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1. RESEARCH OBJECTIVE

The overall objective of the proposed research is to use

experimental and theoretical studies to develop models for the

thermomechanical behavior of ceramic fiber-reinforced ceramic

matrix composites. Types, severity and growth mechanisms of

damage in composites under simple and complex stress and

temperature histories will be characterized experimentally. or

Theoretical models will be developed for thermomechanical response

in terms of microstructural parameters, such as grain size, fiber 0
on

diameter and orientation, volume fraction of fibers, porosity,

interfacial fracture resistance as well as the micromechanics of n/
damage growth. Availability Codes

Avail and/or

Dist Special

QUALT

2.1 Overview 2A O SM T3

Theoretical work during the past year was concerned with (1)

damage growth in ceramic matrices at high temperature and with (2)

mixed-mode delamination. Improved understanding of both types of

damage is needed in order to predict thermomechanical behavior of

ceramic composite laminates.

Under item (1), models of crack and damage growth were

developed which account for both elastic behavior of crystalline

grains and viscous behavior of grain boundary phases. These results

for viscoelastic behavior generalize earlier work of others which

appears to be limited to the extremes of elastic behavior and viscous

behavior. This analysis has not yet been published, and therefore
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essential features of the theory and some results are given in the

body of this report in Section 2.2

Item (2) on delamination was written and published during the

grant period [1]; the publication is in the Appendix. It represents a

departure from other formulations of mixed-mode delamination

analysis. Traditionally, the total energy release rate and its

components have been expressed in terms of moments and forces

acting on the boundaries of the crack (delamination) tip element (cf.

Fig. 3, Appendix). Instead, we developed the energy release rates

directly in terms of crack tip moments and forces. This approach

leads to simpler results, especially for complex layups, and simplifies

the analytical or numerical methods needed for computing mode

ratios. Some further work on the prediction of mode ratios and on

the effects of temperature and shear deformations is currently

underway.

Experimental studies were not started because of the departure

of the co-principal investigator, Professor M. C. Lu, from Texas A&M

University (shortly after the grant was awarded) and Professor

Schapery's intention to move to The University of Texas at Austin

near the end of the first year of the grant. It is planned to initiate

the experimental work at The University of Texas at Austin as soon

as personnel and equipment are available.
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2.2 Damage Growth in Viscoelastic Ceramics

2.2.1. Background. An important micromechanism for time-

dependent deformation in many ceramics and ceramic composites is

the nucleation, growth and coalescence of cavities and crack-like

defects along grain boundaries and interfaces [2]. Amorphous phases

that are often present along grain boundaries and interfaces are

usually modeled as linear or nonlinear viscous materials (i.e., the

current shear stress is a function of the current shear strain rate),

and we shall do so here. The objective of the present analysis is to

develop a model for predicting the growth of individual cracks in

viscous, cavitating grain boundaries or interfaces and to use this

model to predict the effect of a distribution of such cracks on the

global behavior of polycrystalline ceramics.

The primary background references for this work are the crack

tip model of Thouless et al. [3], the distributed damage model of

Suresh and Brockenbrough [2], and the viscoelastic crack growth

theory of Schapery [4]. In [2] the effect of the growth of distributed

damage on creep of ceramics and ceramic composites is predicted

using results from [3] for crack growth rate.

Let us first review certain aspects of these two important

studies before discussing the new theory. Figure 1 shows the crack

tip model of [3], in which the cavities grow and coalesce in a very

thin viscous layer between essentially rigid grains. The "viscous

matrix" outside of the damage zone represents the undamaged,

surrounding, deformable polycrystalline material. Grain
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deformations, in effect, are neglected inside and outside of the

damage zone. The undamaged continuum deforms through straining

of the viscous grain boundaries.

Zia

Viscous Matrix

damage zone

Okicrc, .2 ., Rigid Groins

17C.2S

VisCOus Matrix

Fig. 1.- The theoretical situation considered
in [3]. The damage zone consists of an array
of grains co-planar with the crack and
embedded in a linearly viscous matrix. The
growth of cavities is constrained by the
viscous matrix.

The result for crack speed A may be written obtained in the

form

A KI G*(dA a/d, Af)

where

KI = opening-mode stress intensity factor
d = grain size
a = length of damage zone (a > d)
I = viscosity of grain boundary phase
X = cavity spacing (d/X>1)
Af = critical area fraction of cavitated grain

boundary at which cavities coalesce (for the
grain at the crack tip)

0" = dimensionless function
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Graphs of the theoretically predicted function G* are given in [3].

It is of particular interest to observe that crack speed is

proportional to K and VU and inversely proportional to 1l. This

behavior could have been predicted directly from dimensional

analysis (for the material and geometry idealizations assumed),

although this approach was not used in [3]. Rather, a detailed

analysis was employed which not only provided these dependencies

but also gave the function G* (graphically, in most cases).

Suresh and Brockenbrough [2] used the linear relationship

between A and KI to predict the creep of ceramics when all of the

creep is due to distributed microcrack (damage) growth. They

concluded that for short time behavior the strain rate e is

proportional to K12 and therefore

a-02 (2)

Prediction and experimental results for polycrystalline alumina and

alumina-silicon carbide composite are shown in Fig. 2; their theory

gives the straight lines with a slope of two in the figure.

However, in [2] the ceramic was assumed to be fully elastic

(except for the viscous layer in each microcrack tip damage zone)

whereas in [31 the ceramic's overall behavior was assumed to be

viscous (with rigid grains). Had the assumption of viscous behavior

been used in [2], the lines in Fig. 2 would have had a slope of unity

instead of two, clearly at odds with the experimental data.
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Fig. 2. Steady-state creep characteristics of
polycrystalline alumina and alumina-silicon
carbide composite. See [2] for details. The
dark dashed lines come from the theory
discussed in Section 2.2.4.

Here, we shall use elastic grains and a viscous grain boundary

phase in both the crack tip and distributed damage models. This

generalization will enable us to predict behavior which is in better

agreement with the experimental data.

2.2.2. The Undamaged Polycrystalline Continuum. Both the

crack tip model and the model for global material response with

distributed damage require a constitutive equation for the

undamaged portion of the ceramic. Linear viscoelastic behavior will

he taken into account.

For a uniaxial stress, the axial strain for an arbitrary stress

history a(z) is,

0(3)
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The quantity D(t) is the "creep compliance." For a creep test, in

which the stress is applied at r = 0 and held constant thereafter,

equation (3) yields

e = D(t)a (4)

Thus, D(t) may be obtained from creep test data as D = e /a for t > 0;

D O for t < 0. Instead, here we shall predict D(t) as well as the

associated creep Poison's ratio vc(t), using the micromechanical

model shown in Fig. 3.

This model is usually called the "generalized self-consistent

scheme" or the "three-phase model" in the context of particulate

composites. The equations for the overall (or effective) elastic

Young's modulus E and Poisson's ratio v are given in [5]. A grain is

idealized here as a spherical particle and the grain boundary as a

concentric matrix layer. A representative "two-phase composite"

consisting of a grain and grain boundary phase is embedded in the

third phase; the latter phase has the properties (E, v) the undamaged

ceramic. These properties are predicted by requiring that E and v for

the three-phase composite in Fig. 3 equal those for an effectively

homogeneous material with the same E and v. The equations in [5]

may be used to calculate these elastic constants in terms of:

Em, Ep= matrix and particle Young's modulus,
respectively.

vm , VP = matrix and particle Poisson's ratio,
respectively.

VP = particle volume fraction
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Fig. 3. Generalized self-consistent scheme
without microcracking. The particle and
matrix represent a grain and grain boundary
phase, respectively.

In turn, the correspondence principle of linear viscoelasticity theory,

along with Laplace transform inversion, enables us to predict from

these elasticity results the creep functions D(t) and vC(t) for a

composite with viscoelastic constituents. Alternatively, approximate

results for D(t) and vc(t) may be found by the simpler quasi-elastic

method [6], which we use here.

We assume the grains are elastic. The grain boundary phase

(the matrix) is assumed elastic in dilatation (constant bulk modulus)

and is a viscoelastic Maxwell model in shear,

Jm = Jmo + t/jm (5)

where

Jm shear creep compliance
Jmo = initial (elastic) value of shear

creep compliance, which is the
reciprocal of the initial shear
modulus.

11m = shear viscosity
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Observe that at long times (t >> JmoTi m) the grain boundary phase

becomes a viscous material, while at short times it is elastic.

Figures 4 and 5 are graphs of the logarithms (base 10) of the

plane-strain creep compliance C(t) of the polycrystalline ceramic

material versus time, where

To = JmoTl, the creep time constant

C = [1 - VC2(t)] D(t) (6)

and Co is the initial value of C. The plane-strain creep compliance, C

(which differs only slightly from the uniaxial creep compliance, D), is

shown because it is this compliance that is used in the crack growth

theory discussed in the next subsection.

The thickness of the grain boundary phase (b-a in Fig. 3)

divided by the grain size (the mean diameter b+a in Fig. 3) may be

expressed in terms of the grain (particle) volume fraction vg (=Vp).

We find that this ratio, denoted by h, is

h = (1 - vg/ 3)/(1 + vg 1/3) (7)

For the values of vg = .9, .99, .999 (used in Figs. 4 and 5), we find,

respectively, h =.018, .0017, .00017; these values are believed to

cover a realistic range for ceramics [2]. Similarly, the ratio of initial

Young's modulus of the amorphous grain boundary phase to that for

the grains in actual ceramics is likely to be in the range from 1/5 to

unity; these are the values used for Figs. 4 and 5 respectively.
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.8
v9 .9 .99 .999

0
0
-1 1 3 5 7 9 11

LOG (T/TO)
Fig. 4. Plane-strain creep compliance vs.
time for three different values of the grain
volume fraction. The initial Young's modulus
of the grain boundary phase is 1/5 of that for
the grains.

.8
Vg= .9 .99 .999

.4-

0

- 1 3 5 7 9 11

LOG(T/TO)
Fig. 5. Same as Fig. 4 except the initial
Young's modulus of the grain boundary phase
is equal to that for the grains.
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Predictions of C/Co as a function of initial Poisson's ratios for

both phases were found to be practically independent of them over

the range from zero to one-half; the value of 0.3 was used for both

phases in these figures. As noted earlier, the grains are assumed

elastic, with constant values of Poisson's ratio and Young's modulus.

At very long times, all curves in Figs. 4 and 5 have a slope of

unity (viz. C-t) as expected, since the deformation is dominated by

viscous flow of the grain boundary phase; this is the behavior

assumed in the crack growth theory [3]. It should be added that the

long-time shear viscosity T%, say, for the ceramic may be found using

the theory in [7],

i1c = m/32h3  (8)

when h<<l.

Especially interesting is the short and intermediate time

behavior of the creep compliance. For vg = .99 and .999 there is a

distinct elastic plateau for which C/Co =2.3. In all cases, at short

times there is a nearly constant slope region in which slope S 0.2,

which implies C _ t° ' 2 . The main difference between the results in

Figs. 4 and 5 is a time-shift. Events in Fig. 4 occur about four times

faster than those in Fig. 5, assuming the time constant To is the same

for all cases.

The viscoelastic behavior, C _ t° 2 , and elastic behavior where

C/Co - 2.3, stem from elastic distortions of the grains as they interact

with the grain boundary phase. One has to wait a relatively very
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long time until C - t, when the grains behave as relatively rigid

particles in a viscous matrix. The insensitivity of the ceramic's creep

compliance to Poisson's ratios of the phases implies insensitivity to

the bulk moduli of the grains and the amorphous grain boundary

phase.

In real ceramics the thickness of the grain boundary phase is

expected to vary from grain-to-grain. This implies one may have to

account for a distribution of local volume fractions vg, which would

lead to compliance curves that are combinations of those in Figs. 4 or

5. This generalization will be studied in future work.

2.2.3 Crack Growth Theory. Equation (1) gives the crack speed

only when it is slow enough that events in the neighborhood of the

crack tip take place in the very long time regime, C - t. We may now

generalize the theory to allow for behavior over the entire time

range of response shown in Figs. 4 and 5 by drawing upon Schapery's

theory in [4] using the idealized crack tip model in Fig. 6.
Y

a

aa -

V

IP

Failure zone

Figure 6. Cross-section of an idealized crack
used in [4]. The failure zone here is to be
identified with the damage zone in Fig. I (i.e.
the cavities in a viscous laycr plus the
adjacent rigid grains.
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The "failure zone" in this figure is to be identified with the damage

zone of Fig. 1, which consists of rigid grains and a cavitating viscous

layer. The theory in [4] permits us to use mechanical properties for

the failure zone which are different from the surrounding ceramic

continuum. The length of the failure zone a is related to the stress

intensity factor KI according to [4, Part I],

a - Ki2/af 2  (9)

where af is a measure of the normal stress acting across the failure

(or damage) zone. From [4, Part II] the crack opening displacement

at the left end of the failure zone in Fig. 6 is

A v - C(ta) K12/af (10)

where C is the plane-strain creep compliance for the ceramic

continuum discussed earlier, and

ta _a3& (1 1)

is one-third the time elapsed when the crack grows an amount a.

The viscous crack growth theory in [3] uses a critical cavity

area fraction as a crack growth criterion; according to [3, Eq. (5)], this

is equivalent to a critical value of Av/X and thus a critical value Avc.

From Eqs. (9) - (11),

Ave- C(a/3)KI t-" (12)

For a viscous body, C - a/3A, and if a is constant then Eq. (12)

yields

a- KI  (13)

which is the same behavior as in Eq. (1).
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For a power law viscoelastic ceramic,
C =- (t/to)nC1 (14)

corresponding, say, to the short time region in Figs. 4 or 5 (for which

n a 0.2) and if a is constant, then Eq. (12) gives

At - KIl / n  (15)

With n = 0.2,

A ~ K15  (16)

It was assumed in [3] and in developing Eqs. (13)-(16) that a is

constant. However, this is not necessarily correct. Equation (9) must

be satisfied (in order that the crack-tip stress not be infinite). If we

suppose that all geometric parameters at the crack tip are constant

(except possibly for a) then for a viscous failure zone of - A, which

yields

aX - KI 2/J2 (17)

Substitute this behavior into Eq. (10) after using Eq. (14) to find

A- KiP (18)

where
.2n+2

3n+ 1 (19)

For n = 1, then p = 1 as before; this result and Eq. (17) imply a is

indeed constant. However, if n * 1, a will vary with K,. For an elastic

material, n = 0,

A- K1
2  (20)

whereas if n = 0.2,

A - K11. 5 (21)
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which gives an exponent that is at the midpoint between elastic and

viscous behavior! It should be noted that the grain boundary phase

is viscous in [3] but viscoelastic in Eq. (5) and Figs. 4 and 5. For

T/To > 10, the elastic strain is negligible and therefore the two

theories are for viscous behavior, Jm - t, over most of the time scale

in these figures.

A more detailed analysis leads to explicit dependence of A on

the various physical and geometric parameters appearing in the

cavitation model in [3]. This work will be published in the near

future.

2.2.4 Distributed Damage Model. The value of the exponent p

has a significant effect on the overall creep strain rate of a ceramic

with growing microcracks, each of which obeys Eq. (18). In order to

use the results in [2] for ceramics which are elastic (except for the

effect of damage growth) we suppose the linear viscoelastic

compliance is in the elastic plateau range of Figs. 4 and 5 (for vg __

0.99, say). Then, using the short-time strain rate (due to damage)

from [2],

~- op+1 (22)

and with p ~ 1.5,
~ - C2.5 (23)

Whereas if even shorter effective times apply to the crack tip region,

we use elastic behavior, and therefore p = 2 and

&- 03 (24)

The time scale for the compliance around the damage zone is
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t- - a/3A, which is smaller than the time scale for global behavior. It

is thus appropriate to select for p the slope at times less than those

in the plateau.

The dark dashed lines in Fig. 2 correspond to Eq. (22) for either

elastic behavior, p + 1 = 3, or viscoelastic behavior, p + 1 = 2.5. The

experimental data do not all have the same slope, which may be due

to, at least in part, the complexity of the creep compliance of a

polycrystalline ceramic and locally varying grain volume fraction vg.

2.2.5 Conclusions. These results on crack and damage growth

are very encouraging as the viscoelasticity theory leads to internally

consistent models and realistic predictions, all expressed in terms of

basic micromechanisms. It is not limited to constant stress

conditions. Indeed, the theory predicts strong frequency effects for

crack and damage growth in cyclic loading, such as reported by Han

and Suresh [8]. Future work will fill in details of this approach in

order to relate response explicitly to micromechanical parameters

and to different types of loading and thermal histories. Also, the

applicability of the author's earlier work on distributed damage

growth in particulate composites [9] and a low temperature ceramic

(ice) [10] will be studied.
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APPENDIX

Prediction of Energy Release Rate

for Mixed-Mode Delamination

Using Classical Plate Theory



Prediction of energy release rate for mixed-mode
delamination using classical plate theory

R A Schapery
Civil Engineeing Deoanment, Texas A&M Univerity, College Station TX 77843

B D Davidson
Mechanical Systems Egineening and Research Division, Jet Propulsion Laboratoy,
Pasadena CA 91109

Prediction of the energy release rate (ERR) and its components for mixed-
mode delamination of composite laminates is discussed. A classical plate
theory (CPT) version of Irwin's virtual crack closure method is developed
and used for the ERR, first for plane strain and then for three-
dimensional deformations. It is shown that CPT does not provide quite
enough information to obtain a decomposition of ERR into its opening and
shearing mode components. Results from a continuum analysis are needed to
complete the decomposition; but analysis of only one loading case is
required for two-dimensional and certain three-dimensional problems. In
two example problems the finite element method is used with CPT to
complete the mode decomposition. Results from CPT and the finite element
method are then compared for several cases.

1. INTRODUCTION

Delamination is a commonly occurring type of that of predicting edge delamination in a
crack growth in many composite laminates . The uniaxial tensile specimen, Fig. 1, or growth of
strength and stiffness of a composite structure an embedded delamination in a plate under in-
may be significantly affected by delamination, plane compression or a transverse load, Fig. 2.
whether the loading is in-plane or out-of- Problems like the latter one often involve
plane. One indication of the importance of the geometric nonlinearities due to the out-of-plane
delamination problem, especially for fiber- deformations; what is developed here can be used
reinforced plastics, is the large number of even with geometric nonlinearities.
publications devoted to the subject, such as The approach consists of analyzing only the
found in a recent book on fracture of composites neighborhood of a short segment of the
(Friedrich, 1989). The energy release rate (ERR) delamination edge; the cross-section of the near-
is the loading parameter commonly used to edge region is illustrated in Fig. 3, in which
characterize the initiation and continuation of there is one delamination or crack of length "a"
crack growth. Delamination growth in many within this element. In general, the delamina-
composites depends on not only the (total) ERR tion edge is a curve which may be open and thus
but also on how much energy is in the shearing- end at the edges of the laminate (e.g. Fig. 1) or
and opening-mode components. Numerous closed (e.g. Fig. 2). The x-axis in Fig. 3 is
experimental studies (e.g. Johnson and located at the midsurface and is normal to the
Mangalgiri, 1987) have shown that the ERR local delamination edge. We shall call the
required for delamination growth varys with the geometry in Fig. 3 a crack tip element. The
ratio of shearing-to-opening mode components of length of this element perpendicular to the plane
the ERR; the sensitivity to this mode-ratio of the page (the y-direction) is denoted by L
appears to be least in the toughest composites, it is assumed to be short enough that there is
To predict initiation of growth, one compares the significant variation in the loading and the
available and required values of ERR, while edge's orientation with respect to y. It is
stable growth rate is usually expressed in terms further assumed that (a,b) > t, but yet a and b
of the available ERR; the amplitude of ERR is are small enough that geometric nonlinearities
often used for cyclic loading, are negligible, given the moments and forces

In this paper we are concerned with the acting on this element. In order to predict
prediction of ERR and its components in terms of loading on the element (from an overall plate or
the loading acting on a laminate. For use with shell analysis) it may be necessary to account
cyclic loading problems, the ERR amplitude and for geometric nonlinearities and possibly other
its components may be found from the theory. complicating factors such as shear deforma-
There Is no fundamental restriction on the tions. However, for the crack tip element
geometry of the laminate, which may be a plate, itself, we assume classical linear, elastic plate
shell or beam. The problem may, for example, be theory (CPT) may be used to predict deformations

Appl Mech Rev vol 43, no 5, Part 2, May 190 S281 0 Copyright 1= American Society of Mechanical Engineers
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and strain energies. In CPT the deformations are
defined entirely by midsurface strains and
curvatures; external forces which are normal to

CO  the midsurface and act at locations away from
this element are fully accounted for through the
loads parallel to the midsurface and the
moments. The ERR for this element is the work
(divided by L 6a) that becomes available at the
crack tip whenthe crack advances a distance
6a along the length L

Essentially they same considerations have
been used by Storakers and Andersson (1988),
Whitcomb (1989), Whitcomb and Shivakumar (1989)
and Williams (1988) to derive the ERR. In

y addition, Williams (1988) decomposed the ERR into
opening and shearing components; however, it was
assumed that a pure opening mode exists when the
only loading is M1 = -M2 , which we show later is "CO  not generally true. In order to determine the
components of ERR, Whitcomb (1984, 1986) used
finite element solutions with the virtual crack

FIG. 1. Eight ply laminate with edge delami- closure method.
nations. (After Raju et al., 1988). In this paper we express the ERR directly in

terms of the one concentrated moment and two
components of shearing force which act at the
delamination edge. These three reactions are

z easily written in terms the various loads and
moments which act on the boundaries of the crack

Transverse load tip element. By using crack-tip reactions, we
obtain immediately the CPT version of ERR

y components. Also, the connection between these
components and the true ERR components based on a
local continuum analysis of the crack tip is
readily established in terms of the smallest
possible number of independent inputs. To the
authors' knowledge, none of the other

x publications which use CPT (including that of
Davidson (1988), which is a forerunner to theInplane present analysis) express the ERR in terms of the

compression crack tip forces and moment. Instead, in these

loads other works the ERR is written in terms of the
several forces and moments which act on the

FIG. 2. Locally postbuckled laminate with em- boundary of the crack tip element.
bedded delamination. (After Whitcomb and In Section 2 the ERR is derived for a state
Shivakumar, 1989). of plane strain. The theory is extended to

three-dimensional deformations in Section 3.
Section 4 gives examples using CPT and
corresponding finite element predictions. The
finite element model employed is described in the
appendix.

2. PLANE STRAIN CRACK TIP ANALYSIS

Plate Equations

It t t  Assuming a state of plane strain for now,
2 ti and referring to Fig. 3, we consider only the in-
2 ----- - 2 plane loads N, N, and N2 and moments M, M, and

N I tj Mj M2 ; these quantities are resultants per unit of
e x lngth in the y-direction, and are positive when -_ ( I they act in the directions shown. From overall

Z2t2 N2 k  equilibrium of the geometry in Fig. 3 and
!- t2l _W M 2  observing that z= -t2/2 and z2  tl/2 ,

LiI N = NI+N 2 , M = M1+M2+N2tl/2 - N1t2/2 (1)

I b a The energy release rate is expressed most
simply in terms of the crack tip shear force N
and moment M , Fig. 4. The presence of a crack
tip is fulIy accounted for by concentrated

FIG. 3. Crack tip element for plate theory reactions Nc and Mc because, in the context of
showing loading and dimensions. CPT, there are no tractions which act across the

surface of crack prolongation in the uncracked
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Nl= aliN + a12M (8a)

M= a21N + a22M (8b)

NI t _ - N where
b - a a 11= A1A' + (B

I- A 1t2/2)B'

a 12= AIB' + (BI- A1t2/2)D'

McV N0  a2 1= B1A' + (DI- B1t2/2)B'

Nc -*-%-Mc a22= BIB' + (0I- Bt 2/2)0' (9)

2 N 2 Equations (2) and (3) become

t2  
M

Nc= _N1+ allN + a12
M (10)

Mc= Ml- Nlt 1/2 + (alltl/2 - a21)N

FIG. 4. Free body diagram for plates above + (a12t1/2 - a22)M (11)
and below the crack plane.

Energy Release Rate

section, and the deformation depends only upon A plate theory version of Irwin's (1957)

moments and axial forces. Considering the top virtual crack closure method will be used to

free-body in Fig. 4, derive the energy release rate. First, we
consider the crack tip to be just inside the left

Nc = - N I + N1  (2) edge of the geometry in Fig. 3. The left edge is
then the right boundary of the uncracked plate,
and may be treated as a fixed edge. Now,

Mc = + Ncti/2 M1  (3) referring to Fig. 4 with Nc and Mc initially
zero, gradually increase them until they have the
values needed to close the crack along the length

The quantities NI and M are internal stress- b; these values are given by Eqs. (10) and

resultants in the uncrack~d section. They may be (11). The work of crack closing divided by b is

found from CPT and expressed in terms of the also the ERR, G, when the crack length grows any
overall force N and moment M in this section, small amount b. Thus,
Fig. 3, as follows. Using Jone's (1975) 1
notation, for the full laminate, G = Tb (Ncau + Mc ae) (12)

N = Ac°+ BK (4a) where au = u - u and ae = e - e. The u. and
B refer to horfzontal dispfaceent and rotation

M=B°+ DI (4b) d the crack surfaces for the top (i=1) and

bottom (i=2) plates due only to Nc and Mc.
where o is the midsurface (z=O) strain and K is Namely, with the left edge fixed,
the curvature. Also, A,B and D are the
extensional stiffness, coupling stiffness, and u1
bending stiffness, respectively. Similarly, for 1- b( -1  2), a b (13)
the laminate or material "1" above the crack u2 2- 2t2 2= K2
plane, but In the uncracked section,2be-Kt/) 62 b(1)

where E, and K. are midsurface strain and

N1= Ae0+ B = Ale 0+ (B Alt2/2)K (5a) curvature, respectively, due to Nc and Mc.
AI lu+ (B- 12For the material above the crack plane the

B =lB u+ 0DK = Bic0+ (DI- B 1t2/2)K (5b) stiffness matrix has components A1, B and D ,as
in Eq. (5). We may derive the midsuriace strain

where we have used the fact that the midsurface and curvature using the inverse of the stiffness

strain for material "I" is matrix (A', BI, D') and, as inputs, the
midsurface lbad and toment shown in Fig. 5; thus

=lu£ o+ Zl = £- t2/2 (6)

Now, write the inverse of Eq. (4) as ei = AjNc+ Bi(NctI/2 - Mc) (14a)

0, AN + B'M (7a) K= B hc+ Dj(Nctl/ 2 - Mc) (14b)

K - B'N + D'M (7b) Substitution of Eq. (14) and analogous results
for the material below the crack surface into Eq.

in which the primed quantities are compliances. (13) yields, finally,
Use this result in Eq. (5) to obtain the desired
force and moment, au/b = CINc+ cI2Mc (15a)
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and the ki are real coefficients. If the ki are
known, the GI and GII components of ERR may be
calculated in terms of external loads and moments
through Nc and M , Eqs. (10) and (11).

Thus, it on9 y remains to find the four ki.
By equating G in Eq. (19) o Eg. (17) and
matching the coefficients of Nc , Mc  and NcMc weNo find c c c

t- - Nctl/2-Mc k [c k + S (c-k) 1/2 (21a)

k3= s3(cI- k)1 2  (21b)

tNc N c t2/2+Mc k4= (c12- k1k2)/k3  (21c)

/ where s2 ±1, s3= ±1 and

c = (CC2  c 12) (21d)I b 1- - 12

The sign s3 determines the sign of both k3 and
FIG. 5. Loading on plates above and below the k4, and since these coefficients define the sign

crack plane which is statically equivalent to of K (and g2 ) we may use s3 = 1 without any
loading at the crack tip. real -loss in generality. For the cases studied

numerically to-date

ae/b = ci2Nc+ c2Mc (15b) c12k < (c- k2) 112c (22)

where and thus we must use s2 = 1 so that k2 > 0;

2 2 according to Eq. (20a), if k2 < 0 a sufficiently
c A;+ Ak+ B ~t1 - Bt 2+ Djt1 /4 + Dt 2 /4 (16a) large positive crack tip moment would produce the

physically unacceptable result of a negative
c2= Di+ Di (16b) opening-mode stress intensity factor.

There is not enough information available
c12= Dit 2/2 - D t1/2 - Bj- Bj (16c) from CPT to find the one remaining unknown

coefficient k1. As k, is independent of the
and the subscripts I and 2 on (A',B',D') refer to loading, we may use numerical or other results
the plate properties above and below the crack from an analysis of any one special loading
plane, respectively. From Eqs. (12) and (15), case. It is helpful to select applied moments
the ERR becomes and loads which make N=M=O. In this case Eqs.

=- (c N2+ C M
2 + 2) (1), (10) and (11) yieldG Cl2 1 c 2Mc + 2cI2NcMc) (17)
2 1C c 2 cN 2 = -Nit M 2= -M I+ Ni1t/2 (23)

Given that G > 0 for Nc and M not both 2zero, it N2= -N, M2= M N t/2 (23)
follows that c1 > 0, c2 > 0 an c1c2 >c 2. Nc= -N, Mc= - N1t/2 (24)

Mode Decomposition Further, if N1 = 0 then M2 = -M1 , N = 0 and
Mc= M1 . Alternatively, if M = N1tj/2 ihen M =

For those cases in which the stresses in the 0 andR2 N1t2/2. In the latter case Eq. (26a)
continuum in the neighb ood of the crack tip reduces to g1 = -kiN1 , so that if g is known for
exhibit the behavior r , where r is distance this ine loading case,
from the tip, we may write

G G G (18) k1= -g/N1  
(25)

NondimensionalizatIon
where G and GI are the mode I (opening mode)
and mode II Cshearing mode) Fnergy release Here we shall rewrite the primary variables
rates. In turn Gr- K, and G r- Krr, where K1 and and equations in dimensionless form to allow for
Kii are the ass ciated strss intensity thickness and modulus scaling.
factors. These factors are real, linear Let E and T be the reference modulus and -

functions of the loads which produce crack-tip thickness, respectively. Then, with an asterisk
stresses; the crack tip loading here is defined used to denote a nondimensionalized variable, we
entirely by Nc and Mc. Thus, we may write Eq. write for stiffnesses,
(17) in the form23

2G n thg 2+orm(9 A* = A/ET, B* = B/ET2 , D* = D/ET3  (26)

1  g2  compliances,
where A* = A'ET, B'* = B'ET2, D'* = D'ET 3  (27)

g1  (2Gi) = kiNc+ k2Mc (20a)
2M load and moment,

g2s (2GII) - k3Nc+ k4Mc (20b)
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are obtained by omitting the 2 terms.
N* = N/ET, M* = M/ET2  (28) I

3. THREE-DIMENSIONAL CRACK TIP ANALYSIS

and thickness and curvature,
We continue to use the crack tip element in

t* = t/T, K* = KT (29) Fig. 3, but now allow for three inplane shear
forces in the y-direction (say NY, N, NJ) which

where the subscript "1" or "2" may be used with act on the same three areas as NI, N2 and N. It
the variables in Eqs. (26)-(28), as appro- is assumed that L - b - t, where L is the
priate. The energy release rate and related element length in he y-direction, but tRat L is
variables are small enough for all loads and moments t;' be

essentially Independent of y over LV .
G*= G/ET, (30) A crack tip shear force in th y-direction,

3  2  say Ny, also may exist. Similar to Eq. (2), we
c C1ET, c2, 22ET3, ci*2 c,2ET (31) obtaIR

gi* = gi/(ET)I12 for I =1,2 (32) NY = -N 1 + N( (44)

k*= k.(ET)1" for I = 1,3 (33)
1 1 12 In order to find NY as well as N and M for use

k.* = ki(ET)I/2T for i = 2,4 (34) in Eqs. (2) and (i), the full tbree-dinensional
1 plate equations are needed. In place of Eqs. (4)

The ERR in terms of the dimensionless and (5) use equations of the type (Jones, 1975),
variables is the same as that in Eq. (17),

G* = [cl*(Nc*) 2+ c2"(Mc*)
2+ 2ci* N* Mc*1 (35)2 2 2 cINI= [A BI leOl 45

and the equations for the coefficients are the

same as in Eq. (16), e.g.

c2* = D* + D * (36) where each of the terms N,M,c° ,K represents a set
of three components (e.g. Nx, N , N ), and each

Similarly, just as in Eq. (20), element A,B and D represents "a ..' symmetric
matrix. As before, one set of equations is

l= k1* Nc* + k2* Mc* (37) needed for the full laminate and one set is
needed for the material above the crack plane.

We may use these results by finding solutions for The ERR is now
kt using E=T=1 and then generalizing the results
to1 arbitrary E and T by means of Eqs. (33) and G - r (Ncau + McAo + NYAv) (46)
(34); e.g.

12 where av -v is the difference between y-
k= k 1*/(ET)' (38) displace y ent a-oss the crack plane due to Nc,

Mc and Nc. In place of Eq. (15), use
Homogeneous, Isotropic Plates

Au/b = c+ 12Mc+ c13 N (47a)

In the numerical examples in Section 4 the c 12 c 137c

split plate is assumed to be made of one or two
homogeneous, isotropic materials. For this case ae/b = cMN + C2Mc+ c NY (47b)
the stlffnesses are (Jones, 1975), 12Nc 2 c 23 c

A Ei /(1-V2 B) = 0, Di Et 3/12(1-v )(39) Av/b = c 3Nc+ c23Mc+ c3NY (47c)

where v and E. are Poisson's ratio and Young's
modulus, respectively. The compliances are where the c's are found using a procedure which

is the same as for the plane strain case. It

A- - 1/Ai, B= 0, D = 1/0 (40) should be noted that the constraint of the
1 1 uncracked material along the left edge of the

and the ERR coefficients are plates in Fig 4 limits the deformation caused by
2 Nc, M and N to c, K and y ; i.e. the c's

a1-ae ta o be iound XusiIg the pecial case
C1= 

4 1E' + - (41) Cy= K = Kx = 0 in Eq. (45).
11 22 romxtqs. (46) and (47),

2 V 2 N 2+CM2C 2 2c
1-V 1-1 G 2Ic N(+cYM)

c2= 121-3 + 2 1 (42)

Elt I  E2t 2  + 2c13 c N+ 2c23McNyi (48)

i2  _" cc 3

1E t 2 --t 2 Whep there is no coupling between the
2 2 1t1  force N' and the cross-sectional variables

Observe that c - 0 when the top and bottom Au and as (i.e. c13 = c21 = 0) then G is the same
plates are identlcal. Also, plane stress results as in Eq. (17) excep for the additional term
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c (N) 2 . In this case, and without (x,y) It is seen that agreement between plate theory
cdupilng of the stress singularities, the opening and finite element analysis is very good for all
and shearing mode components (in the x-z plane) cases.
of ERR depend only on Nc and M , and may be found
from Eq. (20) using the coef'icients for plane Homogeneous Plate
strain. The antjpjane shearing component of G is
then simply c (N ) /2. The second problem is that of a homogeneous,

With fAll coupling there are nine isotropic plate in plane strain with an off-
coefficients ki in the three-dimensional version center crack. Specifically, t1 = 1, ti = 0.5, EA
of Eq. (20), in which the gi (i=1,2,3) are = E = 1, 1= v2= 0.3. Use of Eqs. (41)-(43) ana
expressed in terms of N, M and NY. Equation (1I7 yields,
(48) may be used, as in he pane strain case, to
solve for six ki in terms of the remaining G = (I0.9Nc+ 98.3M2+ 32.8NcMc) (51)
three. However, it might be easier to use a
method similar to Whitcomb's (1984) approach; Equation (25) and a finite element analysis give
three different loading cases (to obtain three k, = 0.398, so that from Eqs. (20) and (21),
different sets of Nc, Mc and NY ) would be
analyzed by the finite element meth&d to find the g1= O.

39BNc+ 9 . 2Mc (52a)nine kI.I4. EAL 
g2= 

3 .28Nc+ 3 .89Mc (52b)
4. EXAMPLES

The k1 value was found from the pure shear
Two-Layer Plate loading case NC = 2, Mc = 0. One important

comparison that can be made between plate theory
Consider a crack between two different and finite element analysis is for the other

homogeneous isotropic plates of equal thickness, extreme case of pure moment loading. With N =
for which we select t1 = t2 = 1, El = 1, E2 = 0, Mc = 1 we found very good agreement, in tat
1.923, v = 0.3, v 0. For plane strain and both methods yielded G = 49.1 and GI/G 11 =
these valtes of pgisson's ratio and modulus the 5.50. Other loading cases were analyzed, with
stress singularity at the crack tip is real (Raju the same conclusion.
et al., 1988) and thus does not have the
oscillatory character common to cracks between Discussion
dissimilar media.

Equations (41)-(43) provide the coefficients The many loading cases studied numerically
in the ERR, Eq. (17); we find that in both problems have used a variety of values

1 2 M2 for N1, NZ, M and M2. That the only effective
G = 1(5.72 17.2 4.68 N ) (49) crack tip loaling parameters are N. and M was

7 Mc-  cc confirmed by the agreement of te continuum

The coefficient k in Eq. (20a) is found to analysis (using finite elements) with CPT. That
be -0.174 from finie element analysis (cf. CPT provides total ERR which is usually in good
Appendix) and Eq. (25). The loading used for agreement with finite element predictions has
this case is N1 = 2, N2 = -2, M = M2 = 1, which also been reported by Whitcomb (1989) for a
yields Nc = -2 and M = 0 The remaining ki are postbuckled, embedded delamination. The accuracy
obtained-from Eq. (2b" to give in Eq. (20), of CPT in predicting ERR thus makes it a useful

tool for checking whether or not the mesh size
gl= (2GI) = -O.174Nc + 4.09Mc  (50a) and proportions in finite element models are

acceptable.

92= (2GII) = 
2 .39Nc- 0.68

3Mc (50b) In the two example problems the values tj =

El = 1 were used. By selecting T = t1 and E =-El
Table I compares the plate predictions (P) in the earlier section on nondimensionalization

from Eqs. (49) and (50) with values determined we may convert the calculated ki and c, values,
directly from the finite element model (F) for which may be interpreted as k* and c, those
several different loading cases in which N1, N2, for other moduli and thicknesses using, for
M, and M2 are varied, example, Eq. (38).

It is of interest to observe that Eqs. (50a)
and (52a) show GI does not necessariliy vanish
even if the crack tip moment vanishes.

TABLE I. ERR COMPARISONS FOR THE TWO- Similarly, when the shear force vanishes GIL is
LAYERED PLATE not necessarily zero. Such results are possible

because Nc and Mc are only resultants, and thus

I  GI  do not reflect details in the local stress
Case Mc Mc Gp GF G distribution. On the other hand k, is relatively

Ce N 1 GF Gsmall in both problems, and it would be
P F interesting to investigate whether or not kI = 0

can be used generally. If this approximation is
1 -2 0 11.4 11.5 -- 5.34x10-3  valid, then k2 , k. and k4 may be derived directly
2 -3.09 .152 28.6 28.6 .0240 .0240 from Eq. (21), without having to use results from
3 -6.83 1.80 190 191 .237 .241 finite-element or other analyses. The accuracy
4 -1.78 .712 16.3 16.4 .465 .464 of delamination predictions with kI = 0 depends
5 -4.39 3.22 177 177 1.21 1.21 on the delamination criterion. For example, if
6 -3.81 3.84 203 202 1.95 1.94 the critical value of G is ipdependent of mode
7 -1.06 1.36 22.3 22.2 2.75 2.73 ratio, then any value of k S c1 will suffice
8 0 1 8.58 8.57 35.8 36.0
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because Eq. (21) guarantees that G, Eq. (17), is Whitcomb, J D (1989), Comparison of Full 3-0,
independent of k1. Note also that symmetry Thin-Film 3-D, and Thin-Film Plate Analyses
yields k, = k4 = c12 = 0 exactly for a symmetric of a Postbuckled Embedded Delamination, ASTM
laminate with a miJsurface crack. J Comp Techn & Res 11, 154-157.

The use of k, = 0 avoids the problem of Whitcomb, J D and Shivakumar, K N (1989), Strain
finding GI/GII from a continuum analysis when the Energy Release Rate Analysis of Plates with
stress singularity is oscillatory. Raju et al. Postbuckled Delaminations, J Comp Mat 23,
(1988) have shown that G, and GII do not converge 714-734. (Originally published as NASA TM
(although G does converge) with -ecreasing finite 89091, 1987).
element mesh size; an analytically evaluated Williams, J G (1988), On the Calculation of
limit shows similar behavior. Thus, k, cannot be Energy Release Rates for Cracked Laminates,
found for this common type of singularity at a Int J Fracture, 36, 101-119.
crack tip between dissimilar media. Further
study is needed to determine if the use of kI = 0 APPENDIX
or any other real value is a valid way of
avoiding the oscillatory singularity problem. Figures 6 and 7 show the finite element

-Crack
5. CONCLUSIONS 

rack

The energy release rate (ERR) has been - -m- +
derived for two- and three-dimensional delami-
nation problems using classical plate theory b a
(CPT). The plate analysis was simplified by b a
recognizing that the three-dimensional ERR and FIG. 6. Finite element model used for ERR
its components can be fully determined from one predictions.
moment and two shear forces at the crack tip; for
two dimensions, there is only one moment and one -- -T nu
shear force. Decomposition of the plate theory t 111_111aco dmlis byer cmininy ite wimth annuea - - -- -I

ERR into opening and shearing mode components was I
accomplished by combining it with numerical o .os 0

results from a continuum analysis; an approxima- .5 0.25
tion which avoids the use of any solutions beyond - : 1
plate theory was proposed. Finally, good 0-0 0.
agreement between CPT and finite element 0 Hi-
predictions was shown for ERR and its components. - 0.L0 0O_-
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