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CHAPTER |

Introduction

In this report, we consider an H.-like problem on a finite horizon. In Chapter 2 a
problem with a restricted performance index is treated. We propose a worst-case optimal
controller, whereas the usual H, solutions yield suboptimal ones. The system considered is
linear time-varying and the expressions for the worst-case exogenous input and the optimal
controller are in terms of solutions of two dynamic Riccati equations in the case where the
initial state is nonzero. Also an expression for the optimal controller is obtained in this
case in terms of full state feedback. Since the procedure to obtain the optimal controller is
a noniterative one, the computational time is greatly reduced. Also, a novel feature is the
derivation of a formula for the performance variation cf the optimal controller in terms of
variations in the system matrices.

In Chapter 3 we consider a problem with a generalized performance index. We develop
necessary conditions for a minimax problem involving control and exogenous inputs. Again
the problem can be regarded as a finite horizon version of the H optimal control problem.
The emphasis is on the synthesis of optimal controllers whereas the usual H, methods
give conditions for the synthesis of suboptimal ones. Feedback controllers are developed
for the case of nonzero initial conditions. Also, expressions are derived for the variation in
performance in terms of system parameter variations. These linear expressions are useful

in the evaluation of the robustness of the proposed optimal control strategy.
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CHAPTER I
Worst-Case Optimal Control with a Restricted

Performance Criterion

1. INTRODUCTION

There are several recent papers attacking the H,, problem from a state space point of
view and all of these obtain a characterization of suboptimal output-feedback controllers|1-
5]. The suboptimal controller is usually obtained by solving two Rircati equations. Theie
are also finite interval versions of these solutions and extensions have been made to the
linear time-varying case as well[4,5]. The state space approach has yielded new insights
into the features of the Ho, coatroller, and one of these is the separation of the control
problem into a full state feedback design and an observer design.

In a different approach taken by this author[6-8], a measure of peformance is computed
for a given controller and nonlinear programming algorithms are utilized to find a controller
that optimizes the performance. This approach is suitable for extending the methodology
to solve problems involving convex functionals[9]. We have also applied the methodology
to solve model reduction problems[10]. One of the main advantages of this approach is
the quantification of variation in peformance when uncertainties are present in the system
matrices. However, it is tedious to compute the optimal controlier in .his case because it
requires several iterations.

The main contribution of this report is the noniterative characterization of the optimal
cont.rfoller. We consider a restricted performance criterion in Chapter 2 and a generalized
performance criterion in Chapter 3. The full state feedback solution in the nonzero initial
state case is in terms of two dynamic Riccati equations. The integration of these equations
is casy sincé only one of the Riccati equations depends on the solution of the other. Unlike

the usual approaches which yield suboptimal controllers, our app.oach yields an optimal

2
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controller. Thus the need for iterative solution meihods like the v-iveration is eliminated.
Because of the dynamic Riccati equations, the control gain matrix will be time-varying even
when the system matrices are time-invariant. An important by-product of the approach is
a formula for the variation of performance in terms of variations in the system matrices.
These variations in performance are useful in evaluating the robustness of the proposed

controller.

2. PROBLEM FORMULATION

The linear time-varying system is given by

z = A(t)z + Bi(t)u + Bz(t)v,  z(to) = zo, (

—
~—

< =C(t)z + D(t)u, (2)

where z,u,v, and z represent the state vector, the control vector, the exogenous input

vector, and the vector to be conirolled respectively. We consider the minimax problem

, LesSizo + [, Lo*(t)R(t)u(t) dt
min max 0

v u Sl L)W (t)2(t) dt

(3)

where R(t) and W (t) are positive definite matrices and the superscript * denotes matrix
or vector transpose. Also S) is a constant positive definite matrix. The above problem 1s
related to the Ho, problem since the functional in (3) represents the ratio of exogenous
signal energy to the error energy. Also, the solution procedure given in the following
sections is extended in Chapter III to the case where (2) is of the form = = C(t)r +

D(t)u + E(t)v.

3. OPTIMAL SOLUTIONS

Let
J(u,v) = Ja5Sizo + [ JvT(OR(u(t) dt "
| JE L W(h)=(t) dt ‘

[}

3
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Using (2), we can write (4) as

1258120 + [} Lo*(t)R(t)o(t) dt
ft’f{%z*le + z*Wou + %U*I/V;;u} dt'

J(u,v) = (5)

Notice that the weighting matrices W, W;, and W; are time-varying.
We will first of all maximize (4) over u for any given v(t) # 0. Thus we nced to
minimize

T
1 1
/ {Ex*WI.'II+$*W2u+ -2—u*W3u}dt (6)
to

over u assuming that v(t) is given. From the maximum principle[11], which in this case is

also a sufficient condition for optimality, the Hamiltonian is given by
1 * * 1 * *
H= —{éx Wiz + 2*Wou + U Wiu} + *{A(t)z + Bi(t)u + Ba(t)v}, (7)

where the adjoint variable v satisfies

&y OH :
with
z(to) = Iy, ’d)(T) =0. (9)

Also, setting %% = 0 and assuming that Wj is invertible for all t € [to, T,
u= Wi\ (Biy - W), (10)

Let

A=A-BW,'wy,

B =B,W; B!, (11)

C =W, - W,w;'w;.

(i)z(é —If}i‘><«7»)+(%>"’ (12)

4

Thus we have
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with
z(to) = xo, ¥(T)=0. (13)
Let
'
z
= , 14
c=(3) (14)
A B 3
M—(é —A*)’ (13)
and

_ { B2
N—-(O>. (16)

By (10) the denominator of (5) can be put in the form %—(‘QC, where Q(t) is symmetric

and positive semi-definite. The system given by (12) can be written as
¢ = M)+ N(t)o, (17)

with

I(tO):IOv lf/'(T)ZOﬁ (18)

and ¢ needs wo be saccied to wininize the cost

LzsSizo + fiT Lor(DR(H)(t) dt
- .

0 30 (DORC() dt

We now state the conditions that are satisfied by an optinial »(#

(19)
\
},

THEOREM 1. Consider the system given by (17)-(19). If vo(t) minimizes (19). then there

exists a nonzero n(t) = (p*(t) ¢*(t))" such that

dn .
_ = — *n — 2
= M*n - Q¢ (20)

where p(t) and ¢(t) are components of the adjoint vector corresponding to x(t) and v(t)
respectively, such that
‘T(tﬂ) = Ty, l/'(T) = Oa

(21)
p(T) =0, q(te) =0,

5
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where T
lr2Syro + Lv*Rv dt
A =inf 222 ’f.lf'“ (22)
v ffo EC'(JC (lf
and
vo(t) = RT'N*1. (23)
If in addition ro # 0,p(ty) = S1z(to).
Proof. If vo(t) minimizes (19), then it also minimizes
. al 71 T
J(v) = 51‘5511‘0 +/ av'Rvdf - )\/ 5('QC(1#. (24)
to “~ tg ~

By the maximum principle[11], there exists an adjoint response 7(t) such that the Hamil-

tonian

- 1 * 1 ~k Y~ * - T "
H(77,g,v)=—§U Rv+§/\g Q¢+ n*{M(+ Nv} (25)

is maximized almost everywhere on [tg, T] by tg(t). Satisfaction of %IT{ = 0 vields

vo(t) = R™'N*n. (26)
The adjoint variable 7 satisfies
dn OH
L =2 = M- \QC. 27
it ac n—AQC (27)
By the transversality conditions, we get the boundary conditions. W]

Thus we have a two point boundary value problem given by

(N _( M NR'N*\ (¢
()= (56 "5)(5): @

x(tg) = o, P(T) =0,

with

p(T) =0, q(to) =0, (29)

p(to) = S].’I‘(fU) if T # C.
We now give a criterion for the estimation of A. Notice that A = min, max, J(u.v)
and gives a measure of performance of the optimal controller under worst-case conditions

corresponding to vg(t). In the H,, case, the evaluation of A woul? entail the 5-iteration.
I ) B

6
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THEOREM 2. Let A be the smallest positive value for which the boundary value problen
eiven by (28) and (29) has a solution ((,n) with ftz %C‘QC dt > 0. Then A is the mininnu
vadue of (19), (¢, n) is an optimal pair and v 2 R™IN*ny is the worst exogenous input.

Proof. It is clear from Theorem 1 that if vo(f) minimizes (19). then it satisfies (2%)
and (29), with A being the minimum value of (19). Now suppase (. 7) satisfies (28) and
(29) for some A. Let v = R™IN*n.

We have

T T
roSyry +/ v*Redt = x5p(ty) + (RT'N*np N*p)dt
{o to
T
ZISP(t0)+/ (NR™'N*n.y)dt
to
T T
=r:;p(fo)+/ (c,n)df—/ (MC.n) 30
to to

Integrating the first integral in (30) by parts and making use of (29). we get

"
/ C*QC dt. (311

to

-
rpS1xo +/ v*Riedt = A

to .
Thus. the cost associated with v is A Hence, if ((.77) 1s a solution of the boundary value
problem given by (28) and (29) for the smallest parameter A > 0. then X 1s the optimal
value and (¢.7) is an optimal pair. O

Note that the boundary value problem (28)-(29) has a solution with a nonvanishing
denominator for (19) for at most a countably infinite values of A Theorem 2 gives o
sufficient condition for an exogenous input to be optimal. Thus, Theorems 1 and 2 give &

complete characterization of the worst-case exogenous input.

4. COMPUTATION OF A\
In this section, we consider the boundary value problem given by (28) and (29) as

suming that r(fy) # 0. Analogous theory can be developed in ense ry = 0. Making use of

7
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the transition matrix, the solution of (28) can be expressed as

x(t) dr1(t,to) ona(tite) st te) oO1al(t.to) r(to)
w(t) | _ [ datite) aaltite) aslt,te)  daslt.ty) Vv{to) (32)
p(t) é31(t,to)  P32(t te) dasl(t,to) o3a(t.to) pto) o
q(t) a1t to) dualt te) daslt,to) daalt ty) q(ty)
The boundary conditions given by (29) yield
<¢21(TJ0)+¢23(TJ0)51 ¢522(T,f0)\) (;F(fo)) —0 (33)
é31(T to) + b33(T,10)S1  ¢32(T,tg) / \ ¥(to) '
Let
7 d21 + 02351 P2
p=1" .
<¢>31 + ¢335) ¢32) (34)

In view of (33) and (28)-(29), we have det(3(T.ta)) = 0 if and only if the solution (¢.n)
of (28)-(29) is not identically zero. Thus, we need the least positive A which makes
(lot(c‘;(T, ty)) = 0 and the denominator of (19) positive. This can be obtained by doing a
scarch with A over an interval on which there is a change in the sign of the determinant.

We found the following algorithin to be numerically more stable since numbers of

lesser magnitude are involved in the computation of the traunsition matrices in (35). We

have
T)\ _ T+t T+t C(to) -
(n(T) =o)Ly ) (99)
Let
Eit &2 &3 Gy
- T+t €1 E22 &3 &
T, _ 21 3 b ) 36
¢ ( 2 ) €31 &2 &3z aa (36)
€ Ca2 Cuz s
and
Vyy, Utz Vi Vg
T+t _var vz vaa vy -
QS( 2 ’to) N Vzr V32 V33 V34 (3‘)
Vyr Va2 V43 gy
Making use of p(tg) = Sia(to),q(to) = v(T) = p(T) = 0, we have
ITERSY i+ 138y v
€21 €24 T(T) — v + 12351 1 (f(fo)) (38)
31 &aa q(T) a1 + 13351 132 U(ta) )
TR g1 + 43Sy g

8
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The above equation has a nontrivial solution if and only if

€ s v +visSt vi
€21 Coa vor + 23Sy w22

det =0. 39
€31 €34 va +v33S1 vae (39)
€1 €aa var +v3St g

Thus, we need the least positive A which makes the above determinant zero.

5. SOLUTION IN TERMS OF RICCATI EQUATIONS
We now give the optimal solution in terms of solutions of two dynamic Riccati equa-

tions in the case where .o # 0.

Pll Pl2

THEOREM 3. Let P =
¢ (P21 Py

) be the solution of the initial value problem

P+PM + M*P+PNR'N*P 4 AQ =0, (40)

P(ty) = (%‘ 8). (41)

If 2(tg) # 0, let Z be the solution of the dynamic Riccati equation

Z+Z(A+BR7'B}P\)+ A*Z + Z(B+ BoR'B;P1)Z —C =0, Z(T)=0. (42)
Then the worst-case exogenous input is given by
v =R™'B}(Py; + P1,2)z, (43)
and the worst-case optimal controller is
u=W;YBIZ - W;)z. (44)

Proof. Letting n = P( in (28), we get (40). From (26) the worst-case exogenous input
is v = RTIN*PC. If z(t) # 0, letting ¢ = Zx, we get v = R™'B5(Py; + P12 Z)r. Also,
equations (12) and (13) yield (42). From (10), we get the worst-case optimal controller

given by (44). 0O
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Note that the worst-case optimal control given by (44) has time-varying feedback gain

even when the linear system is time-invariant because of the presence of Z(t).

6. PERFORMANCE ROBUSTNESS

In this section we develop a formula for the variation of A when there are parameter
variations in the system matrices. Note that this expression for the variation in A takes
into account the corresponding variations in the optimal controller and the worst-exogenous
input. Usually when a controller is synthesized with respect to the nominal values of system
matrices, its gains do not change with parameter variations. Hence, later on in this section
we will derive an expression for the variation in A assuming that there is no variation of
the optimal gain matrix.

For this consider (1) and (2). Let 1 denote the variation in A for elemental variations
A, 6B,,6B,,8C, and éD in the matrices A, By, B,, C, and D. From equations (28) and (29)

of Section 3, we have the following boundary value problem given by

(=MC¢+NR'N*p, (45)

i = —AQ¢ — M7, (46)
with
.’L‘(to) = and’(T) =0,
p(T) = 0,4(to) = 0, (47)

p(to) = S1z(to) if zo #0.
To simplify the derivation, let 8M, 6N, and &) be the variations in M, N, and Q owing to
the variations 84, 6By, éB2,&C, and 6D We now derive an expression for u in terms of the
variations &M, éN, and &Q.
Let ¢, and 7, represent variations in ¢ and n owing to éM,éN, and &Q. Let the corre-

sponding variation in A be denoted by . We have the following set of equations that are

10
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satisfied by (; and #;:

¢, =MC + NR™'N*n; +6MC + (8NR™'N* + NR™'6N")n, (48)
M= —=AQG — M*n — (AQ + Q)¢ — éM™n, (49)

with
IL‘](to) = $10,¢1(T) = 07

pi(T) =0,q:1(t0) = 0, (50)

p1(te) = Siz10 if 2o #0.

Note that the subscript 1 of a variable in (50) denotes the corresponding variation of that

variable.

THEOREM 4. The variation p in performance is given by
- .ftf{/\(*éQC +20*6M*n + n*(NR™'N* + NR™16N*)n} dt
H= T .
i, C*QC dt

(51)
Proof. From (49), we get
T T

/ ¢ty dt = —/t {AC* QG + "My + C(AQ + nQ)¢ + C*éM*n}dt.  (52)

Integrating the left side of (52) by parts and making use of (45) and (50), we get

T T
2 S1z10 + / n*NR™'N*ny dt = A / ¢*QC, dt
to

to

T T
+ [ o0+ i [ card. (53)
to to
By (46), the first integral on the right side of (53) is written as
T T .
A / ¢*QGy dt = - / (7 + M)y dt. (54)
to to

An integration by parts and equations (48) and (50) yield
T T T
A/ ¢*QC1 dt = zgS1210 +/ n”*NR™'N*p, dt +/ n*6MC dt
to to to

T
+/ n*(NR™'N* + NR™'6N*)n dt. (55)

to

11
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Substituting (55) in (53) and simplifying, we get (51). O

Since u given by (51) is linear in the elemental variations 84, 8B, éB,, &, and éD,
at least in the time-invariant case the worst degradation in performance can be casily
obtained once the range of uncertainty of the parameters is known.

Now we consider the case where zo # 0. Assume that the state feedback controller
1s determined by the nominal system matrices and is fixed. We derive a formula for the
variation of A under these conditions. Since )\ gives a measure of performance of the
optimal controller under worst-case conditions, we can get an idea of the degradation in

performance owing to parameter variations. Equation (44) is written as
u=W;(BiZ - W}z = K(t)z, (56)

where K(t) is now fixed. Let A= A+ B;K and W = (C + DK)*W(C + DK). Equation
(1) can be written as

& = A(t) + By(t)v, (57)

with v chosen to minimize

%xa‘Slaro + ftf %v"Rv dt
ft: %a:"‘VVx dt

Note that

%zSSle + ftf %U‘Rv dt

: 59)
JoleWe dt (

A = min
v

The above minimization problem yields the two-point boundary value problem

()= (G 25) (5): (
z(to) = 0, 8(to) = S0, B(T) = 0, (61)

where (3 is the adjoint variable and the worst exogenous input v = R™'B}fS. Let B =

B,R™'Bj.
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Let &i, 61?, and §W be the variations in /i, B,and W corresponding to 64, 8By, 6B,, &C,
and 6D. Note that since K(t) is fixed, 84 = 644-6B, K. Let the variation in A be now denoted

by ft. Utilizing a similar analysis as in the derivation of (51), we can get

— [T Az Wz + 264" B + B 6B B} dt

. (62)
ftf Wz dt

i@ =

Since fi is linear in the variations, the worst degradation in the performance of the
optimal controller can be easily computed in the time-invariant case. The worst value of

jt gives an idea of the measure of performance robustness of the optimal controller

7. AN EXAMPLE
In order to illustrate the basic theory, we will work out a simple example. The system

is described by the equation
t=-z+u+v, z(0)==z#0, (63)

and the objective is to choose u and v such that

1.2 11 2
. §$O+f0 5’0 dt
T
0 2

(64)

is attained.

First of all, minimizing fol 1(z? + u?) dt over u(t) for a given v(t), we get

()= D))+ () w
u =1, (66)
2(0) = zo,%(1) = 0, (67)
where , 1s the adjoint variable. Now we need to choose v to minimize

1e2 4 ) Lo dt
Ja 4z +y2)dt

13

(68)
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Let A be the minimum value of (68). Denoting the adjoint variables associated with r and

¥ by 7' and n? respectively, we get

dn’ _ 1 2
T AR o (69)
dn2 _ 1 2 -
Tlt———/\lb—n -0, (70)
n'(0) = z0,7%(0) = 0,7'(1) =0, (71)
v=n'. (72)
Thus, we have

:1'g -1 1 1 0 T

Y| 1 1 0 0 Y -

ATl a0 1 ]|} (73)

7’ 0 —-X -1 -1 n?

2(0) = z0,%(1) = 0,7'(0) = z9,7*(0) = 0,7'(1) = 0. (74)

According to the theory of Section 3, A is the least positive value for which the boundary
value problem (73)-(74) has a nonzero solution.
Let ¢ be the transition matrix of the system given by (73) at t = 1. Solving (73) and

employing the boundary conditions at t = 1, we get
(1) ) (x(O) ) .
0= = F(\ , 5
(i) =70 (50 (7o)

_ b+ b2z P22 -
F) = ((1531 + ¢33 ¢32) ' (76)

Thus, we need the first positive A which makes det (F(A)) = 0. This value of X is 2. It can

where

be easily shown that with the initial condition z(0) = 0, the value of A would have been
6.1159. The case of u = cx,z(0) = 0, where c is a constant gain is solved in [7] and in this
case A = 5.6837.

Now the Riccati equations in Theorem 3 can be easily solved to obtain the worst-case

optimal controller and the worst-case exogenous input.

14
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8. CONCLUSIONS
In this chaper we presented a solution to the fiuite interval worst-case state feedback
controller in terms of solutions of two dynamic Riccati equations. These equations are easy
to solve since only one of the two equations is dependent on the solution of the other. the
procedure yields optimal solutions instead of suboptimal ones normally obtained by H
methods. Also, an expression is derived for the degradation in performance of the optimal

controller in terms of parameter variations.

15
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CHAPTER I
Worst-Case Optimal Control with a Generalized

Performance Criterion

1. INTRODUCTION

Recent state space approaches characterize suboptimal H., controllers in terms of
solutions of two Riccati equations[1-5]. Although there have been extensions of the state
space approach to cases involving nonzero initial conditions|3], time-varying systems[4,5],
and control on a finite horizon[5], there have been virtually no attempts to characterize
the optimal solutions.

In a different approach taken by this author[6-9], the controller i assumicd to be
in feedback form and a performance measure is evaluated for any given controller. Then
nonlinear programs can be utilized to select a controller which maximizes the performance.
Although this approach yielded satisfactory controllers in several practical cases, it also
consumed excessive amounts of computational time. In [10] this approach is successfully
employed to solve a model reduction problem.

In this chapter we consider a worst-case optimal control problem with a generalized
performance criterion. We employ a new approach by considering the underlying minimax
problem and treating the adjoint variables associated with the maximization problem as
state variables for the minimization problem. The associated performance index is com-
puted in terms of the least positive value for which a certain boundary value problem has
a nontrivial solution. A simple criterion for the evaluation of the performance index is
given in Section 4. In the Ho case, the evaluation of the performance index would entail
the vy-iteration. Our technique is noniterative and hence is computationally efficient. Also,
expressions for the optimal feedback controller for the nonzero initial condition case are

developed in terms of solutions of two dynamic Riccati equations. These Riccati equations

16
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are easy to solve since only one equation depends on the solution of the other. In Section 6
expressions for the variation in performance of the optimal controller are derived in terms
of variations in the system matrices. Utilizing these expressions, the degradation in the
performance of the optimal controller owing to variations in the system matrices can be
easily computed. The worst degradation in the performance gives an idea of the robustness

of the proposed controller.

2. PROBLEM FORMULATION

The linear time-varying system is given by

&= A(t)r + B1(t)u + By(t)v, z(to) = zo, (1)

z=C(t)r + D(t)u + E(t)v, (2)

where z,u,v, and z represent the state vector, the control vector, the exogenous input

vector, and the vector to be controlled respectively. We consider the minimax problem

. L25Siz0 + [ Lo*(t)R(t)u(t) dt
l'l’lvll'lml'ilx T 1 .
Jio 327 (OW(t)2(t) dt

(3)

where R(t) and W(t) are positive definite matrices and the superscript * denotes matrix
or vector transpose. Also S; is a constant positive definite matrix. The above problem
is related to the H,, problem since the functional in (3) represents the ratio of exoge-
nous signal energy to the error energy. Problems where z4 # 0 have been considered in
[3]. However, (3] characterizes suboptimal solutions, whereas we characterize the optimal

solutions in this report.

3. OPTIMAL SOLUTIONS

Let
1z8Sixo + ftf Lu*(t)R(t)o(t) dt

[T L (W ()2(t) dt

J(u,v) =

17
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Using (2), we can write (4) as
* T *
3705170 + J,, 30T (OR()v(t) dt |
T lo*Wiz + 2*Wou + Lu*Wau + 2*Wyv + 2o*Wsv 4+ u*Wev} dt
to 12 2 2

J(u,v) =

Notice that the weighting matrices Wy, W,, W3, Wy, W5 and Wy are time-varying.
We will first of all maximize (4) over u for any given v(t) # 0. Thus we need to

minimize

T

1 1 1

/ {§$*Wll‘ + :E‘qu + §U*W3u + z"W,;v + EU*W5’U + U*We'v} dt (6)
to

over u assuming that v(t) is given. From the maximum principle[11], which in this case is

also a sufficient conditior for optimality, the Hamiltonian is given by

1 1 1
H= —{§$*W1x + z*Wou + —2—u*W3u +z*Wyv + §v‘W5v +u*Wev}+

V*{A(t)z + By(t)u + By(t)v}, (7)
where the adjoint variable v satisfies
W O Wizt Wou + Wew — A%, (8)
dt oz
with

Also, setting %—ZL = 0 and assuming that Wj is invertible for all t € [to,T],
u=W;(Byy — Wiz — Wev). (10)

Let A
A=A-BW;'w;,

B=B,W;'B;,

C =W, - W,W;'wy;, (11)
Gy = B, — B;W; ' W,

Gy = Wy — W, W, ' W,

18
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Thus we have

with

z(to) = xo, Y(T)=0. (13)
Let

(= (fj)) (14)
A B N
AI:(C‘- —A*)’ (15)

and

_ (G

N= (G2>. (16)

By (10) the denominator of (5) can be put in the form %C*QIC +C*Qv + %v*ng, where
Q1(t) and Q3(t) are symmetric and positive semi-definite. The system given by (12) can
be written as

¢ = M(t)¢ + N(t), (17)
with

z(to) = o, ¥(T) =0, (18)

and v needs to be selected to minimize the cost
YagSizo + [ LoT(t)R(t)u(t) dt
f:{%C*(t)Ql(t)C(t) + (*Qav + Fv*Qjv} dt

We now state the conditions that are satisfied by an optimal v(¢).

THEOREM 1. Consider the system given by (17)-(19). Assume that R — \Qj3 is invertible
for allt € [to, T]. Ifvo(t) minimizes (19), then there exists a nonzero n(t) = (p*(t) ¢*(1))"
such that

d
Ff'l = —M*n = AQ:\¢ — AQqv, (20)

19
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where p(t) and q(t) are components of the adjoint vector corresponding to z(t) and v(t)

respectively, such that

x(to) = o, ¥(T) =0,

(21)
p(T) = Ow q(tO) - 0,
where )
Ye§S1zo + [, Lv*Roudt
A=inf -7 NP : (22)
v flo {EC*QIC +(*Q2v + gv*st} dt
and

vo(t) = (R — AQ3) 1 {AQ3¢ + N*n}. (23)

If in addition g # 0,pl{ty) = S;x(tp).

Proof. If vo(t) minimizes (19), then it also minimizes

7 A 1 » Tl - T 1 * - - 1 *
J(v) = 31‘051I0 +/ 5v Rvdt—/\/ {EC Q¢+ Qv+ 50 Qav}dt. (24)
2 2 0 2

to

By the maximum principle{11}, there exists an adjoint response 7(t) such that the Hamil-

tonian

1OV
a1}

- 1 * 1 * * 1 - * . r
H(n.(.v)= —5v Rv + /\{SC Q¢+ (" Qv + S Qsv} + " {MC+ Nv} (1
is maximized almost everywhere on [to, T] by vo(t). Satisfaction of 2 = 0 yiclds
vo(t) = (R~ AQ3) " {AQ3¢ + N™n}. (26)

The adjoint variable n satisfies

dn OH
_— = —— = - *n—A - A M 27
p” 3 M™n — AQi( — AQq (27)
By the transversality conditions, we get the boundary conditions. O
Let
M =M+ AN(R-)Q3)"'Q3, (28)
N = N(R-2Qs)7'N™, (29)

and

20
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L=-)Q; — AQz(R - )2Q3)' Q3. (30)

Thus we have a two point boundary value problem given by

¢\ (M N ¢
(5)-(4 36,

I'(t()) = Tg, d‘(T) = 0,

with

p(T) =0, q(to) =0, (32)

])(f()) = S]J‘(f()) lf Ig # 0
We now give a criterion for the estimation of A. Notice that A = min, max, J(u. )
and gives a measure of performance of the optimal controller under worst-case conditions

corresponding to vg(t). In the H, case, the evaluation of A would entail the q-1teration.

THEOREM 2. Let A be the smallest positive value for which the boundary value problem
eiven by (31) and (32) has a solution ((,n) with L’(I,‘{%(‘Qlﬁh + Qe + %[‘*Q;,rdf > ().
where v 2 (R = AQ3)""{AQ3¢ + N*n}. Then X is the minimum value of (19), (¢ y) is an
optimmal pair and v = (R — AQ3) "{AQ3¢ + N*n} is the worst exogenous mput.

Proof. Tt is clear from Theorem 1 that if v¢(¢) minimizes (19). then 1t satisfies (31) and
(32). with X being the minimum value of (19). Now suppose ((.n) satisfies (31) and (32)
for some A. Let v = (R = AQ3) ' {AQ5¢ + N*5}. In the following equations ( . ) denotes

an inner product.

We have

T T T
/ ((R_,\Q:})n’ﬂ) dt :/ (AQ35¢, ) {—/ (N, v)dt. (33)
to

to to

By equation (17), the second integral of (33) can be written as

- T T
/ (N*n,v)dt = / (n, Nv)dt = / (n.C + M¢)dt. (31)
to {o fo
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An integration by parts and equations (20) and (29) yield

T T T

/ (n. ¢+ MC)dt = —x5S 110 + /\/ (@1¢,C)dt + )\/ (C.Qyr)dt. (35)
t

to to 0

Substituting (35) in (33), we get
T T
ryS1xo +/ v*Rudt = /\/ {CTQ1C +2¢" Qv + v Qa0 } dt. (36)
to to

Thus, the cost associated with v is A. Hence, if ({, ) is a nontrivial solution of the bhound, ry
value problem given by (31) and (32) for the smallest parameter A > 0. then A is the optimal
value and (¢, 7) 1s an optimal pair. O

Note that the boundary value problem (31)-(32) has a solution with a nonvanishing
denowinator for (19) for at most a countably infinite values of A Theorem 2 gives a
sufficient condition for an exogenous input to be optimal. Thus, Theorems 1 and 2 give a

complete characterization of the worst-case exogenous input.

4. COMPUTATION OF A
In this section, we consider the boundary value problem given by (31) and 320 -

suming that r(#9) # 0. Analogous theory can be developed in case vy = 0. Making nae of

the transition matrix, the solution of (31) can be expressed as
r(t) dui(tito) da(tito) Sus(t te) Gl ty) r(ty)
W) ] _ [ enl(tite)  @2a(tito)  das(t o)  O24(t.t0) v(ta) e
p(t) Sa1(t to)  daa(tite) daa(t,tg)  daa(f ty) pito) | "
q(t) da(t,t) Saa(tite) Aultto) dua(tifa)/ N qlty)
The boundary conditions given by (32) yield
<C521(TJ0)+¢23(T,10)51 ¢22(T,f0)> <-1‘(fn)> _ 0 (s
S31(T,to) + ¢33(T,10)S1  ¢32(T\ 1) U(to) ' T
Let
: d21 + $235) 0522)
= . 39
¢ <¢31 + #3351 P32 (39)
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In view of (38) and (31)-(32), we have det(qg(T, to)) = 0 if and only if the solution (¢, 7)
of (31)-(32) is not identically zero. Thus, we need the least positive A which makes
det(qg(T, to)) = 0 and the denominator of (19) positive. This can be obtaiued by doing a
scarch with A over an interval on which there is a change in the sign of the determinant.
We found the following algorithm to be numerically more stable since numbers of

lesser magnitude are involved in the computation of the transition matrices in (38). We

have
(MY _ T+ty,, , T+to (C(to))
(n(T))_¢(T’ 7 (1) () ) (38)
Let
. € &2 &3 s
-1 +toy [ & €22 C23 €
o~ (T, 2 ) = €31 E32 a3 E3a |’ (41)
€1 €42 a3 Eua
and

/vin V2 i3 vy

¢(T+to,t0)=kl/21 Vap Va3 Va4 | (42)

2 v3y V3z V33 V34
V41 V42 V43 Va4

Making use of p(tg) = S1z(t0),q(to) = ¥(T) = p(T) = 0, we have

€ir &ua vy + 11381 vy

€21 a4 (x(T)) _ vt v23S1 vy (T(f0)> (43)
€31 &34 q(T) v31 + v33S1 V32 Y(to) )

€41 €44 vg1r + V43S Va2

The above equation has a nontrivial solution if and only if

£1r &a v+ visS e
Sy v
det €21 E24 V21 + 1235 2 | _o. 44
¢ €31 €34 vz + 13351 vs (44)
€1 €asa vay +vaaS1 vag

Thus, we need the least positive A which makes the above determinant zero.

5. SOLUTION IN TERMS OF RICCATI EQUATIONS
We now give the optimal solution in terms of solutions of two dynamic Riccati equa-

tions in the case where z¢ # 0.
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THEOREM 3. Let P be the solution of the initial value problem

P+PM+M*P+PNP—-L=0, (45)
(5 0
P(to)_(o 0). (46)
Let
0=(R-2Q:)"'(\Q; + N*P) = (6, 6,), (47)

where 6, and 6, have equal number of columns. If z(ty) # 0, let Z be the solution of the

dvnamic Riccati equation
Z+Z(A+G18) +(A* —G26,)Z + Z(B+G16,)Z —C —G,6, =0, Z(T)=0. (48)
Then the worst-case exogenous input is given by
v=1(0 +6:2)z, (49)
and the worst-case optimal controller is
u =Wy ((Bf — Web)Z — Wy — Wb, )z. (50)

Proof. Letting n = P( in (31), we get (45). From (26) the worst-case exogenous input
isv=(R—AQ3) 1 {A\Q5 + N*P)(. If z(to) # 0, letting 3 = Zz, and utilizing (47), we get
v = (6, +6,2Z)z. Also, equations (12) and (13) yield (48). From (10), we get the worst-case
optimal controller given by (50). 0O

Note that the worst-case optimal control given by (50) has time-varying feedback gain

even when the linear system is time-invariant.

6. PERFORMANCE ROBUSTNESS
In this section we develop a formula for the variation of A when there are parameter

variations in the system matrices. Note that this expression for the variation in A takes
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into account the corresponding variations in the optimal controller and the worst-exogenous
input. Usually when a controller is synthesized with respect to the nominal values of system
matrices, its gains do not change with parameter variations. Hence, later on in this section
we will derive an expression for the variation in A assuming that there is no variation of
the optimal gain matrix.

For this consider (1) and (2). Let p denote the variation in A for elemental variations
0A,6B,,6B,,8C, 6D, and é6E in the matrices A, By, B;,C,D and E. From equations (31)

and (32) of Section 3, we have the following boundary value problem given by

{ = M(+ Nn, (51)

0= L¢— M*n, (52)

with
(L‘(to) = .’L‘o,d)(T) = 0,
p(T) = 0,¢(to) = 0, (53)
p(to) = Slm(to) if To # 0.

Let 6M, &N, and 8L be the variations in M, N, and L owing to the variations 64, 6B, 6B,

&C, éD, and éE. Let the corresponding variation in A be denoted by .
Let A = (R - A@3)~!. From (28)-(30), we get

M = I + pl,, (54)
SN = J1 + pla, (55)
6L = K + pK,, (56)
where
I = 8M + ANAKQ; + AN AQ; + N2 NA&SAQS, (57)
I; = NAQ? + ANAQ3AQ3, (58)
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Jy = NASN* + 6NAN* + ANASQ;AN", (59)
Jy = NAQ3AN*, (60)
Ky = =280, — N {8Q:AQ5 + QA3 } — N2QA8Q;AQ;, (61)
Ky = —-Q1 — 20Q:AQ; — N’Q2AQ3AQ; (62)

For the sake of simplicity, we now derive an expression for y in terms of the variations

M, 6N, 60y, 802, and 8Q3.
Let ¢; and 7, represent variations in ¢ and n owing to éM,éN, 82,,8Q,, and &2;. We

have the following set of equations that are satisfied by ¢; and 7;:
&y = MG+ Ny + (I + pha)¢ + (1 + pd2)n, (63)
= LG — My + (K1 + pK2) — (I + ply)*n, (64)

with
T1(tp) = 10,¥1{T) =0,

p1(T) = 0,q1(t0) =0, (65)
pl(tg) = S](tlo lf To 7é 0.
Note that the subscript 1 of a variable in (65) denotes the corresponding variation of that

variable.

THEOREM 4. Let v £ A{AQ3C¢ + N*n.} Then the variation u in performance is given by
T(rwrgr * T* *
. Joo (¢ EAC = 2¢* I3 — n* Jin} dt
SEAC*Qi¢ +2¢* Qv + v*Qqv) dt
Proof. From (64), we get

(66)

T T
/ ¢ty dt = / {C*LGy — C*M*ny + ¢*(Ky + pnK2)C — ¢*(I + pl2)"n} dt. (67)
fo {o

Integrating the left side of (67) by parts and making use of (51), (53) and (65), we get

T . T
—.’L'(’;S]:l‘]o - / T)‘an dt = / C‘LC] dt
to

to

T T
+ / C*(Ry + pka)C dt — / ¢y + plp)n dt. (68)
to to
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By (52), the first integral on the right side of (58) is written as
T T L
¢*L( dt = / (7 + M*n) "¢, dt. (69)
to to
An integration by parts and equations (53), (63) and (65) yield
T T T T
/ (*L( dt = —1351:1:10—/ n*Nn dt—/ n*(L+pl) dt—/ n*(J1+udz)ndt. (70)
to to to to
Substituting (70) in (68) and simplifying, we get
oA K= 2 Iy — n* Jin} dt
S {n® Jan + 2n° I = C*KC}

A little algebra shows that the denominator of (71) equals the denominator of (66) 0O

(V1)

Since p given by (66) is linear in the elemental variations 84, éB;, 8B, 6C, 6D and ¢E.
at least in the time-invariant case the worst degradation in performance can be easily
obtained once the range of uncertainty of the parameters is known.

Now we consider the case where zo # 0. Assume that the state feedback controller
is determined by the nominal system matrices and is fixed. We derive a formula for the
variation of A under these conditions. Since A gives a measure of performance of the
optimal controller under worst-case conditions, we can get an idea of the degradation in

performance owing to parameter variations. Equation (49) is written as
u=W;((Bf — We#2)Z — W5 — Wsb1)z = K(t)r, (72)
where K (t) is now fixed. Let A = A + B; K. Equation (1) can be written as
& = A(t) + Ba(t)v, (73)

with v chosen to minimize

3%0S1T0 + f:; 3v*Ro dt
f:{%ﬂf'wﬂ + :c‘ng + %v‘ng} dt'

27




NADC-91005-60

Note that T
%1}85110 —+—ft° %v*Rr dt

A = min —x — = - . (75)
v fzo {3z* Wiz + 2*Wav + Lv*Wio} dt
Let @ = (R~ AW;)~! and
M = A+ ABQW;, (76)
N = B,QB;, (77)
L = 2w, — X2W,aw;. (78)

The above minimization problem yields the two-point boundary value problem

T M N T -
6 $)6)
z(to) = 0,8(to) = S1z0,8(T) =0, (80

where f is the adjoint variable and the worst exogenous input v = Q(B3 5 + /\WQ*x).

Let 6/1,632,61/1’1,61/%’2, and 6W; be the variations in A,Bz,ﬁfl,Wz, and Wy corre.
sponding to 64, 6B;,6B;,6C, 8D, and 6E. Note that since A (t) is fixed, 64 = 84 + 6B, Iy
Let the variation in A be now denoted by f. Utilizing a similar analysis as in the derivation

of (66), we can get r ) ) A
Jo, {z" Kz = 22* [} B — B*J, B} dt

= T p p = y (81)
fto {z*Wiz + 22*Wyv + v*Wiv} dt
where
I = 6A 4+ M BQQ8W5 + EB,QW} ) + A2 B QW (82)
Jy = ByQéB} + BB} + AB,QSW5 QB3 (83)
K, = AW, — \H{W,QW; + W,Q8W; ) — MW, ;Qw;. (84)

Since fi is linear in the variations, the worst degradation in the performance of the
optimal controller can be ecasily computed in the time-invariant case. The worst value of

ji gives an idea of the measure of performance robustness of the optimal controller.
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7. AN EXAMPLE

In order to illustrate the basic theory, we will work out a simple example. The system

is described by the equation
t=-c+u+v, z(0)==z#0,

and the objective is to choose u and v such that

1.2 13 2
min max 1510+f° 2v dt
voou [0 3(z? +u? 4 v?)dt

i1s attained.

First of all, minimizing fol 3(x% + u? + v?) dt over u(t) for a given v(t), we get

() -G 1))+ ()
u =1,
z(0) = z0,9%(1) = 0,

where 9 is the adjoint variable. Now we need to choose v to minimize

1ed+ [ Lo? dt
01 2zt + Y2 +02)dt

(85)

(86)

(88)

(89)

(90)

Let A be the minimum value of (90). Denoting the adjoint variables associated with r and

¥ by n! and n? respectively, we get

dn?

=L — T2
9t T+n -7,
dn? 1 2
W——M—n =N,
n'(0) = z9,7%(0) = 0,7'(1) = 0,
oo

1-X
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Thus, we have

:i; -1 1 Tl_X 0 T
v [ 1 1 0 0 P .
1'71 - = 0 1 -1 ,,]1 ’ (9’-))
n? 0 -2 -1 -1 n?

2(0) = zo,%(1) = 0,7'(0) = zo,7%(0) = 0,7'(1) = 0. (96)

According to the theory of Section 3, A is the least positive value for which the boundary
value problem (95)-(96) has a nonzero solution.
Let ¢ be the transition matrix of the system given by (95) at ¢ = 1. Solving (95) and

employing the boundary conditions at t = 1, we get
- (M) = ron (20) :
0= (n‘(l) =F{ y(0) ) (97)

F(\) = <¢21 + $23 ¢22) . (98)

where

$31 + ¢33 a2
Thus, we need the first positive A which makes det(F(A)) = 0. This value of X is 0.8276.

It can be easily shown that with the initial condition z(0) = 0, the value of A would have

been 0.85947. This of course is the first positive A which makes

$22 P23 _
det ( A %) =0. (99)

Now the Riccati equations in Theorem 3 can be easily solved to obtain the worst-case

optimal coniroller and the worst-case exogenous input.

8. CONCLUSIONS
In this chapter we presented a solution to the finite interval worst-case state feedback
controller in terms of solutions of two dynamic Riccati equations. These equations are easy
to solve since only one of the two equations is dependent on the solution of the other. the
procedure yields optimal solutions instead of suboptimal ones normally obtained by H
methods. Also, an expression is derived for the degradation in performance of the optimal

controller in terms of parameter variations.
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