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ABSTRACT

The results of numerical simulations of two high-rate diamond growth environments

(oxygen-acetylene torch and DC arcjet) are reported. The calculations account in detail

for boundary-layer transport, gas-phase chemistry, and gas-surface chemistry. Diamond

growth rates are calculated self-consistently with the gas-phase concentrations, using a

recently-proposed methyl growth mechanism. The calculated growth rates agree well with

the measured values, indicating that this growth mechanism can account for both high-
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Diamond films are now routinely grown using a wide variety of techniques, at rates

ranging from less than 1 pm/hr to nearly 1 mm/hr. The highest growth rates (typically

on the order of 50-100 pm/hr) are obtained in atmospheric-pressure oxygen-acetylene

flames1 - 4 and moderate pressure (200 Torr - 1 atm) DC arcjet plasmas. 5- 8 It is of con-

siderable interest to determine whether a single mechanism can explain growth in all

environments, or whether high- and low-rate CVD diamond synthesis techniques differ

fundamentally.

Recent experiments in low-pressure hot-filament reactors9 ,10 and flowtubes 11,12 provide

evidence that the methyl radical CH 3 is the principal growth species for low-pressure, low-

growth-rate conditions. Recently, Harris 13 has presented a mechanism for growth from

CH3 on the (100) surface, and shown that the growth rates predicted by this mechanism

for hot-filament conditions (0.06-0.6 pm/hr) are similar to those measured. More recently,

Harris has shown that this mechanism explains well the relative dependence of growth rate

on the CH4 /H 2 ratio and on pressure for hot-filament conditions.14

It has not been clear whether this mechanism, or any methyl mechanism, could account

for the high growth rates obtained in oxyacetylene torches and DC arcjets. Several other

growth species have been proposed for these environments, including C, CH, C2, and

C2 H. 3 ,15,16 In this letter, the results of detailed numerical simulations of two high-growth-

rate experiments 3 ,8 are presented, with the objective of determining whether a methyl

growth mechanism can account for the measured growth rates.

The flow of interest here is a hot, axisymmetric gas jet impinging at normal incidence on

a water-cooled substrate, as shown in Figure 1. We confine our attention to the boundary-

layer region near the substrate on the axis of symmetry (i.e., at the stagnation point).

The exact conservation equations 17 for mass, radial momentum, energy, and species are

solved, together with appropriate boundary conditions, for the boundary layer on the

symmetry axis, to yield velocity, temperature, and species concentration profiles. An

important feature of these calculations is that a detailed gas-surface chemistry mechanism

is included, and the surface site coverages are calculated self-consistently with the gas-

phase concentrations. Gas-phase chemistry is also taken into account, considering a total

of 161 oxidation and pyrolysis reactions, with rates taken from the literature. 18- 21 The

transport properties are all evaluated using the subroutine package of Kee et al.22

Near the stagnation point, the velocity field above the boundary layer is governed by

a parameter a, the stagnation-point velocity gradient parameter. 23 Here we estimate a as
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a 2"/R, where U is the mean axial jet velocity, and R the estimated jet radius at the

substrate. The significance of this parameter for the flowfield near the substrate is that

the boundary layer thickness is given approximately by 6 BL - Vlpoo/pooa, where poc and

poo are the gas viscosity and density, respectively, outside the boundary layer.

The diamond growth mechanism used is a slightly modified form of the methyl growth

mechanism proposed by Harris. 13 The rate coefficients describing adsorption of H atoms

have been adjusted to yield unity sticking probability in the limit of large site coverage (a

factor of two decrease for reactions (b), (e) and (g) of Ref. 13). We have also written the

products of the final reaction steps so as to allow growth to continue on the next higher

atomic level, rather than terminating with the unreactive structure B (in the notation of

Ref. 13). This is done by recognizing that each B created is equivalent, on average, to

one new hydrogen-saturated surface site ("HH") on the next atomic layer. Thus, the last

step is assumed to generate one new HH site, and one bulk carbon atom buried below the

surface.

Harris presents two limiting sets of rate constants, one for a "dilute" case, where

the surface is atomically flat and thus surface carbons are bonded to two other carbons,

and a "dense" case, where ledge sites dominate and most surface carbons are bonded

to three other carbons. Both cases are considered in the present simulations. To this

growth mechanism, 9 reactions describing radical recombination on the surface via H-atom

abstraction (e.g., R + HH = RH + H*) are added.

We have used our model to simulate two high-growth-rate experiments reported in

the literature: the oxygen-acetylene flame experiments of Matsui et al.3 and the DC ar-

cjet experiments of the group at SRI. 8 ,16 While similar studies have been carried out by

others, these two are distinguished by their relatively complete reporting of experimental

conditions (gas flow rates, temperatures, and jet diameters), which makes possible the

numerical simulation of the results.

Matsui et al.3 show, using laser-induced fluorescence and mass spectrometric tech-

niques, that the gas composition in the acetylene feather region of their flame is consistent

with the assumption of chemical equilibrium. Consequently, for the simulations the gas

composition outside the boundary layer is assumed to be the equilibrium composition cor-

responding to the adiabatic flame temperature Tad. Based on their reported gas flow rates

for the case C2 H2 /0 2 = 1.1 (3.2 slm C2 H2 , 2.9 slm 02) and jet diameter (- 1 cm), the

velocity gradient parameter a is estimated to be approximately 5000 s- 1 .
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The calculated temperature profile and several species profiles are shown in Fig. 2 for

the case C2H2 /0 2 = 1.1. The thermal boundary layer is seen to be approximately 1 mm

thick. A notable feature of these results is the H atom profile, which drops off sharply

near the surface. These results show that the transport of H to the substrate is diffusion-

limited, due to the destruction of H atoms on the surface. The consumption of H at the

surface is an intrinsic part of the diamond growth mechanism, resulting from abstraction

of surface-bonded H by gas-phase H atoms (activating the surface), and recombination of

H onto surface radical sites (reactions (a) and (b) of Ref. 13). These two reactions, taken

together, describe a mechanism for surface-catalyzed recombination of H to H2 .

Methyl is predicted to be the most abundant hydrocarbon radical at the surface. Other

radicals which have been proposed as growth species in flame environments are seen to

decay sharply near the surface, making a role for these in diamond growth unlikely, with

the possible exception of atomic carbon.

The calculated growth rates are compared in Fig. 3 to the growth rates measured by

Matsui et al.3 for C2H2 /0 2 ratios from 1.0 to 1.2. The results show that this methyl

growth mechanism can predict the measured growth rates to within a factor of two using

either set of rate constants. This is considerably better than expected, considering the

significant uncertainties in the surface chemistry, as well as the fact that the mechanism of

Harris considers only homoepitaxial growth on (100). In addition, the rate predictions are

sensitive to both the calculated H and CH3 concentrations at the surface, which we estimate

to be uncertain by about a factor of two or three. In light of this, the agreement shown

in Fig. 3 may be to some extent fortuitous. Nevertheless, it is worth noting that there are

no adjustable parameters in either the surface mechanism or the gas-phase mechanism.

The same model has been used to simulate the DC arcjet experiments of Stalder and

Sharpless8 and Raiche et al. 16 These experiments were carried out at 220 Torr, with a gas

composed of 0.5% CH 4 in H2 . For this case, the flow time from the anode to the substrate

(8.5 ps) is too short for chemical equilibrium to be obtained; consequently, we follow here

the same procedure used by Raiche et al.16 to estimate the plasma composition above the

boundary layer: the composition is allowed to evolve for 1.5 ps at 5000 K, followed by a

linear decrease to the measured gas temperature of 2100 K at 10 ps. The a parameter is

estimated to be f 106 s - 1, and the substrate temperature is taken to be 1200 K.

The predicted temperature and species profiles for this experiment are shown in Fig. 4.

For this case, the thermal boundary layer is considerably thinner than in the flame ex-
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periment, due to the much higher flow velocity (larger a). For this reason, the effects of

chemistry on the concentration profiles are considerably less here than in the flame. While

H atoms are still depleted near the surface due to catalytic surface recombination, the

surface H mole fraction is still several percent. Again methyl appears at the surface at

about the 100 ppm level.

Somewhat surprisingly, atomic carbon is predicted to have a large concentration at the

surface. This is a consequence of the large superequilibrium of atomic hydrogen, and the

fact that abstraction of a surface hydrogen by C is uphill by about 10 kcal/mole. Under

conditions such as these, C atoms could conceivably play a role in diamond growth; in

the present simulations, however, this possibility is neglected to focus on the question of

whether CH3 can explain the measured rates.

The growth rate calculated for this experiment using the Harris methyl mechanism is

118 pm/hr for the dense case, and 13 pm/hr for the dilute case. The measured rate is

reported to be greater than 60 prm/hr.8

These results indicate that a single methyl mechanism 13 can explain growth both in

low-rate environments, such as hot-filament systems, and high-rate flame and plasma jet

environments. While a possible role for other radicals, in particular C atoms, should not

be ruled out, these results show that there is no necessary reason to postulate them as

growth species. The question remains why the simple mechanism of Ref. 13 should predict

growth rates as well as it does. There are many reasons why it should not, including

the large uncertainties in the thermochemistry of the highly crowded (100) surface, and

that the experimental films are polycrystalline. Nevertheless, growth r:tes for (100) and

(111) faces are known to be similar,24 and so a (100) mechanism may well predict correct

polycrystalline rates. The fact that the dense rate constants produce consistently better

agreement with experiment than those for the dilute case may indicate that tertiary surface

carbons are most common, which suggests that even the (100) surface of CVD diamond is

rough on an atomic scale.

The author would like to acknowledge Dr. Steven Harris for enlightening discussions

regarding diamond growth kinetics. This work has been supported, in part, by the Office

of Naval Research and the National Science Foundation.
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FIGURE CAPTIONS

Fig. 1 Relevant flow geometry. The simulations are limited to the stagnation-point bound-

ary layer region.

Fig. 2 Temperature and selected species profiles for conditions simulating the experiments

of Matsui et al.3 Substrate temperature = 1250 K, C2 H2 /0 2 = 1.1. Surface chemistry

calculated with "dense" rate constants of Ref. 13.

Fig. 3 Comparison of growth rates calculated using the methyl mechanism of Harris 13 with

rates measured by Matsui et aL3 for varying flame stoichiometry.

Fig. 4 Temperature and selected species profiles for conditions simulating the experiments of

Stalder and Sharpless8 and Raiche et al.16 Substrate temperature = 1200 K. Surface

chemistry calculated with "dense" rate constants of Ref. 13.
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