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Automatic description of the Gulf Stream

from IR images using neural networks

Matthew Lybanon

Naval Oceanographic and Atmospheric Research Laboratory
Stennis Space Center, Mississippi 39529

Eugene Molinelli and Michael Flanigan

Planning Systems Inc.
7925 Westpark Drive

McLean, Virginia 22102

ABSTRACT

A system under development for automated interpretation of oceanographic satellite images
includes a Gulf Stream description module which uses a neural network, which produces
coefficients of an empirical orthogonal function (EOF) series representation of the Gulf
Stream directly from processed satellite imagery. The Gulf Stream module consists of the
EOF software and the neural network, with input from an innovative edge detector.

The Gulf Stream is the swiftest and most energetic curient in the north Atlantic, and
meanders with a broad spectrum of variability on several spatial and temporal scales.
Satellite observations provide a means to observe the Gulf Stream's shape, although clouds
in IR imagery and other types of "noise" complicate interpretation. The Gulf Stream shape
at any time may be represented as a series of compilex EOFs (CEOFs), i. e., principal
components, which can be truncated after a relatively small number of terms (10) and still
describe Gulf Stream shapes well (to within 10 km). These modes can be optimized from
initial values with as few as 21 fixes on the position of the Gulf Stream axis, using least-
squares estimation. The CEOFs interpolate between spatially intermittent observations of
portions of the Gulf Stream, as might come from IR imagery with partial cloud cover.

The study described here tested whether a credible Gulf Stream can be produced using a
neural network (simulated in software) that has inputs derived from imagery, and has CEOF
coefficients as outputs. To demonstrate feasibility we considered it sufficient to define the
values of the first three complex mode coefficients, which account for more than 97% of the
Gulf Stream's position variance. Two data sets were used for training and testing: Gulf
Stream analyses from NOARL's GEOSAT Ocean Applications Program (GOAP), and edge images
produced from IR imagery by a NOARL-developed algorithm.

In the first part of the study the input consisted of 132 latitude-longitude pairs that
represent one Gulf Stream. The learning algorithm is back propagation; convergence is
achieved with 100,000 iterations through the training set with the learning coefficient set
to 0.9 and the momentum coefficient set to 0.6. The neural network has one hidden layer
with 10 nodes. The output layer has 6 nodes, giving the real and imaginary parts of each of
the three CEOF mode coefficients. Training using the GOAP data set produces outputs that
hav correlation coefficients with the correct mode coefficients averaging over 0.98.

The next part of the study used a network with a 50 x 50 grid (simulating pixel input) of
input nodes, one hidden layer of 40 nodes, and 6 output nodes. Again, learning was by back
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propagation. The training set consisted of 77 of the 86 GOAP data sets, with 9 randomly
chosen sets held back as test data. The network converged after 150,000 passes through the
test data set, with results of comparable accuracy to those obtained with the first network.
Processing to produce three complex mode coefficients from 50 x 50 gridded input took less
than I second on a 20 MHz PC.

The grid-input network applied to the 9 GOAP test cases achieves agreement with a
correlation coefficient averaging 0.97. The results are moderately good for the noisy edge
imagery, also. The coefficients have reasonable values, the correlation coefficient between
the network and actual coefficients averages 0.69, and the resulting reconstructed Gulf
Stream is within 100 km of the actual Gulf Stream over most of its length. This is notable
because the resolution of the 50 i V) -,id is 59 km.

The studies performed so far demonstrate feasibility. The next phase of work is directed
toward making the system operationally useful.

1. INTRODUCTION

This work is part of an effort to develop and demonstrate techniques for automated
interpretation of satellite data for ocean and ice applications. Generation of oceanographic
products by conventional manual means requires much labor and very high skill levels,
both of which are difficult to realize in an operational environment. The satellite
oceanography image understanding problem is difficult because the features are naturally
time-varying, there are no straightforward mathematical models of their shapes, and
interference by cloud cover and other effects is a frequent problem. To address these
difficulties, the technical issues the project considers are image segmentation (simplifi-
cation), feature labeling (assignment of oceanographic identity to image features), feature
aggregation (formation of Gulf Stream north wall, eddies, etc.), and mesoscale extrapolation
(to deal with data gaps). This paper describes an innovative approach to the feature
labeling and feature aggregation portions of the automated Gulf Stream detection problem.

Satellite imagery, by its capability for synoptic coverage of large areas, is a useful
complement to traditional in situ oceanographic measurements. Hawkins, Phoebus, and
May I discuss the assimilation of satellite data along with other types of information to
produce a superior description of oceanic parameters. During the past few decades, new
observations have begun to identify a phenomenon that appears to be intimately linked
physically to the ocean's general circulation, and even to dominate the circulation
energetically in many regions. This phenomenon is comprised of slow, medium-sized
fluctuations in the circulation itself. This "mesoscale" variability can take several forms,
such as meandering of the Gulf Stream, large ring vortices that are snapped off from the
currents during intense meandering events, and the mid-ocean eddies.

The sea surface is teeming with thermal structure detectable by satellite infrared (IR)
sensors. Present sensors are capable of 1 km horizontal resolution with 0.5 0 C accuracy
under cloud-free conditions. The Gulf Stream and its rings contribute to the surface
thermal expressions observed by satellite. Specifically, the Gulf Stream is a continuous
feature in the north Atlantic Ocean whose surface thermal expression consists of sea
suiface temperature gradients between the longitudes 75 0 W and 400W. Images can be
produced in which pixels have been identified that are associated with high horizontal
gradients and thus are candidates for the Gulf Stream edge. The problem, then, is to discard
some of these high gradient edges and connect the rest into a continuous Gulf Stream. A
mathematical description of a continuous Gulf Stream with rea!stic meanders has been
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developed. The innovative step described in this paper is the use of the new technology of
neural networks to connect the gradients of IR imagery to the mathematical description of
a continuous Gulf Stream. The technique has the potential to apply the great speed and
quantitative effectiveness of artificial intelligence technology to the identification of
oceanographic features from remotely sensed imagery. This, in turn, offers the benefit of
more effective use of the U. S. Navy staff assigned to the task in the Fleet.

The emerging capabilities of neural networks to reduce noisy imagery to meaningful
information in a fast, highly parallel fashion presents an opportunity to solve lopgstand-
ing problems in satellite data analysis. A neural network implemented in either software or
hardware greatly decreases the need for a human operator to examine the IR imagery,
since the network operates directly on the data to produce probable Gulf Stream points.
This computer implementation yields another immediate benefit--the processing begins as
soon as the satellite data are acquired instead of waiting for a human expert to analyze the
data. The necessity for specialized shore-based display equipment and interactive software
are also diminished because the network operates on the digital data directly as it is
received from the satellite or automatically processed by existing edge detection algorithms.

In addition to countering the deficiencies outlined above, a neural network capable of
analyzing IR imagery opens up new possibilities in the U. S. Navy's use of satellite data. The
capability to analyze satellite imagery without the use of an expert and extensive
workstation introduces the possibility of onboard analysis of data. This enables properly
equipped vessels to make critical decisions based on the latest information in near-real-
time without the delays of a system dependent on shore-based facilities.

During the early 1990s the U. S. Navy will face an unprecedented wealth of new remotely
sensd oceanographic data available from both U. S. (e. g., TOPEX/Poseidon, Spinsat) and
foreign (European ERS-1, Japanese ERS-l) satellites. Present-day satellites will continue to
supply oceanographic data into the furseeable future. The sheer volume of data from these
satellites will be overwhelming to analysts, and anticipated manpower reductions will
dictate a need for greater automation. This data volume increase will coincide with the
deployment of the third version of the Tactical Environmental Support System (TESS (3)), a
capable environmental information system which will extend satellite data processing
capability to approximately 70 U. S. Navy ships and shore facilities. Thus, the work
described in this paper is coming along at the right time.

2. BACKGROUND

A useful numerical description of the Gulf Stream is one based on complex empirical
orthogonal functions (CEOFs), the eigenvectors of an "expectation matrix." The expectation
matrix is obtained by averaging a set of matrices each representing the correlation proper-
ties of an individual vector, in our case a vector that describes the instantaneous position of
the Gulf Stream. This formulation and its advantages for describing the Gulf Stream are
described in detail by Carter. 2  To summarize that reference, a looping, contorted, but
continuous Gulf Stream can be described by a vector of complex elements consisting of
(latitude, longitude) pairs. That vector can be approximated well by a relatively small set of
complex coefficients--when each coefficient is multiplied by a corresponding CEOF (princi-
pal component, cigenvector, or mode) that is fixed for all time. The resulting terms are a set
of vectors which are added together to reproduce the original Gulf Stream vector. Speaking
geometrically, the CEOFs constitute a set of basis vectors that span the space of all known
Gulf Stream states (i. e., locations and shapes); an individual Gulf Stream state is produced by
linear combinations of the basis set. Speaking figuratively, the CEOFs are the shapes of Gulf
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Stream patterns and the coefficients are the orientations and sizes of the patterns. The
power of twe itiethod derives from the fact that a partial sum, involving a relatively small
number of CEOFs, may reproduce the Gulf Stream's shape with sufficient accuracy.

Mathematically, the Gulf Stream is defined by a complex vector W whose elements are:

Wj = xj + iy (1)

In this equation, x is the longitude and y is the latitude of a point on the Gulf Stream axis.
This complex formulation allows the description of a contorted Gulf Stream which may
curve back on itself, while a description in terms of y as a function of x, or vice versa,
would have to deal with double-valued functions. The expectation matrix A is defined as the
matrix with elements:

Aij= KWi W,>, (2)

where * denotes the complex conjugate and < > is the expectation operator. A, which is
generated from an ensemble of Gulf Stream axes, is Hermitian, so it has real eigenvalues
(but complex eigenvectors). Given the eigenvectors Ek of A, and one particular realization,
W, of the Gulf Stream, the complex mode coefficients associated with W may be found from:

H
Ck = Ek W, (3)

where the superscript H denotes the Hermitian conjugate. The coefficients allow the
realization W of the Gulf Stream to be reconstructed using the expansion:

N
W = FCkEk, (4)

k=1

where N is the number of eigenvcctors.

The eigenvectors of A form a complete set of orthogonal basis vectors. If the eigenvectors
are sorted according to the size of the corresponding eigenvalues (k = I has the largest
eigenvalue, etc.), then it is easily shown that the first eigenvector is the best fit in a least-
squares sense to the "cloud" of points in the mathematical space in which each Gulf Stream
(vector) defines one point. That is, the sum of squares of the total distances between the
points and the "line" are a minimum. (This is analogous to what Duda and Hart call
"eigenvector line fitting." 3 ) So, the first eigenvector is aligned with the direction of
maximum scatter (i. e., variance) of the points. Likewise, the second eigenvector "explains"
the next largest amount of variance, etc. In fact, each eigenvalue is proportional to the
amount of variance that a given eigenvector explains. 4  An immediate consequence of this
is that, in practice, Eq. (4) may be truncated after a relatively small number of terms and
still reconstruct a particular Gulf Stream with sufficient accuracy. Figure 1 illustrates the
reconstruction of a convoluted Gulf Stream using the first 10 of 132 eiger'vectors.

Many readers are familiar with normal mode analysis and have seen the above formulation
in other contexts. Also, the reconstruction algorithm appears to fail when one does not
have a complete description of a Gulf Stream (i. e., some of the elements of W are missing)
because of cloud cover or some other form of interference. In thi, case, NOARL's software
employs a gradient-search technique to perform a least-squares fit ot the CEOF expansion to
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the portions of the Gulf Stream which are observed. The coefficients found in a (recent)
previous analysis are suitable initial estimates. 5

This latter step is, itself, an innovative approach to providing a mathematical description of
a realistic, continuous Gulf Stream from incomplete observational data. A further
development involves the application of neural network technology. Neural networks have
been emerging as a new, viable technology for image analysis and pattern recognition.
There are several characteristics of neural networks that make them effective for
analyzing large amounts of data rapidly and resistant to noise in the data. Neural networks
are composed of many simple computational units that work in unison to process
information. The network is not programmed in the traditional sense; rather, the weights
that connect the neurons are "learned" by the network through repeated applications of
input data for which the desired result is known. Thus, a network can be presented with an
IR image or other input data, and it can process that data based on the information
presented during training. The network is tolerant of noise since it has learned the salient
features of an image during training, and the noise is in some sense averaged out.

NOARL has developed an edge-detection algorithm, the cluster-shade edge detector (CSED), to
compute the position of sea-surface temperature (SST) gradient fronts in IR imagery. 6  That
algorithm has several advantages for this application, compared to other, well-known edge
detectors, such as the Sobel algorithm. 7  The immediate need is to identify the Gulf Stream
among the fronts. Alternatively, we may say that the Gulf Stream is the pattern to be
recognized in a CSED image, and other fronts constitute noise in that edge image. This paper
describes an exploration of the capacity of neural networks to recognize the Utuli Stream
pattern, as represented by CEOF coefficients, within the noise of an SST image processed bys
the CSED algorithm.

3. ISSUES IN NEURAL NETWORK PRODUCTION OF CEOF COEFFICIENTS

The basic question to be answered .as whcthcr a neural network can produce nicaineful

cocfficients for CEOFs whose structures were not available to the nctworl. hIhat is. arc the
patter , represented by coe[ficients of CEOFs appropriate for ncural network tch'lol,,gy?
to answcr this quc,ion, it was necessary to consider scvcral subquestions. or issUe-,

I What constitutes an appropriate trainiing set for the nctwork?
2. What is the criterion for a ricaningful CEOF coefficien?

What, f ao', neural netvork training procedure s c:,ab c 0 prod cis m:-
f',i cue!fiic , for CEOFs from the chosen trai c C,?

t , , ai;)i(priai(' eo;rfil;uatio of nodes and 6r r, r , tnein .t

OM coc'fii-,'ns?
flow scoTn!ive to the con ,ilorat iorn of hiddle layers aed rod., i-, the rlihm:li)l "

ra1C',1i lieluli ('F{)O C(L ' eiii n;s'

('l()s <oniput d h', Molincil and Flani an wcrc cxpressed is \ c~ i> with chiiieiit- e'.',r,
en riatiel_, milcs downstream. Opcrationlll uilse would provd" latiltudc> aid IC;1eltu1. k
po),,ihle (ull Stream locations derived fron SF edge iniagcry thai could noi bc a>oi;oited a

priori with distance downstream. Consideration of this ]aCt led o thC nexCt issue:
6. ( an input nodes representing positions on a liiind-lonitude grid pTodueC
neanringful C(71OF cocffiecuits?

It ,a- deemed necessary to resolve these issues before getiln, to details ol noise d1scriri-.
nation, conditioning of input data, and increase in resolution and accuracy of the neural
network output.
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4. APPROACH

A simple approach was employed in investigating the above questions. That approach was
to use a series of actual Gulf Stream representations produced between January 1986 and
June 1987 to develop a neural network and test its capabilities. The Gulf Stream represen-
tations came from the "mesoscale products" of the GEOSAT Ocean Applications Program
(GOAP), 8, 9 and were derived by a human analyst using not only IR SST imagery but also
GEOSAT altimetric profiles. There are 86 Gulf Streams represented by latitude-longitude
pairs at inflection points stored in computer files. This set of Gulf Streams constitutes the
first candidate training set for the present study.

We used the CEOF software developed by Molinelli and Flanigan, 5 and started by deriving
new CEOFs for the training data set. To demonstrate feasibility, we consider it sufficient to
define the values of the first three mode coefficients. Together these modes account for
more than 97% of the displacements of the Gulf Stream. Higher accuracy could be attempted
in future work by using more modes.

A second candidate data set consisted of edge images produced using the CSED algorithm. 6

However, there are only a few dozen views of the sea surface clear enough to span the
domain during the 18-month period spanned by the GOAP mesoscale product data set.
Previous experience with neural network training led us to conclude that a substantially
larger set of images wou1d be required for training to converge in the presence of noise
(other SST fronts) in these images. Nevertheless, we did obtain six warmest-pixel composite
SST images 1 0 and the resulting edge images, as well as the nine individual SST images that
contributed to the composites and their edge images. In all cases the edges were computed
using the 16 x 16 pixel option of the CSED software 6 because the other options produced
perceptibly more fine-grained noise. Even though the edge images could not be used as a
training set, we did intend to use these images as test cases for the network's p,:rformance.

We chose the correlation between the coefficients produced by the neural network and the
actual values produced by the CEOF software from the appropriate GOAP mesoscale product
as a measure of how meaningful the set of CEOF coefficients generated by the neural
network is. Specifically, we regarded the coefficients in a test case as meaningful it they
are correlated with the actual values with a correlation coefficient of 0.8 or better. For
cases in which there are too few pairs to compute correlation, we considered agreement of
mode coefficients within 20% to be meaningful.

We used a commercial software package, Neuralworks, to establish which training
procedure generates a network whose output best converges to the training set's actual
coefficients. "Best," in this context, means fewest number of training steps and the smallest
discrepancies between the network output and the training set coefficients. The input in
this case was the 132 latitude-longitude pairs that define one Gulf Stream, i. e., 264 nodes.
The output is a set of six nodes--real and imaginary parts of three CEOF coefficients. We also
used the commercial software to vary the number of hidden layers and the number of nodes
in those layers. Parameters of the learning algorithm, number of nodes, and scaling of
input and output values are all modified empirically at this stage in order to achieve
convergence.

The commercial software accesses only limited memory and cannot handle the vast input
arrays inherent in satellite imagery. To circumvent these deficiencies, the next step was to
implement the best training algorithm in C under UNIX (a virtual memory operating
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system) so that two-dimensional grid values analogous to pixel values can be used as input.
The increase in the number of input nodes requires an increase in the number of hidden
nodes. We emulated pixel input with a 50 x 50-point grid, giving 2,500 input nodes-- al
increase by a factor of almost 10 over the previous case.

At this point it was necessary to train this new grid-input network, rcwrite the Gulf Stream
profiles into this grid-type format, and test the grid-input network for convergence. As
before, we modified parameters of the learning algorithm, number of nodes, and scaling of
input and output values empirically at this stage in order to achieve convergence. Finally,
we trained this network with only 77 of the available 86 GOAP product Gulf Streams, leaving
a randomly-selected 9 as a test set.

When convergence is achieved, it is appropriate to run the fully trained network on any of
the 9 test Gulf Streams. The coefficients produced by the network arc then compared to the
actual coefficients to determine whether they are well-correlated.

We then planned to test the performance of the network with an IR edge image projected
onto the input grid. If the performance of the network is degraded, it would then be
necessary to define a new training set made up of simulated noisy edges. Such a set could bc
constructed, e. g., from GOAP mesoscale products with random sections of randon length
missing. and with random segments of noise added. *rhe statistics of this random noise may
have to be matched carefully to the statistics of SST front noise observed in the six
composite images.

Finally, we expected to quantify the performance of the network with statistical measures
such as mean and rms difference between network and mesoscale product Gulf Streams, and
significance level for the differences.

We used Neuralworks software and several Intel 80386-based microcomputers (386 PC).
Neuralworks operates under DOS but is limited in memory, so the 50 x 50 latitude-longitude
grid had to be implemented in the virtual-memory environment of UNIX on the 386
machines. Imagery is displayed on EGA graphics monitors and hardcopics made on a
Laserwriter for which PostScript code had to be written.

5, RESULTS ACHIEVED

The coefficients generated with the Neuralworks network are in excellent agreement with
the actual coefficents in the training set. This leads us to conclude that a neural network
can produce meaningful coefficients for CEOF modes; thus, a neural network can generate a
continuous Gulf Stream.

We can quantify this agreement by computing for each coefficient a mean and a variance
over the ensemble of 86 Gulf Streams; these are listed in Table 1. Table 1 shows that the
means of the Neuralworks network typically agree with the actual mean within 3.6%. But
more importantly, the 264-10-6 network (the significance of this name will be clear
shortly) also mimics the variance in Gulf Stream coefficients--typically hitting the
variance within 11.8% also. The correlation coefficient for the six sets of CEOF mode
coefficients is typically greater than 0.98.
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Table 1. Mean and Variance of 86 Gulf Streams for 1st 3 Modes, 264-10-6 Netwoirk

RMS Difference
Mode Actual Actual 264-10-6 264-10-6 Between Net\work

Coefficient Meani Variance Mean Variance and Actual

1, real 0.36686 0.01994 0.32810 0.01669 0.00236
1, imag. 0.51797 0.00703 0.54308 0.00362 0.00526
2, real 0.62294 0.02015 0.61439 0.02122 0.00041

2. imag. 0.52452 0.00795 0.53376 0.00809 0.0()00 11')
3, real 0.50531 0.00785 0.50749 (.0076l 0.()000(9)

3, imag. 0.49391 0.00653 0.50644 0.00650 0.00025

This good agreement is obtained with the following network parameters selected through
experiment. The learning algorithm is back propagation; convergence is achieved \ith
100,000 iterations through the training set wiih the learning cocfficicit set to 0.') and the
momentum coefficient set to 0.6. The number of hidden layers is I; the number of' node's on
that layer is 10 (hence the network consists of 264-10-6 input-hidden-outpl node.
respectively ). The coefficients placed or retrieved at the six output nodes In l St h
separately scaled to range between the values of 0.2 and 0.8 in order for the higher modc
coefficients to converLe closely.

We succesfully implemented a new nctwork in th ("' programm1111ing langule ttC 0 ,,ti
orleratc on input nodes arranged as a 50 x 5) grid. The Nlercalor projccl,on ree on 'iv.sc"i

t<"N and -4"N latit dc, and 75"'A' and 501)W loiigitutdc, is !P .2ppod onto thiN " U \ 50 Kii-l II"
rid' nominal re-,,.ltoll N 50 kin. The 86 (()A mc,, ;cac pirodcti ( Su lt i -' ,

,11to tfhis , izrid ,lld ued LS inpuol to 1he t' ll iclt of k. :,\, i-I , I tii"
.-riot inptl n ork., or the 2500 40- iet'l\,ork, lo dliii~ uIi it fromi te" c'I r nilohk

'I , nt'! rk Ce lont.un .) -10 tdec, in one hi l'en Ive\('r, Icmrll- n hl , ,lo ' In ,.
a'." lt ',.ie ,an li2 for tK,- conversion ' tpl[t ties o ., t -)i -

Ir'. 1 , !I' o. k ' . ,! ne '1 S7 of the U ( i Stea' III- If S till

r ,. i c i h r ii i n o t11 d Oh I fl 7i 1 1

I C I I too O

I *I U ~it .i) 02 U s

;11 Ac t161I U '

r- 0 SO10 0.()()7()7 k)4Ut I

0l l P 84, . l t t l .t~tt4, U. ' 11 )1 i, &)ft1
r  

('I ' 1 . . ', ,,

FabhlIe 2 shows; that the incans of the( gid-input ruets orktrial ue.0ttK i n
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:aean within 0 .7c for the training set. Again, more importantly, the 2500-40-6 network also
matches the variance in Gulf Stream coefficients, typically coming within 13.0/; of the
correct variance. The correlation coefficient for the 6 sets of CEOF mode coefficients is
greater than 0.87. This is extremely encouraging because these good measures arc achieved
without optimizing the network's parameters. Of further importance is that the processing
by the network is extremely fast; it takes less than 1 second to produce three complex mode
coefficients from 50 x 50 gridded input.

Table 3. Mean and Variance of 9 Test Gulf Streams for 1st 3 Modes, 25(X)-40-6 Network

RMS Diffcrcince
Mode Actual Actual 2500-40-6 2500-40-6 Betwccn Network

Coefficient Mean Variance Mean Variance and Actual

I, real 0.32451 0.01083 0.37834 0.02275 0.02468
I, imag. 0.53443 0.00471 0.52649 0.00726 0.00328
2, real 0.65976 0.01118 0.62632 0.02066 0.01529

2, imag. 0.52343 0.01317 0.50572 0.00451 0.00813
3, real 0.51534 0.007122 0.48515 0.00488 0.00378
3, imag. 0.46795 0.01119 0.48532 0.00370 0.01652

The grid-input network does less well with data in the test set (Figure 2 and Table 3), but still
achieves agreement within 6.0% for the means, though only within 68% of the variances.
The performance in matching the variance is skewed by poor performance on just two Gulf
Stream axes because the test set is so small.

The trained 2500-40-6 network performs moderately well on noisy edge imagery, also. A 512
x 512 edge image is transformed to the much coarser 50 x 50 grid to provide a noisy input
data set. In spite of looking nothing like the training set of Gulf Streams, tire input does not
cause the network to diverge. in fact, the network generates quite reasonable coefficients.
TIhe network Gulf Stream is within 60 nmi of the actual Gulf Stretm for most of its length,
and properly identifies Gulf Stream SST edges by crossing over them. This result is cncour-
aging, but is considered preliminary at this point.

[he modest successes achieved for a network not optimied for griddcd input and not trained
for noisy edges indicate that this neural network is robust. i. e., not unstable over a range of
paranietcrs. We expect the network to achieve better performance with further experi-
inentation. The fast processing (less than I second) of a 50 x 50 edge image by a previously
trained network is a great strength of the method.

6. PLANS FOR NEXT STAGE OF RESEAR(I

The next logical step is to extend the range of the study by expanding upon the number of
mode coefficients the network produces so that a betcr,. more useful Gulf Stream
description emerges from the system. The production of more and better mode coefficicnlts
rcquires increa, ing the resolution of the grid input to the neural network. This, in turn,
rc'_liircs a greater number of computations, which suggests that special hardware, such as a
high-speed digital signal processing chip, would be advantageous.

The IR images in which wc wish to locate the Gulf Stream cover a much larger area than
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that in which the Gulf Stream has ever been located. The input nodes of the lictx~ork wich
cover this area contain no useful information for the network, but do increase th- coinpu-
tational burden. This suggests a logical first step for future research. By obtaining the
envelope in which the Gulf Stream has been located in the past as defined, e. g., by (;0.A'
mesoscale products, we will he -ible to eliminate those nodes which c:orrespond to geograph-
ical areas through which the Gulf Stream has not been known to pass. We estimalt the
envelope will cover one-third of the area now represented by the input nodes to the net-
work. Thus this step would allow us to increase the resolution of the input grid by a factor
of three without requiring any additional calculations.

The main impediment to increasing the resolution of the input grid Further (and thrch\
enabling more mode coefficients to be produced) is the large number of computations,
necded to train the neural network. In order to carry out the proposed steps for the effort
in a reasonable amount of time additional processing power will be required. As suggested
above, a (relatively inexpensive) processing board could increase the speed of tict,,ork
training (by an estimated factor of 50). This addition would also require some solt,,.trc
changes, although they would probably be minor.

Once the historical envelope of the Gulf Stream has been determined, the images and (ulf
Streams used in the earlier study will need to be regridded to cover the envelope so deter-
mined, at a resolution increased by a factor of 3. Then, the previous neural nclwork MuPt
be trained on the regriddcd data. This will enable us to compare tile results to thal of the
previous work in order to establish the effects of increased resolution and the actual speed-
up offered by the additional processing power. Next, we will attempt to quantify the cffcct,
of the increased resolution on the quality of the network's output

At that point it will be necessary to decide upon the more fruitful direction for further
research. We must decide whether a higher resolution is needed to produce the present
number of mode coefficients with ":ufficient accuracy, or if more mode coefficients could bc
produced at this resolution. Based on this decision, we will modify the network in one of two
ways. If the results indicate that a higher resolution is required, the images which form
the training set will be regridded at a higher resolution. If the results indicate more mode
coefficients could be produced at the present resolution, then the number of output nodes of
the network will be increased.

It is obvious that the cycle of testing, evaluation, and modification could be repeated several
times. The objective is to provide a neural network system which can automatically derive a
useful mathematical (CEOF) description of the Gulf Stream directly from edge i;nagcs
produced from satellite observations. The criterion for usefulness is that the Gull Stream
description should reproduce that produced by a skilled human analyst from the sane data
to a precision adequate to meet the requirements of the U. S. Navy. Such a system has the
potential to become a useful operational tool.
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Figure 1. Capacity of 10 Complex Empirical Orthogonal Functions (CEOFs) to reconstruL
(dashed line) even a convoluted Gulf Stream produced by an analyst (solid line). The
analyst Gulf Stream is from the GOAP mesoscale product for April 18, 1986.
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Figure 2. Proximity of 3 modes from grid-input or 2500-40-6 neural network (dashed line)
to the actual 3 modes (solid line) for a test Gulf Stream.
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