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ABSTRACT

This study employs Synthetic Aperture Radar (SAR) imagery from the Marginal Ice

Zone Experiment (MIZEX) 1987 to identify an optimal set of statistical descriptors that

accurately classify three types of ice (first-year, multiyear, odden) and open water. Two

groups of statistics, univariate and texture, are compared and contrasted with respect to

their j ill in classifying the ice types and open water. Individual statistical descriptors

are subjected to principal component analysis and discriminant analysis. Principal

component analysis was of little use in understanding features of each ice and open water

group. Discriminant analysis was valuable in identifying which statistics held the most

discriminating power. When combined, univariate and texture statistics classified the

groups with 89.5% accuracy, univariate alone with 86.8% accuracy and texture alone with

75.4% accuracy. Range and inertia were the strongest univariate and texture

discriminators with 74.6% and 50.8% accuracy, respectively. Despite the use of a non-

calibrated SAR, univariate statistics were able to classify the images with greater accuracy

than texture statistics.
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I. INTRODUCTION

The polar regions remain one of the least explored areas on earth. The inhospitable

environment of the polar region has severely hampered our ability to make prolonged

observations and unravel it's many mysteries. A better understanding of the polar region

is important because of this region's impact on global climate, sea level variation, ocean

circulation and the great biological richness and commercial potential it holds. Recent

technological advances, especially in remote sensing, have begun to allow some of the

mysteries of the polar regions to be explained.

Remote sensing platforms have been in orbit providing limited coverage of the polar

regions during the past 15 to 20 years. These sensors have suffered from a number of

limitations. They have mostly operated in wavelengths hampered by the lack of daylight

during the polar winter (visual) or by the presence of clouds (infrared). Recently passive

microwave systems have been employed which overcome some of the above problems,

but their resolution is poor (40 kin). The use of an active microwave sensor such as

synthetic aperture radar (SAR) appears to alleviate the spatial resolution problems. A

synthetic aperture radar is an all weather, day or night active sensor capable of attaining

high resolution (15 m) images of the earth's surface, oceans and cryosphere. The high

resolution of SAR will no doubt shed new light on many of the processes and features

of this ice-covered region.



Knowledge of the spatial extent and thickness of the sea ice canopy is important to

those interested in operating in the polar regions, such as those involved in commercial

shipping, mineral exploration, Naval operations and scientific endeavors. One of the

major obstacles to observing or forecasting the spatial ice extent and thickness is the

problem of identifying the distribution of the many different ice types. While SAR

imagery of the polar regions will soon be available for scientific, commercial and military

endeavors, our knowledge of how to use the data is lacking. One of the main challenges

is to find a way to automatically provide maps of the spatial distribution of the different

ice types in the polar regions. This is the topic of this study.

The primary objective of this study is to provide information that may be useful in

designing an automated ice classification scheme with SAR data. Different ice types are

clearly discemable in SAR images of the marginal ice zone. The challenge is to be able

to develop an algorithm that will duplicate the skill of a human interpreter in classifying

the various ice types. Past studies have shown that it is difficult to identify exactly what

feature human interpreters use to distinguish between different ice types [Holmes et al.,

1984; Trivedi et al., 19841. One technique that has been used with moderate success

focuses on the texture of the ice [Holmes et al., 1984; Trevedi et al., 1984]. The texture

of different ice types is derived from the spatial variation of the backscatter intensity of

SAR imagery. This concept of using texture to discriminate between various ice types

will be compared and contrasted with the use of simple univariate statistics (mean,

standard deviation, etc.) of the images to distinguish between the ice types. Within these

two groups of statistics, texture and univariate, individual descriptor variables will be

2



analyzed using multivariate discriminant analysis and an optimal group of statistics

demonstrating classification skill will be selected.

The data set used is from an experiment conducted in the marginal ice zone in April

1987. The data consist of SAR images of three different ice types (first-year, multiyear

and odden) plus open water.
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H. BACKGROUND

A. FUNDAMENTALS OF SAR THEORY

This section will review the fundamentals of SAR theory and the application of that

theory to remote sensing of the polar regions. The frequency, flight geometry, and the

high resolution of SAR imagery will be discussed.

1. Motivation for Synthetic Aperture Radar

Synthetic aperture radar is an all weather, day or night sensor capable of

achieving high resolution images of the earth's surface. SAR operates in a range of

electromagnetic wavelengths that are almost entirely unaffected by the earth's atmosphere.

These characteristics make it an ideal sensor in the polar regions where the earth's surface

is frequently obscured from space by clouds and darkness. The presence of water vapor

between a satellite and the surface of the earth is the major factor interrupting continuous

coverage of the earth's surface in the visible, infrared, and passive microwave

wavelengths. Water vapor is present in the polar atmosphere in the form of clouds and

fog. During the polar night (winter) sun angles are low or absent, thus restricting the use

of the visible spectrum. SAR is not affected by atmospheric water vapor and is useful

without sunlight because it is an active sensor.

2. Frequency Spectrum

The atmosphere has several electromagnetic (EM) transmission windows, i.e.,

regions of high transmittance of energy, that are useful for remote sensing. The

4



effectiveness of these windows is quantified by atmospheric transmittance. High values

allow EM energy to pass through with minimal atmospheric interference. Figure 1

depicts the EM frequency spectrum and its associated transmission windows for the

earth's atmosphere. SAR systems are designed to use transmission windows that fall in

the 1 cm to 15 cm wavelength band. Table I shows the various radio frequency bands

planned for use in space-born SAR platforms in the 1990's.

10 GHz 1 GHz
II-

0.2 pJm 1.0 pJm 10 P.m 1 MM 10 MM 10 cm 1 M

VISIBLE: MID-IR THERMAL IR MICROWAVE BANDSI I

cc UV NEAR-IR I I I I
C Ka Ku X C S L P
z MODIS-T----

I~3 MODIS-N i !1---- I

"w HIRIS I

0 TIMS - I-i Eos SAR H H H

LUCr

U -

-z

0-i

0.2 pm 10 pm 1.0 Pm 1 MM 10 MM 10cm 1 M

WAVELENGTH

Figure 1. Transmission spectrum. Note high degree of transmittance in the centimeter
wavelength [from SAR, 1987].
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Table I. Future Planned Spaceborne SAR Platforms [from SAR, 1987].

Platform ERS- 1 JERS-1 RADARSAT EOS

Country / European Space Japan / 1992 Canada/1993 United States /
launch date Agency / 1990 1997

Frequency 1.2 [L)
(GHz) 5.3 [C] 1.2 [L] 5.3 [C] 5.3 [C]
[Band] 9.6 X]

Resolution (r-) 30 or 100 18 10-100 20-500

Swath Width 80 75 50-500 30-700
(kmn)

Illum. Angle 23 42 20-50 15-55
(Deg)

3. SAR Antenna Resolution

The SAR is capable of excellent range and azimuthal resolution because it uses

short pulses (it is an active sensor) and satellite motion to synthesize an antenna much

larger than the physical antenna size. Typically, the resolution of a sensor is given by

XR/D, where X is the wavelength, R is the distance to the surface and D is the dimension

of the antenna. For ordinary radars or passive microwave sensors operating from

satellites this is nominally 10-50 km. SAR systems have a resolution on the order of 10

to 30 m.
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a. Range resolution

SAR uses short pulses of EM energy to achieve its excellent range

resolution. Figure 2 provides the defining geometry for SAR imaging. The range

resolution of a radar(Sy) is determined by the elevation angle (0) of the radar, the pulse

length ('r) and the speed of light (c).

Radar dI

RRadar

x

Figure 2, Fundamental SAR imaging geometry [from Stewart, 1985].

It is apparent from Equation (1) that the range resolution improves for

shorter pulse lengths. A draw back of using short pulses is an inherent reduction in

intensity. Pulse compression and frequency shifting techniques are used to maintain high

7



power ard resolution. High power and short pulse lengths are desired for good range

resolution. The time resolution of the return gives range resolution as with normal radar.

ay = c, iO(1)
8 -LsinO

:2

b. AzimuiJn Resolhion

The along-track resolution or azimuthal resolution depends upon the

Doppler-shifted frequency of the return. Doppler shift is defined as:

The change in frequency with which energy reaches a receiver when the receiver
and the energy source are in motion relative to each other. [Glossary of
Meteorology, 1986, p. 176]

The equation for the doppler-shifted frequency, f, is given by Equation (2)

=f. (1+-) (2)
C

where f. is the original transmitted frequency and V the satellite velocity relative to an

object on the earth's surface. For a SAR antenna, those points forward of a perpendicular

to the direction of motion will be positively shifted and points aft of the perpendicular

will be negatively shifted in frequency.

The onboard SAR receiver records the complex signal (amplitude and

phase) of the returning radar pulse and transmits this information to a ground station.

Post processing on the ground performs a complex convolution of many consecutive

returns (looks) to sort out the doppler shifts from the reflecting surface. The effective

8



azimuthal or along-track resolution is given by: 8. = D/2, where D is the along-track

dimension of the antenna. It appears that the along-track resolution is solely related to

the antenna length with a shorter antenna providing better resolution. Swath width,

however, is the restraining factor in determining the minimum antenna length [Stewart,

1985]. Swath width is defined as the width of the imaged area. Referring to Figure 2

the swath width is Y.

Resolution is often degraded to improve the signal to noise ratio. The

more independent images the radar makes of a scene (looks), the clearer the image will

become (this improves the signal to noise ratio). For example, a seven-look SAR will

have less speckle (noise) than a four-look SAR [Stewart, 1985].

B. ICE FORMATION AND MORPHOLOGY

This section will review the fundamentals of ice formation, forcing and features

which influence EM interaction with sea ice. While a complete treatment of ice physics

is well beyond the scope of this thesis, this section will summarily establish the link

between ice age, salinity, temperature, density and surface roughness. Interested readers

are referred to Bogorodoskii [1971], Timokhov [1974], Doronin [1977] and Untersteiner

[1986], all excellent references on the physics of sea ice.

The polar ice cycle is driven almost entirely by the seasonal fluctuation of solar

radiation. The polar winter consists of a total absence to a few hours of solar radiation

wherein surface heat is lost to the atmosphere through net longwave radiation. The polar

summer consists of long hours of daylight and high levels of short wave radiation. These

9



two dominant seasons, winter and summer, are separated by short transition seasons. The

sea ice data used in this study (April 1987) is winter ice that has been imaged shortly

before the transition to the summer regime.

Spatially the polar regions may be separated into four zones:

(1) The polar ice cap, a nearly continuous body of ice. (2) Landfast ice, which, as
its name indicates, is frictionally anchored to the land and usually grounded on the
continental shelf by pressure ridging. (3) A transition zone, a region of ice which
is connected to the fast ice and extends to the pack ice and is a region of ice highly
subject to frictional forcing. (4) The marginal ice zone, an area where the sea ice
meets the open ocean. [Wadhams, 1986, p. 5]

The marginal ice zone is the primary area of interest for this study.

1. Sea Ice Formation

Sea ice formation is primarily a function of the vertical heat exchange across

the air/ocean boundary. Its formation is predominantly influenced by the water

temperature and salinity. The water temperature is primarily determined by the air

temperature, evaporation, insolation and advection. The water salinity is affected by

evaporation, ice formation and advection.

A vertical salinity gradient is normally present in sea ice. This vertical

gradient exists primarily because of a vertical temperature gradient in the ice [Weeks and

Ackley, 1982]. These gradients are shown in Figure 3. The presence of a vertical

salinity gradient serves to complicate the modeling and understanding of EM ice

interaction.
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Figure 3. The vertical salinity gradient and its associated temperature gradient.
Ordinate units cm. [from Campbell et al., 1975].

The age of ice affects its salinity content. As ice ages, brine pockets migrate

downward towards the water interface due to gravity drainage and flushing [WMO, 1970].

F'ushing occurs during the sprirg and summer thaw when water on the surface of the ice

trickles down through the ice to the seawater ice interface. With increased warming,

drainage channels form and the overall salinity ot the ice decreases. Ice that has aged in

11



this manner and formed extensive drainage channels is known as rotten ice. This lower

salinity ice will allow deeper penetration of the EM energy and consequently scatter from

within the interior of the ice can occur. Scatter from the interior of the ice is known as

volume scatter.

Ice thickness is of prime concern in polar operations. The varying thickness

of sea ice is a function of its age and rate of formation. Sea ice may be found in

thicknesses ranging from a few centimeters to a few meters. Generally, the older the ice,

the thicker it is likely to be.

2. Ice Types Used In This Study

Three classes of ice are used in this study: new, first-year and multiyear. The

age and thickness relationship of these three groups are the driving factors for establishing

these ice categories.

a. New Ice

New ice is a general term applied to newly frozen sea ice. Its formal

definition as provided by the World Meteorological Organization is:

A term for recently formed ice which includes frazil ice, grease ice, slush, and
shuga. These types of ice are composed of ice crystals which are weakly frozen
together (if at all) and have a definite form only while they are afloat.[WMO, 19701

New ice can be found in many forms. The form that the new ice takes is largely a

function of the wave and wind action. One of the forms that new ice may take is "nilas".

Nilas is a thin elastic crust of ice, easily bending in waves auid swell and under
pressure, thrusting in a pattern of interlocking "fingers". This ice has a matt surface
and is up to 10 cm in thickness. [WMO, 1970]
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With sufficient wave and wind forcing this ice type can form another type

of new ice known as pancake.

Pancake ice is circular pieces of ice from 30 cm-3 m in diameter, up to about
10 cm in thickness, with raised rims due to the pieces striking against one another.
It may be formed on a slight swell from grease ice, shuga or slush or as a result of
breaking ice rind, nilas of under severe conditions of swell or waves, of gray ice.
It also sometimes forms at some depth, at an interface between water bodies of
different physical characteristics, from where it floats to the surface; its appearance
may rapidly cover wide areas of water. [WMO, 1970]

A special form of new ice which exhibits rapid regional growth and

retreat is odden.

The "Odden" is an extensive protuberance of sea ice in the Greenland Sea Basin
that extends several hundred kilometers into the Greenland Sea. The basin
circulation in the Greenland Sea is characterized by the cyclonic circulation in the
Boreas and Greenland Basin. These two areas are also known to show large
fluctuations in the ice cover. The rapid 2-4 day oscillations of this zonal ice edge
extent centered at 740N appears to be a near annual event normally first encountered
at the beginning of the winter season. [Sutherland and Shuchman, 1989, p. 15391

Sutherland and Shuchman suggest 'hat off.ice edge winds with air temperatures of -10°

to -20' C for two to three days is sufficient for the formation of this ice type. Regardless

of it's formation mechanism, the important fact is that odden is a special category of new

ice comprised of nilas 3-5 cm thick, transitioning into 5-10 cm pancake flows [Sutherland

and Shuchman, 1989]. Because odden is similar in appearance to new ice, one might

expect that the results of analyzing the texture features of odden can be applied to new

ice found in other regions of the arctic.

b. First-year ice

First-year ice is, as it's name suggests, ice of not more than one year's

growth. It develops from new ice and ranges in thickness from 30 cm to 2 m [WMO,
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1970]. It may be subdivided into thin first-year ice and thick first-year ice. First-year

ice is typically lower in salinity than new ice because the entrapped brine has begun to

migrate toward the ice-water interface. Convergent forcing of first-year ice sheets by

wind and/or water motion develop pressure ridges. Significant change in the surface

appearance of first-year ice is thus likely.

c. Multiyear Ice

Multiyear ice is the oldest and thickest ice found in the Arctic. This is sea

ice which has survived at least one summer's melt cycle. Multiyear ice ranges in

thickness from 2 m to 4 m based on it's age and location within the Arctic basin. It is

usually visually blue due to refreezing of fresh water in the brine drainage channels which

in time become well developed [WMO, 1970]. The salinity of multiyear ice is the lowest

.f the various ice types. This low salinity will allow penetration of EM energy into the

ice with subsequent volume scattering occurring.

3. Ice Texture Features

As a result of weathering and forcing by wind, currents and tides, the various

ice forms develop distinct surface features or textures which can be used as classification

aids. It is a primary goal of this analysis to be able to use these distinct features as

imaged by SAR to classify the ice into three thickness categories: new(< 0.5 cm), first-

year (0.5 m), and multiyear (2-4 m). To accomplish this SAR must rely heavily on the

radar signature of the surface of the ice [Ketchum, 1981]. The radar signature depends

on the previously mentioned ice characteristics (salinity, density, thickness) as well as the
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spatial variation of the surface roughness. Proper identification of these surface roughness

features are an important aspect in the correct classification of various sea ice types. The

two main parameters influencing the return of EM energy to the SAR antenna are surface

reflection and volume scatter as depicted in Figure 4. Although this drawing is for glacial

ice, the principal scattering types pertain to sea ice as well.

GLACIERSURFACE SCATTERING

ICE ii

S VOLUME SCATTERING

~ ','-'; SURFACE SCATTERING

Figure 4. Scattering types [from SAR, 1987].

a. New Ice Texture

New ice will usually be smooth because the ice has no strength, i.e., it

does not yet act as a plate or sheet. New ice will deform with the ocean surface. When

imaged with SAR, new ice may appear very similar to the sea surface when unruffled by

wind waves. New ice types and older non-ridged first season ice generally experience

less deformation than older forms. They usually have smoother surfaces and hence are

found to produce less radar backscatter [Ketchum, 1981].
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As the new ice begins to thicken, it frequently forms pancake ice with

it's characteristic upturned edges. The upturned edges provide a good radar cross-section

to return EM energy to the SAR. Odden ice frequently appears in this pancake form.

b. First-year Ice Texture

As new ice begins to form a consolidated sheet, it transitions into thin

first-year ice. Thin first-year ice begins to become rigid enough so that divergent,

convergent, and sheer stresses begin to leave their mark on the surface texture of the ice.

As the ice increases in thickness throughout the winter, the ice sheets become more rigid

and may eventually form ridges. Pressure ridges with heights of 8-10 m are occasionally

seen in the Arctic although the majority are considerably smaller [Pounder, 1965].

c. Multiyear Ice Texture

The surface of multiyear ice is often found to have hummocks or large

mounds on the ice which have been rounded due to weathering and are visually smoother

than first-year ice. However, in the cm wavelength bands, where EM energy penetrates

into the ice, internal discontinuities influence the backscatter return. EM energy can

penetrate into multiyear ice because of it's lower salinity. For this reason the texture of

the multiyear ice will appear rough and bright in the centimeter wavelength band. It has

been found by Ketchum [1981] that older ice forms experience more deformation than

younger ice. However, older ice generally has a smoother surface appearance due to

weathering which has removed the angular features of first-year ice. Older pressure
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ridges are somewhat smoother especially those blanketed with snow. Therefore, volume

backscatter vice reflection is the dominant feature for this ice type.

C. ICE AND EM RADIATION INTERACTION

The main factors influencing the imaging of a scene are the ilumination of the

scene, the reflectance of the surfaces and the imaging geometry of the sensor. The

illumination of the scene by the SAR is fixed (or calibrated in some relative sense). The

geometry has been described in Figure 2. This section will focus on the reflectance of

the imaged ice surfaces. The variation in the near-surface salinity and the surface

roughness of the sea ice are the main factors affecting the interaction of EM radiation

with sea ice.

1. EM Properties of Ice

The electromagnetic properties of sea ice are primarily controlled by the

temperature and salinity of the ice in that both affect the complex dielectric constant. The

complex dielectric constant defined as £ = £' + j&'" is comprised of two parts, the real

part, F" and the imaginary part, £". The complex dielectric constant quantifies the

response of a material, ice and water in this case, when an EM field is induced (the

incoming radar beam). This constant provides a measure of how strongly the polarized

ions or molecules will align themselves with a EM field. Ice, because of its rigid

molecular structure, interacts weakly with an EM field and thus has a low dielectric

constant. Water molecules, however, are strongly polarized and are free to move to

interact with an EM field, thus increasing the dielectric constant. [Lewis et al., 1987]
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The imaginary portion of the complex dielectric constant, also known as the

dielectric loss, determines the depth to which EM energy will penetrate into the ice

[Weeks and Ackley, 19821. The depth at which the EM energy reaches e-' of it's value

at the surface is known as the skin depth. The skin depth will prove to be an important

parameter in distinguishing old multiyear ice (ice of very low salinity) from new first-year

ice (ice of substantially higher salinity). As stated previously, in multiyear ice the EM

radiation interacts by volume scatter from cracks and bubbles within the ice. For younger

first-year ice surface scatter dominates. This difference in penetration of EM energy in

sea ice can be described by the relative variation of the skin depth of the ice.

Much work has been conducted to determine the effect of the ice salinity and

temperature on the dielectric loss. Generally it has been found that the temperature and

salinity are both directly correlated with the dielectric loss [Weeks and Ackley, 1982].

This temperature, salinity, dielectric relationship may be seen in Figure 5. Note that as

the salinity increases, the dielectric loss increases.

The real part of the complex dielectric constant (c') quantifies the ability of

the ice to reflect the EM energy. With a knowledge of the relationship between

temperature, salinity and the dielectric constant, it is possible to clearly identify the major

ice types on a graph of the dielectric constant. Figure 6 shows the temperature

relationship with the dielectric constant for the major ice types used in this study. Note

that frazil ice (similar to odden) has the highest dielectric constant followed by first-year

and lastly multiyear ice. Also, note that each ice type exhibits a decreasing dielectric

constant with decreasing temperature.
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Figure 5. Dielectric loss versus temperature for several salinities of sea ice. Note that
as the temperature and salinity decrease, the dielectric loss also decreases [from Hoekstra
and Spanogle, 19721.

The ice density affects the interaction of EM energy with the ice. The lower

density and lower dielectric constant of older ice forms allows the radar to volume scatter

from the interior of the ice. Figure 7 graphically depicts this volume scatter and the

different scattering types that may be found in using active microwave signals to image

ice.

2. Surface Roughness and Radar Cross-section

The surface roughness of polar ice is important in providing a variation in the

backscatter intensity from SAR. The backscatter intensity is proportional to the radar

cross-section. P.adar cross-section may be defined as the strength of a radar target

expressed in terms of the cross-section of an ideal reflector which would give the same

returned signal strength. As the ice surface becomes rougher, the radar cross-section
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Figure 6. Dielectric constant versus temperature for sea ice [from Vant et al., 1974].
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Figure 7. Interactions between radar and different ice types. The increase in salinity
decreases the skin depth thus preventing deep penetration of the EM radiation [from
SAR, 1987].

presented to the SAR increases and a greater probability exists that individual facets of

the ice will be perpendicular to the incoming radar beam. The fact that the backscatter

cross-section presented by open water, first-year, odden and multiyear ice increases,

respectively, in magnitude can be explained solely hy surface roughness considerations

[Ketchum, 1981]. The ice surface roughness will vary because of its formation

mechanics. Open water in a low wind environment will have a flat surface with little

radar cross-section. First-year ice may also have a relatively flat surface with some

surface roughness (ridges) due to shearing and compressional stress. Odden, which is a

specific variety of new ice, appears rough due to the upturned edges of pancake-like ice.

Multiyear ice has undergone numerous dynamic forcing events and is likely to have a

surface with pressure ridges and ice rubble on the surface. In addition to the surface

roughness, the multiyear ice radar cross-section is enhanced by volume scatter due to its

lower salinity and lower density.
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It should be clear that the interaction of EM energy with sea ice is complex.

The EM interaction depends largely on the dielectric constant and the surface roughness.

This study is based on the hypothesis that sufficient differences exist in the backscatter

characteristics of the various sea ice types and open water for SAR to be an effective ice

classification tool. Different samples of an ice type may have different properties based

on the dielectric properties and surface roughness of the samples, The natural variation

in the ice characteristics mean that not all ice from one category will have the same radar

return. It is this variation that complicates the classification of ice using SAR.

D. ICE CLASSIFICATION BACKGROUND

This section will review several ice classification methods that have been used by

other researchers and introduce the method chosen for this investigation. The challenge

of using SAR to classify polar ice types is in developing an automated algorithm that will,

in real-time or near teal-time, accurately classify the various ice types that have been

imaged. Many approaches have been attempted to accomplish this classification with

active EM sensors.

Early attempts to classify ice types in the 1960's focused on finding a particular

physical property such as the dielectric constant, salinity or surface roughness that was

directly measurable by using radar. Researchers began to focus on the varying textures

or surface features to which radar back-scatter was sensitive. Anderson [1966], Moore

[1966] and Rouse [1969] did some of the early work in using a scatterometer as a remote
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sensor to determine the surface roughness of polar ice. This work began to point the way

towards inferring gross ice thickness based on scattering coefficients.

Side looking air-borne radar (SLAR) was developed for military use and took

advantage of the microwave region of the EM spectrum. This radar is termed 'side-

looking' because it transmits a beam in a fixed direction perpendicular to the line of flight

[Johnson and Farmer, 1971]. Anderson [1966] showed that a SLAR system could

effectively image large areas of sea ice. In a navigational experiment with the S.S.

Manhattan, the use of a SLAR to identify and aid in safe, efficient navigation through

polar ice was demonstrated [Johnson and Farmer, 1971]. The interpretation of the ice

types imaged with this SLAR was performed by highly trained ice observers. The

important results of this experiment were that radar images can assist in the safe transit

and operations in and through polar ice and that human interpretation of radar ice images

.;.s extremely subjective [Johnson and Farmer, 1971].

During the early 1970's researchers began searching for a way to use the modem

computer to reproduce the human's ability to discriminate between different images.

Haralick et al., [1973] focused on the use of texture to identify objects or regions of

interest in an image. Most people have some concept of texture but a clear definition has

been illusive. Webster's dictionary [1984, p. 1220] defines texture as "something

composed of closely interwoven elements" or "the disposition or manner of union of the

particles of a body or substance." Haralick et al., [19731 provide one of the best

definitions of texture as used in image processing applications. Their paper highlights the

features that humans use to interpret pictorial information.
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Spectral, textural and contextual features are the three fundamental pattern
elements used in human interpretation of color photographs. Spectral features
describe the average tonal variations in different bands of an EM spectrum, whereas
textural features contain information about the spatial distribution of tonal variations
within a band. Contextual features contain information derived from blocks of
pictorial data surrounding the area being analyzed. When small image areas from
black and white photographs are independently processed by a machine, then
texture and tone are most important. [Haralick et al., 1973, p. 610]

They go on to highlight the fact that tone refers to the variation in shades of gray from

white to black. The range of tone is fixed by either the imaging or display system

dynamic response while texture is limited by the SAR processing resolution. The spatial

distribution of the tonal elements in an image are the way humans perceive texture. The

tonal - textural relationship is the key concept to understand when working with texture

statistics. The tone of an image is represented by the shades of gray from black to white.

These gray shades are represented digitally in a computer image as an integer value in

a spatial grid. It is the spatial variation in these gray shades that allows the texture of a

surface to be analyzed. One would expect greater spatial tonal variation to be found over

a rough surface and lowest spatial variation over a smooth surface. Many different

attempts to discern the texture of an image have been made with varying degrees of

success. Some of the methods attempted to dKrisrn +6a -;xture a r"'iewed below.

1. Fourier methods - Power Spectral Method (PSM)

The PSM involves taking the Fourier transform of an image and analyzing the

frequency spectrum of the gray shades. Different textures show quite distinct frequency

spectra. A key theoretical study of texture algorithms performed by Connors and Harlow

[1980] showed the relative merits of the PSM compared to the spatial gray level
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dependence method (SGLDM, referred to in this study as gray level co-occurrence GLC

matrices), the gray level run length method (GLRLM), and the gray level difference

method (GLDM). These three methods will be described in more detail below. Their

study showed the PSM to rank last in ability to discriminate textures known as Markov

chains. This approach has been discarded as a result of this theoretical study. An

experimental study performed by Weszka, Dyer and Rosenfield [1976] on actual textures

supports this decision.
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2. Autocorrelation Methods

Some attempts have been made to quantify "coarseness" by using

autocorrelation techniques. The coarseness of a pattern has been proposed to be measured

by the rate at which its autocorrelation function drops from its peak value with a faster

drop-off implying a coarser texture. The coarseness is defined by its e-folding value or

displacement when the autocorrelation is reduced to (e) of its peak value [Rosenfield,

1975]. These results demonstrated that the autocorrelation function could capture the

texture of an image as perceived by human interpreters. Later work showed that distinct

texture patterns could be developed that were not discemable with the autocorrelation

technique [Connors and Harlow, 1980]. In addition to being computationally expensive,

autocorrelation techniques have a problem with edge effects. Rosenfield [1975], Connors

and Harlow [1980], and others have found that autocorrelation and Fourier-based features

perform more poorly than statistical features. For this reason most of the texture work

performed in the last ten years has involved some form of statistical texture measure.

3o Statistical: Gray-Level Run Length Method (GLRLM), Gray-Level
Difference Method (GLDM)

These two methods of analyzing images have also been tried with limited

success. The GLRLM method counts the number of pixels that share the same gray

shade along some direction in the image. A GLRLM matrix is computed for various

angles in an image. The entries in the matrices are indicated by how long a run of length

can be made for each gray shade in a image. This is computed for a number of different
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angles in the image. Connors and Harlow [1980] found that it was easy to generate

visually distinct textures that could not be discriminated using the GLRLM.

The GLDM is based on the difference in the gray shades along some vector

of length. The gray level value of the pixel at the origin of the vector is subtracted from

the value of the pixel at the termination of the vector. Ultimately, probability density

functions and texture measures are computed. Connors and Harlow [1980] also found the

GLDM was not as skillful as the GLC matrices in classifying actual textures.

4. Gray Level Co-Occurrence (GLC) Matrices

Since the early 1980's most researchers have concentrated on using the gray

level co-occurrence matrix to analyze textures in an image. Various researchers have

found that the GLC matrix captures the texture in an image most closely matching a

human's ability to perceive texture [Haralick, 1973; Weszka et al., 1976; Shanmugan et

al., 1981].

The GLC matrices provide a basis for the global analysis of textured objects due
to several reasons. These include the fact that GLC matrices have been used
successfully on a number of textured object analysis problems. These matrices are
known to contain enough texture-context information to match a level of human
texture perception. Further, a comparison study has shown them to contain more
important texture-context information than the intermediate matrices of a number
of other texture algorithms (Connors and Harlow,1980). Finally, it is known that
these matrices can be used to gauge useful structural information in the global
analysis of texture. [Trivedi et al., 1984, p. 202]

Trivedi et al. [1984] indicate that the spatial gray level dependence method (SGLDM) or

GLC matrix is the method of choice for texture analysis. The GLC matrix is based on

the second-order joint conditional probability density function,fij I O(d,O)); where O(d,O)

is a vector of length d and 0 is an angle measured from the vertical or column elements
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in an image. The ftij I 4(d,O)) represents the probability of finding gray levels, i and j,

at the base and termination points of a vector O(d,0). This GLC matrix is often written

as Sq(d) with individual elements of the matrix written as s, I d). Because a digital

image provides discrete pixel values, choices of angle 0 and length d for this vector 0 are

limited. Additionally, Connors and Harlow [1980] point out that

So4d) = S1.4df

Sgo.d) S27o4d)', etc .....

Where S(d)' is the transpose of the matrix.

Therefore no new information is gained by computing GLC matrices for any angles other

tuian 0' to 1800 (or conversely 1800 to 3600) [Connors and Harlow, 1980]. Once the

GLC is computed, statistical descriptors of this "texture" space are computed. These

texture descriptors are chosen to capture and describe the variation in gray levels from

the image domain.

a. Texture Statistics

It is a widely held view that texture statistics can successfully separate

various ice types. One of the first attempts to use texture statistics derived from the GLC

matrix in a real-time fashion was carried out by Holmes, Niesch and Shuchman [1984].

In their work, great strides were made towards developing a digital procedure for

identifying ice types in SAR imagery and adapting it to real-time processing of digital

image data. Texture statistics as defined by Connors and Harlow [1980] are a group of

first and second order statistics that may be derived from a GLC matrix and which

capture the spectral textural and contextual variations referred to by Haralick et al. [ 1973].
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It is the goal of texture analysis to be able to use texture statistics to quantify these spatial

variations.

Equations (3)-(8) have been suggested for use in quantifying texture

[Connors and Harlow, 1980; Trivedi et al., 1984]. Exactly what texture feature is

captured by each statistic is still somewhat unclear. Shokr [1989] suggests that high

inertia values mean higher contrast texture while uniformity (energy) is mainly influenced

by high-value entries of the matrix.

Uniformity as the name indicates can be considered as a measure of the
homogeneity of gray level distribution. A high uniformity value means more
homogeneous region and vice versa. Entropy, as pertaining to the random process
theory, is a statistical measure which is used to quantify the disorder in a function.
[Shokr, 1989, p. 765]

The important point is that each of these statistics describe either the rate

at which gray shades change in a GLC matrix or the degree of randomness in the GLC.

This. in turn, hopefully, describes some fundamental feature of the ice. It is the

combination of these statistics in a manner which will allow discrimination of different

textures that forms an effctive texture classifier.
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In these equations s(ij I d) is the (i,j)th element of SO(ij I d), the GLC matrix for a

particular angle or combination of angles. No are the number of gray levels in the raw

image and P., py, a, ay, are the respective mean and standard deviations for the rows
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and columns of the image. Each of the texture statistics selected above attempt to

capture a unique feature of the texture so that the expected value of each statistical texture

descriptor will be unique. Figure 8 provides an excellent presentation of the steps

involved in defining a texture analysis system.

DIGITAL IMAGE

(PICTURE FUNCTION 91

INTERMEDIATE

MATRICES Of THE
TXTURE ALGORITnHM

VECTOR OF

MEASURES

PArITAN

CLASS FIER

Figure 8. Texture classification steps. The flow diagram depicts the steps to using
texture statistics to classify texture [from Connors and Harlow, 1980].
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b. Texture Image Scale

Texture image scale addresses the issue of how big or small the texture

features are in an image. When designing an optimal texture algorithm, two questions

must be answered: 1) For a given texture, what image area sub-sample will have the

maximum likelihood of containing only one texture? 2) Within an image area sub-

sample, what is the size of the texture element that is to be captured?

To answer the first question one must have some prior knowledge of the

scene being analyzed. A given scene may be made up of a number of textures. To create

a GLC matrix that only contains one texture it is necessary to sub-sample the image.

Selection of the correct image sub-sample area is controlled by what might be called a

macro texture. Ideally a sub-sample of the image contains only one texture X,(nm), such

that it is discemable from any other texture, X.(nm). Some work has been done on what

is known as a global approach to texture analysis in which the question of sub-image

sampling is approached using linear unmixing to determine how many different textures

a sub-image may contain [Holyer, 1989]. This global approach sacrifices some spatial

certainty for accurate texture classification.

To answer the question of texture element size an investigator is

concerned with what is called micro texture or how small the texture features are. The

selection of a vector length, d, should be able to capture the texture in a sub-image

sample. If d is too large, important variations in tone may be missed in generating the

GLC matrix. The upper bound on the length of d is the number of pixels in a texture

sub-image. The lower bound on d is 2 pixels. The optimal vector length may lie
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somewhere between the two bounds. It is recognized that selection of the correct vector

length is problematic [He and Wang, 1989]. Ideally, one should know a priori on what

scale the texture in an image varies and select a vector length to capture the micro scale

texture. The approach used in this study assumes a continuous or pure texture for each

image being analyzed.

c. Texture Directionality

GLC matrices are directionally sensitive to texture features. A GLC

matrix generated with one particular vector O(d,01) may contain information not found

in a GLC matrix generated using another 4b(d,02 ). In most cases a non-direction biased

GLC matrix is desired. However, actual images are usually randomly oriented.

Numerous approaches to developing texture measures that are not directionally biased

have been suggested. Holmes et al. [1984] and Shokr [1989], for example, average their

GLC matrices over four different angles (00, 450, 900 and 1350). He and Wang [1989]

provide a variation on the generation of non-directional GLC matrices by using a "texture

unit". Their "texture unit" assigns a texture value to each pixel in an image based on the

relative intensity of neighboring pixels. This approach has not been used extensively and

appears computationally expensive and will not be used in this study.

5. Statistical Descriptors

The statistical descriptors used in this work are composed of texture statistics

and univariate statistics. The six texture descriptors are discussed in the previous section.

Texture statistics have been pursued for image classification because numerous theoretical
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examples have demonstrated the failure of univariate statistics to be able to differentiate

between two images that are visually distinct. However, this study will use both

univariate and texture statistics to allow for a relative comparison of their strengths in

discriminating between different ice types. The univariate statistics used in this work to

discriminate between various ice types are standard first and second order statistical

functions. They are mathematically defined by Equations (9)-(15).

a. Univariate statistics

Univariate statistics are the most commonly used group of statistics used

to describe the distribution of data. The most frequently used are the mean, range,

standard deviation, skewness, kurtosis, coefficient of variation. They are mathematically

defined as:

Meanzi. -- (9)

Standard,,,= fiWAX-.FX (10)

deit n-1

VarianceS 2  n- (11)
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Skewnesm (12)

Kinrtosis - 3 (13)

n 
)2

Range,,xm -x.. (14)

Coefficient ,L (15)
of vana.ton

Where: xi = the intensity of one pixel in the image,

-= the mean value of x

fi = the frequency

w, = a weighting coefficient
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These univariate statistics, derived from the original gray shade images, together with

texture statistics, derived from the GLC matrices, will be used to discriminate between

three groups of ice and water in this study.

Univariate statistics have been shown to be unable to successfully discriminate

between two visually distinct images. A excellent example of the failure of univariate

statistics wa provided by Trivedi et al. [1984]. Figure 9 shows that both the "T" and "L"

have the same univariate statistics. These two images can be differentiated with the use

of GLC matrices and texture statistics. While this example and many others like it appear

to be important for the discrimination of man made objects, recent work indicates that

univariate statistics do a good job in differentiating between different ice types [Shuchman

et al.,1989; Shokr, 1989].

Figure 9. Example of the failure of univariate statistics to be able to differentiate
between two visually distinct objects. The two letters have the same grey level histogram
[from Trivedi et al., 1984].
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6. Variable Optimization

Two major analysis tools have been developed to identify which statistical

descriptors best classify groups of ice and water: principal component analysis and

discriminant analysis. Both methods are a type of eigenvector analysis and operate on

a co-variance or correlation matrix.

a. Principal Components

The method of principal components is a multivariate technique which

combines highly correlated variables together to form factors which describe a basic

principal or characteristic of a group [Kachigan, 1982]. The goal of principal component

analysis is to simplify the description of a set of interrelated variables. Principal

components are commonly used in the exploratory phases of a investigation to attempt

to uncover which descriptor variables are most important in their contributions to a

desied factor. Kachigan [1982] provides an excellent graphic example of factor analysis

(Figure 10). In this figure the descriptor variables, VI, V2.... V9, are clustero-1 in three

groups. Each of these three groups reflect an underlying factor. The principal component

analysis reduces the number of descriptor variables to three factors. As pointed out by

Kachigan [1982], this textbook example is clear cut compared to real world problems.

In most research problems the descriptor variables in each of the groups, V,,...V,,g

V2,...V2,, and V3,.. .V3, will have some overlap. Principal component analysis will provide

factors that are independent of each other and then these factors can be used to form an

eigen basis for the data [Kacihgan, 1982]. The combination of a set of descriptor

variables such as Equations (3)-(15) to form factors may assist a researcher in uncovering
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Figure 10. Venn diagram depicting the clustering of variables having a conmnon
underlying factor. Factor analysis will find the factor by analysis of a correlation matrix
[from Kachigan, 1982].

cormnon traits in a data set.

Principal component analysis is used to simplify a data set and gain insight,

screen variables for use in statistical investigations, and summarize the data, sample and

cluster variables. Frequently principal components are used to isolate factors for use in

a discriminant analysis. Principal components were not used to reduce the dinensionality

of the data set in this study. This thesis attempted to use principal component analysis

to try to identify characteristics for each group of ice or open water. Unfortunately,

because of the difficulty in interpreting the factors, this approach was abandoned. When

the individual texture descriptors are better understood, principal component analysis may

provide some useful information.
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b. Multiple Discriminant Analysis

Discriminant analysis is a multivariate technique that may be used to

predict group membership [Kachigan, 1982]. The technique is similar to a multivariable

regression analysis. Unlike multivariable regression, however, discriminant analysis

computes a criterion variable which is qualitative vice quantitative. For example, in a

multivariable regression analysis we may try to predict the hardness of ice based on a

number of observed descriptors: V,= ice temperature, V2= ice salinity, V3= ice age, etc.

These variables may be combined in some manner to arrive at an ice hardness score. The

regression equation would look like: H(t,sT,...)= 131VI + 32V2 +0 3V3 + ...etc., where P.

is a weight applied to the variables. In regression analysis the goal is to predict some

H(t,s,T,...) for given values of V,. In discriminant analysis the goal is to classify or group

objects based on the same set of observed variables. In discriminant analysis instead of

using the regression to arrive at a quantitative "criterion variable", a "qualitative" dummy

variable is used to assign group membership. Returning to the previous example using

ice hardness, the discriminant equation might appear as L= P31VI + P32V2 + 133V3 + ...etc.

where L is a "qualitative" criterion variable and the descriptors are usually considered

qualitative in nature. A input data matrix for discriminant analysis of three groups might

appear as in Figure 11. An element is assigned to a class based on its value of the

"qualitative" dummy variable. For example all elements with criterion variable L between

L, and L.2 are assigned to one class while all elements with L between L2 and L3 are

assigned to another class. The class boundaries are chosen by natul'al groupings in the

data.
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Object C, ._.

Grnup C

Object C, "

Figure 11. Input data matrix for a discriminant analysis [from Kachigan, 1982].

(1) Limitations on Discriminant Analysis

The validity of a discriminant analysis detpends on three factors. 1)

Selection of strong predictor variables. These variables should have clearly different

mean values for the groups to be discriminated. 2) The variance of a given predictor

variable is the same in the respective populations from which the groups of objects have

been drawn. 3) The correlation between any two predictor variables is the same in the

respective populations from which the alternative criterion groups have been sampled
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[Kachigan, 1982]. For exar ple, for populations A and B the correlation of descriptor

variables VAI to VA2 will be the same as the correlation of VBI to VB2.

There are other considerations that will influence the strength of the

discrimination. Some of these considerations are sample size, normality, number of

outliers, homogeneity, linearity and collinearity. Discriminant analysis assumes that the

discriminating variables are normally distributed and that all the linear combinations of

these variables are normally distributed [Tabachnick and Sidell, 1989, p. 511]. There are

no good ways to check for multivariate normality so the assumption is made that if the

variables are normally distributed, then the multivariable distribution of those variables

will also be normally distributed. Outliers are a problem in discriminant analysis because

of their effect on the variance of the variables. One must keep in mind that discriminant

analysis is similar to an analysis of variance problem. The researcher must decide if the

outliers are true representations of the population or errors in data collection p'ocedures.

If some error in the data set is detected and explainable, then omitting the outliers from

the discrimination ;s justifiable. Homogeneity of the variance-covariance matrices can

be examined using Box's M test [Tabachnick and Sidell, 1989, p. 379]. The procedures

for conducting this test are found in most multivariate statistics books. Linearity is

assumed and difficult to check for in discriminant analysis. If linearity is not satisfied,

there is no significant change in the probability of misclassifying a sample [Tabachnick

and Sidell, 1989, p. 379]. Collinearity may occur making matrix inversion unreliable.

Collinearity arises when variables V1 ,...,V,, are highly correlated with each other and
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groups are not as clearly defined as in Figure 10. CoUinearity will reduce the strength

of a discriminant analysis.

With the aforementioned conditions considered, discriminant analysis

will classify each of the observed cases into groups. No provisions are made in this type

of classification for dual group membership. Readers concerned with this factor should

pursue Fuzzy clustering techniques [Bezdek, 1981]. Most discriminant analysis programs

perform the analysis and then compare the discriminated classification with the known

classification and provide a classification accuracy and the relative importance that each

variable played in the discrimination. These are the two primary pieces of information

used in this thesis to determine the optimal descriptors for this data set. Research has

recently been conducted by Shokr [1989] using discriminant analysis to examine

important statistics in ice classification using SAR data.

Thirteen descriptor variables, Equations (3)-(15), have been selected

to characterize the ice for this research. Discriminant analysis will be used to find the

best classifiers of the data. These thirteen descriptors must be further reduced to a set

that best accounts for the accurate classification of the ice. Exactly what is "best" for ice

classification must be quantified. For example, for navigational purposes the designer of

a classification algorithm is probably willing to accept a significant probability of falsely

classifying the ice as multiyear. In this work "best" is defined as the top three statistically

significant descriptor variables that successfully classify the ice and open water groups.

The top three variables are selected because they allow easy visualization of classification
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strength. The next section will address the method by which this ice classification is

accomplished.
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III. METHODS

This chapter discusses the collection, processing, description and analysis of the

SAR data used in this thesis.

A. DATA COLLECTION

The SAR imagery was collected during the Marginal Ice Zone Experiment (MIZEX)

in 1987. This experiment was conducted during March and April in the Fram Strait and

Greenland Sea. The experiment was conducted in the marginal ice zone in an area

bounded by 75'N to 79'N and 5 oW to 5E.

The SAR data were collected using an uncalibrated X-band, seven-look, 16 m

resolution aircraft mounted SAR known as the STAR-2 [Shuchman et al., 1988]. This

data set represents the results of 7 different imaging runs. SAR imagery was used by the

science teams in real time and recorded onto high density data tapes for future analysis.

It is from these high density data tapes that the images used in this thesis were extracted.

The fact that the SAR was not calibrated may have some effect on the stability of the

univariate statistics, a factor which will be discussed in a later section. Other system

specific characteristics are shown in Table II.

The data set used in this thesis was provided by the Environmental Research

Institute of Michigan (ERIM) and consisted of subsets of the digital SAR imagery. These

images were extracted from the data collected on missions flown on 5-8 April 1987. The

areal coverage of these missions are shown in Figures 12-15. The imagery collected was
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Table II. SAR Sensor Parameters [from Shuchman et al., 1988].

PROPERTY IMAGING SYSTEM (STAR-2)

Operating Altitude 29,000 ft

Wave length X-band

Polarization HH

Processing Real time

Recording 8 bit, full bandwidth data recording on
parallel HDDR

Swath width
Narrow (Hi-Res) 17 km
Wide (Lo-Res) 63 km

Pixel size Along track x crosstrack

Hi-Res 4mx4m
Lo-Res 5.2 m x 16 m

Downlink 4 bits

Azimuth looks 7

Lo-Res 16 m x 16 m
32 m x 32 m

mosaiced and appears on Figures 16-19. The mosaic images were further divided by

ERIM into smaller sub-images compose, dmost entirely of only one class of ice (first-

year, multiyear, odden) or water. These smaller sub-image samples vary in size from

5120 km2 to 20 km2 . The sub-images were manually classified and consisted of 16 first-

year ice, 18 multiyear, 11 odden and 12 open water files. These files or sub-images are

digital representations of the backscatter intensity of the SAR.
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Figure 12. Aerial coverage of mission 13 [from Shuchman et al., 19881.
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Figure 13. Aerial coverage from mission 15 [from Shucbman et al., 1988]
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Figure 14. Aerial coverage from mission 16 [from Shuchman et al., 1988).
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MIZEX 87

5 April 1987
0900-1300 UT

Figure 16. SAR image mosaic from mission 13 [from Shuchman et al., 198].
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Figure 17. SAR image mosaic from mission 15 [from Shuchman et al., 1988].
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Figure 18. SAR image mosaic from mission 16 [from Shuchman et al., 1988].
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Figure 19. SAR image mosaic from mission 18 [from Shuchman et al., 1988].
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B. HARDWARE AND SOFTWARE

The digital sub-images were installed on two computer systems for analysis, the

Naval Postgraduate School mainframe and an image display system. Most of the analysis

was performed on the mainframe making use of IMSL STAT LIBRARY functions where

possible. Discriminant analysis and principal component analysis were also performed

on the mainframe using a statistical package, SPSS-X. The image display system was

used to view files with questionable characteristics as part of the screening phase.

C. DATA ANALYSIS

Analysis of the data was performed in three main steps. Investigation of the

univariate characteristics of the data was performed first, followed by creation of GLC

matrices and lastly analysis of the statistical properties of the data using discriminant

analysis.

1. Data Screening

The fundamental properties of the data set were examined by producing the

univariate characteristics (mean, standard deviation, skewness, kurtosis, etc.) of the raw

images. The univariate statistics provided a sense of the distributional characteristics of

the sub-images. The univariate statistics and data file sizes were checked against

information provided on the data set by ERIM to ensure that they were properly installed.

The focus of this investigation was to find the optimal statistical descriptor or

descriptors for the three different ice types and open water. The creation of GLC
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matrices was an integral part of this analysis. The three questions addressed prior to

creating the GLC matrices were:

0 How large an area is needed to capture the texture of the ice? (The image area was
selected by ERIM when they manually classified sub-images. These data images
are the initial data for this thesis.)

* What vector direction (0) should be used to generate the GLC?

* What vector length (d) should be used to generate the GLC?

The second two questions are addressed in the following sections.

2. Vector Direction Investigation

The vector direction employed to create GLC matrices was investigated to

ensure that the statistics generated from the GLC would be rotationally invariant. This

investigation of directionality is important because ice in the MIZ may be imaged in any

number of orientations resulting in a lack of consistent directional features. For example,

odden ice demonstrated clear directional features with a 16 pixel periodicity, or 96 m in

ground resolution, but the orientation of these features in each image was variable. These

linear features are visible in the odden ice as streams of pancake ice aligned by wind or

wave forcing. By removing the directional sensitivity of the GLC matrix, any variance

due to the orientation of textural features will be removed.

Sample image files from each ice type were examined for directional

dependence of the texture measures. This analysis was performed by creating GLC

matrices with a vector CI)(d,0), where d was fixed at 10 pixels and the angle 0 was varied

from 0'-180'. The length of 10 pixels was randomly chosen. GLC matrices were
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computed for each GLC as 0 was swept through the 1800 arc. The texture statistics were

then plotted against 0 to search for directional sensitivity.

Figures 20-23 display two important pieces of information, the directionality

of the texture statistics and the effect of increasing the number of vectors used in making

GLC matrices. Note the reduction in variance as the number of vectors increases from

one vector to two vectors (C1,(d,@), 0 2(d,O)) separated by 1260, three vectors (0)(d,0),

0 2(d,0), 0 3(d,O)), separated by approximately 660 and four vectors (4)1(d,0), ( 2(d,0),

4 3(d,O) 0 4(d,0)), separated by approximately 37' . GLC matrices created with one or

more vectors perform an averaging function. As the number of vectors used in generating

the GLC increases, the directional nature is reduced. Th., directional nature of GLC

matrices generated with one vector is evident in some of the statistics (Figures 20-23).

Note that as the number of vectors increases, the variance of the statistic approaches some

mean value regardless of the orientation of the sets of vectors.

Selection of the appropriate number of vectors to remoe the directional sensitivity

was studied next. This was done under the hypothesis that some optimal set of vectors

could be identified that removed the directional dependence and kept the computation

time to a minimum. Computational costs increases with each vector that is used in

creating the GLC matrices. Reviewing Figures 20-23, it appears that most of the

directional variance was removed by using two vectors. This is evident because most of

the large excursions exhibited by the statistics are removed when the GLC matrices were

generated using two vectors.
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Figure 20. Directionality of cluster prominence for first-year ice.
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Figure 22. Directionality of iertia for odden ice. Note the redtcti,,,, h, I,, litditimal
variance as the number of vectors is increased.
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This set of plots also indicated which ice types would allow clear separation of the

ice types and open water. If these statistics were going to be of use in discriminating

between the various ice types and open water, then their statistical measures should be

as different as possible. Sufficient separation for open water and first year ice was

observed for most texture statistics. However, odden and multi-year ice were difficult to

separate. Analysis of the directional variance for these two ice types showed that their

values remained within one standard error of each other. By increasing the number of

vectors, cluster prominence and inertia became separated by more that one standard error

(Figures 24-25). Inspection of these figures determined that three vectors separated by

approximately 660 provided a non-directional GLC and subsequently non-directional

texture statistics.
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Figure 24. Cluster prominence for multiyear and odden ice. Note the separation greater
than one standard error for three vectors.
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3. Vector Length Investigation

Selection of an optimal vector length was performed by using one vector of

increasing length to create GLC matrices and subsequent statistics for sample files from

each ice type. The vector length ranged from 1 to 16 pixels which equates to 16 m to

256 m in ground resolution. Most of the texture statistics remained unchanged as the

length increased. However, inertia (Figure 26), cluster prominence (Figure 27), local

homogeneity (Figure 28) and correlation (Figure 29) showed a marked change with

changing length. Each of these statistics depends on the difference in gray shades. Such

statistics will be sensitive to changes in the micro-texture. Once the vector is long

enough to sample two statistically independent pixels, further lengthening of the vector

will no longer change the statistic. Generating GLC matrices that provide a maximum

separation of the texture statistics is desired for strong discrimination. Based on these

samples, a vector length of four was selected for use in generating the GLC matrices for

the study because the texture statistic was most stable for lengths of four or greater.

4. GLC Investigation

GLC matrices were computed for all 57 data files using three vectors of four

pixels in length separated by approximately 660. Representative GLC matrices and the

associated raw image for the ice and open water groups may be seen in Figures 30-33.

It is clear from these images and their associated GLC matrices that they have unique

features. Note that while these images are visually distinct, the challenge is to use their

associated GLC matrices to capture the features that allow a human interpreter to

discriminate between the different types. Note that the open water and multiyear ice are
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Figure 28. Vector length effect on local homogeneity. Each pixel represents 16 meters
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distinctly different in brightness. These two represent opposite ends of the spectrum in

terms of brightness values and most of the texture statistics. However, differentiating

between multiyear ice and odden is challenging. Human interpreters are able to identify

odden without much difficulty due to the linear features in the image.

The statistics generated from the GLC were combined into a data file that was

to be used in discriminant analysis. Before using this data file it was checked to see if

it met the requirements for a strong discriminant analysis (see section: Limitations on

Discriminant Analysis). Recall that among other things, the variables should be normally

distributed. The distributions of the statistics were examined. Most of the distributions

for the statistics appeared normal but some clear outliers were found.

In an effort to improve the distribution of the statistics each image was divided

in half, doubling the sample size. It was possible to increase the sample size because the

original ice sub-image sizes were randomly chosen and independent. The outliers were

removed and the distribution was rechecked. This now formed a smoothed data set that

would permit optimum discrimination. This step was necessary in order to be sure that

the discriminant analysis identified as clearly as possible two things: the group centroids

for each ice type and open water and the optimal descriptor variables responsible for the

locations of the centroids. The smoothed data set consisted of 28 first-year, 34 multi-

year, 18 odden and 22 open water files. Other requirements for strong discriminant

analysis were satisfied. The optimal statistics identified by discriminant analysis with this

smoothed data set were then applied to the unsmoothed data to assess classification

accuracy. The unsmoothed data set will be referred to as the original data set.
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5. Discriminant Analysis

Discriminant analysis was performed on the smoothed data set to identify the

optimal discrimination statistics. These optimal statistics were then used on the original

data set to assess classification accuracy of the discrimination.

To identify the optimal statistics stepwise discriminant analysis was used. A

stepwise discriminant analysis tests each variable one at a time to see how much it

improves the separation of the group centroids. The variables that most clearly separate

the groups are brought into the analysis first. The process continues until the

improvement in discrimination is not considered significant. In this study the descriptor

variables were brought into the analysis if they were significant at the p--0.01 level. The

relative importance of each discriminating variable is provided by Mahalanobis distance

D'. The term Y2 can be interpreted as the squared distance between the means of a

variable [Afifi and Clark, 1984]. This provides a measure of how far each variable will

separate the different ice classes. The larger the D) the better the statistic separates the

groups.

Classification accuracy is computed when the stepwise analysis ends and the

observations have bIx,i placed into groups. The accuracy is determined by comparing the

actual group membership with that provided by the discrimination.
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IV. DISCUSSION

After applying the optimal GLC vector described in Chapter III, texture statistics

for each image were then calculated. Within each ice class the mean and standard

deviation for each statistic were also calculated. The results are shown in Table I. A

chosen statistic will be able to discriminate between ice types if the mean values for the

statistic are clearly separated. For example, with the mean intensity (an univariate

statistic), the mean value for first-year ice is 16.8 ± 6.5. This centroid is clearly different

from multiyear ice, 33.7 ± 6.2, and open water, 8.0 ± 0.2. Unfortunately, odden ice, 31.3,

can not be clearly separated from multiyear ice, so the mean intensity cannot be used by

itself to classify these four ice types. In fact, a review of Table 1 shows that no single

variable is sufficient by itself; range appears the most promising.

Many combinations of the univariate statistics exist that can be used to classify the

various ice types and open water. For example, the centroid located by the mean

intensity and the univariate statistic, standard deviation, shows, some classification skill

(Figure 34). As the number of statistics used in classifying the groups of ice and water

increases, the possible number of combinations increases geometrically. Stepwise

discriminant analysis of the smoothed data set quantifies which statistics are most

important in classifying the ice. If the smoothed data set is used, this data set should

define the "true" mean for each statistic more accurately than if the original data set were

used. Table IV shows the results of the discrimination on the smoothed data set. The
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Table III. Texture and Univariate Statistics. Mean Value and Standard Error for the
Original Data Set.

ICE TYPE

FIRST-YEAR MULTIYEAR ODDEN OPEN WATER

MEAN 16.79 ± 6.48 33.70 ± 6.16 31.28 ± 3.13 8.04 ± 0.18

VAR 1.52 ± 42.67 109.12 ± 71.72 81.41 ± 26.49 1.68 ± 0.39

STDV 4.78 ± 3.00 10.11 ± 2.68 8.92 ± 1.39 1.29 ± 0.14

SKEW 0.49 ± 0.35 1.06 ± 0.43 0.69 ± 0.14 0.47 ± 0.92

KURT 0.74 ± 0.95 3.00 ± 2.39 0.82 ± 0.34 3.10 ± 11.73

RANGE 41.28 ± 34.19 98.86 ± 25.69 70.32 ± 12.63 10.42 ± 4.04

CFVAR 0.27 ± 0.07 0.30 ± 0.05 0.29 ± 0.04 0.16 ± 0.01

INERT 54.69 ± 68.18 204.32 ± 136.99 158.01 ± 50.28 3.23 ± 0.68

CLPRO 7.31 ± 17.93 40.10 ± 79.65 11.36 ± 8.54 0.0085±0.0059
(xl 0)
LHOMO 0.21 ± 0.07 0.10 ± 0.02 0.10 ± 0.01 0.48 ± 0.03

ENERG 7.33 ± 5.57 1.23 ± 0.51 1.24 ± 0.29 0.54 ± 0.10
(xl03)

ENTRO 5.57 ± 0.97 7.11 ± 0.38 7.01 ± 0.25 3.26 ± 0.19

CORLA 0.08 ± 0.06 0.07 ± 0.05 0.03 ± 0.04 0.17 ± 0.17

step at which these variables are included in the discrimination is determined by how

much strength they add to the separation of the groups of ice and open water. This table

shows the statistics that were considered significant for an F-test conducted at the p=0.01

level. This restrictive criterion helps remove variables that add little strength to a

76



STANDARD DEVIATION VS MEAN

24

20z
0

I--
< 16

LU

-r 
3322

2

Lo e 2 ~
z 2

2 OD MY

U)1

0 OW FY

0 10 20 30 40 50

MEAN
!=FY, 2=MY, 3=OD, 4=OW

Figure 34. Mean versus standard deviation for original data set. Note the poor separation
of the multiyear and odden ice.

discrimination.

Analysis of the smoothed data set with the combination of texture and univariate

statistics revealed that range was the strongest discriminating variable. Range classified

the smoothed data with better than 86% accuracy for all groups. Additionally, range was

the only variable that was considered significant at the p--0.01 level in discriminating

multiyear ice from odden ice for the smoothed data set. The next step brought entropy
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into the discrimination. Local homogeneity and kurtosis were omitted from an analysis

of the smoothed data set with texture and univariate statistics, respectively, as they were

not considered statistically significant for inclusion in the discrimination. While local

homogeneity was not considered significant when discriminating with the texture statistics

alone, it was included in the analysis when both texture and univariate statistics were

combined.

The mean classification accuracy is a measure of how well the analysis classified

all the ice and open water groups for a given group of statistics and can be used to

provide a relative comparison of the strengths of the different groups of statistics. The

mean accuracy is the number of cases correctly grouped divided by the total number of

cases. The mean accuracy of the classification for the smoothed data is expected to be

high because outliers have been removed.

The mean classification accuracies presented in Table IV show that a classification

using texture and univariate statistics combined is stronger than a discrimination

performed with univariate statistics alone. Additionally, using univariate statistics alone

permits classification of the ice types with a significantly higher mean accuracy than the

texture statistics alone. It is important to remember that Table IV reflects the relative

strength of the variables and their ability to discriminate between the ice types.

The optimal discriminating variables are considered to be the first three variables

selected in a stepwise discriminant analysis (Table IV). Plots of the top three variables

selected by the stepwise discriminant analysis for each group of statistics are shown in

Figures 34-37.

78



Table IV. Discriminant Analysis Results for Smoothed Data.

TEXTURE UNIVARIATE TEXTURE MULTIYEAR
STATISTICS STATISTICS AND VERSUS

(ALONE) (ALONE) UNIVARIATE ODDEN'
STATISTICS
(TOGETHER)

STEP I INERTIA RANGE RANGE RANGE

STEP 2 ENTROPY COEFOF ENTROPY
VARIANCE

STEP 3 CLUSTER SKEWNESS LOCAL
PROM. HOMO.

b
STEP 4 ENERGY MEAN MEAN

b
STEP 5 CORRELAT. VARIANCE SKEWNESS

STEP 6 b STANDARD CLUSTER b

DEVIATION PROM.
b b

STEP 7 CORRELAT.

ACCURACY 86.3% 93.1% 93.1% 86.5%

The discrimination of multiyear ice and odden was performed with both texture and
univariate statistics.
, A missing entry indicates that no other descriptor variables were significant in a

stepwise regression using p=0.01 for the maximum significance of F to enter.

These plots show good separation of the ice types and open water. The center of the

cross lines represents the mean value for the particular set of statistics for each ice type

or open water; its length represents one standard deviation. Note that the combination of

the texture and univariate statistics clearly separates the group centroids for the ice types

and open water.
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INERTIA VS ENTROPY VS CLUSTER PROMINENCE
Smooth Data
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Figure 35. Top three discriminating texture variables for the smoothed data set
considering all ice types and open water samples.

The top three statistics in each group of the statistics identified with the smoothed

data set were used on the original data set to test their ability to successfully discriminate

between the ice types and open water as compared to the use of all the statistics.

Table V shows the classification skill for discriminations performed using only the top

three statistics from each group. For example, when the texture and univariate statistics

are combined, range alone correctly classified 74.6% of the images. When entropy was

added, the combination of range and entropy classified 86.0% of the cases correctly.

Range alone was able to discriminate the multiyear ice from the odden in 81.0% of the

cases.
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Figure 36. Top three discriminating univariate statistics for the smoothed data set
considering all ice types and open water samples.

As was previously mentioned, each statistic that is added in the discrimination

improves the separation of the ice type and open water centroids. Plots of inertia vs

entropy (Figure 38), range vs coefficient of variance (Figure 39), and range vs entropy

(Figure 40) depict the relative strength of each of the top two variables from each of the

groups of statistics.

These plots highlight the fact that multiyear ice and odden ice are difficult to

separate. The group standard errors of these two ice types overlap for most of the
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RANGE VS ENTROPY VS LOCAL HOMOGENEITY
Smooth Data
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Figure 37. Top three discriminating statistics for the combination of texture and
univariate statistics considering all ice types and open water samples.

statistics reviewed in this study.

The discrimination between the groups of ice and open water improves when the

third variable from the stepwise discrimination is added. Plots of the top three

discriminating variables for each group of statistics are seen in Figures 41-43. Note that

the ice groups display the best separation when texture statistics axe combined with

univariate statistics (Figure 43). As may be seen from Table V, the top three univariate

statistics classify the ice types and open water with greater accuracy than the texture

statistics. This strong performance of the univariate statistics supports similar findings

by Shuchman et al., [1989].
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Table V. Discriminant Analysis Results for Original Data Set.

TEXTURE UNIVARIATE TEXTURE MUI.TIYEAR
STATISTICS STATISTICS AND VERSUS

UNIVARIATE ODDEN'
STATISTICS

TOP THREE Inertia Range Range Range
VARIABLES (50.88%) (74.56%) (74.56%) (81.03%)

(CUMULATI Entropyb Coefficient of Entropy

VE Variance'

ACCURACY) (71.05%) (79.82%) (85.96%)

Cluster Skewnessd Local
Prominence Homogeneity
(71.05%) (79.82%) (89.72%)

GROUP 75.44% 86.84% 89.47% 94.83%
ACCURACY

' Discriminant analysis of odden and multiyear ice was performed using both texture and
univariate statistics.

b Unsupervised analysis would have selected Correlation as the #2 discriminator. Inertia

and Correlation would have classified with 60.33% mean accuracy.

Unsupervised analysis would have selected Standard Deviation as the #2 discriminator.
Range and Standard Deviation would have classified with 60.33% mean accuracy.

d Unsupervised analysis would have selected Variance as the #3 discriminator. Range,
Standard Deviation and Variance would have classified with 80.70% mean accuracy.

Within group classification accuracies were studied for each group of statistics.

These tables show into which groups misclassified data fall. The within group

classification accu.'acies appear in Table VI - VIII.
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INERTIA VS ENTROPY
Original Data Set
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Figure 38. Plot of top two texture statistics, inertia and entropy, from the original data
set indicates good discrimination using only two statistics for OW and FY but not for
MY and OD.
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RANGE VS COEFFICIENT OF VARIANCE
Original Data Set
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Figure 39. Plot of top two univariate statistics, range and coefficient of variance, from
the original data set indicates good discrimination using only two statistics for OW and
FY but not for MY and OD.
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RANGE VS ENTROPY
Original Data Set
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Figure 40. Plot of the top two discriminating variables, range and entropy, from the
original data set indicates good discrimination using only two statistics for OW and FY.
Note that the separation of OD and MY is improved.
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INERTIA VS ENTROPY VS CLUSTER PROMINENCE
Original Data Set
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Figure 41. Plot of the top three texturc statistics, inertia, entropy and cluster prominence,
from the original data set indicates improved discrimination of all ice types.
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RANGE VS COEF. OF VARIANCE VS SKEWNESS
Original Data Set
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Figure 42. Plot of top three univariate statistics, range, coefficient of variance and
skewness, indicate excellent separation of the groups of ice and open water for the
original data set.
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RANGE VS ENTROPY VS LOCAL HOMOGENEITY
Original Data Set
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Table VI. Discrfninant Analysis Classification Results. Texture Statistics on
Original Data.

PREDICTED GROUP MEMBERSHIP

ACTUJAL FY MY OD OW NUMBER
GROUP OF

CASES

FY 26 6 0 0 32
81.3% 18.8% 0.0% 0.0%

MY 3 29 4 0 36
8.3% 80.6% 11.1% 0.0%

OD 0 15 7 0 22
0.0% 68.2% 31.8% 0.0%

OW 0 0 0 24 24
0.0% 0.0% 0.0% 100.0%

Per!!cent of grouped cases correctly classified: 75.4%
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Table VII. Discriminant Analysis Classification Results Using Univariate Statistics.

SACUPREDICTED GROUP MEMBERSHIP
ACTUAL FY MY OD OW NUMBER

GROUP OF
CASES

FY 26 2 4 0 32
81.3% 6.3% 12.5% 0.0%

MY 3 31 2 0 36
8.3% 86.1% 5.6% 0.0%

OD 0 4 18 0 22
0.0% 18.2% 81.8% 0.0%

OW 0 0 0 24 24
0.0% 0.0% 0.0% 100.0%

Percent of grouped cases correctly classified: 86.8%
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Table VIII. Discriminant Analysis Classification Results. Both Texture and
Univariate Statistics.

PREDICTED GROUP MEMBERSHIP

ACTUAL FY MY OD OW NUMBER
GROUP OF

CASES

FY 26 3 3 0 32
81.3% 9.4% 9.4% 0.0%

MY 4 31 1 0 36
11.1% 86.1% 2.8% 0.0%

OD 0 1 21 0 22
0.0% 4.5% 95.5% 0.0%

OW 0 0 0 24 24
0.0% 0.0% 0.0% 100.0%

Percent of grouped cases correctly classified: 89.5%
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Open water is the most easily classified group showing perfect classification for all

discriminating groups of statistics.

All groups of statistics have a tendency to misclassify odden and multiyear i-!. The

texture statistics (Table VI) exhibit the poorest ability to discriminate between odden and

multiyear ice (31.8% accuracy). The univariate statistics perform better than texture,

discriminating multiyear ice from odden ice in 81.8% of the cases. The best

discrimination between odden and multiyear ice is provided by the combination of texture

and univariate statistics (Table VIII). This combination classified the odden and multiyear

groups with 89.7% accuracy.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This study has used SAR data collected during MIZEX 87 to discern the relative

strengths of texture and univariate statistics in successfully classifying SAR images of the

following ice types, first-year, multiyear, odden and open water. The following major

conclusions can be drawn:

The choice of vector length, direction, and number used to generate a GLC matrix
will effect the texture statistics. Vectors should be chosen such that the variance
associated with the direction and the lengti is minimized. This data set revealed
that three vectors of 4 pixels in length, separated by approximately 660, removed
this variance.

" The univariate statistic, range, was the single best descriptor variable. This statistic
represents the minimum and maximum gray shades in an image. Range alone was
capable of classifying the various ice types and open water with 74% accuracy.

" The combination of all the texture and univariate statistics provided the best
classification accuracy (89.5%). When the texture statistics, entropy and local
homogeneity, were combined with the univariate statistic, range, the three ice types
and open water were classified with 87.7% accuracy.

" Univariate statistics as a group were better classifiers of the ice types and open
water than the group -)f texture statistics. Range, coefficient of variance and
skewness were the best three univariate statistics. These three variables were
capable of classifying the ice types and open water with 79.8% accuracy.

* Multiyear ice and odden ice were the most difficult ice types to discriminate. When
discrimination was performed on these two ice types, only range was a significant
descriptor variable at the p--0.01 level of a F-ratio test for inclusion in a stepwise
discrimination.

" Non-calibration of the SAR has added variance to the uni-variate statistics, possibly
weakening the strength of the discrimination with these statistics.
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B. RECOMMENDATIONS

Recommendations for future work include:

0 Conduct the same analysis on another data set collected with a calibrated SAR to
discern if the univariate statistic range is the strongest univariate statistic.

0 Conduct a feasibility study of the added computational cost of including texture
information in an algorithm. Answer the question: Is the increase in computational
cost worth the gain in discrimination skill?

* Conduct the same analysis on another data set from another season of the year to
compare temporal variability of the results. These results may be significantly
different when melt ponds are present on the ice surface. The melt ponds may
cause a significant number of images to be misclassified as open water.

• Perform an analysis on each of the textural statistics to gain a better understanding
of the physical features they capture.

• Study the effect that sub-image size has on the stability of texture statistics.
Establish the relationship between SAR resolution and this sub-image window size.

* Investigate how variation in polarization or SAR wavelength may be effectively
used in discriminating between different ice types.
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