, the calculated aerodynamic models at am equal to 5 and 10 deg are

compared with data. The agreement is reasonably good.

3 Assume that a rectangular wing of aspect ratio 4 and with the

NACA 0012 airfoil section is oscillated in pitch about the quarter

* chord point with the same flow conditions as those used in theu airfoil testing. The resulting total CL - a curve is plotted in

Figure 6 and calculated sectional cZ's at three spanwise stations

3 are illustrated in Figure 7. Since there are no experimental data

for the wing available for comparison, no assessment of accuracy can

U be offered. However, the results appear to be plausible. Note that

calculated c, and CL do not pass through the coordinate origin.

This discrepancy is caused by the assumption of linear interpolation

of c% with respect to the effective angle of attack. Except havingI m
this discrepancy, Eq. (43) and other similar equations not listed

3 here appear to be capable of modeling the dynamic stall effect at

different amplitudes and mean angles of attack.
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In applications to fighter configurations, dynamic stall data

of typical thin airfoils are needed. These data can then be used to

predict dynamic effect on longitudinal and lateral-directional

aerodynamic characteristics.

I
I
I
I
U
I
I
U
I
I
I
U
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4. CONCLUSIONS

An unsteady, compressible, aerodynamic method was developed to

I calculate dynamic stability parameters at high angles of attack. In

the method, the edge-separated vortex flow was represented by free-

vortex filaments in frequency domain. The main emphasis of the

* method was to calculate dynamic lateral-directional stability

parameters. Calculated results of C for a delta wing of 80 degs

U were shown to produce total roll damping derivatives which agreed

well with data. For the 60-deg delta wing, the calculated trend

of C, variation with a is correct, except that its magnitude is

lower at low a than the data showed. Calculated results for an F-

106B configuration with the unsteady method show significant

improvement in predicting dynamic roll and yaw stability

derivatives.

Calculation of dynamic stall effect for a rectangular wing of

U aspect ratio 4 was also demonstrated. The calculation was based on

interpolation of two-dimensional test data at the calculated

sectional effective angles of attack. No 3-D data were available

for comparison. However, the calculated results appeared plausible.

2
I
I
I
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5. RECOMMENDATIONS

This investigation represents an initial attempt to predict

I dynamic effect on aerodynamic characteristics at high angles of

attack. To improve the prediction method, the following

experimental and theoretical work would be needed.

(1) Obtain experimentally a systematic set of dynamic stall

data in cZ, cd, cm on a thin airfoil typical of current

3 fighter wings. This set of data can be used in the

present method to calculate dynamic stability derivatives

on wings with low sweep angle.

(2) Obtain experimentally a systematic set of dynamic vortex

breakdown data on delta wings of different sweep angles.

* The data should include the dynamic effect on bursting

position and total lift variation. This set of data will

be analyzed and incorporated into the present method to

* calculate dynamic stability derivatives on wings with high

sweep angle.

(3) Develop an unsteady mathematical model to represent the

fuselage effect.

2
I
I
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Figure 1 Rolling Moment Coefficient due to Side Acceleration

for a 60-deg Delta Wing at M = 0.13, 'k 0.066 and

Amplitude = 5 deg.
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Figure 2 Roll Damping Derivatives of an SO-deg Delta Wing

at M 0.1, k =0.06 and Amplitude = 10 deg.
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I (a) Roll Derivatives

Figure 3 Dynamic Stability Derivatives for an F-106B
iConfiguration atM = 0.1 and k = 0.2. Moment

Center at G.275 c.
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(b) Yaw Derivatives

Figure 3 Concluded.
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I cl c2 ,
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I

C 5 0a 10 0

Sm m

2.5 2.5-I
| ,'

0 1 01

-10 0 10 20 -10 0 10 20

aL, deg. a, deg.

i tigure 4 Measured Dynamic Stall Effect on Lift Curves

on NACA 0012 Airfoil. a = a + 10 sinwt, k = 0.1

and M = 0.3 (ref. 11).
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Figure 5 Aerodynamic Models for an NACA 0012 Airfoil

in Dynamic Stall Obtained from Figure 4.
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Figure 5 Concluded.
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U 0.8

I
I 0.6

I CL

* 0.2

I

* 0.0 .

- ..2 I 1 1 1 1 1 1
0.0 O 4.0 6.0 8.0 70.0 12.0 74.0 16.0 78.0 20.0 22.0

I , deg.

Figure 6 Calculated Lift Response on a Rectangular Wing of

Aspect Ratio 4 with NACA 0012 Airfoil in a Pitching

Oscillation about 1/4c at M = 0.3 anf k 0.1.

a = 100 + 100 sinwt.
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APPENDIX A:

DERIVATION OF INDUCED VELOCITY DUE TO AN
OSCILLATING LINE VORTEX

The expression for induced velocities due to an oscillating

horseshoe vortex are available. To obtain the corresponding

expressions for an oscillating line vortex in compressible flow, the

effect of trailing legs in the horseshoe vortex must be removed. To

achieve this objective, the general equation for oscillating

doublets is needed (ref. 4):

I . 1 x

v = --~-ff AC{(- + -)z expt- (tin + x)] 
VC Tlts pr 2 Rr 20 V

iw ir 1X
l i z - - o VW

V (1 e f ( _ )e dX}d4di (A.1)

1/ +1

I Define:

AX iL (,r r + x) dTi (A.2)
8n L r 2 Rr 20 V

i__X- iWr

2 
-8 r ( )e co dX] (A.3)

By integration by parts, equation (A.2) becomes

ACF - (Wrr
{F exp[- l + - (- + *

8n WCA 0t 1  L+ T
ix[ (Tlrl + xo)]dj }  (A.4)

I where:

I A-I
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-x + MVx 2 + 2 r2
' 2 + z o 2 0 1 3 R x + 2 2 2 2+ 2 z 2

01 0( + 2 R X 0  0 0

1 0

x = x - = x - x1 -(x 2 - x )

LYo = y  I = y - Yl -(Y2 - Yl

The straight line L is now defined by (0, 1) in T (see Fig. A.-).

If F in the first term of equation (A.4) is replaced by the

following form, equation (A.4) is reduced to oscillating line vortex:
Ix z(x I - x)

F f (- x)zd + Arctan[ 1 1

L -r2 2 2 2 2 2i Rr1  (Yl - y)v(x- x) + P (yl - y) + 2 z2)

- Arctan z(x2 - X)] (A.6)

(Y2 - Y)(x 2 - X ) 2 + P2 - y)2 + 02z2

1i is differentiated with respect to z with equation (A.6) for F and

letting the frequency go to zero, the exact steady expression for a

line vortex element can be obtained as will be shown later. Now

consider the following expression in 02; i.e.,

( 1- _V)edX (A.7)
i i+ X 2

I where:

-x + Mx
2 + 2 2

1 2 (A.8)

0 
2

IA-2
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Let x, or x2 in equation (A.7) go to infinity; hence: r,

lim I - lira f (I X )e co dX
I Xl1 Xl 2 2

_ (X_ + MI(x-x)2 + 2)r2 VI + X 2

(A.9)

The lower limit of integration goes to positive infinity as x, or x 2

I goes to infinity; therefore,

Xim I = 0
x 1

Therefore, it can be concluded that 2 is due to vortex shedding

only and comes only from bound vortex of oscillating horseshoe

vortex. Thus, the equation for an oscillating line vortex becomes:

± .V + 0 (A.10)V" 1 2

where i and 02 are given by equations (A.6) and (A.3).

To derive expressions for induced velocities due to an

oscillating line vortex, equation (A.10) is differentiated with

respect to x, y, and z, respectively.

1 1 $2

U ff  -- "I - + "2 (A.1II)

V .... + " (A. 12)
v VC by by by

W L 2z z + --- (A.13)
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Expressions from

_ r_. (Zr+Xo

{ (F e (-ILC( )F r + x )exp[- i(8It 1 L a 1 o [ (1r0+ o)]d }

where:Ix
F = f (-L. + x....z dq

L r2 Rr2 o

F = f (z)zdn + Tan Z(xi- x)

L r y ,Ix 2 2 2 2 2L Rr I  (y -y 1 )W(X1 _ x) + 2(y 1 _ y)2+ 62 z

ITan
1  Z(X2- X)

(y 2- Y)V(x 2- x) 2+ 2(Y2 - y)2+ 2z2

Taking the derivative of with respect to z results in

- W ( -irl4-A - - C r01 AC UF V 1 1 i-- 1I - Lbz 87C 6z ~ IL -(FleV 11 OI

iW

f (r) (.rr+ x )]e dq -

L z 1 1-l [ - .

- -L- r +x

L ~ 1(A.14)

where:

I
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_ - r +x )
*~ -ez 110 IL 22

(x 2 -x 1i)+ 2 (Y2-Y1 ) (Y2 - y )(P 2z

2 2 2 2 2 22

Ixp I- iW MV(x-x2) +0 (y-y) 2+ 3 z - M (x-x2)

I__ ___ IQ(x I-X)(x 2 -x I)+P2 (y 2 -y 1) (y - y)+2 z

2 (x-x I) 2+P 2(y-y ) 2+0 2( Z- z 1) 2 Q 2 +z 2[ (x 2-x I )+P 2(y2-y ) 2

I M/(x-x 2 +2(y-yl 2 + 2z2 _ M2 (x-x1 )

exp - v- (-2 11 (A.15)I
Q - (x2 - x 1 )(y - y) - (x - Xl)(y 2 - yl)

I By applying the following transformation, the line integrals in

equation (A.14) can be reduced to a definite integral.

x - C = x - (x2 - x1)

I y - T1= y - yl - v(y2 - Yl) (A. 16)

Thus, the first integral in equation (A.14) becomes:
1

f1 ( I ,

I (Y2 - Yl )/At 2 + O + C)

IQ [ (x 2-x I ) (Y2 - y i)T-(Y-Y 1 ) (x2 -x I )+Q] (x2 -x 1 ) P +2 (y2-Yl1) 2 [(y2_y1I)-C-(Y-y 1 ) ']

± M[(Y-yl)- (y 2-yl)] M o M2  x2-x

+ - ){ -2 R -) y-- ) *

I v AAT2+ p +c 2 2 1

I A-5
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M/A- 2+Bt+C - M2 [x-x 1 -t (x 2 -x)I0 4 (y )d (A. 17)
Sx-}2-Y

The second integral in equation (A.14) becomes:

f I M ((Y-Yl)--r(y 2yl)] 2 2 W MzX 0 x x2-x1))

T 2 3/2 VZ+ 3 -)
o (At +Bc+C)V R (Y- I

Mexp{- i2 (MYA-2+Bt+C - 2[(x-x I)--T(x2 -x 1)]})(y 2 -yl)dt (A.18)

I The last integral in equation (A.14) is

I • iWo M(Y-yl)-T(y 2 -y1 ) x 2x 2 -x I
f-(F - + - 2 R 2 y

0 W VAT 2+B+C W 2

M/A 2+BT+C - M2 [x-x 1 --(X2-X i )
iexp {-~ -2 }) (y2-Yl2-xd) (A. 19)

where:

A - (x2-x1 )2 + P2)y 2 -yl) (A.20a)

B = -2[(x-x 1 )(x 2 -x I ) + 2(y-yI)(y2-yI)] (A.20b)

1 C - (x-x1 )
2 + 2 (y-yl)2 + P2z2 (A.20c)

To evaluate these integrals, parabolic approximation of the

following form is used:

j kcosXjdl . fe A12 + BI + C d)(.1dz J2 2 d (A.21)

i -e(-)+

where:

I
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K - 2K + KI A~~ - 2em o

A-2e 
2

K -K.

2e

I C=K
m

m stands for midpoint.

Expressions from 02

Applying integration by part to 0 , the result becomes

Si A C -t a n1  2a -- + b I f T a n - 2at + b 1 d i (A .2 2 )

2 V= 8M 2(y 2 -y l )z L L 2(y2-y)Z

U Differentiating 02 with respect to z gives

I ~6 8 i AC y2yY, - y

2- 1W { Y2+ 12+ 2 i +

z V 8 (y2y) 2 +z (y l-y) + z

Tan Y2 - y  12 -I y-y 11 2(2a-c+b)(y 2 -yl) 61

-Tan 6z5 + f 2 2 -
z L 4(Y2_YI)2z +(2aT+b)

Tan-I 2at+b 2 d1 "I' (A.23)
2(y 2-Y)z a l

3 where:

a = (Y2 - YO) 2

b = -2(y - yj)(y 2 - y1 )

c = (y - y1 )
2 + z

2

A
U A- 7
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w - r<z'+x 02

12  lr (1 ___)e dt' (A.24)
(1 r Vr,2 +r2+(12

- '('x 0 1 )

f )e__0_0)e d-,  (A. 54)I(-rl) / V,2 +r 2

Ii

- ' x0)
I = 1 _,___ o

( _ -)e d-' (A.26)

II
1 2 2 22 2

-(x-x 2 )+M) (x-x2) +0 (y-y 2 ) +2 z
I~ ( 1i )2  82

(r1 2 )2 = (y - y2 )2 + z2

x02 = (x - x 2 ) - T(x2 - Xl)

(rl)2 = - y )2 + z2

(-(x-I I )+MV(x-x 1 ) 2 2(y__yi) 2 2z 2

1  P 2

x0= (x - xi) - -(x2  xI)

Differentiating I, II, 12 with respect to z and I gives

i'w r1 +x 0) - +xI M_ 1i - W -( I 1 0 O 0

)e +zJr (2+3/2 e d-'

2 1  1  (A.27)

I G )e
I 1 2 i '+x

1 + zJ (2 2 3/2 e '01 d'
I 

(A.28)
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- I-- (T l)+x02
12 Mz 12 1
--- -= - - (I ) - e +

az 1+-t2

12

I - wV_ "'+702)

zf codr(. 9
(- 2 2 3/2 e (A.29)

1 1 2 12

- , - r 1+xo- V- +xo
61 M(y-n) ( 1 1 1 2 32e
6i- R -(-Y - ) f 2. 2.-3 /2 d-r

-x T V'I1 0 Mx i -

+ LW 1( 2-1 + (1 )e ( - -L )  =(A. 30)
+ 0 Y2-Yl 1+ 2 R 2 yA2-Y

I---(- r 4x0

1w1
izw~ r V l 2

1 I + i I ,

2i 3 32 r-R - r 2 3/2]

1 2
/1 +t

1w

/ - V 2 r1 2iw r Y2 y- 1) (01

I 1

/i +w

i_ 1-x. lr V (lrl-M 0 ) Mx ) -x2, 3/1 2 1= 1 0R 1 2-Y 1 .

Vc r 1 - t I1+ r +O ~ 3/ I)-y R2x 2r r+

I -i--V t) 2 2 y RV21
Lw )e+' cc( L
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t - -(IrIA0

2 Mx0 r x 2 -x 1

()

3(y-)z 2 'e M

2 [r f 2 25/2 dr'] (A. 31)
r 1 TIr1I ( +r1 )

S i(?c. r 2/

d _ r - V-ir ' x0) Mr1drI  (1 1 )e (---) +
,2 2 2

1lr
2lrI ( 2r 3/2 dT' (A.32)

To evaluate the integrals in the - i-term, the following

approximation may be used in I, Ii, and 12 terms (ref. 15):

Ir-CnS1- a e n(A.33)
i+2 n

I cn an

1 0.0625 0.002907843

2 0.125 0.002591528

3 0.25 0.02667074

4 0.5 0.07097100

5 1 0.3478370

I 6 2 0.5556069

7 3 0.7048426

I 8 4 -0.7769790

9 8 0.07004561

I 10 16 -0.004557519
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Therefore, by applying the above approximation (eq. A.33), I, I,

12 can be integrated exactly. Note that integrals in the form of

Iiku iku

S(i+u2)3/2 du , P (+u2)5/2 du (A.34)

I can be reduced into form like I by taking integration by parts. For

i P, twice integration by part is necessary.

By the same approach, the u and v veloctiy can be obtained.

To check the expressions, it should be noted that the induced

downwash due to an oscillating line vortex can be reduced -to the

3 downwash velocity due to a steady line vortex if the oscillating

frequency (w) is set to zero. In this case, equation (A.14) becomes
id i "p dF (.5

dz w=0 t dz L (A.35)

i where:

F f x 0  -1 z(xI-x)F=f(-._ )z 0 dr-an -  ]

L RrI  (yl-y)V/(XIX) + 2(yly)2 + z2 2

- Tan- 1  z(x 2 x) (A.36)

(y 2 y)V/(x 2 x) 2+P 2 (y2_y) 2+ 2z2

3 and

dK I *

W/dz L (x-x 0 2 2 ) 2 1 2(z-z 2) 2

(x 2 ..x 1)(x 2-x)+o 2 (y2_y1 )(y2_y)+P 2 (z 2_z)(z 2 _z)

Q.+(z-z 2 )2 [ (x 2_x 1) )2+ (y2_y I ) 2] "

I A-I
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3 22 -I)(1 X2 2 -2 ( Y+ ( Z Z

3Q (-x)x-+ 2  2 2 2 (A.37)

Q 2+(z-z 1)2 (-1)
2 +p 2 y-I 2

Equation (A.37) exactly matches the downwash velocity due to a

* steady line vortex.
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Figure A.1 Definition of Geometry inI Oscillatory Motions
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