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1. INTRODUCTION

In the preceding paper (Jensen, Adams, and Chabalowski, to be published) (Referred to as Report
I) we reported ab initio calculations predicting the magnetic circular dichroism (MCD) spectra for the
a—i transition in acetylene. In this second paper on MCD, we report on a new application of a
recently implemented method for studying electronic spectral properties which exist due to interactions
(perturbations) of the electronic state ¥, with a manifold of electronic states (\¥,'s, with J#A). This
type of intensity borrowing is fundamental to the B,-term found in the general expression for the MCD
intensity. In this study, we apply this new methodology to the a priori calculation of MCD spectra,
again in the acetylene molecule, but for the spectral region 185-170 nm. The method is based on first-
order perturbation theory and has been used successfully to study spin-orbit and spin-spin interactions
in other molecules (Havriliak and Yarkony 1985; Chabalowski et al. 1989).

Gedanken and Schnepp (1976) have published the experimental electronic absorption and MCD
spectra for acetylene in the spectral region 190-170 nm. They did not attempt to make an assignment
or further explain the structure of a band system occurring in this region. Other experimental studies
(Ingold and King 1953; King and Ingold 1952; Lassettre et al. 1968; Dance and Walker 1973; Foo and
Innes 1973) have added strong evidence to the onset of a new band system near 185 nm, with the
primary assignment of these spectra to the singlet BeX transition, with B taken as the 1'B, state in the
Cy, point group for a trans-bent (planar) conformation. Figure 1 shows the symmetry of the states
arising from splitting the doubly degenerate 1'A, state (lincar conformation) by bending into the trans
and cis-conformations. The spectrum beginning at 185 nm is reported to be "complicated” and
"diffuse” (Gedanken and Schnepp 1976), due perhaps to some overlap by other electronic transitions
as well as vibrational coupling of the B to other electronic states (Peric, Buenker, and Peyerimhoff
1984). This is consistent with the experiment of Foo and Innes (1973) who have assigned high-lying
vibrational bands of the A('A)eX transition at energies near the 0-0 of the BX

Theoretical studies have been carried out on several singlet electronic states in acetylene (Peric,
Peyerimhoff, and Buenker 1985, 1987; Peric, Buenker, and Peyerimhoff 1984; Kammer 1970, 1974;
Lischka and Karpfen 198€; So, Wetmore, and Schaefer 1980) and segments of the theoretically
predicted potential energy surfaces (PES) were presented for these states (Peric, Peyerimhoff, and
Buenker 1987, Kammer 1970). The results of the theoretical work support the assignment of at least
part of the intensity in the spectral region 185-170 nm to the 1'B, state, and this assignment now




seems well accepted. The theory also suggests that the l‘Bz(—;( transition could fall within this

spectral region, causing part of the irregularities seen in the spectra.

Since only singlet clectronic states are treated in this study, the spin multiplicity will be dropped
from the state labels. The ﬁ (B,) statc is the partner to the 2A, state which arises from splitting the
1A, state by a planar trans-bending motion of the hydrogens (see Figure 1). The B state shows a
minimum in its PES ncar a 140° bend angle of the C-C-H with the lincar conformation taken as 180°.
Because the B statc is not degenerate near its cquilibrium point, it will be assumcd that the MCD
intensity arises from the B,-term which requircs the use of non-degenerate perturbation theory 10
account for the intcnsity borrowing from other electronic states through magnetic dipole interactions.
The BX transition will, therefore, be treated using the newly implemented first-order perturbation
techniques mentioned above. The 2A, state is predicted to be linear (Peric, Peycrimhoff, and Buenker
1987; Peric, Bucnker, and Peyerimhoff 1984; Kammer 1970; So, Wetmore, and Schaefer 1980) if the
molecule is kept planar. However, earlicr configuration interaction (CI) calculations show that the 2A,
state correlates with the 3'A state in C, symmetry, and the 3'A has a bent and twisted (about the C-C
bond) minimum encrgy structure (Peric, Peyerimhoff, and Buenker 1987). So excitation into the 2A,
state should result in a bent and non-planar structure of C, symmetry.

Transition energics, absorption, and MCD intensities will also be calculated for the lee—;( band
system in order to consider the possibility of this transition contributing to the spectra in the
185-170 nm region. The 1B, arises from the cis-bending which splits the 1A, (Figure 1) into 1B,
and 2A, in the C,, point group, with the 1B, predicted to have a non-linear (but planar) equilibrium
geometry at a bend angle near 130" (Peric, Peyerimhoff, and Buenker 1987; Peric, Buenker, and
Peyerimhoff 1984; Kammer 1970; So, Wetmore, and Schaefer 1980). The 2A, (like the 2A, of the
trans-bent) corrclates with the 3'A state in C, and the same comments apply to its minimum energy
structure (vide supra). For a comprehensive review of the singlet electronic states in acetylene, the

reader is referred to the paper by Peric, Peyerimhoff, and Buenker (1987).

The ab initio wavefunctions will be developed from large atomic Gaussian basis sets and state-

averaged multiconfiguration self-consistent field (MCSCF)/CI.
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Figure 1. Potential Energy Curves Calculated in this Study as a Function of Bend Angle (Using
Ground State Bondlengths) for Low-Lying Singlet States in Acetylene. The Point Groups
for the Cis- and Trans-conformations are C,,_and C,,, Respectively.




2. METHODS

State-averaged, complete active space MCSCF (SA-CASSCF) was performed for several electronic
states at each point on the PESs and the resulting molecular orbitals (MO) were used as expansion
vectors in the CIs. The CI wavefunctions were constructed in the space of all single and double
excitations from a set of reference configuration state functions (CSF). Information on the SA-
CASSCF and CI procedures used to obtain the zeroth-order wavefunctions was presented in Report I
and will not be repeated here. Details of their applications to this study will be presented in the
appropriate sections. For the sake of clarity, the general MCD equations and the details of the MCD
i-term are presented here, as are the perturbation theory treatment of the _ea,-term, and the equations
needed to fit the MCD band maxima, denoted Agy"™.

2.1 MCD Equations. The MCD intensity is given by the difference between the decadic molar
extinction coefficients for left and right circularly polarized light, i.e., Ae =€, -€,, (Stephens 1976;

Piepho and Schatz 1983) and for a transition involving a non-degenerate ground state, ;(, and a
possible degenerate excited state, f we get

&

Ae
v

= 6532 1, [Z, ( ) . E,f] ‘H (1)

&

- -
where v is energy, f a line shape function, H the magnetic field in Gauss, and p; the Bohr magneton
(:4669x10cm™/Gauss). 4 and & are given by

&=B 5 (<h il (<KIm D> x <k, m | E>)] @

A\




= 2Im <J, [ X> eV

B, Y| T 5 (<X |m|L>x<[ |m|J>)
alasx E1, %x
<[ |pld,> s o = s e
) __’i‘_l_l.L..(<x[m|1‘>x<Jk[m|X>) 3

Il EJ& -EIz

with L and m being the magnetic and electric dipole moment operators. Equations 2 and 3 take into
account the fact that the molecules are randomly oriented. The units are cgs with energies in cm’,
electric dipole moments in Debye, and the magnetic field in Gauss. The operator, m , is chosen in the
length form, and the magnetic dipole moment operator, 'ﬁ) is related to the orbital angular momentum
operator, ? by E’:(IIZ)E). The two operators are identical (in atomic units) except for the factor of
12.*

As Equation 2 is written, one sees that the 4 term is derived for a truly degenerate excited state,

f. and that a MCD band attributed to such a state will exhibit a characteristic derivative line shape. In

* The actual expression representing the Ae/E calculated in this study is given by

Ae = of = rid
— = .01525{A + 8B H
S [ ‘(TE‘] "f]
which differs from Equation 1 in the units conversion due to the substitution of the orbital angular momenturn operator for
the magnetic dipole moment operator and carrying through the multiplication by p,, the Bohr magneton. The definitions of
4, and B, then become
A Im ® TOT Z120F i ImlIX
=3 X (<L ILIL,> (<X |m | > x <[, |m|X>)]
A,A
- <J|L|Xx> Lo o s
-2y x —;—'—7',:-—-(<X|m|11>x<11|m|1.>>
A|J2X Iy UK

<[ |L|J,> s . - -
—"——l_'-‘—-(<X|m|I‘>x<Jt|m|X>).
Jprl, EJ, - El‘

—
where use has been made of the relationship p=(1/2)L . The matrix elements,
- - =) . e
<[l |LiL,, > <J,|L|X>, and </, |L|J,> come directly from the quantum chemical calculations.
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contrast, the i—term can, in general, be non-zero for any electronic transition and will have the simple
line shape of an absorption band. These line shape differences are often used to determine if a band
involves a transition to a degenerate excited state. It should be pointed out that the i,—tenn clearly
contains the form of a first-order perturbation; i.c., X andf states are perturbed by a manifold of

J states via the magnetic dipole moment operator. For perturbations to the 1 state:

<J_|. “)

The reader is referred to Stephens (1976) and Piepho and Schatz (1983) for detailed discussions of
MCD theory, applications, and band shapes.

In order to relate the observed spectra to our theoretical results, we use a normalized Gaussian as
our line shape function:

fe_l _o®-3)A ©)
A(n)lﬂ

fre 200 G5 . ©
A!(ﬂ)lﬂ

The A is one-half the bandwidth measured at the band height of (f_./e) and generally taken from the

absorption spectrum. The transition energy in wavenumbers is ¥ and v, is the transition energy at the
band maximum. Due to the lack of a baseline in the absorption spectrum of Gedanken and Schnepp,

rough estimates of the bandwidths were taken from the MCD spectrum of Gedanken and Schnepp.




The oscillator strength for absorption from state X to state I is defined as

fo, = %.AE(au) |<X || T> 2 0

where AE is the transition energy and all quantities are in atomic units.

2.2 Perturbed Wavefunctions. The perturbed wavefunction for state ‘¥, is given through first-

order in perturbation theory by

L PN S ®

with ¥} being the zeroth-order approximation. The usual spectral representation for the first-order
correction, ‘Pi, due to magnetic dipole interactions would be

¥ - }lf iﬁlﬂ.}i’o_’w;. ®
J2l  (E-E;)

The summation over the L electronic states is, in principle, infinite. One often used approach to

solving for ¥} is to calculate explicitly the wavefunctions for a relatively small number of excited

states, thereby drastically truncating L. This might cause one to miss important contributions to ¥}

from the omitted states.

Within a given CSF space, this "omitted states" problem is eliminated by solving for W] directly
from (Havriliak and Yarkony 1985)

(H°-E)¥)= - p¥;. (10)

Equation 10 can be transformed into matrix form as

(H°-E)V' = ~c!
= - = an




where it must be emphasized that Hand y matrices with elements formed over CSFs, not over
eigenstates. The vectors V and ¢ are defined as the coefficients for the first- and zeroth-order parts of

Y.

¥} = £C/Y,(x) (122)
i

¥, = TV ¥ (x). (12b)
J

The x and X' label the spatial symmetries to which the CSFs belong, and, in general, x#x'.
Equation 11 represents a large set of linear inhomogeneous equations which are solved to obtain V' by

a variant of the method suggested by Pople, et al. (1979).
3. DETAILS OF CALCULATIONS

The basis set used is identical to that described in Report 1, and consists of the primitives (11s, 7p)
contracted to (5s, 4p) on the carbons and (6s) contracted to (3s) on the hydrogens. The carbon atoms
were augmented with two uncontracted d-type polarization functions and the hydrogens each received
one uncontracted p-type function. To the center of the C-C bond was added a set of (2s, 2p, 1d)
uncontracted diffuse functions, thus giving a total of 84 atomic orbitals (AO), with the details given in
Table 1 of Report I. The details of the SA-CASSCF and CI calculations will be presented in the
sections discussing the electronic states.

Peric, Peyerimhoff, and Buenker (1987) have discussed many of the difficulties associated with
studying the vibrational motions of the excited electronic states in acetylene, and particularly the B
state. Not the least of these difficulties is the probability of strong couplings amongst the bending and
twisting modes. However, a treatment of the nuclear motion is required here because of a large
difference in the equilibrium structures of the ground state and the B and 1B, states. A semi-
quantitative treatment of the vibronic problem included in this study should be sufficient to address the
electronic origin of the spectral features in the 185-170 nm range which is the goal of this work.




In this work, we employ a simplificd trecatment of the nuclear motion, ignoring all vibrational
mode couplings (excepting the 2a\,-§ over E’. to be discussed later) and keeping the C-C and C-H bond
lengths fixed at the ground state values of R(C-C)=1.208A and R(C-H)=1.058A for the calculation of
transition moments. This choice of bond lengths was based upon the fact that we are predicting an
absorption intensity from the ground state. The PESs for two states were then recalculated using the
bond lengths determined by Peric, Peyerimhoff, and Buenker for the minimum energy structure of
each state, these being the BIR(C-C)=1.349A, R(C-H)=1.071A) and 1B,[R(C-C)=1.351A,
R,(C-H)=1.104A]. Thesc PESs werc then used in calculating a more appropriate set of vibrational
wavefunctions. The PES for the 2A, was uniformly lowered in energy by the energy difference for
the B state calculated at 180° using these two differcnt scts of bond lengths. This was necessary to

facilitate a more accurate coupling of the B and 2A, states.

The bending motions were described as a harmonic variation in the bending coordinate, 6, with 0
given in radians. Due to the symmetry of the bending modes, the moments between the V"=0 (gerade)
and all the odd numbered v' (ungerade) levels must integrate to zero over the electric dipole moment
matrix elements. So the calculated vibrational levels describing the zero intensity moments will be
removed and the remaining even states relabeled consecutively to correspond with the experimental

notation.

Within the context of a single mode approximation it is necessary to assign a reduced mass for the
mode in question. The rcduced mass was obtained by ﬁttmg the calculated fundamental bending
frequencies v, (trans) and vy (cis) to experiment for the X and B. or to the calculated harmonic values
of Lischka and Karpfen (1986) for the 2A, statc. This treatment is expected to be more reliable for
the lower vibrational levels. The reduced masses for the trans-bending mode are calculated to be:

(X :1.0), (B :0.73), and (2A, :0.57). The reduced masses for the cis-bending mode are: (X :1.8),
(1B, :1.3), and (2A,:0.635).

Henceforth, all quantities shall be reported in atomic units unless otherwise stated. The trans-bent
and cis-bent conformations are treated in the point groups C,, and C,,, respectively, and the
correspondence of the irreducible representations (IRREP) amongst the three symmetries, D, C,,, and
C,.. is given in Table 1. D, corresponds to the linear molecule and is included for explanatory
purposes. The molecule lies in the xy plane in C,, with the C-C bond collinear to the x-axis, and in
C,, the molecule is in the yz plane with the C-C collincar to the y-axis.




Table 1. Correspondence of Irreduciblc Representations for Acetylenc in the Trans-bent C,,, Linear
D, and Cis-bent C,, Conformations

C).h Dooh Clv
A, E; A,
A, )2 A,
A Ay B,
Au' Bu d Al' Bl
A, B I,
uwr “uy 1 A2' BZ
Al’ BS A! Alv B1
Al' BB g

3.1 The ﬁe—i Transition; Trans-bend.

3.1.1 Zeroth-order State Descriptions. The trans-bend B (B,) state, which arises from the

. 2 2 2 2 2 1 2 1
degenerate 14,, is rcprescnted by the CSFs (16,10,20,20,) 30,1, 1%, 1, and
.. 302, luf, In ,‘,,11: ;,. Its degenerate partner is the linear 2A, and is given by the CSFs

( . )30%1n,151x}, and (. . .)36%1n. In,,In,,. The active orbitals used in the SA-CASSCF are
the 36‘(4(1‘), ln”(Sa‘), ln.y(3b_). In (a), lu't(lb‘) with the 4rx, electrons distributed amongst these
MOs. The 36 ,(4a) MO is a Rydberg orbital. Six electronic states were then averaged including
1A,,12B,,1,2,3A,. The weighting scheme used in the averaging is w,=(1,1,1,1,1,1), respectively.
The SA-CASSCF was calculated at each point along the bending PES, which ranged from 180°
(linear) to 110° at 10° increments, and another point at 90°.

To test the effects of the choice of weights on the transition moments, a test was run at a bend
angle of 150° using the new weights w,=(2,1,1,1,1,1). Only two of the transition moments changed
more than 4%, and thesc two moments arc relatively small and contribute to the total MCD intensity
in such a way as to have changed the final intensity by less than 2%. These size fluctuations in the

moments are quite in line with the expected accuracies for this study.

10




Reference CSFs were determined from preliminary CI calculations at 180° (linear) and 140°. The
number of states included per IRREP are 3(A,), 3(A), 2(B,), and 3(B,), and the contribution of the

reference set to the wavefunction is given by c,z,,,;

ref CSF's \
Crzt/.v = E Ci
i
where ¢? is the CI coefficient for the i reference CSF in a given state. The CI results at both angles
give c,z,,, 2 (.88, .90, .90, .88) for any state in the A " A, B, B: IRREPS, respectively. And, for the

states of primary interest, ¢, 2 X (91), 2A, (.91), B (:90). The list of reference CSFs, and the total
number of CSFs generated in each IRREP, are shown in Table 2. All the states mentioned above

represent electronic excitations out of the 1n .y(b‘) In (a,) orbitals. The excited states of primary

interest are obtained by excitations into the 1x (a) 1% (b)) orbitals. PESs for the lowest six singlet

states are shown in Figure 1, and the data given explicitly in Table 3.
3.1.2 Perturbed Wavefunctions. The total perturbed wavefunctions, ‘P(;Q and ‘P(ﬁ), arise from

the magnetic dipolc induced perturbations to the zeroth-order electronic state wavefunctions, ‘I‘°6() and
Y°(B), as given by

Y(X) = ¥°X) + ¥'(B:X) + ¥'(B);X) + W'(A):X) (13a)

W(B) = Y°(B) + Y'(A):B) + Y'(AL;B) + Y'(B.;B) (13b)

where the first-order corrections arise from the magnetic dipole interactions,

¥!'(B,:X) : <B, |K, | ¥oX)>

11




Table 2. Reference CSFs Used in Trans-bendng Conformations (C,, Symmetry) and Total Number of

CSFs Generated Per IRREP*
MO 2a, 3a, 4a, Sa, 2b, 3b, 4b, 5b, 6b, 7b, la, 1b, 2b,
IRREP
A, 2 2 - - 2 2 - - - - 2 - -
(271428 2 2 - 2 2 - - - - - 2 - -
2 2 - - 2 2 - - - - - 2 -
2 2 - 1 2 1 - - - - 1 1 -
2 2 - - 2 1 1 - - - 2 - -
2 2 - - 2 1 - - 1 - 2 - -
2 2 - - 2 1 - 1 - - 2 - -
2 2 - - 2 1 - - - 1 2 - -
A, 2 2 - - 2 1 - - - - 2 1 -
(186914) 2 2 1 - 2 2 - - - - 1 - -
2 2 - 1 2 2 - - - - 1 -
2 2 - - 2 1 - - - - 2 - 1
2 2 - - 2 1 - - - - 2 1 -
2 2 1 2 2 - - - - - 1 - -
Bg 2 2 - - 2 2 1 - - - 1 - -
(313910) 2 2 - 2 2 - 1 - - 1 - .
2 2 - - 2 2 - - - 1 - -
2 2 - - 2 2 - 1 - - 1 - -
2 2 - 1 2 1 1 - - - - 1 .
2 2 - 2 2 - - 1 - - 1 - -
2 2 - - 2 2 - - - 1 1 - .
B, 2 2 - - 2 2 - - - - 1 1 -
(184782) 2 2 - 1 2 1 - - - - 2 . .
2 2 1 - 2 1 - - - - 2 - -
2 2 - - 2 2 - - - - 1 - 1
2 2 1 - 2 1 - - - - - 2 -

* The la, and 1b, MOs, which correspond to the carbon inner shells, were treated as frozen core orbitals in the CI.
® Total number of CSFs actually included in the CI and properties calculations. See text for further details.
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¥'(B,:X) : <B, |n, |¥°(X)>
¥'@45X) <A, (K, | ¥oX)>
Y'(AS;B) : <A, |p, | P B)>
W'(ALB) 1 <A, |u, | 'POB)>

¥!'(B.;B) : <B, |p, | ¥°(B)>

and the matrix elements listed above are between zeroth-order wavefunctions for the X or B states and

the manifold of states having the specified symmetry.

313 33, Over Perturbed Wavefunctions. Expanding the cross products and dot products in

Equation 3 and inserting the first-order corrections to the wavefunctions from Equation 13 gives '
o

E: = _2;_”‘ [{<‘P°(}Z) Im, | Yo (B)><¥°(B) |m, |V (B, X)>

- <¥°X) |m |¥B)><P°B) |m,|¥ B):X)>
+ <¥°(X) |m, | ¥(B)><¥°(B) |m | ¥ (4,:X)>

- <o) |m, | ¥ (B)>< ¥ (B) m, | ¥4} %) > } (14a)

{<¥°@®) |m | ¥ B)><¥°X) | m, | ¥ AL:5)>
<¥°(X) |m, [ (B)><¥°(X) |m, |¥'(A);B)>

+

<¥°X) |m | WB)><¥°(X) [m, |¥'(8B):B)>

<¥°X) |m | ¥ B)><¥°(X)|m, | ‘1”(3-'25)>}J (14b)
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where the dagger on ' indicates that vibrational motion has been ignored in the electronic
[+]

wavefunctions.

Finally, for each matrix element in Equation 14. we need to obtain the vibrationally-averaged
electric transition dipolc moment between two bound electronic states. For example, using the zeroth-

order PESs to calculate the vibrational wavefunctions we gct,

SX | By = <xhR) | <¥°X) [ m, | ¥°B)> | X0 (R) > (152)

SB) | BEX))o = <XER) | <¥(B) |m, | ¥ BX)> | 15 R)>. (15b)

The vibrational wavefunctions, ¥, (R)’s, are obtained by numerically solving the vibrational
Schroedinger equation for nuclear motion while ignoring rotational effects. The integrals in

Equations 15a and 15b are then solved numcrically using Simpson's rule.

The final form for -@o, which includes vibrational averaging, is

B, = Z’T’”[{SGZ |B), e+ SB |BEX))er = SK | B)iyn + SB | BLX))Er

+ S| BYyve * SBIASX) Ve = S| BV - SB (ALK}
- {S®|B2,. - SR |(AX:B))e, - S| B)eye - SCK | (A2:B) )

+ S| B)ey - S| (BLiB))oye - S By - S(X | (B:;é)):-.--}] (16)

3.1.4 Quasi-degencrate Perturbation Theory. The B and 2A, are degenerate at 180° (and nearly so
for small bend angles); thus, the magnetic dipole interaction between these two states cannot be treated
near the linear conformation using the non-degenerate perturbation theory outlined above. Instead, a
quasi-degenerate perturbation scheme (Yarkony 1988) will be used in which the W(A,) space is
partitioned into two parts: a P space containing only the quasi-degenerate electronic state, ¥(2A,) and
a space containing all the remaining ‘¥(A,) states. If we label the B state as the I'th state, the

wavefunction for B becomes

16




YA = ) + YU D) (17)

where ¥ is referred to as a dressed wavefunction, and ¥}, is the dressing wavefunction. W, (/.7) is

defined by

YL = QWU withQ = (1- X |Y°(U)><¥P°() ) (18)
JeP(J)

with P(J) containing only the 2A, element for the current case. ‘PIQ(J,I ) satisfies

(H° - E)¥oU.D) = Qp¥ed) (19)

with p the magnetic dipole operator and 0 the projection operator defined in Equation 18.
Specifically,  projects out the contribution of W°(2A,) from ¥'(J,I) leaving the dressing function,
‘P‘Q(J,l ), which contains the interaction of ‘P°(§) with all other W°(A,) except the W°(2A)). Equation
19 is then solved directly in the CSF basis as discussed in Section 2.2.

We now want to include the interaction of the quasi-degenerate W°(2A,) with the ‘I’°(§) state over
the magnetic dipole moment operator, u. This is done by coupling the vibrational levels of the two
electronic states to form new vibronic states, Wy(r,R) (Yarkony 1988):

¥, (r.R) = Rdixi¥i(r.R) (20)
LA

where I runs over the electronic wavefunctions for the two quasi-degenerate states. The x{(R) satisfy

Ty + E®)UR) = LRk, @n
with

Ef(R) = <¥[(r;R)|H* | ¥{(r;R)>.

17




The Wi(r,R) satisfy the total (rotationless) Schroedinger equation,

(T, + H)Y¥Y (rR) = E,¥,(rR), (22)

where K is a coupled vibronic state formed as a linear combination of the vibrational levels of the

Y°(2A) and ‘P°(}§) states with the coupling coefficients, d,'{, determined from the relationships

(e - E)D* = TD¥ (23)
with
Enry = 8,,0, 265, (24)
Do = <u<¥/ |IJ ‘Pﬁ>X£'>R
= <X | p@I) x>, 1T
(25)

=0 ifl =1

The magnitude of the coupling coefficients is determined in part by the size of the magnetic dipole
moment matrix element coupling the 2A, and E states. Based on the coupling coefficients, d,',f, one
can often assign the vibronic states, Pk (r,R), as being composed primarily of W°(2A,) or \P°(§).
Making such an assignment becomes more meaningful when |, - €., [>>T}, ...

The contribution to the ?ﬁ,—term in Equation 16 through the matrix elements involving the vibronic

wavefunctions, ‘¥x(r,R), is given explicitly by
SX | (ASB))5- = <X R) | <¥°(X) [ m, | ¥p(AZ:B)> | X0 R)>

+ <XER) [<¥°X) | m, | ¥ (rR)>>. (26)

18




From Equation 20, we find ¥(r.R) to be

W (rR) = Tdgx, XPUR)P°(24,) + Tdiyxy R)P°(B). @7
A Y

Substituting Equation 27 for ¥ into Equation 26 gives
S| ALB)L,. = <X ®R) | <¥°X) | m, | ¥y(AS:B)> |28 R)>

+ 2dfa<x R | <PX) | m | WA > [ R) >
y (28)

+ T df <y ®R) | <¥P°X) |m ¥ B)> | 1 R)>.
¥

where the superscript on the 2A, in d;, indicates the coupling coefficient was determined using the **

component of the magnetic dipole moment. Based on symmetry arguments, the third term in Equation

28 is zero, giving the final expression

S |AKB)) =<x 2. R) |<¥° ) |m, | YoAl:B)> | 2L (R) >

+ Ddhra<xm®) | <P°X) |m, | ¥°24,)> | 3 R)>.
A (29)

An analogous expression can be written for the S(X) | (4);B8))..,. matrix element in Equation 16,
with the coupling coefficients, dzf.z',., being determined from the y-component of the magnetic dipole

moment coupling matrix element.
3.2 1'B,<X Transition; Cis-bend.

3.2.1 Zeroth-order State Descriptions. The cis-bent 1B, state (in C,, symmetry) comes from
splitting the degenerate 1A, and is described (for the linear molecule) by the CSFs (lo"; 102,,262,201)

301, 1x%1n}, and (. . )30’ In’ In,,Ix},. Its degenerate partner is the linear 2A, and is given

by the CSFs (. . )36} 1x, 1n% 1%}, and (. . )36} 1% In,, In},. The active orbitals used in the
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distributed amongst these MOs. The 26,(3b,) MO is a Rydberg orbital. Six electronic states were
then averaged including 1A,, 1,2B,, 1,2,3A,. The weighting scheme used in the averaging is
w,=(1,1,1,1,1,1), respectively. The SA-CASSCF was calculated at each point along the bending PES,
which ranged from 180° (linear) to 110° at 10° increments.

Analogous to the trans-bent case, the reference CSFs were determined by running ClIs at cis-bend
angles of 180° (linear) and 140°. The number of states included per IRREP were 3(A)), 3(Ap, 2(B)),
and 2(B,). At both angles, the total contribution of the reference set to the wavefunctions in each
IRREP are cZ,, > (.88, 91, .89, .90), respectively, and, for the states of primary interest, cty 2
X(A,)(.92), 1B,(.90). The list of reference CSFs and the total number of CSFs generated in each
IRREP are shown in Table 4. All the states mentioned above represent electronic excitations out of
the 1m,(b)1x(a,) orbitals. The excited state of primary intcrest here is the 1B,. This is obtained
by excitations into the 1,,(a,) 1 (b,) orbitals. The resulting PESs for the lowest four singlet states
are shown in Figure 1 and the data given explicitly in Table 3.

3.2.2 Perturbed Wavefunctions. The perturbed wavefunctions ‘P(i) and ‘P(1B,) may be written as

¥(X) = ¥oX) + P'(B;;X) + YA X) (30a)

¥(1B,) = ¥*(1B,) + Y'(4,;1B,) + ¥'(B/;1B,) (30b)
where the first-order corrections arise from the magnetic dipole interactions

Yi(By;X) : <B, | p, | ' P°X)>
WA X) : <A, |p, | PX)>
YA 1B,) : <A, |, |'V°(1B,)>

V'(B)':1B,) : <B, |, | '¥Y°(1B,) >

and the matrix elements listed above are between zeroth-order wavefunctions for the X or 1B, states

and the manifold of states having the specified symmetry.
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323 i Over Perturbed Wavefunctions. Expanding the cross products and dot products in
Equation 3 and inserting the definitions for the perturbed wavefunctions from Equations 30 gives -9-3‘,'

B' = 2’T’" [{< ¥oX) |m | ¥o(1B,) ><¥°(1B,) | m, | ¥'(B;:X)>

- <POR) | m | ¥U1B,) >< P18, | m, | (A X))

- {<¥®) |m | $o(1B) ><¥oX) | m, | YA 1B,) >

- <¥°(X) |m | ¥°(1B,) >< ¥°(X) | m, | ¥'(B]:1B,) >}} (31)

Finally, for each matrix element in Equatign 31, we obtain the vibrationally-averaged electric

transition dipole moments as described above.

Using the nomenclature established for the BX transition, the final form for i which includes

vibrational averaging, is

B, = %m'[{ SCE | 18,0 S(UB, | BN e - SR | 1B)e S (1B, | (A5}

- {sof |1B,)}r- - SX) | (A[31B,))}0r0 - SX | 1B,)]- - S(X | (B,';IB,)):-.-}]. (32)

4. RESULTS AND DISCUSSION

4.1 B<X Transition; Trans-bending. Figure 2 shows the electric dipole transition moments
between the zeroth-order states including <X |m, |B>, <X|m, |B>, and <X |m, |2A,> as a function
of bend angle. The actual values are listed in Table 5. The magnitudes of the moments are essentially
zero at 180° and increasc with bend angle. The <X |m |B> shows a maximum near 140°, which
coincides with the equilibrium bend angle in B using the ground state bond lengths. Our
<§| m,l 2A> curve is not as smoothly varying as the other two moments in Figure 2 due to an
avoided crossing of the 2A, and 3A, states in the region of 130-140°. Also, the fact that <X|m, | B>
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Figure 2. Electric Dipole Transition Moments Between the Ground State and the Components of the
1'A(2'A,, 1'B, as a Function of Trans-bend Angle. All Moments are Over Zeroth-Order

Wavefunctions.
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Table 5. The Electric Dipole Transition Moments (in au) vs. the Trans-bending Angle for Matrix
Elements Involving the Zeroth-Order Wavefunctions for the X, B, and 2A, States

Angle (Deg) <X|m_|B> <X|m,|B> <X|m|24>

180 (linear) -0.03%4 0. 0.

170 0.0066 -0.1995 -0.1800
160 0.1071 -0.3312 -0.2564
150 ) 0.2224 -0.4009 -0.3283
140 0.3321 -0.4276 -0.4398
130 0.4294 -0.4297 -0.6003
120 0.5189 -0.4213 -0.5790
110 0.5929 -0.4077 -0.5686

is small but non-zero at 180° is an artifact of the calculations induced by a minor symmetry breaking
in the wavefunction at 180°. Its effect on the final transition intensities was tested by setting the
moment to zero at 180° and rerunning the vibrational analysis. The final MCD intensities for the 0-0
and O-1 transitions changed by < 0.5%, which is quite acceptable for this study.

PPB have also calculated these moments. The agreement between the present result and that of
.PPB is quite good for the <;(| m,| zb curve, with both showing a maximum near 140°, Their
<;(l m,l B> and <)'2| m,l 2A > moments show the same qualitative dependence on bend angle as what
is found here. However, there are quantitative discrepancies between the studies ranging from a
few percent to approximately 20%, with the larger difference occurring for <X|m_| B> at angles less
than 130°. Given the differences in approach between the two studies, including their use of a smaller
AO basis set, different bond lengths, and a different CI approach, it would be very difficult, if not
impossible (and outside the purpose of this study), to unambiguously determine the source of these

discrepancies in the moments.

4.1.1 Oscillator Strengths. The absorption oscillator strengths for the BeX transition have been
calculated and are given in Table 6. The 1-0 band carries the largest oscillator strength of f,, =0.0025.
This can be compared to the experimental spectrum of Foo and Innes (1973) which has the intensity

peaking around v'=3-5. It is difficult to make any further comparison with experiment due to the
complicated, diffuse nature of the spectrum, and the absence of an experimental estimate for the

oscillator strength.
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Table 6. Calculated Absorption Oscillator Strengths for the BeX Transition Resulting From the
Vibrational Analysis on the Trans-bending Mode

v-v" £, x10°
0-0 0.905
1-0 2.490
2-0 0.478
30 0.281
4-0 0.301
5-0 0.146

4.1.2 MCD Intensities. Equation 14 shows the transition moments needed to calculate the MCD
for the trans-bending mode. There are two main parts to Equation 14. The first part, labeled 14a,
accounts for the perturbation of the ground state and the second part, labeled 14b, describes the
perturbation of the excited B state. Due to the rather large energy separation of the ground state from
the nearest excited gerade state (i.e., 1I;: T.28.59¢V from these calculations), one would expect the
first-order corrections to ;( to be considerably smaller than the corrections to 'é; hence, Equation 14a
should contribute significantly less to the MCD intensity than Equation 14b. In fact, Segal and co-
workers (Dutch and Segal 1983; Diamond and Segal 1984) have shown this to be true in other cases,
thus often enabling one to ignore the first term in Equation 14 at a considerable computational saving.

Figure 3 shows the angle dependence of the orbital angular momentum matrix elements between
the quasi-degenerate states E and 2A,,(<‘P°(2A“)|L.| ‘l’°(§> and <‘I’°(2A,,)|L,| ‘I‘°(§)>) over their
zeroth-order wavefunctions. For a 'A state (linear geometry), the matrix element
<¥°(2A) L, | ¥°(®)> should be 2 and <¥°(2A,)|L,| ¥°(B)> should be 0, consistent with the results
in Figure 3. The <'¥°(24,) | L, | ¥*(B)> value drops to 1.06 au at 90° while the
<¥@24) |L, | Y(B)> increases to 0.75 au. These matrix elements are necessary for determining
the perturbation of B by its quasi-degenerate partner 2A,. Equations 16 and 29 show the contribution
of the 2A,-B interaction to the MCD (with v'=K) to be proportional to

<X R) | <¥(X) Im, | PoB) > | X3 R) >< X (R) | <P°(X) | m, | ¥°24,) > | D dfz, ™ (R) >
A
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Figurc 3. Orbital Angular Momentum Matrix Elements <L <L> Coupling the Zeroth-Order Wavefunctions

for the 2'A, and 1'B* Components of the nents of the 1'A°. The Moments are Plotted as a Function of
Trans-bend Angle (All Values are in Atomic Units). The Magnetic Dipole Momems <>
are Related (in au) to Orbital Angular Momentum by <m>=(1/2)<L>
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The PES for the 2A, requires some discussion. Peric, Peyerimhoff, and Buenker found in their
calculations that the 2A, state prefers a non-planar structure with a twist of approximately 90° about
the C-C for non-linear conformations. It is beyond the scope of this study to attempt a multi-
dimensional vibrational treatment, therefore the molecule is assumed to remain planar in the 2A, state.
This limits our ability to calculate an accurate vibronic coupling between the B and 2A,, since quasi-
degenerate perturbation theory requires PESs for both states. In analyzing the make-up of the vibronic
wavefunction, W, one finds the encouraging result that the largest contribution to the first two
vibronic states, W,(v¢=0,1), come almost entirely from couplings with the v=0,1 of the 2A,. So it is
reasonable to expect the W's to be good approximations to the true wavefunctions for v¢=0,1, and the
calculations to predict MCD intensities for the 0-0 and 1-0 bands in reasonable agreement with

experiment.

Figure 4 shows the plots of the electric dipole transition moment matrix elements between the
zeroth-order excited ﬁ state and the first-order correction to the ground state, V(B ‘;X ). These matrix
elements are found in Equation 14a. Figure 5 plots matrix elements between the zeroth-order ground
state wavefunction and the first-order correction to the B state (Equation 14b). It is immediately clear
from comparing Figures 4 and 5 that the absolute magnitudes of the moments involving the perturbed
excited B state are considerably larger than those of the perturbed X state over most of the PES.

By inspection of Figure 5, one sees that the largest matrix element in the vicinity of the
equilibrium bend angle for the § state is <'¥°(X) [m, | \P'Q(A: ;B)>, which represents the coupling of
B with the A, states over |, This matrix element does not include the contribution from B coupling to
its quasi-degenerate partner, the 2A,. It is left to the vibrational treatment to account for this §2A,I
interaction. The results of the vibrational treatment are given in Table 7, which lists the contributions
from each matrix element in Equation 14 to each vibrational band. The matrix elements
<¥°(X) |m, | ¥A);B)> and <¥°X) |m, | ¥(A};B)> now contain both the non-degenerate and
quasi-degenerate (i.e., §2A,,) PT contributions. It can be seen that the matrix element involving
W'(AJ;B) is by far the single largest contributor to the intensity for the two vibrational bands.
Specifically, the 5«—;( transition gains much of its MCD intensity through interactions with A, states.
As in absorption, the more intense MCD band is the 1-0. The calculated Ae7™s are (0-0)=-3.48,
(1-0)=-5.82. Table 7 also lists (in parenthesis) the corresponding experimental Ae’"™ values;
(0-0)=-0.8, (1-0)=-1.6. The theoretical values for (0-0) and (1-0) are a factor of 4 larger than the
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Figure 4. Electric Dipole Transition Moments as a Function of Trans-bend Angle. The Matrix
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State. All Values are in Atomic Units. See Equation 13 for Definitions of First-Order
Wavefunctions.

28




i 4<m> lau)

12+

10

o X Imy v 81>

WX Im v A8
61 | /

g o Imv BEBD

2 1 1 l L ‘\1 (\l(o (;(l”:mxl \Ifil%.ﬁl) |-
90 100 #0 120 130 140 150 160 170 180
Trans Bend Angle (Degrees)

Figure S. Electric Dipole Transition Moments as a Function of Trans-bend Angle for BeX The
Matrix Elements Include the Total First-Order Correction to the Wavefunction for the

Perturbed B State. All Values are in Atomic Units. See Equation 13 for Definitions of
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Table 7. Electric Dipole Transition Moment Components (in au) Determining the MCD Intensity for
the BX Transition (Trans-bending Motion)

v'-v"
0-0 1-0
<¥°(X)|m_ |¥B)> -.0201149 +.0105815 Zeroth-order
<¥°X)|m |\¥°B)> +.0696649 -.1190800 Moments
<¥°(8) |m,|¥(B):X)> -.0180523 +.0280062
<¥°B)|m,|¥'(B}.X)> +.0175951 -.0354671 Perturbing the
<¥°(B) |m | ¥4, :X)> +.0114457 -.0566385 X state
<¥°B) |m, |¥\(A:X)> -.0246575 +0.3196930
<¥oX) |m,|V'(AS;B)> +16.3245000 -19.7214400
<¥°X)|m, | ¥ (Al;B)> -.8072640 -2.7946300 Perturbing the
<¥°(X) |m, |'V'(B);B)> -1.6048100 -4.9070150 B state
<¥°X) |m, |¥'(B):B)> +.1523540 +.2918810
B -224x10* -463x10*
-3.48 -5.82 MCD Band Maxima
Aa':“"( cgs units) (-0.8)° (-1.6) (Experimental Maxima)

* Consistent with electric dipole moments in debye.
® Gaussian band shape described in text with A=120cm™*(0-0), 150cm™(1-0), and 4, =54116cm™)0-0), 54794cm™'(1-0).
¢ Experimental values from Gedenken and Schnepp (1976).

experimental maxima, but of the correct sign. This agreement is acceptable considering the

approximate nature of the vibrational treatment.

42 lB,(——;( Transition; Cis-bending. Theory suggests (vide supra) that the lee—)'Z transition

might overlap the 5(—;( band system and be responsible for part of the irregular band shapes and
variations in intensities. In this section, we examine the predicted MCD and absorption intensities
(i.e., oscillator strengths) for the le(—i transition and compare these to the analogous values for the
BeX system.
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4.2.1 Oscillator Strengths. The y-component of the electric dipole transition moment for le(—;(
is shown as a function of bending in Figure 6. Again, the 1B, state is one of the degenerate partners
in the 1A, state (sec Figure 1); thus, the electric dipole transition moment must be zero at 180°. The
curve in Figure 6 shows the moment continually increasing from essentially zero at 180° to
0.58 au at 110°, the largest angle calculated. Once again, Peric, Peyerimhoff, and Buenker have
calculated this electric dipole moment and found a similar qualitative dependence on bend angle.
However, the magnitude of thechange per degree is larger in PPBs study than here. For example, at
an angle of 110° they predict a moment of =~|0.80| while our value is |0.58|. The reader is referred
to the section concerning the BeX transition for a discussion of possible causes for this quantitative
difference in the moments between the two studies. Table 8 lists the values of the electric dipole

transition moment plotted in Figure 6.

The calculated 0-0 transition energies for the ﬁ(——i and le<—)2 band systems are
AE=56667cm™(B<X) and AE=56330cm"( 1B,e-X), which do indeed lie close 1o one another. The
calculated transition energies for excitations from v"=0 to v'=0,1,2,3 are given in Table 9 along with
the experimental values for the BeX reported by Foo and Innes (1973).

Table 8. Electric Dipole Transition Moment vs. Cis-bend Angle for the Matrix Element Involving the
Zeroth-order X and 1B, States

Angle (Deg) <X(1‘Al) Im, [1'B,>
180 (linear) -0.0036
170 0.0416
160 0.1461
150 0.2662
140 0.3760
130 0.4659
120 0.5327
110 0.5798
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Angle for the 1B,«X Transition Over Zeroth-Order Wavefunctions.
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Table 9. Transition Energies (in cm™) for the BeX and lB,(—;( Band Systems

v-v" BeXt AE(V;,-V1) B<X AE(®v;,-v) 1B,X*
0-0 56667. 54116. 56330.
1-0 57296. 629. 54850. 734. 56988.
2-0 57756. 460. 55538. 688. 57585.
3-0 58398. 642. 56285. 743, 58070.
4-0 59227. 829. 56984. 699. 58523.
5-0 60170. 943, 57827. 843. 59116.

* From PESs using minimum energy band lengths for both states. See text, Section 3.
® Experimental values from Foo and Innes (1973).

The oscillator strengths for absorption are given in Table 10. The transitions to the first four
v' levels are shown, and one finds the 2-0 band predicted to be the most intense with f,,.=4.4x10°%, and
15 times more intense that the 0-0. The important point to note is that the magnitude of the 2-0 is
approximately a factor of 60 less intense than the strongest band in the ﬁ(——i

Table 10. Calculated Absorption Oscillator Strengths for the 1B2<—)‘2 Transition

v-y" £, x10°
0-0 0.2820
10 1.6800
2-0 4.3800
30 3.0200
4-0 0.0146

4.2.2 MCD Intensities. Unlike the B state, the 1B, has no allowed magnetic dipole coupling to its
quasi-degenerate partner, the 2A,. This is significant because the theoretical study of Peric,
Peyerimhoff, and Buenker found the 2A, (like the 2A,) component of the 1A, prefers a twisted
conformation at larger bend angles. The lack of magnetic dipole coupling between 1B, and 2A,
simplifies the calculation of the MCD for the le(-—;( because quasi-degenerate PT is not needed. But,
more importantly, this removes the uncertainty in the calculated MCD added by having to couple to a
PES (i.e., the 2A,) which is known to be inaccurate at higher vibrational levels.
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Table 11 gives the MCD Ac’,™ for the first six vibrational bands. The vibrational levels 4-0 and
5-0 are found to be opposite in sign to the first four bands. One important observation from Table 11
is that matrix elements involving the perturbed ground state contribute significantly to the total MCD
intensity for the 0-0, 1-0, and 2-0 bands. This arises not because of large perturbation to the ground
state, but because the two components describing the perturbation to the 1B, state are nearly equal in
magnitude and cancel one another. This is in contrast to what we saw in the ﬁ‘—i band system where
essentially all the MCD intensity arose from perturbations of the excited state ﬁ not the ground state.
The other important observation is that the strongest band, the 3-0, has a predicted MCD intensity of
Ae2™=-.0037, which is three orders of magnitude smaller than in the BeX. Part of the SXPlanation
for this relatively small MCD signal lies in the symmetry of the molecule which dictates the allowed
magnetic dipole couplings and therefore the ability to borrow transition intensity. It will be
informative to look at the states closest in energy to the 1A, since these should couple most strongly
with the components of the 1A,.

Peric, Buenker, and Peyerimhoff (1984, 1987) calculated the lowest 16 singlet states in the linear
conformation, and the energies of the lowest five states are shown in Table 12, with the spread in AE
due to different choices in reference CSFs. As a reminder, the 1A, splits into the (2A,, 1B,) (cis-
bending) and (2A,, 1B,) (trans-bending). Table 12 shows its nearest neighbors to be the 12; and 111,

It has already been demonstrated that in the trans-bending case, the B state can borrow intensity
from any A, and B, state. This includes its quasi-degenerate partner, the 2A,, and the components
making up both the 1Z] (A)) and ITI(A,, B,) states. Since these four neighboring "states” (in C,,) lie
within =0.35e of the B state (in the linear geometry), perturbation theory would predict potentially
large borrowing of intensity from these four states by l.i, and hence a strong MCD signal.

If the same rationale is applied to the cis-bending mode, its C,, symmetry disallows any interaction
of the 1B, state with any A, state, including its quasi-degenerate partner the 2A, and its lower energy
neighbor the 1X; (A,). Therefore, in the reduced C,, symmetry, the 1B, can borrow intensity from
only two of its four closest neighbors which are the components of the 1IT,(A,, B,). The next nearest
allowed coupling is with the 14,, which lies =1.3eV (linear geometry) above the 1A,. Peric, Buenker,
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Table 12. Vertical Excitation Energies for Linear Acetylene*

State (D,.,) AE(eV)
111, 8.38-8.46
I, 7.92-8.00
1A, 71.56-7.65
1 7.21-7.32
1z 0

* From ab initio MRD-CI calculations (Peric, Buenker, and
Peyerimhoff 1984).

and Peyerimhoff (1984, 1987) also reported the cis- and trans-PESs associated with the 16 lowest
singlet D, states, and these curves clearly show the AE between the 1B, and all higher lying states
increases rapidly with bend angle. In fact, their curves predict that this increase is more pronounced
for the 1B, than for ﬁ. again suggesting less ability for the 1B, to borrow intensity from neighboring
states than what we see for the B state.

Therefore, both perturbative (i.e., based on energetics) and symmetry arguments can be used to
explain the calculated results which show the MCD intensity to be significantly weaker in the 1B,&X
transition than in the 5(—;(.

5. CONCLUSIONS

A new method has been presented for predicting a priori the MCD spectrum in molecules. The
method, based on first-order perturbation theory, significantly reduces the time consuming process of
explicitly calculating a large number of excited electronic states which might be needed to satisfy the
summation in the first-order perturbation expression in Equation 9. As an initial test case, this method
has been used here to study the character of the experimental MCD spectrum associated with the Be~X
electronic transition in acetylene. The MCD and absorption intensities for the le(—;( transition were
also determined to assess the possibility that the irregularities seen in the 185-170 nm spectral region
result from the lB,(—;( band system overlapping the BeX

36




For the Be-X band system, this study predicts a Ae™ of -3.5 and -5.8 for the 0-0 and 1-0
vibrational bands, respectively. These results agree with experiment with respect to the signs of the
bands. They are also consistent with the experimentally observed trend of the Ae,™ increasing as v’
increases. However, the magnitudes are a factor of 4 larger than the experimental values of -0.8
and -1.6, respectively. This agreement is quite acceptable considering the approximations made in the

vibrational treatment.

Concerning the possible overlap of the lB,(—;( and B«X band systems, the currenf study predicts
the 0-0 transition energies for the two systems to lie in the same spectral region. The calculated 0-0
transition energies are AE=56330cm"(le(—;() and AE-56667cm"(§<—;(). The most intense MCD
band in the 1B,X band system is the 3-0 with a calculated Ae®™=-.0037. For the BeX band
system, the more intense vibrational band is predicted to have a value of Ay™(1-0)=-5.82, which is
=10° times larger than the Aeg" values calculated for the 18,4—;( MCD spectrum. In spite of the
possibility that improvements in the theoretical treatment, especially the vibrational treatment, might
cause significant changes in the calculated intensities, it seems unlikely that the MCD intensities for
the le(—;( and B—X would change three orders of magnitude relative to one another. Hence, this
study predicts that the irregularities in the 185-170 nm region of the MCD are not due to the
overlapping of the lB,(—;( and BeX band systems.

With regards to the absorption intensity, the current study predicts that the oscillator strengths for
the lB,(—;( transition are a factor of 60 smaller than those calculated for the ﬁ(—;(. suggesting that the
lB,(—;( would at most appear as small perturbations in the absorption spectrum of B—X One
interference in the B—X absorption spectra has already been established by Foo and Innes (1973) who
identified high-lying, trans-bending vibrational levels of the A(1A)«X transition spilling over into the
BeX, with the A—X(13-0) occurring at an energy slightly above the 0-0 for B—X. Another possible
candidate is the 2A,<—)?. which is found here and by previous theory (Peric, Buenker, and Peyerimhoff
1987) to be strongly electric dipole allowed at larger bend angles and a planar conformation.
However, at these bend angles, the molecule was found to prefer a twisted conformation, leading one
to expect a poor Franck-Condon overlap with the ground state; and thus, predicting a potentially weak
transition (Peric, Buenker, and Peyerimhoff 1987). And finally, as Peric, Peyerimhoff, and Buenker
had mentioned, there are most likely strong vibrational couplings of the 2B, state with other states. In
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light of the results from this study and previous work by others, these couplings, along with the .Z(—;(
band system, seem to be the most plausible explanations for the diffuse bands and complicated
structure in the absorption spectrum of the BX band system.

In summary, this study predicts that the le(—i and B«X electronic transitions should occur in
the same spectral region. However, these calculations do not support the hypothesis that the le(—;(
band system makes a significant contribution to either the absorption or the MCD spectrum in the
185-170 nm region.
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