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Automatic description of the Gulf Stream
from IR images using neural networks

Matthew Lybanon

Naval Ocecanographic and Atmospheric Research Laboratory
Stennis Space Center, Mississippi 39529

Eugene Molinelli and Michael Flanigan

Planning Systems Inc.
7925 Westpark Drive
McLean, Virginia 22102

ABSTRACT

A system under development for automated interpretation of oceanographic satellite images
includes a Gulf Stream description module which uses a neural network, which produces
coefficients of an empirical rth nal ncti (EOF) series representation of the Gulf
Stream directly from processed satellite imagery. The Gulf Stream module consists of the
EOF software and the neural network, with input from an innovative edge detector.

The Gulf Stream is the swiftest and most energetic curent in the north Atlantic, and
mecanders with a broad spectrum of variability on several spatial and temporal scales.
Satellite observations provide a means to observe the Gulf Stream's shape, although clouds
in IR imagery and other types of "noise” complicate interpretation. The Gulf Stiream shape
at any time may be represented as a series of complex EOFs (CEOFs), i. e., principal
components, which can be truncated after a relatively small number of terms (10) and still
describe Gulf Stream shapes well (to within 10 km). These modes can be optimized from
initial values with as few as 21 fixes on the position of the Gulf Stream axis, using least-
squares estimation. The CEOFs interpolate between spatially intermittent observations of
portions of the Guif Stream, as might come from IR imagery with partial cloud cover.

The study described herc tested whether a credible Gulf Strcam can be produced using a
ncural nctwork (simulated in software) that has inputs derived from imagery, and has CEOF
cocfficients as outputs. To demonstrate feasibility we considered it sufficient to definc the
values of the first three complex mode coefficients, which account for more than 97% of the
Gulf Strcam's position variance. Two data scts were used for training and testing:  Gulf
Stream analyses from NOARL's GEOSAT Ocean Applications Program (GOAP), and edge images
produced from IR imagery by a NOARL-developed algorithm.

In the first part of the study the input consisted of 132 latitude-longitude pairs that
represent one Gulf Stream. The learning algorithm is back propagation; convergence is
achicved with 100,000 iterations through the training set with the learning coefficient set
to 0.9 and the momentum coefficient set to 0.6. The ncural network has onc hidden layer
with 10 nodes. The output layer has 6 nodes, giving the real and imaginary parts of cach of
the thrce CEOF mode cocfficients. Training using the GOAP data sct produces outputs that !
have correlation coefficients with the correct mode coefficicnts averaging over 0.98. 3

The next part of the study used a network with a 50 x 50 grid (simulating pixel input) of
input nodes, one hidden layecr of 40 nodes, and 6 output nodes. Again, lcarning was by back
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propagation. The training set consisted of 77 of thc¢ 86 GOAP data sets, with 9 randomly
chosen sets held back as test data. The network converged after 150,000 passes through the
test data set, with results of comparable accuracy to those obtained with the first nctwork.
Processing to produce three complex mode coefficients from 50 x S0 gridded input took less
than 1 second on a 20 MHz PC.

The grid-input nctwork applicd to the 9 GOAP test cases achicves agrecement with a
corrclation cocfficient averaging 0.97. The results are moderately good for the noisy cdge
imagery, also. The coefficients have reasonable values, the correlation coefficient between
the network and actual cocfficients averages 0.69, and the resulting reconstructed Gulf
Strcam is within 100 km of the actual Gulf Strcam over most of its length. This is notable
hecause the resolution of the S0 x S0 orid js 50 km.

The studies performed so far demonstrate feasibility. The next phasec of work is directed
toward making the system operationally useful.

1. INTRODUCTION

This work is part of an effort to develop and demonstratc techniques for automated
interpretation of satellite data for ocean and ice applications. Generation of ocecanographic
products by conventional manual means requires much labor and very high skill levels,
both of which are difficult to realize in an operational environment. The satellite
oceanography image understanding problem is difficult becausc the features arc naturally
time-varying, there are no straightforward mathematical models of their shapes, and
interference by cloud cover and other effects is a frequent problem. To address these
difficulties, the technical issues the project considers are image segmentation (simplifi-
cation), feature labeling (assignment of oceanographic identity to image features), fcature
aggregation (formation of Gulf Stream north wall, eddies, etc.), and mesoscale extrapolation
(to deal with data gaps). This paper describes an innovative approach to the feature
labeling and feature aggregation portions of the automated Gulf Stream dectection problem.

Satellite imagery, by its capability for synoptic coverage of large areas, is a useful
complement to traditional in situ oceanographic measurements. Hawkins, Phoebus, and

May! discuss the assimilation of satellite data along with other types of information to
produce a superior description of oceanic parameters. During the past few decades, new
observations have begun to identify a phenomenon that appears to be intimately linked
physically to the ocean's general circulation, and even to dominate the circulation
energetically in many regions. This phenomenon is comprised of slow, medium-sized
fluctuations in the circulation itself. This "mesoscale" variability can take several forms,
such as meandering of the Gulf Stream, large ring vortices that are snapped off from the
currents during intense meandering events, and the mid-ocean eddies.

The sea surface is teeming with thermal structure detectable by satellite infrared (IR)

sensors.  Present scnsors are capable of 1 km horizontal resolution with 0.5°C accuracy
under cloud-free conditions.  The Gulf Stream and its rings contribute to the surface
thermal expressions observed by satellite.  Specifically, the Gulf Stream is a continuous
feature in the north Atlantic Ocean whose surface thermal expression consists of sea

suiface temperature gradients between the longitudes 75°W and 40°W. Images can be
produced in which pixels have been identified that are associated with high horizontal
gradients and thus are candidates for the Gulf Stream edge. The problem, then, is to discard
some of these high gradient edges and connect the rest into a continuous Gulf Stream. A
mathematical description of a continuous Gulf Stream with realistic meanders has been
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developed. The innovative step described in this paper is thc usc of thc new technology of
ncural networks to connect the gradients of IR imagery to the mathematical description of
a continuous Gulf Stream. The technique has the potential to apply the great speed and
quantitative cffectiveness of artificial intelligence technology to the identification of
oceanographic fcatures from remotcly sensed imagery. This, in turn, offers the benefit of
more effective usc of the U. S. Navy staff assigned to the task in the Fleet.

The emerging capabilities of ncural nctworks to reduce noisy imagery to mecaningful
information in a fast, highly parallel fashion presents an opportunity to solve loprgstand-
ing problems in satellite data analysis. A neura! network implemented in cither sofiware or
hardware greatly decreases the need for a human operator to examine the IR imagery,
since the network operates directly on the data to producc probable Gulf Strcam points.
This computer implementation yields another immediate bencfit--the processing begins as
soon as the satellite data are acquired instcad of waitling for a human expert to analyze the
data. The necessity for specialized shore-based display equipment and intcractive software
are also diminished because the network operates on the digital data directly as it is
rcccived from the satellite or automatically processed by existing cdge detection algorithms.

In addition to countering the deficiencies outlined above, a necural network capable of
analyzing IR imagery opcns up new possibilities in the U. S. Navy's use of satellite data. The
capability to analyze satellite imagery without the usec of an ecxpert and extensive
workstation introduces the possibility of onboard analysis of data. This cnables properly
cquipped vesscls to make critical decisions based on the latest information in near-real-
time without the delays of a system dependent on shore-based facilities.

During the carly 1990s the U. S. Navy will face an unprecedented wealth of new remotely
sensed occanographic data available from both U. S. (e. g, TOPEX/Poseidon, Spinsat) and
forcign (European ERS-1, Japanese ERS-1) satellites. Present-day satellites will continuc to
supply occanographic data into the forsecable future. The sheer volume of data from these
satcliites will be overwhelming to analysts, and anticipated manpower reductions will
dictate a need for greater automation. This data volume increcasc will coincide with the
deployment of the third version of the Tactical Environmental Support System (TESS (3)), a
capable environmental information system which will extend satellite data processing
capability to approximately 70 U. S. Navy ships and shore facilitics. Thus, the work
described in this paper is coming along at the right time.

2. BACKGROUND

A uscful numerical description of the Gulf Stream is one based on complex empirical
orthogonal functions (CEOFs), the ecigenvectors of an "expectation matrix." The expectation
matrix is obtained by averaging a set of matrices each representing the correlation proper-
tics of an individual vector, in our case a vector that describes the instantanecous position of
the Gulf Stream. This formulation and its advantages for describing the Gulf Strcam arc

described in detail by Carter.2 To summarize that reference, a looping, contorted, but
continuous Gulf Stream can be described by a vector of complex clements consisting of
(latitude, longitude) pairs. That vector can be approximated well by a relatively small set of
complex cocfficients--when ecach coefficient is multiplied by a corresponding CEOF (princi-
pal componcnt, cigenvector, or mode) that is fixed for all time. The resulting terms arc a set
of vectors which are added together to reproduce the original Gulf Stream vector. Spcaking
gcometrically, the CEOFs constitute a sct of basis vectors that span the spacc of all known
Gulf Stream states (i. c¢., locations and shapes); an individual Gulf Stream state is produced by
linear combinations of the basis set. Spcaking figuratively, the CEOFs arc the shapes of Gulf
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Stream patterns and the coefficients are the orientations and sizes of the patterns.  The
power of e wmcticd dcrives from the fact that a partial sum, involving a relatively small
number of CEOFs, may reproduce the Gulf Stream's shape with sufficicnt accuracy.

Mathematically, the Gulf Stream is defined by a complex vector W whose clements arc:

W;=xj+iy; M

In this equation, x is the longitude and y is the latitude of a point on the Gulf Stream axis.
This complex formulation allows the description of a contorted Gulf Stream which may
curve back on itself, while a description in terms of y as a function of x, or vice versa,
would have to deal with double-valued functions. The expectation matrix A is defined as the
matrix with elements:

Ay =<, W), 2

where * denotes the complex conjugate and < > is thc expectation operator. A, which is
generated from an ensemble of Gulf Stream axes, is Hermitian, so it has real eigenvalues
(but complex eigenvecters). Given the eigenvectors Ey of A, and onec particular realization,

W, of the Gulf Stream, the complex mode coefficients associatcd with W may be found from:
H
Cy = Ex W, 3)

where the superscript H denotes the Hermitian conjugate. The cocfficients allow the
realization W of the Gulf Stream to be reconstructed using the expansion:

N
W = ¥ CE, @
k=

where N is the number of eigenvcctors.

The ecigenvectors of A form a complete set of orthogonal basis vectors. If the cigenvectors
are sorted according to the size of the corresponding ecigenvalues (k = 1 has the largest
cigenvalue, etc.), then it is easily shown that the first eigenvector is the best fit in a lecast-
squares scnse to the "cloud” of points in the mathematical space in which each Gulf Strcam
(vector) defines one point. That is, the sum of squares of the total distances between the
points and the "line” ar¢c a minimum. (This is analogous to what Duda and Hart call

"cigenvector line fitting."3)  So, the first eigenvector is aligned with the dircction of
maximum scatter (i. c¢., variance) of the points. Likewise, the sccond ecigenvector "explains”
the next largest amount of variance, etc. In fact, each eigenvalue is proportional to the

amount of variancc that a given cigenvector cxplains.*  An immediatc conscquence of this
is that, in practice, Eq. (4) may bc truncated after a rclatively small number of terms and
still reconstruct a particular Gulf Strcam with sufficient accuracy. Figure 1 illustrates the
reconstruction of a convoluted Gulf Strcam using the first 10 of 132 cigenvectors.

Many rcaders are familiar with normal modec analysis and have sccn the above formulation
in other contexts. Also, the reconstruction algorithm appears to fail when one docs not
have a complectc description of a Gulf Stream (i. e., some of the elements of W arc missing)
because of cloud cover or some other form of interference.  In thi+ case, NOARL's software
cmploys a gradicnt-scarch technique to perform a least-squares fit ot the CEOF cxpansion to
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the portions of the Gulf Stream which arc observed. The cocfficients found in a (recent)
previous analysis are suitable initial estimates.d

This latter step is, itself, an innovative approach to providing a mathematical description of
a realistic, continuous Gulf Stream f{rom incomplete observational data. A further
development involves the application of ncural network technology.  Neural networks have
becn emerging as a new, viable tcchnology for image analysis and pattern recognition.
There are several characteristics of ncural networks that make them cffective for
analyzing large amounts of data rapidly and resistant to noise in the data. Ncural networks
are composed of many simple computational units that work in unison 10 process
information. The network is not programmed in the traditional sense; rather, the weights
that connect the neurons are "lcarned” by the network through repeated applications of
input data for which the desired result is known. Thus, a network can be presented with an
IR image or other input data, and it can process that data based on the information
presented during training. The nectwork is tolerant of noise since it has learncd the salient
fcawres of an image during training, and the noise is in somc sensc averaged out.

NOARL has devecloped an cdge-detection algorithm, the cluster-shade cdge detector (CSED), to

compute the position of sca-surface temperaturc (SST) gradient fronts in IR imagery.®  That
algorithm has scveral advantages for this application, comparcd to other, well-known ecdge

detectors, such as the Sobel algorithm.” The immediate nced is to identify the Gulf Strecam
among the fronts.  Alternatively, we may say that thc Gulf Strcam is the pattern to be
rccognized in a CSED image, and other fronts constitute noise in that edge image. This paper
describes an cxploration of the capacity of ncural nctworks to recognize the Guli Strcam
pattern, as represented by CEOF cocfficicnts, within the noise of an SST image processed oy
the CSED algorithm.

3. ISSUES IN NEURAL NETWORK PRODUCTION OF CEOF COEFFICIENTS

The basic question to be answered was whether a neural network can produce meaningful
cocfhicients for CEOFs whose structures were not available to the network,  That is. arc the
natterny  represented by cocfficients of CEOFs appropriate for ncural neiwork technology?
o answer this question, il was nceessary to consider scveral subguestions, or issues:

] What constitutes an appropriate training sct for the nctwork?

2. What is the criterion for a mcaningful CEOF coefficient?

3 What. if anv. ncural network training procedure is capable of producing menn-

ingtol coefficients for CEOFs from the chosen training set?

= What 1y en appioprinde conficuration of nodes and dovers to produce meanimatu!
U OF cocflicints?
S0 How sensinive te the conhywrahion of hudden layers and nodes s the mreduchon of

meanngtul CEOF cocfiicients!”
CEGEs compuicd by Molinelli and  Flanigan® were expressed as vectors with clements eveny
ten nauticad miles downstream. Opcrational use would provide Tatitudes and Tengitados of
possible Gult Stream locations derived from SST edge imagery that could not be associated o
priori with distance downstream.  Consideration of this {sct led to the next issue:

6. Can input nodes  representing positions  on o a  latitade-longitude  gnd produce

mcaningful CEOF  cocfficients?
It wae deemed necessary to resolve these issues before genting 1o details ot noise  discrimi-
nation, conditioning of input data, and increase in resolution and accuracy of the neural
nctwork output.
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4. APPROACH

A simple approach was employed in investigating the above questions. That approach was
io use a series of actual Gulf Stream representations produced between January 1986 and
June 1987 to develop a neural network and test its capabilitics. The Gulf Strcam represen-
tations came from the "mesoscale products” of the GEOSAT Occan Applications Program

(GOAP),8 9 and were derived by a human analyst using not only IR SST imagery but also
GEOSAT altimetric profiles. There are 86 Gulf Streams represented by latitude-longitude
pairs at inflection points stored in computer files. This set of Gulf Streams constitutes the
first candidate training set for the present study.

We used the CEOF software developed by Molinelli and Flanigan,5 and started by deriving
new CEOFs for the training data set. To demonstrate feasibility, we consider it sufficient to
define the values of the first three mode coefficients. Together these modes account for
more than 97% of the displacements of the Gulf Stream. Higher accuracy could be attempted
in future work by using more modes.

A second candidate data set consisted of edge images produced using the CSED algorithm.6
However, there are only a few dozen views of the sea surface clear cnough to span the
domain during the 18-month period spanned by thec GOAP mesoscale product data set.
Previous experience with ncural network training led us to conclude that a substantially
larger set of images would be required for training to converge in thc prescnce of noise
(other SST fronts) in these images. Nevertheless, we did obtain six warmest-pixel composite

SST images!0 and the resulting edge images, as well as the nine individual SST images that
contributed to the composites and their edge images. In all cases the edges were computed

using the 16 x 16 pixel option of the CSED software® because the other options produced
perceptibly more fine-grained noise. Even though the edge images could not bec used as a
iraining set, we did intend to use thesc images as test cases for the nctwork's pcrformance.

We chose the correlation between the coefficients produced by the neural network and the
actual values produced by the CEOF software from the appropriate GOAP mesoscale product
as a measure of how meaningful the set of CEOF coefficients generated by the neural
network is. Specifically, we regarded the coefficients in a test case as meaningful it they
are corrclated with the actual values with a correlation coefficient of 0.8 or better.  For
cases in which there are too few pairs to compute correlation, we considered agreement of
mode coefficients within 20% to be meaningful.

We wused a commercial software package, Neuralworks, to establish which training
procedure generates a network whose output best converges to the training set's actual
coefficients. "Best,” in this context, means fewest number of training steps and the smallest
discrepancies between the network output and the training set coefficients. The input in
this case was the 132 latitude-longitude pairs that define one Gulf Stream, i. e., 264 nodes.
The output is a set of six nodes--real and imaginary parts of three CEOF coefficients. We also
used the commercial software to vary the number of hidden layers and the number of nodes
in those layers. Parameters of the learning algorithm, number of nodes, and scaling of
input and output values are all modified empirically at this stage in order to achieve
convergence.

The commercial software accesses only limited memory and cannot handle the vast input

arrays inherent in satellite imagery. To circumvent these deficiencies, the next step was to
implement the best training algorithm in C under UNIX (a virtual memory operating
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system) so that two-dimensional grid values analogous to pixel valuecs can be used as input
The incrcase in the number of input nodes requires an increasc in the number of hidden
nodes. We emulated pixel input with a 50 x 50-point grid, giving 2,500 input nodcs-- an
increasc by a factor of almost 10 over the previous casc.

At this point it was nccessary to train this new grid-input nctwork, rewrite the Gulf Stream
profiles into this grid-typec format, and test the grid-input nctwork for convergence.  As
beforc, we modified parameters of the lcarning algorithm, number of nodcs, and scaling of
input and output values empirically at this stage in order to achicve convergence.  Finally,
we trained this nctwork with only 77 of the available 86 GOAP product Gulf Strcams, Icaving
a randomly-sclected 9 as a test sct.

When convergence is achieved, it is appropriate to run the fully traincd network on any of
the 9 tcst Gulf Streams. The cocfficients produced by the network arc then compared 1o the
actual coefficients to determine whether they are well-correlated.

We then planned to test the performance of the network with an IR edge image projected
onto thc input grid. If the performance of the network is degraded, it would then be
nccessary to define a new training sct made up of simulated noisy edges. Such a sct could be
constructed, ¢. g., from GOAP mesoscale products with random scctions of random length
missing. and with random segments of noisc added. The statistics of this random noisc may
have (o be matched carefully to the statistics of SST front noisc obscrved in the six
composite images.

Finally, we expected to quantify the performance of the nctwork with statistical measures
such as mcan and rms difference between network and mesoscale product Gulf Strcams, and
significance lcvel for the differcnces.

We used Neuralworks software and several Intel 80386-based microcomputers (386 PC).
Necuralworks operates under DOS but is limited in memory, so the 50 x 50 latitudc-longitude
grid had to be implemented in the virtual-memory environment of UNIX on the 386
machines.  Imagery is displayed on EGA graphics monitors and hardcopics madc on a
Lascrwriter for which PostScript code had to be written.

5. RESULTS ACHIEVED

The cocfficients generated with the Neuralworks network are in excellent agreement with
the actual cocfficents in the training sct. This leads us to conclude that a ncural network
can producc meaningful coefficients for CEOF modes; thus, a ncural nctwork can gencralc a
continuous Gulf Stream.

We can quantify this agreement by computing for cach coefficicnt a mcan and a variance
over the ensemble of 86 Gulf Stircams; these are listed in Table 1. Table 1 shows that the
mcans of the Neuralworks nctwork typically agrce with the actual mean within 3.6%. But
more importantly, the 264-10-6 nctwork (the significance of this namc will be clear
shortly) alsu mimics the variance in Gulf Stream coefficients--typically hitting the
variance within 11.8% also. The correlation cocfficient for the six scts of CEOF modc
cocfficients is typically greater than 0.98.
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Table 1. Mcan and Variance of 86 Gulf Strcams for 1st 3 Modes, 264-10-6 Netwaork

RMS Difference

Mode Actual Actual 264-10-6 264-10-6 Between  Network
Cocfficicnt Mcan Variance Mcan Variance and  Actual

1, recal 0.36686 0.01994 0.32810 0.01669 (0.00236

1. imag. 0.51797 0.00703 0.54308 0.00362 0.00526

2, real 0.62294 0.02015 0.61439 0.02122 0.00031

2. imag. 0.52452 0.00795 0.53376 0.00809 0.00019

3, real 0.50531 0.00785 0.50749 0.00761 0.00009

3, imag. (0.49391 0.00653 0.50644 0.00650 0.00025

This good agrcement is obtained with the following nctwork parameters selected  through
cxperiment. The lcarning algorithm is back propagation:!! convergence is achicved with
100,000 iterations through the training sct with the learning coefficient set to 0.9 and the
momentum  cocfficient set to 0.6, The number of hidden layers s 1 the number of nodes on
that layer 1s 10 (hence the network consists of  264-10-6  input-hidden-output  nodes,
respectively). The cocefficients placed or retricved at the six output nodes must be
separately scaled to range between the values of (0.2 and 0.8 in order for the higher mode
coclficients to converge closely.

We o osuccessfully implemented a new network in the C programming  Janguage  thet would
opcrate on nput nodes arranged as a SO x SO gnd. The Mercator projccton region botween
FLON and 45N Lavtade, and 75OWoand SOOW Jongitude. s maerped onto this S0y S0 ant The
cnd's nomingl resolution s S0 km. The 86 GOAP mesoscale product Gult Streams are saapped
onto this vrid and used os mput to the new neural network, 30 call the new netwerkh the

Jiid-input network, or the 2500 40-6 network, to distingush o from the carbior network
Phis nerwork  contains 0 nodes o oone hitden laver, learns usimg back  prepagaton. ond

dases the same scabmg for the conversion hetween omipat aodes wna CHEOE coctiaen s us

hoetore, This netaork s franed wooth 77 ol the 86 Golt Streamss 9 Guli Stroamis weie o
reador aere held back Tor fosting, Hoconverped on o hinal Yo asic S LERD s
throush e riaarone sob This convercence took about 7 davs b i dane aop TR A

o hrne

Pood 0 NYCe and Yoo e ot T TGt s tor Tan SNl T e Ny
RNy b

Mode CERTIR Nt BRTREE R R I T ZERRY
Cavo ooy Mean Noarianee Moan Wt RN
[ AR 573} (X8 I IES s Y -

RTINS 051732 000606 SRS Yoo '

S0l 6T 022 [ERTRIEY SR Sy A
Jooamuay. 523841 000671 B8 065 O pe T TR TR
3ol 0.50207 (.00707 (50414 RS RS
Voot (49444 (000345 f).40002 {1 130540, R EIRN

Table 2 shows that the means of the gnid-input neiwork  tvpicallv agree with the actoad
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awcan within 0.7% for the training sct.  Again, more importantly, the 2500-40-6 nctwork also
matches the wvariance in Gulf Strcam cocfficients, typically coming within 13.0% of the

corrcet variance.  The correiation cocfficient for the 6 scts of CEQOF mode cocfficients is
greater than 0.87.  This is extremely cncouraging because these good measures are achieved
without optimizing the network's paramcters.  Of further importance is that the processing

by the nctwork is cxtremely fast; it takes less than 1 sccond to produce three complex mode
cocfficients from 50 x 50 pgridded input.

Table 3. Mcan and Varnance of 9 Test Gulf Streams for 1st 3 Modes. 2500-40-6 Network

RMS Difference

Mode Actual Actual 2500-40-6 2500-40-6 Between  Network
Cocfficient Mcan Variance Mcan Variance and  Actual

1. recal 0.32451 0.01083 0.37834 0.02275 0.02468

1, imag. 0.53443 0.00471 0.52649 0.00726 0.00328

2. real 0.65976 0.01118 0.62632 0.02066 0.01529

2, imag. 0.52343 0.01317 0.50572 0.00451 0.00813

3, real 0.51534 0.007122 0.48515 0.00488 0.00378

3. imag. 0.46795 0.01119 0.48532 0.00370 0.01652

The grid-input network docs less well with data in the test set (Figure 2 and Table 3), but still
achicves agreement within 6.0% for the mecans, though only within 68% of the variances.
The performance in matching the variance is skewed by poor performance on just two Gulf
Stream axcs because the test set is so small.

The trained 2500-40-6 nctwork performs moderately well on noisy edge imagery, also. A 512
x 512 cdge image is transformed to the much coarser 50 x 50 grid to provide a noisy input
data set. In spite of looking nothing like the training sct of Gulf Streams, the input docs not
cause the network o diverge.  in fact, the network gencrates quite rcasonable cocfficients.
The ncetwork Gulf Stream is within 60 nmi of the actual Gulf Stream for most of its length,
and properly identifiecs Gulf Strecam SST cdges by crossing over them.  This result is encour-
aging, but is considered preliminary at this point.

The modest successes achieved for a network not optimized for gridded input and not trained
for noisy cdges indicate that this ncural network is robust. i. c., not unstable over a range of
paramelers, We  cxpect the network o achicve better performance with  further cxperi-
mentation.  The fast processing (less than 1 sccond) of a S0 x 50 cdge image by a previously
traincd network is a great strength of the method.

6. PLANS FOR NEXT STAGE OF RESEARCH

The next logical step is to cxtend the range of the study by cxpanding upon the number of
mode  cocfficients the nctwork produces so that a better, more uscful Gulf  Stream
description cmerges from the system.  The production of more and better mode cocfficients
requires increasing the resolution of the grid input to the ncural network.  This, in turn,
requires a greater number of computations, which suggests that special hardware, such as a
high-spced  digital signal processing chip, would be  advantagcous.

The IR images in which we wish to locate the Gulf Strcam cover a much larger arca than
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that in which the Gulf Stream has ever been located. The input nodes of the network which
cover this area contain no uscful information for the neiwork, but do increase the compu-
tational burden.  This suggests a logical first step for futurc rescarch. By obuining the
cnvelope in which the Gulf Stream has been located in the past as defined. ¢. g.. by GOAP
mesoscale products, we will be able to climinate those nodes which correspond o geograph-
ical arcas through which the Gulf Strcam has not bcen known to pass. We estimate the
cnvelope will cover one-third of the arca now represented by the input nodes to the net-
work.  Thus this step would allow us to incrcase the resolution of the input grid by a factor
of threce without requiring any additional calculations.

The main impediment to increasing the resolution of the input grid further (and thereby
cnabling more mode coefficients to be produced) is the large number of computations
iceded to train the necural nectwork. In order to carry out the proposced steps for the effort
in a rcasonable amount of time additional processing power will be required.  As suggested
above., a (relatively inexpensive) processing board could increase the speed of ncitwork
training (by an cstimated factor of 50).  This addition would also require some software
changes. although they would probably be minor.

Once the historical envelope of the Gulf Stream has been determined, the images and Gulf
Streamis used in the carlier study will neced to be regridded to cover the cenvelope so deter-
mined, at a resolution increcased by a factor of 3. Then, the previous ncural network must
be trained on the regridded data.  This will cnable us to compare the results 1o that of the
previous work in order to establish the cffects of increased resolution and the actual speed-
up offered by the additional processing power.  Next. we will attempt to quantify the cffecis
of the increased resolution on the quality of the nctwork's output

At that point it will be necessary to decide upon the more fruitful dircction for further
rescarch.  We must decide whether a higher resolution is needed to produce the present
number of mode cocfficients with «ufficient accuracy, or if more mode cocfficients could be
produced at this resolution.  Based on this decision, we will modify the neiwork in one of two
ways.  If the results indicate that a higher resolution is required, the images which form
the training sct will be regridded at a higher resolution.  If the results indicate more mode
cocfficients could be produced at the present resolution, then the number of output nodes of
the network will be increased.

It is obvious that the cycle of testing, cvaluation, and modification could be repeated scveral
times.  The objective is to provide a ncural nctwork system which can automatically derive a
uscful  mathematical (CEOF) description of the Gulf Stream dircctly from ecdge images
produced from satellitc obscrvations.  The critcrion for uscfulness is that the Gulf Stream
description should reproduce that produced by a skilled human analyst from the same data
to a precision adequate to meet the requircments of the U. S. Navy. Such a system has the
potential to become a uscful operational tool.

7. ACKNO'VLEDGEMENTS

This work was supported by the Office of Naval Rescarch under the Small Business
Innovative Rescarch program, and by the Office of Naval Technology., P. Sciwyn, sponsor.
The authors thank R. Crout for providing GOAP mecsoscale product data, and R. Holyer and S.
Pcckinpaugh for providing cdge imagery.  This publication is approved for public rclease:
distribution is unlimited. This is NOARL Contribution Number PR89:067:321.

234 - SPIE Vol 1294 Apphcations of Artificial Neural Networks (1990,




]

8. REFERENCES

1. J. Hawkins, P. Phoebus, and D. May, "Remote Sensing Input to Navy Occan Nowcasts/
Forecasts," Oceans ‘89 Proceedings, pp. 1004-1008, IEEE Publication Number 89CH2780-5,
New York, 1989.

2. E. F. Carter, "The Structure of the Gulf Stream as Dcrived From an EOF Analysis," Gulf
Stream Workshop Proceedings, pp. 11.169-11.181, University of Rhode Island, 1985.

3. R. O. Duda and P. E. Hant, Pattern Classification and Scene Analysis, pp. 332-335, John
Wiley & Sons, Inc., New York, 1973.

4. D. M. Legler, "Empirical Orthogonal Function Analysis of Wind Vectors over the Tropical
Pacific Region,” Bull. Amer. Meteorol. Soc., vol. 64, no. 3, pp. 234-241, 1983,

5. E. J. Molinelli and M. J. Flanigan, Optimized CEOF Interpolation of the Gulf Stream,
Planning Systems Incorporated, Technical Report TR-392395, 1987.

6. R. J. Holyer =nd S. H. Peckinpaugh, "Edge Detection Applicd to Satellitc Imagery of the
Oceans," IEEE Trans. on Geosci . and Rem. Sens., vol. 27, no. 1, pp. 44-56, 1989.

7. R. C. Gonzalez and P. Wintz, Digital Image Processing, pp. 337-338, Addison-Weslecy
Publishing Co., Reading, Mass., 1977.

8. M. Lybanon and R. L. Crout, "The NORDA GEOSAT Ocecan Applications Program," Johns
Hopkins APL Tech. Dig., vol. 8, no. 2, pp. 212-218, 1987.

9. M. Lybanon, R. L. Crout, C. H. Johnson, and P. Pistck, "Operational Altimcter-Derived
Oceanographic Information: The NORDA GEOSAT Ocean Applications Program," J. Atmos.
and Ocean. Tech., to be published, 1990.

10. P. E. La Violette, "Satellite Image Analysis Techniques Applied to Ocecanography,” Phil.
Trans. R. Soc. Lond., vol. A 324, pp. 325-346, 1987.

11.  D. Rumelhart and J. McClelland, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, The MIT Press/Bradford Books, Boston, 1986.

SPIE Vol 1294 Applications of Artificial Neural Networks (1990} / 235




42

41

40

LATITUDE
3

w
o

37

36

Y% RN NN I U A T [ S S N N N I N B
75 73 7 69 67 65 63 61 59 57 O3
LONGITUDE
Figure 1. Capacity of 10 Complex Empirical Orthogonal Functions (CEOFs) to reconstruc

(dashed line) even a convoluted Gulf Stream produced by an analyst (solid linc). The
analyst Gulf Stream is from the GOAP mesoscale product for April 18, 1986.
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Figure 2. Proximity of 3 modes from grid-input or 2500-40-6 neural network (dashed line)
to the actual 3 modes (solid line) for a test Gulf Stream.
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