Background review and current concepts of reperfusion injury

<table>
<thead>
<tr>
<th>15. TITLE (Include Security Classification)</th>
<th>16. PERSONAL AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background review and current concepts of reperfusion injury</td>
<td>Hallenbeck JM, Dutka AJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. TYPE OF REPORT</th>
<th>18. DATE OF REPORT (Year, Month, Day)</th>
<th>19. PAGE COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal article</td>
<td>1990</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SUPPLEMENTARY NOTATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke, cerebral ischemia, free radicals, white cells, reperfusion injury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. DISTRIBUTION/AVAILABILITY OF ABSTRACT</th>
<th>21. ABSTRACT SECURITY CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified/Unlimited</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. DISTRIBUTION/AVAILABILITY OF ABSTRACT</th>
<th>21. ABSTRACT SECURITY CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Rpt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22c. OFFICE SYMBOL</th>
<th>22a. NAME OF RESPONSIBLE INDIVIDUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRL/NMRI</td>
<td>Phyllis S. Blum. Librarian.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22b. TELEPHONE (Include Area Code)</th>
<th>22a. NAME OF RESPONSIBLE INDIVIDUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(301) 295-2188</td>
<td>Phyllis S. Blum. Librarian.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. NAME OF RESPONSIBLE INDIVIDUAL</th>
<th>22b. TELEPHONE (Include Area Code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllis S. Blum. Librarian.</td>
<td>(301) 295-2188</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23. SECURITY CLASSIFICATION OF THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>
Background Review
and Current Concepts of Reperfusion Injury

John M. Hallenbeck, MD, Andrew J. Dutka, MD

- We define the concept of reperfusion injury, and we present a background chronology of experimental work supporting and questioning this concept. We identify several new influences, such as current clinical interest in thrombolytic therapy for acute ischemia of heart and brain and the growing recognition of endothelium as a regulator of homeostasis. We propose that these influences will encourage a reexamination of reperfusion injury as a factor in the ultimate outcome of tissue exposed to reversible ischemia. We briefly discuss the major mechanisms presently implicated in reperfusion injury—loss of calcium homeostasis, free radical generation, leukocyte-mediated injury, and acute hypercholesterolemia.

(Arch Neurol, 1990;47:1245-1254)

During focal ischemia, the extent of parenchymal tissue damage relates closely to two factors: the level of blood flow during the ischemic interval and the duration of ischemia (Fig 1, top). On return of blood flow, there is a resumption of the principal functions of tissue perfusion: oxygen delivery, provision of substrates for metabolism, and clearance of metabolic wastes. The restored perfusion counteracts the ischemic injury process and serves to return at least some of the reversibly injured tissue to a functional state. However, there is a developing consensus that return of blood flow in the posts ischemic period has a dark side. Interactions between blood and the damaged tissue can lead to further tissue injury. This theoretical construct implies that unmodified blood is not an ideal perfusate for reflow to tissue subjected to prior ischemia. Its reintroduction can actually contribute to parenchymal cell loss as an unwanted side effect of its more familiar capacity to salvage reversibly damaged cells. This paradoxically harmful aspect of blood flow return has been termed reperfusion injury (Fig 1, bottom), and the process has potential relevance to clinical medicine. Although reperfusion per se is essential to functional recovery and reduces the volume of tissue infarcted, a further reduction in tissue loss might be achieved by measures that counteract reperfusion injury. The present review addresses the major mechanisms currently implicated in reperfusion injury as observed in brain, heart, and other organs. The role of excitotoxins is not emphasized in this review.

BACKGROUND

Reperfusion injury occurs in a variety of tissues, but much of the work on these phenomena has been done in heart and brain. Concepts of reperfusion injury tend to emphasize similarities between mechanisms of cell death in various tissues rather than properties unique to a given tissue. Concern about myocardial reperfusion was expressed by Jennings et al in 1960, when they suggested that reperfusion may accelerate the development of necrosis in irreversibly injured myocytes. They observed an ultrastructural appearance of "explosive swelling," which included architectural disruption, contraction bands, and intramitochondrial calcium phosphate granules. In 1977, Bulkey and Hutchins reported the paradox of myocardial necrosis after successful revascularization by coronary artery bypass graft surgery and suggested that the lesions were operation related and represented contracture due to calcium loading and myocardial cellular edema in the distribution of widely patent arterial grafts. They further concluded that "prevention of intraoperative myocardial injury must also focus on characteristics of the phase of myocardial reperfusion." Studies by Greene and Weisfeldt and by Shine and Douglas demonstrated that measures instituted after the termination of ischemia, which attenuated the rise in myocardial cytosolic calcium, led to a reduction of tissue injury. Subsequently, other workers have implicated cell swelling, white blood cell plugging of vessels, and free radical damage in reperfusion injury of the heart.

Ames and coworkers focused attention on the contribution of reperfusion impairment to neural injury. Based on a disproportionately long survival of retinal ganglion cells exposed to anoxia in culture (in which oxygen could diffuse directly to the cells when reintroduced rather than requiring an intact tissue perfusion) as compared with the rapidity with which ischemia in vivo leads to irreversible brain cell damage, they postulated that recirculation of ischemic brain could become compromised and account for the differences in neuronal vulnerability observed under the two conditions. This impairment of microvascular reperfusion was attributed primarily to two phenomena. The first was narrowing of the capillary lumen due to perivascular swelling and formation of endothelial blebs, and the second was increased blood viscosity. Fluid shifts into cells, with their sodium-potassium adenosine triphosphatase pumps shut down by energy failure, were thought to underlie both the capillary narrowing and the microvascular hemoconcentration with increased blood viscosity. This same
Several experiments in gerbils re-focused attention on the cochlear microvascular bed that has not been fully characterized after ischemia, indicating membrane toxins, added to cultured neurovilli have been observed to proliferate in concert with excitotoxins to produce delayed neuronal death. Indeed, endothelial projections or microdomains, caveolae, and microdomains. The theory that vessel shutdown attributed to energy failure in ischemia derives from work in endothelium that disrupted the normal flow-metabolism couple. They introduced the concept of delayed postischemic hyperperfusion to describe this phenomenon.

In 1981, Siesjo published his speculative synthesis, which culminated with the insight that elevation of the cytosolic calcium level may be a pivotal factor that leads to cell death in such diverse conditions as ischemia, hypoglycemia, and status epilepticus. The disruption of calcium homeostasis was attributed to energy failure in ischemia and hypoglycemia and to overloading of calcium transport and sequestration mechanisms in status epilepticus. Among many other studies, a provocative set of results reported by Schanne et al in 1979 was cited in support of this hypothesis. Schanne and associates had observed that the expression of toxicity of a variety of membrane toxins, added to cultured hepatocytes, depended on the presence of calcium in the culture medium. That is, calcium was required for the death of cells in that system. The clear and compelling reasoning in the communication of Siesjo focused attention on mechanisms for continuing cell damage that were intrinsic to the neuron and tended not to emphasize events at the blood-endothelial interface. Further interest in neuronal self-destruction has been fostered by the observation in a number of models that a process of delayed neuronal death can progress for days after brief ischemia and may involve excitotoxins, such as glutamate and aspartate acting via the N-methyl-D-aspartate receptor to initiate an accumulation of calcium ion in the cytosol via agonist-operated channels. The transition of glutamate from neurotransmitter to neurotoxin may depend on elimination of the voltage-dependent Mg2+ block of the N-methyl-D-aspartate receptor channel by local interference with glucose and oxygen delivery as shown in cultured cerebellar neurons. Progressive microcirculatory flow shutdown could act in concert with excitotoxins to produce delayed neuronal death. That is, these two potential mechanisms for delayed neuronal death may not be mutually exclusive.

In recent years, several new developments have returned attention to blood elements, blood vessels, and blood flow in ischemically damaged tissue. The demonstration that coronary thrombi were obstructing vessels that supplied ischemic myocardium in the great majority of patients studied angiographically during the first hours of acute transmural myocardial infarction and experiments that indicated that myocardium can be salvaged by reperfusion led to efforts to lyse the offending thrombi and reopen supply vessels. Several trials of thrombolysis in cerebrovascular disease are also under way. These initiatives bring to the fore the problem of reperfusion injury in a clinical setting. Another force that impels consideration of blood elements, blood vessels, and blood flow during and after ischemia derives from work in endothelial cell tissue culture. Results of this work implicate endothelium as a regulator of hemostasis. Endothelium is not simply a passive, nonthrombogenic surface that separates blood from tissue. It is endowed with ultrastructural specializations, such as projections, caveolae, and microdomains. Indeed, endothelial projections or microvilli have been observed to proliferate after ischemia, indicating membrane activation and reducing to some degree the vascular lumen. There is a carpet of molecules on the luminal surface of endothelium called the glycosaminoglycans, and probably fibrin...
and fibrinogen. The apparent functions of the glycocalyx include regulating and restricting access to surface receptors and enzymes and, also, molecular sieving.

Under normal circumstances, the endothelium presents to the blood an actively anticoagulant and antithrombotic surface. The thrombomodulin–protein C–protein S system is a major contributor to this anticoagulant property.2,3 Thrombomodulin on the endothelial surface binds thrombin and alters that molecule so that fibrinogen is no longer a substrate, and instead, the thrombomodulin–thrombin complex activates protein C. Protein C is bound to the endothelial cell surface and also to the surface of other cell membranes by protein S and in the bound state will inactivate factors V and VIII and will also inactivate tissue plasminogen activator (TPA) inhibitor. Tissue plasminogen activator is also released from the endothelium.4 It is a serine-centered protease of about 68 to 70 kd, and it activates plasminogen by cleavage of a single arginine-valine bond. It converts very little plasminogen to plasmin in the absence of fibrin, but when fibrin is present, its activity increases by two to three orders of magnitude. This enzyme therefore has a predilection for lysis of fibrin.5 Heparinlike molecules have been demonstrated on the endothelial surface by iodine 125-anti-thrombin III binding studies.6 Prostaglandin E2 is produced in response to various forms of membrane perturbation and is a potent vasodilator and the most potent inhibitor of platelet aggregation known.7 Adenosine diphosphate is a potent mediator of platelet aggregation, but after conversion to adenosine, it mediates platelet inhibition and vasodilatation. There is also a general protease inhibitor, α1-macroglobulin, on the endothelial cell surface.8

Under the influence of a variety of mediators, endothelium can undergo a "Jekyll to Hyde" transformation and become actively procoagulant. This can occur with morphologically imperceptible endothelial cell injury.9 It used to be thought that endothelial cell denudation was necessary to make vessels thrombogenic. This concept was due in part to the use of large-vessel models in which endothelium was denuded for the study of platelet adhesion and aggregation and, also, in vitro collagen-induced platelet aggregation studies, suggesting the need for subendothelial collagen (said actually to be of a nonthrombogenic type).

The procoagulant property of endothelium involves many facets. Tissue factor expression, which initiates the extrinsic pathway of coagulation, is stimulated by thrombin, interleukin 1 (IL-1), tumor necrosis factor (TNF), and other stimuli.10 Interferon γ or the presence of other cells, such as platelets, leukocytes, lymphocytes, and probably also monocytes, greatly increases the expression of tissue factor in response to any given stimulus.11 Such expression requires RNA and protein synthesis.

Endothelial cells are both a source and a target for IL-1.12,13 Synthesis of this cytokine is stimulated by TNF and endotoxin. Interleukin 1 induces expression of endothelial cell procoagulant activity (tissue factor),14 formation of platelet activating factor (PAF),15 and inhibition of protein S membrane binding interfering with the thrombomodulin–protein C–protein S system,16 and it also induces expression of surface receptors for leukocyte binding,17 the endothelium–leukocyte adhesion molecules.18 Another leukocyte adhesion molecule, intercel- lular adhesion molecule-1 receptors require 4 to 6 hours for maximal expression. Rapid binding of neutrophils to endothelial cells appears to involve the type 3 complement receptor, CR3, and iC3b, the only known complement factor that binds to CR3.19 Peak adhesion mediated by this receptor occurs within 20 minutes of activation. Endothelial cells also produce a neutrophil chemotactic factor (molecular weight, 7.5 kd) in response to stimulation by TNF or IL-1β and can release a factor that activates the Hageman factor.20 Factor VIII/von Willebrand factor is released from endothelial cells at a basal rate related to protein synthesis and also through a calcium-dependent mechanism from storage sites in response to thrombin and other mediators.21

Thromboxane A2, a potent vasoconstrictor and platelet aggregator, is produced by endothelial cells in a ratio of about one fifth to one tenth that of prostacyclin.22 This ratio may change in pathological states. There is a 5-lipoxygenase system present in vessels that enables them to produce leuko-}

...trienes with appropriate stimulation.23 Among the multiple effects of leukotrienes are chemotaxis for various leukocytes, vasoconstriction, and increased vascular permeability.24

Endothelial cells produce PAF in response to IL-1, thrombin, and a number of phlogistic mediators.25 Prostacyclin that tends to be concurrently released feeds back and inhibits the release, to some extent, of PAF.26,27 The effects of PAF include platelet accumulation and aggregation, accumulation and activation of leukocytes, increased vascular permeability, vasoconstriction, activation of macrophages to produce IL-1,28 and modulation of TNF production by activated macrophages.29

Endothelial cells provide a physiologically important surface for the activation of prothrombin.30 They bind and promote activation of factors IX and X in the absence of platelets and exogenous lipid.31 Each cell can bind on the order of 9 million molecules of factor X. They also synthesize, express, and release factor V.32

A rapid inhibitor of TPA with a molecular weight of about 50 kd is produced by endothelial cells.33 The concentration of this protease is normally less than 10 ng/mL, but baseline concentrations can increase 50-fold or more in severely ill patients after surgery. Endothelial cells bind PAF for 12 hours and TPA inhibitor concentrations in blood tend to undergo a diurnal variation, with a relatively prothrombotic state (a low TPA and a high TPA inhibitor) occurring early in the morning.34

Recent evidence indicates that endothelial cells produce superoxide under certain circumstances.35 This may have a major role in reperfusion injury.

Vessel tone is influenced by endothelial cells as recently elucidated by Furchgott and Zawadzki.36 Acetylcholine dilates intact arteries, but tends to cause vasoconstriction when the vessels have been stripped of endothelium. This has led to the concept of an endothelium-derived relaxing factor, which preliminary evidence suggests may be nitric oxide.37 The endothelium-derived relaxing factor response to acetylcholine is lost in cerebral microvessels after mild, sublethal injury in which the endothelial cells remain morphologically normal. It is a potentially important principle that contractile substances such as norepinephrine and serotonin, release endothelium-derived relaxing factor on binding to their receptors, and the interplay of the two mediators deter-
mines the amount of vasoconstriction. With endothelial cell damage, the unopposed mediators of vessel contraction lead to enhanced vasoconstriction and, potentially, a reduction of blood flow to critical levels. In addition to its influence on vasomotor tone, endothelium-derived relaxing factor has also been shown to inhibit adhesion of platelets to endothelium. A 21-residue vasoconstrictor peptide has been isolated from endothelium, sequenced, and designated endothelin. It is the most potent mammalian vasoconstrictor known to date.

Thus, the intricate and interwoven mechanisms that are being elucidated in endothelial cell tissue culture confer on the blood-endothelial interface the capacity for a variety of cell-damaging reactions during ischemia and reperfusion. Such studies will encourage a reexamination of local blood and vessel wall interactions during the early return of blood flow to previously ischemic tissue.

MAJOR POSTULATED MEDIATORS OF REPERFUSION INJURY

Calcium

Calcium has been implicated in reperfusion injury under several circumstances. Zimmerman and Hulsman described a "calcium paradox" in which hearts perfused with calcium-free media for a brief period developed sarcolemmal damage, such that reintroduction of calcium caused massive intracellular influx of this ion with consequent tissue disruption, enzyme release, development of contracture, and marked reductions of high-energy phosphate stores. This circumstance is peculiar to situations in which a heart is temporarily exposed to an artificial perfusate that is deficient in calcium. Young has extended this concept to traumatically or ischemically injured brain. Extracellular calcium in these injured areas has been observed to fall from concentrations greater than 1 mmol to less than 0.01 mmol within seconds to minutes as this cation pours into those critically injured cells that have lost their capacity to maintain calcium homeostasis. The calcium concentration in the extracellular space then rises during a period of hours due to calcium diffusion from surrounding tissues. The surviving neurons in the lesion site, which initially maintained their calcium homeostasis, may therefore be exposed to the same stimuli that produce the calcium paradox in cardiac tissues. Delayed acceleration of tissue damage has been observed to occur at about the time extracellular calcium concentration recovers in models of traumatic and ischemic neuronal injury. This delayed neuronal damage has been attributed to a calcium paradoxlike reaction that occurs in injured nervous system tissues on restoration of extracellular calcium levels toward normal.

Calcium homeostasis can also be disrupted by ischemia (Fig 2) due to interference with sodium-potassium adenosine triphosphatase function, which depolarizes cell membranes and permits intracellular sodium accumulation. This can cause opening of voltage-dependent calcium channels and reverse the sodium-calcium antiport system, such that calcium enters the cell as sodium is extruded. The major emphasis in the neuroscience literature is currently on the activation of N-methyl-D-aspartate receptors in response to glutamate and other excitotoxins that are released during and after ischemia with a consequent rise of cytosolic calcium. Calcium-activated nonspecific cation channels may also be opened. In addition, sequestering mechanisms within cells become impaired, and calcium moves from the endoplasmic reticulum into the cytosol. The cellular disturbances associated with elevation of cytosolic calcium include activation of proteases and phospholipases (which can lead to free radical generation), membrane damage, and formation of arachidonic acid metabolites. Also, mitochondria can become overloaded with calcium, which impairs production of adenosine triphosphate. Reperfusion can cause an acute acceleration of calcium influx into cells by injuring cell membranes with a consequent increased membrane permeability.

The exact role of cytosolic calcium accumulation in the evolution of neuronal and myocardial injury after ischemia remains to be elucidated, but there is considerable evidence that ischemia and reperfusion are associated with a severe disruption of calcium homeostasis. Recent reports demonstrate, however, that considerable functional impairment can occur in the absence of calcium entry into cells and that the concentration of intracellular calcium can rise considerably without leading to permanent damage. Moreover, the results of calcium channel blocker treatment trials have been mixed in a variety of models. The contribution of intracellular calcium flooding to cell death during ischemia and reperfusion should be viewed not as established fact but rather as an attractive hypothesis that is currently undergoing intensive evaluation.

Free Radicals

The following is based on three reviews. A free radical is a molecule or molecular fragment that contains one or more unpaired electrons in its outer orbital and is, in effect, an open bond. The presence of an unpaired single electron in the outer orbital of a free radical is conventionally represented by a superscript dot (RV). Molecular oxygen is a biradical with an unpaired electron in each of its two outer orbitals, both spinning in the same direction (ie, parallel), which reduces the reactivity of this biradical because its divalent reduction by direct addition of a pair of electrons is restricted. Most of the electron donors available to oxygen will have electrons with antiparallel spins that occupy the valence orbitals, as this is a lower energy condition. For molecular oxygen to remove two electrons concomitantly from a nonradical molecule that has the normal outer orbital configuration of pairs of electrons spinning in opposite directions, an electron spin inversion must first occur during the association of oxygen with the reducing agent.

Because the spin inversion process is slow (≈10^-15 seconds) compared with the lifetime of collisional complexes (≈10^-11 seconds), oxygen in its ground state is a relatively weak oxidant. The restriction in the oxidizing capabilities of molecular oxygen is removed when it acquires one electron at a time because under these circumstances, spin inversion need not occur. This is the univalent pathway of oxygen reduction (Fig 3), and sequential addition of one electron after another to molecular oxygen produces first the superoxide anion radical (O_2^-), then hydrogen peroxide (H_2O_2), and then the hydroxyl radical (OH'), followed by water as the final product.

The reactivity of molecular oxygen can be increased by reactions that invert the spin of one of the electrons in its two outer orbitals. The UV spectra of such oxygen molecules contain singlet lines that indicate the presence of electrons with antiparallel spins in the outer orbitals. These molecules, termed singlet oxygen, are highly reactive because of the removal of quantum mechanical spin restriction so that they can undergo divalent reduction. There are two types of singlet oxygen, a short-lived sigma singlet oxygen (\(\Sigma g^0\)) in which the electrons occupy separate orbitals and a longer-lived delta singlet oxygen (\(\Delta gO\)) in

Reperfusion Injury—Hallenbeck & Dutka
which the two electrons occupy the same orbital and have opposite spin directions. Singlet oxygen can be formed by light, acting on molecular oxygen in the presence of a photosensitizer. Other postulated reactions involve dismutation of the superoxide anion radical and the oxidation of halides by hydrogen peroxide, a reaction catalyzed by myeloperoxidase, as occurs during the antimicrobial activity of inflammatory cells. Delta singlet oxygen does not fulfill the definition of a free radical but can rapidly oxidize many molecules, including polyunsaturated fatty acids in cell membranes.

Although a number of enzyme systems appear to be capable of catalyzing the univalent reduction of molecular oxygen to the superoxide anion radical, interest in the reperfusion injury field has been focused primarily on two major systems, the xanthine oxidase system and the nicotinamide-adenine dinucleotide phosphate with the reduced form (NADPH). The xanthine oxidase system (Fig 1). Due to the low levels of xanthine oxidase in brain, the relevance of the xanthine oxidase system to reperfusion injury in that organ remains an open question. Several recent articles suggest that xanthine oxidase is formed in ischemic brain and may generate free radicals and contribute to neuronal injury during posts ischemic reperfusion.

Another potentially important source of the superoxide anion radical during ischemia is a "univalent leak" of this radical species from the mitochondrial electron transport system.

The next step in the univalent reduction of oxygen involves conversion of the superoxide anion radical to H₂O₂. This can occur spontaneously but is greatly accelerated by the enzyme, superoxide dismutase, in the following reaction:

\[O_2^- + O_2^- + 2H^+ \rightarrow H_2O_2 + O_2 \]

The \(H_2O_2 \), the next step in the univalent \(O_2 \) reduction pathway, can be formed via two reactions: (1) The "Fenton" reaction,

\[Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^- \]

and (2) the iron-catalyzed "Haber-Weiss" reaction,

\[O_2^- + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^- \]

Due to the reactivity of \(OH^- \), no enzyme systems exist that involve it as a substrate. Instead, all efforts of the cell are directed at avoiding its formation. The superoxide anion radical is scavenged by superoxide dismutase, so that it is not available for the Haber-Weiss reaction and \(H_2O_2 \) can be removed by reactions catalyzed by glutathione peroxidase,

\[2GSH + H_2O_2 \rightarrow GSSG + 2H_2O \]

catalase,

\[2H_2O_2 \rightarrow O_2 + 2H_2O \]

If these protective reactions should become insufficient to contain free radicals as they are formed, \(O_2^- \) and \(H_2O_2 \) can diffuse across cell membranes to the extracellular space in which antioxidant defense mechanisms are relatively sparse. In the presence of trace concentrations of transition metal ions, \(OH^- \) is formed that can initiate free radical chain reactions in cell membranes, causing peroxidation of polyunsaturated fatty acids. Such peroxidation severely damages the cell membrane and causes loss of membrane fluidity and collapse of transmembrane ionic gradients.

A novel pathway for superoxide generation in response to vessel injury has been elucidated and experimentally supported principally in models of brain trauma with acute hypertension. Such perturbation activates phospholipases in the vessel wall, leading to a release of free arachidonate. The released free arachidonate causes accelerated metabolism via cyclooxygenase, producing PGG₂ (a cyclic endoperoxide) that is then converted to PGH₂ (a cyclic endoperoxide) by the hydroperoxidase reaction. This step generates superoxide as a by-product that escapes to the extracellular space via the anion channel. Subsequent reactions can form \(H_2O_2 \) and \(OH^- \), causing membrane damage to cells of the vessel wall. As with disruption of calcium homeostasis, the importance of oxygen-derived free radical formation in reperfusion injury is a research question under active investigation.

Leukocytes

The scope and diversity of possible leukocyte reactions in a zone of tissue injury that may involve rheologic ef-
factors, toxic oxygen products, granule constituents, and phospholipase products qualify these cells for a central role in many of the postulated modes of reperfusion injury. As large, stiff, viscoelastic cells that adhere to endothelium, activated leukocytes can obstruct individual capillaries in an ischemic injury zone and increase diffusion distances for oxygen within the microenvironment of individual nerve cells. Leukocytes can also generate a variety of reduced oxygen products that are capable of initiating lipid peroxidation in cell membranes and damaging key intracellular components.

In addition, neutrophil granules contain a number of constituents capable of mediating tissue injury. It was initially assumed that extracellular release of cytotoxic products occurred only after the death of neutrophils in inflammatory lesions, but it is now recognized that viable leukocytes that have been activated can release such products. Also, activation of phospholipases in leukocytes can initiate a cascade of reactions that produce such vasoactive substances as leukotrienes and PAF. Vasodilatation, increased permeability, and increased leukocyte adherence are among the vascular effects of these mediators.

There are a variety of endogenous inhibitors and regulators of leukocyte-mediated vascular injury. These include chemotactic factor inhibitor, neutrophil-derived proteases, and neutrophil-generated oxidants that inactivate chemotaxins, and plasma factors that inactivate PAF and neutrophil-derived proteases. Scavengers and antioxidant enzymes, which clear neutrophil-generated oxidants, also participate. There is an apparent requirement for neutrophil adhesion before endothelial cell damage by activated neutrophils can proceed. Adhesion under these circumstances seems to create an environment that is protected from endogenous inhibitors and thus permits leukocyte-mediated vascular injury to progress unhindered. This apparent requirement supplies a rationale for therapy directed at inhibiting leukocyte adhesion.

Relative to the red blood cell, the leukocyte has roughly double the volume, a coefficient of viscosity that is 2100 times greater, and an entry time into capillaries that is three orders of magnitude greater. Activated leukocytes undergo receptor-mediated adhesion to intact endothelium by means of the CD11/CD18 receptor complex on leukocytes and corresponding receptors on endothelial cells that are of two described types: (1) the endotelial-leukocyte adhesion molecule-1, which can be detected by several adjacent capillaries may result in underperfusion of individual cells, however. In an area neighboring the blocked capillaries, mean diffusion distances for oxygen, normally about 1.5 cell diameters, can be increased, and the local partial pressure of oxygen can approach zero. A process of this sort that causes scattered occlusions in the capillary network could expose individual cells to a hypoxic microenvironment but would largely escape detection by the current techniques for measuring blood flow. Granulocytes, labeled with indium 111, have been observed to accumulate as early as 1 hour after a 60-minute period of brain ischemia in an incremental air embolism model in the dog, and the degree of accumulation has shown an

Fig 3. The univalent pathway of oxygen reduction (where e⁻ is electron and H⁺ hydrogen ion).

Fig 4. Two free radical generating systems are depicted. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system in leukocyte membranes (neutrophils, eosinophils, monocytes, and macrophages) has a pyridine nucleotide binding site on the cytoplasmic surface and an O₂⁻ forming oxidase component in the lipid bilayer so that O₂⁻ is generated on the external surface of the plasma membrane. Subsequent reactions produce hydrogen peroxide (H₂O₂) that can combine with C¹⁺ in a reaction catalyzed by myeloperoxidase to produce hypochlorous acid (HCO₂⁻). The xanthine oxidase system is concentrated in endothelium. During ischemia, xanthine dehydrogenase is converted by a calcium-activated protease (possibly calpain) to xanthine oxidase, an enzyme that produces O₂⁻, H₂O₂, and uric acid from hypoxanthine and molecular oxygen. The hypoxanthine substrate that is supplied by the ischemia-induced degradation of adenine nucleotides and molecular oxygen, which is not shown in the diagram, becomes available during reperfusion. ATP indicates adenosine triphosphate; ADP, adenosine diphosphate; and AMP, adenosine monophosphate.
inverse relationship with local blood flow and evoked response recovery.

Neutrophils and macrophages undergo a respiratory burst in which oxygen consumption increases twofold to 20-fold and glucose metabolism via the hexose monophosphate shunt increases. Greater than 90% of the oxygen consumed during this respiratory burst can be accounted for by \(\text{O}_2^- \) secretion. The enzyme system responsible for \(\text{O}_2^- \) generation has been identified as a membrane-associated nicotinamide-adenine dinucleotide phosphate (NADPH, NAD[H] oxidase) (Fig 4).

Release of granule constituents from leukocytes could potentially extend tissue damage in an ischemic injury zone. Weiss, in a recent review relevant mechanisms of activation granule constituents and phospholipid consumption increases twofold to threefold in neutrophils, three have the greatest potential to mediate tissue destruction. One is a serine proteinase, elastase. The other two are metalloproteinases, collagenase and gelatinase. Despite the destructive potential of proteinases, neutrophil oxidants remain the focus of most of the current literature as final mediators of tissue damage for three reasons. First, there are powerful plasma proteinases in vivo that rapidly and irreversibly inhibit the serine proteinases. Second, metalloproteinases are synthesized in latent, inactive forms, and physiologically relevant mechanisms of activation have been heretofore obscure. Third, antioxidants exert strong anti-inflammatory effects in a number of experimental models.

Elastase can degrade almost all components of the extracellular matrix, cleave immunoglobulins and complement and clotting factors, and attack intact cells. It is inhibited in vivo by \(\alpha \)-proteinase inhibitor primarily and also by \(\alpha \)-macroglobulin and secretory leukoproteinase inhibitor. The \(\alpha \)-proteinase inhibitor forms an irreversible enzyme-inhibitor complex at a rate that approaches the diffusion-controlled limit, so that the half-time of elastase in vivo is about 0.6 milliseconds, and all activity is inhibited in about 3 milliseconds. Chlorinated oxidants destroy the antiproteinase shield. A critical methionine at position 358 on the \(\alpha \)-proteinase inhibitor is rendered oxidized, causing a 2000-fold decrease in the rate of association between neutrophil elastase and the modified \(\alpha \)-proteinase inhibitor. As a result, the in vivo half-time of elastase increases from 0.6 milliseconds to 1.2 seconds. \(\alpha \)-macroglobulin and secretory leukoproteinase inhibitor are also oxidatively inactivated. This creates a microenvironment in which elastase can attack host tissues. Neutrophil collagenase and gelatinase degrade various forms of collagen. These enzymes, however, are released in latent, inactive forms, but HOCI can activate them.

It appears, then, that oxidant products, such as HOCI and chloramines, can combine with granule-based proteinases and enable neutrophils to subvert all the intrinsic and host-erected barriers that normally serve to protect host tissue from injury. By inactivation of a series of key proteinase inhibitors and the simultaneous activation of latent proteinases, neutrophils can create an environment in which elastase, collagenase, and gelatinase are able to exert destructive effects more efficiently and with greater specificity than could be achieved by oxidants alone. Although this model is very attractive, and cell damage by extracted granule constituents has been demonstrated in a number of models in vitro (as summarized by Harlan*), the role of these enzymes in reperfusion injury has not been directly studied.

Leukocyte accumulation during ischemia and reperfusion has been demonstrated in a variety of organs, and direct and indirect evidence has been adduced by participation of leukocytes in reperfusion injury through rheologic effects, toxic oxygen products, granule constituents and phospholipase products. However, as in adult respiratory distress syndrome where increased alveolar capillary membrane permeability is often attributed to neutrophil mediation, there are several possible relationships between neutrophil accumulation and the development of lung pathology that require critical analysis before accepting a causal role for neutrophils.

Cholesterol

Brief periods of high-cholesterol intake, lasting several days to several weeks and leading to hypercholesterolemia, may cause an acute injury to endothelium through an unidentified mechanism. Such dietary indiscretion might also exacerbate reperfusion injury in the event of myocardial ischemia. Isolated, perfused hearts from rabbits that were fed normal chow that had been supplemented with 2% cholesterol for 2 to 3 weeks were subjected to 30-minute ischemia, followed by 3.5 hours of reperfusion. Vascular permeability (indicated by uptake and clearance of iodine 125-bovine serum albumin) and vascular resistance were increased during reperfusion in these hearts compared with those from animals that were fed normal chow or fed cholestrol-supplemented chow for longer periods (5 to 16 weeks).

Cholesterol supplementation for 2 to 3 weeks was also associated with increased vascular permeability in the absence of ischemia in this study, suggesting that the altered metabolic milieu accompanying an abrupt increase in cholesterol consumption directly injures coronary endothelium. These effects are independent of occlusive coronary artery disease produced by the atherogenic influence of chronic hypercholesterolemia. Indeed, the direct toxicity to the vasculature disappears during protracted states of elevated
CONCLUSION

As presented in this brief, general review, the postulated mechanisms underlying reperfusion injury are multifactoral and intricately interconnected. They are also governed by positive and negative feedback control, cooperation, synergy, and maintenance of homeostatic balance by means of counterpoised antagonists. A schematic overview of reperfusion injury is presented in Fig 5, which depicts an interpretation of the data discussed in this review and should be viewed as hypothetical. A core of tissue in the brain exposed to ischemia enters a phase of progressing injury during reperfusion after having been incited by "injury signals," a theoretical construct that could include eicosanoids, PAF, cytokines, transcription factors that regulate gene expression, and conversion of the luminal surface of endothelium from an anticoagulant to a procoagulant membrane. In response, there is a perturbation of the homeostatic balance of many interrelated systems. Multiple mediators are involved, and the loss of regulation sets into motion a cascade of damaging events. The loss of regulation and perturbation of homeostatic balance are represented by a spring that should pull the tissue core back from the progressive injury position but that has been sprung. The major mechanisms, currently ascribed to reperfusion injury, are shown on the face of the tissue core that undergoes progressive injury, with letters intermingled to emphasize that the multitude of intricate and diverse processes encompassed by these mechanisms are tightly interwoven as a "seamless web." Some of these diverse processes would include coagulation, fibrinolysis, eicosanoid and PAF production, cytokine production, rheologic disturbances, granule-based toxin release, adhesion receptor expression on cells, conversion of endothelium to a procoagulant state, platelet accumulation, and, probably, many more. The side of the core of tissue that undergoes progressive injury displays a group of reaction properties that contribute to the complexity of the interlocking events in the progressing injury zone.

In general, therapeutic trials have tended to implicate one or more putative mediators of reperfusion injury as a major cause of the problem and have modified the activity of these mediators. This is the conceptually simple approach, and in many trials, it has produced a small positive effect. Definitive therapy, however, has remained elusive despite these efforts. An alternative, but conceptually more difficult approach that takes account of the full network of effectors and regulators of reperfusion injury as a constellation of minor causes may be required to bring posts ischemic tissue damage to a minimum. It is possible that the therapeutic problem could be attacked by exploring the regulatory mechanisms that preserve homeostatic balance under normal circumstances and by learning how to curb the putative injury signals (Fig 5).

This review was funded by National Institutes of Health grant 1R01 NS02254-01 and the Naval Medical Research and Development Command Work Unit 61155N MR04101100-100.

The manuscript was prepared by US government employees as part of their official duties and, therefore, cannot be copyrighted and may be copied without restriction.

References

2. Reimer KA, Jennings RB. The 'wavefront phenomenon' of myocardial ischemic cell death. In: transmural progression of necrosis within the...
framework of ischemic brain damage, DIC.

of coagulation factor V during cerebral ischemia and reperfusion.

