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Abstract

This paper considers a least-squares approach to function approximation and gen-
eralisation. The particular problem addressed is one in which the training data is
noiseless (perhaps specified by an assumed model or obtained during some calibra-
tion procedure) and the requirement is to define a mapping which approximates
the data and which generalises to situations in which data samples are corrupted
by noise. The least-squares approach produces a generaliser which is the vector of
posterior probabilities and has the form of a Radial Basis Function network for a
finite number of training samples. The finite sample approximation is valid pro-
vided that the noise on the expected operating conditions is large compared to the
sample spacing in the data space. In the other extreme of small noise perturbations,
it is shown that better generalisation will occur if the training error criterion (the
sum-square error on the training set) is modified by the addition of a specific reg-
ularisation term. This is illustrated by an approximator which has a feed-forward
architecture and applied to the problem of point-source location using the outputs
of an array of receivers in the focal-plane of a lens.
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Andrew R. Webb

1 Introduction

Connectionist models based on feed-forward networks (for example, multilayer perceptrons
(MLPs) [25] and radial basis function networks [4] (RBFs)) have been used with some
success when operating as static pattern classifiers on a wide range of problems. Such
networks perform a nonlinear transformation from an n-dimensional input space to the
nh-dimensional output space via a characterisation space defined by the outputs of the
(final layer of) hidden units in which a specific feature extraction criterion is maximised
[18, 32]. This feature extraction criterion may be viewed as a nonlinear multidimensional
generalisation of Fisher's linear discriminant function. Training the network for a pattern
classification task consists of presenting data vectors as input, together with class labels
at the output of the network, suitably coded, and miniising an error criterion. For a
1-from-n' target coding scheme, and the usual sum-square error criterion, the outputs of a
trained network approximate the Bayes discriminant vector, the probability of a class given
the input to the network [18].

An alternative viewpoint to the pattern classification description on the operation of
adaptive, feed-forward layered networks such as the multilayer perceptron is that they per-
form well for certain tasks by exploiting their modelling flexibility to create an implicit
interpolation surface in a high-dimensional space [4, 16]. In fact, it may be shown that
multilayer feed-forward networks with a single hidden layer are universal approximators
in that an arbitrary function can be approximated arbitrarily well [13, 28]. However, in a
practical problem, the mapping we wish to approximate is not known continuously but it
is usually defined by a finite set of points in RR 0 Rs' defined by a training set. Specifi-
cally, in mapping a finite set of P, n dimensional 'training' patterns to the corresponding
n' dimensional 'target' patterns, f : JR -. R12' one may think of this map as being gen-
erated by a 'graph' r C Rn 0 JRn'. The input and target pattern pairs are points on this
graph. The learning phase of adaptive network training corresponds to the optimisation
of a fitting procedure for r based on knowledge of the data points. This is curve fitting
in the generally high dimensional space JR 0 R'. Thus generalisation becomes synony-
mous with interpolation along the constrained surface which is the 'best' fit to r [34]. The
Radial Basis function network [4] was introduced simply to make this point more explicit,
but it also applies to networks such as the multilayer perceptron. It is clear that, by anal-
ogy with curve fitting in one or two dimensions, one can create an interpolation surface
which is guaranteed to pass through every point in a finite training set provided that the
model is of a sufficiently high order (e.g. sufficient numbers of hidden units equivalent to
a sufficient number of adjustable parameters). Thus, although we can approximate the
mapping arbitrarily accurately (as determined by the sum-squared error on the training
set) by increasing the number of hidden units (and consequently the number of adjustable
parameters), the error on an unseen test set (the generalisation error) is not guaranteed to
decrease. In fact, it Is likely to increase as the network progressively begins to model noise
in the training data, rather than the structure of the data. This is an incorrect strategy
for real data which Is confused by extrinsic and intrinsic noise effects and corresponds to
overtraining a network. Often a large amount of prior knowledge is required to allow a
fitting surface to be produced which Is just smooth enough to fit the structure in the data
thus allowing good generalisation performance, without being over-complex to permit the
fitting of noise on top of the data.

One example of feed-forward networks' being used to provide an interpolation surface
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is in the context of nonlinear prediction of time series [14, 19]. Indeed, adaptive network
techniques have been used recently [4, 5, 8] with some success to predict the behaviour of
chaotic time series - deterministic sequences whose second order persistent statistics seem
to indicate that they are random. This success stems from the ability of adaptive networks
to produce an interpolation surface which approximates the actual nonlinear map which
generated the data. Thus, adaptive networks may be applied to time series prediction, as
long as the observed time series is generated by an underlying iterative mapping, if the
mapping itself is 'smooth' enough to allow an interpolation surface to be constructed.

The objective of many signal processing tasks is to determine some property f() of a
given data sample, r. In a pattern classification task the objective may be to assign z to a
particular class or to calculate the loss in assigning z to a given class. In a bearing estimation
problem, a would represent the outputs as a function of time of an array of sensors and the
problem is to determine the number and the positions of the sources present in the scene.
Whatever the problem, the quantity which we wish to evaluate is a function, f, of the data
sample z. The precise form of this function may be known analytically from the physical
principles involved (at least for the special case of noiseless data, z) or the function f (or a
noisy version of f) may be known only at sample points, zi, gathered during some training
procedure. Whatever way in which f is specified, we wish to derive an approximation to it
which is valid at points not necessarily in the training set and which are expected to occur
in a practical application (on an unseen test set). This is the problem of generelisation.
Of course, if the data is noiseless (and the expected data in operation is noiseless) and the
function is single-valued, then some form of strict interpolation between training points may
provide a satisfactory approximation. However, in most pattern classification tasks, noise
will in general be present either in the data used to derive the approximator (the training
set) or in the expected operating conditions (the test set). It is important to understand
how this noise arises when deriving an approximation to f since the physical conditions
should play an important part in the specification of any generaliser. These remarks can
be illustrated by a few simple examples.

1. In some pattern classification problems noise may occur on the data points, zi, even
though the data is correctly classified. Thus, the training data comprises the set
((z, + ni,fi), i = 1,... ,P} for P training patterns. For example, in the analysis of
chemical compounds in which z, is a chromatogram, and fi the compound label, ni
is the noise on the measuring equipment. The problem is to construct a function g(z)
which, given a chromatogram z not in the training set, estimates the class to which
the data belongs. The data may be multi-valued (with several observation values I
for a given data sample z = a + n if the noise on the data causes the distributions
to overlap) and the problem here is to estimate the expected value for a given data
sample, z.

2. Alternatively, noise may occur on the observations fi. In a pattern classification
problem this would correspond to incorrect labelling of the data. In the example
above, f the r6les of fi and z, were interchanged (so that the data samples are the
class labels and the observations are the measurements) the problem becomes one of
estimating the spectral response given the compound type. The data is multi-valued
since there are many observations for a given compound. Thus a function could
produce the expected value for a given compound. Note that in the classical least-
squares problem, there is an underlying assumption that all the errors are confined to
the observations.
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3. Generally noise will occur on both zi and fi. For example, in the problem of time series
prediction (in which there is noise on the time series, {t,}) the data values comprise
a time history of, say, n samples, zi = (t+, s+2 , -.. ,ti+.) and the observations are
the next value in the time series, fi = ti+.+I. For the case of linear prediction, the
method of total least squares [11] is a technique which is appropriate when there are
errors on both the observations and the data.

4. In this final example, we assume that we have a set of noiseless data {(z,, f1), i
1,..., P}. This may be generated using some known model for the function f(z)
or it may be obtained during a calibration procedure of some equipment in which
outputs are measured in response to a known input. Integration of the outputs is
then performed to give data at a very high signal-to-noise ratio. The problem is
to generalise the function to samples which are not in the data set and which are
possibly corrupted by noise. For example, given the bandlimited image of an object
of finite support, it is possible to recover the object exactly (assuming knowledge of
the imaging operator). Thus the object is a single-valued function of the image. This
function may be expressed as an summation of prolate spheroidal wave functions.
In practice, images will be corrupted by noise, so we wish to generalise to unknown
images, assuming knowledge of the noise process.

The problem is to design a function g(z) which for noisy data samples, z = z + n
approximates f(z). The data value z may not lie in the space of values z - i.e. the noise
may perturb the value out of the manifold on which the training data lies. The form of
the approximator g will depend on the distribution of z and the noise probability density
function of the expected operating conditions. Thus, we can derive several approximators
which can be applied in different operating conditions. The advantages of using a model
or equivalently noiseless data, together with prior knowledge of the operating conditions is
that there is no need to gather training data representative of the different conditions. It is
sufficient to have a single training set representative on one operating condition (no noise)
and to include the effects of different conditions in the formulation of the approximator.
Also, the model used to generate the data may incorporate known physical principles and
thus prior knowledge may be included in the data set.

One property of the approximating function g which we require is that for z = z + n then
g(z) --+ f(z) as n - 0. We n.ay also require that g be an unbiased estimate, i.e. g(z) = (z).
It may be difficult to satisfy t]ese constraints if f(z) were not known continuously as a
function of z. Even if it were, there will be many function which satisfy one or both of
these conditions, and we may choose one which minimises a cost function. The particular
cost function which we shall consider is the least-squares error measure.

The particular problem which we address is that illustrated by the fourth example above,
namely that we have a model or theoretical solution for noiseless data and we are required
to generalise to situations in which the data will be corrupted by noise. In Section 3 we
derive a minimum mean-square error approximation which generalises the training data to
data corrupted by noise. For a finite set of training samples, this approximation takes the
form of a radial basis function network provided that the noise is large compared to the
sample spacing. In the other extreme of small noise, a particular form is assumed for the
approximation function. In this case there are two types of error to consider : systematic
errors afsing from the function's being only an approximation to the true mapping and
errors which are due to the sensitivity of the function to noise on the data values. The
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purpose of the paper is to introduce an approach for training a generaliser to achieve a given
functional transformation which Tinimises the total error (the sum of the systematic and
the noise errors) between the observations and the approximations. Thus, the generaliser
is trained to make the functional mapping robust to noise on the training data whilst still
achieving small systematic errors. This is important in application in which the data values
are likely to be corrupted by noise before processing. For example, in some inverse problems
in imaging or synthetic aperture radar, the point-spread function of the optics or sensor
may be known, but the data is corrupted by measurement noise. To obtain a generaliser
which has the desired property of being robust to noise on the data, a regularisation term is
derived. This is added to the usual error expression and the combined quantity minimised
during training of the network. This regulariser is not based explicitly on a notion of
surface fitting by, for example, imposing smoothness conditions on the fitting surface [1, 20]
(though of course it is intimately related to this), but is derived by demanding minimal
sensitivity of the function to noise on the data whilst still maintaining closeness of fit. The
application which we shall use to illustrate the techniques developed in this paper is that of
point-source location given the outputs (possibly corrupted by noise) of an array of sensors.
Specifically, we consider the outputs of a focal-plane array radar. The particular functional
form we consider is a feed-forward network architecture and the network is designed to fit
the data and to be robust to noise. A detailed study of the application of feed-forward
layered networks to this problem is presented in [30].

Another issue which is important for many potential applications is that of fault tol-
erance, i.e. designing a network so that the functional transformation performed by the
network is robust to noise on the weights or even to failure of some of the links between
nodes or failure of the nodes themselves. This problem has received some attention in the
literature [27] but it is not one we address in this paper. However, the basic strategy pre-
sented in Section 3 may be developed to apply to the problem of noise on the weights (as
opposed to noise on the inputs).

The paper is organised as follows. Section 2 considers the problem of functional ap-
proximation. Two specific approaches are described (regularisation theory and parametric
modelling) and these are illustrated by some 1-dimensional examples. Section 3 considers
a least squares approach to approximation and generalisation. This produces an approxi-
mating function which gives the expected observation for a given data sample. Section 4
considers the application to point-source location using a focal-plane array of receivers. Fi-
nally, Section 5 concludes with a discussion of the issues raised in this paper and summarises
the main results.

2 Networks and Functional Interpolation

In this section we present some functional interpolation preliminaries. There are infinitely
many surfaces which interpolate a set of data points. Further, If there is noise on the data
then strict interpolation is inappropriate. There are two basic approaches to functional
interpolation which we consider in this section and we illustrate these with some simple one-
dimensional examples. One approach, described in Section 2.1 is to determine the surface
which minimises a regularisation term subject to a constraint on the fitting error. This
regularisation term may, for example, demand a fitting surface with minimum curvature
and Its minimisation leads to a particular functional form for the fitting surface. However,
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the choice of the regulariser requires some prior knowledge concerning the fitting surface.
The constraint parameter, which controls the tradeoff between the closeness of fit of the
surface to the data points and the smoothness of the surface, may be determined from the
data using some form of cross-validation or data-driven smoothing.

The second approach, described in Section 2.2, is to specify the functional form for
the fitting surface using, for example, polynomials or sums of Gaussians. The specific form
adopted may be chosen using some prior knowledge of the expected form of the 'true' surface
or simply for its computational merits. Once the functional form has been decided, the
complexity (number of free parameters) must be chosen. This depends on the dimensionality
of the data, the number of data points characterising the transformation and the noise on
the data and determ-ining the balance between these quantities is a problem which has been
studied widely in the pattern recognition literature (for example, [10, 24]). If there are too
many free parameters then noise superimposed in the data may be modelled; too few, and
the model fails to capture the structure in the data. However, with the functional form
and the complexity specified, determination of the values of the parameters of the model
("training") is usually a straightforward task.

2.1 Regularisation Theory Approach

Regularisation theory, introduced by Tikhonov ([29], see also [21]) for solving i-posed
problems, is one method for addressing the problem of generalisation. A problem is rn-posed
when either the solution does not exist, the solution is not unique or the solution is not stable
(does not depend continuously on the initial data). The main idea of regularisation theory
is to restrict the class of admissible solutions by introducing suitable a priori constraints
on the possible solutions. Standard regularisation theory imposes the constraints on the
problem by a variational principle with a cost function. It provides a means of solving an
equation of the form

Az = u (1)
for an operator A and data u to give a solution for z which is stable. For example, inverse
problems constitute a broad class of problems in which the object or phenomenon in question
is characterised by an element z belonging to a set F. Usually, z is not observed directly,
but rather a quantity u = Az (where u E AF, where AF is the image of the set F under
the mapping executed by the operator A). The operator A may be an imaging operation
and then the problem may be to restore an object from its bandlinited image. Equation
(1) has a solution only for those elements u which belong to the set AF. However, because
of noise on the data, the quantity u is known only approximately and may not belong to
the set AF. Even if a solution does exist, it may not be stable since the inverse operator
A - ' may not be continuous.

In such cases as the above, an approximate solution to the problem is sought. This
is achieved by the introduction of a regularising term of the form afl(z), where a is the
regularisation parameter and fi Is the stabilising functional and a solution is sought which
minimises the smoothing functional Mo(z, u) defined by (29]

M0 (z,U) = P2 (Az,) + afl(z) (2)

where p is a metric on the space to which Az belongs. Thus, we take as an approximate
solution of Equation (1), a solution which for z which minimises M*(z,u).
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There are two ways of approaching this problem. One approach is to seek a solution
which mininses MO(z, u) and then to determine the regularisation parameter a from sup-
plementary information relating to the particular problem [29]. Alternatively, we may view
the problem as a variational problem in which the stabilising functional, fl(z) is minimised
subject to the constraint that

p(Az,u) = 6 (3)

where the parameter 6 characterises the error in the initial data, u. This is termed Morozov's
Discrepancj PrincipaL We may use the method of Lagrange multipliers to inin ise the
functional Ma(z, u) given by Equation (2) and choose a so that the constraint (3) is satisfied.

One application of regularisation theory is to surface fitting in which it is required to
find a hypersuriace g(z) given the values If E R"' at a set of points zi E IR", such that
fi = f(zi). Thus the data points {(z,, fi), i = 1,...,P) lie in the space IRn ® IR"'. This
is an ill-posed problem in the sense that there are an infinite number of solutions and
therefore some constraint must be applied. This is usually in the form of a smoothness
constraint. Thus, in Equation (2), A is the sampling operator, p is the Euclidean norm and
the stabilising functional is of the form

$ = IIPf 12  (4)

where P is usually a linear differential operator. Therefore, Equation (2) gives

P
Ma(g, f) = 1 fi, - g(z,)112 + aIlIPf 112 (5)

where u is the set of function values, fi. Here, a controls the compromise between the
smoothness and the fidelity to the data. For example, minimising the stabilising functional,

IP II2 subject to the constraint that

P 11A, - ()l = 0 (6)
d=1

gives the smoothest interpolator to the data (the approximating function g satisfies g(zi) =
fil. In one dimension with g : R --+ R and P a linear differential operator with real
coefficients, i.e.

P = ajD j  m> O,a$ 0 (7)
j=O

with D = j, then the solution which minimises (5) is an L-spline [15]. This consists of
piecewise solutions of (2m - 1) order polynomials with continuity of derivatives up to the
(2m - 2). The smoothing functional Ma is also equivalent to the K-functional introduced
in spline theory which is a measure of how well the function f can be approximated by
smoother functions while maintaining a control on the size of the mth derivative of the
approimator [26].

However, an important question is how smooth should the reconstructed function be?
The particular choice for m determines the continuity of the solutions and their smoothness
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Figure 1: cubic spline approximations for a = 10.0 (solid
line), 10 - 2 (dotted line), 10" (dot-dash) and 10 5 (dashed)

increases with increasing m. For m = 2 and ao = a, = 0, a2 = 1, the stabilising functional,
fl, is given by

f d2 (8)

This measures the strain energy of bending in a thin flexible beam of infinite extent and
the Euler equation is

d4g =0 (9)
dZ4

giving cubic splines as the solution.

In order to illustrate the use of regularisation theory we shall consider fitting a set of
data points, {(z, fi),i = 1,...,P} in R. IR.

EXAMPLE I Figure 1 shows several approximations to a step function,
which is characterised by 9 data points (each marked by an
asterisk). We have assumed a stabilising functional of the
form (8), giving cubic spline solutions, and plotted solutions
for several values of a. The smallest value of a gives a very
good fit to the data and the largest gives the smoothest ap-
proximation (a straight line approximation).

EXAMPLE 2 This example and the following one introduce the idea of
fitting when there is noise on the data. This can occur in
several ways and we illustrate two of them. In both these
examples the data points lie on a sn(z)/z shape curve and are
corrupted by noise. In Figure 2 the data points are (z,, f,+n)
where

fi=sin(t, - 0.5) Ci= 0.1i, i.,. 11 (10)
- 0.5)
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1.2-

1.0- /"\
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g(z) 0.6 . ---

0.4 - -'

0.2 -
i\
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Figure 2- cubic spline approximations for a = 10.0 (solid
line), 101 (dashed line), 10 - 3 (dotted line) and 10- (dot-
dash); sin(z)/z data with added noise of variance of 0.05.

and the noise samples ni are taken from a normal distribu-
tion of zero mean and variance 0.05. Additive noise of this
type occurs in many applications in which data points zi are
incorrectly labelled. Figure 2 again plots cubic spline ap-
proximations for different values of a. We see that as a is
decreased, the approximations progressively begin to model
noise on the data.

EXAMPLE 3 In Figure 3 the data points are (zi + hi, fi) with fi given by
Equation (10). In this example zero-mean Gaussian noise of
variance 0.01 is added to the values zi. Thus, the range of the

function remains the same. This corresponds to situations in
which the data is correctly labelled (i.e. correct values for fi)
but experimental procedures or otherwise have caused errors

in the measurements z,.

These examples, although very simple, illustrate some of the problems with curve fitting:

* A smoothness constraint may be inappropriate for some data sets. Heuristic tech-
niques for allowing discontinuities have been considered by [2].

* It is important to understand the conditions under which the data set was gathered
(and, as we shall see in the following section, the generalisation behaviour which
we wish to obtain). These conditions will provide some clue as to the strategy for
determining the regularisation parameter, a, since noise may appear on the parameter
values, z,, or the function values fi, or both.

Also, the choice of functional fl is prompted by the nature of the problem. For example,

several different regularisation principles for low-level vision are given in [23]. Many of the
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Figure 3: cubic spline approximations for a = 10.0 (solid
line), 10' (dashed line), 10' (dotted line) and 10 - (dot-
dash); sin(z)/z data with noise of variance 0.01 added to
data values, zi.

stabilising functionals are of the Tikhonov type. Tikhonov stabilisers are integrals of linear
combinations of the squares of the derivatives of the desired solution, z, and are given by
([29], page 70)

b PJ=o (drz] dz, (11)

where q, > 0,r = O,,...,p- 1 and qp(z) > 0. They have been widely used in inverse
problems.

One of the main problems in standard regularisation theory is in the choice of the
smoothing functional, fl, and the degree of smoothness required for the function to be
recovered. The value of a controls the compromise between the degree of regularisation
of the solution and its closeness to the data and standard regularisation theory provides
techniques for determining the best a. However, standard regularisation methods impose
the constraints on the problem by a variational principle, such as the cost functional of
Equation (2). The cost that is minimisee should reflect physical constraints about what
represents a good solution : it has to be both close to the data and regular by making the
quantity O(z) small but this is often chosen in an ad hoc manner.

2.2 Specifying the Functional Form

The second approach to curve fitting which we shall consider is that of specifying the
functional form of the fitting surface. Thus, the form of the interpolating (or approximating)
surface is imposed (using some from of prior knowledge, physical intuition, guessing) rather
than being determined as a consequence of an applied constraint. The functions may be
defined globally (as in the case of some feed-forward networks) or locally (so that the
parameters are valid only over a small region of the input space). The parameters of the
function are chosen to minimise an error criterion, for example, the sum squared error
between the function values, fi and the fitting surface values at the data points, zi. Of
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course, if the function depends nonlinearly on the parameters, there is no guarantee of
obtaining a global minimum of the fitting error (if indeed there is a unique global minimum).
Also, if there are too many parameters then the solution may be very sensitive to noise on
the data. The following examples give some one-dimensional illustrations using polynomials
as the fitting functions.

EXAMPLE 4 In this example the fitting surface is a polynomial of order
d of the form

d
g(a) L ~aoz' (12)

j=O

and depends linearly on the unknown parameters, a. Given
a set of data points, {(zi, f),i = 1,...,P}, the parameters
aj are chosen to minimise the error

P

- g(Z,)) 2  (13)
i=1

and the solution can be obtained using a pseudo-inverse tech-
nique. Figure 4 shows polynomial fits to the step function
used in Example 1 for different values of the degree, d. As

1.4

1.2 i/''. i,,

1.0* i" \ i"

0.8 .
g(z) I .I"

0.6

0.4
/ :

0.2 .'-

0.0. . .
0.0., 0.2. .'DA 0.6 0.8 1.0

Figure 4: Polynomial approximations for d = 1 (solid line),
2 (dashed line), 5 (dotted) and 8 (dot-dash).

the order of the polynomial is increased, the fitting error de-
creases, but the 'generalisation' becomes poorer. For exam-
ple, there are greater oscillations for degree 8 than the cubic
spline and the fit at the data points is poorer. The main
reason for this Is that in this example we are attempting a
globa fit to the data whereas the cubic spline approximation
comprises functions which are defined locallp.
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0.8.

g(z) 0.6 . ,...
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0.4 '*

0.2".
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0 0.2 0.4 0.6 0.8 I

Figure 5: Polynomial approximations for d = 1 (solid line),
2 (dashed line), 5 (dotted) and 8 (dot-dash); sin(z)/z curve
with added noise of variance = 0.05.

EXAMPLE 5 Figure 5 plots polynomial fits to the noisy data of Example
2 (a sin(z)/z curve with noise added to the function values,
,)

1.0- !'.* .* ,. ,,

0.8.-
0.8 - 0

0.6- 1Y NN
g(z) -i * "

I, "

0.4-

0.2 .//.*

I..'\

0.0 , I -"
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Polynomial approximations for d = I (solid line),
2 (dashed line), 5 (dotted line) and 8 (dot-dash); sin(z)/z
curve with noise of variance = 0.01 added to the data values.

EXAMPLE 6 Figure 6 plots polynomial fits to the noisy data of Example
3 (a sin(z)/z curve with noise added to the parameter values
z).

We see from the above examples that choosing a model with too few parameters may
give a poor fit to the data, whilst if there are too many parameters then noise on the data
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is modelled. However, the sensitivity of the fitting surface to noise, for large parameter
models, may be reduced if a regularisation term is introduced. That is, we minizise

D A- g(zi)) + af2 (14)

Thus, we are specifying the functional form and using a regularisation term. In this sit-
uation, we cannot approach the problem as one in variational calculus in the mainer of
Example 1. That is, we are not allowed to minimise the stabilising functional subject to a
prescribed constraint on the fitting error since the parametric form for the fitting surface
may not allow the constraint to be satisfied. Thus, we use a prescribed value for a and
minemise the total term (the smoothing functional).

1.2

1.0 *

0.8-I

g(z) 0.6 -

0.4- .!
'/

0.2 - I .'

0.0-
0.0 0.2 -e4 0.6 0.8 1.0

Figure 7: Polynomial approximations for d = 8 and a = 10.0
(solid line), 10- 1 (dashed line), 10-1 (dotted line) and 10-5
(dot-dash)

EXAMPLE 7 Figure 7 plots step function approximations for a polyno-
mial of degree 8 and several values of a. Comparing this
figure with the d = 8 curve of figure 4, we see that the ad-
dition of the regularisation term has resulted in smoother
approximations to the data. Thus the high oscillatory effects
resulting from choosing a parametric form with too high an
order or complexity (too many free parameters) can be offset
by the use of a regularisation term. Therefore the choice of
order is not so critical, though there still remains the problem
of choosing an appropriate regularisation parameter.

The discussion in this section has related to the problem of curve fitting using pre-
scribed functional forms. Specifically, It is not limited to feed-forward network structures,
but the problems of surfce-fitting and potential mechmisms of solution do apply to net-
work architectures since, as discussed in Section 1, feed-forward networks may be viewed
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as performing a functional mapping from an input space to an output space. Therefore it
is to be expected that for networks containing more adjustable parameters (in terms of the
weights of the network) than are required to solve a given task, the solutions obtained by
minimsation of an output error will not necessarily be stable against perturbations of the
data and may give poor generalisation properties. This has been overcome by the introduc-
tion of an additional term in the error expression and is analogous to the regularisation term
in (14). This has been termed deterministic weight decay [6] and effectively defines a new
surface, E' = E(w) + E2(w), where w is the weight vector, E(w) is the error criterion at
the output of the network (often a sum-square error measure) and EQ(w) is the additional
term which is large when IwI is large. If E 2 is too large then the solutions do not correspond
to solutions of the original task. If E2 is extremely large, then there is only one solution,
w = o. On the other hand, if E2 is very small, it does not affect the solution very much at
all. Sometimes a solution is to use a term E2(w, t) which is a decreasing function of time.
This has been termed 'simulated ironing' [6] and is very similar to the 'graduated non-
convexity' approach for function minimisation [2, 3]. Also, a specific form for E 2 (as one of
Tikhonov's regularisation functions) in neural network applications have been considered
by Farhat [7] for target shape estimation using radar imaging data. However, it should be
emphasised that the choice of the form for E2 should depend on knowledge of the data, the
solution and the real world task for which the approximation is being constructed.

Characteristics of generalisation should be motivated by high-level concepts of what
the surfaces created by the generalisers should be like when the generalisers are operating
in the real world [36]. Physical plausibility of the solution, rather than its uniqueness,
should be the most important concern in regularisation analysis and a physical analysis
of the problem should play the main r6le. It is important to choose a penalty term or
regularisation term, expressing an estimate of the a priori implausibility of each possible
solution, which is appropriate to the task.

The approach considered in the following section is to derive a fitting surface which
is robust to noise on the data points z. This is relevant to real-world problems where a
generaliser is required to operate on noise-corrupted data.

3 Minimum Mean-square Approximations

In this section we consider a least squares approach to generalisation. We wish to determine
some property, f, of a data sample1 e. We assume that the training set is noiseless and we
wish to generalise to data samples corrupted by noise (and consequently not in the training
set). For example

* we may be given a portion of a sinusoid signal and be asked to determine the frequency.

e in Image restoration problems with a measured or modelled point-spread function
(including, for example, synthetic aperture radar with known imaging operator) the

data, a, may be the diffraction-limited image of an object of finite support and the
problem is to reconstruct the object, f(a).

'We now use blodfaee variables to denote vector quantities
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* in the problem of point-source location using either focal-plane or aperture plane
arrays in which the array manifold is assumed known - either measured during a
calibration procedure or modelled using idealised beamshapes - the data a is an
array of receiver outputs and f(a) is the position of a source in the scene.

We assume that, in the absence of noise, f(a) is known. For example, in each of
the illustrations above, we can determine the frequency of the sinusoid, recover the object
unambiguously from its image and determine the position of the source exactly from the
data sample .. Thus, we know the mapping, f (a) perhaps continuously as a function of
N, perhaps at discrete sample points mi. This is not such a severe restriction since in some
situations we may generate f(a) from a theoretical modeL In other cases, f(s) may be
obtained by a calibration procedure in which data samples (the set f(-, fi), i = 1, P)) are
collected in a controlled environment, perhaps at a very high signal-to-noise ratio so that
the data is, in effect, noiseless.

The use of a noiseless data set to characterise a generaliser is the problem addressed
by Wolpert [35, 36]. The HERBIE (HEuRistic BInary Engine) generalisation models of
Wolpert are essentially local models which are constructed to ensure the correct response
to the training data. Thus the models perform strict interpolation and are only valid for
situations in which the test set is itself noiseless also. The range of application of such models
is rather limited. In addition, the models assume that the data is single-valued, i.e. for a
given data sample, a, there is a unique observation, f(m). For many pattern classification
tasks this is an unrealistic assumption (for example, see the medical illustration in (17]) as
distributions will invariably overlap. In the NETDaGU example considered by Wolpert (36]
to illustrate his theory, there is a unique class for a given data pattern and therefore it is
possible to construct a surface which strictly interpolates the data points.

In practice, the data z which is to be analysed will be corrupted by noise, so that
z = a + n where, in the three examples above, n' would be a noisy one-dimensional signal,
a two-dimensional image or a vector of noise samples. Given z, we require an estimate
of the unknown physical quantity f(a). One obvious candidate for the estimate is f(z).
However, this may not be suitable for two main reasons:

1. z may not lie in the domain of f. In the image restoration example above, the
noise may comprise out-of band components, so that z does not lie in the domain of
band-limited images. Thus, the function, f, is not defined for z.

2. Even if f(z) is defined, it may not yield an 'optimal' estimate for f(m), the uncor-
rupted value, possibly giving large errors for small perturbations to a.

Therefore, we seek an approximation, g, to the function f which is

1. defined for all perturbations, n, to m.

2. rminmises the sensitivity of the estimate with respect to the noise perturbations.

3. g(z) -, f(a) as n -. 0.

It differs from the strategy of Wolpert in that we are not attempting to reproduce the
training set exactly, but to minimise the expected square error between the function f and
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its approximation g when there is noise on the data points. In many practical situations,
data vectors are likely to be corrupted by noise and it is important that an estimator
properly takes account of the data on which it is operating. The degree of noise corruption,
or the signal-to-noise ratio, will depend on many factors relating, for example, to measuring
equipment, signal levels and the experimental procedure. Although the noise statistics and
the signal-to-noise ratio for the operating environment may be known or measured, they
may differ appreciably from those used to collect the training data for the estimator. For
example, in a signal processing task, the network may be required to operate over a range
of values of signal-to-noise ratio. In order to choose appropriate parameter values for the
estimator, it would be necessary to collect different sets of training data representative of
each signal-to-noise region and to train the estimator on each set of data. This would
give values for the parameters of the estimator for the different operating r6gimes. In some
practical situations, data may be expensive or time-consuming to collect and therefore it
would be desirable to use one training set and to train the estimator to operate at different
expected signal-to-noise ratios. In the following subsection we derive the analytic form for a
minimum variance approximation to a given transformation and consider approximations to
it when the transformation, f (a), is defined by a finite set of points {(-/, f,),i = 1,... ,P}.
In subsection 3.2 we derive a high signal-to-noise ratio approximation for the variance
and apply this to feed-forward networks in 3.3. Finally, we conclude this section with a
summary of the main results.

3.1 Minimum Mean-square Estimate

Suppose that we wish to approximate a transformation f from RIM to ]RD'. Let the approx-
imation be given by g which is chosen so that the quantity V, defined by

V = J if(W)-_(& + E )p()p(e)dd (15)

is a minimum, where p.(4) is the probability density function of a noise distribution in the
space JR" and p(m) defines the distribution of data points a in the space R'1. Equation (15)
defines the expected square error in the approximation when the data points in the domain
of f are corrupted by additive noise, and may be written (for z = a + J) as

V= f (t(-) - g(z))'p,(z - z)p(.)dwdz. (16)

Minimising with respect to the function g gives the solution for g as

g(z) = jf(u)p(z - *)p(.)de (17)
fN(z- )p(w)de

This is the approximation to the function f for which the expected square error in the
functional value, integrated over the domain of f, Is a minimum and generalises f to points
z outside the distribution of the data points w. It is shown in Appendix A that a more
general form for g(z) is

g(X) = E{f(u)IL} = jf()p(I)d,. (18)
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the expected value of f(a) given the data sample z, and for the case of additive noise, the
conditional density p(m i) is given by

N),(z - -)P(-) (19)p(,Iz) = pu,(z - .)p(,)do(9

For a function f defined by a finite set of points {(mi, fj), i = 1,... ,P} in IR" ®lR',
then provided that the integrands in Equation (17) are sufficiently smooth, the solution g
may be approximated by g given by

EL= f, PZ-3.) (20)

)(Z - -,)

or
P

O(z) = P.,,(z - ,,) (21)
i--1

where A(z - me) is defined by

n- ) - p,(z - ) (22)p,,( -,,) =Ep~l( z - ',)

This equation is identical in form to radial basis function approximations [4] in that the
approximating functional is a linear combination of (specified) nonlinear functions of the
difference between a data point, z and a 'centre'. In this case the nonlinear basis functions
are determined by the noise probability density function, the centres by the data points
wi, and the weights are the function values, fi at the centres. Thus a radial basis function
network structure arises as a natural consequence of the minimum variance solution. For
example, for a Gaussian noise model with diagonal covariance matrix with equal diagonal
elements a2,

rpjIfi exp[- 2-IZ _ W,121
2(z) - P z I(23)

Er=I exp[- -'I T Iz - 32]

Note that in order to derive the function g which approximates f and generalises to
unseen data, we have not assumed a specific functional form, nor a smoothness condition.
We have assumed that we know how to perform the mapping if there were no noise (noiseless
training data) and assumed a minimum mean square error measure. A consequence of this
is the radial basis function nature of the solution. However, we do need to know the noise
distribution. If we were to assume that it is Gaussian with diagonal covariance matrix with
equal elements, then we would need to specify the noise variance on the test data.

The function # will provide a good approximation to the exact minimum mean-square
solution, g, if the standard deviation of the noise is large compared to the distance between
sample points, ej. Pogglo (22] has also derived a radial basis function approximation to
f(a) as a consequence of specifying a regularisation term in which the operator P has radial
symmetry.

Note that the function g(z) may be defined over the whole space RIn, whereas the data
points . may lie on a reduced dimension manifold, X, in Ri (as specified by the probability
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Figure 8: Approximations to f(z) given by Equation (24)
(solid line) for 0,

2 = 0.1 (dot-dash line), 0.01 (dashed line)
and 0.001 (dotted line)

density function, p(m)). Thus, the approximation to f , g(z), is defined for values of z which
do not necessarily lie on the manifold, X. This is important in many applications in which
noise will corrupt data points, w, to give values z = a + f which lie outside the domain of f.
In these situations it is not sufficient to interpolate the training set {(zi, fA),i = 1,... P}
without due regard to defining the mapping for points outside the manifold.

EXAMPLE 8 In this example the minimum mean-square approximations
to the function

f(W = sin(z - 0.5) (24)
z - 0.5

(solid line) are calculated for a Gaussian noise model and
plotted in Figure 8 for values of the variance, a 2, of 10-1

(dot-dash), 10-2 (dashed) and 10- 3 (dotted). Equation (17)
was evaluated using Simpson's rule assuming a uniform dis-
tribution for z on [0, 1].

The minimum mean-square approximation derived above provides a biased estimate, in
that for a data point, no, the mean of the estimate (the average over all perturbations J to
*o) is not necessarily equal to the functional value f(so), i.e.

f g(z)p(zl,,o)dz 6 f(no) (25)

where z = so + 1. In some practical situations it may be advantageous to have an unbiased
estimate so that integration may be performed after the functional transformation, i.e. we
need to produce an approximation g(z) which is defined for all noise perturbations and
which, for inputs z = so + 1, if averaged will tend to f(no), the true value in the absence
of noise.
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This may be achieved by demanding a minimum variance estimate which satisfies the
constraint

jg(z)p(zlmo)dz = f(wo) (26)

i.e. minimise

V = fJff(.) - 9(0 + ())2 pA(u~)dvdC - J )(.)Jf(ft(a) - g(m + j))p,dLj)p(m)dzdC

(27)
where A(z) is a Lagrange multiplier. The solution for g(z) is

g(z) = (a) - )p ()dm (28)f p -((28)p~~d

and A(m) satisfies the integral equation

1fA(m)Q(z,o)p(x)dz f f()Q(m,o)p(m)dm - f(zo) (29)

where Q(m, mo) is defined by

Q(mso) Jf P'(WP -(+ o - ) di (30)
Jfp,(j + o - )p&)dzt)

For a finite number of data points, the integral in Equation (28) is again of a radial basis
function form, with this time the weights being the function values offset by the Lagrange
multiplier terms.

3.2 Perturbation Analysis for High Signal-to-Noise Ratios

In the previous subsection a solution for the minimum variance approximation to a known
function, f : lR --+ lR' was derived. When the functional transformation is specified
only by points in RK" ® 1R"', then this minimum variance solution may be approximated
by a summation which takes the form of a radial basis function network with nonlinear
functions being (normalised) noise probability density functions. This summation will be a
good approximation to the minimum variance solution provided that the standard deviation
of the noise distribution is large compared to the spacing between samples, mi. In a low
noise situation (where the standard deviation of the noise distribution is small compared
to the distance between sample points), the approximation h(z) to g(z) will be accurate
only in the region of the sample points and at Intermediate values will give a very poor
approximation. Therefore, we need to specify a model for the approximation to f(a) or a
constraint in the form of a regularisation term in order to describe how the function varies
between sample points.

Let us assume that we have a parameterised model for the approximation to f. In the
following section, we shall consider a specific model (namely a feed-forward network), but
at the moment there is no restriction to its form other than it is a continuous function, 9, of
the data z with continuous first derivatives. First of all we shall calculate the perturbation
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to the error between the actual values, fi and the approximate values due to noise on the
data points.

Let {(oi,, i = I,...,P} denote the set of points describing the mapping f : n -.

R". For a given data value, ap, let E. -E(.,) be the error between the approximation to
f(e) and the desired value, f, for the pth pattern, a,. Often, the total error, is given by

pP

1E 1 E(e,), (31)
P=1 1

the sum-square error between the approximations and the desired values (termed the 'tar-
get' values in a feed-forward network framework), though in the analysis which follows we
impose no such restriction. Let the pattern op be corrupted by additive noise, n, so that
the error for pattern a. is

Ep = E(vp + n) = E(aj) + (n'V)EIP + (,'V)2EI (32)

expanding by Taylor's theorem and assuming that n is small so that terms O(jnj3 ) may be
neglected. For (n) = 0, the expected error (average over all noise vectors) is

1
(E) = E(ap) + I(H'nPn) (33)

where E(zp) is the error in the absence of noise and 1(n rPn) is an additional error term
where H P is the Hessian with respect to the data space components, evaluated for the pth
pattern

(34)

For (nini) = o 26j, the additional error term may be written

l(n'HPn) = (35)

where Tr is the matrix trace operation. Averaging over all data patterns gives the mean
expected error

P 2 P
(BT) y E E(mp) + FP- Tr(H'). (36)

Equation (36) gives the mean expected error in the approximation and consists of two
terms. The first is the error in the approximation when there is no noise on the data.
The second term is a second derivative quantity proportional to the noise variance o2. For
a 2 = 0, (Es.) reduces to the usual error term in the absence of noise. Thus, if we have
a mapping f : RI -- R"' defined by points in R" a L"' in which the data points in W n
are corrupted by additive noise with zero mean and variance a 2 (sufficiently small so that
the higher order terms in the Taylor expansion may be neglected), then minimising the
error over all patterns and over the noise distribution with respect to the parameters of the
approximating function, g, is equivalent to minimising a modified error term defined on the
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Figure 9: Polynomial approximations for d = 8 and o,= 0.05
(solid line), 0.01 (dashed line) and 0.001 (dotted line)

patterns in the absence of noise. A different approximation to f can be derived for different
values of the noise variance, o2 . Equation (36) shows that the effects of noise on the test
data can be compensated for by training an approximator with a modified error criterion.

EXAMPLE 9 In this example we are again using a one-dimensional illus-
tration and fitting the sampled sin(z)/z data with a polyno-
mial of degree 8 (see Figure 9). The regularisation term is
the second derivatives of the error and the coefficients of the
polynomial are determined by minimising the total error as
given by Equation (36).

The two terms in Equation (36) may be regarded as the usual error metric plus a
regularisation or stabilising term with regularisation parameter o,, the variance of the
noise on the inputs. The expression for the error given in Equation (36) is a function of
the parameters of the approximation whose precise form depends on the particular error
criterion and the model. For the usual sum-square error criterion, the quantity, (ET) is
the square error between the observation values and the approximator, averaged over the
noise distribution and the data distribution and is equivalent to V given by (15) for the
general case of arbitrary noise distribution. Thus, minirising the modified error gives an
approximation to the vector of posterior probabilities.

For the sum-squared error criterion, the second term in Equation (36) may be written
as

p=1

where the n' x n matrix JP is the Jacobian

p = i  (38).rf,= U,



Andrew R. Webb 21

representing the derivative of the ith component of the approximation with respect to the
jth input, evaluated for pattern ap. The quantity a2'I3,PI 2 is the trace of the covariance
matrix of the approximator, i.e. the sum of the variances (about the mean output values).
The vector q'= (qj', q2,... , q.)" is a vector of second derivative terms, with kth component

p g, ](39)

evaluated for the pth pattern.

3.3 Feed-forward Network Approximations

We now consider a particular parametric form for the generaliser when the noise pertur-
bations are small, namely a feed-forward layered network architecture. The behaviour of
continuous feed-forward networks in noisy environments has also been studied in the situa-
tion when there is additive noise on the inputs and/or the outputs of the network [12). The
approach adopted in this paper differs from [12] in that we assume a set of input-output
pairs which characterise the mapping exactly, but train the network for operation in a noisy
environment.

The basic network structure we shall consider is the feed-forward type with an input
layer of n nodes, an output layer of n' nodes and an intermediate hidden layer of n0 nodes.
The input to each node in the hidden layer is a combination of the input vector and a weight
vector. The structure of the standard layered network model considered in this paper is
depicted in Figure 10.

For a multilayer perceptron with a single hidden layer and the sum-square error criterion,
the regularisation term may be written in terms of the weights as

1[AGPMI[' - , (( - o),i (i - hP)(1 - 2h2?) i A (40)
P=1 j=1

where hi is the output of the jth hidden node for input pattern op and G P is an no x no
diagonal matrix with (ii) component h'(1 - hP). The scalar quantities )jj and /jk are
the weights between the ith output node and the jth hidden node, and between the th
hidden node and the kth input node respectively. This extra error term is a function of the
final layer weights A (the n' x no matrix of weights >, excluding the biases) and the first
layer weights M (with components pi) (note that GP, hP' and of also are functions of these
weights).

The regularisation term involves second derivatives of the outputs as a function of the
inputs and is given above for the multilayer perceptron and the sum-square error crite-
rion. In order to minimise the expected total error using any of the schemes described in
the previous section, an evaluation of the derivatives of the above error term is required.
This leads to third derivative terms (derivatives of the Hessian are required). Although in
principle it is possible to do this at each iteration of the optimisation procedure, it would
lead to considerably more computation being required to obtain a minimum of the error.
However, we may use the knowledge that the noise perturbation to the input patterns is
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Figure 10: A schematic diagram of the standard feed forward adaptive layered network
geometry considered in this paper.

small (so that the Taylor series expansion is valid) to obtain the solution for the parameters
of the model which minimise the total error in terms of the solution which minimises the
error when the regularisation term is absent. This is given in Appendix B.

3.4 Summary of Main Results

This section has described a minimnum mean square error approach to function approxima-
tion and generalisation. The main results can be summarised as follows.

1. The minimum mean square estimate is the expected vector of the a posteriori density.

2. Approximating the integral over the training set by a summation gives a radial basis
function solution with nonlinear functions being determined by the noise probability
density function. This approximation Is valid provided that the standard deviation of
the noise is large compared to the sample spacing of the data points. This radial basis
function form is a consequence of the sum-square error condition and is not imposed
a prim.

3. If the expected noise on the test data is small compared to the sample spacing then the
radial basis function approximation is invalid. A generaliser can still be constructed by
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specifying the functional form and modifying the sum-squared error on the training set
by an additional error criterion or regularisation term. The regulurisation parameter
is determined by the noise variance and the form of the regularisation term by the
functional form assumed for the approximation.

4 A Radar Point Source Location Problem

In this section, we illustrate the results of the previous sections by considering an application
of feed-forward adaptive networks to point source location using focal-plane arrays. The
method may be applied to any array of sensors where the image response function may be
characterised by an array manifold. However, in order to be specific, we have confined our
study to the focal-plane situation and one idealised array in particular, namely a 5 x 1 array
of elements, each with a sin(z)/z shape point-spread function (Equation (41) below). Thus,
the array manifold consists of a set of real-valued vectors. A theoretical and practical study
of a maximum likelihood approach to point-source location using millimetre-wave staring
array sensors is given in [31] and a detailed study of the use of feed-forward networks is
presented in [30].

For a linear array (with a narrow slit as the aperture) the imaging equation is one-
dimensional and the response hi(f) is giver by

h,(f) = .infll(zz - f)] (41)7r(M - f)

Figure 11 illustrates the response of each receiving element to a point source in the far field
for the linear array. The distance between the peak of a response and the first null is termed
the "beamwidth" and is equal to unity for these examples (P1 = 1). The distance between
adjacent receivers in the focal-plane is taken to be unity, giving samples of the image at
Nyquist rate.

The problem is to determine the position of a source in the scene given the outputs,
possibly corrupted by noise, of the array of receivers. A training set was generated which
consisted of a set of normalised images of single point sources together with the correspond-
ing source positions. For the linear array, the images of a single source are calculated using
Equation (41) at 101 different positions, equally spaced across the field of view of the array
from -2.5 to 2.5 (at a spacing of 1/20). The image vectors are normalised to remove the
effects of source amplitude and these form the training set. For the test data, the normalised
images of a single source at 200 positions chosen randomly between -2.5 and 2.5 are taken
as input with the source position as target.

The training data lies on a one-dimensional manifold (the position on the manifold is
characterised by source position) within the 5-dimensional space of array outputs. However,
in noisy operating conditions, data vectors will not necessarily lie on the manifold. There
we seek a function of the data which approximates the position and generalises to points
off the manifold. In the previous section it was shown that provided that the noise variance
is sufficiently large, a generaliser which minimises the mean square error is of the form
of a radial basis function network with centres at the data points and nonlinear functions
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Figure 11: Response of each receiving element to a point source in the far-field for a 5 x 1
linear array of receivers in the focal-plane of an imaging system.

determined by the assumed noise probability density function. 2 If the expected noise is
small, then some functional form must be assumed for the approximator. In the example
below, we consider the case of small noise perturbations and consider the use of a feed-
forward network as the approximator.

The networks, which we have chosen to apply to this problem, have a single hidden layer
with input in the form of a hyperplane and a nonlinear transfer function

O 1z)= (42)¢() 1 + e--'"

This is a rather arbitrary choice, and there may be other nonlinearities more suitable to
this problem. The output nodes are linear functions of the input, i.e. t(z) = z.

The focal-plane array illustration described is highly idealised. In general, the array
manifold, and the image vectors, would be complex vectors and some method of incorpo-
rating complex vectors into a feed-forward network would have to be considered. This is
not a difficult task, but for our purposes we shall restrict the example to considering real
vector inputs only.

For a given value of no, the number of hidden units, and a given set of training data,
a multilayer perceptron network was trained to find the weights which minimised the error
at the output. Initially, the values of the weights were chosen randomly from a uniform
distribution on (-1.0,1.0). Then the BFGS (Broyden-Fletcher-Goldfarb-Shanmo) nonlin-

2iSnce the data is normulised to remove the effects of source amplitude, the form of the radial basis
hnctlon network differs in detail from that siven In Equation (23). See [30) for fArther details
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ear optimisation strategy3 was used to find the solution for the weights for which the error
at the output of the network is a minimum. The network was tested using the test data
generated and the normalised error on test calculated. For the linear array, the experiment
was run for 100 different random start configurations for the weights. The solution for the
weights which gave the lowest normalised error on test over the 100 experiments was chosen
as the one which best describes the mapping from image space to position space for the
particular network under consideration.

Figure 12 plots the bias in the position estimate (true position minus predicted position,
evaluated in the absence of noise on the input) for a network with 5 hidden units trained
to mintmise the sum-squared error on the test set. The figure shows that in the absence of
noise, a network can predict the position very accurately. Generally, the error is less than
5.Ox 10 - 4 of a beamwidth across the field of view. Figure 13 plots the root of the mean
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Figure 12: Bias (x1OOO) as a function of position for a linear array and a network with 5
hidden units, trained on 101 patterns.

square error at the output as a function of position for noise of variance o2 = 10 - 3 on the
inputs to the network. The data for this figure was generated as a result of a Monte-Carlo
simulation in which noise was added to an image vector and the position of the source
estimated using the network. The errors were averaged over 10000 sample images for each
position. The figures show that the noise error dominates the bias error at the outputs.

Figure 14 plots the bias error in the absence of noise on the inputs as a function of
position for a network trained to miimise the modified error criterion (the sum-squared
error over the training set plus a regularisation term4 with regularisation parameter with
a value of 10-3). The bias error is considerably poorer, increased by a factor of about
100. However, the root of the mean square error at the outputs for noise on the inputs is
reduced as shown In Figure 15 (generated in a similar way to Figure 13, using a Monte-Carlo
simulation)

'See (3] for a comparison of diiferent nonlinear optimisation strategles on the point-*ouree location
problem

"In fact, the additional term comprised the que of the norm of the Jacobian matrix only. The second
derivative term was neglected
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Figure 13: The root of the total square error as a function of position for the linear array
and a network with 5 hidden units

5 Discussion.

The intention of this paper has been to consider the problem of approximating a set of
data points in JR ® R' by a functional mapping JR' --+ JR'. There are several ways
in which this task may be approached and the particular strategy adopted should depend
on the practical problem being addressed, the form of the training data and the expected
test data or operating conditions. In some cases, strict interpolation of the training data
may be appropriate, but if there is noise on this data or there is noise on the expected
operational data, then this is not the correct strategy. Further, in a classification task,
strict interpolation may not be possible due to overlapping classes (a given data sample in
R' may have different observations in IRO').

The class of problems considered in this paper is one in which the training data is noise-
less (perhaps generated from a model or obtained during some calibration procedure) but
there is noise on the expected test data. Thus, there is one set of training data and differ-
ent operating (test) conditions are modelled by assuming a form for the noise probability
density function. A minimum mean square error approach has been employed and this
leads to an approximation which generalises from the training set to noisy conditions and
which gives the vector of posterior probabilities. For a finite number of training samples,
this generaliser may be approximated by a radial basis function network, which is a good
approximation to the generaliser provided that the noise is large compared to the spacing
of samples in the data space, R1.

If the expected perturbations to the training data are small, then a functional form
may be assumed for the generaliser. It has been shown that, for small noise perturbations,
m inimsing a modified error criterion on the training set (a sum-squared error plus a regu-
larisation term dependent on the functional form and a regularisation parameter dependent
on the noise variance) gives an approximation to the posterior probabilities.

A problem in point-source location using a focal plane array has been used to illus.
trate the analysis. It was shown that training a multilayer perceptron using the modified
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Figure 14: Bias (x 10) as a function of position for a linear array and a network with 5
hidden units, trained on 101 patterns, and with a value of a2 of 10- 3 .
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Figure 15: The root of the total square error as a function of position for the linear array
and a network with 5 hidden units

error criterion gave better performance on noisy data (that is, smaller error in the position
estimate) than the usual sum-squared error.

A practical difficulty with the approach is that the probability density function of the
noise must be known to construct the generaliser. For many problems this will not be known
a prioti. Even if a particular form could be assumed (for example, Gaussian additive noise),
then it is unlikely that the overall signal-to-noise ratio would be known. Therefore it would
be necessary to have several generalisers appropriate for different operating conditions or a
generaliser which adapts to different noise levels.

Also, for some problems, the training data will inevitably be noisy. If this data is repre-
sentative of the operating conditions then It is not necessary to model the noise. However,
if we wish to generallse to different operating conditions, then a model must be assumed

for the noise process. It is also important to know where the noise occurs In the training
set. In a classification problem it may occur on the class labels (incorrectly classified data)



28 Functional Interpolation and Generalisation

and the method of training should take this into account. These are avenues for possible
further work.

In conclusion, this paper has shown how a generaliser can be constructed. A feed-
forward network approximates the posterior probabilities provided that the network is
trained to minkise a sum-squared error augmented with a regularisation term. An il-
lustration of a radar point-source location problem has been given and is considered in
detail elsewhere [30).
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Appendix A Minimum Mean-square Error Solution

Let f(a) be a transformation from Rn to IR' and p(m) denote the distribution of data
points, a, in Ra. Let g(z) be the approximation to f(e) and the conditional distribution
of z on a be p(zle). The square error, V, between f and g integrated over all z and z is
given by

V = /If,(a)- g(z)'p(z,)d(dz

= ffIf(a) - g(z)12p(zle)p(w)dzdz

Minimising with respect to g gives

(z) = Jf ()p(z l)p(i.)d

f p( zla )p()dw (44)

= f ()p.(s )dz

the expected value of f(c) given z, Thus the minimum mean-square estimate is the ex-
pected vector of the a posteriori density ([9], Chapter 5).

For the special case where z represents additive Gaussian noise so that (for Gaussian
noise of variance a2)

p(zlz) = Pn(z - ) = 1 1 2 N2 (45)

then, for a finite number of training samples, g(z) may be approximated by

l?(z) = 1 f, exp[-z-] (46)

Alternatively, in a pattern classification problem in which there are M classes, if ri

represents a class label so that p(zlei) is the class conditional distribution, then

g(Z) = 'f(-)p(.*Ij) (47)

and for f(mi) being a vector with a '1' in the ith position and '0' elsewhere, then g(z) is
the vector of posterior probabilities.
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Appendix B Perturbation Analysis Solution for the
Weights

Let wo be the solution for the weights (the matrices A and M and the vectors of biases /o
and Ao) which minimises the sum-squared error when noise is absent. Let the solution for
a noise level of a 2 be too + t'. The derivative of the total error at wo + w' is equal to zero

,=E 8o)E = 0 (48)

and expanding about the 'noiseless' solution wo to first order gives

+E~w, (P= OE1) +~ L2 = 0 (49)
V---- 8OO 2 O, k

where 8/Ow (8/OwI,... , O/WN)*, and N is the total number of weights. Now, since
the error in the absence of noise is a minimum at wo, i.e.

P 8top) =0, 
(50)

=1 W O

then Equation (49) may be written

P ,8 8E(a,) 2 P n 8 3E-=o - =- - O , (51)
P=I i=1IwV= = aIO2

or

1 f 2 a
,W = -y ~-{Tr(H.)} (52)

where the N x N matrix H. and the n x n matrix H. are defined by

p=2

P 82 E (53)

[HE., = Eaix

Provided that the inverse of the matrix H. exists, then the solution for the perturbation
to Wo is

= T (54)
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Abstract

This paper considers a least-squares approach to function approximation and generalisation. The
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perturbations, it is shown that better generalisation will occur if the training error criterion (the sum-square
error on the training set) is modified by the addition of a specific regularisation term. This is illustrated by
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