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Abstract

A numerical scheme for the approximation of a parameter-dependent problem
is said to exhibit locking if the accuracy of the approximations deteriorates
as the parameter tends to a limiting value. A robust numerical scheme for the
problem is one that is essentially uniformly convergent for all values of the
parameter. We develop precise mathematical definitions for these terms, give
their quantitative characterization and prove some general theorems involving
locking and robustness. A model problem involving heat transfer is analyzed
in detail using this mathematical framework and various related computational
results are described. Applications of our theory to some different problems

involving locking are presented.
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1. Introduction.

The mathematical formulation of various problems involves dependency on a
crucial parameter t arising out of physical considerations. For example,
plate and shell models involve the thickness d of the plate or shell, the
analysis of elastic materials in general involves the Poisson ratio v, heat
transfer involves the ratio of conductivities u 1in different directions,
etc.

The numerical approximation of such parameter-dependent problems may suf-
fer when t lies close to a limiting value to (thickness d—0, Poisson
ratio v—0.5, ratio u of conductivities is very small (u—0), etc.).
Most a priori error estimates yield optimal asymptotic convergence rates for
t >t fixed. Since these estimates are not uniform in t, a degeneration

0]

often occurs for values of t close to to. This is manifested in actual
computations, where the error may not decrease at the predicted rate for t
close to to for most practical choices of the discretization parameter. We
refer to this phenomenon as locking. Various examples of locking have been
reported in the engineering and mathematical literature, see for example [1],
(6] -[10], [14] and others.

Locking involves the "shifting" of the asymptotic range of the calcu-
lations and will eventually disappear when the level of discretization is
increased enough, depending upon the strength of the degeneracy. Unfortunate-
ly, using brute force may lead to an infeasible level of discretization
required before convergence can be observed. Moreover, the prediction of the
discretization level for a required error tolerance is now quite complicated.

The most ideal remedy to locking is to employ a method that is robust,

i.e., one which is more or less uniformly convergent for all t. Various

robust methods (particularly mixed methods) have been proposed and analyzed in




the context of locking, see for example [7] for the plate problem, [1], [9]
for a beam problem, [6], [14] tor Poisson ratio locking, among others.

Generally, in the above mentioned papers, locking was addressed in an
ad hoc manner. In this paper our primary goal is to develop a systematic
mathematical approach which will allow precise characterization of locking and
robustness of a method as well as a quantitative measure of the locking and
robustness strength. In the next section we present the definitions of these
concepts.

Our definitions are quite general in nature, so that one can treat
various different types of locking phenomena from the same point of view. The
examples analyzed in Sections 2-5 (both theoretical and computational)
illustrate the need for this flexibility.

In the next section, we also derive various general theorems for a
special class of locking problems which are important in the context of appli-
cations and have been studied, for example, in [6]. These problems have a

well-defined associated limit problem for t—t satisfying certain proper-

0’
ties. An example is the case of elasticity, where we get the Stokes’ problem
in the limit as the Poisson ratio v—0.5. 1In [6], it was shown that a
necessary condition for t..e absence of locking is the satisfaction of a suit-
able approximability condition for this limit problem. We show in Theorems
2.2, 2.3 that this condition is sufficient as well, under certain conditions.
Section 3 contains detailed results on locking and robustness for the
model problem introduced in Section 2. Section 4 shows how the non-quasi-
uniformity of meshes used can be interpreted in terms of locking. In Section
S, we present a simplified analysis for the beam problem which was analyzed in

(1], [9]. In Section 6, we discuss a similar simplified analysis that is pos-

sible for the Stokes’ problem, detailed results for which (using the theorems




from Sectlion 2) are presented in [S].

2. A model problem and the definitions.

To show the main features of locking, we first discuss an illustrative
model elliptic problem which arises in the study of (for example) heat trans-
fer through highly orthotropic materials with the conductivity being very
different in two perpendicular directions. Let the conductivities in the x

1

and X, directions be k1 =1 and k2 = 1/t, respectively. VWe will be

particularly interested in the case that t 1is close to O.

We assume homogeneous Dirichlet boundary data on FD and Neumann data on

FN (with T = FD v FN). The corresponding partial differential equation we

study is

2 2
(2.1) -a—%—%a—;=f‘(x,y) in Q

ax ax

1 2
(2.2a) u=0 on FD
du

(2.2b) Eﬁc =g on FN.

where nc is the usual conormal.

0 on FD}. Then this problem may be put in

the variational form: Find u e Hé(ﬂ) such that for all v e Hé(n).

Let Hé(n) = {u € H(Q)u

(2.3) B:_(u,v) = F(v),
where
1 - du av 1{du ) {dv
(2.4) Bl (u,v) = [ [["TJ [&_1] *E[a‘g] {E]]dxldxz

Q




and

F(v) = I fvdx]dx2+-J gvds.
Q r

N

Let Q = (-1,1)2 for simplicity. We will be particularly interested in

the case that FD =9, f =0, and g 1is chosen so that the true solution
(unique up to a constant) is given by
(2.5) ui = sin xle“ﬁ;x2

As t—0, it is seen that u: has a well defined limit sin x1 which is

constant in the x2 direction.

We also consider (2.3) with Bz replaced by its rotated form

2 _ du _du |[av _ av 1{6u _du |[ov _av
(2.8) By(u,v) = [ [[ax * ax ][ax * 5% ]"E[ax ax ][6x 3% ]]d"1d"2'
LS - 2 1 1

1 2 2

which corresponds to the case where the directions of the orthotropy do not
coincide with the X,, X, axes. By choosing g appropriately, we obtain as

the solution of our new variational problem the rotated version of (2.5)

(2.7) u = sin(x —Vf(xz-xl),

t 1+x2)e

which is once again unique up to a constant. As t—O, ui becomes constant

in the ¢ = xz--x1 direction.

We now approximate the above problems by the finite element method.
First we consider the h-version on a uniform square mesh on Q with 1, 4
and 18 square elements. In Figures 2.1 - 2.3 we have plotted the percentage

relative error versus number of degrees of freedom in a log-log scale, for

p=1,2 and 4. In each case, results are shown for both u1 and u2 for

t t’
1 -8

t 10~ and 10 °. The dotted lines show the error in the H1 norm, while

the solid lines represent the error in the energy norm — their behavior is




very similar (see Theorem 2.4).
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Figure 2.3. Relative error in ué and uf for the h-version, p = 4.
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It is observed that for t= 10 , both cases lead to the error decreas-

ing at the predicted asymptotic optimal rate. However, when t = 10_8, only
the unrotated case shows the same behavior. The error for the rotated case

hardly decreases — this is described as a locking effect.
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Relative error in ui and uf for the p-version using four elements.

In Figures 2.4 - 2.5 the p-version has been used, with h =2,1 (i.e.,
1 and 4 square elements). Figure 2.4 shows that the p-version with one
square is free of locking for both uz and uf since the value of t has no

appreciable effect on the observed rate of convergence. In Figure 2.5, it is
seen that the error curve for ui with t = 10—8 is shifted upwards compared
to the other curves, although the slope of this curve remains the same. This
suggests that the order of convergence remains the same, but the constant in
the error estimate is larger for t small. (This "shift" will, of course,
occur for the h-version as well, but will only be visible when h 1is of the
same order as t. Hence, in practice it is not observed.)

Figure 2.6 compares the h-version (p = 1,2) and p-version (one
square) for uf in terms of the HI(Q) norm error. This clearly illustrates

the difference in terms of locking. It shows that the p-version is more

robust.
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Figure 2.6. Comparison of the h- and p-version accuracies for uf.

In Section 3, we shall prove various results to explain these phenomena.
It should be noted that the above numerical results are only valid for the
practical range of h and p we have worked with. If refinement is con-
tinued, the asymptotic convergence rate would eventually be observed for any

fixed t.

We now develop mathemnatically precise definitions of locking and robust-
ness.

Assume first that the parameter t 1is an element of a set S which is
taken to be a semi-open interval of the form ({(a,b] (with the limiting value
of t being a). For each t, let Bt(°,-) be a bounded symmetric bilinear

form defined over a Hilbert space V such that the energy norm

_ 1/2
(2.8) ”u“E,t = (Bt(u,u))
satisfles
(2.9) Cl(t)Hqu < llullE't < Cz(t)HU“v

where 0 < C,,C, < o, though Cl(t)/cz(t) could —w or 0 as t-—oa.




(Here, "."V represents the usual norm of the quotient space if, for example,
we have a pure Neumann problem.)

Let H = {Ht} be a family of linear spaces, Ht ¢ HcV, where H is a
compactly imbedded subspace of V. For each Ht' let "'“t denote an asso-

ciated norm and let Hf = {u e Ht' lIuIIt < 1}, where ||u||H < Cuunt. In our

examples, Ht may often be identical to H.

We are interested in the approximation of "exact solutions” that lie in

Ht' To this end, for each t, let ?t = {V?} be a family of finite-

dimensional subspaces of V with the dimension N being independent of t.
(We assume that a V? is given for each N € ¥, with ¥ being unbounded.)

For u, € Ht’ we consider the sequence of approximations uN € V? given by

t t

N _
(2.10) B,(u},v) = B (u,v) Vve v':

i.e., a sequence of approximations to the problem ?t associated with

bilinear form Bt and solution set Ht' The family {9t} can be identified

with an extension procedure ¥, 1.e., a rule which (for each t) gives a
method regarding how the dimension N of the approximate subspace is
increased. It is seen that (2.10) defines a projection of the space Ht into

V?. However, the exact form of (2.10) may not allow us to consider certain
ptoblems, for example, those involving inhomogeneous Dirichlet boundary condi-

tions. A more general form of (2.10) is therefore

(z.11) u, =B, u

where B? : Ht—aV? is a projection operator. The definitions that follow

are equally valid for (2.11) as well.

In case we are using (2.11), we will assume the existence of an energy

norm corresponding to (2.8) such that




N
(2.12) "ut-ut"E,t $C inf fug -vig
vev™
t
for all N,t and C 1independent of t. Note that otherwise (2.12) follows

immediately from (2.10).

We introduced the set HB

Remark. t This charac-

by help of the norm H-Ht.

terization is a very special one. We can, instead, define Hf to be any

reasonable set.

We denote R0 =

under consideration.

Our final component is a family & = {Et}

t

Let us mention that some of Bt’ H

usually are).
For any R, we

(0 < p§ £ b-a)

(2.13)

where Rn = {(t,N),

Remark. The locking
value t to the best
are characterized by
denominator over R
arbitrarily close to
technicality). This

the problem is least

E, : V>R. We are interested in the errors Et(ut—uf) for problems 7

for the problem {?t}.

We will do this in Theorem 3.5.

Rc¢cR

Sx¥ and let 0

be a subset of the pairs (t,N)

of measures for the error

¢

¥ ., E

¢+ Ep  may be independent of t (and

t!

now define the locking ratio L(t,N) = L(t,N,R,H,%,6,2)

a<ts<b, by

sup, E

; )
L(t,N) = U €Hy .

inf

(ut-u

t
,N)eR
(t,Ne n

t 2a+7n nR.

ratio compares the performance of the method at parameter

possible performance for reasonable values of t, which

t 2a+n. In most applications, the infimum in the

is the same as that over R, so that 7 can be taken

zero (and appears in the definition essentially as a

the error in uN is smallest when

is because typically, t

singular.

10




Let us illustrate this ratio by considering the bilinear forms (2.4),

(2.6) with R = {1071,1072,10™% 10" x¥. Let Ht (1 = 1,2) be spanned by

the single element ui, i=1,2 (see (2.5) and (2.7)), and let Et(u) =

"u”E.t'
We take & to be the h extension procedure (and let ¢ = 10_6). Then

Ll(t,N) and Lz(t,N) are shown for various p 1in Tables 2.1, 2.2 using
1, 4, 9 and 16 square elements.

It is observed that for p =1, Ll(t,N) remains close to unity.
Similar results are observed for higher p for L1 (not reproduced here).
On the other hand, it is seen that for all p, L2(t,N) seems to be unbounded
as t—0. (For t fixed, the locking ratio is of course bounded, but can be
very large.)

Table 2.1. Locking ratio Ll(t,N) and L2(t,N) for the h-version,

p=1 (n-= 10-6) and the energy norm

t\N 3 8 15 24

107! | 1.21 | 1.06 | 1.05 | 1.05

. 102 | 1,02 | 1.01 | 1.01 | 1.01
L (t,N) "

10 1.00 | 1.00 | 1.00 | 1.00

10 | 1.00 | 1.00 | 1.00 | 1.00

10" | 1.02 | 1.00 | 1.00 | 1.00

5 1072 | 1.00 | 1.07 | 1.23 | 1.21
Le(t,N) "

10 1.00 | 1.08 | 1.29 | 1.53

108 | 1.00 | 1.08 | 1.29 | 1.53




Table 2.2. Locking ratio Lz(t.N) for the h-version,

p=2,3,4 (n=10") and the energy norm

t\N 7 20 39 64
107! | 1.00 | 1.00 | 1.00 | 1.00
102 | 1.6a | 2.67 | 2.92 | 2.97
p=2 -4
10 1.77 4.81 | 10.06 | 15.90
1078 | 1.77 4.87 | 10.87 | 18.786
10 | 1.00| 1.00| 1.00 | 1.00
1072 | 1.04 1.46 2.17 2.40
p=23 -4
10 1.05 1.79 4.98 | 10.43
1078 | 1.05 1.79 5.11 | 11.74
107! | 1.15 1.00 1.00 1.00
1072 | 1.01 1.73 1.83 1.50
p=4 -4
10 1.00 7.83 | 15.17 | 15.50
108 | 1.00 9.01 | 43.33 [101.56

In Table 2.3 we show Lz(t,N) for the p-version for one and 16 square
elements. We see that for one element, L2 stays bounded while for 16

elements it becomes unbounded.

12




Table 2.3. Locking ratio Lz(t,N) for the p-version (75 = 10-6)

and the energy norm

*of | +\N 3 7 11 16 22
elem.
107 | 1.02 1.00 | 1.00 | 1.15 | 1.35
102 | 1.00| 1.64 | 1.0a | 1.01 | 1.00
1
100 | 1.00] 1.77 | 1.05 | 1.00 | 1.00
108 | 1.00] 1.77 | 1.05 | 1.00 | 1.00
¥ of |\ 24 64 104 160
elem.
107! | 1.00 | 1.00] 1.00 1.00
102 | 1.41 | 2.97 | 2.39 1.52
16 "
10 1.53 | 15.91 | 10.43 | 15.56
10 | 1.s3 | 18.76 | 11.74 | 101.53

Let us now present the definition of locking.

Definition 2.1. The extension procedure ¥ 1is free from locking over the
region R for the family of problems {?t, (t,N) € R} with respect to

solution sets H and measures & iff there exists 0 < n £ b-a such that

(2.14) lim sup[ sup L(t.N,R,R,?,g,n)] =M< o,
N-c t
(t,N)eR

¥ shows locking of order f(N) (where 1lim f(N) = w) iff for some 7,

N-w
1 -
(2.15) 0 < lim sup[ sup L(t,N,R.R,?.&.n)FTNTJ = C < m.
N-w t
(t,N)eR

For the case that C 1is bounded (respectively, infinite), we say that

the order of locking is at most (respectively, at least) f(N).

13



Related to the above definition, we may also define robustness as

follows.

Definition 2.2. The extension procedure ¥ 1s robust over the region R ¢ RO
for the family of problems (?t. (t,N) € R} with respect to solution

sets H and measures §& iff

N
lim sup sup, E, (u,-u_ ) = 0.
N-o t uteﬂﬁ tt ot
(t,N)eR

It is robust with uniform order g(N) Iiff

. NNY D) L
(2.18) llzasup[( sup sup Et(ut ut)]gTﬁT] =C < m,
@ t ute t
(t,N)eR
where g(N)—>0 as N—oow. o

Definitions 2.1 and 2.2 allow great flexibility in the way various compo-
nents may depend on t. This is because as illustrated by the examples in
this and the succeeding sections, different formulations require different t
dependencies.

The measure Et in our definition can take various forms, for example,
the maximum stresses, stress at a point, etc. The two main choices discussed
here will be the V norm and the energy norm.

As t—a, the approximation may deteriorate due to reasons other than
locking. For example, the exact solution of the Reissner-Mindlin plate model
with uniform load has a boundary layer of increasing strength as t—0. Hence
the deterioration of the approximation is due to the loss in regularity of the
solution as well as locking. The numerical resolution of these two effects is
based on different strategies. Our definition permits us to effectively

isolate the locking effects by sufficiently restricting the set H# to exclude

unsmooth solutions.

14




By locking, we typically understand the behavior of the extension proce-
dure when t is much smaller than N"1 (for a = 0). Hence, instead of
considering the region Ro = (0,b]lx# (Figure 2.7a), we may be interested in a
region of the type R = {(t,N), 0 <t < bN) shown in Figure 2.7b. This is
why we have R explicitly in our definition. For the examples discussed in
this paper, however, we are able to prove all our results for the entire

region R = RO.

T
|

0

N
A

— 1/N—>

Figure 2.7a. The region RO. Figure 2.7b. The region R.

We will often need to bound below the denominator in (2.13). In this
connection, the following definition of the n-width will be useful. (Here
HB is the unit ball in H.)

The n-width of the set H iIn V with respect to the measure E is

defined as

(2.17) dN(V.H,E) = inf{iup inf E(u-v)|M c VvV, dim M = N}
H°
M ‘wueH veM

with M being a linear manifold. When E(u) 1is given by Huﬂv, we denote
this by dN(V,H),

The cholice of the measures ||-||t and E, are not independent if we want

t

to study problems which make sense mathematically. We will restrict our

15




attention to choices of ¥,8,R such that for any (t,N) € R,

(2.18) dN(v’Ht'Et) s CFA(N).

where FA(N)—+0 as N>, FA independent of t, C 1independent of N
and t.

Condition (2.18) ensures that there are extension procedures for which it
is at least possible that the robustness can be achieved. Related to (2.18)

is the following condition, which ensures that our cholce of extension

procedure has a chance to avoid locking: For any (t,N) € R,

(2.7) CIFB(N) < us:g izi Et(ut—v) < C2FB(N),
tt t
(t,N)eR
where FB(N)—aO as N—oo, FB independent of t, € independent of N
and t. We say that {¥,% &R} is FB-admissible if (2.19) is satisfied.

Note that (2.19) can be an unduly broad condition to assume - for example, if

E =1

t then (2.19) already implies robustness with uniform order F

."E'tl Bl

as well as absence of locking.

We now formulate
Assumption A. There exists 0 < 7 £ b-a such that for (t,N) e Rn

N
(2.20) CIFO(N) < sup_ Et(ut-ut) < CzFO(N)’
u, €H
tt
t,N)eR
( e n

where FO(N)—+0 as N—ooo, FO independent of t, CI’CZ > 0 independent

of t,N, but in general depending on 7 (u? is the finite element

solution). w}

Assumption A says that there exists an Rn on which the extension proce-

dure is robust with uniform order FO(N). Under this ass'mntien, thc locking
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ratio L takes a simpler form and Definition 2.1 is equivalent to saying that

¥ is free from locking iff

(2.21) lim sup [ sup sup Et(ut-us)(FO(N))-l] =M< o
B
N-w t utEHt
(t,N)eR

(a similar reformulation holds for (2.15)).
The following theorem relates the concepts of locking and robustness and

follows immediately from their definitions.

Theorem 2.1. Let S, R

0 = Sx¥, R ¢ RO, H,6,F be given and let Assumption A

hold. Then the extension procedure ¥ 1is free from locking over the region
R iff it is robust over the region R with uniform order FO(N). Moreover,

if f(N) 1is such that

f(N)FO(N) = g(N)>0 as Noo,

then ¥ shows locking of order f(N) iff it is robust with maximum uniform
order g(N). o

Note that % is non-robust iff it shows locking of order (FO(N))-I. In

this case we say that ¥ shows complete locking.

Let us now discuss a special case of the bilinear form Bt('.') in terms
of which many locking problems can be formulated. Let V be imbedded in the
Hilbert space W, with norm H-Hw and inner product {(¢,¢). We assume, for

t €e S = (0,bl]
(2.22) Bt(u,v) = a(u.v)-*%(Cu,Cv)
is a symmetric bilinear form defined on VxV, where a(+,¢) Iis a symmetric

bilinear form satisfying

(2.23) Cl"u"V < (a.(u.u))l/2 < CZHUHV
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and C . V> W 1is a linear form satisfying

(2.24) IICVIIw < CBHVHV'

Here CI'CZ’CB are constants independent of t (a{+,*) and C could be

made t-dependent as long as (2.23) - (2.24) were satisfied). We have chosen
{(a,b] = (0,b] for convenience.

(2.22), (2.23), and (2.24) give immediately that for any t € (0,b], the

following version of (2.9) holds

-1/2
(2.25) cl"u"V < ”u"E,t < Czt Hu”v

We shall give examples of problems that satisfy the form (2.22) in

sections 3, 5, 6. For a number of such problems and the set X = {Ht}, Ht c
HcV, it is useful to define lim H? = Hg c Hc V. We define it as follows:
t-0
B B

u, € HO iff there exists a sequence {ut). u, € Ht’ t € S, and a constant

C 1independent of t such that

(2.26) £C

lug Mg

(2.27) lu -uouv—eo as t-——0.

t

Assume how u0 € Hg, then by definition there are ut € Hf such that

(2.26) and (2.27) hold. Hence

ticu, 12 s ¢
so that
(2.28) icu I, = ott*?)
from which it follows that for any u, € Hg we have
(2.29) Cuo = 0.

In many examples it turns out that Cut—ao at a rate O(t) instead of
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(2.28) (see the beam example in Section 5 and Poisson locking in Section 6),

i.e.,

(2.30) IICutIIw = 0(t) (or olt)).

Obviously (2.30) is satisfied if Condition (a) below holds.

Condition (a). Let II-IIt be such that < CHUHt- Then for any u, €

lullg ¢ ;

HB there is a u, € Hg n Ht (u, depending on ut) such that

t’ 0 0

172

(2.31) lu, =u < Ct

t 0"t

with C 1independent of t and u m)

£
Condition (a) is important in the context of various theorems and charac-
terizes an aspect of the regularity of the problem.
We now prove some general theorems for the form (2.22) which hold when

the spaces V? are assumed independent of t.
Theorem 2.2. (A) Let X = (Ht}. Ht cHcvV, &= (?t}. 9t = {V?}. V? =

W, e - {E,}, E, (W =luly, S=(0,bl, R={(t,N), 0<tsby}cR and

let 1lim Hf = Hg. Assume further that the quadruple ({X,%,6,R} is
too

Fo-admissible. Then the extension process % 1is free from locking over R

only if
(2.32) yN)=9mBiM}uu—wv5(T&NL
ueH . weV
Cw=0

More generally, it shows locking of order f(N) only if
(2.33) g(N) < CFO(N)f(N).
Moreover, if

(2.34) g(N) 2 CFO(N)f(N)
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then the extension process shows locking of at least order f(N).
(B) Suppose, in addition, that Condition (a) holds. Then % 1is free

from locking over R iff (2.32) holds. It shows locking of order f(N) iff

(2.35) ClFO(N)f(N) s g(N) = CZFO(N)f(N)'

Proof. First, it is easy to see that Assumption A is satisfied with the same

F because for t 2 m the energy norm

0 is equivalent to the norm

Ilg
H-Mv. Suppose there is no locking (i.e., % 1is free of locking) over R.

Let N be fixed. Then by (2.21}), for any (t,N) we have for u, € Hf,

N
Hut-utﬂv < CFO(N).

Let now uo € Hg and u, € Hf be such that (2.26) and (2.27) hold. Because

VN is finite-dimensional, there exists a subsequence of {u?} such that
uN —auN € VN in vV and
t, 0
lu, - ul, € CF_(N)
0O o0'v~™ "o ’

with Cu0 = Cug = 0. Hence (2.32) holds. (2.33) follows similarly by replac-

ing FO(N) by FO(N)f(N).

Next suppose that the locking is of order o(f(l)). Then by (2.33)

g(N) < o(FO(N)f(N)).

which contradicts (2.34). Hence the locking is of at least order f(N).
Suppose now that Condition (a) holds. We have to show that if (2.32)

holds there is no locking. So let for any u, € H?, u, € Hg al Ht be such

t
that (2.31) holds. Then we may write

(2.36) u, = u -+(ut-u0) =u

t = Y% ot X

where xt € Ht satisfies
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<
(2.37) ”xt"t < Ct .

Hence we have

N
Hut-utﬂ < C inf u ~- vl

E, VEVN

E, t

IA

C inf, llu ot X~

veV"

”E,t

IA

c{ infy lu, - v, I, + I, - v, }

vleVN 0 \ eVN R E.t
Cv1=0

using the fact that uy € Hg and hence Cu0 = 0. This gives, by (2.32) and

(2.25)

< C{FG(N) L7172

Iz, = vy}
et

Since X satisfies (2.37), we use the Fo-admissibility (2.19) to get

CLFo(N) + t'l/ZtI/ZFO(N))

IA

IA

CFO(N).
Then we see that

N N
Mut-utuv < Cllut--utllE ¢ < CFO(N)

so that on R, L(t,N) remains bounded, i.e., there is no locking in the V
norm.
Suppose now that (2.35) holds. Then we may replace FO(N) in the above

by FO(N)f(N) so that

N N
I|ut ut"V < C”ut-'ut"E.t < CFO(N)f(N)

which shows locking of order at most f{N). Also, since (2.34) is satisfied,
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the locking is of order at least f(N), 1i.e., of order f(N).
Conversely, if the locking is of order f(N), then (2.33) holds. 1If

g(N) = o(FO(N)f(N)), then, just like before, we establish that
e, =N, £ o(FL(N)E(N))
t t'v "~ 0

so that the locking is of order at most o(f(N)), a contradiction. o
We have actually proved a stronger result, namely,

Theorem 2.3. (A) Let the conditions of Theorem 2.2 (A) hold. Then % is
free from locking with respect to the energy norm over R only if (2.32)
holds. It shows locking of order f(N) only if (2.33) holds. It shows
locking of order at least f(N) if (2.34) holds.

(B) Let Condition (a) be true. Then % 1is free from locking over R

Iff (2.32) holds. It shows locking of order f(N) iff (2.35) holds.

Proof. As before, Assumption A is satisfied so that in both cases we can use

the same FO(N). The rest of the proof is the same. m]

Theorems 2.2 and 2.3 show that under certain circumstances, we need only
check condition (2.32) (or (2.35)) to determine whether or not locking exists.

The energy norm and the V norm are two important error measures. The
relation between them in terms of locking is expressed in the following

theorenm.

Theorem 2.4. (A) Let the assumptions of Theorem 2.2 (A) hold. Then % is

free from locking over the region R c¢ RO

is free from locking with respect to the energy norm. It shows locking of

with respect to the V nporm if it
order f(N) 1in the V norm only if it shows locking of at least order f(N)
in the energy norm.

(B) Moreover, if, in addition, Condition (a) holds, then % 1is free from
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locking with respect to the V norm iff it ls free with respect to the energy
norm. It shows locking of order f(N) in the V norm iff it shows locking

of order f(N) 1in the energy norm.

Proof. Part (A) follows immediately using the fact that (2.20) holds with the

same FO(N) for both "."V and | Part (B) follows by using Theorems

E, t’
2.2 (B) and 2.3 (B). »]

3. Locking and robustness results for the model problem.

In this section we state and prove some theoretical results for the model
problem, which explain the computational observations presented in the

previous section.

We first note that we may write for t € (0,8] (B < 1)
1 _ 8u 8dv  du 48v 1_ du 4dv_
(3.1) Bt(u, v) = J [[671 671+672 672] + [E 1] [672 ax2]]dx1dx2.
Q

which is of the form (2.22) with

a(u,v) = J Vu-Vv dx dx
Q

1772
Cu = g;z.
Replacing Tgf by t, we have
t € (0,8/1-8] = (0,b].
Clearly (2.23) - (2.24) are satisfled (W = LZ(Q))‘
Instead of analyzing the forms Bz and Bf on the same meshes as in

Section 2, we will now deal with the analogous problem of considering only Bt
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on unrotated and rotated meshes (Figure 3.1). This will simplify some nota-
tion. Although the problems analyzed now are not totally identical with the
ones addressed in Section 2, they show the same features and are essentially
equivalent.
Let S & R2 be a triangle or parallelogram and let ?p(S) denote the

set of all polynomials of total degree (degree in each variable) < p 1if S
is a triangle (parallelogram). We will talk about spaces VN of continuous
piecewise polynomials of degree < p on the meshes in Figure 3.1 satisfying

ul. € ?p(S) for any S 1in the mesh, for any u € VN.

S

b b

NN

INONON

Figure 3.1. Unrotated and rotated meshes

(a) Unrotated triangular mesh (b) Unrotated rectangular mesh

(¢) Rotated triangular mesh (d) Rotated rectangular mesh
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We will also find it convenient to work with a suitably scaled version of

(3.1), given by the change of variables

(3.2) 21 = X, X, = x,Vt, u(x.,%.) = ulx,,x.).

Under the transformation (3.2) we see that (3.1) may be written as

1 ~ -~ - -~
Bt(u.v) = — J Vu-Vv dxldx2
Q

vt
t

with Qt = {(§1,§2)||§1| <1, Iizl < vt} so that we Jjust get Laplace’s equa-
tion over a very thin domain. The corresponding meshes from Figure 3.1 now

look as shown in Figure 3.2.

Figure 3.2. Scaled unrotated and rotated meshes.

(a) Scaled unrotated triangular mesh (b) Scaled unrotated rectangular mesh

(¢) Scaled rotated triangular mesh (d) Scaled rotated rectangular mesh

The above families of uniform meshes are all examples of more general
quasiuniform meshes. We will refer to triangular meshes satisfying the
minimum (respectively, maximum) angle condition if the minimal angle of any
triangle in the mesh is larger than e (respectively, maximal angle is smal-
ler than mn-~¢), where ¢ is fixed for the family of meshes (see (2]).

Analogously, we will say that a rectangular mesh satisfies the ratio condition
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if the ratio of the largest to the smallest sides in each rectangle is bounded
above independently of the meshes.

Let us now look at the scaled triangular meshes. We observe that as
t— 0, the minimum angle condition is violated for both (a) and (c). How-
ever, we observe a clear difference in terms of the maximum angle condition.
Mesh (a) satisfies the maximum angle condition uniformly with respect to t
as h—0, while mesh (c) violates this condition as t—0. Similarly, the
ratio condition for the rectangular mesh (b) holds uniformly as t—O0 but
not for the rotated mesh (d). The reason that meshes (c) and (d) lead to
locking is essentially due to the violation of the maximum angle condition as
t—0.

Let us define the following weighted norms over Q 1in terms of the cor-

responding norms over Qt

1 ~
(3.3) Tl = ——||aj .
Hf(n) g 174 Hk(Qt)

Note that "u"Hé(Q) = "u"E,t' the energy norm.
We will need the following lemma about n-widths.

Lemma 3.1. Let Q¢ Ri, 1 =1,2, be a polygonal domain (for { =1, Q |is

an interval). Then

k/1

(3.4) dN(Hl(m.Hk“(m) x N k 21,

where the equivalency constants depend on k and Q but are independent of
N.

For the proof, see [12].

Lemma 3.2. Let (VN} < HI(Q) be subspaces of piecewise polynomials of fixed
degree p on quasi-uniform triangular or rectangular meshes which satisfy the

uniform maximum angle condition (for triangles) or the ratio condition (for
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rectangles). Then

(3-5) sup inf "u_v" 1 > CN"min(p,k)/z’
uer’l(Q) A\ H (Q)

<
HuHHk01(Q)_1
where C 1is independent of N, but depends on p,k,? and the characteriza-

tion of the mesh (quasi-uniformity constant and maximum angle condition).

Proof. For k £ p (3.5) follows from Lemma 3.1. Let k > p. In (3.5) we
assumed that VN c Hl(Q), i.e., VN is the space of conforming piecewise
polynomials of degree p. Let us denote VN I LZ(Q) to be the space of

piecewise polynomials of degree p without continuity conditions between

elements. Then CN s N < N and

~ 2 172
®(N) = sup inf_ Tlu-vi 1 ] < sup inf  jju-vi 1 ,
we** 1) ve?® 7 B (T) uel** () V€ H (Q)
HUHHR*I(Q)SI uuHHkoi(n)Sl

where the sum above is over all single elements J of the mesh.
Hence it is sufficient to prove

a(N) 2 oNP/2,

Obviously also N = N(h) = h_2 ~ N. Consider now a polynomial u of degree

p+1 (total (triangles) or separate degrees (rectangles)). Then u €

Hk+1(n). Hence if (3.5) is not true then
(3.86) &(N) < £(n)nP

where f(h)—0 as h—0. Since the mesh is quasi-uniform with uniform
angle condition the following inverse inequality holds on every element J

for any polynomial of degree at most p+1

vl s cht Sy . . O0stss,
K3 (7) Ht(9)
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where C 1is independent of J,t,3,h. Hence if (3.6) is satisfied then we

~

have for v_ € VN

h
[ 5 172
Tlu=-v_| ] < Cf(h),
g R pP* ()
assuming that "u"HV”(Q) = 1. But since vh is a polynomial of degree p,
p+1 p+1
8 +¥h =0, 1=1,2 and hence "Q__:%" —0 as h—O0, which is a
axP axP™ L ()
i i 2
contradiction. a

We now consider the case of the h-version on unrotated meshes followed
by the analysis of the rotated meshes. For simplicity we will assume that

either FN =@ or FD = 2.

Theorem 3.1. Consider the problem (2.10) with Bt given by (3.1). Let V?

be the set of piecewise polynomials of degree < p (p 2 1) on an unrotated
mesh of the form shown in Figure 3.1 a,b, with mesh spacing h = h(N)}. Let

Ht be the space of functions given by

H, = {ulljul < o}

()

t

> = =
with k 2 p. Let the error measure Et(u) "u"E,t "u"H%(Q)' Then the

extension procedure ¥ 1is free from locking over the region Ro = (0,blx¥

and is robust with uniform order g(N) = O(N-p/z) over this region.

Proof. Let ueH,_. Then ie Hk”(nt). with k 2 p. Consider first the

case that plecewise linear functions are used on a triangular mesh. Then the

proof of the sufficiency of the maximum angle condition [2] easily gives

(3.7) Inf Ju-vi , < cnuﬁuﬂ2 .
vel H (Qt) (Qt)
t
~N VN
where Vt is the image of t and (due to the mesh satisfying the maximum
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angle condition) C 1is independent of h and t.

Translating back to , we obtain

< Chiull

inf, flu-vi .
vev E,t HZ(Q)
t t
Now by (2.12) we have (since h2 = N)
(3.8) Ju-u'l_ < Chiul s oN" V2
‘ H (@) HY (9)
for all t. We now take 7 =b 1in (2.13) which gives, using Lemma 3.2,
L(t,N) = sup Hu-uNHE tNl/2 <C.
ueH?
t
|IuIIH251
t

Hence, Definition 2.1 shows that ¥ is free from locking. The robustness
follows easily from (3.8).

For the case of piecewise polynomials of degree p > 1, the sufficiency
of the maximum angle condition may once again be established using the argu-

ments in [2]. This leads to an analog of (3.8) of the form

N p -p/2
lu-u'll. , < ChPju| < NP2y .
E.t 1P () <t 1(q)

t t

Using Lemma 3.2 again, we establish the required results. The rectangulas

case follows similarly. o

Remark. The above theorem will hold for more general quasi-uniform meshes as
well. It explains the results in Figures 2.1 - 2.3 for the unrotated case.
Note that Theorem 2.3 shows immediately that with the same choice of Ht’
1

there is no locking (and uniform robustness) in the V (i.e., H' ) norm as

well.
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Another interesting question is to examine locking in the V norm when,

instead of Ht+1(n). H, 1is taken to be an unweighted space. For this case,

t
we expect once again that there will be no locking. We prove this assertion
for the case p =1, using the equivalence between finite difference and

finite element schemes.

Theorem 3.2. Consider the problem (2.10) with Bt given by (3.1) to be the
approximate problem corresponding to (2.1) - (2.2) with FN = 0. Assume that

F = {9t} where 9t = (VN} is the space of continuous, piecewise linear func-

tions on the triangular mesh shown in Figure 3.1 a. Let Ht = C4(§)

(independently of t). Let the error measure be Et(u) = Jjulf 1 . Then %
H™(Q)

is free of locking over RO = (0,blx¥ and is robust with uniform order

O(N-l/z) there.

Proof. Consider the mesh shown in Figure 3.1 a, with Q being given by

(-1,1)2 and the nodes being labeled AiJ’ i=0,1,...,M, J=0,1,... M,

where M = 2/h (A corresponding to the node with coordinates (-1,-1)).

00
Let ut, the exact solution and u?,
be denoted by u respectively. Then by the usual relation

the finite element solution at
N
Ay 130 Yiy

between finite element and finite difference solutions for a regular triangu-

lar mesh, we have for 1,j such that A,,L € Q with uN =0 when A eI,

iJ tJ 1

AN _ N N _ _.N N _N - +heF
(3.9) At u, = t( ul_l'\)~r2u1“j ui+1,j) + ( ui,J-1+2ul,J ul,j+1) th fiJ'
where

T f¢, . dx, dx
iJ h2 iJ 1772°
Q

Here, ¢1J is the standard "hat function” at Alj' We are given u €
<, te.,
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llhall s K.

¢
Using this, we may show
= _ 2
fiJ = fIJ-+BiJh ,
where f1J = f(AiJ) and BiJ satisfies IBiJ' £ CK with C independent of

u,h and t. Moreover, for the exact solution we have

Al _ 2 2
(3.10) At u, = h (tf1J+D1Jh )

| £ CK. Using (3.9) - (3.10), we see that with x = uN-u ,

where again |[D £ " Y

iJ

we have xiJ =0 on ' and

A, _ 4
(3.11) At x=h Hij
with lHiJ' € CK. Let

n(x,y) = 1-y°
so that

- - >

niJ (jh)(2-jh) =z 0.

Then n1J =0 for j=0,M and for Aij in the interior of Q,

—Aan = 2h2.

Let X = ChZKn-x. Then

(3.12) -AzJJ( = 2Ch41<—h"'niJ > ch¥k > o.
Also, K1J 2 0 on the boundary ' of . Suppose XIJ <0 in Q for some
A1J ¢ I'. Then there exists a minimum value of xiJ <0 in Q. At such a

value, for any ¢t,

—ald
8,"X 50,
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contradicting (3.12). Hence, X,, 20 on Q, 1i.e.,

ij —
s CKh2
xiJ "13'
Similarly, taking § = Cthn-kx, we see that
2
> -
xij 2 -CKh "ij'
Noting that '"ij' <1, we have
| < cKnZ.

I7c1\j

This shows that the difference between the interpolant of u, and the finite

element solution at the nodal points is O(hz). from which

/2

(3.13) . - ui , SChs= o(nN~!

- ).
t oty

Using Lemma 3.2. we see that we have the same rate as (3.5) with p = 1.

Since (3.13) holds for all t, the theorem follows. D

Remark. In Theorem 3.2 we have used some assumptions only for the sake of

simplicity. For example, we assumed I =T
C(4)

D’ which can be relaxed. Further,

we assumed H, = (Q) and triangular meshes, which can also be relaxed.

t
One could of course consider the case when Ht = Hk(ﬂ) and Et(U) =
"u"E,t' To see why this combination is not appropriate for analysis, consider
functions on Q that are functions of the variable X5 alone, i.e., ¢ €
Hk(I). For such a function, by Lemma 3.1,

dN(Hl(I),Hk(I)) ~ N (k1)

Now considering these functions as functions of both Xy and X, we have

de Hk(Q) so that we get from the above
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a (' (@), 1@, E,) 2 = cn -(k-1)

\/E

Hence, since dN(Hl(Q).Hk(Q).Et) does not converge to zero uniformly in t
as N—ow, condition (2.18) is violated. Therefore, locking will exist
(albeit in a trivial way) for any choice of approximation.

Let us now consider the effect of using rotated meshes. Figures 2.1 -
2.3 indicate that there is locking both in the V norm and the energy norm.

To explain this, let us first prove

Lemma 3.3. Let the extension process ¥ be based on the h-version using a
continuous piecewise polynomial of fixed degrees < p on a rotated mesh

(Figure 3.1 c,d). Let u be a function defined on Q such that Cu = du/dx

2
=0 and u 1is not a polynomial on Q. Then there exists a constant C > O,
independent of N, such that
(3.8) lu- wH inf Mu-—wuv 2 C for all N.
weVN we?p(ﬂ)
Cw=0 Cw=0
N

Proof. Consider a triangular mesh of the form shown in Figure 3.1 ¢c. Let V
be the space of piecewlise polynomials of total degree < p on this mesh and

let w e VN satisfy Cw = 0. Then over any element ?J. w must be of the

form

For any two triangles J,,9_ with a common side T we see that the vari-

J Tk Jk’

able x is never fixed along er'

1 Hence the continuity of w implies that

aiJ =a,,.-

Repeating this argument, we see that w e ?p(ﬂ). Since u ¢ ?p(ﬂ). we obtain
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(3.8). The same argument works for rectangular meshes. o
We now obtain

Theorem 3.3. Consider the problems (2.10), (3.1). Let V? be the set of

plecewise polynomials of fixed degree < p (p 2 1) on a rotated mesh of the

form shown in Figure 3.1 ¢ or d, with mesh spacing h = h(N). Let the error
1

= 1 = = =
measure be 81 = {Et}, Et(u) = "u"H1(Q) or 82 = {Ei}. Ef(u) = "u”E,t’ and

let R= {(t,N), 0<t < bN} c RO. Further, assume that the quadruple
(X,%,6,R) is Fo—admissible. Then the extension procedure ¥ shows complete

locking and is not robust with any uniform order over R.

Proof. We can directly apply Theorem 2.2(A) or Theorem 2.3(A). Lemma 3.3
shows that the condition (2.32) is not satisfied. Hence ¥ cannot be free
from locking over R. The lack of robustness follows as well from Lemma

3.3. (]

Suppose we now choose Ht to be a space of the form Hk(Q), as in
Theorem 3.2. Then, since the space of admissible functions in Theorem 3.3 is
more restrictive, we again see that there will be locking in the Hl(ﬂ) norm.
Let us mention here that an alternate proof of Theorem 3.3 may be derived by
considering the necessity of the maximum angle condition (see [2]).

Let us now examine what happens when we use the p-version instead of the

h-version. We have

Theorem 3.4. Consider the problems (2.10), (3.1), with FD = 0. Let Vf be

the set of plecewise polynomials of degree < p = p(N) on any of the meshes

shown in Figure 3.1 (i.e., rotated or unrotated), with fixed mesh size h

fndependent of N. Let Hf be the space of functions given by

H? = {ul]u] < 1)

k+1
H, ()
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with k > 0. Let the error measure be Et(U) = ||lull Then the p-version

E, t’

extension procedure ¥ 1is free from locking over the region RO = (0,b]lx¥
and is robust with uniform order f(N) = O(N_k/z) over this region.
Proof. Let u e H’t‘*l(m. Denote & = {Ix,I < 2, |§c2| <1}, Q1= {|>‘<1| < 2-,
lizl < %}. By the extension approach of Nikolsky and Babich (see [11] Theorem
3.9) we extend u to u on : for -% < il < -1,

k+1

u(x1,§<2) = Zkiu[-l-(;(l#l)%,iz}

&=1
with the exact form of the coefficients Ai being described in [11]. u is
analogously extended on 1 < X < g and then on Q to get ﬁ(il,iz). which

preserves the norm, i.e.,

< Cllull .
. Hl:*‘(m

Now we use the same approach as in (3] Lemma 3.1. We transform { onto

Q= {Igl <5 1§l <3

with the transformation

b4 =

1 sin 51

Slg Bl

X =

5 sin 62

and let v(El.Ez) = G(il.iz). Then obviously

vl

< Cjlul _ s Clul .
1 Q) HE (@) i La)

Now function v can be extended periodically on R = {|£,| < n, |E,1 < n}
1 2

and it is symmetric with respect to the lines 61 Writing

VE]

n
2’ 52'
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v = Re Z Z aﬂei(.jsﬁlgz)

J:—m =-w
we denote
p
v_ = Re Z Z a ol (JE1+862)
P Je
J=-p &=-p
and get
Iv-vl o scp il L,
Hy (Q) 1 ()
t t
Transforming v back into variables il and iz and denoting it by V we
see that V 1is a polynomial of degree p 1in Xy and Xy We get on Q
la-vi, scp Ul L,
H, (Q) 1 Q)
t
and because ”u"H&(Q) = "u”E,t we have
(3.9) influ-wl. , s ON "y

<t q)

t
where the infimum is taken over all polynomials of degree 2p and where C
depends on k but is independent of N, t and u.
For t =79 >0, "."E,t and U°HH5.1(Q) are equivalent to "'”H‘(n)
and "u"H*"(Q)’ respectively, with the equivalency constants dependent on

n. Using Lemma 3.1 we get

(3.10) dN(Hl(Q).Hk+1(n)) > cN"K/2

and the statement follows from (3.10) and (3.9). o

Remark. The statement and proof of Theorem 3.4 above carry nver identically

if instead of (3.3), we use the following weaker definition of the norm

36




=l ,
Hf(m

(: 3] ag+an
2 8%y 2 -1 3 2
(3.11) lul = > 122 + ¢t E 1—2 2,
H*(Q) ax*t © ax*1gy*2 0
t Osay sk Osaq +apsk
ochl

In fact, Theorem 3.1 also holds with the above weaker definition - instead of
using the maximum angle condition, one can establish it directly by consider-
ing interpolation on the region . Hence the results in this section are
valid if (3.3) is replaced by (3.11).

For the case of just one square, the above theorem guarantees that the
rate of convergence is the same, independent of t, for both the rotated and
unrotated case. This is clearly observed in Figure 2.4. Note that our

\/EX2

function there was u1 = sin x, e which satisfies

t 1

1 k
u, € Ht(ﬂ) v k.

Since this function is very well behaved, we can actually assert a stronger
robustness result for it (see Theorem 3.5 below).

For the case of more than one square, Theorem 3.4 asserts that the rate
of convergence is independent of t both with rotated and unrotated meshes.
However, in actual practice, while the unrotated case will be insensitive to
t, the rotated case will not. This is because it is known from (4] that the
error for the finite element method using plecewise polynomials of degree < p

on a quasi-uniform mesh with mesh size h 1is of the form

min(k, p)
(3.12) lu-uj <y

Hl(q) p* < lg)

min(k,p) _ ~ Kk

When the p-version is used, the factor Ch Ch™ (for p large)

appears as a constant. 'n terms of locking, when t 1is bounded away from O,
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one observes the full effect of this constant. However, for t close to O,
Lemma 3.3 shows that this constant is much larger. This explains the data in
Table 2.3. For a rigorous demonstration of this effect, we begin by proving

some lemmas on the approximability of smooth solutions like (2.5).
Lemma 3.4. Let f(x) € C°(I), I = (-1,1), be such that for any k 2 O,

k) k

(3.13) Max|£ K (x) | s ad,

with 0<d=<1 and A independent of k and d. Then

(3.14) inf |If-vl, < cadP* lo(p),
ve?p(I)

where

1
(p+1)!

plp) =
2(p+1)

(p+1)

Moreover, suppose that there is a B > 0 such that f (x) does not

change sign on I and

(3. 15) minl£ PV ()1 2 BaP*L.
Then
p+1
(3.16) inf Hf-v"o 2 CBd e(p),
ve? (1)
P

where C is independent of p. (Here "'"0 = | "LZ(I)')
Proof. We write

> ]
(3.17) f(x) = :E:akLk(x)

k=0

where Lk(x) is the k-th Legendre polynomial. Then we have

k .k
L (x) = i-;-l 4 (1A%
2 k! dx
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and coefficients a, in (3.17) satisfy

1
_ 2k+1

5 J f(x)Lk(x)dx.
-1

Hence we have

1 1

(3.18) la | = 2t IJ (1-x2) e ) (x)ax) < adk 2L J (1-x2)K
k+1 k+1
2 k! 2 k!
-1 -1
Denot ing
1
k0 = | (1% ax = KD
(2k+1)!
-1
we get
c,k 12 < nx) < c k12
1 2
so that
|ak| < Ckl/zAdk
Zkk!
Now
EZ = inf |f- v||0 2 2 CAZZZ“;
]
ve?p(I) p+1 prl (2 k!)
[ ]
- 2 2 - 2 |2 !
((p+1)!) prl ((p+1)!)
since % % and the sum is a geometric series. This gives (3.14). On the
other hand,

Hence using (3.15) and (3.18), we see that (3.16) holds.

For any 0 <d £ 1, 1let us denote by Zd the set of all functions
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f(x) € C*(I) such that for each p 21 there exist at most M intervals
M

Iip), 1 =1,...,M (M independent of p), with JP=1- U Isp) having
J=1

measure 2 T > 0 (T independent of p) and

min_ 1£P)(x)1 2 BdP
xeJ

and

{(p)

max [£'P/(x)| s adP

xel
with A,B independent of p. Then we have

Lemma 3.5. Let {3h} be a sequence of quasi-uniform meshes on I =(-1,1)

N(h)
and let I = U I
J=1

{Vﬁ} denote a sequence of subspaces of HI(I) of piecewise polynomials of

h (h_  h. h

N h h
J J g+

X €.h<sh, sC.h Let

). hy= y © 3 35C

g T ¥ga”

degree < p on the mesh ﬂh. Let f € Zd. Then

(3.19) Cldphpp(p-l) < inf If-vl < Czdphpp(p-l),
vth H (I)

where CI'CZ depend on T,A,B,M, but are independent of d,h,p and where

the first inequality holds provided h 1is sufficiently small.

Proof. Let g(x) = f'(x) and let

h - -
(3.20) ep-l,J = we?mf“h)llg wHL (Ih)'
p-17J 2
Transforming Ig to the standard interval [ we get by applying Lemma 3.4
(3.21) eg_l y s caP* 1P (172) (oot

If Ig € JP, then also
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h S Cdp+1hp+(1/2)

(3.22) ep-l,J 2

p(p-1).

Let now w(x) be the polynomial of degree p-1 which attains the

infimum (3.20). Then on I» let

J

vix) = f‘(xJ) +r w(x)dx.

X

J

Because of the construction of v(x), by expanding f‘(x) 1into Legendre

polynomials we have

V(XJ+1) = f(xJ+1).

Hence in this manner we construct v(x) on the entire I with v(x) € HI(I).

From (3.21) we have by squaring and summing over j

hE7 () = v gy S cdP 1hPp(p-1).

L2(I

For h sufficiently small, we have % intervals contained in JP with C

independent of p. Hence we also get using (3.22)
v (x) - £ ()l 2 CaP* hPop-1). o

Let us note that the function sin x, € 21 and e_‘/Ex

2
1 € ZVT' Hence the

function u: given by (2.5) satisfies

1 =
(3.23) ut € Ht = Zlagﬁ.

Note that for sin Xy M=1 and (3.19) will hold for h € 1. Also, if
h > 1, then (3.19) holds for p even.
We now prove the following result for the case when the solution set X =

{Ht) where Ht is given by (3.23). Here Ht is in fact a countably normed
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space and Hf is characterized by t,A,B,d,t,M.

Theorem 3.5. Consider the problem in Theorem 3.4 with Hf = 21@2‘,,3. Then
the h-p extension procedure ¥ using piecewise polynomials of degree < Py

on unrotated meshes of mesh size hN’ is free from locking over the region

RO = (0,b]x¥#¥ and is robust with uniform order f(N) O(hﬁ“p(pN—l)) there.

Proof. We consider for simplicity only the case FD 2. Let u, € Hf so

that

ut(xl,xz) §(x1)x(x2)

with £ € 21. ZGZVE' Then for any y v(xl)w(xz) € VN,

2 - ’ - ’ 2 l r , 2

1B o v x = v P s LEr = w12 4 M = vt 12
1€" = v xlg + v/ x = v/ Wil + EIEX = §w’ llg + TIEW = v’ IS

IA

RS- ST SO B U S

20 ., 2
+ 1€ = vigIw Igh-

Suppose V,w € Vﬁ are the best approximations to §£,x, respectively, in the

sense of Lemma 3.5, i.e.,

1€ = v iy s chPp(p-1)

< Ctp/zhpp(p-l).

" = wilg
Then (3.24) gives for p 2 i,
- P (o-
(3.25) Ilut y"E,t < Ch¥p(p-1)
uniformly in t. This proves the robustness result. To show that there is no
locking, we must verify that (3.25) is the best rate possible. Now it may be

easily shown that
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2 _ - 2

ye v,wth
’ ’ 2 ’ ’ 2 2
2 inf €%~ v allg = Inf 1§ - v’ iiglalg.
vevﬁ vth

Using Lemma 3.5 then shows that (3.25) is the best rate possible. Then by

Definition 2.1, there is no locking over RO. a

Remark. Note that the above theorem also shows that there is no locking for
the p-version.

We now look at the case when rotated meshes are used. We will distin-
guish between two cases. For the case that no refinement is present, i.e.,
only one element is used, we essentially get the unrotated case with one
element. {We could understand this case also by considering the rotated solu-
tion uf as in Section 2 (as mentioned in the beginning of this section, this
is equivalent).] We will observe no locking in this case. When refinement is
present, Lemma 3.3 tells us that for the limit problem, the mesh behaves

essentially like one with a single element. This will show locking for both

the p-version and h-p version.

Theorem 3.8. Consider the problems (2.10), (3.1) (FD = @). Let V? be the
set of piecewise polynomials of degree p = Py ona family of rotated meshes
of the form shown in Figure 3.1 d, with mesh spacing h = hN. Let HE =
l’lefﬁ and Et(u) = “u"E,t or ||u||H1(m. Let ¥ consist of the
p-version (hN fixed) or the h-p version. For the p-version on a single
element, ¥ 1is free from locking and uniformly robust with order O(p(pN-I)).

For a refined mesh with mesh size hN £ 1, the extension process ¥ shows

locking of at least order (2/hN)p" but is uniformly robust with order

p(pN-l).
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Proof. For a single element, we have h = 2. We may either consider the pair
1 1 2 2

u, . Bt(°.') or u, Bt(',-). In either case, Lemma 3.5 may be used, like in
the proof of Theorem 3.5, to show that there is no locking and one gets uni-
form robustness of order f(N) = O(p(pN-l)).

When refinement is present with h £ 1, we see that for the limit
problem, by Lemma 3.3, the mesh behaves like a single element, i.e., one with
mesh size 2. However, for t bounded away from O, one gets the same
convergence rate as in Theorem 3.5. This implies that

Fo(N) = i’va lu=wi, = 0(nyPo(py-1)),

but for Cu = 0,

1 o3Py,

Py

inf,, Jlu-wll,(F.(N))~

e
Cw=0

Hence by (2.34) we get locking of at least order (2/hN)p“. The method ¥

is still uniformly robust with the rate using one square, i.e., O(p(pN—l)).u

In the above proof, we used the necessity of the condition (2.32) to
prove that there was locking. We mention here that for this problem, Condi-
tion (a) does not hold in general so that (2.32) would not be sufficient

except in speclial cases. For example, taking Ht = span{ui} glives

ul—au = sin x
£ Y 1
and
lul-w . . = o(1)
t " Ylg ¢
so that If |+l , S Cl*l,, then
lul -u . = o(1)
t Yol '
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violating («). One could, of course, define H such that we only look at a
class of problems for which (a) holds.
Let us summarize the various locking phenomena we have dealt with in this

section in a table. (U = Unrotated, R = Rotated.)

Extension Process H E Locking Robustness
t t
(uniform order)
h~-version, degree p, U Hf+1(9), k2p H:, Hl No O(N-p/z)
(degree 1) C(4)(ﬁ) B! No O(N—p/z)
h-version, degree p, R Ht+1(9), k>0 Hi, H1 Yes | None
B @), x>0 | H Yes | None
p-version, U H]:ﬂ(n), k>0 Hi, g | No | ooNK2
p-version, R Ht+1(n), k>0 H:, H1 No O(N-k/z)
- 1 PN (o -
p or h-p version, U flszf Ht No O(hN p(pN 1)
1
p-version, R, 1 square QIXZVF Ht No O(p(pN 1))
1
p or h-p version, R lezvf Ht Yes O(p(pN-l))
refined

We see from the above table the effect of changing various choices of the
extension procedure, Ht and Et'

Let us remark that our results will be valid for any rotated mesh. We
have considered the case that the rotation is 45° for convenience, since

locking will be observed most readily in this case. However, Lemma 3.3 is

true for other angles of rotation as well.
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4. Locking and non gquasi-uniform meshes.

Our definition for locking in Section 2 allows considerable flexibility
in terms of the various components H,&,%, etc., which may depend on the
parameter t. We now exploit this flexibility to analyze an example where
locking is caused by the failure of an inverse estimate to hold when the

meshes are non quasi-uniform.

Let I =1[0,1] and t e (0,%]. For each N, let h=N1, Xy = Jh,
j=0,...,N. Define & = h(1-2t), ¢ = ht and let {72) be the sequence of
meshes shown in Figure 4.1 consisting of nodal points xf.xi,xg. Let V? = V?

c Hé(I) be the space of piecewise linear functions on 72. This defines the
family (9t} =%. Given u € Hé(I). for t > 0, we define u: = u? € V? =

v? by (2.10) with

Bt(u,v) = B(u,v) = J uvdx,

I
€€ )
x"xr x‘.’ xT
272 b b]
H - HH - - H
X, X, X, xJ X
h

Figure 4.1. The mesh 3:.

i.e., u? is the L2 projection of u on V:. This defines our extension
procedure %. We choose Ht = HZ(I) n Hé(I) and Et(U) = ||u||1 and ask
whether locking occurs as t—0. Note that the only component depending on

t is ¥ = {9t) (due to the mesh). We let RO = {(t,N), 0 <t s %}.

Theorem 4.1. Let {Pt). H and & be as above. Then ¥ shows locking of
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O(N) for any region R = {(t,N), 0 <t s bN} c RO and is not robust with

any uniform order.

Proof. First it is easy to see that the quadruple (¥,%,&,R) is Fo—

-1

admissible with FO(N) = CN due to standard results about the HI(I)

projection on V?. For any 7 2 n, > 0, the mesh is quasi-uniform on Rn
so that the space Vf satisfies the inverse assumption. This leads to
Assumption A being satisfied so that Theorem 2.1 holds with FO(N) as above.
Let us keep h fixed and let t-—0. Then it may be easily verified
h

that in the L2 norm, ut—eug € Vg where Vg is a set of discontinuous

linear functions on ([(Jj-1)h, jh]. Also ug satisfies the limit problem

0 0

h h
(4.1) IJ uhvdx = uvdx, ug(O) = uh(l) = 0,
(J=1)h (J-1)h

with v being a linear function on ([(j-1)h,jh], Jj=1,...,N.
Suppose ¥ 1is robust with some uniform order. Then for t > 0, h

fixed,

h h

with € iIndependent of t. Hence there exists {u? }, a convergent
Kk

subsequence such that

h ~h 1
utk—>u0 in H(I).
Since uh—auh in L we nust have
t 0 2'
ﬁh _ uh
0o~ o

But this is a contradiction, since ug € Vg, satisfying (4.1) will not be

h

continuous in general, i.e., Uy

¢ Hé(l). Hence ¥ 1is not robust with any
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uniform order. Also, because FO(N) & N_l, ¥ shows locking of order N. O

Remark 4.1. Note that if we choose E(u) = Hu"o, then ¥ will be free from

locking.

5. The clamped loaded beam.

In this section we look at the robustness of some discretization schemes
for a one-dimensional problem involving the Timoshenko beam. This problem
(along with various extension processes for it) has been analyzed in the
context of locking in [1], (8]. Here, we present a simplified alternate
analysis, using our theory, to prove some of the results in these references.
We do this by showing that Condition («) is satisfied, so that Theorems 2.2
(A) and (B) hold. We may therefore restrict attention to the limiting problem
which is essentially a one-dimensional biharmonic problem.

The problem we look at is

" 1 -’ - -
(5.1) - t*-f(¢t wt) =f on I =(0,1)
1 , -
(5.2) f(¢t—wt) =g on I
(5.3) ¢t(0) = ¢t(1) = wt(O) = wt(l) = 0.

Here, L and ¢t represent the vertical displacement and rotation, respect-
ively, of the vertical flibers of the beam, which is subject to a vertical body
force -tg(x) (f can be related in applications to dislocations or moments).
The thickness vt 1is assumed to lie in the interval (0,1].

We may cast (5.1) - (5.3) into the following variational form. Let V =

Hé(I)xHé(I). Then we wish to find u, = (¢t'wt) € V satisfying

t

48




- 1 -
(5.4) Bt(ut’V) = b(ut,v)-+€(Cut,Cv) = F(v)

for all v = (y,z) € V, with b(ut,v) = (¢£-¢'). Cut = ¢t-w£. Here (-,*)

represents the LZ(I) inner product and F 1is given by
F(v) = <f,y> +<g, 2>,

1

where <e¢,<> 1is the duality between HI(I) and H (I).

It is easy to see [1] that
2 2 2 2
(5.5) Sugty s tugiZ s (1 F i3

with the energy norm being defined as usual. The bilinear form can be put in
the form (2.22) if, as in (3.1), we take Tgf instead of t, giving for
u= (¢,w)

a(u,u) = b(u,u) + {Cu,Cu) 2 %Huus

so that (2.23) - (2.24) are satisfied.
In {1] it has been shown that for f,g € H-I(I) and 0 < t < 1, the
following a priori estimate holds for k =0,1,..., for the problem (5.4) (or

equivalently, (5.1) - (5.3))

1
(5.6) DUy + £ICU I, € CUILE_ gl ).

where C 1is a constant depending only on k and

Mg lgy = 18 0ay * 19 eaq-

Hence a natural choice for the solution set Ht = Ht.k+1 is to define Ht,k+1
¢ H= (NN n B by
(5.7) Ht,k+1 = {uluuut'k+l < o)

with the norm given by

1ol = 1y ey
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hul = llull,, + gIcul.

t,k+1 k+1

Using (5.1) - (5.2), we also have for k =0,1,...

From (5.4), we see that as t—0, the Kirchoff hypothesis
(5.9) Cu=0

gets imposed so that any Uy in the limiting set HB must satisfy (5.9).

0
Moreover, using (5.6) with k = 0, we see that if f,g are held fixed in

(5.4) and t—0, then

HCutHO = 0(t).

Suppose now we are given a u, € Hf kel We show that Condition (a)
<

holds. First it is clear that “U“E,t “““t,k+1 for k 2 0. Define f,g
by equations (5.1) - (5.3) so that by (5.8), "f"k-l’ IIgIIk_1 < C and denote

by (UO.CO) = (¢0.VO,CO) the solution of
-h - T
¢0 + CO f on
§6 =g on I

(5.10)

95-¥p =0 on I

¢0(0) = ¢0(1) = wO(O) = wo(l).
(5.10) has the equivalent variational form; find (uo,co) € VxS satisfying
b(uo.v)-+(§0,Cv) = f(v) for all v eV,

(5.11)
(Cuo.n) =0 for all n € S,

with S = L2(I). Then (5.11) has a unique solution which satisflies

50




(5.12) lughieg * 1€oh, < CUIEN,_, + Ngl,_,).

(5.12) is proven in [1] for k = 0 and can be obtained for higher k from

(5.10) by differentiation. (5.12) shows that u, € HO n Ht,k+1' Using (5.8),
(5.13) Tugleeq + 160, S CHUth,k+1-

Now by (5.1) and (5.10), we have

(5.14) ~($,-45)" + 1C(u,~u ) = &

which corresponds to (using (5.4) and (5.11))

(5.15) b((u,-uy),v) + £(C(u, ~u ), Cv) = (£,CV)

from which, putting v = u, -u,,  we get

2 t 2.1 2 _t 2.1, _ 2
(5.16)  lluy -yl ¢ = 51805 * 5gIClu ~uyiig < F1&5lg+ 5l - yglE -
Hence
2 2
Ilut-uolll_:,t < tllcollo.
i.e.,
1/2
(5.17) Ilut-uollE'tSt IICOIIO-

Next, differentiating (5.14) and using (5.2), (5,10) we see
(¢t‘¢o)“ =0
so that
($,=¢g)" = 3, ($-¢))" =ax+b,
where a , b, are constants depending on t. Using (5.17),

172
a,.b, st Ig,
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from which (using (5.1) - (5.3), (5.10) and (5.14)), the following estimate

may be established

Ilut-uc,llt'm1 S [N I
Using (5.13), this gives

172

oy =ugly eq St Tl ey
so that (a) is satisfied. Hence we may take Hg Kk+1 to be the set of all

uo's constructed from u, € Hf K through the equations (5.10).

We will be interested in locking in the H-HV norm. Then by Theorem
2.2, a necessary and sufficient condition for the absence of locking is that

for all u e Hg,k+1’

(5.18) lu-wl, S C Fy(N) =
v v

Cw=0

u-~ wII

v

We will denote by {Sﬁ} a sequence of C0 subspaces consisting of piecewise

polynomials of degree < p on a quasi-uniform family of meshes on 1.

Theorem 5.1. Consider the problem (5.4). Let {Vg = (Sﬁ)z) = where

?t,
p 21 1is kept fixed and the h extension is used (h = hN). Let H = (Ht},

Ht = Ht K+ 1 be given by (5.7), with k 2 p. Let the error measure Et(u)

Hu"v. Then the h-version extension procedure ¥ shows locking of order

hﬁl. It is uniformly robust with order hs-l for p > 1.

Proof. We must estimate the two infimums in (S5.18). First we have for u

(9.w) € Hy o1

- ~ P
(5.19) FO(N) p {ll¢- W" +|lw zﬂl) O(hN)
w.zes
<+
by standard results, since ¢,w € (I), k 2 p. Next, we estimate for

= (¢,W) € HB

t, ket 20d ¢-w =0,
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Ay = iM'(H¢‘WH+HN-ﬂHL

v, zeS)
y-z’'=0
Obviously,
(5.20) AN = 1nfp{||w -2 ||1+||w-z||1} % flnfp ||w-z||2.
Z€S 2€S
h h
For p =1, AN = 0(1). For p 2 2, standard spline theory [13] shows that
for k 2 p,
(5.21) Ay = O(hﬁ'l).
(5.19), (5.21) together with Theorem 2.2 prove the result. a

Let us now consider the p-version.

Theorem §.2. Consider the problem (5.4). Let (Vf = (Sﬁ)z) %, where h

t
is fixed and the p-extension (p = pN) is used. Let Ht = Ht,k+1’ k > 0,
and Et(u) = Hu"v. Then the p-version extension procedure ¥ 1is free from

locking and uniformly robust with order p;k.

Proof. By standard p-version approximation theory we have, for u = (¢,w) €

Hg,k+1'
-k
Fo(N) = infp(ll¢°¢l||1+llw-z||1) = 0(py )
¥, Z€ES
h
since ¢,w € Hk*l(I). Next, for u e Hg k+1’ Cu=0 sothat w = ¢ €

Hk+1(1), f,e., we Hk+2(1). Hence

-(k+2-2)

- -k
N ) = O(pN ).

= inf_|w=-2], = O(p
AN zesﬁ 2

This proves the theorenmn. (u]

The results in (1], [8] also indicate what happens when the measure E,
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is changed. We have summarized these results in a table. The set Ht =

Ht K+l in each case (with k 2 p for the h-version).

Table 3.1. Locking and robustness for different choices of % and Et'

Extension E Locking Robustness
Process & t (Uniform order)
h-version Hqu Yes None
p=1 el Yes None
(1] Wil Yes None
el Yes None
lhwll g Yes None
h-version lhally, Yes O(hg-l)
P22 Il Yes o(nb™h)
(1] Il No 0(hy)
¢l Yes O(hy)
"w"o Yes, experimentally O(hﬁ)
p-version llully, - No O(p;k)
€) Il No 0(py)
vl No o p;k)
LI No o(pgy ¥*1))
il No O(p;(k+1))

Remark §.1. Additional results in [1] deal with the h-version of a mixed
formulation for which locking is eliminated. The reference [8] also analyzes

an h-p extension procedure which is free from locking.
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6. Nearly incompressible materials.

The procedure outlined in the previous section can be used to analyze
"Poisson Locking" as well, which occurs in the case of the elasticity

equations when the Poisson ratio v 1is close to 0.5.

consider the following problem

(6.1) a3 -5 grad div 3 =0 1n
2
(6.2) :E:(eiJ(ﬁv)-faiJ Tgii div Gv)nj = g 1<i<2 on T,
J=1
where {nJ}§=1 is the unit outward normal to I' and the strain tensor {e1
is given by

s 13 3
epylw) = z[ax,uj ¥ ax,“i]'

It is assumed that

[g.ads=o
r

for any rigid motion R. Let  denote t 1;2v
the constraint

-

Cu = div u

i
o

gets enforced. 2 converges to a limit 3. which satisfies

t 0

->
-Auo-grad co =0 in Q

(6.3) div 30 =0 in Q

2

->
Z:t:m(uo)n“‘+v§0n1 =g, 1<€1<2 on I’
J=1

which is the Stokes’ equation, with -v(o being the pressure.
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More specifically,

As t—O0,

J

}




The corresponding variational forms for (6.1) and (6.3) are respectively

given by (5.4) and (5.11) with V = ﬁé(m. S = {n e L2(Q), Indx = 0},
Q

2

b(2,3) = JJ :E: ey y(Dey (Pax,
Q

i, J=1

F(V) = I g+ vds.
r

If the domain is smooth, we obtain all the usual shift theorems (as in
the case of the example in Section 5). Also the argument of equations (5.15)
- (5.16) carries over identically, so that (5.17) will again hold. In fact,
as we have shown in [S], Condition («a) will hold for this problem, even for
certain cases when the domain is not smooth.

As a result, Theorem 2.2 applies again and we have the following result

when an appropriate solution set Ht = H 1is taken.

Theorem 6.1. The extension procedure ¥ 1is robust with respect to error
measure Et(a) = "3"1’ and solution set H for the variational form of (6.1)

- (6.2) with uniform order g(N) given by

(6.4) g(N) = sup inf  J|U- Wi
i el

div u=0 div w=0

1

It is free from locking iff

(6.5) g(N) S CFy(N) = C sup_Inf ||G-3||1

der® e

and shows locking of order f(N) Iiff

g(N) = CFO(N)f(N).

Note that in (6], (6.5) was stated only as a necessary condition, whereas we
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show that it is sufficient as well, which simplifies the subsequent analysis.
In particular, the above result shows that all the numerical schemes analyzed
in [6] which were shown to be robust for the 1limit problem will also be robust
for the sequence of problems given by (6.1) - (6.2).

In [S], we use Theorem 6.1 and some results developed in Section 2 to
investigate the robustness of various schemes for nearly incompressible
materials. In particular, we analyze the locking that can result through the

use of curved elements.
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