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1 Introduction
This report summarizes the USC Image Understanding research projects for the period of
June, 1989 to September 1990 on Contract #F33615-87-C-1436. Along with our previous
annual reports (USCIRIS #238 and #258), it also constitutes our final report for the project.
This report consists of a summary section, followed by a number of detailed technical papers.
These papers have already been published in conference or workshop proceedings; to save
time and effort, we have reproduced these papers in the final document as they originally
appeared. The work in these detailed papers and in the previous reports is covered only
briefly in this summary.

Our research activity under this contract has focussed on the following major topics:

" 3-D Vision

" Mapping from Aerial Images and

" Parallel Processing

A summary of these areas is given in the next section.



2 Summary

2.1 3-D VISION

Our goal is to develop techniques for description and recognition of complex 3-D objects in
complex scenes. We focus on the analysis of objects using shape (as opposed to color, texture
or other cues) and have made significant progress in the contract period. In particular, we
have concentrated on the following:

" Range image analysis
We have made progress in the automatic acquisition of models from multiple views,
using either symbolic or iconic representations. These models are useable for a variety
of applications, including object recognition as in a system described in earlier reports
[141.

" Stereo

- We have completed a system which combines area-based and feature-based pro-
cessing to generate dense disparity maps.

- We have excellent results performing stereo matching using very high level prim-
itives resulting from perceptual organization

- In the special case of urban scenes, we have used "snakes" to accurately delineate
the contours of building tops.

* Shape from contour
We have developed a theory for inferring the 3-D shape of objects from their contours.
This technique relies on observations of certain types of symmetries in the contours and
the mathematical constraints that derive from them. Our technique uses relatively few
assumptions and heuristics and is largely based on geometric properties of contours.
We have shown that it is applicable to the analysis of zero-Gaussian curvatures surfaces,
straight homogeneous generalized cylinders, and "snakes" and are working on extending
it to yet more complex objects. Good results are obtained, however, currently we
assume that contours and symmetries are given to our system. In separate projects,
we are investigating the computation of such symmetries.

" Symmetry Detection and Perceptual Grouping
Grouping of contours detected in an image is crucial for proper segmentation and
description of objects in a scene. In our previous work, we found that symmetries
play a key role in computing such perceptual groupings [44, 31]. Symmetries are also
central to our technique for inferring 3-D shape from contours. In recent work, we
have been investigating efficient ways of computing these symmetries [51]. Once edge
contours are represented by approximating B-splines and the corners are detected [49],
the computation of symmetries is of complexity O(n ), where n is the number of spline
segments as opposed to the number of points.

" Matching
We have defined a methodology based on efficient coding and hash tables to recognize
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objects in a cluttered environment, even when the number of models is large. We can
successfully recognize flat objects under affine transform, and 3-D objects given 3-D
data (such as range images), with no restrictive assumptions on the shape of these
objects.

2.1.1 RANGE IMAGE ANALYSIS

Range imagery differs from intensity imagery in that the input directly relates to the ge-
ometric shape of the objects in the scene. Our previous work has allowed us to compute
symbolic descriptions of range images, and to perform matching with multi-view models.
Recently, we have obtained integrated representations of models from multiple views, which
is more natural since such models can be observed offline from many positions. The model
building procedure is performed either by merging at the data level prior to segmentation,
or by merging the segmented views, as explained below.

Range finders We have two different range finding systems available to generate a range
map of a given 3-D object, both of them based on active triangulation. The first consists of
an independent lascr system generating a sheet of light projected on the target object, which
is placed upon a translation or a rotary table driven by a personal computer. This computer
includes a video digitizer board with two CCD cameras looking at the scene from both sides
of the sheet of light. This is reported in detail in (21] and in the past annual report. This
low cost system is accurate and can produce a registered intensity image of the scene along
with the range image

In the case where we can not or do not wish to move the scene on a tray, we use a system
that consists of a nematic liquid crystal mask inserted into a slide projector to provide an
illumination pattern and a CCD camera looking at the scene from a different angle. The
hardware was provided courtesy of Prof. S. Inokuchi from Osaka University, and the details
of the system can be found in [52]. The mai. advantage of this system is speed, since by
projecting a set of n Gray-coded patterns onto the scene, we obtain depths for 2" lines.

Data level merging One of the difficulties of integrating multiple views is in finding an
accurate transformation between data obtained from different views. Previous research has
suggested determining the relative motion between views by using marks and regular patterns
in the scene by taking intensity images at the same time and matching those features [59],
or by miatching surface features directly [151. These techniques rely solely on the accuracy
of feature detection and provide no feedback from the data themselves as to how well the
different views have been registered under the estimated transformation.

Our approach is to use range data directly and to register successive views of the object
with overlapping areas to compute transformations for the relative motion between views.
To reduce the possible large search space and ensure that the algorithm converges, we assume
that the approximate transformation between the data from two views is known, which is
reasonable when the range data are acquired in a controlled environment.

To register two overlapping range views of the object, we first choose a set of surface
points, called control points, from one range image, and then apply a minimization process
to find the rigid transformation which minimizes a distance measure from those control points
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(a) Original im- (b) Reconstructed (c) Rendered image (d) Rendered image
age model of model of model

Figure 1: Object Modeling:

to the surface represented by the other range images. This minimization process is done by
using an iterative least-square method. The control points and the distance measure have
been chosen so that this process converges rapidly.

To merge multiple views, we use a cylindrical/spherical representation for simple compact
objects. Successive range image views of the object are merged after being mapped to
an object-centered coordinate system by using the relative transformations found by the
registration process. To avoid the introduction of a cumulative error term in the integration
process, we also use a global registration strategy, i.e., we always register the next view with
the current integrated result. An example is illustrated in Figure 1 where a the wood block
(a) has been viewed from 8 side positions 450 apart, from the top and the bottom. The
reconstructed views of the object are shown as shaded images in (c) and (d).

Generating surface descriptions In order to obtain useful surface descriptions, we need
both to devise a proper formalism using the criteria of richness, stability and local support,
and also to design proper implementation tools to deal with real images (noise, quantization
and digitization).

We have chosen to segment range images into simple surface patches, whose boundaries
correspond to surface discontinuities (Co) or surface orientation discontinuities (Cl). Each
surface patch is then approximated globally by a bivariate quadratic polynomial [13]. This
segmented representation of a scene may be viewed as a graph whose nodes capture informa-
tion about the individual surface patches and whose links represent the relationships between
them, such as occlusion and connectivity. Simple reasoning on these relationships is used
to decompose the full graph into disjoint subgraphs corresponding to different objects. An
example is shown in figure 2a-c.

The success of this representation critically depends on our ability to compute the nec-
essary attributes, such as gradients and curvature, from an image in the presence of noise.
We have found adaptive smoothing to be a tool of great value for such operations. The
details can be found in [50, 491, but the ideas can be summarized as follows: The general
purpose of our Adaptive Smoothing scheme is to smooth a signal - whether it is an intensity
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(a) Original Scene (shaded) (b) Inferred objects

0.3

(c) Graphs (d) Results

Figure 2: Segmentation of a complex range image.

image, a range image or a planar curve - while preserving and even enhancing its discon-

tinuities. This is achieved by repeatedly convolving the signal with a very small averaging

filter modulated by a measure of the signal discontinuity at each point. A relatively small

number of iterations is needed to obtain a smooth signal suitable for feature extraction. In

range images, we use curvature features such as curvature extrema or zero-crossings which

are easily detected and directly localized after Adaptive Smoothing as opposed to Gaussian

Scale-Space approaches where a tedious tracking procedure is needed.

3-D Object Recognition/Symbolic level merging We have been able to use the above

descriptions to achieve successful recognition of complex objects in scenes containing mul-

tiple objects that are only partially visible and are occluding each other. An example of

recognition is presented in figure 2(d), and a detailed treatment can be found in [12, 14].

For the purpose of matching, a model is represented by a set of similar descriptions from

multiple viewing angles, typically 4 to 6. Models can therefore be acquired and represented

automatically. Matching between objects in a scene and models is performed by three mod-

ules: the screener, which finds the most likely candidate views for each object, the graph
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(a) Intensity (b) Disparity (c) Disparity (d) Features

Figure 3: Renault Part.

matcher, which performs a detailed comparison between the potential matching graphs and
computes the 3-D transformation between them, and the analyzer, which takes a critical
look at the results and proposes links to split and merge object graphs.

The alternative approach consists of generating a symbolic description, such as an at-
tributed graph, for each view, and then merge the different descriptions at this high level.
Each view is represented by a graph whose nodes are the individual surface patches and
the links are the relationships between adjacent patches. The matching between views is
achieved either through a tree search procedure [14], or by a 2-level constraint satisfaction
network [40]. One of the difficulties to be overcome by this process is the inference of surface
patches from bounding contours, since these are not necessarily continuous and generally in-
accurate at junctions. We have obtained good results by modeling this process as a dynamic
network subject to weak smoothness constraints. The initial state of the network consists
of the curves produced by low level operators, but these decay over time unless excited.
Possible completions provide this excitation, competing with each other and strengthening
existing curves [41].

2.1.2 STEREO

We are using different approaches to solving the stereo correspondence problem, including
using a combination of area-based and feature-based processing, and working with complex
primitives resulting from a perceptual grouping process. We also are using active contours
to obtain accurate boundaries of roof tops in aerial views of urban areas.

Feature and area-based processing We have considerably improved the system de-
scribed in earlier reports [9], which integrates area-based and feature-based processing, by
taking advantage of the unique attributes provided by each one separately. The area-based
processing generates a dense disparity map, and the feature-based processing accurately lo-
cates discontinuities. The first improvement, described in [10], is the extraction of depth
and, in many cases, orientation discontinuities from the image.

Figure 3 shows the results obtained for the "Renault Part" stereo pair. Figure 3 (a) and
(b) show one of the stereo intensity images and the respective disparity result; (c) shows a
3-D plot of the disparity, from which the surface features (d) were extracted. The surface
features located on the disparity surface are the depth discontinuities, the occluded regions,
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(a) Intensity (b) Disparity

Figure 4: Books - Multi- resolution Pyramid.

Figure 5: Books - 3-D Plot of Disparity.

and the concave and convex folds.

The second improvement is the use of a niulti-level pyramid, first processing a reduced
(coarse) version of the image pair, and then propagating the results to another level for
higher-resolution (finer) processing, as shown in figure 4. This introduces a more global
context and allows the correction of local errors in matching, such as those due to photometric
and geometric distortions. Figure 5 shows a 3-D plot of the disparity and figure 6 shows
the extracted surface features. We have applied this Stereo Vision System to a wide variety
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Figure 6: Books - Surface Features.

(a) Intensity Images (b) Disparity Images

Figure 7: Jussieu

of scenes and obtained results which compare very favorably with state-of-the-art methods

[39, 18, 11].

Stereo of Aerial urban scenes Current stereo algorithms, whether area-based or feature-
based, tend to fail around depth discontinuities, since these are the locations where smooth-
ness assumptions do not hold. This phenomenon is most easily observable in aerial views of
urban scenes, where the roofs of buildings can be detected, but not accurately delineated.
Fua [16] and Mohan [34] propose to solve the problem by restricting the possible shapes in
the form of a generic model.

Here instead, we propose to use the initial estimate provided by a traditional stereo
system (as described in the last section). and to refine it by enforcing a local smoothness
constraint. This is accomplished by an active contour model, whose details are given in this
report [30]. The estimate is shown in figures 7-9. We have obtained excellent results, even
when the boundaries contain corners, as illustrated on figure 10.

Stereo matching using high level features We are also investigating an alternative ap-
proach to stereo that uses high level features for correspondence. Lower level feature match-
ing may have difficulties with global correspondence, particularly when repetitive structures
are present, requires presence of rather dense texture and highly accurate knowledge of epipo-
lar geometry. High level feature matching can potentially overcome these obstacles. Further
high level features are fewer in number and hence should be faster to match. However,
this approach has the deficiency that high level features need to be computed from inonoc-
ular images; a process that is known to be difficult and error prone. We have developed
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Figure 8: Jussieu - 3-D Plot of Disparity.

Figure 9: Jussieu - Surface Features.

Figure 10: Example of delineation of buildings roofs with deformable contour models
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(a) Left image (b) Right image (c) Disparity output

Figure 11: Results of a scene with multiple occlusions

sophisticated perceptual grouping methods to overcome this difficulty [31].

Our first experience with high level stereo was in the context of analyzing buildings in
aerial scenes. In such scenes, texture (on the roofs) is very sparse and disparity changes
discontinuously at the boundaries. We found that using high level features (rectangles) was
very effective for stereo processing of such scenes [341. We next investigated generalization
of this approach to scenes where the object shape is not so constrained [34]. In this work,
we found that ribbons (defined by two symmetrical curves with closures at the two ends)
are an effective method for organizing the curves in an image into higher level features and
that these ribbons could be used for stereo matching. This work, however, concentrated on
the grouping problem and not on development of a competent stereo system.

In our recent work, we have been building on our perceptual grouping system to develop
a stereo system. Features such as edgels, curves, symmetries, and ribbons which represent
geometric structures of objects in the scene are extracted from each image using perceptual
grouping. The grouping algorithms are similar to those described in [34] but several en-
hancements have been incorporated. A hierarchy of features from the left and right images
are matched using a relaxation network. Our method has shown accurate results for images
with multiple occlusions and wide angle disparities. Results from this method are illustrated
in figure 11.

2.1.3 3-D SHAPE FROM CONTOURS

Humans are able to readily perceive 3-D shape from a monocular image. Many cues are
used in this process such as shading, shadows and texture. However, we believe that the
most significant cue is the shape of the 2-D contours. The process of inferring 3-D shape
from contours, however, has proven to be a very difficult one. We believe that we have made
a major advance in this area and have developed a theory that significantly extends the
range of shapes that can be analyzed. Our theory relies on observations of symmetries in
the scene and the conjecture that only shapes having certain symmetries are percieved in
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3-D by humans.

We define two types of symmetries that we call parallel and mirror symmetries (the
precise definitions are given in another paper in this report [58]. Given the observations of
these symmetries in some specific combination, we can infer some qualitative properties of
surfaces and objects in the scene, such as whether they are planar, have a zero-Gaussian
curvature surface, or are some specific classes of generalized cylinders.

Further, the contours and the symmetries allow us to formulate some constraints on the
quantitative shape of the surfaces being viewed. The constraints that derive purely from
the geometry of the surface are, however, not sufficient to compute the precise shape of the
surface and leave some degrees of freedom unconstrained. These degrees of freedom can also
be fixed by using some simple perceptual properties.

Our technique is rather mathematical and hence difficult to summarize without intro-
ducing a good deal of notation. Hence, we will only give references to the more detailed
work and show some examples. The basics of our method, and its applications to analysis of
zero-Gaussian curvature surfaces are given in [57]. Figure 12 shows some examples from this
work. The first column of this figure shows the input contours to the program, the middle
column shows the computed surface orientations as a "needle diagram" and the last column
shows the surface orientations by painting the surface with intensities that would result from
a Lambertian surface illuminated by a point source. Extensions of our method to straight
homogeneous generalized cylinders (SHGCs) and snakes (generalized cylinders of constant
cross-section) and some results are included later in this report [58].

We hope that these examples indicate the power and range of our approach. We are
in the process of further developing the theory to apply to yet more complex objects. It
should be noted that this technique assumes that the appropriate contours and symmetries
are given; this is far from a trivial task. However, we are making progress on detection of
the appropriate symmetries in other projects in our group [33, 51].

2.1.4 SYMMETRY DETECTION

Once edges are extracted, the resulting contours must be represented for further reasoning.
Iconic representations do not make the necessary information explicit: by definition edgels
only capture very local properties of an image, and the inference of higher structures, such
as object boundaries, requires grouping operations. We believe that such operations rely on
basic and simple properties and various forms of symmetry [31]. The representation must
therefore make explicit differential properties of contours, such as tangent and curvature.
Furthermore, because of the variability inherent in the imaging process, the representation
should tolerate noise, partial occlusion, and perspective, thus suggesting segmented, local
descriptors [45].

If the world was composed of polyhedral objects alone, we would know to expect only
straight line segments in images, and polygonal approximations would be appropriate. In
many cases, such an approximation is indeed sufficient, as demonstrated by several applica-
tions such as stereo [29], aerial image understanding [20] or object recognition [35, 53], but
is unable to capture curvature information, since it is a first order approximation. Also, if a
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Figure 12: Sample contours, the computed needle images and the images after shading the
object using the computed orientation at all surface points. The last object has a non-planar
cross section and was segmented into two planar cross section objects before processing.
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(a) Digital Curves (b) B-spline Approximation

(c) Lines of Symmetry (d) Symmetry Axis

Figure 13: Detection of Elementary Parallel Symmetries

contour is smooth, the number of points required to approximate it may be quite large, and
the exact position of the points somewhat unrelated to the contour itself. These issues have
been tackled by the graphics community in the context of design, and we propose to use some
of the resulting tools, particularly approximating B-splines. The resulting representation is
compact and faithful to the original data for smooth or piecewise smooth contours, open or
closed.

It is also very well suited for the detection of symmetries. While it is easy to define
symmetry between two infinite straight lines, the concept of symmetry between curves is
harder to define: Rosenfeld [47] provides a lucid account of the differences between Blum's [6],
Brooks' [7], and Brady's [5] definitions, and a more recent paper by Ponce [42] gives further
comparisons. Here, we are interested not in local symmetries which provide skeletal shape
primitives, but rather in symmetries which help to infer shape from contour: Nevatia and
Ulupinar [56] postulate that they are skewed and parallel.

These can be computed efficiently using our B-spline representation. The main advan-
tages are the low computational complexity (O(n 2 ), where n is the number of spline segments
instead of the number of points) of the process and the stability of the results. Figure 13
shows an example of parallel symmetry detection using a quadratic B-spline approximation
starting from the two digital curves displayed in figure 13(a).

As an application, for the very specific case of a torus, the detection of parallel symmetries
allows us to infer the 3-D orientation of the object in a much simpler fashion than proposed
in [43], as shown on figure 14.
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(a) Intensity Image (b) Parallel Symmetry (c) Positioning

(d) Intensity Image (e) Parallel Symmetry (f) Positioning

Figure 14: Positioning of a Torus

2.1.5 MATCHING

Object recognition involves identifying a correspondence between part of an image and a
particular view of a known object. This requires matching the image against stored object
models to determine if any of the models could produce a portion of the image. We have
actively promoted the idea that higher level features organized in graphs are the key to
recognition in the presence of occlusion and photometric variations [14, 28, 37]. Recently, we
have addressed the issues involved in recognizing objects in a cluttered environment when
the number of models is large. We have been able to show excellent results for the recognition
of flat objects under affine transform [53], and, in a paper later in this report, of 3-D objects
given 3-D data [54]. The keys to our approach are

" a redundant representation

" Gray code to measure semantic difference

" hash tables for fast retrieval

" automatic acquisition of models

For the problem of recognition of multiple flat objects in a cluttered environment from an
arbitrary viewpoint (53], the models are acquired automatically and initially approximated
by polygons with multiple line tolerances for robustness. Groups of consecutive linear seg-
ments (super segments) are then quantized with a Gray code and entered into a hash table.
This provides the essential mechanism for indexing and fast retrieval. Once the data base
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of all models is built, the recognition proceeds by segmenting the scene into a polygonal
approximation; the Gray code for each super segment retrieves model hypotheses from the
hash table. Hypotheses are clustered if they are mutually consistent, and represent the in-
stance of a model. Finally, the estimate of the transformation is refined. This methodology
allows us to recognize models in the presence of noise, occlusion, scale, rotation, translation
and weak perspective. Unlike most of the current systems, its complexity grows as O(kN)
when N is the number of models, and k < 1. An example of successful recognition is shown
in figure 17 in the aerial image section of this introduction.

For the recognition of 3-D objects from 3-D data, we use a data structure called a
splash, which describes the variation of surface normals in a circular neighborhood of a
point, encoded as a super segment. From then on, the matching methodology is identical to
the 2-D case. The full details can be found later in this report [54].

2.2 AERIAL IMAGE ANALYSIS

We have three projects for the analysis of images of aerial scenes including efforts to develop
modules that exhibit high performance by themselves, the integration of modules into sys-
tems, and the formulation of a theory to define the underlying "visual abilities" required and
useful for extraction of cultural features from images of aerial scenes:

* The focus of our work in the past has been the development of modules for detection
and description of cultural (man-made) features present in aerial scenes such as the
transportation network (fig. 15a,b) [19], building structures (fig. 16a,b,c) [20, 32, 31]
and aircraft (fig. 17a,b,c) (531. In the past report we gave a detailed example of the
analysis on an airport complex. Later in this introductions, we will give an example
of a module for pier and ship detection from an image of a harbor complex.

These modules typically rely on the perceptual grouping of primitive geometric features
(lines, anti-parallels, junctions, portions of rectangles, etc.) extracted from the images,
to detect the objects. Modules for mobile objects such as aircraft and ships on the
other hand, use models and rely on scale and rotation invariant matching techniques to
detect the objects. Our current work on 2-D and 3-D matching techniques is covered
in detail in [53, 54]. Typically these methods are applied at a stage where we have
a great deal of confidence that these objects are (or should be) present in the image.
For instance, after detection of runways, taxiways, and buildings, we can then look for
aircraft in the appropriate areas. These in turn, help reinforce the runway and taxiway
hypotheses as well as help determine the funtionality of some of the buildings.

* A second portion of our work has concentrated on devising a system that manages
the modules and integrates the results of the modules thus providing local and global
context as well as higher level reasoning suitable for the description of an entire complex
or scene. In the past we have concentrated in the domain of large commercial airports,
and developed modules for detecting major structures. Now we are investigating the
interaction of these modules. We hope to report on this work in a future paper.
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(a) JFK Airport (b) JFK Runways

Figure 15: Runway detection module

e Our third project concentrates on the development of general techiques. These include
devising a taxonomy of perceptual grouping operations and, the development of a
language for describing tasks in terms of grouping operations. We expand on these
topics in the following sections.

2.2.1 DEVELOPMENT OF GENERAL TECHNIQUES

We believe that a hierarchy of processing steps is the appropriate approach for aerial image
understanding, where the levels of the hierarchy are chiefly determined by three factors:

1. The available sources of knowledge, both generic and domain specific. We know for in-
stance that airport runways are straight (geometry), and that they must have standard
markings (object specific) applied to the surfaces for safety and to aid pilots.

2. The available image resolution and quality. For example, it is more desirable to look
for global features, such as harbor piers, at lower resolutions and then apply the model-
to-feature matching to small portions of high resolution images to locate the ships (see
below). Why? Because the pier areas are salient features, a collection of macro features
arranged in some simple geometric fashion along the boundary of two distinct regions,
land and water. The detection of ships, and perhaps their classification by type on the
other hand, requires higher resolution and more symbolic processing.

3. Measurements and assertions as a function of scale. What can or should be measured
at a given scale? Invariably we can get bogged down by considering everything possible
at all scales, and build complex and massive data structures. However, this is often
unreasonable for mapping and photointerpretation tasks where the image content and
typical resolutions quickly make such approaches unfeasible.
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(a) Simple groupings (b) Complex groupings

(c) Feature/Area stereo

Figure 16: Building detection modules

The characterization of such hierarchies is the focus of our work and involves two funda-
mental issues: The development of a formal language to describe mapping and photointer-
pretation (or other) tasks, and the development of a grouping theory to define the generic
"visual abilities" required to accomplish these tasks. We believe that many of these visual
abilities can be expressed in terms of generalized classes of perceptual grouping operations
that can be applied in parallel. Eventually the task descriptions should be given in terms
of (or, compiled into) a sequence of alternating abstractions in the representation of the
features and application of classes of grouping operations. We explore some of these ideas
below using as an example the task to "detect pier areas and ships" from an aerial image of
a portion of a harbor scene.

Most of this work would fit at the "middle-level" level of perception. The "connection"
with the lower levels of processing, is reflected by the fact that the grouping processes are
more "non-purposive," and thus should be implemented to run in parallel. The connection
to higher levels of processing (reasoning about segmented objects, where an object is a
single, functionally identifiable 3-D object, as determined by the task at hand) is reflected
by grouping processes that are more purposive, operate on increasingly abstract features,
and are sequential in nature.

For a number of years our group has developed methods and techniques involving per-
ceptual organization. Groupings of near, parallel, collinear, co-curvilinear, and symmetric
features have been used to represent, segment and extract parts or whole objects from aerial
images and images of office scenes. For a reference on our most recent work see [311.
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(a) LAX Airport (b) Canny Edges

(c) Detected Aircraft

Figure 17: 2-D Matcher applied to image edges for aircraft detection

Recently we have begun work towards the development of a taxonomy for grouping
operations, and here we only introduce informally the notion of grouping fields, a general
tool for describing mathematically the visual abilities that involve perceptual groupings of
visual primitives closer to the lower and middle levels of perception. These are analogous to
the ability that humans have to, presumably preattentively, acquire sensations that capture
fundamental and basic geometric arrangements of image elements in a reflexive manner.

Briefly, the notion of a grouping field is analogous to force fields in nature. When a visual
feature, due to its size, shape, or other property induces a perceptual grouping with other
features in the field of view, we say that a grouping field exists around it. Conversely, any
visual feature in the field of view generates a grouping field which is a function of the feature
properties and can be influenced by the task at hand.

We believe that grouping fields will be useful in dealing with many of the problems
pointed out in previous work by [25, 26, 27, 55, 60] and others, that attempted to derive
computational approaches to perceptual organization abilities.

The combinatorial explosions that arise in attempting to establish relationships among
low level features purely on the basis of attribute processing is a major problem. For pho-
tointerpretation tasks, at least, it seems that the way to avoid this is to explore the generality
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aspects top-down, that is, by describing what we want, say detect piers and ships, and with
our own experienced knowledge of piers and ships, generate a task description that includes
the perception landmarks (first, detect border between land and water region, then detect
pier areas, next detect ships in the neighborhood of pier areas, last identify ships).

2.2.2 AN EXAMPLE: ANALYSIS OF HARBOR COMPLEXES

In analyzing a harbor complex we want to be able to describe the buildings in the port
facility, the transportation network around the facilities, and of course the pier areas and
the ships in the area. In our example we concentrate on the piers and ships and the grouping
fields and grouping operations that lead to the detection of the pier areas. We then briefly
discuss ship detection and classification.

What do we need to know about port and harbor facilities to detect the piers and de-
scribe the ships? That the planning and design of port and harbor facilities is strongly
dependent on the characteristics of the ships to be served and the type of cargo to be han-
dled [61]. To eventually describe the scene completely we would need information about the
ships: Main dimensions (length, beam, draft), cargo-carrying capacity, cargo-handling gear,
types of cargo units, shape, hull strength and motion characteristics, mooring equipment,
maneuverability, and so on.

To detect only the pier areas (where later we look for ships) we only need the upper
bounds on ship dimensions and the image resolution. These parameters are easily available
a-priori and chiefly determine the extent and strength of the grouping fields associated with
the features. Let us define some grouping classes useful for this task:

" Proximity-0D (PxOD): Groups nearby features without regard for the dimensions of
the features. Each feature, whether a dot, a line, a ship, or another suitable group,
generates a grouping field about its center of mass. The extent of the field (typically,
circularly symetric) is determined by the field of view or by the task as a function of
image resolution. Intersecting fields form a group with the same extent and a new
center of mass. The strength of the field is proportional to the "mass" (a function of
the complexity of the feature), and inversely proportional to the square of the distance
from the feature's center of mass. Values are scaled according to resolution so that the
same two features at two different resolutions attract each other with the same force.

" Proximity-ID (PxlD): Groups nearby features where a 1D attribute is dominant and
can be used to constrain membership. The strength of the field in this case would be
proportional to, and a function of the attribute.

" Proximity-ND (PxND): Groups nearby features with ND attributes. Each attribute
requires one layer.

* Parallelism with overlap (PlwO): Groups features that are parallel with respect to their
dominant orientations. Each allowed orientation determines a layer where the fields
of each feature having that orientation is active. For each orientation, intersecting
fields give all the features parallel to a given feature. The fields themselves have
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(a) Image (b) Segments and Apars

Figure 18: U.S. Navy Facility (512x512 image)

an elliptical shape with its minor axis equivalent to the length of the feature in the
dominant orientation, and its major axis equivalent to the extent of the field of view
or, constrained by the task. Note that allowing for angle tolerances is equivalent to
the union of fields across field layers.

" Parallelism with no overlap (PlwnO): The same as above with circularly symmetric
fields.

" Collinearity-OD (GoOD): Groups three or more features without regard for the spatial
extent of the feature. Any two of the three features determine the extent of the grouping
field, typically an ellipse with high eccentricity, centered about the center of mass of
the feature. The eccentricity determines the allowed tolerance in collinearity, and the
extent of the field is equivalent to the extent of the field of view. The orientation of
the two selected features determines a layer for field intersection. The steps in a ladder
have GoOD.

* Collinearity-iD (ColD): Groups two or more features with respect to their dominant
orientation. Each feature determines the extent its GF, also an ellipse with high
eccentricity. The eccentricity determines the allowed tolerance in collinearity, and the
extent of the field is equivalent to the extent of the field of view, or constrained by the
task at hand. The orientation of each feature determines a layer for field intersection.
The fragments of an airport runway have ColD.

Let us now apply two of these definitions to our pier example. Figure 18(a) shows an
image of a portion of the U.S. Navy facilities in San Diego. We expect to see mostly military
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ships that may require long term docking, thus allowing for double or triple docking. We
know the image resolution and the approximate ship dimensions, thus we know the minimum
size of the piers. The following gives the levels of the desired task:

0: Analyze Harbor Scone.
1: Detect and classify buildings.
1: Detect and classify access roads.
1: Detect and classify ships.
2: Detect ships.
2: Locate ship repair/construction areas.
3: Locate ships.
4: Classify ships.

2: Locate Pier areas.
3: Locate boundary between land and water.
3: Locate ''land'' structures in water.
3: Detect pier areas.
3: Locate ships.
4: Classify ships.

3: Describe ships
2: Describe piers.

1: Describe piers and ships by class.
0: Describe harbor scene.

We now describe the task at level 2, Locate Pier Areas:

Locate Boundary between Land and Water: We detect the boundary between land
and water regions automatically using a region-based segmentation procedure [38]. In this
example we arbitrarily selected the largest region to represent the water region. Next we
approximate these boundary by piecewise linear segments (thick lines in fig. 18(b)) using
LINEAR [36].

Locate "land" Structures in Water: Contrary to many natural structures on the
shores, man-made structures appear highly geometric. We expect that most piers appear as
linear structures attached to the shore, and surrounded by water. Their linearity indicates
that the piers or portions of piers should be characterized by anti-parallel pairs of segments
of opposing contrast [36], or apars for short. Ships are typically docked parallel and adjacent
to the piers. We then expect that most of the line segments corresponding to sides of piers,
sides of ships, shadows, and so on in the neighborhood of the piers would result in many
apars. The constraint on the range of separations between pair of segments (equivalent to
the width of the resulting apar) is a function of image resolution and ship dimensions. The
apars in our example are shown as thin lines in fig. 18(b) obtained using LINEAR.

Detect Pier Areas: The apars are easily classified into land or water using the detected
water region. Subsequent processing operates on 'he land apars only. Next, we apply PxOD
grouping. The extent of the fields is task-dependent and does not have to be precisely
determined. At the resolution in our example (about 8 meters per pixel), the field's radii is
roughly equivalent to a pier width plus the width of three destroyers on both sides of the
piers, or about 16 pixels.
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(a) PxOD - Proximity grouping (b) Selected proximity groups

Figure 19: Selected proximity groups

These fields (fig. 19(a)) occupy a single layer. Each field intersection operation shifts
the center of mass of the group, however the field associated with the group has the same
properties as the individual apar fields. We then select the groups so that apar membership
is exclusive by extracting the groups in order of decreasing mass (number of apars). The
resulting groups (fields) represent potential pier fragments (fig. 19(b).)

At any resolution, we expect that the lines are fragmented and incomplete, due to in-
efficiency in the line detection process or real structures in the image. Thus, we expect
that the resulting groups represent pier fragments rather than complete pier areas. Since we
expect the pier sections to be straight, the next step calls for collinearity grouping to join
possible fragmented pier areas. Note that the groups in fig. 19(b) are easily perceived as
being collinear.

We choose to represent the groups of apars by apars as well, having a length and width
equal to the diameter of the final field. The orientation of the apar is given by the dominant
orientation (the largest peak in the length-weighted histogram of the orientation) of the
apars in the group (see the arrows in fig 20(a).)

Next we apply ColD to the pier area fragments. The longest piers are about three times
the length of a destroyer thus we allow the extent of the elliptic fields (see fig. 2 0(a)) to
be up to three times the apars, and have a width equivalent to the apar width (or group
radius).

The result of the grouping is then represented, again by apars, which in turn represent
potential pier areas (see fig. 20(b)). These are described by their approximate length and
position, and are used to extract image windows from a high resolution image of the scene
where we look for ships.
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(a) Potential Fragments and ColD fields (b) Detected Pier Area

Figure 20: Pier Detection Fragments and Low Resolution Results

Locate ships: We have performed prehminary cxpcriments to detect the ships in high
resolution windows using the same matching technique that we used to detect aircraft [54].
One of these windows is shown in figure 21a with the adaptively smoothed [8] boundaries
shown in figure 21b. Three coarse-to-fine models of a single and a double destroyer group
were matched against these edges to obtain the detected ships in figures 21c,d.

Classify ships: We consider our ship detection results preliminary. The simplicity of the
ship's shape is a disadvantage for the matching technique. The double ship configurations
are easier to match for the same reason. For ship identification better ship boundaries are
required. We plan to apply a technique for boundary refinement using B-snakes [30]. Tile
matching technique can then be applied with finer models for more accurate ship classifica-
tion. Other alternatives for ship detection include stereo processing of these high resolution
windows with an area/feature based technique [9], also followed by boundary refinement and
2D matching.

2.3 PARALLEL PROCESSING

As shown in the previous sections, we are making good progress in solving some difficult im-
age understanding problems. However, one major obstacle remains in applying our methods
in practice, namely that of processing speed. Our algorithms, when run on a conventional
serial computer (such as a Symbolics 3600 or a Sun 3 or 4 series) can take several minutes
or even hours to complete. We believe that this long execution time and its related compu-
tational complexity are inherent in the solution to the problems and hence we must devise
ways of applying additional computing power to our algorithms. This naturally leads to the
study of parallel computation.
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(c) Single ship match (d) Double ship match

Figure 21: Fast 2D model-based matcher applied to edges of ships

There has been significant recent activity in applying parallel processing to image un-
derstanding problems. However, much of this activity focuses on numerical computations
applied to iconic data structures. While such computations are necessary and useful, they
are not nearly sufficient. Our approach to image understanding is firmly based on use of
symbolic representations and symbolic computations. Parallelizing such computations is sig-
nificantly more complex than for iconic, numerical computations and therefore, is the focus
of our parallel processing research.

Our work has included both the implementation of known computer vision algorithms
on a parallel machine (The Connection Machine [17], which is a Single Instruction Multiple
Data (SIMD) machine having between 16k and 64k processors), and the analysis of general
techniques for implementing image understanding algorithms on parallel architectures.

Several algorithms have been implemented to evaluate the capabilities of the parallel
system. The first is Adaptive Smoothing, which is an edge preserving image smoothing
algorithm in which we iteratively convolve the image with a mask whose coefficients reflect

24



the degree of continuity of the underlying image surface [50, 49]. With a Vax front end and
the parallel Lisp implementation, each iteration takes about 50 msecs on a 256 x 256 x 8bit
image. In order to compare the performance to the algorithm on a serial machine, we
implemented the Adaptive Smoothing on a Symbolics 3645, where it takes about 40 seconds
for each iteration. Thus the speedup we get from the Connection Machine over the serial
implementation is about three orders of magnitude. Using the adaptive smoothing system in
a multiple scale stereo matching system based on Drumheller and Poggio [11] greatly reduces
the number of possible matches at each scale and obtains a dense disparity map at fine scale.

In our work on parallel techniques for image understanding we have studied several stor-
age and data access problems arising in mapping image algorithms onto parallel machines,

parallel implementations of techniques developed by our group on hypercube and mesh based
architectures, and continued our efforts in parallel computations on reconfigurable VLSI ar-
rays and reduced meshes[1, 2]. (This work has been partially supported by AFOSR under
grant AFOSR-89-0032.) We have also studied memory access systems that achieve constant
time access to rows, columns, diagonals and subarrays using a minimum number of memory
modules [22].

We have chosen some specific and representative medium and high level image under-
standing algorithms that we have found to be of general utility and are studying their
mapping onto suitable parallel architectures. Our goal is not only to map these specific
algorithms, but also to learn how to parallelize classes of symbolic algorithms. One specific
algorithm we have focused on is a "relaxation labelling" algorithm [28]. We have found this
algorithm to be useful in a variety of tasks in our work at USC; relaxation labelling has also
been used by many other researchers elsewhere [48].

We have obtained several efficient parallel implementations of discrete relaxation tech-
niques on a class of parallel architectures [24]. Using these approaches, stereo matching and
other labeling problems can be solved. First, a faster sequential algorithm compared to tra-
ditional approaches for discrete relaxation is developed. This algorithm is then parallelized
and mapped onto a bus-connected parallel architecture. This mapping leads to a parallel
execution time of O(nm) using nm processors for consistently labeling n objects with in
labels. Two versions of this design are developed; one for special-purpose VLSI implementa-
tion and the other for general-purpose parallel architectures. The stereo matching technique
developed in [28) can then be modified to lead to an efficient parallel implementation based
on the proposed solution.

The usual approach to parallel processing is to choose a specific architecture (based on
considerations of availability as well as suitability) and then attempt to map the given algo-
rithm onto it. This often leads to complex implementations that are difficult to understand
and put a severe burden on the programmer. In recent work, we are taking an alternative
approach of using a flexible architecture where the architecture can be modified to suit the
data flow requirements of the algorithm. Flexible architectures are becoming feasible design
solutions as commercial processing elements that support parallel processing, such as the
Transputer, are becoming available. Efficient parallel implementation can be achieved while
maintaining the structure of the program much as it is for the serial implementation. That
is, parallel efficiency can be obtained while maintaining algorithm simplicity and keeping

25



the programmer burden low. We have succeeded in demonstrating this approach for the
relaxatic n algorithm; this work is described more fully in 146]. In future work, we intend to
examine more complex algorithms and complete systems with this approach.

In another project, we are studying processor-time tradeoffs. These are of fundamen-
tal importance in understanding the complexity and performance of parallel computations.
Driven by technological limitations, hardware cost, and flexibility, several schemes have been
proposed for implementing large size computations on parallel architectures of fixed-size, or
on architectures having a reduced number of processors. The major goal of such schemes
is to keep the number of processors (or the processing chip-area, if implemented in VLSI)
independent of the problem size and subject only to hardware cost, and other practical
considerations. Such considerations are particularly important for problems on digitized
images. With increasing image resolution, a processor array for a 1024 x 1024 image with
a fixed number of pixels, say 8, per processor requires more than 10' processors. Design
and implementation of such large arrays may be prohibitive, in addition to dealing with I/O
limitations, programming and testing methodologies. Furthermore, if this array is required
to handle larger size images, say images of size 2048 x 2048, then processor-time trade-offs
must be addressed again.

Direct mapping of parallel techniques from a specific organization onto a smaller version
of the same organization generally does not lead to linear processor-time trade-off. New
techniques based on combining efficient parallel and sequential algorithms must be devel-
oped. We have considered several parallel architectures with a large memory and a reduced
number of processors for parallel image computations [3, 4]. The memory size is propor-
tional to the image size. However, the number of processors can be varied over a wide range
while maintaining processor-time optimal performance. Architectures considered include
the reduced mesh of trees (RMOT), mesh-connected modules (MOM), linear arrays, two di-
mensional meshes, hypercubes, and shuffle-exchange networks. An alternate cost-effective
parallel architecture, designated window architecture, is proposed for image understanding
applications [23]. This architecture consists of a small number of processors with mesh con-
nections and a large external memory with simple processor-memory access scheme. Parallel
solutions for several image understanding problems, such as image labeling, computing im-
age transforms, computing geometric properties, image and stereo matching using high level
primitives such as line segments, have been derived on this architecture [23].
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reduce the search space effectively. A smart approach based on
Abstract some heuristics and under the assumption of fixed scale was de-

We address the problem of recognition of multiple flat scribed by Knoll and Jain [131 in their paper, which is based on
objects in a cluttered environment from an arbitrary view-
point (weak perspective). The models are acquired au- what they call feature indexed hypotheses. They take advantage
tomatically and initially approximated by polygons with of the similarities and differences between model types to group
multiple line tolerances for robustness. Groups of con- candidate models. For each feature, a list is kept of where it
secutive segments (super segments) are then Gray coded occurs in each object type. When a match is found for a feature
and entered into a hash table. This provides the essen- in an image, models are hypothesized for each object identity
tial mechanism for indexing and fast retrieval. Once the and orientation in the feature's list. Each of these hypotheses is
data base of all models is built, the recognition proceeds then tested using a template match to determine which, if any,
by segmenting the scene into a polygonal approximation;
the Gray code for each super segment retrieves model by- are correct. A system which is able to recognize models from
potheses from the hash table. Hypotheses are clustered if a data base with up to 100 models was introduced by Kalvin,
they are mutually consistent, and represent the instance Schonberg, Schwartz and Sharir [12]. They assume fixed scale
of a model. Finally, the estimate of the transformation is and concentrate their representation effort on the segmentation
refined. This methodology allows us to recognize models of the boundary in boundary parts, which are likely to belong to
in the presence of noise, occlusion, scale, re ' tion, trans- one model, and which they call footprints. These footprints are
lation and weak perspective. Unlike ...ot f the current used to match a scene against a data base with a hashing scheme.
systems, its complexity grows as O(kN) when N is the They call this indexing mechanism geometric hashing. Another
number of models, and k < 1. method based on indexing was suggested by Lambdan, Schwartz

and Wolfson [14, 15]. They have developed an algorithm which

1 Introduction deals successfully with the combinatorial explosion of possible
interpretations of a model by using the scene coordinates as an

Object recognition involves identifying a correspondence between index for a voting scheme. This method works fast for one model
part of an image and a particular view of a known object. This and not too many additional scene points which do not belong
requires matching the image against stored object models to de- to the model in the scene. But if we have to deal with multiple
termine if any of the models could produce a portion of the image. models and cluttered scenes with a lot of extra points, or when
In the last twenty years several systems have been developed to a model is not in the scene the system suffers from ineffective
deal with the problem of model-based object recognition in a search.
scene. Most of 6hese systems try to solve the matching task By reviewing the object recognition systems of the past we
through tree search, searching through all promising matches, encounter the following problems, formulated as questions:
There had been numerous attempts to deal with the complexity Generality Will the system work for any object, or do we have
issue which, in most of these attempts, makes the recognition to use different methods for smooth or convex objects?
slow and ineffective. Often the focus of the research is directed Stability Can the system recognize an object segmented differ-
towards the reduced task of recognizing only one or two objects ently (because of scale, noise, quantization, ... )?
in a scene. But even then, the computational complexity is ex- Robustness Will it work on real data, with noise and quanti-
ponential for nontrivial scenes. zation?

Grimson and Lozano Pirez [7, 8] describe a system which is Viewpoint Can the system handle a wide range of viewpoints
able to recognize objects from sparse scene data. If there are m and Can the e into account translation, rotation, scale
known objects with ni segments each and s scene segments, there and tere taei
are F_' n)2 combinations of pairings between scene and model andtperspece?
segments. The system tests these combinations using a con- Multiple Instances Can we deal with mltiple instances of a

strained tree search. The number of combinations that need to be G od Wr aseer
tested grows rapidly with object complexity. To meet the com- Good Worst Case Performance Can the system stillbe fast
plexity challenge, Ullman and Huttenlocher [10, 11] suggested in when no model is in the scene?
their alignment approach the use of a minimal amount of infor- Performance What are the effects of model size, scene size and
mation with highly descriptive features. They were the first to number of models on the performance?
offer a solution with polynomial time complexity. The model is We address these issues in our system.
first aligned with an image using a small number of pairs of model The paper is organized as follows. In Section 2 we talk about
and image features, and then the aligned model is compared di- super segments and their representation. Section 3 focuses on the
rectly against the image by mapping the object model into image representation of models and scenes, their matching, the verifi-
coordinates. Another way to avoid explosion of complexity due cation process and a discussion of the complexity of our system.
to extensive search is a good indexing mechanism. Indexing can In Section 4 we present some examples.

'This research was supported in part by DARPA contract F33615-87-C-
1436 and an AT&T grant.
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2 Representation 2.2 Gray Coding

2.1 Basic Idea One of our goals is to devise a robust representation to help re-
duce the problems associated with low level segmentation. Con-

Our representation of a model or a scene is based on a polygonal nell and Brady 13] used the Cray code [9] approach to get a
approximation. We are not dependent of any feature detection difference metric for a learning system designed to learn object
algorithm and we do not handle explicit distinguished points like shapes. They developed a technique to compare different data
corners or inflection points. Our opinion is that curvature is the types, and this is used in our approach. Gray coding is a gen-
most important feature of a general curve. It is invariant with eralized quantization scheme. It is not the only scheme for our
regard to scale, rotation and translation. When we include some method to work; other quantizations will have the same perfor-
redundancy, we can also add the weak perspective to that list. mance. However Gray coding provides a clean way of quanti-
By using a polygonal approximation we lose most of the curva- zation and the computation of a difference without hiding the
ture information, but we keep parts of this information in the mechanisms in the system. The use of the Gray code (see Fig-
angles of consecutive line segments (see also Lowe's SCERPO ure 3 (a)) is important in digital communication. The loss of
system [16]). Obviously, there is not a unique polygonal approxi- one bit information in a Gray coded number changes the value
mation for a curve (see for example Figure 1). Therefore, for the it represents by only one. In this way, the semantic difference

(difference between the values) corresponds to the syntactic dif-
ference (the Hamming distance). This property makes it useful
for all applications where redundancy is desirable. In digital com-
munication, this property means that the effect of losing any one

L bit is uniformly noncatastrophic. In computer vision, this prop-
(a) (b) (c) erty can help compare slightly different representations. First we

code value 1 2 3 4 5 6 7 8 set

Figure 1: Elephant Shape (a) and Different Polygonal Approxi- 0000 0
tmations (b) and (c) 0001 1 1 predicate layer

0011 2
0010 3 0 1 1 2 predcate layer
0110 4

purpose of robustness, we use several polygonal approximations 0 11 5 3 pedcate layer
with different line fitting tolerances. Since we want to handle oc- J 4 piedrcale layer
clusion, we do not expect to obtain complete boundaries in our
scenes, but only portions of them. On the other hand, individ- (a) (b)
ual segments are too local to be useful as matching primitives.
Grouping a fixed number of adjacent segments provides us with
our basic features, the super segments. In accordance to Figure 2, A , V set of super segments

1 0 180 angle

S1--. "" 1. predicate layer
Figur 3e:ror v I I U J 7 2. predcate layer

s\7 
;Z4. 

predicate layer
_ segmngrnnt 2 super segment I wit 95 degee

men!eent 4 super segment 2 with 110 degree M

/egment 1,. loation Figure 3: Gray Cole (a), Gray Code for a Set (b), Gray Code

for Angles (c)

Figure 2: Super Segment have to generalize the Gray code. To encode intervals, which may
either be continuous or discrete, we can use overlapping ranges.
As illustrated in Figure 3 (b) we create a set of overlapping bi-

super segments are characterized by their cardinality (number of nary predicates A through K whose range cover the interval. This
segments), angles (between consecutive segments), and the ar. means that a particular value is encoded by the set of intervals
clength (sum of the segment lengths). In addition we define the it is in: 2 is encoded as Gray(2) = (A, C, F, J}, 4 is encoded
location as the middle vertex of a super segment (we only use as Gray(4) = (A, D, G, J}, and 7 is encoded as Gray(7) =
super segments of even cardinality), the orientation (the vector {B, D, H, K}. We define a difference metric as A(i,j) = number
between the predecessor and the successor of the middle vertex), of different predicates between the Gray codes of i and j. There-
the normal vector (the vector normal to the orientation vector), fore we get a maximum distance A,. = number of predicate
and the second moment ratio. The second moment is defined as layers (in our example As = 4). The difference between 2 and
the ellipse that can be computed from the covariance matrix of 4 is A(2,4) = 2 and the difference between 2 and 7 is A(2, 7) = 4.
the vertices. The two eigenvectors of the covariance matrix de- The chosen Gray coding in our example is not the only possible
fine the axis of the ellipse. We use the eccentricity (ratio of the one. By changing the range of the predicates or by adding new
lengths of the two axis) as a feature (the second moment ratio) predicates, we can refine the resolution of our representation.
for super segments. Figure 3 (c) shows the Gray coding of super segments of cardi-

As mentioned before, we are mainly interested in the curva- nality two. They consist of two segments and one angle between
ture information implicitly captured by the super segment an- them. The angle can lie in a range [-180°, +1801 and is used
gles. That is the reason why we use them to encode a super to Gray code the super segments. For example the Gray code of
segment. To avoid establishing matches between super segments super segment I is encoded as (A, C, F, J}, and the Gray code of
which have the same angles but totally different shapes, we add super segment 2 is encoded as (A, C, G, J}. The difference of I
the measure of eccentricity (second moment ratio) to our coding represents our intuitive feeling that the two super segments are
scheme, rather similar.

Gray coding can be easily extended to higher dimensions. The
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super segment in Figure 2 can be encoded by taking all the an. potheses. Next, we divide these n hypotheses H = {hl, h2 ,...h }
gles, encoding each one separately (with a different Gray code according to which model the model super segment of the hy-
table for disjunct predicates) and keeping all the predicates in pothesis belongs to. We store these into a correspondence ta-
one set. In this example, the Gray code of the super segment ble where we have the models TN as keys and the ih hypotheses
is the set (Gray(a,),Gray(a2),GraY(as)) = PII,P12,...PJ'], Hi {h', h i

,) (with Hi H) as entries (see Figure 6). The
[P2 1, P2 2, .- P 2.], [P 3s,P 32 ,...Ps] where Pij are the predicates = { h.... ith H

an m-hypotheses [correspondence Constraints
Recognition [sskmssi (-h) table dwsha.cennl

3.1 Object Representation It Sbl (=h2) : e- hi, h-- model . ditechon

As mentioned in the previous sections, we want to represent ou S I " h
con

model (or scene) with super segments. Therefore we first apply 0 m h2':h
an edge detection algorithm on the image with the model (or 0

scene). We use the Canny edge detector [4] for grey level images
and a simple boundary tracer for binary images. The resulting
edgels are further processed with a line fitting algorithm to com-
pute the polygonal approximations. Connected linear segments Transformationclustertable

form chains of adjacent segments. The segment chains provide T: m sdenM-- sene LS o d- (h . h6) deh

the super segments by grouping a fixed number of adjacent seg- model -rejected

ments. We then take all the super segments, encode them and m rt_,_ __.___

take the resulting predicates as a key for a hash table, where we
record the super segment as an entry (see Figure 4). That means,
that every super segment is stored under the predicates, which Figure 6: Verification of Hypotheses
represent the intervals, in which the angles (or other attributes)
lie. next step is the formation of consistent clusters. For every model

,G "Z, we have to check which hypotheses h and h' with h' -- i,
rg hash table are consistent with each other. We do not check every hypothe-
i~a F sis against every other, instead, we adopt the criterion that three

_i consistent hypotheses are sufficient to instantiate the model in

c -l Gray(mssi) (. the scene. If we have three consistent hypotheses C = {h_,, h,
MCCS with C C Hi for one model mi, we examine the remaining hy-

d I I potheses in Hi \ C and collect those, that are consistent with
modi 1at least one of the selected three in C. When we have found
S.sf one instance, represented by I = C U F, with F the additional

found consistent hypotheses, we try to find more instances in the
remaining hypotheses Hi \ I.

Figure 4: Representation of a Model But what is meant by consistency? We use the powerful con-
straints (distance, angle, and direction) introduced by Grimson

and Lozano-P~rez [7, 8] to prune efficiently the interpretation
trees, and build our clusters. In the two dimensional domain,

3.2 Matching these three constraints define the attitude of one feature rela-

By using indexing for the matching process, we only select a small tively to another since it specifies the three degrees of freedom
set of candidate models that are likely to be present in the im- (two translational and one rotational).
age. We assume that most objects in our data base (hash table) After we group the hypotheses into clusters which represent in-
are redundantly Qecified by their super segments. The scene is stances of models, we can compute the transformation from the
preprocessed as explained in Section 3.1 to generate all the su- model coordinates to the scene coordinates by applying a least
per segments. These are Gray coded and the predicates are used squares calculation on all the matching super segments. Because
to retrieve the matching hypotheses between the super segments of noise, we get in general a good first guess for the transforma-
of model and scene (see Figure 5). Two super segments s, and tion but not an exact match. A second least squares match on

corresponding comers or segments can refine the result. This is
similar to the refinement procedures used by Lambdan 114, 15],

hash able h oteses Huttenlocher [10, 11), and Mundy [171.
sY 3.4 Complexity Analysis

-.c----- -ay(s - By addressing the complexity issue, we can study the behavior of

Gray(SSk)/ayS . II- I ----. l the system when we have to deal with large data bases, meaning
ss ss more than one or two models. In order to simplify the calcula-

tions, we make the assumptions that every model has the same
scene SSk  number of super segments and that the entries are equally dis-

tributed over the hash table. When we view q (the number of

super segments in the scene) as constant, we can proof that the

Figure 5: Matching of Model(s) with Scene overall cost is

s2 match if A(sI, 32) = 0. Retrieving matches with larger Gray Orecognize = Omatcs + 0 .i, = (q) + (M) = 0(M),

distance is possible by substitution of predicates with neighbor where M is the number of models in the data base. It is inter-
predicates. esting to note that the verification is the step which contributes

to the linear cost, whereas the retrieval time is constant. The
3.3 Verification question remains: what is the difference between our approach

We compute all possible matches for the super segments of the and a recognition system that tries to recognize one model after
scene with the model super segments to generate multiple hy- the other and therefore also has the cost of O(Af)? The main
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difference lies in the slopo of the linear cost function, dependent of the airplane into the hash table it has the size of 98 entries
on the occurrence of a model in the scene or its absence. In our (= 9 % of maximum). The recognition time (not including rep-
results (Section 4.4) the cost for detecting the absence of a model resentation generation time) for the four planes in the scene is
is less than 10% of the cost for the detection of the occurrence. 8.33 seconds. By looking. at Table I it is obvious that the time to

verify is relatively longer than in the animal example. The reason
4 Examples and Performance is that we have four instances whose hypotheses all had the sarae
4.1 Parameters for Gray Coding model index. To avoid complexity problems we include an inter-
To encode the super segments, Cond tmediate indexing step. Based on the fact that super segments

we need to choose the parameters which belong to one airplane in the scene have similar transfor-
for the Gray coding. What are the guidelines for setting the mation parameters, we use the translational part to preindex the
values for the cardinality of the super segments and the interval hypotheses.
size of the Gray coding?

The cardinality issue reduces to the question of how local or 4.4 Large Data Base
global our representation should be. The higher the cardinality, In this example we direct our attention to a large data base. We
the more global and descriptive is the representation, but we have create 200 models by randomly overlapping more than 3 and less
to rely on the existence of long scene super segments belonging than 7 random triangles. Our models consist, in the average, of
to one model. The lower the cardinality, the more local the de- 48 super segments. We set the super segment cardinality to 6.
scription and the more false matches are retrieved. The answer As the key we take the Gray code of all angles and the second
lies in the scene: moment ratio. Each angle is encoded with an interval of 600
complex shapes We should use super segments of higher car- which corresponds to 6 intervals. For the ratio of the second

dinality (like the animal shapes in Figure 7). moment we take 5 intervals. Therefore the maximum matching
simple shapes The use of super segments with lower cardinal- hash table size is 5 * 6' = 38880 entries. Our scene is generated

ity is promising for good recognition performance (like the by taking three models out of the 200. We rotate and ove, lap
aircraft shapes in Figure 8). them artificially. Then we let the system recognize the scene with

The best answer to the question is the use of a multi cardinality different data base sizes. The results are shown in the graphs in

representation, where we prefer matclies of super segments with Figure 9. There are several interesting observations:
higher cardinality to super segments with lower cardinality. In * The hash table does not grow linearly. There is a certain
our implementation, however, we set the cardinality to a fixed saturation effect. The cause is the nonequal distribution of
value, the (encoded) super segments in the hash table.

The interval size of the Gray coding is the measurement of how * The three models in the scene were the first which we put
redundant the representation is. In the scenes with the animal into the data base. Therefore the recognition time increases
shapes (Figure 7) we used a relatively small interval size of 30'. very fast for the first three models. The slope is approxi-
For the grey level image with the aircraft scene (Figure 8) in mately 1.3 seconds per model.
which we have to handle noisy edges, we use a larger interval size * Adding more models to the database has little effect on the
of 600. performance. The recognition time curve has in its linear

range the slope of approximately 0.1 seconds per model.
4.2 Animal Shapes The saturation effect results in an increasing steepness. The
We have tested our system with a library of twelve animal shapes cause is the increase of the average number of hypotheses
(Figure 7 (a)). We obtained them from coarsely digitized binary per hash table entry.
images. We look for objects with a large variety of features. We 5 Conclusion and Future Research
want simple objects, complex objects, and objects with a lot of
similarities. We set the super segment cardinality to 6. As the The results in the previous section illustrate the fact that index-
key for our matching we take the Gray code of the angles of the ing is a powerful tool. Combined with the redundant representa-
super segment and the Gray code of the ratio of the second mo- tion of the Gray code it can handle the uncertainty of segmenta-
ment of the vertices of the super segment. Each angle is encoded tion, and is also fast. Our basic feature, super segments, provide
with an interval Qf 300, which corresponds to 12 intervals. For us with enough information to decide whether a model might be
the ratio of the second moment we take 5 intervals. Therefore the in an image scene or not. We believe that this approach could
maximum matching hash table size is 5 * 126 : 15 . 106 entries, have applications in other fields of Computer Vision.
By putting the shapes of the twelve animals into the hash table At the moment we extend the Gray coding idea to three dimen-
it has a size of 1198 entries (t 0.01 % of maximum). The animal sional object recognition from three dimensional data. We have
scene was taken by printing the three animals, enlarging them, very promising results. Our goal is to be able to recognize com-
and cutting them out. Finally we put the three silhouettes on plex three dimensional objects from two dimensional grey value
a light table and took a picture with a video camera. The cam- images. The application of the developed method to real im-
era had an angle of about 200 to the normal of the light table. agery must address the difficulties of occlusion, diffuse shadows
This procedure guaranteed scaling, occlusion, rotation, transla- and different lighting conditions.
tion, weak perspective, and noise (thanks to our high skills in We are also currently investigating the possibility of parallel
cutting out - look at the ears of the giraffe). The recognition implementation. The data structure of a hash table is suitable
time (not including representation generation time) for the scene for parallel processing. Therefore we could perform the matching
(see Figure 7 (b) and (c)) is 4.1 seconds on a Symbolics 3675 lisp step in parallel. Combined with a constraint satisfaction mod-
machine. ule to perform the verification task, we dare to expect object

4.3 Aircraft Shapes recognition results in real time.
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Abstract part of another range image with a particular view of
We present an approach for the recognition of multiple a known object. This requires the ability to match one

three dimensional object models from three dimensional surface patch of one range image against a surface patch
scene data. We are addressing the problem in a realis- of another range image. The question is: "How can we
tic environment: the viewpoint is arbitrary, the objects represent a surface patch so that it can me matched in
vary widely in complexity, and we make no assumptions an efficient way?"
about the structure of the surface. We come up with a Reviewing the systems of the past, no system (known
data structure which we call a splash. A splash consists
of circular groupings of surface normals. Such a splash to the authors) was able to represent, match, and rec-
captures structural surface properties in a way that we ognize general three dimensional objects. Most object
can represent them by sets of two dimensional structures recognition systems to date either rely on exact, CAD-
called super segments. Encoded super segments provide like models, or make restrictive assumptions on the pos-
the mechanism for fast matching. The acquisition of the sible shape of the surface patches.
three dimensional models is performed automatically by
computing splashes in highly structured areas of the ob- 1.1 Previous Work
jects. For every model all splashes are mapped on super
segments. The encoded super segments are recorded in Grimson and Lozano Pirez [8, 9] describe a system which
a data base. The scene is screened for highly structured is able to recognize objects from sparse scene data. They
areas. In these areas splashes are computed and mapped exploit geometric constraints to prune the search tree cf
on super segments. The encoded super segments retrieve all possible matches between scene data and model data.
hypotheses from the data base. Clusters of mutually con- Still, the number of combinations that need to be tested
sistent hypotheses represent instances of models. The lo- grows rapidly with object complexity. If a consistent
cation of the instance in the scene is found by applying transformation is found, the object is recognized.
a least squares match on all corresponding points. We
present results with our current system TOSS (Three di- Bhanu [1) presents a 3D scene analysis system for the
mensional Object recognition based on Super Segments) shape matching of real world 3D objects. Object models
and discuss further extensions. are constructed using multiple-view range images. The

object is represented as a set of planar faces approxi-
1 Introduction mated by polygons. Shape matching is performed by

matching the face description of an unknown view with
In this paper we present an object recognition system the stored model using a relaxation-based scheme called
which is able to match general three dimensional objects stochastic face labeling.
in an efficient way. By using the words "three dinien- Horaud and Bolles [2] present the 3DPO system for
sional" we talk about models and scenes having a three recognizing and locating 3D parts in range data. The
dimensional representation. By talking about "general model consists of two parts: an augmented CAD model
objects" we do not make any assumptions about the and a feature classification network. The model objects
shape of the objects. Matching and recognizing in an are represented by a tree-like network such that each
"efficient way" is based on a fast indexing and retrieval feature contains a pointer to each instance in the CAD
system that has a complexity which grows as O(kN) models. A local-feature-focus method is used for the
when N is the number of models, and k < 1. matching process.

Representing a three dimensional object is either pos- Faugeras and Hebert [7] developed a system to recog-
sible by using a surface or a volumetric description. Vol- nize and locate rigid objects in 3D space. Model objects
umetric descriptions from a single view require a diffi- are represented in terms of linear features such as points,
cult inference step to compensate for the unseen part, so lines, and planes. Range images are used as input. At
we will use descriptions based on visible surface instead, first, possible pairings between model and scene features
The task of object recognition involves identifying a cor- are established, the transformation is estimated using
respondence between a part of one range image and a quaternions. Then, further matches are predicted and

*This research was supported in part by DARPA contract verified by the rigidity constraints.
F33615-87-C-1436 and an AT&T grant. Ikeuchi [10] developed a method for object recognition
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in bin-picking tasks. The models consist of surface in- 1.3 Plan
ertia, surface relationship, surface shape, edge relation- The paper is organized as follows: Section 2 introduces
ship, extended Gaussian image, and surface characterstic our basic feature, the splash. It consists of a group of
distribution. Since this system is mainly designed for the surface normals which are mapped on a two dimensional
task of bin-picking, only one type of object, which is the structure. We show how we can use our two dimensional
same one as in the model, appears in the scene. approach to represent these two dimensional structures

Fan [6, 5] presents a system which takes range images in a way that allows us to match the three dimensional
as input and automatically produces a symbolic descrip- splashes. Section 3 focuses on the representation of a
tion of the objects in the scene in terms of their visi- general three dimensional object, the matching and the
ble surface patches. This segmented representation may verification process. In Section 4 we show results of our
be viewed as a graph whose nodes capture information current implementation.
about the individual surface patches and whose links rep-
resent the relationships between them. The matching of 2 The Splash
a scene with a model is based on the comparison of the
two graphs. Extending the two dimensional basic feature of the super

With 3D-POLY Chen and Kak [4] developed a system segment to three dimensions to obtain a feature which
in which they present a novel approach of organizing the represents surfaces is awkward: the polygonal approxi-
feature data for three dimensional objects. They present mation of a two dimensional boundary has a property
a data structure which they call feature sphere. The which is crucial for the super segment idea, but which
matching and verification step is based on comparing is not extendable to higher dimensions: the well defined
spatial relationships of special feature sets. order of the neighborhood of a linear segment. Every

The closest work to our approach was done by Radack segment on a two dimensional polygon has two adja-
and Badler [11]. They introduce a new surface represen- cent neighbor segments. Based on this fact, super seg-
tation called distance profile. These profiles are used for ments can be generated by grouping adjacent segments
the matching process. This method reduces the match- together. In three dimensions this ordered neighborhood
ing of three dimensional surfaces to the matching of two property does not exist. Linear or other segmentations
dimensional curves. They use points with high curvature of a surface (or volume) lead in general to patches which
to position the centers of the distance profiles. can have any number and order of neighbor patches.

Many systems were developed which based on differ- This is a reason why we decided not to go the path of a
ent assumptions about shape, such as polygonal shapes, linear (or higher order) surface segmentation to obtain a
solids of revolution or generalized cylinders. In contrast, representation for matching and recognition. What are
we believe that our proposed system TOSS (Three di- the requirements that a representation for general three
mensional Object recognition based on Super Segments) dimensional objects has to meet? We want the represen-
is able to recognize rigid objects, whose shapes are not tation to be
constrained by any simplifying assumptions. Our algo- 1. translation invariant,
rithm uses a representation, which is designed to capture
the structure (curvature) of a surface patch and allows 2. rotation invariant,
fast matching. 3. general, in that we do not have to make any assump-

tions about the shape of the object,1.2 Our Previous Work
4. local enough, so that we can handle occlusion,

This paper describes a continuation of our early work [12]

which addresses the problem of recognition of multiple 5. robust enough, so that we can handle noise.

flat objects in a cluttered environment from an arbitrary In the following we will use lower case to describe vec-
viewpoint (weak perspective). The models are acquired tors (n. p... ), and upper case to describe coordinate
automatically and initially approximated by polygons frames (N, 0...). The basic feature for representing a
with multiple line tolerances for robustness. Groups of general surface patch is the splash. The name originates
consecutive linear segments (super segments) are then from the famous picture of Professor Edgerton (MIT),
quantized with a Gray code and entered into a hash ta- showing a milk drop falling into milk (see Figure 1 (a)).
ble. This provides the essential mechanism for indexing This picture bears a resemblance to the normals in our
and fast retrieval. Once the data base of all models is basic feature. A splash is best described by Figure 1 (b).
built, the recognition proceeds by segmenting the scene At a given location p we determine the surface normal n.
into a polygonal approximation; the Gray code for each We call this normal the reference normal of a splash. A
super segment retrieves model hypotheses from the hash circular slice around n with the surface radius p is com-
table. Hypotheses are clustered if they are mutually puted. Starting at an arbitrary point on this surface
consistent, and represent the instance of a model. Fi- circle, a surface normal is determined at every point on
nally, the estimate of the transformation is refined. This the circle. In practical we walk around the reference nor-
methodology allows us to recognize models in the pres- mal with a 60 angle (typically 10 < 60 < 150) and obtain
ence of noise, occlusion, scale, rotation, translation and a set of sample points on the surface circle. The normal
weak perspective. Unlike most of the current systems, at the angle 0 is called no. A super splash is composed of
its complexity grows as O(kN) when N is the number splashes with different surface radii pi with ie{ .... in},
of models, and k < 1. where m is the number of splashes in a super splash.
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two angles ' e and 'be.

We compute a normal in our system by approximating 'cke = angle(n, n 0 )
the environment of a normal with triangles of small sizes.
Every triangle votes for a triangle normal. The average tbo = angle(no= , ne).
of the three closest triangle normals is the surface nor- For every sample point of a splash we obtain such a tuple.
ma]. This is a very rough method, but the results were Drawing a mapping for and 'b with respect to 0 results
always good enough for our approach. in two mappings as in Figure 3(a). These two mappings

The frame N8 (see Figure 2 (a)) is defined in the fol-
lowing way:

1. ThSurface nomlni hezai..

2. At every location of no, the location of the reference .. .normal p and the tip of the reference normal n + p fI
describe a plane E. The z axis is defined as the
vector which is perpendicular to n and lies in the

plane E. Furthermore the angle between the z axis (a) 4 and 'b Mapping with (b) Polygonal Approxima-
and a vector r which is defined between the origin respect to 8 tion of the 4' and 'b Map-
of Frame N0 and the location of n has to be in the pings

interval [-90 ° , 900].
3. The yaxis is perpendicular to the x and the:t axis Figure 3: Mapping Tuple

in a right handed coordinate system.
This framnghete property that the z -plane always have the following properties:

approximates the tangent plane of the surface in p. We 1. Dependent on where no is, the mappings are shifted
represent no in spherical coordinates: we compute the along the axis.
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2. The variation of the curve represents the structural the polygons) are periodic (00 = 3600). For the
change in the surface environment around the ref- purpose of robustness we use multiple line fitting
erence normal n. tolerances. Therefore we get a set of polygons for

(a) For a splash on a sphere or plane, the mappings every mapping.

are constant. 3. For every polygonal approximation we compute a
(b) A highly creased surface results in a curved set super segment. The start of the super segment is

of mappings. defined at its global maximum value. If there is

3. Splashes which are located close to each other have more than one global maximum we use one super
a similar shaped set of mappings. By using the word segment for each of the maxima. With this super
similar we mean similarity in the sense, so that a hu- segment choice, we obtain rotational invariance in

man would classify them as "pretty much the same". our representation. By starting all super segments

That does not automatically implicate that the pair- at the maximum of the approximation, two shifted

wise difference results in small values. To be able to polygons with the same shape result in the same

compare two mappings, we therefore need a metric. super segment.

At this point we have reduced the original question "How 4. All the obtained super segments are encoded. The

do we capture the shape of a general surface patch into a encoding works as described in [12]. As encodable
representation?" which is a three dimensional problem, attributes we take

into a two dimensional question "How do we capture the (a) the angles between two consecutive segments
shape of two mappings into a representation?". of a super segment (they capture the curvature

information)
3D Obj (b) the mapping label 0 or V

(c) the maximum of the mapping ( bmax or 4,mx)

(d) the surface radius of the splash.

Incorporated in the code of the angles of the su-
per segments is also the cardinality (number of seg-
ments) of the super segments (by the number of
angles). That avoids matching super segments of
different cardinality. The encoding of 0n,,n. or ,,

............allows to distinguish between different curved sur-
Super Spashes(~ 00m::.Hs faces of the same shape (e.g. two spherical surfaces

with different sphere radii). The encoding of the ra-
dius avoids matches between splashes with different
splash radii.

Splshe ...I~ AKi 5. All the encoded super segments serve as keys into
. .a hash table (the data base), where we record the

.__ _ . corresponding splashes as entries (see Figure 4).

S00 IBy using indexing for the matching process, we only se-
I lect a small set of candidate models that are likely to be

present in the scene. VWe assume that most objects in
our data base (hash table) are redundantly specified by
their splashes. The scene is preprocessed as explained in

Fna poaigue :Rrsenaino oe

SSection 3.1 to generate all the splashes and their super
segments. The encoded super segments are used to re-
trieve the matching hypotheses between the splashes of

3 Recognition model and scene.

3.1 Object Representation 3.3 Verification

The solution is straightforward based on our two dimen-
sional approach [12]. The verification stage is fully described in [12] and con-sists of the following steps:

1. For all splashes of a model we compute the map-

pings. In Section 3.4, we talk about the locations of 1. We compute all possible matches for the splashes
the splashes. of the scene with the model splashes to generate

2. For each splash the two mappings are approximated multiple hypotheses.

by polygonal approximations (see Figure 3(b)). It is 2. These hypotheses are stored with respect to the
important to note that the mappings (and therefore model they vote for.
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3. The next step is the formation of consistent clusters want to capture the structure of the edges in the
based on angle and distance constraints. A clus- splash. Therefore the best place for a splash is in
ter of mutually consistent hypotheses represents an the neighborhood of an edge. We get this area in 3
instance of a model. steps:

4. After this grouping of hypotheses into clusters, we (a) We dilate the edge image by replacing every
can compute the transformation from the model pixel on the edges by a disc of a certain radius
coordinates to the scene coordinates by applying (e.g. r1 =8 pixels). The resulting image is
a least squares calculation on all the matching called dilatation 1.
splashes. Because of noise, we get in general a good (b) We dilate the edge image with another radius
first guess for the transformation but not an ex- (e.g. r, =3 pixels with r, > r2 ). The resulting
act match. A second least squares match on corre- image is called dilatation 2.
sponding corners or segments can refine the result. (c) The subtraction of dilatation I and dilata-

3.4 Interest Operator tion 2 gives us a mask. This mask describes

One question remains open: at which locations of an ob- an area with the above described characteris-

ject should we compute the splashes? The brute force tics. Points in this mask are no high curvature

answer would be: at every pixel (in a range image). A points, but they are close to edges.

more sophisticated answer would include the observation 3. We compute a grid of splashes on the range image
that we will not get structurally rich splashes at every with respect to this mask.
point, which lead to good and unambiguous matches. As we will see in Section 4, this simple method works
Splashes in flat areas result in super segments with low pretty well.
cardinality. Super segments with low cardinality are less
descriptive than super segments with high cardinality, 3.5 Complexity Analysis
which represent high structured surface patches. There- In [12 we show that for the two dimensional case, under
fore to obtain good and unique matches we are interested the assumptions that every model has the same num-
in matches of structured patches and high cardinality ber of super segments and that the entries are equally
These can be found at or near points of high curvature, distributed over the hash table, the overall cost is

Orecognize _= Omatch + Oterify =: 0(q) + 0(M) = 0(M),

where M is the number of models in the data base and q
athe number of super segments in the scene. We assumeI q constant to study the behavior of a large data base

(large M). We show further that the slope of the linear
cost function is dependent on the occurrence of a model
in the scene or its absence. In our results for the twowa 2dimensional case the cost for detecting the absence of a
model is less than 10% of the cost for the detection of
the occurrence. In the three dimensional case, we map

Figure 5: Interest Operator each splash onto a constant number of super segments.
Therefore we claim that this result is also valid for the

Our simple selection method works as follows (see Fig- three dimensional case. To support this claim, we cre-
ure 5): ated a data base of 100 objects. Every object consists

of a random range image. The scene is a composition
1. We compute the edges of the artificial shaded range of four of these objects including translation, rotation,

image (by assuming a light source at the viewer and and occlusion. In our results the cost for detecting the
computing a gray value for every pixel in the range absence of a model is less than 50% of the cost for the
image under the assumption of Lambertian condi- detection of the occurrence. We believe that the cause
tions) with the Canny edge detector [3. We want for the higher relative cost of absence detection in three
to position the splashes in areas where we can x- dimensions compared to two dimensions lies in the fact
pect structured patches on one object. This prop- that splashes for surfaces are less descriptive than super
erty is not given on the boundary. A boundary segments for boundaries.

edge typically has the object as one neighborhood

and other objects or background information as the 4 Results
other neighborhood. Therefore we use only the "in-
ner object edges" and throw away the boundary With the current implementation we are able to show
edges. that the proposed recognition mechanism of recognizing

2. For positioning the splashes we are interested in ar- general three dimensional objects works. We choose two

eas around the edges. Placing a splash on a high different scenes:
curvature point has the disadvantage of an unreli- 1. A Mozart bust, which is highly curved, and which
able reference normal. A reliable reference normal partially has a structured surface. Because of lack
is important for a stable splash. Nevertheless we of data we cannot deal with a real three dimensional
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model and a scene which consists of range data. 3. The plane consists of about 60 splashes, therefore it
Therefore we take the original data of the Mozart took about 7 minutes to compute all splashes.
bust as model, rotate the range data synthetically 4 The mtching process is always below 20 seconds.
to obtain the scene. We rotate pixel by pixel and fill
the holes by averaging the values of neighbor pixels. 5. The verification process takes less than 3 minutes.
This rotation process is guaranteed to add a lot of The items I to 3 are processed offline to build the data
noise! base. The recognition process itself consists of item 4 and

2. A scene composed of a plane and a wagon, which 5. All these numbers reflect neither the high parallelism
shows that our method works for objects which can which is theoretically possible nor the data redundancy
be approximated by polygonal surfaces. We have with which we work at the moment. Simple improve-
four range images, two of the plane from different ments can significantly increase the performance. This
views and two of the wagon from different views, is the goal of our future studies.
One wagon and one plane image serve as models.
The scene is composed synthetically by combining 5 Conclusion and Future Research
the other two range images into the scene image.

4.1 Mozart The results with our current implementation of the
TOSS system described in the last sections show that

Our input data is the range image. For better visibil- the idea of describing the surface of an object based on
ity we show the artificially shaded images. Figure 6(a) splashes is powerful enough to handle complex three di-
shows the model of the Mozart bust, Figure 6(d) shows mensional shapes. Our future research will extend vari-
the scene, which is the model rotated by 20 degrees ous aspects of this mechanism. Our system is designed
around a tilted axis. The inner edges are shown in Fig- for the recognition of surface patches. Several other
ure 6(b) and (e). The results of our interest operator are pieces of information are not used to enhance the perfor-
the masks shown in Figure 6(c) and (f). The recognition mance. One is for example the boundary of an object.
result is shown in Figure 7. (We overlayed a grid of the There might be a possibility of including the different
range image of the model, transformed by the resulting boundaries derived from different views of the object by
transformation on top of the Figure 6(d).) including two dimensional super segment recognition in

4.2 Plane and Wagon the three dimensional recognition process. We have to
study this possibility. Our long term goal is to build a

Figure 8(a) shows the shaded range image of the plane recognition system which is able to recognize three di-
and Figure 8(b) shows the shaded range image of the mensional models in a two dimensional gray level image.
wagon. Figure 9 shows the best detected solution. It is
interesting to note that the plane has no highly struc- References
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Abstract

We propose a technique based on analysis of symmetries in -,n it-nage to infer
the 3-D shape of surfaces of objects in it. This technique is analyZC4 a, d apjpled tn
Zero Gaussian Curvature surfaces in detail. Method consists of 'erivirg a number
of constraints based on a few simple assumptions. Combination of constraints to
give unique (or few) solutions is discussed. Experimental results on selected scenes
are given and are in good conformity with human perception. The techniques are
based on concepts presented in an earlier paper and fill in important gaps in the
earlier theory.

1 Introduction
Inferring shape of the surfaces in a scene from a single line drawing is an important and
difficult problem in computer vision. The early work on inferring 3-D structure from a
2-D shape was focused on analysis of line drawings of polyhedra [Huf71, Clo71, Mac73,
Kan8l, Sug86J. There have also been some attempts at developing techniques for curved
surfaces such as [BT81, Ste8l, XT87, HB88]. Due to limited space, we will omit a critical
analysis of previous methods. Mostly, they are not applicable to the types of scenes we
analyze, except perhaps the paper by Horaud and Brady [HB88].

We propose a technique based on the analysis of symmetries in a scene. Our basic
concepts were first presented in [UN88]. In that paper, we described some basic con-
straints that derive from observation of symmetry and other properties of line drawings.
At that time, we believed that the constraints were sufficient to infer unique surface
orientations for a certain class of objects. However, it turns out that even though the
number of constraint equations can exceed the number of unknowns, a unique solution is
not guaranteed. This paper is about how additional information can be utilized to infer
unique (or a small set of) surface shapes. In the process, we have also generalized the
constraints in several ways. Our method has been validated by comparison with human
perception.

Throughout the paper we will assume orthographic projection, with the image plane
being the x - y plane. Therefore a point (X,y,z) in 3-D projects as the point (z,y) on
the image plane.

In section 2, we define two types of symmetries that we find useful and the quali-
tative shape inferences we can draw from them. Section 3 contains our approach to

'This research was supported by the Defense Advanced Research Projects Agency under contract
number F 33615-87-C-1436 monitored by the Air Force Wright Aeronautical Laboratories, Darpa Order
No. 3119.
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quantitative shape inference. We focus particularly on the analysis of objects containing
"Zero-Gaussian Curvature" (ZGC) surfaces. We also give experimental results from our
implementation on some selected objects.

2 Qualitative Shape Inference
We believe that symmetries have an important role in shape perception, this also has been
noted and used by many researchers [NB77, Na87, Rao88, Kan8l, Ste8l]. We define two
types of symmetries, that we call parallel symmetry and mirror symmetry, and discuss
how they can be used to infer surface shape. For curves to be symmetric (parallel or
mirror) certain point-wise correspondences between two curves must exist. We will call
the lines joining the corresponding points on the curves as the lines of symmetry, the
locus of the mid points of these lines as the axis of symmetry, and the curves forming
the symmetry as the curves of symmetry.

Parallel Symmetry Let Xi(s) = (x(s),yi(s)), for i = 1,2, be two curves parameter-
ized by arc length s.
Let Oi(s) = arctan((dy(s)/ds)/(dxi(s)/ds)). Then, X 1 (s) and X 2(s) are said to be par-
allel symmetric if there exists a point-wise correspondence f(s) between them such that,
91(s) = 02(f(s)) for all values of s for which X, and X2 are defined and f(s) is a con-
tinuous monotonic function. Note that computing symmetry between two curves using
this definition requires estimating the function f(s) as well. A useful special case is when
f(s) is restricted to be a linear function.

Mirror Symmetry For mirror symmetry, the point-wise correspondence should be
such that the axis of the symmetry is straight, and the lines of symmetry are at a constant
angle (not necessarily orthogonal) to the axis of symmetry. This definition of the mirror
symmetry is similar to that of skew symmetry. We use the term mirror symmetry in
the context of curved surfaces as skew symmetry has historically been used for planar
surfaces only.

We now describe some qualitative inferences about the shape of surfaces from their
symmetries. Our inferences are based on the assumption of general viewpoint defined as:
Definition 1 General Viewpoint : A scene is said to be imaged from a general view-
point, if perceptual properties of the image are preserved under slight variations of the
viewing direction.

Specifically, the properties we are interested in are: straightness and parallelity of lines
and symmetry of curves.

It will be useful to consider figures as belonging to one of the following three classes:
Case I: Here, one symmetry covers the entire boundary of the surface (though more

than one such description may be possible). Figure 1 shows two examples. It can be
shown that this symmetry must be a mirror symmetry. We now show that such surfaces
must be planar under general viewpoint assumption.
Theorem 1 If a surface, bounded by real edges (i.e.edges that do not change with the
viewpoint), produces a line drawing in the image plane which belongs to case I, then the
surface must be planar (under the assumption of general viewpoint).

Proof: The assumption of general viewpoint implies that parallel lines in the image
plane must be the projection of parallel 3-D lines, otherwise they would not project
parallel from another viewpoint. Therefore we conclude that the 3-D lines, say li, that
project as the lines of mirror symmetry on the image plane, must be parallel to each
other in 3-D, because lines of mirror symmetry are parallel to each other in the image
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Figure 1: Two examples of case 1.

plane. The axis of symmetry in 3-D, which can be obtained by joining the midpoints
of the 3-D lines li, has to be straight because its projection on the image plane, which
is the axis of mirror symmetry is straight (by definition). Therefore, the lines li have to
lie on a plane, because they are parallel to each other and a single line, the 3-D ais of
symmetry, intersects them. Hence the 3-D surface, which contains the lines Ii is planar.

Case II: Here, the boundary of the figure is covered by exactly two symmetries, and
at least one of which must be a parallel symmetry. We will argue that case 11 figures
are the ones that give us the most information about the surface shape and that such
cases are common in scenes of everyday experience. Figure 2 shows some examples of
this case. The type of surface we perceive depends on the properties of the symmetries.
We consider the case of Zero Gaussian Curvature (ZGC) surfaces first.
Lemma 1 Parallel symmetric curves in the image plane must be projections of parallel
symmetric curves in 3-D if imaged from a general viewpoint.

Proof." This is an extension of the result that parallel lines on the image plane must
be projection of parallel 3-D lines from a general viewpoint. Two curves whose tangents
are parallel continuously on the image plane must be projection of two 3-D curves, whose
tangents are parallel at the same points as in the image plane, from a general viewpoint.
Theorem 2 If a surface generates one parallel symmetry and one mirror symmetry, with
straight curves of mirror symmetry, on the image plane, and the straight curves of mirror
symmetry are also the lines of symmetry for parallel symmetry, then the surface must
be a Zero Gaussian Curvature (ZGC) surface (assuming general viewpoint and assuming
that the surface does not have any variations or fluctuations that do not produce any
edges in the image plane).

Proof: Using lemma 1 we conclude that the 3-D curves producing parallel symmetry
on the image plane must be parallel symmetric. Since the mirror symmetry curves are
straight on the image plane, the 3-D corresponding curves must also be straight. That is
the surface embeds straight lines. Also the lines that join corresponding points on the 3-D
parallel symmetry curves must be on the 3-D surface (rulings of the surface) otherwise the
surface would not produce the same set of symmetries from another viewpoint. Consider
the normals of the points on the surface a ruling intersect the 3-D parallel symmetry
curves, that is the normals N, and N2 in the figure 3. Since the tangents t, and t2 are
the same and of course the tangent of the ruling is constant along it, the surface nornials
N, and N2, which are the cross products of ti and t2 with the tangent of the ruling, must
be the same. Therefore the tangent of the surface is constant along the ruling from the
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Figure 2: Examples of case II surfaces.

... ................ I

Figure 3: A ZGC surface with a ruling on it.

assumption that the surface does not have any variation that does not produce any edge.
Hence the Gaussian curvature of the surface is zero. 0

It follows that if the parallel symmetry has a linear correspondence function then
the surface is conic, and if the correspondence function is an identity then the surface
is cylindrical. A quantitative analysis for ZGC surfaces is presented in the following
sections.

If the curves of mirror symmetry are not straight or have two curved parallel symmetries
then we perceive a doubly curved surface (i.e.both of the principal curvatures are non
zero). The rightmost surface in figure 2 is an example of such a doubly curved surface.

Case III: This class includes all remaining cases. We believe that in such cases, surface
shape inferences can not be made directly from the given boundaries. Either no distinct
shape is perceived, or shape inference assumes the existence of some boundaries that
have been omitted. Figure 4 shows an example. We will not further consider such figures
in this paper.

3 Quantitative Shape Recovery
We now discuss quantitative shape recovery of zero-Gaussian curvature surfaces. A Zero
Gaussian Curvature (ZGC) surface is one where the the Gaussian curvature (the product
of the maximum and minimum curvatures) of the surface is zero everywhere. Cylinders
and cones are examples of a ZGC surface. Our analysis uses the following two theorems
that apply to ZGC surfaces:
Theorem 3 Curves obtained by intersecting a ZGC surface with two parallel planes,
called the cross section plane, are parallel symmetric and the lines of symmetry are the
rulings of the surface.
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(a) (b)

Figure 4: (a) A figure with two mirror symmetries, (b) addition of an extra curve clarifies
the perceived shape

.. .... ..

Figure 5: An example Zero Gaussian Curvature surface; (a) the boundaries only, (b) with the
rulings, (c) and with axis of symmetry

Proof of this theorem is given in appendix A.l. Note that this theorem does not
guarantee that parallel symmetry curves are necessarily planar. However, they do not
occur by accident. For example, to obtain parallel symmetric curves from a conic surface,
by cutting with non planar cross sections the cuts must be translated along the axis of the
cone and scaled exactly with the scaling function of the cone. Planarity of cross sections
may be confirmed by the mirror symmetry of the cross section or a segmentation into
planar sections may be indicated by mirror symmetry. For example the cross section of
the object in figure 6 (a) has a single mirror symmetry and is perceived planar, whereas
the cross section of the object in figure 6 (b) has two mirror symmetries and the perception
is that the cross section has two planar parts.

We can infer the rulings of the surface by joining the corresponding points on thetwo curves forming the parallel symmetry by straight lines, as shown in figure 5 (b) (the
corresponding points on the two curves have the same tangent). Note that the orientation
of a ZGC surface does not change along a ruling (this is also proved as a byproduct of
the above proofs in the appendix). Therefore, if we find the orientation of the surface
at a single point on a ruling we can extend it along the ruling. We now present the
constraints for finding the surface orientations at these points.

3.1 Constraints

We cos se of constraints that derive from observations of the symmetries and other
boundaries in the image. We formulate three constraints discussed in sub-sections bow
and then discuss how to combine them.
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(a) (b)

Figure 6: Objects with cross sections having (a) only one mirror symmetry, (b) two
mirror symmetries

3.1.1 Curved Shared Boundary Constraint (CSBC)

This constraint relates the orientations of the two surfaces on opposite sides of an edge.
The planar version has been used since early days in polyhedral scene analysis [Mac73],
though the term shared boundary constraint is ours.

Consider two surfaces X, (u, v) and X 2(u, v) meeting at a curve F(s) = (x(s), y(s), z(s))
as in figure 7. Since the curve F(s) is generated by intersection of surfaces X 1 and X 2, F(s)
is a curve on both X1 and X 2. Therefore the tangent vector F'(s) = (z'(s),y'(s),z'(s))
of F(s) is a vector both on the tangent plane of X1 and X 2 along the curve F.

Say Ni(u, v) and N 2(u, v) are the normals of X, and X2 respectively. Along the curve
F(s) we can represent the normals N1 and N 2 as Ni(s) = Ni(ui(s),vi(s)). Since F'(s) is
on the tangent planes of both X1 and X2, F'(s) is orthogonal to both Ni(s) and N 2(s).
That is

Ni(s). F'(s) = o N 2(s). r'(s) = 0 (1)

We can rewrite it as F'(s) - (N 2(s) - Ni(s)) = o.
Say the normals Ni(s) are represented in in p - q space as Ni(s) = (pi,(s), qi(),1).

Substituting these in the above equation gives:

(a'(s),y'(s),z'(s)) .((p2(s),q 2(s),l)- (pl(s),ql(s),l)) = 0

X'(s)(p2(s) - pI(s)) + y'(s)(q2(s) - q,(s)) = 0 (2)

This is the Curved Shared Boundary Constraint (CSBC) which states that along the
curve F(s) the orientation of the surfaces X, and X 2 are constrained by the tangent,
(W'(s), y'(s)) of the image of the curve F(s) under orthographic projection. This constraint
has also been derived previously by Shafer et al [STK83].

A stronger constraint can be obtained if we can assume that the intersection curve,
F, is planar. Say, F lies in a plane with orientation (p,, q). With the assumption of
planarity the constraint equation becomes:

X'(s)(p, - p(s)) + y'(s)(qc - q(s)) = 0 (3)

We will apply this constraint to one of the curves producing parallel symmetry for a
ZGC surface.

3.1.2 Inner Surface Constraint (ISC)

The inner surface constraint restricts the relative orientations of the neighboring points,
within a surface. For ZGC surfaces the image of the rulings of the surface are used to
constrain the surface orientation of neighboring points.
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Figure 7: Two curved surfaces meeting at a curve r
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Figure 8: The inner surface constraint.

Let X(u,v) = (z(u,v),y(u,v),z(u,v)) be a (u,v) parametric representation of the
surface X, and let v be along the direction of minimum curvature (rulings for ZGC
surfaces). We can form an orientation function in terms of the parameters u and v;
O(u, v) = (p(u,v),q(u,v)). Inner Surface Constraint (ISC) states that for a constant
value of the parameter v, say v0 , as the parameter u changes the direction of the function
0 in the p - q plane, O, = (p,, q), should be orthogonal to the direction of the image
of the tangent of the rulings, that is the lines of symmetry (X,I,y.), (under orthographic
projection). That is;

(pu, qu) . (x,, y.) = 0
puxv + qu,, = 0 (4)

qu XV

PU YV

The proof of this property is given in appendix A.2. Geometrically ISC can be described
as follows: as we move along the axis of parallel symmetry (the u parameter curve) the
surface orientation should move in the p - q plane in a direction orthogonal to the image
of the rulings (the lines of parallel symmetry). For cylindrical surfaces, for example, this
ISC curve is a straight line, since all rulings are parallel to each other. Note that this
constraint does not require any regularity assumptions about the contour.

The above equation expresses the inner surface constraint in a continuous domain. In
digital domain, suppose the surface orientation is to be computed at n points for a ZGC
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Figure 9: The three degrees of freedom present, Pc, q,, d, in a ZGC surface after applying the
constraints ISC and CSBC.

surface (these n points are along the axis of the parallel symmetry, since the surface
orientation for a ZGC does not change along the rulings). We have 2n unknowns, (pi, qi)
for n point. This constraint provides us with n - 1 constraint equations as shown below.

Let the image of the ruling ri between the ith and i + 1 t points make an angle -yi with
the horizontal as in figure 8. The constraint equation relates the change in orientation
along the axis of symmetry, (p,, q,,), to the tangent of the ruling, (X,, y0 ). Here the
tangent of the ruling is (x,,y,,) = (cos(-yi),sin(fi)) and the derivatives (p,.,,q,,) can be
approximated by first order difference as (pu,, q) = (Pi+i - pi, qi+l - qi). Substituting
these in equation 4 gives

(Pi+i - pi) cos(-yi) + (qi+l - qi) sin(yi) = 0 (5)

3.1.3 Combination of ISC and CSBC

In digital domain we need to quantize (p(s),q(s)) as (pi,qi) and estimate (x'(s),y:(s))
from the image of F(s), which is (x(s),y(s)) under orthographic projection. If the ZGC
surface is to be described at n points then there are 2n + 2 unknowns, 2n for the surface
orientations (pi, qi) and 2 for the cross section plane (pc, qc). This constraint provides us
with n constraint equations. By using the curved shared boundary constraint (CSBC)
in conjunction with the inner surface constraint (ISC), we get 2n - 1 equations. This
leaves us with 3 degrees of freedom for describing a ZGC surface totally.

The two constraints are shown graphically in figure 9. A ZGC surface (a frustrum) is
shown in (a) with rulings and the axis of the symmetry marked on the surface. The inner
surface constraint (ISC) curve is shown on the p - q plane. Here the section of the ISC
curve from the point (pt,qi) to (pi+i,qi+i) is orthogonal to the ruling ri. The straight
lines on the p - q plane are the curved shared boundary constraints (CSBC) such that
at each point i the tangent of the axis of symmetry (the dotted curve on the surface)
is orthogonal to the corresponding CSBC line on the p - q plane. Three parameters
required to fix all the orientations (pi, qi) are: the orientation of the plane containing the
intersection curve, (pc, q), and the quantity shown as d in figure 9 which we call angle
parameter. The angle parameter can be described as distance of the ISC curve from the
point (pc,q,) or the angle between the cross section plane and the surface analyzed at
the point d is measured (for the case of this figure the angle between the cross section
surface and the middle ruling for figure 9). Specifying the length of one of the CSBC
lines is enough to fix the angle parameter, d.
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Figure 10: Two cylinders (a) is cut along the curves of maximal curvature, and (b) is cut in
an arbitrary direction while preserving parallel symmetry, now we have the perception of an
elliptical cylinder.

3.1.4 Orthogonality Constraint (OC)

We will assume orthogonality between the axis of parallel symmetry and the lines of
parallel symmetry. This is equivalent to slicing the surface along rulings to obtain thin
skew symmetric planar strips and assuming that these strips are orthogonally symmetric
in 3-D, as in Kanade's analysis for polyhedra [Kan8l]. This preference is illustrated in 10
where in (a) we see a circular cylinder, but in (b) we prefer to see an orthogonal elliptic
cylinder rather than a slanted cylinder.

For a ZGC surface, say the tangent of the axis of symmetry makes an angle a with
the horizontal and the ruling makes an angle f at some point on the surface, as in figure
11. Let the normal of the surface be N = (p, q, 1) at that point. Since the 3-D tangent
vectors A and B are on the tangent plane of the surface they can be represented as:

A = (cos(+),sin(a),pcos(a) +qsin(a))
B = (cos(/3),sin(#3),pcos(fl) + qsin(f3)) (6)

and from the orthogonality of the 3-D vectors A and B we get: A • B = 0 or

cos(a-/8) + (pcosa + qsina)(pcos3 + qsinfl) = 0 (7)

This is the equation of a hyperbola in the p - q space, constraining possible orientations
for the surface normal N. In digital domain we need to digitize a, fl, p, and q above
as ai,f3i,p,qi for each point on the axis symmetry. This constraint provides us with ni
equations if the surface orientation is to be computed at n points. In conjunction with
the previous constraints we have 2n + 2 unknowns and 3n - 1 equations. Therefore we
now have an overconstrained case for n > 3. However, not all of these equations are
always independent.

3.2 Combining the Constraints
The three different constraints of the previous sections provide 3n-1 constraint equations,
for n points producing 2n+2 unknowns (including (pc, q)). This suggests that the system
of equations is over constrained. In other words given a general ZGC surface contours,
it may not be possible to find an interpretation for the contours such that the surface
obeys all the given constraints exactly. However for special but important cases, these
set of constraints are dependent and may give a unique answer or even leave an extra
degree of freedom. Also, even when there are no dependencies between the constraints,
there may still not be a unique solution.
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Figure 11: Orthogonality constraint

Cylindrical Surfaces: In previous work [UN88], we have shown that for a cylindrical
surface, the constraints leave one degree of freedom undefined leaving the plane containing
the parallel symmetry curve to be constrained to be on a line in the p - q space which
passes through the origin and is in the direction of the rulings.

Circular Cones: It can be shown that these constraints give a unique solution for the
case of circular cone. We omit a detailed analysis for lack of space.

General ZGC Surfaces: As noted in section 3.2 for surfaces other than cylindrical
surfaces and the circular cone, the three constraints can not be satisfied exactly. We
believe that in most cases the planarity assumption is stronger than the orthogonality
assumption. Therefore, the following process tries to maximize the orthogonality while
keeping the constraints ISC and OSBC satisfied exactly.

Given a contour having parallel symmetry and a straight mirror symmetry, construct
the surface orientation using constraints ISC and CSBO. With these constraints we can
construct the surface orientation (pi, q1) at every point given the three parameters (Pc, qc)
and the angle parameter d, (see figure 9). Then choose the values (Pc, qc) and d that
minimizes the orthogonality error :

Cos = (8)

Where 9i is the angle between the two 3-D vectors (A and B in figure 11 whose projection
on the image plane make angles ai and fli, with the horizontal. cos 91 is given by

(cos(a - fli) + (p. cosa 1 + q sin a )(pi cos,3i + qi sin3i))2

(1 + (pi cos a, + qi sin a,)2)(1 + (p, cos f, + qi sin f3) 2)

Here (pi, q,) are dependent on (Pc, qc) and d as given by constraints ISC and CSBC. We
want to maximize the orthogonality by minimizing the above function EE for (Pc, qc) and
d. We can convert this problem into a 2-D minimization problem by associating a d value
to each choice of (Pc, qc) that minimizes E.

Unfortunately, for a general conic surface the global minimum for 27 occurs when
(p,q) = (0,0) and d = oo; this is an infeasible interpretation. However, function E, in
terms of (p,, q,) has a "valley" of local minima (passing through the origin of the p - q
space) and the valley is typically a straight line. Any choice of (pc, qc) along this valley
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Figure 12: Two circular cylinders, (a) is without the complete cross section, (b) is with the
complete cross section

is essentially equally acceptable, i.e.we have one degree of freedom to fix. In section 3.3
we discuss how to choose a specific value of (pc,qc) on that line using the shape of the
cross section.

3.3 Estimating (Pc, qc)

As discussed in section 3.2 the previous three constraints (ISC, CSBC, OC) leave one
degree of freedom, namely constraining the orientation of the cross section plane, (p., qc),
to be along the minimum line of the function E. However, computationally it is very
expensive to compute the this line. Therefore we use the following gradient descent
algorithm to compute (Pc, qc).

1. Choosing a starting line, 10, passing through the origin, in the p - q space, in the
direction of the mirror symmetry axis. Set the current line I = 10.

2. Compute the (pc, q) for the line I using the method described below.

3. Compute the value of E for (Pc, qc), check if (pc, q) is along the minimum line of
by repeating the above process for lines ±69 degrees off the line 1, and by comparing
the E values for these lines.

4. If (pc, qc) is along the minimum line of E stop. Otherwise choose another line by
rotating the line 1 60 degrees in the direction of descending E. And go to step 2.

Computing (pc,qc) given a line 1: We rotate the coordinate system such that the
line 1 is aligned with the q axis of the p - q plane then we have p, = 0 and qc is the
unknown quantity.

To fix q,, we need to use the shape of the cross-section. We propose a method for doing
so that is based on perceptual properties rather than on mathematical constraints. We
observe that humans prefer compact shapes but tend to avoid very high or very slow
slant angles. Compactness, defined as (area)/(perimeter)2 has been used previously as
a compactness measure in [BY84] and [HB88]. However these methods require closed
boundaries which are not always available, for example, see figure 12 (a).

Our basic method consists of fitting an ellipse to the observed contour and computing
the orientation that would backproject it into the ellipse of least eccentricity, consistent
with the other constraints. A correction that biases the answer towards 450 is applied.
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Figure 13: (a) A cylindrical object and the ellipse fitted to the cross section, (b) the orientation
(pe, qe) that would make the ellipse a circle and its projection on the q axis gives q,, first
approximation to qc.

First Estimation of qc: An ellipse fitting process is utilized as a first approximation
for q,. An ellipse is fit to the cross section contour, then the orientation of the circle
(pe, q,), that would project as the fitted ellipse is projected on the q axis, on the p - q
plane to obtain the first approximation of q,, call it q. Figure 13 shows an example.

It may also be necessary to segment the cross section if, it is complex and repetitive.
To achieve this, the concavities of the contour are found and matched. If they match in
such a way that the cross section is segmented into similar pieces, then a different ellipse
is fit to each piece of the contour and average of the ellipses is used to estimate qe- Figure
14 shows various objects and ellipses fit for their cross sections.

Updating q,: The purpose of this updating process is to simulate the bias that humans
have in orienting the cross section toward 45*. We update q, to obtain the final qc as
follows (after converting qc into degrees):

qo = 450 + A(q, - 450) (9)

Where A is a confidence factor in the range (0, 11 and is a function of how well the
ellipse approximates the cross section curve. Intuition suggests that the better the ap-
proximation of the ellipse the higher the value of A should be and the closer the q, is to
the 45 ° the less the correction should be. The A we are using

A(C) = (1 - C2) (10)

Where c is the ellipse fit error (in range [0,11). We believe that the exact form of the
function is not critical. Small changes in q, do not radically affect the perceived surface
shape and humans too estimate qc very imprecisely.

Validation : As the method described here is perceptual rather than mathematical,
we performed a study on human estimation of the orientation of the cross-sections on a
number of subjects and a number of test objects. Space does not allow us to describe
the study in detail. In brief, we found that human perception is rather imprecise in their
estimate of the desired orientation (even when measured relatively), with an average
standard deviation of 80. We found that the results of our algorithm match the human
estimates well given this large variance (the average deviation from human average was
60).
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Figure 14: Objects and ellipses fit for their cross sections. For some of the objects, above,

the fitted ellipses are not totally visible due to their closeness to the actual contour.

3.4 Computational Results
In figure 15 we show the computed surface orientations for various object surfaces. The
symmetries of the contour curves are assumed to be given. For each object qc is computed
using the method describe in section 3.3. Then the angle parameter d is computed by
minimizing the orthogonality error " given in equation 8. The surface orientation, (Pi, q1)
at each point then is computed by using constraints ISC and CSBC as illustrated in figure
9. For figure 15, on the right we show the 2-D contour of the object, in the middle we
show needle images of the objects computed and on the right the objects are shaded with
the orientation computed for each point on the surface.

It is worth noting that for all the objects the computed orientation at the limb bound-
aries of the objects is orthogonal to the boundary, even though this was not an explicit
constraint in our method.

The cross section of the object in the last row is segmented into two planar sections
based on the observation of the mirror symmetry of the cross section. Each section is
processed individually but the inner surface constraint is required to apply between the
two sections of the object.

4 Conclusion
We have presented a technique for inferring shape from contour for curved surfaces. This
method has been studied in depth for zero-Gaussian curvature surfaces but we believe
that it extends to double curved surfaces as well; we hope to present some results on such
surfaces soon. Our technique requires some assumptions about the observed contours but
these assumptions are minimal, and reasonable in our view. We have also made use of
observed human preferences in resolving one degree of freedom.

Our method has been implemented and tested, but it assumes that the symmetry
properties are given. For real images, the symmetries are unlikely to be precise and
several alternatives may be available.

The method presented only exploits the interaction between a curved surface and a
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Figure 15: Sample contours, the needle images computed and their images after shading
the object with the computed orientation at every point on the surface
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planar surface. For more complicated objects, interactions between two (or more) curved
surfaces exist. We plan to study such objects in further explorations of the described
approach.

Appendix

A Proofs
In this section we give two proofs; one is related to the existence of parallel symmetries
on Zero Gaussian Curvature surfaces (theorem 3) and the other proves the Inner Surface
Constraint. All of the proofs uses the following surface representation.

Let X(u, v) = (x(u,v), y(u,v), z(u, v)) be a (u,v) parametric representation of the class
C2 Zero Gaussian Curvature surface X. Let's assume that the v parameter curves are
along the lines of minimum curvature (rulings) of the surface.

Normal, A(, of this surface at any point is given by:

- XU X X.
IX X X(11)

where x is the vector product operator, and IVI is the length of the vector V. Note here
that JA(J = 1. First, I, and second, II, fundamental forms of such a surface are given by:

I(Xdu + X,,dv) = Edu2 + 2Fdudv + Gdv 2  (12)

II(Xdu + X, dv) = Ldu 2 + 2Mdudv + Ndv 2

where
E=X-.X F=X,,.X, G=X,.X,, (13)
L=Xu.KA M=X,,.A( N=X,,. A(

Since the parameter v is along the ruling (a line) the normal curvature of the surface
in the direction X,, given by II(X,,), should be zero, then we have:

II(X,,) = N = 0 (14)

Gaussian curvature, K, of such a surface is given by [Lip69]

LN- M 2

- EG - F2  (15)

Since the Gaussian curvature of the surface is zero setting r = 0, with substituting 0
for N by equation 14 gives; M = 0.

A.1 Proof of Theorem 3
Consider the surface X given in section A. Also assume that the u parameter curves on
the surface X are planar and parallel to each other. We have to show that the tangent
of the u parameter curves, X. is constant with respect to v (i.e. X- is a function of u

only).
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Let the planes, the u parameter curves are resting on, have the normal 7 (P is con-
stant). Then we have:

x.' = 0 o- o(x. 7P)) = x.±. P + x.. P. = X . .P (16)

That is X.17 and X,._IP for all u and v. Also XIA" by equation 11 and X,"_,Af
since M = 0, therefore, unless A///P, we have

Xu,, = oaf x P and X, = c 2AK x P (17)

for some constants c1 and C2 . That is, Xu//X,,,, and the derivative of X-z with respectIX.I
to v is:

- ( -)=IXU1 Ix (18)

Since X.//X.,, we can substitute Xu, by IX.X in the above equation:'x-I
a( X xX= ( I _ (x. . XU)IXU.I) =0 (19)'9V( XUJ XUIXU1 2  IXU14

Therefore the tangent of the u parameter curves are parallel to each other at the points
they meet a particular ruling, resulting in u parameter curves projecting as parallel
symmetric with the lines of symmetry corresponding to the rulings. 0

A.2 Proof of the Inner Surface Constraint
Here we will prove the inner surface constraint asserted by the equation 4.

Consider a surface as given in appendix A, a ZGC surface with v parameter curves are
along the rulings and u parameter curves are arbitrary. Here we have X, • Au = 0 since

o =(X ) OY'+ X".U=M+X .A.=X... ( (20)

We can write Y in terms of the gradient (p,q) as: K = c(p,q,1).
where c is the scale coefficient and equal to (p + q2 + 1)-1/2. Differentiation of Y with

respect to the parameter u gives:

AK, = c,,(p,q,1)+c(p,,,q,,,O) (21)

= CUK +c(p,q,0)
C

If we set X,, .u = 0 from 20, where X, = (x,,y.,z,) and A, is given in equation 21
we get:

Xv , .Nu = c'x. ..9 + c(.,, y., z.) .(p,,qu,,O) = 0 (22)

C

We also have K . X,, = 0 from 11. Therefore

Xpu + /qU = 0
qu = X, (23)

The same constraint can be shown to be valid for non-ZGC surfaces if the u parameter
curves are chosen to be along the direction of maximum curvature.
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Recovering Shape from Contour for SHGCs and CGCs *
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Abstract

We analyze the properties of Straight Homo-
geneous Generalized Cones (SHGCs) and Con-
stant Generalized Cylinders (CGCs), and de-
rive the types of symmetries that the limb
boundaries and cross sections of these objects
produce on the image plane. The constraints Figure 1: Sample SHGCs.
on the 3-D shape of the objects are formulated
based on the symmetries and from the geome- Our approach is based on an analyis of the symme-
try of the projection models. Finally the meth- tries in a scene. In section 2 we define the symmetries we
ods that recover the 3-D shape from the image use. Then we show how such symmetries arise naturally
of their contours are discussed and recovered in images of the class of objects we study. In section
surfaces are shown for sample objects. 3 we summarize the constraints that derive from these

symmetries and other properties of boundaries for deter-
1 Introduction mining the 3-D shape. In section 4 we give a summary of

previous work on ZGC surfaces. In sections 5 and 6 we
This paper is about inferring 3-D shape from 2-D con- show how these constraints, and other properties of the
tours for a class of objects, namely generalized cones boundary allow us to infer 3-D shape of the objects in
of constant cross-section (but possibly having complex the scene. Some computational results are also shown.
shaped axes) which we call CGCs (or snakes) and for In the subsequent analysis, we will assume that the
straight homogeneous generalized cones or SHGCs. This image is obtained by an orthographic projection (though
class of generalized cones covers a broad class of objects some of our theorems apply to perspective projection as
of interest, it includes the so-called linear straight ho- well) and from a general viewpoint.
mogeneous generalized cones, solids of revolution, and Definition 1 General Viewpoint : A scene is said to
pipes of arbitrary shape. Some examples are shown be imaged from a general viewpoint, if perceptual prop-
in figures 1 and 2 The method we describe is based erties of the image are preserved under slight variations
on, and is a major generalization of, the technique we of the viewing direction.
developed for inferring shape of zero-Gaussian curva-
ture (or ZGC) surfaces [Ulupinar and Nevatia, 1988, Specifically, the properties we are interested in are:
Ulupinar and Nevatia, 1990]. straightness and parallelity of lines and symmetry of

Inferring shape of the surfaces in a scene from a sin- curves (symmetries as defined in the following).
gle line drawing is an important and difficult problem in
computer vision. Early work concentrated on analysis of 2 Symmetry Definitions and
line drawings of polyhedra [Huffman, 1971, Clowes, 1971, Qualitative Shape Inference
Mackworth, 1973, Kanade, 1981, Sugihara, 1986]. There We believe that symmetries have an important role
have been other efforts at developing techniques for in shape perception, this also has been noted and
curved surfaces such as [Barrow and Tenenbaum, 1981, use peearchis also a n notd 19d
Stevens, 1981, Xu and Tsuji, 1987, Horaud and Brady, used by many researchers [Nevatia and Binford, 1977,19881. We believe that the techniques presented here Nalwa, 1987, Rao, 1988, Kanade, 1981, Stevens, 1981].
extend the complexity of surfaces that can be analyzed We first define two types of symmetries and then showsignificantly, the conditions under which they may be observed in ansignificantly image of CGC or SHGC objects.

*This research was supported by the Defense Advanced 2.1 Symmetry Definitions
Research Projects Agency under contract number F 33615-
87-C-1436 monitored by the Air Force Wright Aeronautical We define two types of symmetries, that we call paral-
Laboratories, Darpa Order No. 3119. lel symmetry and mirror symmetry. For curves to be
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Figure 2: Some sample PRCGCs

symmetric (parallel or mirror) certain point-wise corre- Figure 3: Tangent line, L, of a surface S at point P in
spondences between two curves must exist. We will call direction V.
the lines joining the corresponding points on the curves AN
as the lines of symmetry, the locus of the mid points
of these lines as the azis of symmetry, and the curves L
forning the symmetry as the curves of symmetry.

Parallel Symmetry Let Xi(s) = (zi(s),yi(s),zi(s)),
for i - 1, 2, be two curves in 3-D parameterized by arc
length s.
The curves XI(s) and X 2(s) are said to be parallel sym- s
metric if there exists a point-wise correspondence f(s)
between them such that, X'(s) = X'(f(s)) for all values
of s for which X, and X2 are defined and f(s) is a contin-
uous monotonic function. Note that projection of curves
X 1 and X 2 under orthographic projection produces im- Figure 4: Tangent plane, , of a surface, S, containing
age curves that are parallel symmetric such that the 3-D all the tangent lies at point P
point correspondence is preserved. Computing symme-
try between two curves using this definition requires es- Figure 3 shows an example.
timating the function f(s) as well. A useful special case Fiure kown exape.is w en ~ s) is r strcte to e a lin ar f ncton.It is a well known property in differential geom etry

iwefea l function. [Do Carmo, 1976] that the tangent lines, Li, of a sur-
Mirror Symmetry For mirror symmetry, the point- face, S, at point, P, in all possible directions, Vi E R3 ,
wise correspondence should be such that the axis of the are on a plane, T, called the tangent plane of the sur-
symmetry is straight, and the lines of symmetry are at face at P. Moreover the plane T is orthogonal to the
a constant angle (not necessarily orthogonal) to the axis normal, N, of the surface at P. This property is shown
of symmetry. This definition of the mirror symmetry is graphically in figure 4.
similar to that of skew symmetry. We use the term mir- Next, we define limb edges and their projections for
ror symmetry in the context of curved surfaces as skew smooth surfaces.
symmetry has historically been used for planar surfaces Definition 3 The limb edge of a surface is a viewpoint
only. dependent curve on the surface such that at each point on

We believe that the symmetries we have defined, either the curve the surface normal is orthogonal to the viewing
separately or taken together, give some qualitative as direction.
well as quantitative information about the surface shape.
In [Ulupinar and Nevatia, 19901 we showed that a figure The limb edges project on the image plane as the
bounded entirely by one mirror symmetry must be pla- bounding curve of the surface. At these edges the sur-
nar and that a figure bounded by one parallel symmetry face smoothly curves around to occlude itself. This def-
and one mirror symmetry with straight lines of symme- inition of limb edges holds both for orthographic and
try must be a ZGC surface (assuming general viewpoint perspective projection. Limb edges (also called "occlud-
in both cases). In the following we show the proper- ing contours") can give some very important informa-
ties that allow us to infer the presence of PRCGCs and tion about the 3-D surface they come from; Koenderink
SHGCs. [Koenderink, 1984] has given a nice analysis in previous

First, we discuss some useful geometric properties of work. We will show how the limb edges help us recover
differentiable surfaces. 3-D surface shape later in this paper.

2.2 Surfaces and Their Limb Edges Theorem 1 All the tangent lines of a surface at a point,
P, which is on a limb edge of the surface for a given pro-

Definition 2 Tangent line, L,, of a surface, S, at jection geometry, project as the same line on the image
point, P, in a given direction, V, is the line from the plane.
point P in the direction of the tangent of the curve, C,
obtained by cutting the surface by a plane, II, that passes Proof The proof involves a simple combination of the
through P, and contains the normal, N, of the surface definition of limb edges and the property of tangent
at P and the direction given by the vector V. planes. Since the normal of the tangent plane at P
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Figure 5: An SHGC along the z coordinate axis with Limb
both meridians and cross sections marked.

(a) Mcnduans (b)

(which is also the normal of the surface at P) is orthog-
onal to the viewing direction, the tangent plane projects 6: (a) An SHGC, and its tangent lines, in theas a line on the image plane. Therefore all the tangent Fgr :()A HC n t agn iei hlines at P, which are included in the tangent plane also direction of the axis emitting from a single cross section,project to the one line that the plane projects into, Q intersecting at a single por t t on the axis. (b) The tangentprojct o te on lie tat te paneprojctsint. 0 lines, T, of limb edges are not the same as the tangents

This theorem, though simple and rather obvious, turns lines, Tin, of the meridians in 3-D.
out to be highly useful in proving other important prop-
erties of limb boundaries.

2.3 SHGCs section, intersect the image of the axis in a single point,

Straight homogeneous generalized cones (SHG~s) are under orthographic or perspective projection.
taigenedslidingaos se idonsay SCs)ln a It has been shown by Shafer[Shafer, 1983 that theobtained by sliding a cross section, say C, along a limb edges on an SHGC are not planar. Therefore the

straight axis, say A. The cross section is also scaled limb edges of an SHGC are necessarily not along its
as it is swept along the axis by a scaling function, say r. meridians, and the tangents of the limb boundaries at

We can parameterize the surface, S, of an SHGC, given the point they intersect the same cross section do not
the planar cross section C(u) = (z(u), y(u), 0), and the intersect the n ( e 6r(b) sho th lim

scalng uncion ~t) asintersect the axis in 3-D. (Figure 6 (b) shows the limb
scaling function r(t), as : edge and its tangent for an SHGC after rotating it, to

S(u, t) =- (r(t)z(u), r(t)y(u), t) (1) show that in 3-D the tangent of the limb edge does not
intersect the axis of the SHGC.) Still, it has been shown

The axis of the SHGC in this case is the z axis of by Ponce [Ponce et al., 1989] that under orthographic
the coordinate system. An example is shown in figure projection the tangents of the limb edges, at the point
5. Note that the cross section curves are generated by they intersect the same cross section, intersect the image
fixing t and varying u. We will call the curves gener- of the axis at a single point. Here we give a simpler proof
ated by fixing u and varying t as the meridians of the which is independent of the projection geometry.
surface. Note that cross section of an SHGC are planar
because the cross section function C(u) is planar, and the Theorem 3 The tangents of the projections of the limb
meridians of an SHGC are planar since the SHGC has edges at the points they intersect the same cross sec-
no twist in its sweep. Let meridian edges of an SHGC be tion, when extended, intersect the image of the axis of
edges that are along the meridians of the SHGC. Usually the SHGC at the same point.
images of SHGCs do not contain meridian edges, how- Proof Say the limb edge intersects agiven cross section
ever, such edges may be present if the cross section has at P (se figure inte tangen lioe sectfom
a tangent discontinuity (a corner). Figure 1 shows some at point P (see figure 6). Since the tangent line T., from
sample SIIGCs. point P in the direction of the axis of the SIIGC (the

tangent line of the meridian passing through the point
Theorem 2 For an SHGC, the tangent lines of the sur- P) intersect the axis of the SHGC, by theorem 1, the
face in the direction of the axis from the points of any image of the tangent line T from point P in the direction
given cross section intersect at a common point on the of the tangent of the limb edge project as the same line
axis of the SHGC. as the tangent line Tn and thus image of the line T1

A proof of this theorem may be found in [Shafer and intersect the image of the axis at the same point as the
Kanade, 19831. Figure 6 (a) graphically illustrates the image of the line Tm intersects. 0
property. Since theorem 1 holds both under perspective and or-

thographic projection, the above theorem and the proof
Corollary The tangents of all meridian edges at the hold for both of the projection geometries.
points they intersect a single cross section intersect the In the following we show that the cross sections of an
axis of the SIIGC at a single point. Therefore in the in SItGC are parallel symmetric in 3-D with the meridian
the image plane, too, the tangents of the images of the curves joining the parallel symmetric points of the cross
meridian edges, at the point they intersect a single cross sections.
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I 1 d d Figure 8: Images of the cross sections and axes recovered
P, for the SHGCs in figure 1

C11

C . 2. Translate the cross section curve C, such that the
Cb point Pi E Ct coincides with the point P1, obtaining

the curve Cit.

3. Find the point Pc, E Ct that minimizes the func-
Figure 7: Image of an SHGC cut along its cross sections. tion f(P,) = (d, + d2 )/d which is the amount of
Image of the top cross section curve is Ct, the bottom scaling required to be applied on the curve Ctt to
one is Cb and the limb boundaries are on the left C, and bring the point Pr, to the point P,. The quantities
on the right C,. d, and d2 are the length of the line segments from

P to Pc, and from Pc, to P,. It can be shown that
local minima of the function f(.) above gives the

Theorem 4 The cross sections of an SHGC are parallel correct point Pc, E C, such that the limb bound-
symmetric in 3-D with each other such that the merid- ary condition C1 (Pc,) = C,(Pr) is met.
ian curves join the parallel symmetric points of the cross 4. Scale the curve Ctt by f (P,,.) so that the point Pc,
sections. meets with the point P,, obtaining the curve Ci.
Proof We have to show that the direction of the tan- The curve Ci obtained by this algorithm is precisely
gent of the cross sections is independent of the t param- the image of the cross section curve between the points
eter curve. Using the parameterization for an SHGC P and P of the SHGC. Once the correspondence of
given in equation 1 the tangent of the cross sections (u the points P and P, between the limb edges C1 and
parameter curves) is given by: C, is obtained, we can recover the image of the axis

of the SHGC by using theorem 3. Figure 8 shows the
= (r(t)z'(u), r(i)y'(u), 0) = r(i)(z'(t), y(t), 0) (2) computed images of the cross section curves and the axes

Clearly the direction of S. is independent of the t pa- for SHGCs in figure 1. If the parallel symmetric points
rameter. 0 of the cross section curves are joined, by theorem 4, we

obtain the meridian curves.
Corollary The projection of the cross section curves of 2.3.2 Observing SHGCs
an SHGC are also parallel symmetric in the image plane. If there are two parallel symmetric curves with a linear
And the correspondence function is linear because crosssections are obtained by scaling a reference cross section correspondence function such that they are bound by
curve without deforming it. curves that has a straight axis when the axis is computedby the above algorithm, then we can hypothesize that the
2.3.1 Recovering the Cross sections line drawing results from an SHGC.

We next show how to find the projections of cross sec- 2.4 CGCs (Snakes)
tions in the image of an SHGC, given the images of its Snakes are generalized cones that have a constant crossexternal contours. Our method does not require com- section but the axisplete cross sections, but only the part that lies on the seto u h xsmay be an arbitrary 3-D curve. Fol-
visible face of the SHo C. However, we require that the lowing Shafer's terminology [Shafer et al., 1983], suchSHGC be cut along its cross sections, otherwise we would objects may be called CGCs. We will focus on CGCsnot have a parallel is ry etwn otherwimwecus that have planar axis and that are "right", ie the crossnot have a parallel symmetry between the image curves sections are orthogonal to the axis; we call such objects
of the two extreme cross-sections (Ct and Cb in figure 7) PRCGCs. Figure 2 shows some examples.
We conjecture that humans too do not do well if this con- tC s fige show some exmples.
dition is not satisfied. The following algorithm recovers In th e olowig, e s mhtli boundr o-
the image curves Ci that correspond to the projections p c projecta lruof the cross sections of the SHGC. thographic projection.

Let us choose a coordinate system such that the axisFor each point P E C, do: of the PRCGC lies in the z - z plane and one of the

1. Find the point Pci E Ct such that C,'(P) cross-sections, say C(u) = (c.(u),c,(u),O), is aligned
c'(PO)., with the x - y plane. Let A(t) = (a.(t),0,a,(t)) be the

axis parameterized in terms of its arc length, that is,
'The _= operator is used for parallelity of vectors, that is, IAI = a= +a' = I for all t. Also, let A(0) = (0, 0, 0) and

if Vt E V2 then V = AV for some scalar a. since the cross section is orthogonal to the axis A'(0) =
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auxidians

Muidiam At)

(a) (b)

tFigure 10: A PRCGC (half of a torus) (a) from a gen-
eral view and (b) semi-transparent top view with the

c(u) limb edges of the previous view and the meridians pass-
ing from the points P and P2 marked along with their
tangent lines.

Figure 9: A PRCGC with both meridians and cross sec-

tions marked.

three vectors are on a plane (the x - z plane). Then, we

(0, 0, 1). Then the surface of the PRCGC, S(u, t) is given can rewrite as
by: OS(u,t) (A" (t)) I(7)

S(u, t) = R(A'(0), A'(t)) C(u) + A(t) (3) at (I + c(u) IA'()I '

where R(V1 , V2) is the rotation matrix that transforms
the direction vector V, into vector V2. For A'(0) = It is obvious that while the length of the vector -5 de-
(0,0, 1) and A'(t) = (a' (t), 0,a' (t)) the rotation matrix pends on the u parameter, the direction of it is indepen-
R becomes: dent of the u parameter. 0

f a:(t) 0 at 1 Although the meridian curves on a PRCGC are par-

R 0 1 0 (4) allel symmetric it can be shown that the limb edges of

t-a(t) 0 a'W(t) a PRCGC are not necessarily parallel symmetric in 3-D
) (see Figure 10) However, the following theorem proves

Note that the curves generated by fixing t and varying that the projections of the limb edges of a PRCGC are
u are the cross sections of the surface S(u, t). We will parallel symmetric under orthographic projection.
call the curves generated by fixing u and varying t as Theorem 5 The limb edges of a PRCGC project as par-
the meridians of the surface. The meridians are also the allel symmetric curves onto the image plane.
loci of points on the cross section as the cross section is
swept along the axis. Figure 9 shows an example. Proof Here we use the property given in theorem 1
Lemma I The meridians of a PRCGC are parallel and in lemma 1. Consider the points P and P2 in figure

emman 10 such that both points are on the same cross section.sy/mmetric and the curves joining the parallel symmet- A a ese nfgr 0()tetnetlnshad1

ric points of the meridians form the cross sections of the As can be seen in figure 10 (b) the tangent lines 11 and 12
surface.from points P, and P2 in the direction of the limb edges

are not parallel symmetric in 3-D. However, the tangent

Proof We need to show that the direction of the tan- lines m, and m 2 from points Pi and P2 in the direction of
gents of the surface in the direction of the meridians, 2s the meridians are parallel symmetric by lemma 1. Since
is independent of the parameter u. the tangent line 11 project the same line as the tangent

line m, and tangent line 12 project the same line as the
S(u, t)_ dR. C(u) + A'(t) tangent line M 2 by theorem 1 the projection of tile limb

Ot dt boundaries of a PRCGC are parallel symmetric. 0
a" (t) 0 a" (t) 1 .[c(u) 1+ a' .(t) 1 241 OsrigPC~= 0 0 0 • y (u) 2+ 0

-a '(t) 0 a'(t) a' (t) If in the image plane there are parallel symmetric
all~) 0 'z'(t) - zcurves that are termninated by two curves (possibly closeda' ] (t)[ a''(t) 3and having mirror symmetry which enhances planarity

01)(t) (5) of the cross section) then we hypothesize that it is aa'(t) -a._(t PRCGC. The real test for the line drawing to belong to

A'(t) + c.(u)(A"(t))' a PRCGC may be performed after the cross sections are

where (A"(t))- is a vector which is orthogonal to the recovered as described in section 6.1.

vector A"(t) and is in the x - z plane. Also note that, 3 Constraints for Determining Surface
A"(t). A'(t) = 0 since Shape

0 = d() = d(A'(t) A'(t)) = 2A'(t) A"(t) (6) We now give three constraints that derive from obser-

We conclude that the vector (A"(t))' is parallel to the vations of the symmetries and other boundaries in the
vector A'(t), since A'(t)±A"(t), A"(t)±(A"(t))' and all image.
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3.1 Curved Shared Boundary Constraint Proof Consider the parametric representation S(u,v)
(CSBC) of the surface S such that the u parameter curves are

This constraint relates the orientations of the two sur- parallel symmetric to each other (the {Ci} family of
faces on opposite sides of an edge. It is a generalization curves) and v parameter curves join the parallel sym-

of the constraint used in polyhedral scene analysis from metric points of the u parameter curves.
the early days [Mackworth, 1973] and has been stated For the first pat of the theorem we have to show that

previously in [Shafer et al., 1983, Ulupinar and Nevatia, equation 10 holds or with the current parameterization

1990]. S,. N, = 0 (12)
Let two surfaces, Si and S2 intersect along a curve, S

r, whose projection is the curve ri(s) = (rI(s), l7,(s)). is true, where N = 1 is the unit normal of the
Let the orientations of the surfaces St and S2 along the surface. Note that N S, = N. S, = 0 by definition. We
curve I(s), in gradient space, be given by (pi(s),qi(s)) can substitute -S., N for S,. - N, since:
and (p2(s),q2(s)). Then CSBC states that: a( Nr, s(2S Y(S09N) S,,,.-N +S,. -N,, =:, Su. N,,---S.,. N

Z' ) - pi (s)) + r,()(q2() - q1 (5)) = 0 (8) 0=

A stronger constraint can be obtained if we can assume (13)
that the 3-D intersection curve, r, is planar. Say, r lies S,, is the tangent of the u parameter curves, and since
in a plane with orientation (Pc, q,). With the assumption the v parameter curves join the parallel symmetric points
of planarity the constraint equation becomes: of u parameter curves the direction of Su(u, v) is inde-

pendent of the v parameter, that is Su(u, v) = c(v)S,,(u)
s - P(s)) + r(s)(qc - qi(s)) = 0 ,i = 1,2 (9) where c is a scalar function. And;

3.2 Inner Surface Constraint (ISC) S,,,, - S _ c'(v)S,(u) (14)
The inner surface constraint restricts the relative orien- Ov
tations of the neighboring points, within a surface. Con- By substituting this in equation 13 we get
sider a curve C(t) = (x(t), y(t), z(t)) on a C2 surface S.
For each point P E C associate a vector R E Tp such N- S. = -N. S, = -c'(v)(N . S,.(u)) = 0 (15)
that dO For the second part of the theorem we have to show

-T . dNR = 0 (10) that S, • N, = 0. Using equation 15 we get:

where Tp is the tangent plane of the surface S at the 0 = N, • S,, = -N. S,,, = -N. S,,, = S. • N,u (16)
point P and dNR is the derivative of the normal N of
the surface S in the direction R.
Theorem 6 Inner Surface Constraint: Under ortho- 3.3 Orthogonality Constraint (OC)
graphic projection, if an image curve C1 is the projec- The two previous constraints (CSBC and ISC) are not
tion of the curve C on the surface S and R1 = (r., r.) sufficient to determine surface orientations uniquely. To
is the projection of the vector R satisfying equation 10, further constraint the solution, we impose an additional
then the change of the orientation, (p,q), of the surface constraint. We require that the cross sections and the
S, along the curve C, in the p - q space is restricted by meridians of a surface (as defined in sections 2.3 and 2.4)
the image vector R1, as: be mutually orthogonal. This constraint may be satisfied

d(p,q)c,• R, = 0 (11) precisely for some kinds of surfaces but is not necessarily
true for all surfaces; in the latter cases we maximize a

The proof of the theorem is given in appendix A. measure of orthogonality (given later). This constraint
To apply this constraint, we need to identify a curve is justified on perceptual observations. It may be viewed

C in the image plane for which the orientation R can be as being equivalent to slicing the surface along merid-
determined. In a previous paper [Ulupmnar and Nevatia, ians and cross sections to obtain thin skew symmetric
1990] we have shown that for zero Gaussian curvature planar patches and assuming that these patches are or-
surfaces any curve on the surface can be the C curve thogonally symmetric in 3-D, as in Kanade's analysis for
if the direction R is chosen to be the direction of the polyhedra [Kanade, 1981]. The orthogonality of two vec-
rulings of the surface. Following theorem shows how we tots A and B, which lie on a plane having gradient (p, q)
can use parallel symmetric curves for this purpose in a and whose images are Ai = (a.,a.) and Bi = (bby),
general case. constrain the gradient (p, q) with the equation:

Theorem 7 Let the family of curves,{Ci}, be on a sur-
face S such that the curves, C,, are parallel symmetric in (a., ay, pa, + qa, ) . (b., by, pb. + qby) = 0 (17)

3-D. If the curves Ci are used as the C curves of equation 4 Analysis of ZOC Surfaces
10 then, the tangent of the curves obtained by joining the
symmetric points of the curves Ci gives the direction R We have applied the constraints of section 3 to analy-
of the ISC. Conversely, if the curves obtained by joining sis of zero-Gaussian curvature surfaces in previous work
the parallel symmetric points of curves, Ci, are used as [Ulupinar and Nevatia, 1990]. We provide a brief sum-
C curves of equation 10 then the tangents of the curves mary of this work as the techniques for the PRCGCs and
Ci gives the direction R. SHGCs are related to it.
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A ZGC surface is indicated by the presence of a par- is to simulate the bias that humans have in orienting
allel symmetry and a mirror symmetry where lines of the cross section toward 45 . We update q, to ob-
symmetry are straight. The parallel symmetry curves tain the final q, as follows (after converting q, into
give the cross sections of the ZGC and the lines of sym- degrees):
nietry give the rulings. For a ZGC, it is necessary only q, = 450 + A(qe - 45 ° ) (18)
to consider one cross section at a time, as the surface
orientations can simply be propagated along the ruling. Where A is a confidence factor in the range [0, 1] and

Suppose we wish to estimate the surface orientation at is a function of how well the ellipse approximates
n points along the cross section (assumed to be planar), the cross section curve. In our implementation it is
we have 2n + 2 unknowns (2n for n points, 2 unknowns given by:
for the orientation of the cross section itself). ISC and
CSBC together provide 2n- 1 constraint equations, leav- A() = (1 - 2 )

ing three degrees of freedom undetermined. Introducing
the orthogonality constraint (in this case requiring the Where c is the ellipse fit error (in range [0,1]).
cross section and rulings to be orthogonal) gives an ad-
ditional n equations; we now have more equations than The algorithm derives from our observations of human
unknowns. perception and we have validated it by an extensive corn-

These equations are, however, not always indepen- parison with human subjects.
dent. We find that for a cylindrical surface, all equations The described method for recover ZGC surfaces from
can be satisfied exactly and still one degree of freedom image contours has been tested on a number of examples
remains for the orientation (pc, q) of the cross section (we assume that symmetries are given) and produces
plane (it is constrained to be on a line parallel to the results that appear consistent with human observation.
axis of the cylinder in the p - q plane). For more gen-
eral objects, all equations can not be solved exactly. We 5 Quantitative Shape Recovery of
choose to satisfy CSBC and ISC exactly and inimize a SHGC surfaces
measure of orthogonality. Unfortunately, this minimiza-
tion procedure also does not, in general, give a unique To compute the shape of an SHGC along each recov-
answer. The minimum is typically achieved when (Pc, qc) ered cross section curve we can apply the constraints
is along a line in the gradient space and the variations discussed in section 3 as they are applied to a ZGC sur-
are too small along this line to pick a specific value, face in section 4. For the following; say that there are m

This last degree of freedom is removed by using the cross section curves and we would like to compute the
3-D shape of the cross section itself. We make the as- orientation of the surface n points along a cross section.
sumption that the 3-D cross section should be as corn- Then we have 2nm unknowns, initially, corresponding to
pact as possible, subject to the limits given by other the gradient (p,q) of the surface at nm points.
constraints. Our method to accomplish this consists
of fitting an ellipse to the cross section and choosing CSBC The curved shared boundary constraint applies
that orientation that gives the least eccentric ellipse in between the orientation, (Pc,q,), of the cross section
the back projection subject to the orientation satisfying curves Ci and the orientation, (pi, qi) of each of the point
other constraints (namely, its being on a specific line), on the surface along a cross section. Note that (Pc, qc) is
Also, we apply a correction to this estimate depending the same for all cross section curves. The curved shared
on the quality of ellipse fit to bias the answer away from boundary states that the line in the p - q space from the
highly slanted orientations. This algorithm is fully de- gradient (pi, q1) of a point P E C, to the gradient (pc, q)
scribed in [Ulupmar and Nevatia, 19901, an outline is of the cross section plane is orthogonal to the tangent,
given below. CG(P), of the cross section C, at point P,. Then the

As (pc, q,) is constrained to be on a line, the problem constraint equation is:
is equivalent to estimating only one parameter, say qc
(without loss of generality, as we can rotate the coordi- (Pc - pi, qc - qi)" C'(Pi) = 0 VP E Cj (20)
nate system as necessary). Steps in estimating qc are:

1. First Estimation of qc: An ellipse is fit to the cross This provides n constraints along each cross section
section contour, then the orientation of the circle curve.
(p,,q,), that would project as the fitted ellipse is ISC Inner surface constraint is applied along a cross
projected on the q axis, on the p- q plane to obtain section using the tangents of the meridians at each point.
the first approximation of q, call it q,. The theorem 7 indicates that ISC is applicable along
It may be necessary to segment the cross section if, the cross section curves because cross section curves
it is complex and repetitive. To achieve this, the are parallel symmetric by theorem 4 with the merid-
concavities of the contour are found and matched. ian curves joining the parallel points of the cross sec-
If they match in such a way that the cross section is tion curves. Inner surface constraint states that change
segmented into similar pieces, then a different ellipse of the orientation (Pi+i - Pi,qi+l - q1 ) of the surface
is fit to each piece of the contour and average of the along a cross section curve C, between two consecutive
ellipses is used to estimate q,. points Pi, Pi+i C= C, must be orthogonal to the tangent

2. Updating qc: The purpose of this updating process M:+1 12(Pi+1/ 2 ) of the meridian that passes through the
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point Pi+1 / 2 E Ci which is in the middle middle of the where (Ci(P,,)) and (Mi(Pij))3 are the 3-D tangents ofpoints P and P +,. Then the constraint equation is: the cross section and meridian curves at point Pj. These
(pi+i-pi,qi+-qi).Mi+/ 2 (Pi+1 / 2) VPiPi+1/2Pi+i E C, 3-D tangents are dependent on their 2-D tangents on the

(21) image and on the orientation (pij, q1,) of the surface at
Application ofISC provides n-1 equations for each cross point Pq as given by the equation 17. The gradients
section curve. (pij, qij) at each point is dependent on the four variables,

There are 2n unknowns for each cross section curve, (pc,qc) and (Pm, qm), discussed in the previous section.
and two more unknowns for the whole SHGC, the We would like to minimize the function E for (Pc, qc)
(pc, qc), by combining the two constraints, we have 2n- 1 and (pn, qn). However from our experiments we observe
constraints for each cross section. Then for each cross that minimization of ' chooses values that are always
section there are three degrees of freedom as in the case consistent with the assumption that the 3-D axis of the
of a ZGC surface discussed in section 4. SHGC is orthogonal to its cross section.

If we enforce the cross sections to be orthogonal to thePlanarity of Meridians The meridians of an SHGC axis of the SHGC, the orientation (Pc, q,) of the crossare planar as discussed in section 2.3. Then the shared section lies along a line in the p - q space that passesboundary constraint can be applied along a meridian through the origin and is in the direction of the imagecurve as if the curve is obtained by cutting the sur- of the axis of the SHGC. This constraint also, in effect,face of the SHGC with a plane along the meridian. The enforces the gradient (pin, qn) of the plane of the merid-shared boundary constraint is applied along a meridian, ians to be orthogonal to the gradient (Pc, qJ of the crossM, between the gradient, (p,,,q,), of the plane that sections. That is
the meridian M rests on and the gradient (pi, qj) of the
points Pj E M, using the tangent, M'(Pj) of the met/d- (pn, q,, 1). (p., qc, 1) = 0 (24)ian curve at each point Pj E M. The constraint equation For simplicity, say the coordinate system is rotated

s (p,, - pj, q. - qj) - Me(pj) = 0 VPi E M (22) such that the image of the axis of the SHGC is alignedwith the y axis of the coordinate system. Then, we have;Enforcing one meridian curve to be planar automatically pc = 0 from the orthogonality of the axis to the cross sec-makes the others to be planar too. Therefore, the pla- tion and q, = - /qc from equation 24. The parameters
narity is applied only to one of the meridians, giving m p, and qc are the free variables to be fixed by mini-constraint equations with the expense of two additional mizing the function E. However, the minimum of theunknowns. function S does not fix the variable qc (except for sur-In total there are now 2nim+4 unknowns, 2nm for the faces of revolution). Either the function forms a valley(p,q) of nm points on the surface, two for (Pc, qc), two along qc making any choice as good as any other or fixesmore for (pm, q,n,), and there are 2nm constraint equa- qc to be zero which is not a realistic solution. We usetions, nm from the CSBC between the cross sections and the same method for estimating q, as described for ZGC
the face of the surface, m(n - 1) from the ISC, and m surfaces in section 4.
from the CSBC of a meridian curve. That is there are
four degrees of freedom for recovering the orientation of 5.1 Results
all the points on an SHGC. These four degrees of freedom We have implemented the constraints discussed in thecorresponds to the orientation, (Pc, q%), of the cross sec- previous section in a somewhat reverse order. For antions and the orientation, (Pm, q,), of the plane contain- SHGC whose axis is aligned with the y axis of the coor-ing the chosen meridian. Without any assumptions we dinate system the method is as follows; First the ellipsecould arbitrarily set these four variables and get a valid fit algorithm is applied to compute qe, then the functionreconstruction of the SHGC that would project like the E is minimized to compute p,. Then the surface is con-figure in the image plane. However not all ofthese recon- structed using the constraints discussed in section 5 tostruction look natural to humans when they observe the compute the surface orientation at each point. Figure I1image of the contours of an SHOC. Humans prefer some shows the needle images and the shaded images, with the
interpretations over the others. In the following section
we propose orthogonality as the preference criteria. computed surface orientations, of the SHG~s in figure 1.
5.0.1 Orthogonality 6 Quantitative Shape Recovery of

For SIIGCs we use the orthogonality of the 3-D tan- PRCGC Surfaces
gents of the cross sections and the meridian curves, mak-
ing each little patch, formed by dividing the surface Here we discuss the application of the three constraintsalong meridians and the cross sections, orthogonal. We discussed in section 3 along a cross section curve of acan apply the orthogonality constraint using the equa- PRCGC, to recover the surface orientation of a PRCGC.
tion given in equation 17. This constraint is not al-
ways exactly satisfied, except for surfaces of revolution. oSB The shared boundary constraint can be applied
Therefore we perform a minimization of the second or- along the image of a cross section curve. Let (Pc,qc) bethogonality constraint as: the gradient of the plane that contains the cross sectionthogonality costraint as: (M pcurve, C(u), whose image is the image curve Ci(u) =

cos(00) (Ci(Pij)). (Mj(POA (23) (c,(u), cy (u)). Let (p(u),q(u)) be the orientation of the
,I(¢,(PWA)'(MA(pO) Ipoints along the cross section curve C(u). Then the
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Figure 11: The needle images and the shaded images generated with the computed gradients at each point of the
SHGCs in figure 1

shared boundary constraint is: on the surface S of the PRCGC. Then, we use the or-
thogonality by enforcing the tangent of the meridians

(Pc - p(u), q. - q(u)). ) = (25) A', whose image is A = (0, al) to be orthogonal to the
ISC Theorem 7 indicates that ISC is applicable along tangent of the cross section curve C, whose image is
the cross sections of a PRCGC because cross sections Ci(u) = (c.(u), c (u)), at a point on the surface whose
of a PRCGC join the parallel symmetric points of the gradient is (p(u), qo):
meridian curves which are parallel symmetric as given by (0, = 0 (28)
lemma 1. Since the meridians of a PRCGC are parallel
symmetric with cross section curves forming the corre- By substituting p(u) given in equation 27 in the above
spondence, the tangent vectors of the meridians along a equation we get:
cross section is a constant vector which is also parallel
to the axis of the PRCGC as given by equation 7. Let aYc ,(u)(1 + qoqc) + a 1pcc' (u) = 0 (29)
the tangent direction of the meridians along the cross Since the above equation is zero for all values of u we
section C(u) be A' and its image be A = (a', ), note get both Pc 0 and
that A' is independent of the u parameter. For the sake
of simplicity let us assume that the coordinate system is 1 + qoq= 0 ' o - 1/qc (30)
rotated such that Ai is along the y axis of the coordinate Fixing qc fixes the orientation of the surface along the
system, then a 0. The inner surface constraint is : cross section C together with the gradient (pc, qc) (which

d is (0,q,) in the rotated coordinate system) of the plane
-(p(u),q(u)) . (a',a' = >0 q(u)'a', = 0 => q(u) = q0  containing C. However our constraint equations do notdu (26) constrain qc-

By combining this constraint with the CSBC given in 6.1 Recovering Cross Section Curves
equation 25 we get: In the previous section we have discussed how to recover

(u)(q, - qo) the surface orientation at each point on a cross section
p(u) = c (u)(U) + Pc (27) curve given the image of the cross section curve. How-

ever it is not directly possible to replicate the images of
Orthogonality The last constraint is the orthogonal- the cross section curves of a PRCGC, such as the ones
ity of the meridians to the cross section curves. The in figure 2, except for the ends of the PRCGC, where
reader can easily verify that the u and t parameter curves we assume the cross section curve is given. That is we
in equation 3 are orthogonal to each other for all points assuint that the surface is cut along its cross sections.
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Here we discuss a method for recovering the cross sec-
tions when one or both ends of the PRCGC are avail- P(
able, the method also enables us to reconstruct the 3-D
PRCGC from the image of it.

At one end of the PRCGC let the image of the end
cross section curve be Ci(u) = (c8 (u), c. (u)) and the im-
age of the axis be Ai(t) = (a.(t), a(t)) as in the previous
section. The image of the axis at the point it intersect
the cross section C is Ai(O) = (a.(O),a,(O)). Say the
coordinate system is rotated such that a.(O) = 0, and C(u)
the orientation (Pc, q,) of the plane containing the cross
section curve C is computed using the constraints dis-
cussed in section 6 with pc = 0. The orientation of the
points along the cross section curve C is (p., q0) where Figure 12: A PRCGC with a non-rotationally symmetric
qo = - 1/q and p(u) is given by equation 27. Since the cross section.
meridian curves are parallel symmetric to the axis of the
P RCGC we can use the gradient (p(u), qo) to recover the
tangent of the 3-D axis at t = 0 as:

A'(0)= (a'(0),a',(O),p(u)a'(O)+qoa'(0)) = (31)(0,a'(0),- a (° ))  - (o, qc,l)()()
Figure 13: A PRCGC with, (a) none, (b) one, and (c)

That is A'(0) is parallel to normal, (0,qc, 1), of the both end cross sections available.
plane containing the cross section C, or the plane H
containing A'(O) is orthogonal to the plane of C. Also
since the ais, A, of the PROGO is planar the plane 1a each other (and of course to its axis) as well as to the im-
contains the whole axis curve A.

In the following we give an algorithm for recovering ages of the meridians of the surface, and meridians of the
the 3-D cross sections from the image of a PRCGC given surface are parallel symmetric to the axis of the PRCGC
the gradient (pa,, qa) of the plane U containing the axis, by equation 7, so are their images. Therefore the axis of

Then in the next subsection we give a method for com- the image of the limb edges, the Bi(t) curve, is parallel

puting (p.,q.) from the image. symmetric to the image of the axis of the PRCGC, the

The gradient (pa, q,) of the plane of the cross sec- Ai(t) curve.

tion C can be computed if the gradient (p., q.) of H. is If we take the axis A of the PRCGC as the trace of
given. The gradient (Pc, qc) must lie on aline that passes the point that is the backprojection of Bi(O) to the cross
through the origin and in the direction of Ai(O), in our section plane C. Then Ai(0) = Bi(0). Given the orien-
case pc = 0, and (Pc, qc, 1) is orthogonal to (p., q., 1) tation (p,, q.)of the plane H, containing the axis A, to
then: recover the 3-D cross section say at point P on the im-

(0, q,. 1)- (p., q., 1) = 0 =: (32) age axis Bi; The backprojected C of Ci is rotated by the
0q = rotation matrix R(B'(0), B'(P)) to obtain the 3-D cross

We can compute the 3-D cross section C from the section curve C,(u) at point P, where B'(0) and B'(P)
image Ci of i by backprojecting Ci to a plane having are obtained by backprojecting B,'(0) and B!(p,) onto

gradient (Pc, Qc). the plane IT.. Then the points P1 and P2 that produces
If the cross section is rotationally symmetric2 the al- the limb edge on the cross section Cp(u) is identified by

gorithm for recovering cross sections is much simpler. In equating the image tangents of Cp(u) to the image tan-
the following 1,e give an algorithm that applies to gen- gent of limb boundaries P and P2. The position of the
eral, not necessarily rotationally symmetric case. cross section Cp in 3-D such that Cp(P) and Cp(P 2)

It can be shown that the image of the axis of the project as the points P and P2 on the image and the
PRCGC, Ai(t), is not always the same as the axis, B,(t), point Pp on Cp that corresponds to the point A(O) on
of the parallel symmetry of the image of the limb edges, C is on the plane Ila, gives the relative position of the
where the axis of the PRCGC is the trace of a single point cross section Cp with respect to end cross section C in
on the cross section as the cross section is swept. This is 3-D.
shown in figure 12. However the image curves Ai(t) and
Bi(t) are always parallel symmetric to each other such
that the corresponding points are on the same cross sec-
tion. By using lemma 1 and theorem 5 we conclude that
the images of the limb edges are parallel symmetric to

2 A planar cross section is rotationally symmetric iff the
lines passing through the center of the cross section intersects Figure 14: The recovered cross sections for the PRCGCs
both sides of the cross section at equal distances, in figure 2.
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6.2 Computing (p., q) of an SHGC are parallel symmetric, and use that prop-

The gradient (p., q.) of the plane H. containing the erty to recover the images of the cross sections of the

axis is computed by performing a search in the gradi- SHGC. Then we apply the constraints, curved shared

ent plane. The objective of the search is to compute boundary constraint (CSBC), inner surface constraint

(p.,q) that gives a valid reconstruction. A valid con- (ISC), and the orthogonality constraint (OC) to the

struction is one that makes the projection of the cross SHGCs. An SHGC has four degrees of freedom if it is

section points C,(P) and Cp(P 2 ) exactly the same as to be recovered from the images of its contours without

the points P and P2 on the image plane. We form an any assumptions. With the assumption of orthogonal-

objective function which is the average distance, on the ity there is only one degree of freedom which is fixed

image plane, of the reconstructed and projected point by estimating the orientation of the cross sections with

Cp(P 2 ) to the point P2 when Cp(P 1 ) and P1 is aligned an ellipse fit algorithm. Some computational results are

exactly. Then this objective function is minimized for shown on synthetic data.

(p., qL). For PRCGCs the limb boundaries are shown to project

The search is facilitated by finding a good initial point as parallel symmetric curves, which enable us to find

for (pa, qL) using the shapes of the end cross sections. points on the limb boundaries that correspond to the
The analysis in section 6 show that the gradient (pc, qc) same cross section. We also show that the three con-

of the cross section at one end is constraint to be on straints, CSBC, ISC and OC, are applicable along the

a line in the gradient space. A particular value on cross section of a PRCGO. We applied the constraints

that line may be chosen by using the ellipse fit dis- to the ends where the cross sections are available. Then

cussed in section 4. Similar analysis applies to the we present an algorithm to reconstruct the 3-D PRCGC

other end of the PRCGC (if available). Say the ori- from the images of its contours, using the ellipse fit

entation of the plane containing the other end cross sec- method to recover the orientations of cross sections at

tion C,, is (p,,,q,,). Then the plane of C,, is orthogonal the ends.

to the plane 11.. If (p,,,q,,) is not equal to (0,q,) we We have assumed that the object boundaries and sym-

can compute an initial normal N. = (p., q., 1) of II metries are given. Detection and computation of sym-

as N = (p, q,,, 1) x (0,q,, 1). If the other end cross metrics may, in itself, be a difficult task in real images.

section C,, is not available then the gradient (pL, q.) However, we do provide tests that can be used to verify

is constrained to be on a line by its orthogonality to symmetry properties. Also, we believe that 3-D shape

(0,q,). The equation of the line containing (p,,q.) is recovery process will serve as an aid in segmentation and

(0,qc, 1) . (p., q., 1) = 0. Any particular value of (p, qL) boundary labelling process as well. In the future, we

may be chosen on this line as the initial (p., q.). Fig- hope to explore this aspect of the problem.
ure 13 shows that perception is more definite when both
ends are available, which confirms the above observation Appendix
that two ends are more informative than one only. A Proof of the theorem 6
6.3 Results Let X(u, v) be the local parameterization of the surface S
We have implemented the cross section recovery method around the point P E C(t) such that for P = X(Uo, VO),
described in section 6.1. In the implementation first the curve X(u, vo) is the curve C and the curve X(uo, v)
the orientations (pc,qc) and (p, ,q,,) of the end cross is in the direction R. That is, u parameter curve is
sections are computed. Then the normal N. of H, along the curve C and v parameter curve is in the di-
is found by searching around the gradient given by rection R at the point P. Here we have to show that
(pa, q , 1) x (p,,, q,,, 1) that gives a valid reconstruction. I - R) = 0 where (p, q) is the normal of the surface
The 3-D position of each cross section is then found by indthe gradient space, du is in the direction of C', R1 is
translating the end cross section rotating and aligning it the image, (za, y d), of the vector R = = (,, :,)
with the limb boundaries and the plane of the axis Ha. under orthographic projection.

Figure 14 shows the recovered cross sections and figure Normal, N, of this surface at an point is given by:

15 shows the recovered orientations by both needle and

shaded images for the PRCGCs given in figure 2. N X,. x X(33)

7 Conclusions 
x X xI

In this paper we have analyzed two class of objects; Then, the functions dCdt aid dNR are:

Straight Homogeneous Generalized Cones (SHGCs) and dC a OX
Planar Right Constant cross section Generalized Cones dt - 34
(PRCGCs). ON

We show the property of the limb boundaries of dNR - = N,, (35)
SHGCs, under both orthographic and perspective pro-

jection, that the tangents of the images of the limb By equation 10 we have X, • N. = 0. Let the normal N
boundaries, if extended from the points on the same of the surface around point P is represented in the (p, q)
cross section, intersect the image of the axis of the SHGC space as N = c(p,q, 1). Where c is the scale coefficient
at the same point. We also show that the cross sections and equal to (p2 +q 2 + 1)-/2. Differentiation of N with
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X. . Nu = -X N+c(z, ) (pu, q., 0) 0 (37) [Huffman, 1971] D.A. Huffman. Impossible objects as
c nonsense sentences. Machine Intelligence, 6:295-323,

We also have N • X, = 0 from 33. Therefore 1971.

[Kanade, 1981] T. Kanade. Recovery of the three-
,p,. + yuq,. = 0 dimensional shape of an object from a single view.

d(p,q). R1 = 0 (38) Artificial Intelligence, 17:409-460, 1981.
du [Koenderink, 1984] J. J. Koenderink. What does the oc-

0 cluding contour tell us about solid shape. Perception,
13:321-330, 1984.

References [Mackworth, 1973] A.K. Mackworth. Interpreting pic-
[Barrow and Tenenbaum, 1981] H.G. Barrow and J.M. tures of polyhedral scenes. Artificial Intelligence,

Tenenbaum. Interpreting line drawings as three di- 4:121-137, 1973.
mensional surfaces. Artificial Intelligence, 17:75-116, [Nalwa, 1987] V. Nalwa. Line drawing interpretation:
1981. Bilateral symmetry. In Proceedings of the Image Un-

73



derstanding Workhop, pages 956-967, 1987. Los An-
geles.

[Nevatia and Binford, 1977] R. Nevatia and T.O. Bin-
ford. Description and recognition of complex-curved
objects. Artificial Intelligence, 8:77-98, 1977.

[Ponce et al., 1989] J. Ponce, D. Chelberg, and W. B.
Mann. Invariant properties of straight homogeneous
generalized cylinders and their contours. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
11(9):951-966, 1989.

[Rao, 1988] Kashipati Rao. Shape Description from
Sparse and Imperfect Data. PhD thesis, University
of Southern California, 1988.

[Shafer and Kanade, 1983] S.A. Shafer and T. Kanade.
The theory of straight homogeneous generalized cylin-
ders. Technical Report Report CS-083-105, Carnegie-
Mellon University, 1983.

[Shafer et al., 1983] S. A. Shafer, Kanade T., and J.R.
Kender. Gradient space under orthography and per-
spective. Computer Vision, Graphics and Image Pro-
cessing, 24:182-199, 1983.

[Shafer, 19831 S.A. Shafer. Shadow geometry and oc-
cluding contours of generalized cylinders. Technical
Report Report CS-83-131, Carnegie-Mellon Univer-
sity, May 1983.

[Stevens, 1981] K. A. Stevens. The visual interpreta-
tions of surface contours. Artificial Intelligence, 17:47-
73, 1981.

[Sugihara, 19861 K Sugihara. Machine Interpretation of
Line Drawings. MIT Press, 1986.

[Ulupmar and Nevatia, 1988] F. Ulupinar and R. Neva-
tia. Using symmetries for analysis of shape from con-
tour. In Proceedings of the 2nd ICCV, pages 414-426,
1988. Florida.

[Ulupinar and Nevatia, 1990] F. Ulupinar and R. Neva-
tia. Perception of 3-d surfaces from 2-d contours. In
Proceedings of the 10th International Conference on
Pattern Recognition, pages 147-154, 1990. Atlantic
City, New Jersey.

[Xu and Tsuji, 1987 G. Xu and S. Tsuji. Inferring sur-
faces from boundaries. In Proceedings of the 1st ICCV,
pages 716-720, 1987. London.

74



Efficient Parallel Processing in High Level Vision

Craig Reinhart *and Ramakant Nevatia t
Institute for Robotics and Intelligent Systems

Departments of Electrical Engineering and Computer Science
University of Southern California

Los Angeles, California 90089-0273

Abstract by a von Neumann machine but the amount of pro-
cessing and the complex control structures required to

We describe a methodology for developing effi- search through a solution space containing permuta-
cient parallel implementations of high level vi- tions of the data soon exceed the capabilities of the
sion algorithms. Efficiency is defined in terms machine. To summarize, computer vision systems chal-
of algorithm speedup, processor efficiency, sys- lenge serial machines through both data intensive and
tem complexity, and programmer burden. Al- compute intensive operations. These challenges have
gorithm speedup and processor efficiency are made parallel implementation of computer vision sys-
critical issues in the parallel implementation tems an important topic within the computer vision re-
of high level vision tasks as the required algo- search community [Ahuja and Swamy, 1984, Weems and
rithms often utilize computationally intensive Levitan, 1987, Kuehn et al., 1985, Little et al., 1987,
techniques. Furthermore, due to their usage Rosenfeld et al., 1986, Hamey et al., 1988, Stout, 1988,
of complex code and data structures, system Sunwoo and Aggarwal, 1989].
complexity and maintenance costs can become We are interested in investigating the inherent con-
excessive if care is not taken in the design of plexities of computer vision systems and how those coni-
the implementation. Most researchers empha- plexities can be tolerated via efficient use of a parallel
size speedup and efficiency with little regard processor architecture. We define efficient in terms of
to system complexity and programmer burden, four measures.
We show that through our design procedure, all Algorithm Speedup is a measure of the reduction in ex-
four issues can be sufficiently addressed. ecution time when moving from a sequential to a parallel

algorithm implementation. This is a standard measure

1 Introduction in the study of parallel processing.
Processor "Efficiency, also referred to as load balanc-

Computer vision systems are comprised of tasks that ing, is a measure of the amount of inherent parallelism,
can be categorized into three levels, low, mid, and or conversely, the amount of inherent serialism, within
high. Across the levels, a wide variety of algorithmic an algorithm as well as how well suited the target par-
techniques are utilized ranging in complexity from sim- allel processor architecture is to the algorithmic require-
pie repetitive processing to elaborate rule-based control ments. This too is a standard measure in the study of
structures. Also, the amount of active data at any given parallel processing.
point in the system execution can range from tens of System Complezity is a measure of how closely the par-
thousands of individual scalar values to a few multi-field allel implementation of the algorithm resembles the serial
record structures. Each diverse algorithm utilized in a implementation, or conversely, how closely it resembles
computer vision system taxes a classical von Neumann the parallel processor architecture. This is a measure
(serial) architecture in one way or another. that we are introducing as it plays an important role in

In low-level vision, the multiplications and additions the life cycle of a computer system, both software and
required by convolutional processing are easily executed hardware.
on a serial machine but the amount of data on which Programmer Burden is a measure of the degree of dif-
they must operate (the image plane) overwhelm it. ficulty in developing and maintaining the parallel algo-
Conversely, the small number of abstract data struc- rithm implementation. This is also a measure that we
tures utilized in high-level vision are easily maintained are introducing as it too plays an important role in the

*Supported by the Hughes Aircraft Company Fellowship life cycle of a computer system.
Program An abundance of research into the parallel implemen-

tThis research was supported by the Defense Advanced tation of low and mid-level vision tasks on a variety of
Research Projects Agency, monitored by the Air Force machines has been performed [Rice and Jamieson, 1985,
Wright Aeronautical Laboratories under contract F33615-87- Little et al., 1987, Kuehn et al., 1985, Stout, 1988,
C-1436 Levitan, 1984, Weems, 1988, Hamey et al., 1988] but lit-
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tle has been done with respect to high-level vision. Fur- Once a parallel processor architecture has been de-
thermore, researchers have placed dramatic emphasis on signed and an algorithm selected, one then proceeds to
the issues of algorithm speedup and processor efficiency, implement the algorithm on the architecture. This is
especially speedup, with little or no regard to system a two step process. The first step is called the mapping
complexity and programmer burden. Typically, the de- problem [Bokhari, 1981] and involves two steps of its own.
rived parallel implementations provide good measures of The second step is development of the actual code. We
speedup and efficiency at the cost of obscure software will not discuss the coding step as it involves the same
and costly, custom built hardware. effort as for a serial algorithm once the mapping problem

In our approach, rather than select a parallel architec- has been solved.
ture then map an algorithm onto it, as is usually done, The mapping problem is solved in two steps, the first
we perform some basic analysis steps in order to identify involves partitioning the algorithm into independent pro-
the inherent parallelism contained within the algorithm. cesses and the second, assigning the processes to indi-
We then specify the components of a parallel processor vidual processing elements. A formal statement of the
architecture that is well suited to the requirements of problem is: the search for a correspondence between the
the algorithm. For a complete computer vision system interaction pattern of the algorithm processes and the
comprised of a variety of algorithms, we specify an ar- communication network topology of the architecture. A
chitecture for each algorithm that is well suited to that good solution, or mapping, is one that minimizes the
algorithm. These architectures can then be realized by communication overhead and thus maximizes the effi-
either a single heterogeneous or reconfigurable parallel ciency and the speedup.
processor architecture. Through this approach we are With this approach, if an algorithm is not well suited
able to address the issues of system complexity and pro- to the given architecture, the designer is forced into de-
grammer burden as well as algorithm speedup and pro- veloping an obscure algorithm implementation which re-
cessor efficiency. sembles the architecture more so than the original algo-

Due to the need for increased through-put in high-level rithm specification.
vision algorithms and the lack of research towards this In our methodology we approach the problem from
end as well as the abundance of results available in the the opposite direction. That is, we begin by analyzing
parallel implementation of low and mid-level vision algo- the algorithm to determine its processing requirements
rithms, our studies are centered around high-level vision, then, using these findings, we specify a parallel processor
In applying our approach to the parallel implementation organization that is well suited to the requirements. We
of a relaxation based image matching algorithm [Medioni proceed in four basic steps:
and Nevatia, 19841 we were able to:

" Achieve significant algorithm speedup. Control Structure Analysis
In this step we identify the independent processes

" Achieve significant processor efficiency. that constitute the algorithm through inspection of
" Design a parallel processor architecture consisting the processing constructs. Of primary interest are

of commercially available components. iterative constructs (loops) that determine the over-
* Utilize software that is nearly identical to that used all complexity of the algorithm and offer potential

in the serial implementation. for parallelization. This step results in the identifi-
cation of the inherent parallelism contained within

In the following sections we present our methodology the algorithm.
for developing parallel implementations of computer vi-
sion algorithms and the application of the methodology Data Structure Analysis
to the relaxation based image matching algorithm. In this step we determine the data requirements of

each process identified above. The result of this step
2 The Methodology is the specification of which data structures to par-

tition and how to partition them (distribute them
Research into the parallel implementation of computer among proces-es.)
vision systems classically begins with the specification
of a parallel processor architecture [Little et al., 1987, e Communication Analysis
Stout, 1988, Reisis and Prasanna-Kumar, 1987]. This Identification of the independent processes and the
includes the specification of various organizational pa- data structure partitioning scheme will determine
rameters such as: Programming model, SIMD, MIMD, or the communication requirements between the pro-
MISD [Flynn, 19721; Processing elements (PEs), simple cesses. That is, a data structure may be distributed
or complex instruction set; Processing element coupling, among processes such that one process is assigned
tightly (shared memory) or loosely (message passing); a data item required by another process to com-
Processor homogeneity, homogeneous (identical process- plete its task. In this step such requirements are
ing elements) or heterogeneous (two or more different determined as well as the appropriate communi-
types of processing elements); Processor synchroniza- cation protocols for their implementation, such as
tion, synchronous, asynchronous, or loosely synchronous; synchronous message passing among all processes,
and Communication network topology, cube, mesh, pyra- asynchronous message exchanges between two pro-
mid, ... Details on these and other organizational pa- cesses, message broadcasting and reduction. The
rameters can be found in [Hwang and Briggs, 1984]. result of this process will lead to the specification of
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the communication network topology of the archi- o. R , s

tecture. MODEL . :E

e Architecture Specification . R,

Given the results of the previous steps, this step , o A, 0 A.

is where we specify the architecture in terms of its
organizational parameters. The result is the specifi-
cation of a parallel processor architecture well suited Figure 1: Window construction.
to the requirements of the specified algorithm in
terms of speedup, efficiency, system complexity, and
programmer burden. 3.2 Algorithm Description

This image matching algorithm [Medioni and Neva-
We have found that this approach produces high de- tia, 1984] receives input images from two independent

grees of speedup and efficiency via software that resem- sources and then attempts to construct a list of corre-
bles the serial implementation of the algorithm and is spondences between them using a relaxation based ap-
therefore no more difficult to develop and maintain. Fur- proach. We provide an overview of the algorithm with
thermore, this approach lends itself to the design of par- enough detail to discuss our algorithm mapping method-
allel implementations of complete computer vision sys- ology. For details and explanations beyond the scope of
tems (heterogeneous algorithm suites) which can be im- our discussion, the reader should see the referenced work.
plemented via a reconfigurable or a heterogeneous par- The primitives used by the image iatching algorithm
allel processor architecture. are linear segments, represented symbolically by their

end point coordinates, orientation, and average contrast.
3 Image Matching - An Application Given two sets of linear segments extracted from two im-

ages (or an image and a map), the object is to find cor-
3.1 Overview respondences between the segments of each set based on

their symbolic descriptions (local constraints) and on the
Matching of two images (or a map and an image) is a geometric relationships between segments of the same
fundamental operation in computer vision. Various so- image (global constraints.) The assumptions made prior
lutions to the problem of finding correspondences be- to matching are that: 1) the orientations of the two im-
tween images have been proposed ranging from correla- ages are nearly the same; and 2) the scaling factor from
tion [Rosenfeld and Kak, 1976 to graph isomorphism one image to the other is approximately known.
[Ghahraman et al., 1980]. One primary distinction The set of primitives, A = {ail < i < n}, from one
among the proposed solutions is the level of description image is called the SCENE and the primitives, a1 , are
at which the matching is performed. Correlation based called OBJECTS. The set of primitives, L = {lIi1 < j <
techniques typically operate directly on sensor data (pix- m}, from the other image is called the MODEL and the
els) whereas graph based approaches often utilize seman- primitives, li, are called LABELS. The algorithm pro-
tic structures such as roads and buildings. ceeds to compute the quantity p(i,3 ) in {0, 1}, which is

The image matching algorithm used in our study uti- the POSSIBILITY that object ai corresponds to label
lizes a discrete relaxation based approach to matching. li. It is possible that an object has no corresponding
It determines correspondences between line segments de- label due to occlusion or scene change, that several ob-
tected in each image based on symbolic descriptions of jects correspond to the same label due to fragmentation,
the segments as well as geometrical relationships be- or that an object corresponds to several labels due to
tween segments. The algorithm iterates over the solution merging. The method for computing p(i, j) relies on geo-
space until a stable state is converged upon. metrical constraints, that is, when a label, 1j, is assigned

This algorithm was selected for study due, primarily, to an object, ai, we expect to find an object, ah, with a
to its applicability to high-level vision. But, the basic label, IA, in an area defined by i, j, and k. The area is
approach utilized in the algorithm, relaxation, has been called a WINDOW and is denoted w(i,j, k).
used in other applications as well (Waltz, 1972, Rosenfeld The method for computing w(i, j, k) is as follows. The
et al., 1976, Faugeras and Price, 1981, Rosenfeld and object, ai, is represented by the two dimensional vector
Smith, 1981, Terzopoulos, 1986, Rutkowski et al., 1981]. A,B, and the label, l, by P1Qj. By "sliding" lI over
Therefore, the results of this study can be generalized ai an area is described by the corresponding motion of
to various other applications in low, mid, and high-level label 1&, PkQ& (figure 1.) This parallelogram shaped area
vision, is the window w(i, j, k).

In the following sections we present details of the ap- Two object/label assignments, (i, j) and (h, k), are
plication of our methodology to the relaxation based im- COMPATIBLE, (i,j)C(h, k), if and only if object ah lies
age matching algorithm. We present a brief description within window w(i, j, k) and object ai lies within window
of the algorithm, application of the four steps that con- w(h, k, j).
stitute our methodology, and a discussion of the results Using these definitions, the algorithm searches for ob-
of the application in terms of our four measures, algo- ject/label correspondences by first identifying all possi-
rithm speedup, processor efficiency, system complexity, ble correspondences based on the symbolic descriptions
and programmer burden. of the objects and labels. This set of correspondences
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Figure 2: Image matching algorithm primary flow. Figure 4: Image matching primary control loops.

whle;Rg 3.3 Control Structure Analysis
slag = 0;
/' Iteration of possibilities /co mpa Iibililie. In analyzing the control structure of an algorithm our
for (i = 0; i < suuuber..of..objects; ++i)

for (j = 0; j < nember..ofiabel.; ++j) objective is to determidne its overall time complexity and
if (plil) W if p(t)(ij) == I to identify the specific structures that dictate that time

card- = 0;complexity, typically loop constructs. We call these con-
/* Iok ete obet/aelagmen pt to, structs primary control structures. Identification of the
fo k=0 <h ob ucll be as.gamelt. ++ )J/ oIl aesw primary control structures will help us to identify inde-
for (h= 0; < .mber~s.f.abeles;] 4.+) { o all label.k) pendent processes and thus, identify areas where par-

It = 0. found = 0;aleimcnbapleprvdnsinfatagoth
while ((ki < samuber-of..objects) At& (!foamd)) J leimcnb ple rvdn infcn loih

a! (pi[hb J& inwindo w(objectslhl. wia..ujk) speedup.
++&; osaileoiceilaesl hetshlbiIl The time complexity of the image matching algorithm

) /* while ((k < viamber.of.ohjects) ... 11 is determined as follows. Given a scene containing ni
++caId.a; objects and a model containing m labels, the maximum
P/ for (h. *1 number of possible object/label pairs is nm, which oc-

if (cardiS <) 0 curs when every object is similar to every label. At
sag = 1; each iteration at most one object/label pair is discarded,
pUllil = 0.,s t :sis 0teeoe
I /' if (card-& .. e that itspossibility isset to 0thfe, the process
P( wif (WIag ... converges in at most nm iterations. During each iter-

while(gag)ation the algorithm computes the possibility of the ob-
ject/label pair which is a measure of how well it 'fits' with

Figure 3: Serial code for image matching algorithm, the remaining object/label pairs. In the worst case, this
requires investigating nm pairs. Therefore, the comiplex-
ity of the algorithm is 0(n 2 m 2 ). If we assume an equal

contitte th posiiliiesatiteatin tep0, p ,, ). number of objects and labels, m, the algorithm timne
contittestheposiblites t ieraio stp 0 p0 i, ). complexity can be expressed as 0(m 4'). Figure 4 shows,

Subsequent values of p(i,j) are computed by the itera- pictorially, the four nested loops which implement this
tion formula: time complexity. These constitute the primary control

structures.
V(i,ji), pt~l(i,j I if pt(i,) I AND Nested within the four loops is the possibility computa-

3 subset S of [1, m] (labels) with q elements such that tion. As described above, it consists of checking whether
Vs in 5, 3k in [1, n) (objects) such that pt (k, a) = I and or not a given object/label pair has any compatible ob-

(i, j)C(k, a). ject/label pairs. This, in turn, requires the computation
of a window and the search for an object within it. Once

The algorithm halts when V(i, jp+ 1 (i, j) = pf(i, j). a candidate object/label pair, (at, 1,), has been queued,
The value q is the fit parameter. If a perfect match the pobsibility computation, p(ij), can proceed as m2"

is desired then its value should be set to m, the number independent computations. Each comnputation is struc-
of labels. Otherwise it should be set to a value deter-. tured so that it operates on an isolated data set, that is,
mined by the desired degree of match between the two successive passes through the inner loops (the possibility
images. A flow diagram of the image matching algorithm computation) are independent of one another. Thus, the
is provided in figure 2 and a code segment from the serial possibility computation can proceed as multiple paraliel
imple!mentation in figure 3. processes and has the potential to provide significant al-
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Figure 7: Image matching horizontal swath partitions.

the same (ai, Ij) pair, the object/label assignment under

.................. .Servers consideration, and each receives a unique (ah, lk) pair,
Client an object/label assignment that determines the globalconsistency of the pair under consideration. From these

inputs the windows, w(i, j, k) and w(h, k, j), are formed.
Figure 5: Client/Server algorithm partitioning. The relation (i, j)C(h, k) is then computed by determin-

ing whether or not ah lies within w(i, j, k) and ai lies
within w(h, k, j). A value of 1 is returned if the relation
holds, otherwise a value of 0 is returned. The value of
p t+(i, j) is determined by summing the results from all

11 L of the individual processes and comparing that sum to
Lo , the fit parameter, q.

If we assume the availability of N = m 2 processing
elements, the obvious way of partitioning the data struc-
tures is to assign each PE, 0 < p < N- 1, an object/label
pair, (ah,l&) E AxL. If the number of processing ele-

Figure 6: Image matching primary data structures. ments available is less than m 2 , that is, N < m, then
the most intuitive way, from a programmer's viewpoint,
to partition the data structures is to assign cach PE,

gorithm speedup. For these reasons, it constitutes our 0 < p < N - 1, to a 1/N sized portion of the Ia-
process partitioning scheme. bel array and the entire object array thus giving each

Having selected the possibility computation as the a set Sp = {(ah, lk)I1 < h < m, p * (m/N) < k <
process with which to partition the algorithm, we have p * (m/N) + m/N - 1}Vp : 0 < p < N - I of objects
produced a client/server model. That is, one process and labels. This creates N horizontal swathes through
will queue possible object/label pairings via the outer the possibility matrix as depicted in figure 7. These hor-
two primary control loops, constituting the client, and a izontal swathes constitute our data partitioning scheme.
set of independent processes will determine the possibil-
ity of that pairing via execution of the inner two control 3.5 Communication Analysis
loops and their encompassed procedures in a distributed Having designed our process and data partitions, we
fashion, constituting the servers. Figure 5 shows the must now identify the inter-process communication re-
client/server algorithm partitioning. quired to complete the parallel implementation.

As described previously, a possibility computation re-
3.4 Data Structure Analysis quires access to the object/label pair under consider-
Having identified the possibility computation as the task ation, (ai, 1i), provided by the client process, and the
on which to partition the algorithm into processes, we set of possible object/label pairs from which the server
must now determine the data requirements of each con- processes compute a degree of support. The set of pos-
putation. In doing so we will identify the primary data sible pairs are statically distributed among the server
structures and determine an appropriate partitioning of processes once, upon algorithm initiation, as described
these structures. above. Conversely, the pair (ai,lj) must be provided

For the image matching algorithm, three primary data to each server, dynamically, by the client process. This
structures can be identified. The first two are linear ar- is achieved via a broadcast operation from the client to
rays of size n of symbolic records, one array each for every server.
storage of the set of objects and the set of labels. The Having received (ai, 1,), each server process computes
third data structure is an mxm matrix of logical val- a degree of support for the pair based on its set of pos-
ues that store the results of the possibility computation, sible object/label pairs (its data partition.) Upon com-
pt (i,j), for each iteration, t. Figure 6 shows the primary pletion, each server reports its degree of support to the
data structures, pictorially, client where the individual degrees of support are corn-

Each possibility computation (process) requires two bined into a single result and the possibility computa-
entries from the object array, ai and ah, and two entries tion, pt(i,j), is completed. This is achieved via a reduc-
from the label array, i and IA. All processes receive tir operation from every server to the client.
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Finally, the client must report pt(i, ) to the server specification of the primary data structures in a natu-
process whose data partition includes the pair (ai, 1i) so ral way, that is, via multi-field records. Processors best
that it can update its possibility value. This is achieved suited to these constraints are of the complex instruction
via a point-to-point send/receive operation from the set variety such as a general purpose microprocessor.
client to the particular server. Processing Element Coupling. As the communication

In summary, our process/data partitioning scheme re- between processes is in bursts, that is, at the beginning
quires three types of communication: 1) broadcast; 2) of each possibility computation (the broadcast) and at
reduction; and 3) point-to-point send/receive, the end of each possibility computation (the reduction),

This concludes the analysis steps of our methodology a tightly coupled or shared memory system would not
as applied to the image matching algorithm. We have suffice because of memory access conflicts. Without spe-
described the algorithm, identified its primary control cial protocols to allow concurrent reading and writing of
structures, identified its primary data structures, parti- memory, a communication bottle neck would exist. Bet-
tioned it into independent processes, and identified all ter suited to the algorithm is a loosely coupled or rues-
required inter-process communication. Our remaining sage passing architecture. These systems facilitate high
task is to specify a parallel architecture well suited to bandwidth communication without the requirement of
the requirements identified by our analysis. This is pre- special purpose hardware.
sented in the following section. We then present an eval- Processor Homogeneity. Our partitioning scheme pro-
uation of the system design arrived at via our method- vides each server process with identical tasks. The client
ology through architecture simulation and actual imple- process is computationally similar to the server processes
mentation. in that it utilizes the same data structures as well as

similar logic. Therefore, the parallel architecture should
3.6 Architecture Specification be homogeneous, that is, comprised of a set of identi-
In specifying a parallel processor architecture we must cal processing elements. This facilitates programming
address various organizational parameters: Program- (reduction of programmer burden) as well as hardware
ming mode4 Processing element type; Processing element interfacing of processing elements (reduction of system
coupling; Processor homogeneity; Processor synchroniza- complexity.)
tion; and Communication network topology. Whereas Processor Synchronization. In light of the fact that
in the classical approach this is done prior to the algo- there is computational similarity between all of the iden-
rithm analysis, that is, the parallel implementation of tified processes as well as data dependent processing,
the algorithm is specified for a particular parallel archi- the parallel architecture should operate in loosely syn-
tecture, we base our specification of these parameters on chronous mode. That is, all processes incorporate iden-
the results of our algorithm analysis. In the following tical copies of the program, with the exception of the
paragraphs we address each of these organizational pa- client process, and execute under control of their own
rameters and discuss how they are influenced by the pro- program counter. Synchronization occurs only at points
cessing requirements of the image matching algorithm, of communication. As we shall see, this also facilitates

Programming Model. The image matching algorithm programmability of the implementation which reduces
(more specifically, the possibility computation) con- system complexity and programmer burden.
tains various processing steps that are data dependent, Communication Network Topology. Perhaps the most
that is, all data items are not processed identically. interesting aspect of a parallel processor architecture
The Multiple Instruction Multiple Data programming is its communication network topology, the processing
model is best suited to this situation. In this model element interconnect pattern. As we showed via the
each processing element can execute code dictated by its communication analysis, the image matching algorithm
particular data items. Conversely, the algorithm could places three constraints on the communication network
be implemented under the Single Instruction Multiple topology. The first is that it must facilitate an efficient
Data programming model, as demonstrated in [Reisis broadcast operation, the second is that is must facilitate
and Prasanna-Kumar, 1987], but processing elements an efficient reduction operation, and the third is that
would spend a great deal of time "idling" through code it must facilitate an efficient point-to-point send/receive
which is not applicable to their data items and thus, operation. In the following paragraphs we consider each
reduce the processor efficiency. of these constraints.

Processing Element Type. Computation of the com- With regard to the broadcast operation, the ideal mies-
patibility relationship, (i,j)C(h,k), between to pairs sage passing architecture is one containing a single corni-
of object/label correspondences, (ai,li) and (ah,lk), mon bus to which all processing elements are connected.
requires computation of two windows, w(i,j,k) and In this topology a broadcast operation is completed in
w(h,k,j), as well as whether or not the objects a and 0(1) time.
ah lie within the respective windows. These compu- With regard to the reduction operation, the ideal algo-
tations require the use of transcendental functions as rithm requires f)(log n) time, that is, "order no less than
well as floating point arithmetic (unless integerization is logn time", assuming concurrent read and write opera-
performed.) Therefore, the processor utilized must sup- tions are forbidden [Cole and Vishkin, 1986]. This ideal
port these computations. Furthermore, to reduce system time is achieved by an algorithm that utilizes a divide
complexity and programmer burden, the processor must and conquer approach. The result is obtained by divid-
be programmable in a high-level language that allows ing the data set into two halves, finding the two partial
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results, and combining the partial results to get the final That is, for N processing elements, algorithm speedup
result. The dividing is done recursively until the data is defined as
sets are indivisible. Such a divide and conquer scheme S ,N
yields a binary tree with n 2 nodes with the data items - TN

starting at the leaves. For the image matching algorithm where T and TN are the elapsed times for I and N
the data items, the objects and labels used to determine processing elements, respectively.
the global validity of a queued object/label correspon- Processor efficiency is defined as the average utiliza-
dence, can be distributed among all nodes of the tree, tion of the available processing elements and can be spec-
not just the leaves. ified in terms of algorithm speedup, SNv. For N process-

With regard to the point-to-point send/receive opera- ing elements, processor efficiency is defined as
tion, the ideal message passing architecture is, again, one EN = -.
containing a single common bus to which all processing If the efficiency, EN, of a parallel implementation re-
elements are connected. In this topology a send/receive mains constant (ideally 1) as the number of processing
operation is completed in 0(1) time. elements, N, is increased, the parallel iniplenientation of

The reduction operation produces the most stringent the algorithm is said to have achieved linear speedup.
constraint dictated by the image matching algorithm.
A communication network topology that facilitates this 3.7.1 Complexity Analysis
operation will also facilitate the other two as they are Previously we determined the complexity of the im-
of lower order complexity. Therefore, for parallel im- age matching algorithm to be O(m 4 ), assuming an equal
plementation of the image matching algorithm, the pro- number of objects and labels, m. This is due to the
cessing elements should be connected via a binary tree nested loop structure of the algorithm where every ob-
topology. ject/label pair, (ai,l1), is checked against every other

To summarize, the organizational parameters of a par- object/label pair, (ah, lk) for compatibility.
allel processor architecture that is well suited to the im- In our partitioning strategy, we distribute the m 2 con-
age matching algorithm should be specified as follows: patibility computations for each object/label pair "ossi-

* Programming model - MIMD bility computation evenly among the N processing el-
ements. Therefore, barring the existence of any data

" Processing elements - Complex Instruction Set dependencies or overhead, we expect to achieve O(N)
Computers speedup and complete processor utilization, that is, an

" Processor coupling - Loosely Coupled efficiency of 1. Unfortunately, both data dependencies
and overhead exist.

" Processor homogeneity - Homogeneous The data dependencies contained within the image

" Processor synchronization - Loosely Synchronous matching algorithm can be expressed in terms of the pos-
sible correspondences between objects and labels. Let us

" Communication network topology - Binary Tree define the value P to be the set of possible object cor-

This completes the application of our methodology to respondences for each label 1j, 1 < j 5 m. We can then
the image matching algorithm. In the next section we define
present an evaluation of the system design in terms of P=max, Pi I,
our measures; algorithm speedup, processor efficiency, ,~, a
system complexity, and programmer burden. P and

k _-
3.7 System Evaluation The value k is an indication of how evenly the ob-
Having completed our parallel implementation of the im- ject/label correspondences are distributed. For instance,
age matching algorithm, we now present an evaluation if every label forms possible correspondences with the
of the implementation in terms of our four measures. same number of objects, k will be 1. Conversely, if one
The evaluation is performed on the basis of three "data label forms possible correspondences with a large num-
points." First, w-- use a serial implementation of the al- ber of objects and the remaining labels form possible
gorithm as a baeline with which comparisons can be correspondences with a small number of objects, then k
performed. Second, we use a simulation developed to will be large.
analyze the implementation relative to any number of Using these definitions, the ezpected values for algo-
processing elements. Third, we use an actual system im- rithm speedup and processor efficiency for our imple-
plementation utilizing INMOS Transputers (INM, 19891 mentation of the image matching algorithm (barring any
to bring validity and feasibility to the entire study. overhead) are

As we stated earlier, most research in the field of par- - and
allel processing of computer vision algorithms is primar- SN
ily concerned with algorithm speedup and processor ef- E = 1'
ficiency. For this reason we begin our evaluation and As an appeal to one's intuition, consider the following
discussion with these two measures. cases. Recall that our data partitioning scheme calls

Algorithm speedup is defined as the ratio of elapsed for the assignment of a set of object/label pairs to each
time when executing a program on a single processor processing element. If all sets contain an equal number
to the elapsed time when N processors are available, of possible correspondences, then
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P = P=k -"I=>= Problem T T2T T1Is T,
$ = N and E , = 1. 12 10.53 5.22 3.73 3.13 - 1.0.

This implies that each processing element is assigned the 24 '-167.57 97.08 63.23 53.43 18.83 9.3f
same amount of work. If one set contains more possible 36 870.90 473.82 342.62 271.02 90.52 31.1!
correspondences than all of the rest, 3i : JPj I >PVi 48 2743.32 1487.00 1057.93 792.52 283.43 72.T

j, 1 < i < m, then 50 6.43 3.45 2.37 1.78 0.58 0.2:
100 33.60 18.10 12.13 9.15 2.75 0.5

> P => k > 1 =:> 200 271.80 140.72 95.78 68.75 19.15 1.8
Sv < N and Ev < 1. 51 1 75.07 39.37 28.67 1 21.78 6.82 2.1'

This implies that the processing element assigned the set 102 1 1091.93 552.42 1 375.27 1 300.35 83.28 18.31
Pi must do more work than any of the other processing 153 6620.68 3396.95 2267.65 1700.68 547.67 78.0

elements.
These expected values are to be considered estimates Table 1: Execution times from simulation.

of the overhead incurred by the implementation due to
data dependencies. One must remember that the actual Problem $1 - S S3 S4 S5s- _S_

distribution of possible object/label correspondences is 12 1.00 2.02 2.82 3.36 - 9.75
dynamic as it is the goal of the algorithm to reduce this 24 1.00 1.73 2.65 3.14 8.90 18.02
to a canonical set of correspondences via the relaxation 36 1.00 1.84 2.54 3.21 9.62 27.96
operation. Furthermore, the algorithm contains some 48 1.00 1.84 2.59 3.46 9.68 37.73
inherently serial operations, those of the client process, 50 1.00 1.86 2.71 3.61 11.09 27.96
that must be taken into consideration in light of the 11 1.00 1 .86 2.77 3.67 12.22 58.95
overall performance analysis. Actual values of algorithm 200 1.00 1.93 2.84 3.95 14.19 145.35
speedup and processor efficiency will vary due to this dy- 51 1.00 1.91 2.62 3.45 111.01 34.59]
namic behavior and serialism. The goal is to minimize 102 1.00 1.981 2.91 3.64 13.11 59.67
the effects of these on the performance of the parallel 153 1.00 1.95 2.92 3.89 12.09 84.86
implementation.

3.7.2 Measured Performance Table 2: Speedup from simulation.

To measure the actual values of algorithm speedup and
processor efficiency we devised three test cases. The first
is comprised of two identical images containing multiple The system is comprised of one to four aNMOS Trans-
vertical lines. In this scenario k = 1. The second is com- puters but is expandable to incorporate any number of
prised of an image containing one vertical line and mul- processing elements without any system redesign.

tiple horizontal lines and an image containing one hor- Tables 4, 5, and 6 show the measured execution times,

izontal line and multiple vertical lines. In this scenario algorithm speedup, and processor efficiency, respectively,
k = m/2 where m is the number of labels. The third for the various test cases and problem sizes.

is comprised of two identical images containing lines ex- Although our data points are sparse, the tables do in-

tracted from an airfield image. In this scenario k = 1.67. dicate the following trends in terms of algorithm speedup

Table 1 shows the execution times for the three scenar- and processor efficiency for our parallel implementation

ios when instantiated with various problem sizes. The of the image matching algorithm:

first four rows are for the first scenario with the number * The implementation is most effective when the
of labels, m, being 12, 24, 36, and 48. The next three problem size is large, that is, when the number of
rows are for the second scenario with the number of la- possible object/label correspondences is large.
bels being 50, 100, and 200. The last three rows are for e The implementation is most effective when the nuni-
the third scenario with the number of labels being 51, ber of processing elements is less than or equal to
102, and 153. Simulation runs were done with the num-
ber of processing elements being 1, 2, 3, 4, 15, and m,
the number of labels. These are represented by the sixProblem - E -E Els E.
columns. Proble_ Ei E _ E _ E E _,

Table 2 shows the measured speedup for each of the 12 1.00 1.00 0.94 0.84 - 0.81
24 1.0010.86 0.88 0.78 0.59 0.75

test cases and table 3 shows the efficiency. One should 34 1.0010.92 0.85 0.8 0.64 0.78

note that these measured values do not include over- 48 1.00 0.92 0.86 0.87 0.65 0.79

head for inter-processor communication. They strictly 50 1.00 0.93 0.90 0.90 0.74 0.55

reflect the algorithm speedup and processor efficiency as 10 1.00 0.93 0.92 0.92 0.84 0.58

affected by our process and data partitioning schemes 00 1.00 0.97 0.95 0.99 0.91 0.73

and the data dependencies. 2 0 095 0.87 0.86 1 0.73 0.68

To observe the effects of inter-processor communica- 1 1.00 0.99 0.7 0.96 0.73 0.8

strate a complete application of our methodology) we 153 - 1 - - -

also developed an actual parallel processor system based
on our implementation of the image matching algorithm. Table 3: Efficiency from simulation.
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Problem 1 7 2 7 T4 fa = 1;whle (11g)
8 5 4 3 aug = 0;

for (i = 0; i < &umbe..of.objecte; ++j)

36 [11 38 28 185 for (j = 0; j < number.oflabel; ++j)
48 1815 1060 747 582 1(Pili)) { / if P(t)(ij) == I /

card.& = 0;

050 71 5 4 4 1SEND OBJECT/LABEL ASSIGNMENT PAIR TO CHILDREN
00 31 23 19 178 (BROADCAST).

159 106 - 3 -8 j* Compete the degree of support for the object/labcl ./
51 60 34 23 21 /- ssigomeat pro.ided by this PB, I/tb of the label table. /

102 839 439 303 233 for (k . 0; I < my-shre; ++k) { for my share of labels /

1 4 6 2make.w udow(objectlil, Ibelelj. labelslk. wi na jk);153 4063 2112 1373 1080 h = 0; foumed = O;,
while ((k < sumber.-f.object) && (found)) b

it (plk)[h) &k in-wiadow(objecialls), win-ijk)

Table 4: Execution times from Transputer implementa- ++b;
tion. )/I while ((h < amber.of.object,) ...

if (found)
++card.o;Problem S, S2 S3 S4 }* f"or (k =.... -/

12 1.00 1.60 2.00 2.67 RECEIVE CONTRIBUTIONS FROM CHILDREN (REDUCTION).

24 1.00 1.68 2.38 2.98 card-& += left-child-co.trib.tioa;

36 1.00 1.72 2.44 3.14 crd.-- += righkc.i&. coatributio,;

48 1.00 1.71 2.43 3.19 if(crds < q){

50 1.00 1.26 1.52 1.54 flat = ,;
pultii = 0;

100 1.00 1.36 1.63 1.73 }/" if,(card,.
200 1.00 1.50 I 1.91 [2.05 SEND CHANGES TO THE PE WITH PAIR (ij).

51 1.00 1.76 2.40 2.86
1 4. ) I' - - -} if (pil]. /102 1.00 1.91 2.77 3.60 / f while (nag)...

153 1.00 1.92 1 2.96 76

Table 5: Speedup from Transputer implementation. Figure 8: Client code for parallel image matching algo-
rithm.

the number of labels (when data dependencies aretaken into account.) implemented on a serial machine. The prol~ramming lan-
guage was 'C'[Kernigan and Ritchie, 19781. In figures 8

e In light of the previous items, inter-processor com- and 9 we show program segments for the client and server
munication does not dominate the implementation. processes, respectively, also written in 'C'. Note that the

We now focus our attention on our two new measures, algorithm-specific constructs are identical in the serial
system complexity and programmer burden. and parallel programs. The only differences are the in-

3.7.3 System Development and Maintenance clusion of the subroutine calls to perform inter-processor
communication. Therefore, one can conclude that theAs stated earlier, system complexity is a measure of complexity of the parallel software is no greater than

how closely the parallel implementation of the algorithm that of the serial implementation. This is attributable

resembles the serial implementation. It can also be to the fact that the parallel implementation was designed

viewed as the amount of effort (cost) required to real- based on the structure of the algorithm, and not on the

ize the parallel implementation of the algorithm. structure of the aloritento.

Previously, we showed a program segment for the i- structure of the parallel processor architecture.
age atcingalgrith's rimry ontrl srucure as Programmer burden is a measure of the degree of dif-

age matching algorithm's primary control structures as ficulty in developing and maintaining the parallel algo-

rithm implementation. It call also be viewed as the
amount of effort (cost) required to modify and debug

Problem El E2 E E4 the parallel software in light of algorithm modifications.
12 1.00 0.80 0.67 0.67 In computer vision, this measure is critical due to the24____ 1l.00 0.84 0.79 0.766 10 -4 0 0 fact that the vision problem is far from being solved and
36 1.00 0.86 0.81 0.79 algorithm refinements arrive at a high rate.
50 1.00 0.86 0.81 0.86 As discussed above, the software for the parallel imple-

1 .0 0.68 0.510.43 mentation of the image matching algorithm is identical
2008 0.54 0.43 Wto that of the serial implementation as far as algorithm5 1.00 0.75 0.4 0.5 specific constructs are concerned. Therefore, algorithm

51 1 1-0 1 debugging and modifl:ation can take place in the serial102 00 0.96 10.921 0.90environment where advanced tools are readily available153 0.94 0.and then ported directly to the parallel environment. Us-
ing this technique, once we achieved a "bug free" version

Table 6: Efficiency from Transputer implementation. of the algorithm on a serial computer, we were able to
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does. 0, the SIMD machine. Finally, any modification of the im-
while (dome) { plementation (algorithm) would require intimate knowl-

RECEIVE OBJDCT/LABL PAIR FROM PARENT (BROADCAST). edge of the algorithm, the architecture, and the imple-
SEND OBJBCT/LABBL PAIR TO CHILDREN (BROADCAST). mentation as is the case with most "classical" parallel
/* Compte Ihe degree of spport for the obj.ctllabel / algorithm implementations.
/* assigameat provided by this Ps lIath of the label table. W/ We have shown that these situations can be overcome
coatribation = 0; by design (or selection) of a parallel processor architec-
for (k = 0; k < myshare; ++k) { for my share of labels / ture based on the processing and data requirements ofmake-wiadoin(objects-i, laboisj, labels~ki, wia..ijk);

h dot0s fnd = 0; the algorithm rather than specifying the algorithm im-
while ((h < mbe..,of.objects) && (fouad)) { plementation to meet the specifications of the parallel

if (p[hlkh] && ia-wiadow(objectsfh], wia.ijk)
fouad = compatible(objccts[il, labeloU], objectslhj, labelski); processor architecture.

) /I while ((h < aumber.of.objects) ... *1
if (found) 4 Summary

++cad s;

)/- for (k .... "

RECEIVE CONTRIBUTIONS FROM CHILDREN (REDUCTION). We have described a methodology for mapping algo-
rithms onto parallel processor architectures. Utilizingcatd.A += left child-con t ibut !on;

card_. += ,ilt.childcoatibtio; our methodology to analyze, simulate, and implement a

commonly used algorithmic technique, relaxation, we ex-
REPORT THE CONTRIBUTION TO THE PARENT (REDUCTION¢), posed various characteristics common among high-level
RECEIVE CHANGES WHEN APPLICABLE. vision algorithms that must be considered when design-

SEND CHANGES TO CHILDREN WHEN APPLICABLE. ing a parallel implementation if the goals of maximized
/ hile (fla). algorithm speedup, maximized processor efficiency, min-

inized system complexity, and minimized prograniner
burden are to be achieved. These characteristics include:

Figure 9: Server code for parallel image matching algo- 1) the use of complex program logic; 2) the existence of
rithm. subtle data dependencies; 3) the use of heterogeneous

data structures; and 4) the dynamic nature of the data.
As shown in [Reisis and Prasanna-Kumar, 19871, when

get it running in parallel in approximately twelve hours, designing an implementation targeted for a specific par-
The primary effort was in validating the inter-process allel processor architecture these issues either cannot be
communication. But, once validated, the code that im- sufficiently addressed or require extremely convoluted,
plements the communication is functionally portable to unintuitive solutions which lead to an implementation
other algorithms that utilize the same communication which is difficult to develop and maintain. In applying
network topology and need not be validated again, our methodology we have shown that all of these issues

Therefore, we can conclude that we have minimized can be addressed without sacrificing any of the goals.
the measure of programmer burden in that the devel- We are currently applying the methodology to other
opment and maintenance efforts for the parallel imple- stand-alone computer vision algorithms as well as to
mentation were performed, predominately, in the serial complete computer vision systems to determine its util-
environment. ity in specifying a reconfigurable or heterogeneous paral-

This image matching algorithm was previously lel processor architecture for implementation of such an
mapped onto a parallel processor architecture via the algorithm suite. We are also investigating the usefulness
classical approach of specifying an architecture then (cost versus payoff) of dynamic data partitioning (k1cd
mapping the algorithm onto it [Reisis and Prasanna- balancing) schemes in there application to high-level vi-
Kumar, 19871. In that study the specified architecture sion algorithm implementations.
was a 2D mesh connected SIMD architecture consist-
ing of relatively simple processing elements, a parallel References
processor architecture well suited to low-level computer
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Abstract

The detection of edges is only one of the first steps in the understanding of images. Fur-

ther processing necessarily involves grouping operations between contours. We present a

representation of edge contours by approximating B-splines and show that such a repre-

sentation facilitates the extraction of symmetries between contours. Our representation is

rich, compact, stable, and does not critically depend on feature extraction whereas inter-

polating splines do. We turn our attention to the detection of two types of symmetries,

skewed and parallel, which have proven to be of great importance to infer shape from con-

tour, and show that our representation is computationally attractive. As an application,

we show how parallel symmetries can be used to infer the 3-D orientation of a torus from

its intensity image.

1 Introduction

Edge detection is not a goal in itself, but has to be considered as one of the steps in the

processes involved to understand images. The question therefore arises of representing the

contours formed by edgels (edge elements).

Iconic representations, such as edge maps, or chain codes [11J do not make the necessary

information explicit: by definition edgels only capture very local properties of an image, and

the inference of higher structures, such as object boundaries, requires grouping operations.

We believe that such operations rely on basic and simple properties and various forms of

symmetry [18]. The representation must therefore make explicit differential properties of

contours, such as tangent and curvature. Furthermore, because of the variability inherent
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in the imaging process, the representation should be tolerant to noise, partial occlusion,

and perspective, naturally suggesting segmented, local descriptors [30].

If the world was composed of polyhedral objects alone, we would know to expect only

straight line segments in images, and polygonal approximations such as performed by

the Linear package [22] or Hough transforms [2] would be appropriate. In many cases,

such approximation is indeed appropriate, as demonstrated by several applications such as

stereo [16], aerial image understanding [13] or object recognition [19, 33], but is unable to

capture curvature information, since it is a first order approximation. Also, if a contour is

smooth, the number of points required to approximate it may be quite large, and the exact

position of the points somewhat unrelated to the contour itself. Another possibility is to

use a mixture of curves and lines [25] but it leads to unstabilities of the description when

we switch from one to another.

These issues have been tackled by the graphics community in the context of design, and

we propose to use some of the resulting tools, particularly B-splines.

In the next section, we briefly review some of the successful applications of B-splines

to contour representation in computer vision, but propose that approximating splines are

more appropriate than interpolating splines because they are more tolerant of segmenta-

tion errors. We derive the equations and present results demonstrating that the resulting

representation is compact and faithful to the original data for smooth or piecewise smooth

contours, open or closed.

We then turn our attention to an application ideally suited for our representation,

the detection of symmetries. Whereas it is easy to define symmetry between two infinite

straight lines, the concept of symmetry between curves is harder to define: Rosenfeld [31]
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provides a lucid account of the differences between Blum's [4], Brooks' [7], and Brady's [5]

definitions, and a more recent paper by Ponce [28] gives further comparisons. Here, we are

interested not in local symmetries which provide skeletal shape primitives, but rather in

symmetries which help to infer shape from contour: Nevatia and Ulupinar [34] postulate

that they are skewed and parallel.

We recall these definitions in section 3, and show how each one can be extracted us-

ing our B-spline representation. The most obvious advantages are the low computational

complexity of the process and the stability of the results. Finally, we show that for the

very specific case of a torus, the detection of parallel symmetries allows to infer the 3-D

orientation of the object in a much simpler fashion than proposed in [29].

2 Contour Representation

A very promising idea for representing image contours is to use piecewise polynomials. The

advantages are obvious: this representation is rich, compact, analytical and. local in the

sense that a small change in the original curve does not affect the representation entirely.

The approach commonly used consists of first extracting a set of knots from the discrete

curve and then to approximate the curve between each pair of knots by polynomials under

continuity constraints at the knots. In [27], the knots are extracted by taking the vertices

of a polygonal approximation, then a finite search technique such as dynamic programming

is used to select those knots which provide the best approximation by cubics. A slightly

different idea is proposed in [21] where the initial knots are selected by taking the vertices

of the polygonal approximation of the tangent orientation signal O(s). The final knots are
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determined using a split and merge algorithm. Conics are used instead of cubics. In [151, the

initial knots are the zero-crossings and extrema of the curvature computed after different

amounts of Gaussian smoothing and are then selected using again dynamic programming.

Monotone curvature splines are used to interpolate through the selected knots. In [1], the

knots are the corners and smooth joins marked in the curvature primal sketch. Results

using circular splines are shown. Finally, an elegant algorithm is proposed in [17] which

at the same time locates corners and encodes curve segments between them using cubic

B-splines.

The main point that we formulate against these methods is that they are too much

based on the always critical segmentation step which brings up the stability issue. Also

techniques such as dynamic programming can yield a complexity of 0(n3 ) where n is the

number of initial knots [27]. Finally, a simple case such as a circle, from which no curvature

features can be extracted, is a typical example of a curve which on the other hand could

easily be approximated using the following B-spline least-squares fitting method which, as

we will see, does not require any knot selection and is relatively insensitive to noise.

2.1 B-spline Least-Squares Curve Fitting

Although there are numerous textbooks on the subject of B-splines (see [3, 10] for example),

it is useful to recall some basic definitions and properties. It is well known that a B-spline

is a piecewise polynomial. Cubic polynomials are often used since they are the lowest order

for which the curvature can change sign. A B-spline is expressed as a linear combination

of basis functions which are themselves piecewise polynomials, the coefficients being the

vertices of the B-spline guiding polygon. Thus, a B-spline can be easily manipulated by

79



modifying its guiding polygon, hence its popularity in CAD systems. Furthermore, as B-

splines are defined locally, modifying the position of a vertex does not affect the B-spline

entirely. In the case of a planar curve, a B-splie Q(u) = (X(u), Y(u)) with m + 1 vertices

is defined as follows:

mm

Q(U) = E VjB,(u) = Z(XiBi(u), YjBj(u))
j=o j=O

In the above equations, the (Xj, Y) are the vertices of the guiding polygon and Bj(u)

the basis functions.

Let C be an ordered set of p + 1 points Pi = (xi, yi), what is the B-spline which best

approximates C? An approach proposed in [3] consists of minimizing the distance

p

R = IiQ(ui) - PIll
i=O

= Z(Z XiB,(u,) - x,)' + (Z B, (,) - Y)2

i=O j=0 j=O

In the above formulation, ui is some parameter value associated with the ith data

point [3]. Minimizing R is equivalent to setting all partial derivatives OR/iXj and OR/OY

to 0, for 0 < I < m, which yields

rn P p

EZXj B(u)Bi(ui) = EZzjB(uj) (1)
j=O i=O i=O

M p p

Yj E Bi(u,)B(uj) = Ey B(uj) (2)
j=O i=O i=O

with 0 < l < m
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(a) Original Curve (b) Guiding Polygon (c) Reconstruction

Figure 1: Example of Planar Curve Cubic B-Spline Fit

The linear systems (1) and (2) are easily solved for all Xj and Yj respectively using stan-

dard linear algebra, yielding the guiding polygon of the B-spline which best approximates

the original curve. In the case of open curves, we have the option to force end-points to be

interpolated. In this case, the first and last vertices are simply set to lie at the end-points

so that the linear systems are reduced to m - 1 equations of m - 1 unknowns. In the case

of closed curves, the linear systems are over constrained since some vertices are required

to be identical. Hence the pseudo-inverse method [2] can be used. For more details about

B-splines and end conditions, see [3].

As an example, figure 1(a) shows a free-form planar curve, figure 1(b) the guiding

polygon of the approximating cubic B-spline, and figure 1(c) the reconstructed curve from

the guiding polygon. Note that not only the reconstructed curve is almost identical to the

original curve, but the internal representation of the approximating curve consists of only

a small number of vertices (20 in this example).
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(a) Original Curve (b) Gaussian Noise (c) B-Spline and Guid-
Added ing Polygon overlayed on

Noisy Data

Figure 2: A Cubic Spline Fit on Noisy Data

Another example displayed in figure 2 illustrates the fact that this method is relatively

insensitive to noise, hence stable. Figure 2(a) shows a circle and figure 2(b) the resulting

curve after having added Gaussian noise to the data points. Figure 2(c) shows the result

of fitting a cubic B-spline to the noisy data using 4 vertices.

The choice of m (the number of vertices) determines how close to the original data the

approximation is, which is measured by R (see above). The automatic selection of the

number of vertices is not trivial. Our approach is to premilinary set a fitting tolerance r0

and find the value of m which yields the normalized distance r = R/(p + 1) closer to r0

using a binary search approach.

2.2 From Edgels to B-Splines

The input for our system is an edge map produced by an edge detector such as Canny's [9].

Three stages are sequentially considered: linking, corner detection, and B-spline approxi-

mation.
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2.2.1 Linking

Although there exists numerous linking methods proposed in the litterature [2], we use a

simple and fast scheme which can be summarized as follows. No gap-bridging or other

task is performed, the goal being a fast extraction of the elementary curves present in the

image. It is also our belief that point-wise surgery is too myopic, and that if grouping is

needed, it has to be performed at a higher level [18]. The condition for the algorithm to

work correctly is that the input edges have to be 8-connected. If it is not the case, then a

simple [8] or a more elaborate [24] thinning algorithm has to be applied before going further.

The first stage consists of labelling edge points according to the number of neighboors

they have in order to distinguish among three types of edgels: end-points, junctions, and

mid-points. Then an edge follower is applied starting from end-points and stopped when

other end-points or junctions are encountered. The resulting open curves are stored and

the corresponding points deleted from the edge map except for the junctions. The same

procedure is applied but starting from junctions and stopped when other junctions are met.

The only remaining curves in the edge map should be closed and are finally extracted by

applying the edge follower starting from any mid-point.

2.2.2 Corner Detection

The detection of corners is essential for the description of planar curves. Corners correspond

to tangent discontinuities to which human beings are very sensitive.

We have recently developped an algorithm called adaptive smoothing [32] based on the

anisotropic diffusion principle [26], which consists of smoothing a signal while preserving
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and even enhancing its significant discontinuitues. This is achieved by repeatedly con-

volving the signal with a very small averaging filter modulated by a measure of the signal

discontinuity at each point. The method is extremely attractive since a single parameter

k fixes the amplitude of the discontinuities to preserved. Those features are then easy to

detect and directly localized. Hence no coarse to fine correspondence problem has to be

solved as it is the case in the curvature primal sketch [1].

When the signal consists of the tangent orientation 0(s) = arctan of a planar curvez'(o)

C(s) = (x(s), y(s)), the adaptive smoothing process tends to preserve and enhance tangent

orientation discontinuities which correspond to corners. Corner detection then consists in

differentiating the smoothed version of 0(s) and extract the local extrema of the resulting

signal which lie above a threshold which we set equal to the smoothing parameter k.

2.2.3 B-spline Approximation

Once the image edge points have been linked into curves, and the corners detected, the

final step toward image contours representation consists of approximating by a B-spline

each elementary curve. When a closed curve with no corners is considered, a global least-

squares approximation is performed. In the case of an open curve or a closed curve with

corners, each curve segment between pairs of corners is approximated with the constraint

that the end-points have to be interpolated. This insures the reconstructed curves to be

continuous at the corner locations.

Figure 3 summarizes the complete process on an example. The 167 x 222 intensity

image of a Mozart bust is displayed in figure 3(a) and the contour points obtained after

applying a Canny type edge detector in figure 3(b). Those edge points have been linked into
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elementary curves and figure 3(c) shows the longest curve found. The corners detected after

adaptive smoothing are displayed in figure 3(d), the end-points being marked as corners as

well. Finally, a quadratic B-spline approximation of each curve segment between corners

has been done using a fitting tolerance of 0.5 which led to the guiding polygon displayed

in figure 3(e) and the corresponding quadratic B-spline displayed in figure 3(f).

Finally, in order to illustrate that our method is very tolerant to segmentation errors, we

show some results obtained after different corner detections. Figure 4(a) shows the result of

a first corner detection on the contour of a telephone handset, and figure 4(b) and figure 4(c)

show the guiding polygon and the reconstructed curve obtained using a quadratic B-spline

approximation. If a corner is missed, as shown in figure 4(d), then the guiding polygon

shown in figure 4(e) is obtained. The reconstructed curve displayed in figure 4(f) is very

similar to the one obtained with the additional corner.

In the following section, we show how piecewise polynomial representations of image

contours can be used for detecting symmetries in the image plane.

3 Symmetry Detection

The detection of symmetries is an essential step when inferring shapes from contours [35].

It has been shown [14] that skewed symmetries can be used for recovering the 3-D structure

of polyhedra from their 2-D line drawings. In the case of the surfaces of revolution [20], the

orthographic projection of their limbs exhibits reflectional symmetry, the axis of revolution

being the back-projection of the symmetry axis. More recently [34], two kinds of symmetries

have been proposed to give significant information about the surface shape for a variety of
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(a) Intensity Image (b) Jump Edges (c) After Linking and
Short Curves Removed

I

(d) Detected Corners (e) Guiding Polygons (f) Reconstructio

Figure 3: Example of the Overall Process on a Mozart Bust Image
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(a) Detected (b) Guiding (c) Reconstruc-
Corners Polygon tion.

(d) Detected (e) Guiding (f) Reconstruc-
Corners Polygon tion

Figure 4: If a Corner is Missed...
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3-D objects: skewed and parallel symmetries. The method is applicable to Zero Gaussian

Curvature surfaces, and to a variety of doubly curved surfaces. Results on the recovery of

surface orientation for cylindrical and conic objects are shown but the method still need

to be validated on real data. We propose to use the contour representation previously

exposed for detecting skewed and parallel symmetries. In the remainder of this paper, the

lines joining symmetric points will be called lines of symmetry and the mid-points of these

lines will form the axis of symrnmetry.

3.1 Skewed Symmetry

3.1.1 Previous Work

The detection of skewed symmetries has been investigated by several researchers for the

past few years. [12, 29, 35]. In [12], the method is based on the moments of a figure,

hence limiting the detection to non-occluded objects. In [29], a local approach, like for the

detection of smooth local symmetries [5], is used. It consists of using a local property of the

skewed symmetry in order to identify symmetric edge points. It is thus necessary to test

every possible pair of edge points against the property which leads to an O(n 2 ) algorithm

where n is the number of points. However, it is possible to reduce the complexity by using

the method of projections [231. Finally a method using the Hough transform is proposed

in [35] but as opposed to the two previous papers, no results are shown.
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Figure 5: 3-D Mirror Symmetry

3.1.2 Theoretical Study

Let us suppose that we are given two parametric 3-D curves C1(s) and C2(3) which are 3-D

mirror symmetric with respect to a plane P (see figure 5). Without loss of generality, we

can choose a coordinate system such that we have

(XS) (-_X(S)
1k,-) y(s) and C2(s) = y(s))

If we project these curves along ti; onto the image plane I(il, VY) such that
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(cos(0 sin() (cos(0 cos(O) sin(O)
= sin(0) sin(Ob) = sin(0) cos(O) = -cos(0)

- Cos(O) sin(OS) 0

we obtain the parametric planar curves c1(s) = (ul(s),vi(s)) and c2 (s) = (u2(s),v 2 (s))

where

ul(s) = cos(0)cos(4)x(s) +sin(O)cos(4)y(s) + sin(q)z(s)

vi(s) = sin(O)m(s)-cos(O)y(s)

and

u2(S) = -cos(O)cos(q)z(s) + sin(O)cos(q)y(s) + sin(4)z(s)

V2(8) -" -sin(O)z(s)-cos(O)y(s)

The curve a(s) = (u.(s),v.(s)) such that

u,(s) = "'(') = sin(O)cos(O)y(s).+ sin(O)z(s)

Va(S) =l(s)+V2(S) _ _cos(0)y(S)

is simply the projection of the curve (0,y(s),z(s)) which is the axis of the 3-D mirror
symmetry with respect to the plane P. It is easy to verify that -2())-V1(s) = tan() = a,

hence the lines of symmetry are parallel to each other in the image plane and have the

same direction cio = arctan(ao). If Ci(s) and C2(s) are co-planar, i.e. y(s) and z(s) are

linear, we have the following well-known result that a(s) has to be straight, hence c1(s)

and c2(s) are skewed symmetric with respect to a(s).

Now given two curves c1(s) and c2(s) in the image plane, .is it possible to eventually

identify a unique 3-D mirror symmetry. Let us take the example of figure 6. Figure 6(a)
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shows the contour of a symmetric planar object viewed from an arbitrary direction and

figure 6(b) a window taken out of the previous image. If we choose a direction a0 and

draw the line segments joining each point of a curve with the corresponding point in the

other curve along that direction, these segments define the lines of symmetry of some 3-D

mirror symmetry. Figure 6(d) shows what happens when a0 = 900 and figure 6(c) the

corresponding axis of symmetry. Figure 6(e) and 6(f) show another case when a0 = 1600.

This example illustrates that in fact any value for ao is a possible answer.

If however we are looking for 3-D mirror symmetries between planar curves, the answer

is clear since we saw that the axis of symmetry has to be straight. In this case, the problem

consists of finding a value for 0o which yields a straight axis. Figure 6(g) and 6(h) show the

results obtained when the "correct" value for 0o has been found. The following describes

how the quadratic B-spline representation of image contours helps us in finding skewed

symmetries.

3.1.3 Quadratic B-Spline Implementation

Let cl(u) = (xi(u),yl(u)) and c2 (v) = (X2(v),Y2(v)) be two conic segments (see figure 7),

both defined over the interval [0, 1], given by the equations

x1(u) = a-U2 + b 1,u + c.,

Y1(u) = ay, u2 + b, u + c.,

and

X2 (v) =a.,v2 + bzV + C12

Y2 (v) = a~nv 2 +b, V + Y
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(a) Image Contour (b) Portion of (a)

(c) Symmetry Axis (900) (d) Lines of Symmetry

(e) Symmetry Axis (1900) (f) Lines of Symmetry

(g) Straight Axis (h) Lines of Symmetry

Figure 6: A Case Study on the Contour of a Planar Object
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(D)
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Figure 7: Two Conic Segments

Given a direction 0, let Ax + By + C = 0 be the implicit equation of a straight line

(V) along that direction. Suppose that (D) intersects cl(u) at uo E [0, 1], what is the

corresponding value(s) of v for which (D) intersects c2(v)? After some straightforward

manipulations, it comes out that v is the root of the quadratic equation

Av 2 + Bv + C = 0

where

A = Aa, ,2 + BaY2

C = Ac.,2 + Bc,2 - (Aa., + BaY,)uO - (Ab., + Bb,)uo - (Ac, + Bc%1 )

Hence, given two conic segments and a direction 0, it is relatively simple to establish the

mapping from one segment to the other along that direction. The mid-points of the lines of

symmetry found form the axis of the 3-D mirror symmetry between the two conic segments.

Note that in many cases, there might not be solutions such that vo E [0, 1] (the details are

skipped for simplicity purpose). As a quadratic B-spline can be expressed as a collection of
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Axis of Symmcey
:

Loef Symmeu'y

Figure 8: Parallel Symmetry

connected conic segments S = {C(u)}, for i = 0, .-. , m, each defined on the interval [0,1].

Given another quadratic B-spline S' = {c(v)}, for j = 0,.-- , n, each conic segment of S is

compared against each conic segment of S' to eventually find elementary axis of symmetry.

To detect skewed symmetries, we compute the value for 0 which minimizes the torsion of

the global axis of symmetry obtained after grouping the elementary symmetries. This is

achieved by using Brent's minimization technique [6]. Figure 6(g) and 6(h) shows the axis

of skewed symmetry found for the contours of figure 6(b). Notice that if the axis found is

not straight enough, it is rejected and the conclusion is that there is no skewed symmetry.

3.2 Parallel Symmetry

Let ci(s) = (xi(s),yi(s)), for i = 1,2, be two parametric planar curves, and Oi(s) their

tangent orientation. ci(s) and c2(s) are said to be parallel symmetric if there exists a con-

tinuous monotonic function f(s) such that 01(s) = 02(f(s)). Note that parallel symmetry

is an improper term because, mathematically speaking, two curves are parallel symmetric

only if f = Id. We use this term to be consistent with [34]. Figure 8 shows an occurence

of a parallel symmetry between two curves.

As far as we know, the detection of parallel symmetries has not been investigated so far.
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The following describes an attractive method which makes use of the quadratic B-spline

representation of image contours.

3.2.1 Quadratic B-Splines Implementation

Suppose that we are given two conics c1(u) = (x(u),yi(u)) and c2(V) = (X 2 (V),Y 2 (V))

where

{x(u) = a.,u2+ b ,, + c. ,

yi(u) = a.,u2 + b, , u +  ,

and

X2 (v) = a. + .2 2 +b 2 v + C12

yh(v) = aV 2 + b.v + C.

After derivation, we have the parametric equations of their tangent tanl(u) and tan 2 (v)

given by

tanl(u) = 2ay1u + by, (3)
2a2,u + b.,

tan2(v) = 2aY2v + b2 (4)
2a.2tv + b-2

Under which conditions are cl(u) and c2(v) parallel symmetric?

Writing tan1(u) = tan(v), the following equations are easily obtained:

2(a,6. 2 - ayb.2 )u + (0 1 bY1- bb-2 ) Au+B

4(ay, a., - a., a, 2)u + 2(by, a.2 - b.,a.) - Cu + D =f(u) (5)
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and
B - Dv f 1v(6

Cv-A = f-(v) (6)

The function f(u) is continuous with a vertical asymptote u. = -D/C and an horizontal

asymptote v. = A/C. Because f'(u) ADB _ 0, f(u) is monotonic. What happens

at u. and v,? Substituting u. into equation (3), we obtain tani(ua) = % which equalsa'
2

tan2 (v) when v -- +o and substituting v. into equation (4), we obtain tan2(v.) = a

which equals tanl(u) when u -+ ±0o. Hence we have the result that two conics are

always parallel symmetric. Now supposing that ci(u) and c2(v) are only defined on the

interval [0,1], we will say that the two segments cl(u) and c2(v) are parallel symmetric on

[uo,ul] 9 [0,11 iff [f(uo),f(ul)] 9 [0,1] where f(u) is given by equation (5).

Now that we have studied the parallel symmetry between two conic segments, the de-

tection of parallel symmetries between quadratic B-splines is straightforward. A quadratic

B-spline can be expressed as a collection of connected conic segments S = {Ci(u)}, for

i = 0, --- , m, each defined on the interval [0, 1j. Note that at the junction between two

conic segments, the tangent orientation is continuous. Given another quadratic B-spline

S' = {c'(v)}, for j = 0,--- ,n, each conic segment of S is compared against each conic

segment of S' to eventually detect an elementary parallel symmetry between them. Given

the simplicity of equations (5) and (6), and because of the usually small number of conic

segments involved, the method is computationally very efficient.

Figure 9 shows an example of parallel symmetry detection using a quadratic B-spline

approximation starting from the two digital curves displayed in figure 9(a). Figure 9(b)

shows the quadratic B-spline approximation of the curves of figure 9(a). The detected ele-

mentary axis of symmetry are displayed in figure 9(c) while in figure 9(d), the corresponding
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(a) Digital Curves (b) B-spline Approximation

(c) Symmetry Axis (d) Lines of Symmetry

Figure 9: Detection of Elementary Parallel Symmetries

lines of symmetry are shown.

An additional step is needed for selecting those elementary symmetries which can be

grouped into a more global expression of the existing symmetries between two curves. In

the example of figure 9, it is obvious that some elementary symmetries are purely local

whereas some others are part of a more global symmetry. Some grouping is needed and we

found that very simple connectivity criteria between elementary symmetries can be used.

In figure 10, the largest connected component has been isolated and reflects the global

parallel symmetry between the two curves. Strictly speaking, because of the presence of

some discontinuities along the axis, the two curves are not parallel symmetric. We used
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(a) Lines of Symmetry (b) Symmetry Axis

Figure 10: Selected Global Parallel Symmetry

this example in order to show that once again, a vision task like this one has to deal with

noise and imperfections.

3.2.2 The Torus Example

The torus is an interesting example on which to demonstrate the application of parallel

symmetry. Assuming that the object is far enough from the .camera, and ignoring its actual

size, it is reasonable to model the imaging process by an orthographic projection. The torus

is a smooth solid of revolution, and the contours generated in its image correspond only

to limbs or occluding contours, which are unfortunately viewer dependent. The points on

these contours are those for which the viewing direction is tangent to the surface.

Ponce and Kriegman [29] have shown that it is possible, although complicated, to

express the implicit equation of the contours (a reduced equation still takes 25 lines!), and

to use a least-squares method to recover the position and orientation of a torus from its

limbs. Instead, we use the property of the torus that the axes of parallel symmetry in

its image are ihe projection of its circular spine (3-D skeletal axis). This property allows
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us to recover the 3-D orientation quite simply: we fit an ellipse to the detected parallel

symmetry axis, the orientation of the plane on which the torus is lying is given by the

eccentricity of the ellipse and the angle of the major axis with the horizontal. Figure 11

shows the results obtained for a torus imaged at two different orientations. The first column

shows the intensity images, the second column the contours along with the detected parallel

symmetries using the quadratic B-spline representation of the contours, and the last column

shows the ellipse fitted to the axis of symmetry overlayed on the intensity image. The two

vectors drawn are the projection of two unit vectors in space: the vertical one lying on

the axis of revolution, the horizontal one lying in the plane of the torus spine. The entire

process, given the contours, takes a few seconds only on a Symbolics machine.

4 Conclusion

We have presented an approach to representing contours using approximating B-sphines. It

has attractive properties for use in Computer Vision: the representation is rich, compact,

stable, local and segmented. We have shown how this representation can be used to extract

two important types of symmetry, skewed and parallel, on contours in real images. We are

currently working on the selection of the symmetry axis, their grouping and interpretation

to generate higher primitives in images. We also intend to apply these tools to the detection

of local symmetries.
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(a) Intensity Image (b) Parallel Symmetry (c) Positioning
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Figure 11: Positioning of a Torus
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B-snakes: implementation and application to stereo*
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Abstract The paper is organized as follows: we briefly review
snakes and their applications, then give details of our B-

We present B-snakes: a new implementation of snake implementation, and illustrate the methodology
snakes using parametric B-splines. This active on the accurate delineation of building tops in stereo
contour model exhibits advantages of B-splines: pairs of urban scenes.
compact representation, local control and the
possibility to include corners. This implemen- 2 SNAKES
tation is significantly faster without loss of gen-
erality. Experiments on delineation of building A snake is a deformable continuous curve, whose shape is
roofs in stereo aerial images are also presented. controlled by internal forces (the implicit model) and ex-

ternal forces (the data). Internal forces act as a smooth-
ness constraint, and external forces guide the active con-

1 INTRODUCTION tour towards image features.
Let v(s) = (z(s), y(s)) be the parametric description

Real-world images are often noisy and too complex to of the snake (s E [0, 1]). Its total energy can be written
expect local, low level operations to perform a complete as:
analysis. Higher level features have to be derived and
used in order to get a better delineation of objects. E,,akC = fo E,((s))ds

When there exist enough constraints, it is possible to
use deformable models, which adapt to the data, an ex- +(
ample being "snakes" [Kass et al., 1988]. - [E~(v(s)) + E, t(v(s))]ds (1)

We present an implementation of such models based with:
on parametric B-spline approximation, which offers
many advantages. Among them, it provides a compact Eit(s) = (a(s)I v,(s) 12 +3(s) I v,,(s) 12) (2)
local representation of a curve, in terms of its control-
points. Furthermore, B-splines have the ability to rep- The goal is to find the snake that minimizes equation (1),
resent corners, that is, to locally override smoothness given some external energy adapted to image features
constraints. A new active contour model is built using to extract (Eedfq = - I VI(X, y) 12 , for example) and
this B-spline approximation for a curve and is called a internal energy whose expression is given by (2). The
"B-snake". These B-snakes converge much faster than first order term makes the snake act like a membrane
snakes and can include corners without invoking specific and the second order one like a thin plate. This energy
models, is the regularizing term of the minimization.

As an application, B-snakes are used to precisely out- The minimization of (1) is solved by using the calculus
line the boundaries of building roofs in stereo pairs of of variations and resolving Euler equations, and yields
urban scenes, given an initial rough outline from a stan- the following equations in the discrete case [Kass ef al.,
dard stereo matching algorithm [Cochran and Medioni, 1988]:
1989). { Ax+F.(x,y) = 0 (3)

Ay+ F,(z,y) = 0
*This research was supported in part by DARPA contract where F = E,.t depends on the image features to extract

F33615-C-1436 and A is a pentadiagonal matrix depending on at and P.
tSupported by a grant from the French Direction Ginerale This system of equations in (z, y) is solved by intro-

de l'Armement, contract ERE 89/1460/DRET/DS/SR. Ad- ducing an energy dissipation functional to dissipate the
dress: ONERA, 29 Ave de la Div Leclerc, 92320 Chatil- kinetic energy during the motion. Let -f be the Euler
lon/Bagneux, France. step size. The expression of the snake as a function of

*Permanent address: Matra-SEP Image et Informatique, te s Thetime is then:
Signal and Image Processing Laboratory, BP 235 "Les
Miroirs", 38 Bd Paul Chzanne, Guillancourt, 78052 St- Zt+i = (A+'yI)-t(txt-F.(zt,yt))
Quentin en Yvelynes Cedex, FRANCE Yt+i = (A + 71)-i(3 - F,(xt, 1h)) (4)
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(A + "yI)-i can be calculated by LU decompositions in way to include corners is to set a = 0 at some locations,
O(n) time (with n being the length of the snake). so the "cornerness" of the curve is not implicit.

A better way to simultaneously solve these problems
is to use a parametric B-spline approximation of curves
[Bartels et al., 1987], as the next section shows. We call
this new model a "B-snake".

3 B-SNAKES

.............. iiii~iiiiIn this model, the curve is replaced by its approximation
by a B-spline and the energy of the approximation is
minimized.

"..We first discuss the advantages of the scheme, then
explain how to compute the B-spline approximation of
the curve, and finally show the minimization procedure

......... with B-snakes.
Let u be the parameter describing the approximat-

ing curve (we take u instead of s to remain consistent
with notations in [Bartels et al., 19871), and Q(u) =
(z(u), y(u)).

In this approximation, the curve is split into seg-
ments, and the joints between adjacent curve segments
are called knots. Each curve segment is approximated
by a piecewise polynomial function (order k), which is
obtained by a linear combination of basis functions Bi
and a set of control vertices V = (Xi, Y):

i=M

Q(u) E VB,(u) (5)

Figure 1: Example of snake convergence, the external i=0
energy is the negated gradient. The control polygon can be calculated by performing

a least-square fit of the data by the B-spline curve (para-
Figure 2 shows an example of convergence. graph 3.2).
This active contour model fits in an interactive human-

machine environment when the user supplies an initial In the following, let p + 1 be the number of points of
estimate of the object to extract and the snake is used the curve and m + 1 the number of vertices of the control
to refine the results [Kass et al., 1988; Fua and Hanson, polygon.
1989b; Fua and Hanson, 1989a; Fua and Leclerc, 1988]. As is shown in paragraph (3.3), substituting v by Q(u)
However, it is also useful in an automatic processes when in the snake energy equation (1) yields a similar sys-
a first estimate is given by a first processing level [Ferrie tem to (4), whose unknowns are the control vertices and
et al., 1989; Zucker et al., 1988]. therefore whose size is only m + 1 instead of p + 1.

This tool has been applied in motion [Kass et al.,
1988], in stereo matching [Kass et al., 1988; Fua and 3.1 Advantages of approximating B-splines
Leclerc, 1988], and, more generally, it can be used to Local control : elementary B-splines Bi have local
match a deformable model to an image by means of en- support, so that modifying the position of a data-
ergy minimization. point causes only a small part of the curve to change.

Different implementations have been performed, for Continuity control : B-splines are defined with conti-
example, Fua [Fua and Hanson, 1989a] uses a tool from nuity properties at each point: order k B-splines
information theory: he minimizes an objective function are Ck - 2 continuous. But it is possible to con-
that is the length of encoding the result. This method- trol the continuity at the knots, by accepting multi-
ology is general and applies to object recognition using ple knots. These are obtained by letting successive
generic models. Amini [Amini et al., 19881 uses dynamic knots be equal, which causes intermediate intervals
programming to minimize the energy, and can handle to be empty. Let 1A be the multiplicity degree of a
hard local constraints. Berger [Berger, 1990] allows the knot, the continuity at this knot is then: CA: -'.

snake to grow along features, and also to break. When u is equal to k - 1 the knot is CO continuous
and the corresponding control point is interpolated

Unfortunately, the convergence rate of a snake, using by the curve.
all points, is rather slow. Hence, some researchers [Fua This property is very interesting for the B-snake
and Leclerc, 1988; Amini et al., 1988] use a polygonal model: if we introduce a multiple knot whose de-
approximation of the curve, but then smoothness can no gree of multiplicity is equal to k - 1, the first and
longer be guaranteed. Another problem is that the only second derivatives are no longer continuous at this
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knot and the smoothness constraint is broken: a That yields for the X coordinate:
corner appears at this knot. ' i I M I

3.2 Control polygon 0fuj)B; (u) -'"0 XB'(uj)+

To find the control polygon at time 0, we perform a least- Bi(uj )'-F(ELo X,B,(u), Z'o YB,(uj))]
squares fit of the data by a B-spline curve [Bartels e. al., = 0
1987; Saint-Marc and Medioni, 1990]. (9)

We want to minimize the distance between the discrete and a similar equation for Y. When we change the sum-
data points of the original curve and its approximation mation order, we get:
by a B-spline. This distance is given by the expression: X * -. [K.-=oa(u.)B;(uj)B;(uj)+

.',=/3(uj)B; (uj)B; (ui)]
R Z I Q(uj)-P 12= Z((z(uj)-j)'+(y(uj)-yj) 2 ) + Z =oB(u)F(v(uj)) = 0

3=0 3=0

where uj is some parameter value associated with the for I ranges from 0 to m.
data This equation set can be written in the same matrix

h apoint, and Q(u) is given by: form as (3), with m + I equations of m + 1 unknowns

,~ ,,, (X,Y) instead of p+ I (z,y):
Q(U)=1 EVBj(u)= E(Xi A (u), YBi (u)) (6) AbX + G.(x, y) = 0{=0 ,=0I Ab+GY (z,lY) = 0 (10)

Since this equation is quadratic, the minima occurs for where Ab is still a band matrix.
those values of X1 and Yj such that: This system can be solved in way similar to the origi-{O. 0 nal snakes (4), and we have:

T 0 y Xt+1  = (A +-YI)- ('Xt - G.(z, yt))

where I ranges between 0 and m. So, we obtain: 1. = (Ab +YI) - (tY t - G(xt,yt))

r P 4 APPLICATION: BUILDING TOPS

ZX B,(u)B,(u) = Z z3 B(u,) DELINEATION FROM STEREO
=O j=o 3=o DATA
m p P

E Y iF Bj(uj)BL(ui) = E yiBi(u) (7) The detection of cultural features, such as roads and
_=o j=0 j=0 buildings in aerial imagery is an important application

area in Computer Vision.
This equation can be solved by a LU decomposition. In recent work Fua [Fpua and Hanson, 1989a; Fua and

The choice of the number of vertices, m + 1, deter- Leclerc, 1988] has proposed to detect such buildings by
mines how close to the original data the approximation refining a coarse estimate through a parameter estima-
is, which is measured by R. An automatic choice can tion phase. Mohan [Mohan and Nevatia, 1988] defines
then be performed [Saint-Marc and Medioni, 19901: we a building as a collation of rectangles and proposes to
set a fitting tolerance ro and we find the value of m + 1 solve the selection process by a Constraint Satisfaction
which yields the normalized distance r = R/(p+ 1) closer Network.
to ro, using a binary search approach. These methods use monocular information only, such

3.3 Minimization resolution as edges, to generate and verify hypotheses. When stereo
data is available, they use it mostly in the verification

We want to minimize equation (1) by substituting the stage to refine the estimates.
curve v by the analytical expression of its B-spline ap- Here, we propose instead to use stereo first to guide

The total energy of the curve is then: in the detection of elevated structures, on the basis that
their disparity is bound to be different from the dispar-

SZ M ity of the background, and to refine the estimates using
E E {Ya(u)[(EXiB'(uj)),+(EYB'(u,))'] monocular information.

j=0 i= i=0 Most stereo algorithms (see [Barnard and Fischler,
, ,, 1982; Dhond and Aggarwal, 1989] for surveys) produce

" 13(uj)[(IXiB (u,))2 + (ZYiB(uj))2] reliable results in images of rolling terrain, but degrade
2 =0 (=0 ungracefully when depth discontinuities occur, since the

+ F(v(u,))} (8) smoothness assumption becomes violated. This is true
for area-based and feature-based methods. We use here

We are looking for control points coordinates X,, Y an algorithm which combines both approaches, as de-
that minimize E, that is, that satisfy: scribed in [Cochran and Medioni, 1989]. The buildings

roofs appear as regions of constant disparity, but their
&E = 0  boundaries are very approximate, generally ragged.

VIE f{,.-.,m}f w.0 =0 We can refine them by using:
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* monocular information: buildings are likely to gen- 1. First stage: Regular B-snakes are implemented and
erate intensity edges; their energy is minimized until equilibrium.

" smoothness: building boundaries are mostly 2. Second stage: Corners are detected at points of
smooth, with the exception of some corners; maxima curvature (equation 13) and new B-snakes

" invariance: the boundaries should correspond in are implemented with multiple-knots at the corners.

both images. Then B-snakes converge from their previous statetoward a new equilibrium.
To turn these observations into a computational frame-

work, we use the B-snakes described above. The internal XUgUU - UUYU (13)
energy captures the smoothness constraint, and we de- P = (13)
fine an appropriate external energy for the other two (U +

constraints, as shown below. Images 2 and 3 show this process.
To solve the problem introduced by corners, we pro- When corners are detected, we assume in this appli-

ceed in two stages: first, the boundary is supposed cation, that polygonal objects are encountered. Then,
smooth, and the snake reaches its convergence state, new parameters are used in the second stage, to empha-
then potential corners are detected as extrema of cur- size the behavior of the B-snake acting as a strong rod
vature and the B-snake model is applied again, between corners.

We now give the details of the process and present
some illustrative results.

4.1 Stereo energy

Kass [Kass et al., 1988] applies snakes to the problem
of stereo matching. According to some psychological
evidence [Burt and Julesz, 1980], he assumes that, if
two contours correspond then the disparity varies slowly
along the 3-D contour. This constraint can be expressed
in an additional energy functionnal:

Estereo =(v(s) -

where vL and vR are left and right snake contours.
Fua [Fua and Hanson, 1989a] uses a stereographic ef-

fectiveness term which encodes the projected patch in
the second image, while knowing its photometry in the
first.

In our approach, the contours of non-nul disparity ar- Figure 2: First example: Initialization, result of first step
eas are the first estimate of objects contours we want to and final result. The external energy is also shown.
improve, that is, the initialization of the snakes at time
0.

Furthermore, we can combine the left and right exter-
nal energy of each object, by projecting the right one
on the left one through the disparity map (equation 12).
This allows us to filter non matching areas and to rein-
force constraints in matched areas.

Esteeo(s) EL(S) + d(s)ER(S) (12)

Since edges are likely to correspond to depth or sur-
face orientation discontinuities, we use edge information
as monocular external energy. This energy supplies the
feature-based information often used in stereo matching
algorithm but which yields a sparse disparity map.

In order to increase the efficiency when the snake is
too far from the edges, a distance map such as Cham-
fer distance [Barrow et al., 19771 is added to the edge
information.

4.2 Discontinuities C'

Polygonal objects can be processed without a priori Figure 3: Second example: Initialization, result of first

knowledge on their shape, by using a method in two step and final result. The external energy is also shown.

steps:
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4.3 Results [Bartels et al., 1987] R. Bartels, J. Beatty, and B. Barsky.
obtained with An Introduction to Splines for use in Computer Graphics

and Geometric Modeling. Morgan Kaufmann, Los Altos,
quadratic B-snakes. CA 94022, 1987.

For each example, the left and right disparity mapsare shown, which are blurred and noisy at corners. The [Berger, 1990] M. 0. Berger. Snake growing. In First Eu-
ializaiown of Bsaes aured eaed rom athe lfnes Tropean Conference on Computer Vision, pages 570-572,
initialization of B-snakes are extracted from the left one, Antibes, France, April 1990.
and the process is performed on this side.

Results are shown at both steps of the process de- [Burt and Julesz, 19801 P. Burt and B. Julesz. A disparity
scribed above. We can see that after the first step, roofs gradient limit for binocular fusion. Science, 208:615-617,scried bov. W canseetha afer he frstste, rofs 1980.
borders are improved, but remained rounded at corners.

They become sharper after the second step. [Cochran and Medioni, 1989] S. D. Cochran and G. Medioni.

While it gives the direction of the nearest edge, the Accurate surface description from binocular stereo. In

Chamfer distance helps the convergence especially when Proceedings of Workshop on Interpretation of 3D Scenes,Chamer istnce elp tie coverenc espcialy hen pages 16-23, Austin, Texas, Nov. 1989.
the curve is too far from the edges. But it does not pro-

vide reliable information at locations of multiple nearby [Dhond and Aggarwal, 19891 U. R. Dhond and J. K. Aggar-
wal. Structure from stereo-A review. IEEE Transactionsedges. This and the lack of edge information at some

locations contribute to cause B-snakes to stabilize into on Systems, Man & Cybernetics, 19(6):1489-1510, Novem-

local minima. ber/December 1989.

Furthermore, this energy makes the B-snakes to shrink [Ferrie et al., 1989] F. Ferrie, J. Lagarde, and P. Whaite.

or to expand only if the first estimate is around local Darboux frames, snakes, and super-quadrics: Geometry
from the bottom-up. In Proceedings of Workshop on In-

maxima otherwise, it shrinks until vanishing (for exam- terpretation of 3D Scenes, pages 170-176, Austin, Texas,
ple: the highest tower cannot be handled considering the Nov. 1989.
poor edge information used). [Fua and Hanson, 1989a] P. Fua and A.J. Hanson. Objec-

tive function for feature discrimination theory. In Proceed-
5 CONCLUSION ings of the DARPA Image Understanding Workshop, pages

Snakes provide a tool to solve many vision problems by 443-460, May 1989.

means of global energy-minimizing, while taking into ac- [Fua and Hanson, 1989b] P. Fua and A.J. Hanson. An opti-
count geometrical model of curves and image features in- misation framework of feature extraction: Applications to
formation. As the energy is integrated along the entire semiautomated and automated feature extraction. In Pro-

formtio. A theenegy s inegrtedalon th enire ceedings of the DARPA Image Understanding Workshop,
length of the curve, it is less sensitive to image noise and pages 676-694, May 1989.various photometric anomalies. ae 7-94 a 99

We have improved this tool by using parametric B- [Fua and Leclerc, 1988 P. Fua and Y. G. Leclerc. Modelspline approximations of curves that yield increasing driven edge detection. In Proceedings of the DARPA Im-
age Understanding Workshop, volume 2, pages 1016-1021,

convergence speed and allow the so-called B-snake to Cambridge, Massachusetts, April 1988.
include corners.Then, the B-snake can be applied to adjustment of [Kass et al., 1988 M. Kass, A. Witkin, and D. Terzopoulos.

Snakes: Active Contour Models. International Journal of
non-smooth shapes. For example, it is able to refine the Computer Vision, 1:321-331, January 1988.
delineation of building tops from stereo aerial images,
with a good accuracy, without using a priori knowledge [Mohan and Nevatia, 1988] R. Mohan and R. Nevatia. Per-
or generic model. ceptual grouping for the detection and description of struc-

tures in aerial images. In Proceedings of the DARPA Image

Understanding Workshop, pages 512-526, Boston, Mas-
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Figure 4: First example: stereo intensity images Figure 8: Left and right final energies
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Figure 5: Left and right disparity map

Figure 9: Global stereo energy
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Figure 6: Left and right negated gradient

Figure 10: Different steps of delineation of buildings
roofs from the first estimate of B-snakes from edges of

Figure 7: Left and right Chamfer distance disparity map to the final result with corners
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Figure 11: Second example: stereo intensity images Figure 15: Left and right global energy
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Figure 12: Left and right disparity

Figure 16: Global stereo energy
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Figure 13: Left and right negated gradient
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Figure 17: Different steps of delineation of buildings
roofs from the first estimate of B-snakes from edges of

Figure 14: Left and right Chamfer distance disparity map to the final result with corners
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