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PREFACE

This report is a companion to an earlier report ("Learning
Curves and Rate Adjustment Models: Comparative Predictioa Accuracy
under Varying Conditions," Naval Postjraduate School ‘Technical
Report No. NPS-AS-91-001). Both reports investigate and evaluate
two cost estimating approaches commonly used by cost anaiysts.
Both use the same methodology. Tlie earlier report focﬁsed on
investigating the accuracy of the two approaches; the current
report focuses on bias. Readers familiar with the earlier report
will find the first 19 pages of this report, describing the
methodology, to be quite familiar. For readers unfamiliar with the
earlier report, this current report is designed to be self-

contained.
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LEARNING CURVE AND RATF ADJUSTMENT MODELS:

AN INVESTIZATION OF BIAS

ABSTRACT

Learning curve models have gained widespread acceptance as a
technique for analyzing and forecasting the cost of items produced
from a repcetitive process. Considerable research has investigated
augmenting the traditional learning curve model with the addition
of a production rate variable, creating a rate adjustment model.
This study compares the forecasting bias of the learning curve and
rate adjustment models. A simulation methodology is used to vary
conditions along seven dimensions. The magnitude and direction of
errors in estimating future cost are analyzed and compared under
the various simulated conditions, using ANOVA. Overall results
indicate that the rate adjustment model is generally unbiased. If
the cost item being forecast contains any element that i3 not
subject to learning then the traditional learning ..rve r-del is
consistently biased toward underestimation of futu-: cost.

Conditions when the bias is strongest are identified.



LEARNING CURVE AND RATE ADJUSTMENT MODELS:

AN INVESTIGATION OF BIAS

INTRODUCTION

The problem of cost overruns has consistently plagued the
process of acquiring weapons systems by the U. S. Department of
Detfense. Technical improvements in the conduct of cost estimation
and institutional changes in the process of pfocurement ﬁave
occurred over the past few decades, but unanticipated cost growth
during procurement continues. A cost overrun, by definition,
occurs when the actual cost of a program exceeds the estimated
cost. There are, in principle, two broad reasons that a cost
overrun could occur. Either a) initial cost estimates are fair
when made, but subsequently actual costs are poorly managed and
controlled; or b) actual costs are well managed, but initial cost
estimates were unrealistic. This paper focuses on the latter
situation. The paper examines and compares bias in two estimating
models used frequently by cost analysts: the learning curve and
the rate adjustment model.

Learning curves have gained widespread acceptance as a tool for
planning, analyzing, explaining, and predicting the behavior of the
unit cost of items produced from a repetitive production process.
(See Yelle, 1979, for a review.) Cost estimation techniques for
planrning the cost of acquiring weapon systems by the Depargment of

Defense, for example, typically consider the role of learning in

the estimation process. The premise of learning curve analysis is




that cumulative quantity is the primary driver of unit cost. Unit
cost is expected to decline as cumulative»quantity increases.
There 1is general acknowledgement that cumulative quantity is
not the only factor that influences unit cost and that the simple
learning curve is not a fully adequate description of cost
behavior. Hence prior research has attempted to augment learning
curve models by including additional variables (e.g., Moses,
1990a). Most attention has been focused on the addition of a

production rate term.’

The resulting augmented model is usually
referred to as a rate adjustment model.

Conceptually, production rate should he expected to affect unic
cost because of the impact of economies of scale, Higher
production rates may lead tc several related effects: greater
specialization of 1labor, quantity discounts and efficiencies
associated with raw materials purchases, and greater use of
facilities, permitting fixed overhead costs to be spread over a
larger output quantity. Together, these effects work to increase
efficiency and reduce production cost (Bemis, 1981; Boger and Liao,
1990; Large, et. al., 1974; Linder and Wilbourn, 1973). However,
higher production rate does not guarantee lower cost. When
production rate exceeds capacity, such factors as over-time pay,

lack of skilled labor, or the need to bring more facilities online

may lead to inefficiencies and increased unit cost. In short,

-

‘one review of the literature pertaining to learning curves
{(Cheney, 1977) found that 36% of the articles reviewed attempted
to augment the learning curve model in some manner by the inclusion
of production related variables.



praduction rate may be associated with both economies and
diseconomies of scale.
PRIOR RESEARCH

Numerous studies, using data on actual productior cost
elements, have been conducted to empirically examine the impact of
production rate on unit cost. The broad objective of the i-esearch
has been to document rate/cost relationships and deterhine if
consideration of production rate leads to improvements in cost
explanation or prediction. Results have been inconsistent and
general findings inconclusive. Various studies (e.g., Alchian,
1963; Cochran, 1960; Hirsh, 1952; Large, Campbell and Cates, 1976)
found little or no significance for rate variables. Other studies
did document significant rate/cost relationships (e.g., Benis,
1981; Cox and Gansler, 1981). Some research found significant
results only for particular individual cost elements, such as labor
(Smith, 1976), tooling (Levenson, et. al., 1971) or overhead
(Large, Hoffmayer, and Kontrovich, 1974). But rate/cost
relationships for these same cost elements were not consistently
evident in other studies. When significant, estimates of the
rate/cost slope varied greatly and the direction of the
relationship was sometimes negative and sometimes positive (e.qg.,
Moses, 1990a). 1In reviewing the existing research on production
rate, Smith (1980) concluded that a rate/cost relationship may

exist but that the existence, strength and nature 'of the

relationship varies with the item produced and the cost element




examined.®

The prior research suggests that consideration of production
rate sometimes improvés cost explanation, but not always. The
prior research suggests that a traditional learning curve model
sometimes is preferable to a rate adjustment model, but not always.
The prior research provides 1little gquidance concerning the
circumstances under which explicit incorporation of production rate
into a learning curve model is 1likely to 1lead to improved
explanation or prediction. This issue is important in a number of
cost analysis and cost estimation situations. Dorsett (1990), for
example, describes the current situation facing military cost
estimatnrs who, with the military facing budget reductions and
program stretchouts, are required to rapidly develop weapon system
acquisition cost estimates under many different quantity profiles.
One choice the cost analyst faces is between using a rate

adjustment model or a traditional 1learning model to develop

estimates.?

2 several explanations - for these varying, inconclusive

empirical results can be offered: (a) Varying results are to be
expected because rate changes can lead to both economies and
diseconomies of scale. (b) Production rate effects are difficult
to isolate empirically because of colinearity with cumulative
quantity (Gulledge and Womer, 1986). (c) Researchers have usually
used inappropriate measures of production rate 1leading to
misspecified models (Boger and Liao, 1990). (d) The impact of a
production rate charnge is dominated by other uncertainties (Large,
Hoffmayer, and Kontrovich, 1974), particularly by cumulative
quantity (Asher, 1956). Alchian (1963), for example, was unable
to find results for rate adjustment models that improved on the
traditional learning curve without a rate parameter.

3r'wo other techniques for making cost estimates when
production rate changes are also mentioned by Dorsett: curve
rotation, which involves an ad hoc upward or downward revision to

4



Reacting to the inconsistent findings in the literature, Moses
(1990b) raised the question of under what circumstances it would
be beneficial to incorporate consideration of producticn rate into
a cost estimation problem. The objective of the research was to
attempt to identify conditions when a rate adjustment model would
outperform the traditional learning curve model (and vice versa).
The ability of each model to accurately estimate future cost was
assessed under various conditions. Generally findings were that
neither model dominated; each was relatively more accurate under
certain conditions.

OBJECTIVE OF THE STUDY

One limitation of the Moses study was that accuracy was
measured as the absolute difference between estimated and actual
cost, without concern for the direction of the difference. When
controlling real-world projects, the consequences of errors in
estimation typically depend on whether costs are under or over
estimated. Underestimation, resulting in cost growth or cost
overruns, is typically met with less pleasure than overestimation.
Thus the question of model bias toward over or under estimation is
of interest.

The objective of this study is to investigate and compare

estimation bias for the learning curve and rate adjustment models.

the siope of the learning curve, and the use of repricing models
(e.g., Balut, 1981; Balut, Gulledge, and Womer, 1989) which adjust
learning curve estimates to reflect a greater or lesser appfication
of overhead cost. Dorsett criticized curve rotation for being
subjective and 1leading to a compounding of error when the
prediction horizon is not short. He criticized repricing models
because they must be plant-specific to be effective.

5




Does either model exhibit consistent or systematic bias? Are there
circumstances where one model may be biased and the other not? 1Is
the bias produced toward underestimation or overestimation of
future cost?
SEARC OAC

Operationally the research questions require an examination of
the estimation errors from two competing cost estimation models.
The two competing models were as follows:

The traditional learning curve model, which predicts unit cost

as a function of cumulative quantity®:

c = aQ® (1)
where
C, = Unit cost of item at quantity Q (i.e., with learning
considered).
Q = Cumulative quantity produced.
a = Theoretical first unit cost.
b = Learning curve exporient (which can be converted to a

learning slope by slope = 2°).
And the most widely used rate adjustment model, which modifies the
traditional learning curve model with the addition of a production
rate term:
c, = aQ°R" (2)

where

“Note that this is an incremental unit cost model rather than
a cumulative average cost model. Liao (1988) discusses the
differences between the two approaches and discusses Why the
incremental model has become dominant in practice. One reason is
that the cumulative model weights early observations more heavily
and, in effect, "smooths" away period-to-period changes in average
cost.
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Unit cost of item at quantity Q and production rate per
period R (i. e., with production rate as well as
learning considered).

Cumulative quantity produced.

Production rate per period measure.

Theoretical first unit cost.

Learning curve exponent.

Production rate exponent (which can be converted to a
production rate slope by slope = 2°%).

Qoo Wwo
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A simulation approach was used to address the research
questions. In brief, cost series were qenerated under varying
simulated conditions. The learning curve model and the rate
adjustment model were separately fit to the cost series to estimate
model parameters. The estimated models were then used to
separately predict future cost. Actual cost was compared with
predicted cost to measure bias. Finally, an analysis (ANOVA) was
conducted relating bias (dependent variable) to the simulated
conditions (independent variables).

There are thr .«xain benefits gained from the simulation
approach. First, ..ctors hypothesized to influence bias can be
varied over a wider range of conditions than would be encountered
in any one (or many) sample(s) of actual cost data. Second,
explicit control is achieved over the manipulation of factors.
Third, noise caused by factors not explicitly investigated is
removed. Hence simulation provides the most efficient way of
investigating datz containing a wide variety of combinations of the

factor levels while controlling for the effects of other factors

not explicitly identified.



RESEARCH CHOICES

There were five choices that had to be made in conducting the
simulation experiment:

(1) The form of the rate adjustment (RA) model whose
performance was to be compared to the learning curve (LC) model.

(2) The functional form of the cost model used to generate the
simulated cost data.

(3) The conditions to be varied across simulation treatments.

(4) The cost objective (what cost was to be predicted).

(5) The measure of bias,

Items (1), (2), (4) and (5) deal with methodological issues. Item
(3) deals with the various conditions simulated; conditions which
may affect the nature and magnitude of bias. Each item will be
discussed in turn.

1. The Rate Adjustment Model. Various models, both
theoretical and empirical, have been suggested for incorporating
production rate into the learning curve (Balut 1981; Balut,
Gulledge, and Womer, 1989; Linder and Wilbourn, 1973; Smith, 1980,
1981; Washburn, 1972; Womer, 1979). The models vary with respect
to tradeoffs made between theoretical completeness and empirical
tractability. Equation 2, described above, was the specific rate
adjustment model analyzed in this study, for several reasons:
First, it is the most widely used rate adjustment model in the
published literature. Second, it is commonly used today, in the

practice of cost analysis (e.g., Dorsett, 1990). Third, in

addition to cost and gquantity data (needed to estimate any LC




model), equation 2 requires only production rate data.® Thus
equation 2 is particularly appropriate for examining the
incremental effect of attention to production rate. In short,
equation 2 is the most widely applicable and most generally used
rate adjustment model.

2. The Cost Generating Functijon: . A "true" cost function
for an actual item depends on the item, the firm, the timelperiod
and all the varying circumstances surrounding actual production.
It is likely that most manufacturers do not "know" the true cost
function underlying goods they manufacture. Thus the choice of a
cost function to generate simulated cost data is necessarily ad
hoc. The objective here was to choose a “generic" cost function
which had face validity, which included components (parameters and
variables) that were generalizable to all production situations,
and which resulted in a unit cost that depended on both learning
and production rate factors. The following explanation of the cost
function used reflects these concerns.

At the most basic level the cost of any unit is just the sum
of the variable cost directly incurred in creating the unit and the
share of fixed costs assigned to the unit, where the amount of

fixed costs assigned depend on the number of units produced.

other RA models offered in the literature require knowledge
of{ still additional variables. The equation 2 model 1is
particularly applicable in situations where a cost analyst or
estimator does not have ready access to or sufficient kfowledge
about the cost structure and cost drivers of a manufacturer.
Examples include the Department of Defense procuring items from
government contractors in the private sector, or prime contractors
placing orders with subcontractors.

9



uc = VC + FC (3)

PQ
where
UC = Unit cost.
VC = Variable cost per unit.
FC = Total fixed costs per period.
PQ = Production quantity per periocd.

The original concent of "learning" (Wright, 1936) involved the
réduction in variable cost per unit expected with increases in
cumulative quantity produced. (By definition, fixed costs are
assumed to be unaffected by volume or quantity.) To incorporate

the effect of learning, variable cost can be expressed as:

Ve, = Vc, (@Y (4)
where

Q = Cumulative quantity.

VC, = Variable cost of the Qth unit.
vC, = Variable cost of the first unit.
d = Parameter, the learning index.

Substituting into equation 3:

uc, = ve, (@) + EC (5)
PQ

Additionally, assume the existence of a "standard" ("benchmark,"
"normal," "planned") production quantity per period (PQ,).
Standard fixed cost per unit (SFC) at the standard production

quantity would be:

SFC = FC (6)
PQ,

The production rate (PR) for any period can then be expressed

as a ratio of the production quantity to the standard quantity:

10



PR = PO (7)
PQ,

The second term of equation (6) can then be rewritten as:

FC = SFC (8)
PQ PR

and equation 5 rewritten as:

uc, = Ve, (QY) + SFC (PR) (9)

In this formulation it can be seen that total cost per unit is
the sum of variable cost per unit (adjusted for learning) plus
standard fixed cost per unit (adjusted for production rate). This
model incorporates the two factors presumed to impact unit costs
that have been most extensively investigated: cumulative quantity
(Q) and production rate per pericd (PR).® It is consistent with
both the theoretical and empirical literature whick sees the
primary impact of learning to be on variable costs and the primary
impact of production rate to be on the spreading of fixed costs
(Smith, 1980). Simulated cost data in this study was generated
using equation 9, while varying values for the variables and
parameters on the right hand side of the equation to reflect

differing conditions.

bsmith (1980, 1981), for example, used a model similar to
equation 9 to explore the effect of different production rates on
unit cost. Balut (1981) and Balut, Gulledge and Womer (1989)
construct models based on 1learning and production gquantity to
assist in "redistributing" overhead and "repricing" unit costs when
changes in production rate occur. The Balut and Balut, @ulledge
and Womer models differ-in that they determine a learning rate for
total (not variable) unit cost and then apply an adjustment factor
to allow for the impact of varying production quantity on the
amount of fixed cost included in total cost.

11




3. The Simulated Conditions: The general research hypothesis
is that the estimation bias of the LC and RA models will depend on
the circumstances in which they are used. What conditions might
be hypothesized to affect bias? Seven different factors
(independent variables) were varied during the simulation. These
factors were selected for examination because they have been found
to affect the nagnitude of model prediction errors in prior
research (Smunt, 1986; Moses, 1990b). In the following paragraphs,
each factor is discussed. A label for each is provided, along with
a discussion of how the factor was operationalized in the
simulation. Table 1 summarizes the seven factors.

i) Data History (DATAHIST): The number of data points
available to estimate parameters for a model rhould affect the
accuracy of a model. More data available during the model
estimation period should be associated with greater accuracy for
both the LC and the RA model.’ The effect of the number of data
points on bias however is unclear. If a model is inherently an
“"incorrect," biased representation of a phenomena, having more data
on which to estimate the model parameters will not eliminate the
bias.

In the simulation, data history was varied from four to seven
to ten data points available for estimating model parameters. This
simulates having knowledge of costs and quantities for four, seven

or ten production lots. Four is the minimum number of obsegvations

"There are, of course, cost/benefit tradcoffs. The marginal
benefits of increased prediction accuracy for any model must be
weighed against the marginal costs of additional data collection.

12




TABLE 1

INDEPENDANT VARIABLES

Concept Label Levels
Data History DATAHIST' 4 7 10
Variable Cost Learning VCRATE 75% 85% 95%
Rat*e

Fixed Cost Burden BURDEN2 15% 33% 50%
Production Rate Trend PROTREND® Level Growth
Production Rate

Instability/Variance RATEVAR® .05 .15 .25
cost Noise/Variance COSTVAR’ .05 .15 .25
Future Production Level FUTUPROD® Low Sanme High

'Number of data points available during the model estimation
period; simulates the number of past production lots.

2standard per unit fixed cost as a percentage of cumulative
average per unit total cost, during the model estimation period.

3A level trend means production at 100% of standard production
for each lot during the estimation period. A growth trend means
production rate gradually increasing to 100% of standard production
during the estimation period. The specific growth pattern depends
on the number of production lots in the estimation period, with
sequences as follows (expressed as a % of standard): For DATAHIST
= 4: 33%, 67%, 100%, 100%. For DATAHIST = 7: 20%, 40%, 6C%, 80%,
100%, 100%, 100%. For DATAHIST = 10: 10%, 20%, 35%, 50%, 70%, 90%,
100%, 100%, 100%, 100%.

“coefficient of variation of production rate. (Degree of
instability of production rate around the general production rate
trend.)

Scoefficient of variation of total per unit cost.

éuSame" means production rate at 100% of standard for each lot
produced within the prediction zone. "Low" means production rate
at 50%. "High" means production rate at 150%.




needed to estimate the parameters of the RA model by regression.
The simulation focuses on lean data availability both because the
effects of marginal changes in data availability should be most
pronounced when few observations are available and because many
real world applications (e.g., cost analysis of Department of
Defense weapon system procurement) .occur under lean data
conditions.

ii) variable Cost Learning Rate (VCRATE): In the cost
generating function, learning affects total unit cost by affecting
variable cost per unit. Past research (Smunt, 1986) has shown that
the improvement in prediction accuracy from including a learning
parameter in a model (when compared to its absence) depends on the
degree of learning that exists in the underlying phenomena being
modeled. The association between learning rate and degree of bias
however is unclear. 1In the simulation, variable cost learning rate
(reflected in parameter d in equation 9) was varied from 75% to 85%
to 95%. Generally, complex products or labor intensive processes
tend to experience high rates of learning {70-80%) while simple
products or machine-paced processes experience lower (90-100%)
rates (Smunt, 1986).5

iii) Fixed Cost Burden (BURDEN): 1In theory (and in the cost
function, equation 9) a change in the number of units produced
during a period affects unit cost in two ways: First, increasing

volume increases cumulative quantity and decreases variable cost

8see Conway and Schultz (1959) for further elaboration of
factors impacting learning rates.

13



per unit, due tc learning. Second, increasing volume increase the
production rate for a period and reduces fixed cost per unit, due
to the spreading of tétal fixed cost over a larger output. Both
these effects operate in the same airection; i. e., increasing
volume leads to lower per unit cost. This has led some cost
analysts to conclude that in practice, it is sufficient to use an
Lé.model, letting the cumulative quantity variable reflect the dual
impacts of increased volume., Adding a production rate term to an
LC model is seen as empirically unnecessary.

In principle, if fixed cost was zero, cumulative quantity would
be sufficient to explain total unit cost and production rate would
be irrelevant. But as fixed cost increases as a proportion of
total cost, the impact of production rate should become important.
This suggests that the relative bias of the LC and RA models may
depend on the amount of fixed cost burden assigned to total cost.

Fixed cost burden was simulated by varying the percentage of
tctal unit cost made up of fixed cost.’ Three percentages were used
in the simulation: 15%, 33%, and 50%. The different percentages

can be viewed as simulating different degrees of operating

9Operationally this is a bit complex, since bhoth per unit
variable and per unit fixed cost depend on other simulation inputs
(cumulative quantity and production rate per period). The process
of relating fixed cost to total cost was as follows: First, a
cumulative average per unit variable cost for all units produced
during the estimation period was determined. Then a standard fixed
cost per unit was set relative to the cumulative average per unit
variable cost. For example, if standard fixed cost per ynit was
set equal to cumulative average variable cos per unit, then "on
average" fixed cost would comprise 50% of ..tal unit cost during
the estimation period. Actual fixed cost per unit may differ from
standard fixed cost per unit if the production rate (discussed
later) was not at 100% of standard.

14



leverage, of capital intensiveness, or of plant automation. The
15% level reflects the average fraction of price represented by
fixed overhead in the aerospace industry, as estimated at one time
by DOD (Balut, 1981)."° The larger percentayges are consistent with
the trend toward increased automation (McCullough and Balut, 1986).

iv) Production Rate Trend (PROTREND): When initixting a new
product, it is not uncommon for the production rate per period to
start low and trend upward to some "normal" level. This may be due
both to the need to develop demand for the output or the desire to
start with a small production volume, allowing slack for Qorking
bugs out of the production process. Alternatively, when a "new"
product results from a relatively small modification of an existing
product, suffici.nt customer demand or sufficient confidence in the
production process may be assumed and full scale production may be
initiated rapidly. 1In short, two different patterns in production
volume may be exhibited early on when introducing a new item: a
gradual growing trend toward full scale production or a level trend
due to introduction at full scale production volume.

The simulation created two production trends during the model
estimation period: "level” and "growth." These represented
general trends (but, as will become clear momentarily, variance
around the general trend was introduced). The 1level trend

simulated a production rate set at a "standard" 100% each period

v

In the absence of -firm-specific cost data, the Cost Analysis
Improvement Group in the Office of the Secretary of Defense treats

15% of the unit price of a defense system as representing fixed
cost (Pilling, 1990).

15




during model estimation. The growth trend simulated production
rate climbing gradually to 100%. Details of the trends are in
table 1.

v) Production Rate Instability/Variance (RATEVAR)}: Numerous
factors, in addition to the general trend in output discussed
above, may operate to cause period-to-period fluctuations in
production trate. Manufacturers typically do not have complete
control over either demand for output or supply of inputs.
Conditions in either market can cause instability in production
rate. (0Of course, unstable demand, due to the uncertainties of
annual budget negotiations, is claimed to be a major cause of cost
growth during the acquisition of major weapon systems by the DoD).

Production rate instability was simulated by adding random
variance to each period's production rate during the estimation
period. The amount of variance ranged from a coefficient of
variation of .05 to .15 to .25. For example, if the production
trend was level and the coefficient of variation was .05 then
"actual" production rates simulated were generated by a normal
distribution with mean equal to the standard production rate (100%)
and sigma equal to 5%.

vi) Cost Noise/Variance (COSTVAR): From period to period
there will be unsystematic, unanticipated, non-recurring, random
factors that will impact unit cost. Changes in the cost, type or
availability of input resources, temporary increases or decreases
in efficiency, -~nd unplanned changes in the production process are

all possible causes. Conceptually such unsystematic factors can

16




be thought of as adding random noise to unit cost. While
unsystematic variation in cost cannot (by definition) be
controlled, it is often possible to characterize different
production processes in terms of the degree of unsystematic
variation; some processes are simply less well-understood, more
uncertain, and less stable than others.

Does bias depend on the stability of the process underlying
cost? To investigate this question, random varianée was added to
the simulated costs generated from the cost function. The amount
of variance ranged from a coefficient of variation of .05 to .15
to .25. For example, when the coefficient of variation was .25,
then "actual" unit costs simulated were generated by a normal
distribution with mean equal to cost from equation 9 and sigma
equal to 25%.

vii) Future Production Level (FUTUPROD): Once a model is
constructed (from data available during the estimation period), it
is to be used to predict future cost. The production rate planned
for the future may vary from past levels. Further growth may be
planned. Cutbacks may be anticipated. Will the 1level of the
future production rate affect the bias of the LC and RA models?
Does one model tend to under (or over) estimate cost if cutbacks
in production are anticipated and another if growth is planned?
One might expect that inclusion of a rate term might be expected
to reduce bias when production rate changes significantlyv(i. e.,
either growth or decline in the future period).

In the simulation, future production was set at three levels:
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low (50% of standard), same (100% of standard) and high (150% of
standard). These simulate conditions of cutting back, maintaining
or increasing production relative to fhe level of production
existing at the end of the model estimation period.

4. The Cost Objective: What is to be predicted? Up to this
point the stated purpose of the study has been to evaluate bias
when predicting future cost. But which future cost? Three
alternatives were examined.

i) Next period average unit cost: As the label suggests this
is the average per.unit cost of items in the production "“lot"
manufactured in the first period following the estimation period.
Here the total cost of producing the output for the period is
simply divided by the output volume to arrive at unit cost.
Attention to this cost objective simulates the need to predict near
term unit cost.

ii) Total cost over a finit: production horizon: The
objective here is to predict the total cost of all units produced
during a fixed length production horizon. Three periods was used
as the 1lencth of the production horizon (one production 1lot
produced each period). If the future production rate is low (high)
then relatively few (many) units will be produced during the finite
production horizon. Attention to this cost objective simulates the
need to predict costs over some specific planning period,
regardless of the volume to be produced during that Planning
period.

iii) Total program cost: The objective here is to predict
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total cost for a specified number of units. If the future
production rate is low (high) then relatively more (fewer) periods
will be required to manufacture the desired output. The simulation
was constructed such that at a low (same, high) level of future
production six (three, two) future periods were required to produce
the output. Attention to this cost objective simulates the need
to predict total cost for a particular production progran,
regardless of the number of future periods necessary to complete
the program.
Examining each of these three cost objectives was deemed
necessary to provide a well-rounded investigation of bias. How-
ever, the findings were the same across the three cost objectives.
In the interest of space, the remainder of this paper will discuss
the analysis and results only for the first cost objective, the
average cost per unit for the next period's output.

5. The Measure of Bjas: A model specific measure of bhias

(BIAS) was determined separately for each (LC or RA) model as

follows:
BIAS = (PUC - AUC) + AUC
where
PUC = Predicted unit cost from either the learning curve
or the rate adjustment model.
AUC = Actual unit cost as generated by the cost func-

tion.
Positive values for BIAS indicate that a model overestimates actual
future cost; negative values indicate underestimation. A model

that is unbiased should, on average, produce values for BIAS of
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zero. BIAS represents the dependent variuble in the statistical
analysis. The research question then becomes: What factors or
conditions explain variance in BIAS?

Figure | summarizes the complete simulation process leading up
to the deteraination of BIAS. The simulation was run once for each
possible combination of treatments. Given seven factors varied and
three possible values for each factor (except for PROTREND which
had two), there were 3 x 3 x 3 ¥ 3 X 3 x 3 x 2 = 1458 combinations.
Thus the simulation generated 1458 obsarvations and 1458 values for

BIAS for each of the two models.11

ANALYSIS AND FINDINGS

BIAS was evaluated using analysis of variance (ANOVA) to
conduct tests of statistical significance. All main 2ffects and
ficrst order (pairwise) interactions were examined. Findings with
probability less than .01 were considered significant.

LC Model Bias. Table 2 provides ANOVA results addressing BIAS
from the LC model. As shown, four main effects, DATAHIST, BURDEN,

PROTREND, and FUTUPROD, are significant, indicating that values for

"In the simulation, just as in the real practice of cost
analysis, it is possible for a model estimated on limited data to
be very inaccurate, leading to extreme values for BIAS. If such
outlier values were to be used in the subsequent analysis, findings
would be driven by the outliers. Screening of the observations for
outliers was necessary. During the simulation, if a model produced
an BIAS value in excess of 100%, then that value was replaced with
100%. This truncation has the effect of reducing the impact of an
outlier on the analysis while still retaining the observation as
one that exhibited poor accuracy. Alternative approaches to the
outiier problem included deletion instead of truncation and use of

a 50% BIAS cutoff rather than the 100% cutoff. Findings were not
sensitive to these alternatives.
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TABLE 2

BIAS FROM LEARNING CURVE MODEL

ANALYSIS OF VARIANCE RESULTS

SOURCE DF SUM OF SQUARES MEAN SOUARE F_VALUE
Model 85 56.92195 .6697 29.07
Errorxr 1372 31.60432 .0230 PR>F:
Corrected Total 1457 88.52626 . 0000
R: cv__ BIAS MEAN

. 6430 140.35 -.1081

SOURCE DF ANOVA SS F _VALUE PR>F
DATAHIST 2 0.2937 6.38 0.0018%*
VCRATE 2 0.0085 0.19 0.8311
BURDEN 2 0.3710 8.05 0.0003%*
PROTREND 1 4.6998 204.03 0.0001+%*
RATEVAR 2 0.1167 2.53 0.0797
COSTVAK 2 0.0976 2,12 0.1205
FUTUPROD 2 47.0628 1021.54 0.0000%*
DATAHIST*VCRATE 4 0.1184 1.29 0.2737
DATAHIST*BURDEN 4 0.0363 0.39 0.8124
DATAHIST*PROTKEND 2 0.1280 2.78 0.0625
DATAHIST*RATEVAR 4 0.0265 0.29 0.8854
DATAHIST*COSTVAR 4 0.1503 1.63 0.1637
DATAHIST*FUTUPROD 4 0.1398 1.52 0.1944
VCRATE*BURDEN 4 0.0506 0.55 0.6990
VCRATE*PROTREND 2 0.0374 0.81 0.4435
VCRATE*RATEVAR 4 0.0623 0.68 0.6083
VCRATE*COSTVAR 4 0.1068 1.16 0.3271
VCRATE+FUTUPROD 4 0.2820 3.06 0.0159
BURDEN*#PROTREND 2 0.3131 6.80 0.0012%
BURDEN#*RATEVAR 4 0.0282 0.31 0.8738
BURDEN*COSTVAR 4 0.1631 1.77 0.1323
BURDEN*FUTUPROD 4 1.8751 20.35 0.0001%*
PROTREND*RATEVAR 2 0.0176 c.38 0.6812
PROTREND*COSTVAR 2 0.0323 0.70 0.4955
PROTREND*FUTUPROD 2 0.3652 7.93 0.0004%*
RATEVAR*COSTVAR 4 0.1570 1.70 0.1464
RATEVAR*FUTUPROD 4 0.0949 1.03 0.3902
COSTVAR*FUTUPROD 4 0.0855 .93 0.4467




BIAS are influenced by these treatment conditions. Table 3
summarizes BIAS values under the various conditions. Some
interesting patterns are evident.

First, the overall mean BIAS across all observations is -.108.

This means that, on average, the LC produces cost estimates that

are about 11% too low.

Second, the mean BIAS for each treatment for every variable of
interest, is negative, (with only one exception, Qhen FUTUPRdD is
"high"). This means that the LC model bias toward underestimation
is a consistent, pervasive phenomena. It is not driven by isolated
conditions.

Third, in spite of the general tendency toward underestimation,
the degree of bias does differ depending on the conditions. The
effects of the different conditions perhaps can be best demonstrat-
ed by a plot of BIAS values by treatments. Figure 2 shows such a
plot, with the (four significant) variabhles superimposed. 1In this
plot, 1, 2, and 3 on the X-axis reflect low, medium and high values
for the independent variables (which are taken from the left,
middle and right columns of Table 3). Figure 2 reiterates the
point made previously: BIAS is consistently negative (except when
FUTYPROD is high). More importantly, trends are evident:

a) Data History: Negative bias, the underestimation of future
cost, tends to increase as the number of observations available for
estimating model parameters (DATRHIST, increases. At first glance
this seems counter-intuitive. Traditional wisdom savs that having

more data available leads to better parameter estimates and better

21



model forecasts. PRut that is true only if a model is correctly
specified. This issue will be discussed further later.

b) Fixed Cost Burden: Negative bias'tends to increase as the
proportion of total costs comprised of fixed costs (BURDEN)
increases. This result is perhaps not surprising. In the
underlying cost phenomena being modeled, learning impacts the
incurrence of variable costs, not fixed costs. It is plausible
that the LC model would become more biased as fixed costs increase.

c) Past Production Trend: The negative bias is counsiderably
stronger if the rate of production was growing, rather than level
during the model estimation pericod. This is not difficult to
explain. An increasing production rate during the model estimation
period will result in a steadily declining fixed cost per unit.
An LC model will interpret this rate effect as a learning effect,
and overestimate the degree of learning actually occurring. Future
forecasts of cost will thus be biased downward.

d) Future Production Level: As the production rate, during
the period for which costs are being forecast, shifts from “low"
to "high", the LC model shifts from strongly underestimating to
overestimating cost. 1In short, there is an inverse relationship
between future production level and the bias toward underestima-
tion. This effect is to be expected. Higher (lower) future
production will result in lower (higher) fixed cost, and total
cost, per unit, creating a tendency toward positive (negative) bias
for any cost estimate. )

Note that the only time cost is overestimated by the LC model
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TABLE 3

LEARNING CURVE MODEY, BIAS
BY MAIN EFFECTS

Independent Variable BIAS for Each level
DATAHIST Value: 4 7 10
BIAS Mean: -.096 ~ =.100 -.128
VCRATE Value: 75% 85% 95%
BIAS Mean: -.108 -.111 -.105
BURDEN Value: 15% 33% 50%
BIAS Mean: -.086 -.119 .120
PROTREND Value: level - growth
BIAS Mean: -.051 - -.165
RATEVAR Value: .05 .15 .25
BIAS Mean: -.120 -.098 -.107
COSTVAR Value: .05 .15 .25
BIAS Mean: -.099 -.106 ~-.119
FUTUPROD Value low same high
BIAS Mean: -.344 -.070 .091

Overall Mean: -.108
Range of Group Means: <-.344 to .091




FIGURE 2

PLOT OF LEARNING CURVE MODEL BIAS
BY MAIN EFFECTS
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is when future production level is high. The LC is still biased
toward underestimation, but if the future production level
increases enough to reduce per unit fixed cost enough, the tendency
toward underestimation is masked by the offsetting tendency toward
reduced actual per unit cost.

In addition to these main effects, the Table 2 ANOVA results
indicated that pairwise interactions involving BURDEN, PROTREND and
FUTUPROD are also significant:; not only does BIAS depend on these
three variables, it depends on how they interact. ‘These interac-
tions are illustrated in Fiqures 3, 4 and 5.

Figure 3, the interaction between Fixed Cost Burden and
Production Rate Trend, merely reinforces previous findings:
Negative bias tends to be greater when burden is higher or when the
production rate grows during the model estimation pericd. The
figure just indicates that the combination of these two conditions-
-high burden coupled with growing production volume--magnifies the
negative bias.

Figure 4, the interaction between Fixed Cost Burden and Future
Production Level, clearly reinforces the previously noted inverse
relationship between future production level and the bias toward
underestimation. But findings concerning Burden now appear
conditional. High burden increases the tendency towzrd underesti-
mation, if future production level is low. But high burden
increases the tendency toward overestimation when future p{?ducticn
level is high. 1In shotrt, increasing fixed cost burden magnifies

the biasing effect--in either direction--caused by shifts in the
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future production level.

Figure 5 shows the interaction between the production trend
during the model estimation period and the future production level
during the forecast period. The most interesting observation
concerns the two points where BIAS is close to zero. These occur
when a) a "level" production trend is coupled with the "same" level
in the future forecast period, and b) a "growing" production trend
is coupled with a "high" level in the forecast period. Consistency
characterizes both situations; the production rate is either
consistently level or consistently increasing throughcut the joint
estimation/forecast periods. In contrast, the greatest bias occurs
when a "growing" production trend is coupled with a "low" level in
the future forecast period. Here an inconsistent pattern, a shift
from increasing to decreasing production rate, causes severe
underestimation of cost.

RA Model Bias. Table 4 provides ANOVA results addressing BIAS
from the RA model. Table 5 summarizes BIAS values under the
various experiment conditions. Two findings are evident. First
the overall mean BIAS for all observations is only -.0016. Thus,
on average, the RA model exhibits no bias. Second, this absence
of bias is evident for all treatments across all variables of
interest. There are no significant main effects in the ANOVA
results and group means for BIAS in table 5 range only from ~,021
to .026. Thus the overall absence of bias is not ca_xused by
positive bias under some conditions offsetting negative bias under

other conditions. Rather the absence of noticeable bias exists
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FIGURE 3
LEARNING CURVE MODEL BIAS

INTERACTION OF FIXED COST BURDEN
AND PRODUCTION RATE TREND
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FIGURE 4
LEARNING CURVE MODEL BIAS

INTERACTION OF FIXED COST BURDEN
AND FUTURE PRODUCTION LEVEL
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TABLE 4
BIAS FROM RATE ADJUSTMENT MODEL

ANALYSIS OF VARIANCE RESULTS

SOURCE DF SUM OF SQUARES MEAN_SQUARE F_VAIUE
Model 85 11.18626 <1316 1.08
Error 1372 166.9451 .1217 PR>F:
Corrected Total 1457 178.1314 .2919
R’ eV BIAS MEAN

.0628 21638.82 -.0016

SOURCE DF ANOVA SS F VALUE PR>F
DATAHIST 2 0.171%9 0.73 0.4815
VCRATE 2 0.3435 1.41 0.2441
BURDEN 2 0.0539 0.22 0.8012
PROTREND 1 0.2335 1.92 0.1662
RATEVAR 2 0.2986 1.23 0.2934
COSTVAR 2 0.5567 2.29 0.1019
FUTUPROD 2 0.39865 1.63 0.1964
DATAHIST*VCRATE 4 0.3066 0.63 0.6412
DATAHIST*BURDEN 4 0.0866 0.18 0.9498
DATAHIST*PROTREND 2 0.0972 0.40 0.6706
DATAHIST*RATEVAR 4 0.3802 0.78 0.5373
DATAHIST*COSTVAR 4 0.0617 0.13 0.9727
DATAHIST*FUTUPROD 4 0.2723 0.56 0.6921
VCRATE#*BURDEN 4 0.6156 1.26 0.2818
VCRATE*PROTREND 2 0.1873 0.77 0.4633
VCRATE*RATEVAR 4 0.3605 0.74 0.5642
VCRATE*COSTVAR 4 0.1389 0.29 0.8875
VCRATE*#FUTUPROD 4 1.3745 2.82 0.0238
BURDEN*#PROTREND 2 0.0470 0.19 0.8243
BURDEN*RATEVAR 4 0.3449 0.71 0.5860
BURDEN#*COSTVAR 4 0.3527 0.72 0.5751
BURDEN*FUTUPROD 4 0.6125 1.26 0.2844
PROTREND*RATEVAR 2 0.1738 0.71 0.4897
PROTREND*COSTVAR 2 0.2152 0.88 0.4132
PROTREND*FUTUPROD 2 1.1777 4.84 0.0080%*
RATEVAR*COSTVAR 4 0.1900 0.39 0.8156
RATEVAR*FUTUPROD 4 1.5652 3.22 070122

COSTVAR*FUTUPROD 4 0.5640 l.16 0.3273




TABLE 5

RATE ADJUSTMENT MODEL BIAS
BY MAIN EFFECTS

depe va

iab BIAS
DATAHIST Value: 4 7 10
BIAS Mean: . 004 .008 -.017
VCRATE Value: 75% 85% 95%
BIAS Mean: -.021 -.000 .016
BURDEN Value: 15% 33% $0%
BIAS Mean: -.004 -.008 .007
PROTREND Value: level - growth
BIAS Mean: -.014 - .011
RATEVAR Value: .05 .15 .25
BIAS Mean: .016 -.002 -.019
COSTVAR Value: .05 .15 .25
BIAS Mean: -.019 -.011 .026
FUTUPROD Value low same high
BIAS Mean: .015 .004 -.024
Overall Mean: -.0016

Range of Group Means:

-.021 to .026




FIGURE 6
RATE ADJUSTMENT MODEL BIAS

INTERACTION PRODUCTION RATE TREND
AND FUTURE PRODUCTION LEVEL
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across the various treatments.

There is one statistically significant first order interaction
in the ANOVA. Fiqure 6 plots this interaction between Production
Rate Trend and Future Production Level. Two pcints seem notewor-
thy. First, the greatest bias occurs when a "growing" produccion
trend during the model estimation period is coupled with a "low"
production level in the forecast period. So, as with the LC model,
a shift from increasing to decreasing production.causes biaé to
occur. Second, in spite of this interaction result being statisti-
cally significant, the magnitude of bias evident is far less than
with the LC model. In a comparative sense, the RA model still does
not appear to create a bias problem.

Additional Analysis of ILC Bias: The findings that the degree
of bias in the LC model is dependent on PROTREND and FUTUPROD is
not completely surprising. Both variables reflect how production

rate varies from period to period, and the LC mnodel does not

include a rate term.'?

The findings that LC model bias also depends on DATAHIST and
BURDEN merit a bit more attention. To further investigate, some

addition simulations were run under "ideal" conditions, where

2Tnis does not mean the findirg is without interest. Many
researchers and cost analysts (e.g., Gulledge and Womer, 1986) have
noticed that empirically there is often high colinearity between
cumulative gquantity and production rate. This colinearity hus been
argued to make production rate a somewhat redundant variable in a
model, leading to unreliable parameter estimates when the Wmodel is
estimated and providing little incremental benefit when the model
is used for forecasting future cost. The current findings suggest
that one role of a production rate variable in a model is to reduce
model bias.
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impacts on cost caused by the other variables were suppre¢ ssed.
More specifically equation 9 was used to generate cost series where
a) producticn rate was level during the ﬁodel estimation perioq,
b) production rate stayed at the same level during the cost
forecast period, c) random noise in cost was set at zero, and 4d)
production rate variance was set at zero. Only VCRATE, BURDEN and
DATAHIST were varied. Again LC models were fit to the cost series
and then estimated future costs were compared with actual future
costs.

i) The Concave CcCurve: Figure 7 shows a log-log piot of
residuals (actual minus estimate cost) by quantity for one
illustrative situation (where VCRATE = 75%; BURDEN = 50%; DATAHIST
= 7). Recall that a central assumption of a learning curve is that
cost and quantity are log linear. Figure 7 shows cost as estimated
and predicted by the LC model as a horizontal line (abscissa of
zero), while the plot of the residuals displays the pattern of
actual costs relative to the LC line. Note that actual costs are
not log linear with quantity; instead an obvious concave curve is
evident. This pattern is not a result of the particular values for
VCRATE, BURDEN, and DATAHIST; the same pattern was evident for all
other combinations of variable values examined.

The vertical 1line in the figure separates the seven cost
observations used to estimate the LC model, on the left, from three
future costs the model is used to predict, on the riggt. The
concavity of the actual cost curve results in each successive

actual cost diverging increasingly from the LC model prediction.
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FIGURE 7

ESTIMATED COST VERSUS ACTUAL COST
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VCRATE

75%

85%

95%

NOTE:

TABLE 6

BIAS PATTERNS FROM THE LC MODEL

(At selected values for BURDEN and VCRATE)

BURDEN

10%
20%
30%
40%
50%
60%
70%
80%

10%
20%
30%
40%
50%
60%
70%
80%

10%
20%
30%
40%
50%
60%
70%
80%

DATAHIST = 7.
first unit produceé

BIAS,

.00544
.00973
.01287
.01487
.01570
.01531
01365
.01063

.00176
.00315
.,00418
.00482
. 00507
.00492
.00436
.00336

t

.00018
-.00033
-.00043
-.00049
-.00051
-.00049
-.00043
-.00032

BIAS,

~.00758
~.01348
~.01772
~.02037
~.02138
~.02076
~.01843
-.01429

-.00243
~.00435
-.00573
-.00660
-.00692
-.00670
-.00592
~.00456

-.00025
-.00045
-.0005¢8
-.00067
-.0006v
-.00067
~.00088
-.00044

BIAS,

-.00973
-.01720
-.02250
-.02575
-.02692
-.02604
-.02303
-.01781

-.00210
-.00552
-.00727
-.00834
-.00873
-.00843
-.00743
-.00571

~.00032
-.00056
-.00074
-.00084
-.00088
-.00084
-.00073
-.00056

IAS

===

-.01186
-.02087
-.02719
-.03099
-.03229
-.03113
-.02747
-.02119

-.00376
-.00668
-.00877
~.01005
-.01050
-.01012
-.00891
-.100683

-.00038
-.00068
-.00089
~-.00101
-.00105
-.00101
-.00088
-.00067

BIAS, is the bias in forecasting the cost of the

relates to the second unit, etc.

after the model estimation period;

BIAS,



The conclusion to be drawn is that whenever a learning curve is
used to model a cost series that includes some fixed cost component
(some component that is not subject to learning), then a log linear
model is being fit to a log concave phenomena. A systematic bias
toward underestimation of future cost is inherent in the LC model.

ii) Bias Patterns: Table 6 lists measures of BIAS for various
combinations of BURDEN and VCRATE. The absolute magnitude of the
BIAS values'is not important; three patterns in the table are.
First, reading BIAS, through BIAS, values across any row reiterates
the pattern exhibited in figure 4. Bias increases when estimating
each additional future unit. This suggests that the further into
the future the LC model is used to estimate costs, the greater the
underestination will be.

Second, moving from the bottom, to the middle, to the top panel
of the table--from VCRATE 95%, to 85%, to 75%--it is clear that
BIAS increases. The general pattern suggested is that as the
"true" underlying learni:: rate (of the portion of total cost
subject to learning) increaszs, the tendency of the LC model to
underestimate future cost also increascs.

Third, read énwn anv cdlumn to observe the pattern of BIAS
values as BURDEN jr.reases trow 10% to “0% cf total cost. Negative
bias consistently iacreases with increrguz in fived cost burden-
-up to a point--then negative bias decreases with further increases
in burden. The turn around point for all observations_is when
burden is 50%. This confirms the finding from the earlier ANOVA

test, that bias increases with burden, but indicates that that
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pattern holds only when fixed cost is less than half of total cost;
the pattern is not universal. This reversal is perhaps understan-
dable. Consider the two extremes. If BURDEN = 0%, then all cost
would be variable, all cost would be subject to learning, an LC
model would be a correct specification of the "true" underlying
cost function, and zero bias would result. If BURDEN = 100% then
all cost would be fixed, no cost would be subject to learning, an
LC model would again be a correct specification of the "true"
underlying cost function (which would be a learning curve with
slope of zero-~-no learning), and zero bias would result. Only when
costs--some subject ton learning, some not--are combined does the
bias result. And the bias is at a maximum when the mixture is
about fifty-fifty.

iii) Bias and Estimated LC Slope: Recall that the total cost
of any unit produced depends on both VCRATE, which determines the
learning experienced by the variable cost portion of total cost,
and BURDEN, which determines the magnitude of the fixed cost
portion of total cost. Given the findings that BIAS depends on
both VCRATE and BURDEN raises an interesting practical question.
In many circumstances, cost analysts may not have access to
detailed cost data and hence may not "know" the values for VCRATE
and BURDEN in a real world cost problem being analyzed. 1In fact,
the point of fitting a learning curve to cost data is typically to
arrive at a summary description of an unknown cost functign. What
is observable by the analyst is an estjimated learning curve slope

for a given observable total cost series. Is there a relationship

28



between estimated LC slope and BIAS? The nature of that relation-
ship is not obvious. Ceteris paribus, as VCRATE become steeper,
estimated LC slope will become steeper as well. Given the tendency
of BIAS to vary with VCRATE, this suggests that BIAS will increase
as estimated LC gets steeper. But, ceteris paribus, as BURDEN
increases, estimated LC slope will become more shallow. Given the
tendency of BIAS to first increase, then decrease with increases
in BURDEN, the relationship between estimated LC siope and BIAS is
ambiguous. .

Figure 8 plots BIAS against estimated LC slope (generated for
combinations of VCRATE, varied from 70% to 95%; BURDEN, varied from
10% to 80%; DATAHIST = 7). Note that the scatter diagram is not
tightly clustered along any trend line. In the most general sense,
there is no strong relationship between estimated LC slope and
bias. But consider the segment of the plot falling within the
boundaries formed by the two dotted lines. These represent the
boundaries for BIAS when BURDEN is constrained, in this case, to
fall between 30~-40%. Given that burden is assumed to vary through
only a small range, then there is a strong empirical relationship:
steeper estimated LC slopes are associated with a greater tendency
toward underestimation of cost.

iv) Bias and Data History: Table 7 explores the impact of
DATAHIST on BIAS. Here BIAS is measured for cost forecasts from
models estimated on n data points, where n is varied from i through
10. For each model, BIAS is measured for n + 1, n + 2, etc.

Recall from the earlier ANOVA results that bias increased as
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DATAHIST increased. This lead to the somewhat counter-intuitive
conclusion that LC models get progressively more biased the more
observations there are available on which to fit the model. Two
patterns in the table confirm this finding but clarify its
implications.

First, observe the BIAS values in the diagonal (top left to
bottom righf) of the table. BIAS consistenrtly increases. The
prediction of, say, the 7th cost in a series using an LC model
estimated on the first six costs will be more biased than the
prediction of the 6th cost using a model estimated on the first
five. Bias in predicting the n + 1 cost does increase with n.
(This is the same finding as from the ANOVA.)

But observe also the RIAS values in any column. BIAS consis-
tently decreases as DATAHIST increases. The prediction of, say,
the 7th cost using a model estimated on the first six costs is less
biased than the prediction of that same 7th cost using a model
estimated on only the first five. In short, given a task of
forecasting a specific given cost, ceteris paribus, it is always
beneficial to use as many data points as are available to estimate

the LC model.

Su R ND CO USIONS

The central purpose of this study was to examine bias in
estimating future cost from two models commonly used in cost
estimation. The analysis simulated prediction for both the

traditional learning curve and a rate adjustment model, and
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FIGURE 8

PLOT OF BIAS VERSUS
ESTIMATED LC SLOPE
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evaluated bias under varying conditions. The broadest finding was
that the rate 1justment model provided cost estimates that were
unbiased, while the learning curve model consistently produced
estimates that understated actual cost. Most additional findings

concerned the conditions related to bias in the learning curve

model:

- The cause of the bias is the existence of fixed cost in
total cost. The learning curve assumes a leg linear
relationship between cost and quantity, which does not hold
when fixed cost (not subject to learning) is present.

- The bias increases as the proportion of fixed cost in total
cost increases--up to the point where fixed cost comprises
about 50% of total cost--after that further increases in
fixed cost reduce bias. This finding would appear to be
relevant given the trend in modern production processes
toward increasing automation and hence an increasing fixed
component in total cost.

- The degree of bias is affected by the production rate
during both the period of model estimation and the period
for which costs are forecast. A consistent production rate
trend throughout these periods minimizes bias. A shift in
production rate trend, particularly to a cutback in volume,
magnifies bias. This finding would appear to be relevant
to cost estimators analyzing programs where cutbacks are
anticipated.

- Assuming the proportional relationship between fixed and
variable components of total cost does not vary greatly,

bias is greater when the estimated learning curve slope is
steeper.

- The bias problem is not diminished as more observations
become available to estimate the learning curve. 1In fact

the degree of bias increases as the number of observations
increases.

- The degree of bias increases the further into the future
predictions are made. Next period cost is somewhat
underestimated; cost two periods in the future is underes-
timated to a greater degree, etc.

Some of the conclusions are a bit ironic. One typically

expects to improve forecasting when more data is available for
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model estimation. The findings here suggest that bias grows worse.
Cne typically expects future costs to decline most rapidly when
past costs have exhibited a high rate of learning. The findings
here suggests that such circumstances are the ones most likely to
result in actual costs higher than forecasted.

Caution should be exercised in drawing direct practice-related
implications from these findings. The finding that the rate
adjustment model is unbiased while the learning curve is biased
does not mean that the rate model should always be preferred to the
learning curve model. Bias is only one criteria for evaluating a
cost estimation model. Consider accuracy. Evidence indicates that
under some circumstances learniﬁg curves are more accurate than
rate adjustment models (Moses, 1990b). Thus model selection
decisions would need to consider (at a minimum) tradeoffs between
bias and accuracy. An accurate model with a known bias, which
could be adjusted for, would typically be preferable to an
inaccurate, unbiased model.

The conclusions of any study must be tempered by any limita-
tions. The most prominent limitation of this study is the use of
simulated data. Use of the simulation methodology was justified
by the need to create a wide range of treatments and maintain
control over extraneous influences. This limitation suggests some
directions for future research.

-- Re-analyze the research question while altering aspects
of the simulation methodology. For example, are
findings sensitive to the cost function assumed?

~~ Address the same research question using actual cost
and production rate data. Are the same findings
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evident when using "real-world" data?

Providing confirmation of the findings by tests using alternative

approaches would be beneficial.

Additional future research may be directed toward new, but

related, research questions.

Investigate other competing models or approaches to
cost prediction. Perhaps bias can be reduced by using
some version of a "moving average" prediction model,
Can such a model outperform both the learning curve and
the rate adjustment approach? If so, under what
circumstances?

Investigate tradeoffs between various characteristics
of cost estimation models, such as bias versus accura-
cy.
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