AD-A232 093

Technical Document 1944
December 1990

User’s Guide to an
Event-Activation Record
Approach to Simulation
Modeling in Ada

H. Mumm
R. Ollerton

DTIC j

FLECTE
E8211991

Approved for public release; distribution is unlimited.

91 2 19 241

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN H. R. TALKINGTON, Acting
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report was completed under funding from the Naval Ocean Systems Center for the
Shared Adaptive Internetworking Project (SAINT) as part of the Communication Block Program.

The need for an affordable and understandable discrete-event simulation system became
apparent during earlier work. The current work demonstrated that Ada was not only adequate, but
was in many ways superior to currently available commercial simulation languages.

Released by Under authority of
M. B. Vineberg, Head K. R. Casey, Head
System Design and Architecture Battleforce and Theater

Branch Communications Division

CONTENTS

LOINTRODUCTIONttt ittt ittt ettt et seneneneanens 1
20 INSTALLATION ittt et e e et it e e e 2
2.1 Creating the BARS Program Library 2

2.2 Creating the GEN Program Library 3

3.0 BUILDING AND RUNNING AN EARS SIMULATION 4
3.1 Writing a Procedure to Instantiate Package Ev.Gen 4

3.2 Compiling and Executing a Procedure That Instantiates Ev.Gen 7

33 Gas Station Examplettt 8

33.1 Statement of Problem, 8

332 Determining the Eventst eeennn 8

3.3.3 Writing the Procedure to Instantia«c Package Ev.Gen 9

3.3.4 Compiling and Executing the Instantiation Procedure 9

3.3.5 Code That Is Generated Automatically 9

3.3.6 New Program Units Added by Hand 16

337 Compilation Order0 ittt eennnnnnn 21

40 USING PACKAGE BV ittt it ittt e et ee e 22
4.1 BV Package Specification it 22

411 EVENT REC ittt ittt 27

4.1.2 Event Processing Subprograms 28

4.13 Package Simulationttt 28

4.1.4 General Debugging Subprograms 28

4.1.5 Debugger Subprogramsttt 30

SOLINKED LISTSttt tteeteeae e et 32
20 5 < 32

511 Lnk Specification i i, 32

S512Lnk Example 36

b I 1 S 40

S 3 LNk Ti e e et e e e e e 40

54 LIk ... e e e e e 40

54.1 Link Specificationc.00ttiiiiirennnnn.. 40

S42Link Examplettt 44

S5 LK Al ... e e e 49

5.6 LInk Ti 0.ttt e e 49

6.0 STATISTICAL PACKAGES ittt ittt 50
6.1 Package Rand Specification 50

6.2 Package Random_Distribution Specification 50

6.3 Package Random Specification, 51

6.4 Package Rand and Random_Distribution Example 52

6.5 Package Ti Specification i, 53

6.6 Package Tf Specification 54

6.7 Package Ai Specification i i, 56

6.8 Package Af Specification i, 58

6.9 Package Ti, Tf, Ai, Af Examplet iiiuininen. 60

TOHASH TABLES ittt ittt sttt taeeeeaneneeea 65

7.1 Package Hsh i iiannns 65

T2 Package Hash i ittt 67

8O0 BIBLIOGRAPHYttt ittt ittt ittt 70
iv

1.0 INTRODUCTION

This document explains how to install and use the Event-Activation Record Approach to
Simulation Modeling in Ada (EARS) simulation libraries, Version 1.0, that have been developed
by the Naval Ocean Systems Center (NOSC), Code 854. EARS, Version 1.0, resides on a NOSC
VAX 8600 named "Otter" and executes using the VAX Ada, Version 2.0, compiler. EARS is a
discrete-event simulation system that uses an event-activation record approach and has capabilities
similar to those provided by SIMSCRIPT. All simulations that can be modeled in SIMSCRIPT
can be modeled using EARS.

From a set of user-defined event types, EARS automatically generates much of the source
code for many Ada packages and subprograms that are needed for simulation development. This
allows a user to quickly start writing an EARS simulation. The user tailors the simulation to his
or her application by adding Ada source code to the generated program units and by writing
additional ones.

EARS packages contain subprograms for scheduling events, manipulating queues,
calculating statistics, writing reports, debugging, and performing other necessary simulation
functions.

This document includes an example of actual EARS simulation as well as examples of
how to use EARS packages and subprograms.

Maijor differences between SIMSCRIPT and EARS include the folivwing:
1. EARS does not implement processes; rather, eveuts are used for synchronization.

2. Many constructs built by the SIMSCRIPT compiler must be constructed in EARS by using Ada
statements. Advantages to using the Ada language rather than SIMSCRIPT include the following:

a. Ada supports software engineering features (e.g., strong typing, visibility, and generics).
b. Ada is the DoD standard programming language.

¢. Ada symbolic debuggers greatly reduce debugging times.

d. Ada compilers are widely available (for many computers from many vendors).

This document assumes that the EARS user is already familiar with discrete-event
simulation and knows how to use SIMSCRIPT. The EARS user must be an experienced Ada

programmer.

/’; Accesgsion For 7/
ja e
[o NTIS GRAMI o
L]
N DTIG TAB 0
anm Unaanouncsd]
Justlfloatlon_—_-—-—p
By
Distributidaf
Availability Codes
Avall anifed

Dist Speeitl

- kT

2.0 INSTALLATION
2.1 CREATING THE EARS PROGRAM LIBRARY
EARS software is installed on a VAX Ada environment by creating an Ada library and

then compiling the EARS files into the library. This may be done by executing the command file
listed below. The EARS program library name, given below, was arbitrarily chosen.

§ada/list/noopt SIM_.ADA Compiles file sim .ada, compiled code
goes into SIM_ .LIS file, and Ada

identifiers not optimized away.

$set verify ! B hos commands to monitor.
$acs create lib [320036.xV] ! Creates ada program library
! [320036.EV].
8acs set 1lib [320036.xV) ! Set to ada program library
t {320036.2V].
!
!
!

$ada/list/noopt RELATIONAL .ADA
$ada/list/noopt RELATIONAL.ADA
$ada/list/ncopt FLT_.ADA
$ada/list/noopt D2 _ “ADA
$ada/list/noopt DATE_.ADA
$ada/list/noopt STAT .ADA
§ada/list/noopt AF_ .ADA
8ada/list/noopt AI .ADA
$ada/list/noopt TF_.ADA
$ada/list/noopt '.!I .ADA
$ada/list/noopt Gl'.l' N _.ADA
$ada/list/noopt BI! .ADA
Sada/list/noopt BIT.ADA
$ada/list/noopt HEX .ADA
Sada/list/noopt HEX.ADA
Sada/list/noopt I_MAX .ADA
$ada/list/noopt I_MAX.ADA
$ada/list/noopt I_MIN .ADA
$ada/list/noopt I_MIN.ADA
Sada/list/noopt LINK_.ADA
Sada/list/noopt LIMK.ADA
$ada/list/noopt LINK AI .ADA
$ada/list/noopt LINK AI.ADA
$ada/list/noopt LINK TI_.ADA
$ada/list/noopt um TI.ADA
8ada/list/noopt LRK_ “ADA
Sada/list/noopt LNK.ADA
§ada/list/noopt LNK AI .ADA
$ada/list/noopt LNK AI.ADA
§ada/list/noopt mu .ADA
$ada/list/ncopt HASE.ADA
Sada/list/noopt WAT LNK.ada
Sada/list/noopt BSH_.ADA
$ada/list/noopt HSH.ADA

- $ada/list/noopt PROTO_.ADA
$ada/list/noopt PROTO.ADA
$ada/list/noopt EV_.ADA
$ada/list/noopt EV_Q.ADA
Sada/lipt/noopt SQ_.ADA
Sada/1ist/noopt $SQ.ADA
$ada/list/noopt DND_.ADA
Sada/list/noopt DND.ADA
$ada/list/noopt MTH_RANDOM .ADA
8ada/list/noopt nm .ADA
$ada/list/noopt REAL PARAM .ADA

continued

$ada/list/noopt INT PARAM_.ADA
$ada/list/noopt nnnou DISMU!I“ .ADA
$ada/list/noopt RANDOM DISTRIBUTION.ADA
$ada/list/noopt RANDOM.ADA
§ada/list/noopt RAND.ADA
Sada/list/noopt SIM.ADA
Sada/list/noopt EV.ADA
$ada/list/noopt AF.ADA
$ada/list/noopt AI.ADA
$ada/list/noopt DATE.ADA
$ada/list/noopt GRT N.ADA

P.

Sada/list/noopt INT_PARAM.ADA
$ada/list/noopt REAL PARAM.ADA
§ada/list/noopt RL_AI.ADA

Sada/list/noopt STAT.ADA

$ada/list/noopt TF.ADA

$ada/list/noopt TI.ADA

$ada/list/noopt FLT.ADA

$set noverify ! Turn off echo to monitor.

2.2 CREATING THE GEN PROGRAM LIBRARY

The program library GEN, which contains the automatic source code generation software
for both the EARS and the Simulated Network Architecture Protocol Layer (SNARPL) systems, is
installed on a VAX Ada environment by executing the command file listed below. The program
library name, GEN, was arbitrarily chosen.

$set verify ! Echos commands to monitor.
S8acs create 1lib [320036.GEN] ! Create program library

! [320036.GN] .
Sacs set 1ib [320036.GEN]} ! Set to library just created.

$ada/list/noopt ILC_.ADA
$ada/list/noopt uc .ADA
$ada/list/noopt oc .ADA
$ada/list/noopt m .ADA
Sada/list/noopt ¥NT _ADA
$ada/list/noopt ADA NAMR .ADA
$ada/list/noopt ADA WAME . ADA
$8ada/list/noopt VMS | ACS .ADA
$ada/list/noopt D2_ TADA~
$ada/list/noopt DA'!I -ADA
$ada/list/noopt DATE.ADA
Sada/list/noopt EV_GEN_.ADA
Sada/list/noopt RV (Gll ADA
Sada/list/noopt ceN |_SHARPL GEN_.ADA
8ada/list/noopt Gll SRARPL, ¢ Gl! ADA
$ada/list/noopt snmx. GEN.ADA
$ada/list/noopt FMT. ADA
$ada/list/noopt MC.ADA
Sada/list/noopt VMS_ACS.ADA
Sada/list/noocpt OC.ADA
8ada/list/noopt NAME.ADA

$set noverify ! Turn off echo to monitor.

3.0 BUILDING AND RUNNING AN EARS SIMULATION

This chapter describes in detail how to write an EARS simulation. A complete simulation
example is given. Included is an explanation of (1) how to generate the packages and
subprograms automatically, (2) the code that is added by hand, and (3) the required inputs and
outputs.

3.1 WRITING A PROCEDURE TO INSTANTIATE PACKAGE EV_GEN

The initial step of an EARS simulation is to instantiate the package Ev_Gen, which is in
the GEN library. The Ev_Gen package specification is listed below.

with Text_TO, Ada Name, Name, Vms_Acs, Date;
use Text_ I0;

generic

Sim Name
:” STRING;
-=1
--| The first part of all file and compilation unit names
~-=| will be "SIM NAME".

type EVENTS is
(<)
-1
-=| Names of the different types of evants initially in the
-=-| simulation.
-1

with procedure Simple _File Name
{ Onit : STRING;
Specification : BOOLEAN;
Fn : out Ada_Name.Name String;
Spec_Ext : STRING := Vmas_Acs.Spec Ext;
Body Ext : STRING -V-lAcJBodyExt
Format : Name.String Format := Name .Default ._Case)
is Vms_Acs.Simple File Name;
-1
--| Form a file name for a unit specification or body.
__.' -
with procedure File_ Header
(File : File_Type;
User_Name : STRING;
Msg : STRING) is Date.Header:;
__l -
--| If USER NAME is not a null string, this routine is called
--| for each file created.

procedure Ev_Gen
(User_] Name : STRING := LA
Sp.olxt : STRING := Vms_ Acs.Spec Ext;
Body_lxt : STRING -VuM.Bodylxt
Format : Name.String Format := Name.Default_Case);

The use of Ev_Gen will first be discussed in general terms. Ev_Gen is a generic package
that may be instantiated with four parameters. The first two are required, while the last two can
accept defaults. The first parameter, Sim_Name, is a string that becomes the first part of the file

4

names and program unit names for the source code that is generated automatically. The second
parameter, EVENTS, is an enumerated type that defines event types required for a specific
simulation. Note, that the source code for a stop simulation event type will be generated
automatically. It need not be specified in the enumerated type.

If Ev_Gen is not instantiated with the two user-provided procedures, Simple_File_Name
and File_Header, then the default procedures are used. The default procedure Simple_File_Name
creates VAX/VMS files and should be used when running EARS on VAX/VMS. The default
procedure File_Header creates a file header.

An example of a default file header (supplied by package Date) that is created during
code generation is given below. The user name, date, time, and a brief program unit description
appear in the header.

==
--! Alan, MONDAY 19-MAR-1990 14:56.48
-=->>Pkg body for Simulation Job Definitions

Two examples of procedures that instantiate Ev_Gen will now be described. The first,
which is shown below, uses the default Simple_File Name and File_Header procedures. This
simulation defines four events: Message_Generation, Start_Slot, Transmit, and Receive (in addition
to the stop simulation event). The first two characters of the file names and program unit names
will start with the character string "MV."

with Ev_Gen;
procedure Gen_Source MV is
type Event_Type is (Message Generation, Start_Slot,
Transait, Receiwve);
procedure EV is new Ev_Gen (Sim Name =>"NV",
EVENTS => Event_ Type):
begin -
EV(User_Name => "Alan");
end Gen_Source MV;

For the second example, the user first writes the header procedure, SAIC_H, which is
given below.

== SAIC H will add standard headers to all files.

with TEXT IO;
use TEXT IO;

procedure SAIC H (F : file_type;

continued

USER NAME : string;
MSG : string) is
begin

put_line(f," -="),
putl:lno(f - xxxxxxx HF ");

put_ "line (£, " -=");
pat_ lim(f v owy,

put_ “line (£, " ");
put_ “line (£, "—- simulation: " & USER NAME);

put_ “line (£, "-- module: " & MSG);

put_. “line(£," -=")
put_ li.m(f " w),

put_ lin.(f L ");
put__ “line (£, "= v);

put_ lim(t " -—");
put_ “line(f,"-- simulation: " & USER NAME);

put_. “line (£, "-- module: " & MSG);

put_ “line (£, " ")
put_ lin.(f LR

put_ “line(f," -=");
put__ lim(f Pme W)

put__ “1ine(f, "=~ Author: E. Beck"):;

put__ lino(f "—- Date: 3/19/90") ;

put_ “1line (£, "~- Organization: SAIC, Engineering Systems Group, San Diego, CA"):;
put__ lino(f fee n).,

put__ lin.(f Bee n),

put_. “line (£, "~- Description: User supplied.”);

put_ “line(f,"-- *);

put_ “line (£, "-- NONR") ;

put_ “line (£, "—- L

put__ “line (£, "—- "y

put_ “line (£, "-- Assumptions:");

put__ lim(t few ®Y);

put_| “line (£, "~- NONE") ;

put__ “line (£, "—- *);

put__ “line (£, "-- ");

put_ “line (£, " "):
put_ “line(f," ") ;

put__ lim(f " -—");
put_line (£, "-- Revision History:");

put_line(f,"-- Date Author, Org. Revision summary and validation
p.rfon-d"),

put_line(f,"-- ~-- "):
put_ “line (£, "~- ")
put_ lim(f LEESH

put__ “line(f," "):
put_ 1im(f LA ¥

end SAIC _H;

The second example of a procedure that instantiated Ev_Gen is given below. In this
example procedure, Gen_LH instantiates EV_Gen so that (1) file and program unit names created
will begin with string "LH," (2) there will be code generated for 15 events, and (3) the procedure
SAIC_H will be used to create the file header.

- Evada file generator for HF Long Haul model.

with EV_Gen, sda_name, name, vms_acs, date, SAIC H;
prooodnr. GEN_LH [is
type lvnr__rm is
(DSS_RCV, DSS_XMIT, DS_COUNTER, DS_RCV,
DS__ XaT, GEN BDCST, GEN | P2P, RESET, START '_S1OT,
TIMROUT, ml SOUND, mz BET CALL,
IQA XCHNG, nrmx TUNE_3, S!I!AR!ALI),
procedure RV is new EV _Gen (sh NAME => "LH",
EVENTS => EVENT_TYPE,
File_Header => SAIC H):
begin
EV("HF Long Haul");
end GRM_LH;

The header that is generated in example two is shown below.

- package spec LH

- simulation: HF Long Haul

- module: Pkg Spec for Simulation Job Definitions
-- Autbor: B. Beck
-- Date: 3/21/90

-- Organization: SAIC, Engineering Systems Group, San Diego, CA

== Description: Lists constants connecting event types (jcbs)
- - and numbers.
- A few widely used data types are listed.

~-- Assumptions:

-- Revision History:
-- Date Author, 0Ozg. Revision summary and validation performed

3.2 COMPILING AND EXECUTING A PROCEDURE THAT INSTANTIATES Ev_Gen
The commands listed below, which are in a command file, are used to compile, link, and

7

execute the procedure GEN_SOURCE_MV. (Refer to the first example above.)

! Set program library to [320032.EV.GEN].

Sacs set 1lib [320032.RV.GEN]

! Compile instantiation procedure.

§ada/list Gen_Source MvV.ada

$acs link Gen_ Source MV ! Gen_Source_MV is the name of
! pro«duro that instantiates
! package EV_Gen.

§run Gen_Source_MV

Upon execution, the following files are generated:

package spec MV
package body MV

procedure spec Bp Stop_Simulation
procedure body Ep Stop_! »_ Simulation
procedure spec xP_HESSAGR GENERATION
procedure body EP_MESSAGE_GENERATION

EEEEEEEEE

procedure spec MV_EP START SIOT
procedure body MV_EP_START_SLOT
procedure spec MV_EP TRANSMIT
procedure body MV_EP TRANSMIT
procedure spec MV_EP RECEIVE
procedure body MV_EP RECEIVE
procedure spec MV_Ep STOP_SERVICE
procedure body MV_Ep STOP_SRRVICE

procedure spec ISPATCHER
procedure body MV | '_DISPATCHER

53

3.3 GAS STATION EXAMPLE

The use of EARS can best be illustrated by describing in detail a simulation example. The
example given is the classic gas station model. This example requires the use of EARS packages,
including EV, RANDOM, statistical packages, and linked list packages. The example illustrates
the use of the packages and their subprograms. A more detailed explanation of these packages is
found in subsequent chapters.

3.3.1 Statement of Problem

The problem is to develop a gas station simulation where the customers arrive randomly.
Their interarrival rate is exponentially distributed. The customers queue up to be serviced by
attendants, receive service, and then leave. The service times are randomly selected from an
exponential distribution. The purpose of the simulation is to examine the effect of adding
attendants and changing the mean interarrival time and the mean service time for simulations of
varying duration.

3.3.2 Determining the Events

Before instantiating Ev_Gen, the user must determine the EARS events required for the
simulation to be developed. These events are defined in the enumerated type Event_Type in the

8

package that instantiates EV_Gen. An EARS event is an occurrence that takes place at some point
in time. An EARS event may be scheduled to occur after a delta time or at a specific time.

For the gas station problem, only three things are scheduled: the arrival of a customer, the
time required for service, and the end of the simulation. The names chosen for the event types are
Customer_Arrival, Stop_Service, and Stop_Simulation. Remember, the Stop_Simulation procedure
is generated automatically without defining it in Event_Type.

3.3.3 Writing the Procedure to Instantiate Package Ev_Gen
This procedure is given below. EV_Gen is only instantiated with the two required

parameters, Sim_Name and Events. The string name for files and program units begins with
"Hans." Only a Customer_Arrival and Stop_Service event are defined.

with Ev_Gen;
proo.duro Gen_Source_GS 1is
type Event 'l.‘ypo is~ (Customer_Arrival, Stop_Service);
procedure RV is new Ev_Gen (s:l.n Name =>"GS",
RVENTS => Rvent _Type).
begin
BV(User_Name => “Hans");
end Gen_Source_GS;

3.3.4 Compiling and Executing the Instantiation Procedure

A command file that contains the code required to compile, link, and execute the above
procedure using VAX/VMS is given below.

! Set program library to [320032.gV.GEN].
Sacs set 1ib [320032.RV.GEN]
! Create sublibrary [320032.EV.GEN.SUBLIB].
! Set to sublibrary
$ada/list Gen_Source_GS.ada ! Compile instantiation procedure
$acs link Gen_ Saux:oo Gs ! Gen_Souroce_GS is the name of
! procedure that instantiates
! package EV Gen.
$run Gen_Source GS
! Upon successful execution of Gen_Source GS the

8acs delete sublib [320032.EV.GEN.sublib]}

3.3.5 Code That Is Generated Automatically

The ten program units listed in this section are generated at the completion of the above
commands. An explanation of each program unit will follow its source code. Each line of code
that is generated automatically will, for the sake of clarity, have "-- A" added to the right-hand
side.

package spec GS

package body GS

procedure spec GS_Ep STOP SINULATION
proocedure body GS_Rp_STOP_SIMULATION
procedure spec GS_Ep_CUSTOMER ARRIVAL
procedure body GS_Ep_CUSTOMER ARRIVAL
procedure spec GS_Ep STOP_SERVICR
procedure body GS_Ep STOP_SERVICR
procedure spec GS_DISPATCHRR
procedure body GS_DISPATCHER

3.3.5.1. Automatically Generated Package Specifications

The only package specification that is generated automatically is Gs. This procedure is
given below. In this example, only the comments and two lines of Ada code are added by hand.
The first line added by hand "withs in" package Gs_Dispatcher. The second instantiates the
generic package Ev.Simulation with Ev.Max_Priority => 1 and Ev.Dispatcher => GS.Dispatcher.
This means that for the gas station simulation all the events have the same scheduling priority
and the dispatcher used will be GS.Dispatcher, which is generated automatically.

The next line of code assigns a value of 1 to Group. Group is a number that is associated
with a specific simulation. Simulations that may potentially be integrated are assigned consecutive
group numbers.

In the next three lines of code, the parameters Stop_Simulation, Customer_Arrival, and
Stop_Service are defined as constants 0, 1, and 2, respectively. EV.Sim_Job is a unique integer
that is associated with each type of event. It will be used in the dispatcher body.

Function Nu returns an event, given an input parameter of type Ev.Sim_Job. The event
has two discriminants. Function Nu sets the first to the value of Job and the second to the value
of Group. Section 4 will discuss type Ev.Event in more detail.

==
--| Hans, MONDAY 12-MAR-1990 09:16.14 -
-=->>Pkg Spec for Simmlation Job Definitions -

with Bv; -
with ¢ s_Dispatcher;
packije Gs is -—

i
i
>y Dy

-- EV.Simulation is called with the following two parameters:
-- 1 represents the number of priorities in the simulation
-- GS_Dispatcher is the name of the dispatcher procedure that is generated
-- automatically by EV_Gen
package Gs_Simulation is
new Ev.Simulation (Max Priority => 1, Dispatcher => Gs Dispatcher);

Group -= A
: constant ERv.Sim Group := 1; -~ A

-~ Numbers assigned below are values of discriminant EV.Event Rac, which
-- are used in dispatcher.

continued

10

Stop_Simulation --
: constant Ev.Sim Job := 0; -
Customer_Arrival --
: constant Ev.Sim Job := 1; -

Stop_Service -—
: constant Ev.Sim Job := 2; -

function Nu -

(Job : Ev.Sim Job) -
return Bv.Rvent; -

=-=| Creates Events for this Event Group -—
end Gs; -

Py Py Py

3.3.5.2. Automatically Generated Package Bodies

The only package body generated automatically is Gs. It contains the function body Nu,
which was described above. The package body Gs appears below.

-] -
--| Hans, MONDAY 19-MAR-1990 14:56.48 -
-->>Pkg body for Simulation Job Definitions -
] -
package body Gs is -
function Mu -

(Job : Ev.Sim Job)
return Ev.Event is -

Bvnt -

: Bv.Event;

begin -~ Nu
Rvnt := new Ev.Event Rec(Group, Job);
return Bvnt;
end Nu;
end Gs;

|
(A 1
Peprpd Py IY

3.3.5.3. Automatically Generated Procedure Specifications

The gas station example has four procedure specifications that are generated automatically.
Three procedures created are associated with event types. The fourth is the dispatcher. The event
procedures created are GS_Ep_Customer_Arrival, GS_Ep_Stop_Service, and GS_Ep_Stop-
Simulation. Each of the three event procedures has one input, Var, that is of type EV.Event.
Procedure GS_Ep_Customer_Arrival is given below.

with Bv; - A
proocedure GS_Rp Customer Arrival (Var: Ev.Rvent): - A
-] -- A
--| Hans, MONDAY 12-MAR-1990 09:16.16 - A
-=->>Event Procedure for REvent Type 0 -= A

11

Procedure GS_Ep_Stop_Service is given below.

with Bv; - A
procedure GS_Rp_Stop Sexrvice (E: Ev.Event); -~ A
--l -

~-| Hans, MONDAY 12-MAR~1990 09:16.17 ~-- A
-->>Event Procedure for Event Type 1 -- A
-1 -- A

Procedure GS_Ep_Stop_Simulation is given below.

with Rv; -— A
procedure GS_Ep Stop_Simulation (Evnt : Ev.Event); -- A
-1 -— A
~-| Hans, MONDAY 12-MAR-1990 09:16.15 - A
-->>Event Procedure to Stop the Simulation at a Specific time -- A
-] -— A

The fourth specification, for procedure GS_Dispatcher, also has one input, Evnt, that is of
type EV.Event. This procedure is given below.

~~{ Hans, MONDAY 19-MAR-1990 14:02.07 -- A
-->>Event Procedure Dispatcher -- A
-] - A
with Bv; -= A
procedure GS_Dispatcher (Evnt: Ev.Event); -- A

3.3.5.4. Automatically Generated Procedure Bodies

The bodies for the four procedures, GS_Ep_CUSTOMER_ARRIVAL,
GS_Ep_STOP_SERVICE, GS_Ep_Stop_Simulation, and GS_Dispatcher, are also generated
automatically.

First, the event procedures will be discussed. At the top of each procedure the string,
Name, is defined to contain the name of the procedure. Name is printed in the exception handler
when an error occurs.

Each procedure body will now be discussed individually.
1. Procedure Gs_Ep_Cust~mer_Arrival

The procedure GS_Ep_Customer_Arrival is given below. Variables
Customer_Service_Time, Next_Arrival, and Gs_Xp.Mean_Service_Time are of type Sim.Real.
Sim.Real is the EARS definition of type "float,” with 9 decimal digits of accuracy. Following the

"begin" statement, function Random.Exponential is called with two inputs, the random number
stream selected, which is 1, and the mean service time, which is the value of

12

GS_Xp.Mean_Service_Time. A stream is a source of random numbers. There is a random number
seed associated with each stream. GS_Xp.Mean_Service_Time is a user input to the package
specification Gs_Xp. Procedure Random.Exponential retums a random number from an exponential
distribution whose mean is the value of GS_Xp.Mean_Service_Time.

The procedure Tf.Assign is used to maintain tallied floating point statistics on
Service_Time. TF.Assign assigns the value of Customer_Service_Time to the statistical variable
GS_Xp.St.

Next, there is a "for loop” in which each attendant is checked to see if he is busy. When
he is not busy, he is set to busy. The start work time for the attendant is set equal to the value
of the simulation clock, Ev.Clock. Initially it is zero. The procedure Ev.Delta_Schedule has two
inputs: Customer_Service_Time and an attendant event. When all the attendants are busy, then the
customer is put into the customer queue, GS_Xp.Customer_Queue. This is accomplished by the
call to RI_Ai.Append. Rl_Ai is a package that is an instantiation of linked list package Lnk_Ai
with type Sim.Real. Lnk_Ai appends the member Customer_Service_Time to the end-of-link list
Gs_Xp.Customer_Queue. Package Lnk_Ai is an EARS linked list package that automatically
maintains time-dependent statistics on queue length. In this case, it is the Gs_Xp.Customer_Queue.

Next, the exponentially distributed random variable Next_Arrival time is selected by
calling procedure Random.Exponential with the first stream and a mean of
Gs_Xp.Mean_Interarrival_Time. Finally, Ev.Delta_Schedule is called to schedule the next arrival.
The next arrival is scheduled to occur at time EV.Clock plus Next_Arrival time.

with Sim; - A
with R1_Ai, Random, Gs_Xp, Gs_Rv, Tf;
procedure Gs _Ep_Customer_| Arzival - A
(Vu:lvlmt)io -= A
Name : -— A
: constant STRING := “GS_Rp CUSTOMER ARRIVAL"; -- A
Customer_Sexrvice_Time
: 8im.Real;
Next_Arrival
: 8im.Real;
begin -- Gs_Rp_Customer_ Arrival -= A

--| Determine Customer Service time.
Customer_Service_Time := Random.Exponential(l, Gs_Xp.Mean Service Time):
L. Mlign(cl Xp.St, Customer_Service_Time):
--| Txy to find an idle Attendant
for This in Gs_Xp.Attendants loop
if not Gs b.nmdnnt('!hil) .Busy then
Gs_Xp. Attendant (This) .Busy := TRUR;
Gs_Xp.Attendant (This) .Start_Work := Ev.Clock;
-- For KV.Delta_Schedule if no event and priority are passed
- as pu'..totl then default is current event and priority.
Bv.Delta_Schedule(
Time => Customer_Service Time,
Evnt => Gs_Rv. Stop Service (This));
exit;
elsif This = Gs_Xp.Attendants’Last then
--| All Attendants are busy, so customer goes in queuve
R1_Al.Append(Gs_Xp.Customer_Queus, Customer_Service Time);

continued

13

end if;
end loop;
Next _Arrival := Random.Exponential(l, Gs_Xp.Nean Interarrival Time):
Ev.Delta Schedule(Time => Next _Arrival, Evot => Var);
-- Next Iine is deleted when do simulation
-= raise Sim.Not_ Implemented; -
exception -- Gs_Ep_Customer_Arrival -
when others => -—
Ev.Rrr_IO("Crashed in " & Name); -
ralse; -
end Gs_Ep Customer Arrival; -

Prrprrd>

2. Procedure Gs_Ep_Stop_Service

The procedure GS_Ep_Stop_Service is shown below. The first statement following "begin"
updates the time worked for an attendant. The value of E.Var(0), by convention, is used as an
identification number. In this example, it represents the attendant ID. (For communications
network modeling it might represents Node ID.)

The next statement updates the number of customers served by the attendant. Then the
function RI_Ai.Nl checks to see if the number of items in the customer queue is greater than
zero. When it is, then the Start_Work variable for the attendant is set equal to current simulation
time, Ev.Clock. Procedure Rl_AiPop pulls Customer_Service_Time off the front of the
Customer_Queue. Next, the procedure Ev.Delta_Schedule schedules the time for service
completion. When the number of items in the customer queue is zero, the attendant is set to not
busy.

with Bv; -
with Gs_Xp, R1_Ail;
with Sim; -
use Sim;
procedure Gs_Ep _Stop_Service -
(B : Ev.Event) is -
Name --
: constant STRING := "GS_Ep STOP_SERVICE"; -

PPy » »

Customer_Service_Time
: Sim.Real;

Found
: BOOLEAN;

begin -~ Gs_Rp_Stop Service - A
--| Update Stats for Attendant
-- E.Var(0) contains the ID of attendant
Gs_Xp.Attendant (E.Var (0)) .Time Worked
:= Gs_Xp.Attendant (E.Var (0)) .Time _Worked
+ Rv.Clock - Gs _Xp.Attendant (E. Va:(O)) Start_Work:;
Gs_Xp.Attendant (E.Var (0)) .Customers _Served
i= Gs_Xp.Attendant (E.Vax(0)) Culton-:- Served + 1;
-=| Check Customer Queue
-=- Function NL returns the number of items in the list
if R1_Ai.N1(Gs_Xp.Customer_Queue) > 0 then
-=|] Start Customer Service.

continued

14

Ga_Xp.Attendant (E.Var(0)) .Staxt_Work := Ev.Clock;
R1L_AL. Pop (Gs_Xp.Customer_Queue, “Customer _Service Time, FYound):;
=-T Schedule Service Completion
Ev.Delta_Schedule(Time => Customer_Service Time, Evnt => E);
else
«=| Ho customers, so not busy
Gs_Xp.Attendant (R.Var(0)) .Busy := False;
end 1f;
-- Next line is removed for simulation
-- raise Sim.Not_Implemented; -
exception -
wvhen others => -
Ev.Exrr_lO0("crashed in "&name): -
raise; -
end Gs_Ep_Stop_Servioce:; -

»orriy

3. Procedure GS_Ep_Stop_Simulation

This procedure, shown below, sets the boolean value Ev.Simulating to "False,” which
causes the simulation to end.

proocedure Gs_Ep Stop Simulation -~
{ Evnt : Ev.Event) is -
Name -

: constant STRING := "Gs_Ep_Stop_Simulation*; --
b.gin -- Gs_Bp_Stop_Simulation -
Rv.Simulating := False; -
exception -- Gs_Ep Stop_Simulation -
when others => -
Bv.Brr IO("Crashed in ™ & Name); -
ralse; -
end Gs_EBp_Stop_Simulation; -

PO IIY

4. Procedure GS_Dispatcher

This procedure, given below, is called by procedure Ev.Start with an input parameter that
is an EV.Event. GS_Dispatcher looks at the value of the discriminant Evnt.Job and calls the
appropriate event procedure GS_Ep_Customer_Arrival, GS_Ep_Stop_Service, or
GS_Ep_Stop_Simulation. An exception is raised and an error message is printed for invalid values
of Evnt.Job.

with G8; --
use GS; -
with GS_Ep_Customer_ Arrival; -
with G8_REp_Stop_! Service; -
with G8 lp stop_ _Simulation; -

procedure GS Dispatcher (Evnt: RBv.Event) is -

No_Such_Job : exception; -

ProyIey

continued

15

begin -
case Evat.Job ias -
when Customer_Airival => GS_Ep Customer_ Arrival (Ewnt); --
when Stop ! Service => GS Ep Stop Service (Bvat); -
when Stop_| _Simulation => GS_Ep »_Stop_Simulation (Rvnt); -
when others => raise No_| Such Job; -—
end case; -
exception -
when Wo_Such Job => -
Ev.Err_ IO --
("No_Such_Job as"£EV.Sim_Job’ image (Rvnt.Job)&" in --
GS_Dispatcher”); -
raise; -
when others => -
raise; -

end GS_Dispatcher; -

R R R R R R R R R RS R SR

3.3.6 New Program Units Added by Hand
1. Package Gs_Xp Specification and Body

The package specification Gs_Xp, given below, reads in simulation input data at
"elaboration" and defines an array of records containing attendant information.

Function Int_Param is called to get the values for Number Of_Attendants,
Mean_Interarrival_Time, Mean_Service_Time, and Run_Time. Customer_Queue 1is a Lnk_ Ai
linked list whose item is of type Sim.Real. St is a statistical variable for tallied fixed point
statistics. Attendant is an array of records containing attendant information. The procedure Report
is called from procedure Gs_Station to print out results of the simulation.

with Sim, Int_Param, Real Param, Rl Ai, Tf;

package Gs_Xp is
Number Of Attendants
: coanstant POSITIVR
:= Int Param("ATTENDANTS:");

subtype ATTENDANTS is
POSITIVE range 1 .. Number Of Attendants;

Mean_Interarrival Time
: constant Sim.Real :» Real Param("MEAN INTERARRIVAL TIME (min):");

Mean _Service Time
: constant Sim.Real := Real Param("MEAN SERVICE TIME (min):");

Run_Time
: 8im.Real
:m Sim."*" (60.0, Real Param("RUN_TIME (hrs):")):

Customer_ Queue

continued

16

: R1_Al.List;
st
: Tf.Variable;

type ATTENDANT REC is
record
Busy : BOOLRAN;
Start_Work : Sim.Real;
Time Worked : Sim.Real := 0.0;
Customers_Served : MATURAL := 0;
end record;

Attendant
: array (ATTRNDANTS)
of ATTENDANT REC;
procedure Raport;

end Gs_Xp;

The package body, given below, defines and initializes the Customer_Queue. The
procedure Report prints out the simulation input parameters and the results. The results include the
simulation time and customer queue statistics, which are printed from procedure AiReport and
service time statistics, which are printed from procedure TfReport. Next, the percentage of time
worked and the number of customers served by each attendant are printed.

with Integer_Text_I0, Text IO, Ai;
with Bv;
use Integer_ Text IO, Text IO;

package body Gs_Xp 1is
CUSTOMER QURUR -- INIT is exscuted upon elaboration

: RlL_Ai.List := Rl Ai.Init;

prooedure Report is
use Sim, Sim.Jo;
Delim
: constant STRIRG :=
[0 NE RN IR IR ONR R K JESE SR AR AR R BC RN NN N R AR L))
Title
: constant STRING :=
- GAS STATION SIMULATION REPORT";

Indent
: constant Positive Count := 4;

Col
: constant Positive Count := 20;

Ifw
: constant POSITIVE := 10;

Dfw
: constant POSITIVE := 3;

: constant POSITIVE := Ifw ~ Dfw -~ 1.

continued

17

begin -- Report

Set Col (Indent);

Put Line (Delim);

Set Col(Indent);

Put Line(Title):;

Set Col (Indent);

Put Line (Delim);

Set Col (Indent);

Put Line ("INPUT PARAMETERS") ;

Set_Col(Indent);

Put ("Attendants");

Set_Col{Col);

Put (Number_Of_Attendants, Ifw):

New_Line;

Set_Col(Indent):

Put ("Mean Interarrival Time");

Set_Col(Col):

Put (Mean Interarrival Time, Rfw, Dfw, 0):;

Hew_Line;

Set_Col (Indent);

Put ("Mean Service Time"):;

Set_Col(Col);

Put (Mean_Sexrvice_Time, Rfw, Dfw, 0);

New_Line;

Set_Col (Indent);

Put ("Run Time");

Set_Col(Col):

Put (Run_Time, Rfw, Dfw, 0);

New Line;

Set_ Col (Indent);

Put Line (Delim);

Set_Col (Indent);

Put_Line ("RESULTS");

Set Col{Indent);

Set_Col (Indent);

Put ("SIMULATION TIME"):

Set_Col(Col):

Put (Rv.Clock, Rfw, Dfw, 0);

Kew_Line;

Set_Col (Indent);

Put_Line ("CUSTOMER QUEUR") ;

Set_Col (Indent);

Ai.Report (R1_Ai.Var(Customer_Queue));

Set_Col (Indent);

Put_Line ("SERVICE TIME");

Set_Col (Indent);

Tf .Report (St) ;

Set_Col (Indent);

Put_Line (Delim);

for This in Attendants loop
Set_Col (Indent);
Put_Line("Attendant" & INTEGER' Image(This) & " ");
Set_Col (Indent);
Put ("Time Worked"):
Set_Col(Col);
Put ((Attendant (This) .Time Worked / 2v.Clock) * 100.0, Rfw, 2, 0);
Put ("8%");
New_Line;
Set_Col(Indent):;
Put ("Customers Served"):;
Set_Col(Col);
Put (Attendant (This) .Customers_Served, Ifw);
New_Line;

end loop;

Put_Line (Delim);

Wew_Line;

end Report;
end Gs_Xp;

18

2. Package Gs_Ev Specification and Body

The package specification Gs_Ev, given below, defines Stop_Service as an array of events.
Customer_Arrival and Stop_Simulation are defined as events.

with Gs_Xp, Rv;

package Gs_Ev is
Stop_ Service
: array (Gs_Xp.Attendants)
of Rv.Event;

Customer_ Arrival
: Bv.Bvent;

Stop_Simulation
: Ev.Rvent;

end Gs_Ev;

The package body, below, loops on the number of attendants. Within the loop,
STOP_SERVICE, indexed for each attendant, is assigned an event. The next statement uses the
procedure EV.Set_Priority to set the scheduling priority of the event record to 1. In this
simulation, all events have a priority of 1.

The next statement sets the size of the array of integers pointed to by Stop_Service. VAR
to 1. The following statement initializes the value of this array to index ID for the attendant. In
this simulation, only one ID number is needed: the attendant ID. In other simulations, larger
arrays may be needed to store other ID numbers.

Following the loop, events are created for Customer_Arrival and Stop_Simulation. Then
the scheduling priorities for each are set to 1.

with GS;

package body GS XV is
begin
for ID in GS_XP.ATTENDANTS loop
STOP_SERVICE(ID) := GS.NU(GS.STOP_SERVICE); -- Creates events
-~ for Stop_Servioce.
EV.set_priority (STOP_SERVICR(ID),1); -- Assigns priority
-- of 1 to stop service. -
Stop_Sexvioce (ID) .VAR := new EV.Array of Integer(0..0); -- Set
-~ range of VAR.
Stop_Servioce(ID) .Vax(0) := ID; -- Assign attendant ID to index
-= ID.
end loop; == Attendant ID number is the
-- only ID have in gas station
-~ simulation.
Customer_Arrival := GS.NU(GS.Customer_ Arrival); -- Creates
-- events for Customer_Arrival.

continued

19

Stop_Simulation := GS.NU(GS.Stop_Simulation); -- Creates
-~ events for Stop_! Simulation.

EV.set_priority (Cu-tour Arrival,l); -~ Assigns priority of
--1 to cuntour arrival.
EV.set_priority (stop__li.-llltion, 1); -- Assigns priority of

==~ 1 to stop_simulation

end GS_RV;

3. Procedure GS_Station

The driver procedure, GS_Station, defines Customer_Generator and Stop_Sim to be events,
while Arrival is of type Sim.Real. This procedure is shown below. The procedure begins by
randomly selecting an exponentially distributed arrival time when using the first stream of random
numbers and a user-specified mean interarrival time. The next two lines make Customer_Generator
an event whose discriminants, Job and Group, both have a value of 1. The next two statements
do the same thing for Stop_Sim.

Then a customer arrival is scheduled to occur after the delta time Arrival, and simulation
is scheduled to stop after the delta time Gs_Xp.Run_Time. The next statement starts the
simulation. Gs.Gs_Simulation.Start is a call to the generic package Ev.Simulation, which contains
procedure Start. Finally, procedure Gs_Xp.Report prints the simulation inputs and results.

with Ev;
with Sim, Random, Ga, Gas_Rv, Gs_Xp;

procedure Gs_Station is
Customer_Generator
: Ev.Event;

Stop_Sim
: Bv.Rvent;

Arxival
: Sim.Real;

begin -- Gs_Station
Arrival := Random.Exponential(l, Gs_Xp.Mean Interarrival Time):

Customer_Generator := Gs.Nu(Gs.Customer Arrival):
Rv.Set P:l.ority((:ustour Generator, 1);
Stop_Sim := Gs.Nu(Gs.Stop_Simulation);
Rv.Set _Priority(Stop_Sim, T1);
Ev.Delta _Schedule (Time => Arrival, Evnt => Customer _Generator);
Ev.Delts _Schedule (Time => Gs_Xp.Run_Time, Evnt => Stop_Sim);
Gs.Cs 81.-xlltion Start;
Gs_Xp.Report;
end Gs _Station;

3.3.7 Compilation Order

The compilation order for the gas station problem is given below.

ada/list gs_dispatcher_.ada
ada/list gs_.ada

ada/list gs.ada

ada/list gs_xp_.ada

ada/list gs_xp.ada

ada/list gs_ev_.ada

ada/list gs_ev.ada

ada/list gsep_stop_simulation .ada
ada/list gsep_stop_simulation.ada
ada/list gs_ep_ customer_arrival .ada
ada/list gs_ep customer_arrival.ada
ada/list gs_ep_stop service_.ada
ada/list gs_dispatcher.ada
ada/list gs_ep _stop_service.ada
ada/list gs_station.ada

21

4.0 USING PACKAGE EV

This section, contains a description of package EV. All EARS simulations use data
structures and subprograms that are defined in package EV. First, the package specification will
be discussed and shown. Then specific examples will be given that illustrate a use of the more

complex subprograms.
4.1 EV PACKAGE SPECIFICATION

The user should refer to the EV package specification given below when reading this
section. This specification has been heavily commented. Many details not discussed in the text of
this section are provided in the comments. The most relevant aspects of this package will be
described in the sections that follow.

with Sim, Text IO, Hex:;
use Sim, Text IO;
package Ev is

-- The simulation clock is initialired to 0.
Clock
: Real := 0.0;

-- Stop_Immediately is an exception that may
~- be used by the modeler. It is not used in
~- package EV. Stop_Immediately and Simulating
-- provide a capcbility for graceful simulation
-- termination.
Stop_Immediately

: exception;

Simulating
: BOOLEAN := FALSR;

~- Immediately represents the "earliest possible" time.
Immediately
: constant Real := Real’First;

-- No_Priority Change is used in procedures
-- EV. Dolta Schedule and EV.Abs_Schedule to indicate
-~ that the | priority does not chungc
No_Priority Change
: constant INTEGER := 0;

~~ The lowest usable priority is 1.
Lowest_Priority
: constant INTEGER := INTEGER’Succ(No_Priority Change);

~=- The highest priority that a user can specify is 31.
Highest_Priority
: constant INTEGER := 31;

-- Defines range of scheduling priorities that
-=- are used internally in RVADA.
subtype EVERT PRIORITY RANGE i»
NATURAL range No Priority Change .. Highest_Priority;

-~ Defines range of scheduling priorities
~~ available to the user.
subtype EVENT PRIORITY is
NATURAL range Lowest Priority .. Righest Priority;

continued

22

Defines type for array of integers that is used for
IDs in Event Rec.

type ARRAY_OF INTEGER is

array (SATURAL range <>)
of INTEGER;

EVENT PARAN points to array of integers where ID
numbers are stored.

type EVENT PARAM is
access ARRAY OF INTRGER;

Evada is used to represent events that are internal
to EVADA.

Evada

La,

: conatant := 0;

Last_Group is the largest Group number that a user
may use.

st_Group

: constant := 31;

GROUP_TYPE is range of Group numbers used internally
in RVADA.

type GROUP_TYPE is

ri

new INTEGER range Evada .. Last_Group;

First Usable_Group represents the first Group number
that a user may use.

rst_Usable_ Group

: constant GROUP_TYPE := GROUP_TYPE’Succ(Evada);

Sim Group is the range of Group numbers that the user
may use.

subtype SIM GROUP is
GROUP_TYPE range First_Usable Group .. GROUP_TYPE'Last’

ri

La

First_Job and Last_Job are the minimum and maximm
job numbers that a user may use.

rst_Job

: constant := 0;

st_Job
: constant := 127;

SIM JOB is a type that spans the range job numbers.

type SIM JOB is
new INTEGER range First Job .. Last_Job;

Control contains event control information which the
user need not know.

type CONTROL is

limited private;

EVENT REC is the EVADA event rxecord.

The discriminant Group is a number that allows the
correct dispatcher to be selected for an event. It is
only used for integrating simulations.

The discriminant Job is a number that corresponds to

an Event type that the user defines in the procedure
that instantiates EV_Gen. Job is needed when simulations
are integrated.

Var points to the array of integers that is used for
storing ID numbers.

continued

23

~= Ctrl is event control information that the user need
-- not know about.
type EVENT REC
(Group : GROUP_TYPE;
Job : SIM JOB) is
record
Var : EVENT PARAM;
Ctrl : CONTROL;
end record;

type RVENT is
access RVENT_REC;

-- Ent is the currently executing event.
-~ It can be used by procedures EV.Delta_ Schedule and
-- EV.Abs_Schedula.
Ent
: RVENT;

-- Procedure Delta Schedule schedules an event to become active
~- at a simulated time of current time plue "Time". Parameter PRI
-- allows the user to change the priority.
procedure Delta_Schedule
(Time : Sim.Real;
Evat : RVENT := Ent;
Pri : EVENT PRIORITY RANGE := No_Priority Change);

-~ Procedure Abs Schedule schedules an event to become active
-~ at an absolute simulated time of "time".
procedure Abs_Schedule
{ Time : Sim.Real;
Evat : EVENT := Ent;
Pri : EVENT_PRIORITY RANGE := No_Priority Change):

-=- Procedure Set_Priority changes the priority in Evnt to
-- Pri.
procedure Set_Priority
(Bvnt : EVENT;
Pri : EVENT PRIORITY RANGE);

-- Procedure Remove removes an event from the ready queue.
-~ Dispose = true means the event record is destroyed.
procedure Remove
({ Evat : in out ERVENT;
Dispose : BOOLEAN := FALSE)

-- Punction Activation Time returns the activation time
-- that an event is scheduled to occur.
function Activation Time
(Bvnt : EVENT)
return Real;

-- Function Priority returns the priority of an event.
function Priority
(Evat : RVENT)
return EVENT PRIORITY;

-~ Package Simulation is called with a maximum number of
-- priorities that the user needs and with the dispatcher
-~ procedure that is generated automatically for the

-~- users simulation.

generic

Max Priority
: EVENT PRIORITY; -- The highest priority required by
-- simulation.

continued

with proocedure Dispatcher -- The dispatcher procedure
(BEvat : RVENT); -- generated by the user instantiation
-- and execution of RV Gen.
package Simulation is

procedure Start; -- Starts the simunlation.
end Simalation;

-~ Function Str, Time, and Id are used for
-~ dabugging purposes.

-= Function Str returns the hex representation of an
-- event. It is used for debugging purposes.
function Str is

new Hex (BVENT);

-~ Function Time converts time from type Sim.Real
-- to string.
function Time
(T : 8Sim.Real)
return STRING;

~=- Function Id converts Group and Job to
-= string " (Group,Job]".
function 1Id
return STRING;
-=| "[Group,Job]"

== Procedures Switch SIO, SIO, Switch FIO, Create,
-- Close, Fio, and Rrx_IO below are also intended
-- for debugging purposes. They may be called with
-=- or without the debugger. A modeler may wish

-- to use the debugger to change the values

-- of the next four flags by using the "deposit”
-~ feature of the VAX debugger.

-- 8io_On = TRUR means output to monitor.
-- Sio On is examined in procedure Sio.
Sio_On

: BOOLEAN := FALSE;

== Sio Delta = TRUE means scheduling occurs in
-~ delta time.
-~ 8ic_Delta = false means scheduling is in
-- absolute time.
Sio_Delta

: BOOLEAN := TRUE:

-- S8io_Time is scheduling time for procedure Switch Sio.
Sio_Time
: 8im.Real;

~- The scheduling priority for Switch_Sioc is set to 1.
Sio_Pri
: EVEWT_PRIORITY
:= EVENT PRIORITY'First;

~~ Procedure Switch Sio specifies the time at which continued

25

procedure SIO is effective or ineffective.
procedure Switch Sio
(Time : Sim.Real := Sio Time;
Pri : EVENT PRIORITY := Sio_Pri;
Delta_Sio : BOOLEAN := Sio_Delta;
On : BOOLEAN := Sio On);

-- ¥When Sio_On is true procedure Sio print out
-=- Clock, Group, Job, and string to monitor.
procedure Sio
(8tr : STRING:
Eol : BOOLEAN := TRUR)

-- Pio_On = TRUR means output to file.
Fio On
: BOOLEAN := FALSE;

-- Fio Delta = TRUE means scheduling occurs in
-- delta time.
== Fio Delta = FALSE means scheduling is in
-- absolute time.
Fio_Delta

: BOOLEAN := TRUE;

-~ Flo_Time is sceduling time for procedure Switch FIO.
Fio_Time
: Sim.Real;

-- Scheduling priority for Switch FIO is set to 1.
Fio Pri
: RVENT_PRIORITY
:= RVENT PRIORITY'First;

-~ Procedure Switch Fio works like Switch Sio,
-- except that output is to a file.
~~ (The file is named in a string that is input
-- to procedure Create below.)
procedure Switch Fio
(Time : Sim.Real := Fio Time;

Pri : EVENT PRIORITY := Pio Pri;

Delta FIO : BOOLEAN := Fio Delta;

On : BOOLRAN := Fio On);

r
: File_Type;

-~ Procedure Create uses Text IO.Create
-~ to create ¥ with file_name = Fn,
-~ mode out_file.
procedure Create
(Fn : STRING);

== Procedure Close uses Text I0.Close
-- to close F.
procedure Close;

-- ¥hen Fio On is true procedure Fio writes
-=- out Clock, Group, and string to Pn, which is
-= is input to procedure Create.
proocedure Fio
(Str : STRING;
Rol : BOOLRAN := TRUE:
File : File Type :=F);

continued

== Procedure Err_IO writes Date and Time,
-=- 8tr (Bnt), ID, Clock, and Message.
-~ The input, Msg, is any user defined string,
-- such as "Crashing in procedure xxxx-.
proocedure Exrr_IO

{ Mag : STRING := **);

-- Beyond this point are ismplementation details
-=- that are not of concern to the user.

-- Private portion of specification deleted in
-~ this documentation.

type CONTROL is

record
Activation Time : Real;
Pti.otity zvmn PRIORITY;
Queued : BOOLEAN := FALSE;
Next : Event := null;
Prev : Event := null;

end recoxd;

Bk_Time -- See Delta Bk and Abs_Bk below.
: Sim.Real;

Bk Pri -- See Dolta Bk and Abs_Bk below.
T Event ,_Priority :

-~ The next three procedures are used with a debugger.

-- Procedure Breakpoint is a null procedure that is
== intended to be used to get to command mode in a
-- symbolic debugger.
procedure Breakpolint:;

-~ Procedure Delta_Bk calls EV.Delta_Schedule using

-=- the paramesters BK Time, Break Rv, “and Bk . Pri

-- which are defined above. The values for these

~-=- paramsters are defined using the debugger.

procedure Delta Bk;

~= Considers Bk Time a Delta time and schedules procedure
-- "Breakpoint" to occur when Clock = Now + Bk :_Time, at
== priority = Bk_Pri.

-- Procedure Abs Bk calls EV.Abs_Schedule and is
== used in the same manner as Delta Bk.
procedure Abs_Bk:

end Ev;

4.1.1 EVENT REC

The EARS event record, EVENT_REC, contains scheduling and other information that is
associated with an event. EVENT_REC contains the discriminants Group and Job. The intent of
the discriminants is to allow different simulations to be integrated. Group is a number that is
associated with a simulation. Simulations that may potentially be integrated should be assigned
different Group numbers. A user may assign a Group number from 1 to 127. The Job number is
associated with the event types that are defined in the EV_Gen instantiation procedure. Job
numbers range from 1 to 31. Section 3.3.5 illustrates the assignment of Job and Group.

The parameter Var points to an array of integers that contains identification numbers. For

27

example, in the gas station simulation, there was an array of one number that contained an
attendant ID. Whereas, for a communication network simulation, the array may contain node IDs.
The Ctrl parameter contains information, such as scheduling activation time, that the user need not
be concerned about.

4.1.2 Event Processing Subprograms

. The subprograms that relate to the processing of events are listed below. The package
specification provides the details needed for calling them. Procedures Delta_Schedule and
Abs_Schedule allow events to be scheduled to occur in a delta time and at an absolute time. The
scheduling priority may be set in the calls to Procedure Delta_Schedule, Abs_Schedule, and
Set_Priority. Procedure Remove is used to remove an event from the event queue and to
optionally destroy it. Function Activation_Time and Priority return the event activation time and
priority.

procedure Delta_Schedule
procedure Abs_Schedule
procedure Set_Priority
procedure Remove
function Activation_Time
function Priority

In EARS, priorities are used to break ties when more than one event is scheduled at the
same time. The event with the highest priority is scheduled first.

4.1.3 Package Simulation

The user must instantiate the generic package Simulation with Max_Priority, the maximum
number of scheduling priorities needed in a simulation (permissible values are 1 to 31), and the
dispatcher procedure that was generated automatically. The example below illustrates how to
instantiate this package with 18 scheduling priorities and the dispatcher procedure LH_Dispatcher.

package LH Simulation is
new Ev.Simulation (Max Priority => 18,
Dispatcher => LE Dispatcher):

4.1.4 General Debugging Subprograms

The subprograms listed below are intended for debugging purposes either with or without
a debugger. The comments in the EV package specification explain their use.

function Str
function Time
functioa Id
prooedure Switch Sio
prooedure 8io
procedure Switch Fio
procedure Create
procedure Close
proocedure Fio
procedure Rxr_IO

1. Switch_Sio, Sio Example

The example below illustrates the use of Switch_Sio and Sio. These procedures are used
to examine a sequence of events. The call to Switch_SIO schedules an event to occur in a delta
simulation time 20 with a priority of 1. The On flag is set to "true" when this event occurs. This
tells procedure Sio to print.

EV.Switch SIO(Time => 20, Pri => 1, On => true);

The Sio call, below, is placed in an event procedure whose timing is being examined. The
statement prints the user defined string followed by Clock, Group, and Job. The printing only
happens when the On flag is set to "true."

EV.8io(Str => "Transmit for Node xx");

2. Switch_Fio, Fio Example

The following set of statements illustrates the use of Create, Switch_Fio, Fio, Create, and
Close. This set of statements is provided to examine a sequence of events and to print relevant
information to a file. First, the output file must be created with the statement

EV.Create(Fn => "LH Test_File");

The call to Switch_FIO schedules an event to occur in absolute simulation time 3 with a
priority of 2. The On flag is set to true when this event occurs. This tells Fio to print.

EV.Switch Fio(Time => 3, Pri => 2, Delta Fio => false,
On => true);

29

The statement below is placed in the relevant event procedure. The user-defined string,
followed by Clock, Group, and Job, is printed to the output file. Printing only begins when the
Switch_Fio On flag is set to "true.”

EV.Fio(Str => "Transmit for Node yy"):

The next statement causes the printing to be disabled at absolute simulation time 1.

EV.Switch FIO(Time => 1, Delta Fio => false, On => false):;

Finally the file is closed with

RV.Close;

4.1.5 Debugger Subprograms

The procedures and declarations listed below are designed for use with a debugger.

Bk_Time : Sim.Real;

Bk Pri : RBvent_ Priority:
procedure Breakpoint;
procedure Delta_Bk;
procedure Abs_Bk:
Break Ev : Event;
Break_Job : Sim Job;

These procedures allow a user to reduce execution time when running a simulation with
the debugger. Somctimes a simulation may run for 8 or 10 hours before a breakpoint is reached.
Using these routines can substantially reduce this time.

Their use can best be illustrated with an example. Consider the fcllowing scenario:
Assume that something unexpected occurred at 150.0 seconds into the simulation after procedure
X has executed more than 1000 times.

Without the aforementioned procedures, the user typically decides to track down the
problem by setting a breakpoint to occur at procedure X at time 150.0. This means that every
time procedure X is called, the debugger stops and the value of the simulation clock is checked.
Doing this increases the execution time by orders of magnitude over the time needed to reach that
point in the simulation when not using the debugger.

The user takes advantage of the breakpoint capability (in VAX/VMS) by executing the
following commands inside the debugger:

30

DBG> set module Ev
DBG> deposit Rv.Bk Time = 149.999
-- Set time to break
DBG> set break Ev.Breakpoint
== Tell debugger to break bhere
DBG> call Abs_Bk
-- Schedules Ev.Breakpoint at
-=- absclute time = 149.999
DBG> go

The debugger does no checking at all until procedure Ev.Breakpoint occurs at a simulation
time of 149.999. When it is reached, the debug prompt is displayed and the user then enters the

following:

DBG> set break X
DBG> go

Again, the debugger does no checking until procedure X is called. The debugger then
stops and gives the debug prompt. Execution speed under this scenario is not noticeably slower
than running the same program in the debugger with no breakpoints set.

The user who wishes to take advantage of this capability using a compiler other than
VAX Ada should be aware that the compiler must provide adequate support for run-time symbolic
debugging. This includes support for the equivalent of the VMS debugger "call," "deposit," and

"set break” commands.

31

5.0 LINKED LISTS

EARS contains six linked list packages: Lnk, Lnk_AI, Lnk TI, Link, Link Ai, and
Link_Ti. The linked list packages whose name begins with "Lnk" allow a user to store a copy of
an object in a linked list or to retrieve a copy of an object from a linked list. These packages are
instantiated with one generic parameter, that is of type ITEM. These packages do not support
generic parameters that are of a limited private type.

The packages whose names begin with "Link" use an access type. This allows a user to
manipulate objects in a linked list by pointing at them. These packages are instantiated with two
parameters. One is of type REC, which is the designated type of the access type ITEM, and the
other is of the access type ITEM. Rec can be a limited private type.

The linked list package names ending in "Ti" are used when the user wants to keep
statistics on queue length that are not related to time. "Ti" refers to the SIMCRIPT tallied integer
type.* Package names ending in "Ai" are used for maintaining time-dependent statistics on queue
length, such as average buffer length. "Ai" refers to the SIMSCRIPT accumulated integer type.*

The specifications for Lnk and Link will be given with examples showing how to use
them. The specifications for the remaining linked list packages are very similar to Lnk and Link
and so is their use. Each linked list package will be described.

5.1 Lnk

Lnk provides subprograms that allow a user to store and retrieve copies of objects in a
linked list.

5.1.1 Lnk Specification

The Lnk package specification is given below with detailed comments that explain how to
use the subprograms. The user should review this specification.

-1 -
-=-| Instantiate "LNK" with an object of type "ITEM".

-~| LNK defines an ordered linked list of type "LIST".

--| The ordering of the list is determined by the type of
--| operation used to insert Members into the list:

--| ORDERING OPERATION
=1 rmo Append
aad LIFO Push
== BIFO Instantiation of "Incl”
-
with Sim;
generic

type ITEM is

private;

package Lnk is

continued

*CACI, Inc. 1983. SIMSCRIPT 11.5 Programming Language.. Los Angeles, CA.
32

type LIST is
private;

function N1
{ Lat : LIST)
return NATURAL;

-={ Returns the number of items in the list.

function Init

return LIST;
-1

~=| Returns an initialized list.
~=| This create a nevw linked list that contains 0 items.

procedure Dump
({ Lst : in out LIST);

-~} Dump removes all Items from a list.

procedure Dispose
(Lst : in out LIST);

--| Dump and Deallocate resources.

procedure Traverse
(Lst : in out LIST;
Mbr : out ITEN;
Found : out BOOLRAN;
Dxr : 8im.Dir := Sim.Normal);

-
--| Initializes a list traversal according to the DR

~~{ parameter. For nonempty lists, if "DR~=Normal® then
--| the froant element of “Lst" is returned in "Mbr" and
--| successive calls to "Next" and "Delete" return

--| elements successively closer to the back of "Lst".
--{ If "DRmopposite”, then the back element of "Lst" is
~=| returned in "Mbr" and successive calls to "Next" and
-~| "Delete” return elements successively closer to the
--| front of "Lst".

--1

-=| If "Lst" is empty then the value returned in Mbr is
-=| "aull” and the value of "Found” is false.

procedure Next
{ Lst : in out LIST;
Mbr : out ITEM;
Found : out BOOLEBAN);

--| "Next" may only be called after "Traverse®”, "Next"
--| or "Delete”. A call to "Next" after a call to any
--| other list operation is considered erronecus and may
--] cause unanticipated results. For nonempty lists,

~~| "Next" returns a member, but does not remove it from
~-~| the "Lst".

procedure Delete
(Lst in out LIST;
Mbr : out ITEM;
Found : out BOOLEAN);

continued

33

-=-| "Delete" may only be called after "Traverse", "Next"
~=| or "Delete”. A call to "Delete" after a call to any
--| other list operation is considered erroneocus and may
«-| cause unanticipated results. For nonempty lists,

-={ "Dalete"” returns a member "Mbr", and deletes from
--| the list the member returned in the previous call to
-~} "Traverse", "Next" or “Deleste". For example,

-=-] consider the following sequence:

-1 Traverse (L,M,F, Normal):
-= Next (L,M,F):;
--] Delete (L,M.F);

-=| The Call to "Delete” would have deleted the member
~=-| returned from the call to "Next".

procedure Insert
{ Lst : in out LIST;
Mbxr : ITEM);

--| “Insert" operates relative to "Traverse", "Next",
--| and "Delete". If the direction is Normal, then
--| "Insert™ inserts "Mbr" just before (i.e., toward
--| the front) the member returned from the last call
--| to "Traverse", "Next", or "Delete". If the

--| direction is Opposite then"Insert" inserts "Mbr"
-~] just after (i.e., toward the back) the member

~=-| returned from the last call to "Traverse®", "Next",
--| or "Delete".

procedure Push
(Lst : in out LIST;
Mbr : ITEM);

== LIFO Queueing Discipline

--| Procedure "Push” inserts a member at the front of
=={ a list. It is equivalent to "Traverse, Insert"
--| with a direction of "Normal".

procedure Append
{ Lat : in out LIST:
Mbr : ITEM);

-=1 FIFO Queueing Discipline

--| Procedure "Append" Inserts a member at the Back of
--| a List. It is equivalent to "Traverse, Insert"
--{ with a direction of "Opposite".

procedure Pop
{ Lst : in out LIST;
Mbr : out ITEM;
Found : out BOOLEAN);

-=-| For nonempty lists, Pop deletes and returns the
--| front member of a list. If empty, it returns false
-=-| in "found".

procedure Ramove
(Lst : in out LIST;
Mbr : ITEM);

--| Procedure Remove searches for Mbr in the list. If continued

34

-=] it is found, it deletes it from the list.

generic
type UNKNOWN is
private;

-=-| Package search uses a user provided function that
-~-| defines the match. For example, the match may
--| be on one element in a record.

with function Match
(Unk : UMKNOWN
Mbr : ITEM)
return BOOLRAN;
package Search is

--| Procedure Find begins at the start of Lst to

--| search for Mbr that matches Unk. On a hit, Mbr is
--|1 returned and Found is set to true. User provided
--| match function doe the matching. Procedure ¥ind
--| always returns first Mbr found.

procedure Find
{ Lat : in out LIST;
Unk : UNKNOWN;
Mbr : out ITEM;
Found : out BOOLEAN)

--| Procedure Find Next works like Find but is used
-=| for subsequent calls to return next occurrences of
--| OMK.

procedure Find Next
(Lst : in out LIST;
Unk : UNKROWN;
Mbr : out ITEM;
Pound : out BOOLERAN);

--{ Procedure Remove starts at front of Lat and
--| removes lst occurrence of Unk for which thexre is a
-=| match, as defined in usez provided match function.

procedure Remove
{ Lst : in out LIST;
Unk : ONKNOWN;
Mbr : out ITEM;
Removed : out BOOLEANM)
end Search;

generic
with function "<=*
{ Itm, Mbr : ITEM)
raturn BOOLRAN is <>;
procedurs Incl
(Lst : in out LIST;
Ita : ITEM);

--| Seazches from back to front. Mbr when Itm <= Mbr, Ita

continued

35

-={ is Inserted on the Rvs side of Mbr.

Passed End Of List, Uninitialized List .
: exception;

-- Private portion of specification deleted in this
-- documentation.

end Lnk;

5.1.2 Lnk Example

The use of all subprograms that are defined in package Lnk is illustrated in the example
below.

with Sim;

with Lnk;

with Text IO;
procedure Test_Lnk is

type TEST NUMBER TYPE is
(ONE, TWO);

package Enum IO 1is
new Text IO.Enumeration_IO (TEST NUMBER TYPE),

type VAL ARRAY is
array (1 .. 10)
of INTEGER;

type T _REC is
reacord
Received : BOOLRBAN;
Tries : NATURAL;
Del : FLOAT;
end record;

package T Pack is
new Lnk (T_REC);

package I_Pack is
new Lnk (INTEGER):

T_List
: T_Pack.List;

Mbr
: T_REC;

-- Initialize members that are of type
== T Rec.

Mbrl
: T REC := (False, 1, 1.0);

Mbr2
: T_RREC := (TRUE, 2, 2.0);

continued

36

Mbrx3
: T_REC := (False, 3, 3.0);

Mbr4é
: T_REC := (TRUR, 4, 4.0);

MNbrS
: T_REC := (TRUE, 5, 5.0);

Nbxé
: T_REC := (TRUE, 6, 6.0);

Mbx?7
: T RRC := (TRUR, 7, 7.0);

Mbx8
: T REC := (TRUR, 8, 8.0);

I_List
: I_Pack.List;

L
: INTEGER;

~=- Initialize members that are of type
~= integer.

Ll
: INTEGER := 1;

L2
: INTEGER := 2;

L3
Le
: INTEGER := 4;

nd
: BOOLEAN;

Ramoved
: BOOLRAN;

Test_Numb
: TEST_NUMBER TYPE;

No_Of Items

: WATURAL;

Unk
: INTEGER;
-~ Function below used for generic function MATCH in
-- package SEARCH.
-— When N and M match function A returns true.

function A
{ B : INTEGER;

if ¥ = M then

continued

37

return TRUEB;
else
return False;
end if;
end A;

package S8 Pack is
new I Pack.Search (INTEGER, A):;

== Function below is imported for generic
-~ function "<=" which is used with procedure INC.

function Less_Important
({ L : INTEGER;
R : INTEGER)
return BOOLEAN is
begin -- Less_Important
if L > R then
return TRUE;
alse
return False;
end if;
end Less_Important;

procedure Include is
new I Pack.Incl (Less_Important);

begin -- Test_Lnk
Text_IO. Put("lntor test number >");
Bnum I10.Get (Test _Numb) ;
case Test ,_Numb is
when ONE =>
~=- Init initializes the linked list whose members
-- are T Recs.
T Liat i= T Pack.Init;
-= Next line positions to front
-- of T List. It is an empty
-- linked list so Mbr is null and
~- Fnd is false.
T_Pack.Traverse(T List, Mbr, Fnd);
~— Next line inserts Mbrl in
-~ in T List.
T_Pack.Insert(T List, Mbril);
-- Next two lines insert Mbr2
-= in front of Mbrl and then
-= Mbr3 in front of Mbr2.
T_Pack.Insert(T List, Mbr2);
T Pack Insert (!I.‘ List, Mbr3l):;
-= Hext two lines insert Mbrd
-- at end of list and then
-- Mbr5 after Mbrd.
T_Pack.Append (T List, Mbrd);
T _Pack.Append(T List, MbrS);
~- Next line removes Mbrl from list.
T_Pack.Remove (T_List, Mbrl);

- Number of items in list is 4.
¥o_Of Items := T Pack.N1(T List);
~-"The order of T ' List now r is:

- Mbr3
- Mbr2
- Mbr4d
-~ MbrS

continued

38

-~ Dump clears all members from list.
T_Pack.Dumsp (T List);
-= Number of items in list is 0.
No_Of Items := T Pack.N1(T List);
-~ Next four statements insert members so in
-- sequential oxrder in list.
T_Pack.Push (T _List, Mbr2);
T] " Pack. Pu-b(l‘ List, Mbrl):;
T] " Pack. Appond('.l.‘ List, Mbr3);
T] " Pack. Appond(r List, Mbrd);
-- Next statement positions to end of list.
T_Pack.Traverse(T List, Mbr, Fnd, Sim.Opposite);
-= Move to second member from end, Mbr3.
T_] Pack .Next (T Liat, Mbxr, Fnd);
-= Deleate Mbr3 from liat.
T_Pack.Delete(T List, Mbr, Fnd);
-- Remove front member from list.
~- Front member is Mbrl.
T Pack.Pop(Z_List, Mbr, Fnd);
-- No_of_Items below is two.
No_ Of Items := T] Pack. N1(T List):
-- Dispose clears list and deallocates
-=- resources.
T _Pack.Dispose(T List);
when TWO =>
~- Init initializes the linked list whose members
-- are of type integer.
I_List := I_Pack.Init;
-- No_of Itm in list is ©.
No Of Items := I_Pack.N1(I List)’
I_Pack.Push(I_List, L4);
I "Pack. Pulb(I List, L3);
I “Pack. Pulh(I List, 11);
-~ Next statement starts at end of I List and
-~ inserts L2 in front of first member of
-- list that it is less than.
Include(I_List, 12):
-~ After INCLUDE the list is ordered:
- Ll
-- L2
- L3
- L4

-~ Find searches I_List from front for first
-~ Mbr that matches UNK. Match is defined in
-=- user providad function A above.

Unk := 3;

8 PICk Find(I List, Unk, L, Fnd);

-= The value returned above for L is 3 and
-~ Fnd is true.

-~ Hext statement searches for next match.
-- In this case there are none and ¥nd is false.
S_Pack.Find_Next (I_List, Unk, L, Fnd);
-- Next statement removes member
-- that matches UNK. Again match is defined in
-= user provided function A.
-- Values returned in L and removed are 3 and
-~ true respectively.
8 | Pack. Remove (I_List, Unk, L, Removed):;
end case;
end Test_ Lnk;

39

5.2 Lnk_Ai

Package Lnk_Ai closely resembles package Lnk. In addition to containing the same
subprograms as Lnk, package Lnk_A offers several additional capabilities. For example, Lnk A
maintains accumulated integer statistics on queue length and provides a method for identifying
variables that may be graphed. The graphing capability has not yet been implemented. The
accumulated integer statistics on queue length are maintained automatically. To examine the
variable of statistics associated with a list, LIST, the user calls the function Var. The specification
for Var is

function Var
(Lst : LIST)
return Ai.Variable;

The statistics variable, Ai.Variable, is explained in Section 6.7.

The discriminant in the type statement, shown below, is a sequence number that identifies
the variable that might be graphed. The sequence number is incremented when the variable is
declared.

type LIST
(Seq :NATURAL := Stat.Seq(Stat.Al) is
private;

5.3 Lnk_Ti

Package Lnk_Ti provides a capability for (1) storing and retrieving a copy of an object in
a linked list and (2) maintaining integer statistics on queue length.

5.4 Link

Package Link provides a capability for storing and retrieving objects in a linked list when
using an access type.

5.4.1 Link Specification

The package specification for Link is given, with comments, below.

--| Instantiate "LINK" with an object "Rec" and its access
--| type "ITEM". LINK defines "LIST", an ordered linked
--| list. The ordering of the list is determined by the
--| type of operation used to insert Members into the

continued

-=| list:

-1 ORDRRING OPRRATION
-] PINFO Append
--] LIFO Push
-~ BIFO instantiation of "“Inel"
with Sim;
generic
type REC is

limited private;

type ITEM is
access REC;

package Link is

type LIST is
private;

function Wl
{ Lst : LIST)
return MATURAL;
--1

--| Returns the number of items in the list.

function Init
return LIST;
--1

--|] Returns an initialized list.

function First
(Lst : LIST)
return ITEM;
--1
--| Returns the firxrst member in the list (does not
--| delete).

procedure Dump
{ Lst : in out LIST);

~=-| Dump removes all Items from a list.

procedure Traverse
({ Lst : in out LIST;
Mbr : out ITENM;
Found : out BOOLERAN;
Dr : Sim.Dir := Sim.Normal);

--| Initislizes a list traversal according to the DR

--| paramster. For nonempty lists, if "DRe=Normal"” then
--] the front element of "Lst” is returned in "Mbr" and
=-=| sucocessive calls to "Next” and "Delete” return

~-| elements su sively cl to the back of "Lst". If
-~| "DR=opposite”, then the back element of "Lst" is

--| returned in "Mbr" and successive calls to "Next" and
-=] "Delete™ returns elements successively closer to the
--| fromt of “Lst”.

-~| If "Lst" is empty then the value returned in Mbr is

continued

41

"null” and the value of "Found" is false.

procedure Next
{ Lst : in out LIST;

Mbr : out ITEM;
Found : out BOOLEAN);

-]

"Next"” may be called after "Traversal”, "Next" or
"Delete". A call to "Next" after a call to any other
list operation is considered erronecus and may cause
unanticipated results. For nonempty lists, "Next"
returns a member, but does not remove it from the
"Lat".

procedure Delete

(

Lst : in out LIST;
Mbr : out ITEM;
Found : out BOOLEAN);

"Dalete"” may only be called after "Traverse", "Next"
or "Delete". A call to "Delete" after a call to any
other list cperation is considered erroneocus and may
cause unanticipated results. For nonempty lists,
“Delete™ returns a member "Mbr", and deletes from
the list the member returned in the previous call to
"Traverse”, "Next" or "Delete"”. For example, consider
the following sequence:

Traverse (L,M,F, Normal);

Next (L,M,F);

Delete (L,M,F):;
The Call to "Delete"” would have deleted the member
returned from the call to "Next".

procedure Insert

(

Lst : in out LIST;
Mbr : ITEM):;

.-_l

"Insert" operates relative to "Traverse", "Next", and
"Delete". If the direction is Normal, then "Insert"
insert "Mbr" just before (i.e., toward the front) the
menber returned from the last call to "Traverse”,
"Hext", or "Delete". If the direction is Opposite
then "Insert” inserts "Mbr" just after (i.e., toward
the back) the member returned from the last call to
"Traverse”, "Next", or "Delete".

procedure Push

(

Last : in out LIST;
Mbr : ITRM);

LIFO Queueing Discipline

Procedure "Push” inserts a member at the front of a

list. It is equivalent to "Traverse, Insert” with a
direction of "Normal"™.

procedure Append

(

Lat : in out LIST;
¥Mbr : ITEM);

continued

42

-1 FIFO Queueing Discipline

--| Procedure "Append" Inserts a member at the Back of a
-~| List. It is equivalent to "Traverse, Insert" with a
=-=-| direction of "Opposite”.

procedurs Pop
(Let : in out LIST;
Mbr : out ITEN;
Found : out BOOLERANM);

-=-| Fox nonempty lists, Pop deletes and returns the front
~-| member of a list. If empty, it returns false in
~~} “found".

proocedure Ramove
{ Lst : in out LIST;
Mbr : ITEM):

--{ Procedure Remove searches for Mbr in the list. If it
--| is found, it deletes it from the list.

generic
type UNKNOWN is
private;

--| Package search uses a user provided function that
--| defines the match. For example, the match may
--| be on one element in a record.

with function Match
(Unk : UNKNOWN;
Mbr : ITEM)
return BOOLEAN;
package Search is

--| Procedure Find begins at the start of Lst to search
~~-| for Mbr that matches Unk. On a hit, Mbr is returned
--| and Yound is set to true. User provided match

-=-| function is provided for matching. Procedure Pind
--| always returns first Mbr found.

procedure Find

{ Lst : in out LIST;
Unk : UNKNOWN;
Mbr : out ITENM;

Found : out BOOLEAN):;

--| Procedure Find Next works like Find but is used for
--| subsequent calls to return next occurrences of UNK.

prooedure Find Next
(Lst : in out LIST;
Onk : UNKNOWN;
Mbr : out ITEM;
Found : ocut BOOLEANW);

continued

43

--| Procedure Remove starts at front of Lst and removes
--| 1st occurrence of Unk for which there is & match,
-~| as defined in user provide match function.

procedure Remove
{ Lst : in out LIST;
Unk : OUNKNOWN;
Mbr : out ITENM;
Removed : out BOOLEAN)
end Search;

generic
with function "<="
(Itm, Mbxr : ITEM)
return BOOLEAN is <>;
procedure Incl
(Lst : in out LIST;

Itm: ITEM);
-1

--| Searches from back to front. Mbr when Itm <= Mbr, Itm
-=| is Inserted on the Rvs side of Mbr.

generic
with procedure Free
(Mbr : in out ITEM);
procedure Destroy
(Lat : in out LIST);

--| This routine Dumps and FREEs every element in the list,
-={ then "uninitializes” the list.
-~

Null Item, Passed End Of List, Uninitialized List
: exception;

~= Private portion of spacification deleted in this
-- document.

end Link;

5.4.2 Link Example

The example below illustrates the use of the subprograms contained in the package
specification Link. This example closely resembles the example given in Section 5.1.2.

with Unchecked_Deallocation;
with Sim;

with Link;

with Text_I0;

procedure Test_Link is

type TEST_NUMBER TYPE is

continued

(OME, TWO);

package Enum IO is
nev Text_I0.Enumeration_IO (TEST NUMBER TYPE).

type VAL ARRAY is
arzay (1 .. 10)
of INTEGER;

type T _REC is
record
Received : BOOLEAN;
Tries : MATURAL;
Del : FIOAT;
end record;

type T PIR is
access T_REC;

package T Pack is
new Link (T_RRC, T PTR);

type IP is
access INTRGER;

package I Pack is
new Link (INTEGRR, IP);

T_List
: T_Pack.List;

-~ Define members that are of access type.

Ybr
: T_PTR;

Mbrl
: T_PTR;

Mbr2
: T_PTR;

Mbr3
1 T_PTR;

continued

45

: I_Pack.lList;

-- Define members that are of type
-— integer.

L1l
: IP;

L2
: IP;

L3
s IP;

Pnd
: BOOLRAN;

Removed
: BOOLRAN;

Test_Numb
: TEST NUMBER_ TYPE;

No_Of Items
: NATURAL;

Unk
: INTEGER;

-- Procedure Free is input to generic procedure Destroy.
~- Destroy dumps and frees every element in a list and
-- then "unitializes" the list.

procedure Deallocate is
new Unchecked Deallocation (T _REC, T PTR);

procedure Free
(P : in cut T PIR)
renames Deallocate;

procedure Destroyer is
new T Pack.Destroy (Free):;

-- Function A is used for generic function MATCH in
-- package SEARCH. When N and M match, function A
-~ returns true.

function A
(¥ : INTEGER;
M: IP)
return BOOLEAN is
begin -- A
return N = M.all;
end A;

-- Function B is used for generic function MATCH in
-- package SEARCH. When N and M match, function A

continued

46

-=- returns true.
function B
(¥ : T_PIR;
M : T PIR)
return BOOLEAN is
begin -- B
if N.Del = M.Del then
return TRUR;
else
return False;
end if;
end B;

package S_Pack is
new I Pack.Search (INTEGER, A);

package U Pack is
new T_Pack.Search (T _PIR, B);

-- Function below is imported for generic
-- function "<=" which is used with procedure INC.

function Less_Important
(L : IP;
R :IP)
return BOOLEAN is
begin -- Less_Important
return L.all > R.all;
end Less_Important;

procedure Include is
new I_Pack.Incl (Less_Important);

begin -- Test_Link

~= Initialize members.
Mbr := new T _RRC;
Mbrl := new T REC’ (False, 1, 1.0);
Mbr2 := new T REC’ (TRUE, 2, 2.0);
Mbr3 := new T REC’ (False, 3, 3.0);
Mbr4 := new T REC’ (TRUE, 4, 4.0);
MbrS := new T REC' (TRUE,
Mbré := new T REC’ (TRUE,
Mbr7 := new T REC’ (TRUE,
Mbr8 := new T REC’ (TRUE,
Unk2 := new T REC’ (TRUE,

[i o o o ot
s

~

HEganUle
.~
HoJdnUna
00000
et v
e ve e we e

L1 := pew INTRGER' (1);
L2 := new INTEGER’ (2);
L3 := new INTEGER’ (3):;
L4 := new INTEGER' (4);
L := pnew INTEGER;

e oo

Text_IO0.Put ("Enter test number >");
Enum_IO.Get (Test_Numb) ;
case Test_ Numb is
when ONE =>
-=- Init initializes the linked list whose members
-~ are T_Recs.
T _List := T Pack.Init;
-- Next line positions to front
-~ of T List. It is an empty

continued

47

== linked list so Mbr is null and
-- Fnd is false.
T _Pack.Traverse(T List, Mbr, Fnd);
-= Next line inserts Mbrl in
-- in T List.
T_Pack. Inlort(!l.‘ List, Mbrl);
- Next two lines insert Mbr2
-- in front of Mbrl and then
-- Mbr3 in front of Mbr2.
T_Pack.Insert (T_List, Mbr2);
T_Pack.Insert (T List, Mbr3);
~- Next two lines insert Mbr4
-- at end of list and then
== Mbx5 after Mbr4d.
T _Pack.Append(T_List, Mbrd);
T_Pack.Append(T_List, MbrS);
-- Next line removes Mbrl from list.
'.I.‘ '_Pack.Remove (T_List, Mbrl);
- NMumber of items in list is 4.
No Of Items := T Pack.N1(T List);
--"The order of r List now is:
- Mbr3
- Mbr2
- Mbrd
- MbrS
-- Dump clears all members from list.
T_Pack.Dump (T_List);
-~ Number of items in list 1s 0.
No_Of Items := T Pack.N1(T List);
-- Next four statements insert members so in
-- sequential order in list.
T_Pack.Push (T _List, Mbr2):
T Pack.Push(T_List, Mbrl);
T_Pack.Append(T_List, Mbx3);
T_Pack.Append(T_List, Mbrd4):;
~= Next statement positions to end of list.
T_Pack.Traverse(T_List, Mbr, Fnd, Sim.Opp~site);
-- Move to second member from end, Mbr3.
T_Pack.Next (T_List, Mbr, Fnd);
-- Delete Mbr3 from list.
T_Pack.Delete(T List, Mbr, Fnd);
~- Ramove front member from list.
-=- Front member is Mbrl.
T_Pack.Pop(T_List, Mbr, Fnd);
-- No_of_Items below is two.
No_Of_Items := T Pack.N1(T List);
-- Get first member in list.
Mbr := ‘!_Pnck.!'irlt(!_l.:llt);
-- See if next member matches UNK2;
U_Pack.Find(T_List, Unk2, Mbr, Fnd);
-~ Dump and free elements in T List.
-- Then "uninitialize" T List.
Destroyer(T_List):
when TWO =>
~= Init initializes the linked list whose members
-- are of type integer.
I_List := I Pack.Init;
~- No_of_ Items in list is O.
No Ot Items := I Pack.N1(I List);
I P.ck Push (I_] List, Ld);
I Pack Push(I List, L3);
I_Pack Punh(I_Lin: Ll1);
-- Next statement starts at end of I_List and
-- inserts L2 in front of first member of

continued

48

-= list that it is less than.
Include (I_List, L2);

-- After INCLUDE the list is ordered:
- L1

- L2

- L3

- L4

-~ Pind searches I_List from front for first
~-- Mbr that matches UNK. Match is defined in
-- user provided function A above.

Unk := 3;

S_Pack.Find(I_List, Unk, L, Pnd);

~= The value returned above for L is 3 and
-- Fnd is true.

-~ Next statement searches for next match.
-- In this case there are none and Fnd is false.
S_Pack.Find Next (I_List, Unk, L, Fnd);
-- Next statement removes member
-=- that matches UNK. Again match is defined in
-- user provided function A.
-- Values returned in L and removed are 3 and
-- true respectively.
S_Pack.Remove (I_List, Unk, L, Removed);
end case;
end Test_Link;

5.5 Link_Ai

Package Link_Ai is similar to package Link. Link_Ai provides the additional capability of
maintaining accumulated integer statistics on queue length and a means for identifying variables
that might, in the future, be graphed.

The function below (as in package Lnk_Ai, Section 5.2) allows the user to get the
variable that contains the statistics on queue length.

function Var
{Lat : LIST)
return Ai.Variable;

The discriminant for the type statement for the list (also as in package Lnk_Ai) is a
sequence number that identifies a variable that might be graphed.

5.6 Link_Ti
Package Link_Ti is also similar to package Link. Link_Ti provides the additional

capability of maintaining tallied integer statistics on queue length. The sequence number for
graphing is also kept as a discriminant in the "type LIST" statement.

49

6.0 STATISTICAL PACKAGES

EARS contains seven primary statistical packages. The first three that will be discussed,
package Rand, Random_Distribution, and Random, are used for random number generation. The
remaining, packages, Ti, Tf, Ai, and Af, are used for maintaining and reporting tallied integer,
tallied floating point, accumulated integer, and accumulated floating point statistics. The terms
"tallied” and "accumulated” are defined in the C.A.C.I. publication.* The equations used to
calculate the tallied and accumulated mean and variance are given in the package specifications
for Ti, Tf, Ai, and Af.

EARS also contains package Stat. When writing a simulation the user does not need to
write any code that uses anything in this package. Therefore this package specification will not be
included in this guide.

6.1 PACKAGE Rand SPECIFICATION
The package Rand specification, shown below, contains three subprograms. The first,

function Number, returns a pseudorandom number between 0.0 and 1.0. The next two, procedure
Save_Streams and Restore_Streams, save and restore the values in the random number streams.

with Sim;
package Rand is

subtype STREAM RANGE is
INTEGER range 1 .. 100;

-- Number returns a random number using a seed found in the -- designated
stream.
function Rumber
(Stream : STREAM RANGE)
return Sim.Real;

-- Save_Streams writes the stream of seeds to the disk
-~ file File Name.
procedure Save_Streams

(¥ile Name : STRING);

-- Rastore_Streams reads in the streams from disk file
-- File Name.
procedure Restore_Streams

(Pile_Name : STRING);

end Rand;

6.2 PACKAGE Random_Distribution SPECIFICATION

Package Random_Distribution, given below, contains functions that allow a user to
generate random numbers from uniform, exponential, normal, and poisson distributions, as well as
from a step function. In EARS, package Random_Distribution is instantiated in the package
Random specification, which is given in the next section.

* CACI, Inc. 1983. SIMSCRIPT I1.5 Programming Language. Los Angeles, CA.

50

with Sim;
use Sim;

generic
~= STREAM RANGE ranges from 1 to the maximum
-- number of streams.
type STREAM RANGE is
range <)

-- Function Produce_Random returns a random
-- generator seed.
with function Produce Random
(Stream : STREAM RANGE)
return Real;
package Random Distribution is

function Uniform
(Stream : STREAM RANGE:
A : Real := 0.0;
B : Real := 1.0)
return Real;

function Bxp., ential
(Stream : STRRAM_RANGE:
Lambda : Real)
return Real;

function Normal
(Stream : STREAM RANGE:
Mean : Real;
Standarxd Deviation : Real)
return Real;

function Poilsson
(Stream : STREAM RANGE;
Lambda : Real)
return Real;

~~ Function Step returns a uniformly distributed
-- random numberxr, that is an integer, in the
-- range Low to Hi.
function Step
(Stream : STREAM RANGE;
Low, Hi : INTEGER)
return INTEGER;

end Random Distribution;

6.3 PACKAGE Random SPECIFICATION

This specification, shown below, contains the instantiation of Random_Distribution that is
used for EARS simulations. The stream range is from 1 to 100 for the VAX/VMS random
number generator. A user may supply his or her own random number generator that has a
different stream range. The function Number in package Rand is used to provide the seed.

with Rand, Random Distribution:
package Random is
new Random Distribution (Stream Range => Rand.Stream Range,
Produce_Random => Rand.Number);

51

6.4 PACKAGE Rand and Random_Distribution EXAMPLE

The example below illustrates how these random distribution packages are used.

with Random;

with Sim;

with Rand;

procedure Example Random is

Timel : Sim.Real;

Time2 : Sim.Real;

Time3 : Sim.Real;

Timed : Sim.Real;

Time5 : integex;
begin

-~ The next 5 executable statements illustrate how random
-- numbers from different distributions are obtained when
-~ Rand.Number is the procedure that provides the random
-=- number. Remember, this is true because in package

-~ Random the generic package Random Distribution is

-- instantiated such that function Rand.Number returns

-- the seed.

-- Get a random variable from a uniform distribution that
-- ranges from 0.0 to 5.0.
-- A seed from stream 1 is provided by function
-~ Rand.Number
Timel := Random.Uniform({1,0.0,5.0);
-- Timel = 1,73500448465347

-~ Get a random variable from a uniform distribution that
-- ranges from 0.0 to 1.0.
-- A seed from stream 1 is provided by function
~- Rand.MNumber
Time2 := Random.Uniform(l);
-- Time2 = 7.5552463531494148-003

-- Get a random variable from an exponential
-- distribution whose mean is 0.5.
~- A seed from stream 1 is provided by function
-= Rand.Rumber
Time3 := Random.Exponential(l,0.5);
-- Time3 = 8.937345308823633E-002

-- Get a random variable from a normal distribution
~~ whose mean is 10.0 and standard deviation is 1.0.
-- Same seed as above.
Timed := Random.Normal(l,10.0,1.0);

~- Timed = 10.5573352087283

~= Get & random variable from a uniform distribution that
-- ranges from 0 to 99. The random variable is an integer.
-- Same saed as above.
Tima5 := Random.Step (1,0, 99);

-- TimeS = 0

~~ The next statement illustrate the use of procedure
-~ Rand.Save_Streams which saves the current stream of
-~ random number seeds that is defined in package body
~- Rand. They are saved in file Stream Filel.
Rand.Save_Streams ("Stream Filel");

-- The next statement reads this stream from file
-- Stream ¥ilel, back iunto package body Rand.
Rand.Restore_Streams("Stream Filel");

end Example_Random;

52

6.5 PACKAGE Ti SPECIFICATION

The specification for package Ti is given below with comments. This specification defines
a variable type for maintaining statistical information and provides procedures required for
maintaining and reporting tallied integer statistics. The procedure Reset is used to reinitialize the
values in the user’s parameter that is of type VARIABLE. This is only done to reinitialize the
values. The initialization of these values is automatic to the user. Procedure Assign is used to
continuously update the statistical information. Procedures Mean, Variance, and Std_Dev calculate
and return these statistics. Procedure Report writes out these statistics and additional information
to either the user’s monitor or to a file. Procedure Brief writes out statistics and additional
information that is needed for graphing to a file. Procedure Report writes descriptive words (in
strings) next to the data, so that the file is easy to read. Procedure Brief only writes out the data.

When using procedures Mean, Variance, Std_Dev, and Report, the user has the option of
either having exceptions raised within the procedure or having an Error_Type returned to the
calling procedure.

with Sim, Text IO, Stat;
use Sim, Text IO;

package Ti is

-- Error_Type contains types of errors that may be
-- propagated from the subprograms in this
type m_rm is

{ MONE, CONSTRAINT, NODATA, OTHER);

~- Variable is the type dafinition for records
-- where statistical information is stored.
-- The discriminant, Seq, contains an ID number
-- that is intended to be used for graphing
-~ purposes. It may, for example, be used as a
-- node ID. Procedure Brief, below, writes
-- statistics to a file which later may be graphed.
type VARIABLE
(Seq : NATURAL := Stat.Seq(Stat.Ti)) is
record
N : NATURAL := 0;
Sum X : MATURAL := 0;
Sn : Real := 0.0;
Max X : INTEGER := INTEGER'First;
Min_X : INTRGER := INTEGER'Last;
X : INTEGER;
end record;

pzocedure Reset
(Var : in out VARIABLE);
-=] Resets Stats;

procedure Assign
(Var : in out VARIABLE;
Value : INTEGER);
--| Assign a new value to the variable.

continued

53

-~ The equation below is used to calculate the mean.
-- mu(n) = sum of n values/n

- where n represents the number of observations and
- what is inside parentheses is a subscript

== The equation below is used to calculate the variance.

-- S(n+l) = S(n) + [n/[n+1l]] * [x(n+l) - mu(n)]**2 -
-= V(n+l) = [1/n] * S(n+l)

procedure Mean
(Var : VARIABLE;
Result : out Real;
Error : out ERROR TYPE;
Propagate : BOOLEAN := TRUE)
--| Return the average value of the variable.
--| Exceptions may or may not be propagated.

procedure Variance
(Var : VARIABLE;
Result : out Real;
Error @ out ERROR TYPE;
Propagate : BOOLEAN := TRUE);
=-=] Return the variance of the variable values.
--| Exceptions may or may not be propagated.

procedure Std Dev
(Var : VARIABLE;
Result : out Real;
Error : out ERROR TYPE;
Propagate : BOOLEAN := TRUE);
--| Reaturn the standard deviation of the variable values.
-=-| Exceptions may or may not be propagated.

procedure Report
{ Vax : VARIABIR;
Propagate : BOOLEAN := False);
--| Prints statistica, in human readable form, to monitor.
--| Exceptions may or may not be propagated.

procedure Report
(P : Pile Type;
Var : VARIABLE;
Propagate : BOOLEAN := False);
--| Prints statistics, in human readable form, to a file.
--| Exceptions may or may not be propagated.

procedure Brief
(® : File Type;

Typ : Stat.Id;

Var : VARIABIE);
-=| Writes Brief report to a file according to format
--| specifications defined in package Stat. File contains
--| statistics and is intended for graphing purposes.
--| Typ 1s a 4 character string ID provided by the user

end Ti;

6.6 PACKAGE Tf SPECIFICATION

This specification, shown below, defines a variable type for maintaining statistical
information and provides procedures required for maintaining and reporting tallied floating point
statistics. The package Tf specification, which is given below, is similar to the package Ti

specification. The comments explain the relevant aspects of this specification.

54

with Sim, Text IO, Stat;
use Sim, Text_ IO;

package Tf is

-- Error_Type contains types of errors that may be
-- propagated up from the subprograms in this
-- package.
type ERROR_TYPE is
(NOME, CONSTRAINT, NODATA, OTHER);

-- Variable is the type definition for records
-- where statistical information is stored.
-- The discriminant Seq is a sequence number that i»s
-- an ID number that is needed for graphing purposes.
-~ Procedure Brief writes statistics to a file
~- vwhich later may be graphed.
type VARIABLR
(Seq : NATURAL := Stat.Seq(Stat.Tf)) is
record
N : INTRGER := 0;
Sum X : Real := 0.0;
Sn : Real := 0.0;
Max X : Real := Real’First;
Min X : Real := Real’lLast;
X : Real;
end recoxd;

procedure Reset
(Var : in out VARIABIE):;
~-| Resets Stats;

procedure Assign
{ Var : in out VARIABLE;
Value : Real);
-~} Assign a2 new value to the variable.
-- fue equation below is used to calculate the mean.
-- ma(n) = sum of n values/n

- where n represents the number of obsex ..ions and
- what is inside parentheses is a subscript

-- The equation below is used to calculate the variance.

-~ 8({n+l) = 8(n) + [n/(n+l]] * [x(n+l) - ma(n)]**2

-= V(n+l) = [1/n] * S(n+l)

proocedure Mean
(Var : VARIABLE;
Result : out Real;
Error :@: out ERROR TYPEK;
Propagate : BOOLEAN := TRUE);
--| Return the average value of the variable.
--| Exceptions may or may not be propagated.

procedure Variance
{ Var : VARIABLE;
Result : out Real;
Error : out ERROR_TYPR;
Propagate : BOOLRAN := TROR);
--| Return the variance of the variable values.

continued

55

--| Exceptions may or may not be propagated.

procedure Std_Dev
{ Var : VARIABIE;
Result : out Real;
Error : out ERROR TYPE:;
Propagate : BOOLEAN := TRUB);
-=| Return the standard deviation of the variable values.
--| Exceptions may or may not be propagated.

procedure Report
(Var : VARIABIR;
Propagate : BOOLEAN := False);
--| Prints statistics, in human readable form, to monitor.
--| BExceptions may or may not be propagated.

procedure Report
(P : File_Type:
Var : VARIABIE;
Propagate : BOOLEAN := False)
--| Prints statistics, in human readable form, to a file.
--| Bxceptions may or may not be propagated.

procedure Brief
(P : File_Type:;

Typ : Stat.Id;

Var : VARIABIE);
-=-| Writes Brief report to a file according to format
~=] specifications defined in package Stat. File contains
--|] statistics and is intended for graphing purposes.
~-| Typ is a 4 character string ID provided by the user.

end Tf;

6.7 PACKAGE Ai SPECIFICATION

This specification defines a variable type used for maintaining statistical information and
provides the procedures required for maintaining and reporting accumulated integer statistics. This
specification is analogous to the package Ti specification. The specification with comments is
given below.

with Text_ IO, Stat;
use Text IO;

with Sim;

use Sim;

pPackage Al is

-- Error_Type contains types of errors that may be
-- propagated from the subprograms in this package
type ERROR_TYPE is

{ NOME, CONSTRAINT, NODATA, OTHER);

continued

56

== Variable is the type definition for records
-=- where statistical information is stored.
== The disoriminant Seq is a sequence number
=- that is in an ID number used for graphing
-- purposes. Procedure Brief writes statistics
-- for a file which later may be graphed.
type VARIABLE
(Seq : NATURAL := Stat.Seq(Stat.Al)) is
record
Initialized : boolean := false;
T 0 : Real := 0.0;
T_Last : Real := 0.0;
Sum X : Real := 0.0;
Sum_Squares_X : Real := 0.0;
Max X : INTRGER := INTRGER'First;
Min X INTEGER := INTEGER' Last;
X : H
end record;

procedure Reset
(Var : in out VARIABLE);
-- Reset Stats.

procedure Assign
(Var : in out VARIABLE;
Value : INTEGER);
-- Assign a nev value to this variable.

-- The equations below, which came from the text,

-~ "SIMSCRIPT II.5 Programming Language™, C.A.C.I.,
-- {pg 390), are used to calculate the mean
-~ and variance.

-- SUM summation of x * [TIME.V - TL]
-- SUM.OF.SQUARES summation of [x**2] * [TIMR.V -TL]
-=- MEAN SUM/[TIMR.V ~ TO)]

-= MEAN.SQUARE SUM.OF .SQUARES/ [TIME .V ~ TO]
—= VARIANCE MEAN.SQUARE -~ MRAN®#2

- where TIME.V is simulation clock time,

- TL is the simulated time at which an
- an accumulated variable was set to
- its current value, and

- TO0 is the simulated time at which

- sccumulation starts

procedure Mean
(Var : VARIABIR;
Result : out Real;
Error @ out ERROR TYPE;
Propagate : BOOLRAN := TRUE);
-=- Raturn the mean value of the variable.
-=- Exceptions may or may not be propagated.

proocedure Varianoce
(Var : VARIABLE;
Result : out Real;
Rrror : out ERROR _TYPR;
Propagate : BOOLEAN := TRUE);
-~ Raturn the variance of the variable values;
-- Exceptions may or may not be propagated.

procedure Std Dev
{ Var : VARIABLIR;

continued

57

Result : out Real;

Exrror : out ERROR TYPK;

Propagate : BOOLEAN := TRUE)
-- Return the standard deviation of the values. -
-~ Exceptions may or may not be propagated.

(Var : VARIABLER;
Propagate : BOOLEAN := False);
~- Prints statistics, in human readable form, to monitor.
-- Bxceptions may or may not be propagated.

procedure Report
(F : File_Type;
Var : VARIABLE;
Propagate : BOOLRAN := False);
-=- Prints statistics, in human readable form, to a file.
-~ Rxceptions may or may not be propagated.
procedure Brief
(¥ : File_Type;
Typ : Stat.1ld;
Var : VARIABLIE);
-- Writes Brief report to a file according to format
-- specifications defined in package Stat. File contains
~-- statistics and is intended for graphing purposes.
-- Type is a 4 character string ID provided by the user.

end Al;

6.8 PACKAGE Af SPECIFICATION

This specification, given below, defines a variable type for maintaining statistical
information and provides the procedures required for maintaining and reporting accumulated
floating point statistics.

with Sim;
use Sim;
with Text IO;
use Text IO;
with Stat;

package Af is

-- Variable is the type definition for records
~- where statistical information is stored.
-~ The discriminant Seq is a sequence number that
~- is intended as an ID number for graphing purposes.
-- Proocedure Brief writes statistics to a file
-- which later may be graphed.
type VARIABLE
(Seq : NATURAL := Stat.Seq(Stat.Af)) is
recoxrd
Initialized : boolean := false;
T 0 : Real := 0.0;
T Last : Real := 0.0;
Sum X : Real := 0.0; -

cont inued

|

58

Sum_Squares X : Real := 0.0;

Max X : Real := Real'Fixst;
Min X : Real := Real’lLast;
X : Real;

end record;

-- Error_Type contains types of error that may be
-~ prxopagated up from the subprograms in this
-- package.
type ERROR TYPE is
{ NONE, CONSTRAINT, NODATA, OTHER);

prooecure Reset
(Var : in out VARIABIE);
-- Reset Stats.

procedure Assign
(Var : in out VARIABLR;
Value : Real):
-- Assign a new value to this variable.

-- The equations below, which came from the text,
~- "SIMSCRIPT II.S5 Programming Language”, C.A.C.I.,
-- (pg 390), are used to calculate the mean and

-~ variance.

- SUM summation of x * [TIMR.V - TL]}
-=- SUM.OF.SQUARES summation of [x**2] * [TIMR.V - TL]
- MERAN SUM/[TIME.V - TO}

- MRAN . SQUARE SUM.OF .SQUARES/ [TIME.V - TO]
- VARIANCE MEAN.SQUARE - MRAN**2

- where TIME.V is simulation clock time,

- TL is the simulated time at which an
- accumalated variable was set to its
- current value, and

- TO is the simulated time at which

e accumlation starts

procedure Mean
(Var : VARIABLE;
Result : out Real;
Exrror : out ERROR TYPR;
Propagate : BOOLEAN := TRUE);
-- Raturn the average of the variable.
-- Exceptions may or may not be propagated.

procedure Variance
(Var : VARIABLRE:;
Result : out Real;
Error :@ out ERROR TYPEK;
Propagate : BOOLEAN := TRUE);
-- Return the variance of the variasble values.
-- Exceptions may of may not be propagated

Procedure Std Dev
{ Var : VARIABLR;
Reasult : out Real;
Brror : ocut ERROR_TYPR;
Propagate : BOOLRAN := TRUR);
~= Raturn standard deviation of variable values.
-- Exceptions may or may not be propagated

proocedure Report

continued

59

(Var : VARIABLE;
Propagate : BOOLRAN := False);
-- Prints statistics, in human readable form, to monitor.
-- Rxceptions may or msy not be propagated.

procedure Report
(P : Prile Type;
Var : VARIABLE;
Propagate : BOOLEAN := False);
-=- Prints statistics, in human readable form, to a file.
-- Exceptions may or may not be propagated.

procedure Brief
(r : rilo_rypo:

Typ : Stat.Id;

Var : VARIABLE),
-=- Writes Brief repoxt to a file according to format
~=- specifications defined in package Stat. File contains
-- statistics and is intended for graphing purposes.

-- Typ is a 4 character string ID provided by the user.
end Af;

6.9 PACKAGE Ti, Tf, Ai, Af EXAMPLE

The example below shows how the subprograms in these four packages are called.

-- This procedurs illustrates the use of the visible
-- subprograms contained in packages Ti, Tf, Ai, and Af.

with Stat;

with EV;

with SIM;

with TF;

with TI;

with AF;

with AI;

with Text_IO;

use SIM; -- Type Real is used from package SIM.
-- Bv.Clock is of type SIM.Real

procedure Stat Example is

Type Test_Type is (TF _Test,TI Test,AF Test,AIl Test):;
package Enum IO is new Text_. 10.Enumeration IO(Tclt _Type) ;
-- Define parameters of variable type for the four

~~ packages.

Tallied Var Tf : IF.VARIABLE;

ralliod Vvar_ T4 : TI.VARIABLE;

Accum Vu' AF : AP.VARIABLE;

Accum | Vu: AL : AI.VARIABLE;

-- The result and error variables, which are defined

-- below, return the results and error_type, respectively,
-- from the Mean, Variance, and Std Dev procedures.
Result_Tf : Real;

Error Tf : TF.Rrror_Type;

Result _Ti : Real;

Exror_Ti : TI.Error_Type;

continued

Result Af : Real;

Exrroxr Af : Al‘.lxtot_rypo:

Result_Ai : Real;

Rxrorx_| X AI Exror_Type;

- ‘.l'ont T is a parametar that indicates which package
~=- will be tested. Test T will be input below.

Teat T : Test Type;

-- Prop = true indicates that exceptions that occur in
-- proocedure Mean, Variance, Std Dev, and Report will be
-- propagated up.

Prop : boolean := true;

-=- Otf and Otf2 are used when statistics are writtem to
-- a file using procedure Report and Brief

Otf : Text_IO.File Type:

Otf2 : Text_ I0.File Type;

-- The IDs below are used in procedure Brief. They

-- are used for graphing purposes to identify which

-= call to Brief the statistics are associated with.
ID : Stat.ID := "0001";

ID2 : Stat.ID := "NDO2";

ID3 : Stat.ID := "NDO3";

ID4 : Stat.ID := "NDO4";

begin

Text_IO.Create (Otf2, Text IO.Out_File, "Test_Output”);
Text_IO.put
("enter TF_TEST, TI_TEST, AF_TEST, or AI_TEST >");
Enum_IO.get (Test_T);
case Test_T is
vhen TF_TBST =>
-- Result_T£f, which is returned from Msan, Variance,
-- and Std Dev below contains 0.0 and [no data] is
-- printed to the users monitor from Report. This is
~=- txrue since no value has been assigned to
-- Tallied Var_Tf. These procedures ars normally
-~ called only after a value has been assigned. If
-- an error occurs, then it is propagated up.
TF .Mean (Tallied Var Tf,Result_Tf, Error Tf, Prop);
TF .Variance (!I.'alliod Var_Tf, Result ,_Tf, R:tor T£,Prop) ;
TF.8td_Dev(Tallied Var_7f, R.sult Tf, Rrror_Tf,Prop) ;
™. Ropo:t (Tallied Vu: TL,Prop);

-~ The values 0.0 and 1.0 are assigned. This means
== that statistics for these values are being

-- maintained.

TF .Assign(Tallied Var_7T£,0.0);

TF. M-ign(!alli.d Var Tt 1.0);

-- The variance returned below in Result_Tf is 0.25
-- If an error occurs, it is not propagut.d up.
TF.Variance (Tallied Vaxr_ Tf, Result Tf EBrror_Tf);
Ev.Clock := 3.0;

TF.Assign(Tallied Var_T£,2.0);

~- Create file, TF_Test, that will contain statistics.
Text IO. Cr.ltc(otf Text_IO.OUT FILE, "TF TIS'.!") H

-- The file, TF_Test, coatains statistics.

TP.Brief (Ot £, ID3, Tallied Var > Tf);

-- Raport prints the following information to the

-=- user’s monitor:

-=- X:2.000 Mean: 1.000 Std: 0.816 Var: 0.667

== Obs: 3 Sum:3.000 Min:0.000 Max:2.000

TF .Report (Tallied var_TF);
RBV.Clock := EV.Cl +1.0
TF.Assign(Tallied Var T£,3
RV.Clock := ERV.Clo 1.0

.
.

0);

continued

61

TF .Brief (Otf,ID3, Tallied Var Tf):;

== Raport prints the following information to
~- the user’s monitor:

-- X:4.00 Mean:2.000 sStd: 1.414 Var: 2.000

-- Obs: 5 Sum:10.000 Min:0.000 Max:4.000

TF .Report (Tallied Var_Tf);

TR .Assign(Tallied Var_T£,4.0);

TF .Mean (Tallied Var_' Tf, Result_Tf,RError_Tf);

TP .Variance (Tull:l.od Var_Tf, Rn-ult T£,Error - Tf) ;
TF.Std_Dev(Tallied ! Vnr Tf, Result '.!f Brror !I.'f),
™. chort(!nlliod Var !f),

-- Do report to file. If an error occurs do not
-- propagate it up.

Prop := false;

TF .Report (Ot£2,Tallied Var_Tf,Prop);

TF .Reset (Tallied Var ‘.l‘f),

wvhen TI_TEST =>

!I.)hun(l'lllicd Var_TI,Result_TI, Error_TI,Prop);

TI.Variance ('l'clliod Var_TI, R.-ult TI, thor TI,Prop);
TI.Std Dev(Tallied ' le' '.I.‘I Result '.I!I Error_ TI Prop);
-- The following information is printed to the user’'s

-- monitor from report:
-=- [no data]
TI.Report(Tallied Var_TI,Prop;;

TI.Assign(Tallied Var_Ti,0);

TI. Mnign(!alliod Var_ "r,1);

TI.Variance (Tallied Vu: Ti,Result_Ti, RBrror_Ti);
TI.Assign(Tallied Vur 71,2);

BV.Clock := 3.0;

-- Test TI.Brief

Text_IO.Create (Otf,Text_IO.Out File, "TI_Test"):
TI.Brief (Otf, ID4, '.hll:l.od Var TI),

-- The following information is printed out

-- from Report:

-- X: 2 Mean: 1.000 Std: 0.816 Var 0.667

~= Obs: 3 Sum 3 Min: 0 Max: 2

TI.Report (Tallied Var_TI):;

BV.Clock := EV.Clock + 1.0;
TI.Assign(Tallied Var Ti,3);

EV.Clock := BV.Clock + 1.0;

TI.Btiot(Otf ID4, Tallied Var_ TI):

-- The following information is printed ocut
-- from Report:

-- X: 3 Mean: 1.500 sStd: 1.118 var: 1.250
-- Obs: 4 Sum: 6 Max: 3

TI.Report (Tallied Var_ TI);

TI.Assign(Tallied Var Ti,4);

TI.Mean(Tallied Var ' Ti, Rasult Ti, Error_Ti);
TI.Variance (!nlliod Var_Ti, Rnlult Ti,Brror T1);
TI.Std_Dev(Tallied Vlt T, Result ' Ti,Brror '.l'i) ;
-- The following information is Printed out
-- from Report:

-- X: 4 Mean: 2.000 Std: 1.414 Var: 2.000

-=- Obs: S Sum: 10 Min: 0 Max: 4

TI.Report (Tallied Var_Ti);

-- Do report to flla.

Prop := false;

-=- Same information as above is written to

-~ file test_output.

continued

62

TI.Report (Otf2, Tallied Var_ Ti, Prop);
== Raset resets the statistics, as though no
-- values have been collected.
TI.Reset (Tallied Var Ti);

when Ar_ TEST =>
Ar. lhan(hccu- Var_AF,Result AF, Error AF,Prop);
AF .Variance (Accu- Var AF, R.sulf. AP, !:ro: AF,Prop);
AF.Std_Dev(Accum ' Vu: Al' R.-ult_h!‘ Error__ AR, Prop):;
-- Report prints to the users monitor: [no data]
AF .Report (Accum Var_ AF,Prop);

RV.Clock := 1.0;

AF.Assign(Accum Var AF,0.0);

Bv.Clock := Bv.Clock + 1.0;

AF.Assign(Accum Var AF,1.0);

AF .Variance (Accum_Var_ AF,Res ult_Af,Erxor_Af) :
RV.Clock := Bv.Clock + 1.0;

AF.Assign(Accum Var AF,2.0);

-= Test AF.Brief

Text_IO.Create(Otf,Text I0.out_file, "AF_Test");
AF .Brief(Otf, 102, Accum_Var AF);

-- Report prints the following to the user’s
-- monitor:

-~ X:000 Mean: 0.500 Std: 0.500 var: 0.250

~- Sum: 1.000 Min: 0.000 Max: 2.000

AF .Report (Accum_var_ AF);

EV.Clock := Ev.Clock + 1.0;
AF.Assign{(Accum Var_AF,63.0);
BV.Clock := Ev.Clock + 1.0;

AR .Brief (Otf, ID2,Accum Var AF);
AF .Report (Accum _var_AF);

-

AF.Assign (Accum Var AF,4.0);
AY .Mean (Accum Var | AF, Resu 1t_Af, Error_ Af):
A¥ .Vaxriance (Mcu- Var AP, Rotult Af,Brrorx _Af);
A¥.Std_Dev(Accum Var AT, Rasult_| Af,Rrror M),
-- Report writes out thn following:
-= X:3.00 Mean: 1.500 Std: 1.118 Var: 1.250
-- Sum : 3.000 Min: 0.000 Max 3.000
A¥ .Report (Accum Var_AF) ;
Prop := false;
AF .Report (Ot£2,Accum Var Af,Prop);
~=- Do report to file.
AF .Reset (Accum Var_AF);
when AI_ Test =>
AI.Mean (Accum Var AT, Result_AI, Error_AI, Prop);
AX.Variance (Accum Var_AI, Result AI, Error AI, Prop):
AI.Std Dev(Accum Var AI,Result AI, Errox_AI, Prop):

-— Report prints out : [no data]
AI.Report (Acoum_Var_AI, Prop);

RV.Clock := 1.0;
AI.Reset (Accum Var_AI);
M.Maiqn(hocu- VA:_AI 0)
Bv.Clock := Bv.Clock + 1.
AI.Assign(Accum Var_AI, 1)
AI.Variance (Accum Var_AI,
EV.Clock := Ev.Clock + 1.0;
Al.Assign(Accun Var_AI 2);

o

.
.

?-

sult_AI, Error_ AI);

~

continued

63

~-= Try Al.Brief

Text_IO.Create(Otf, Text_IO.Out_File, "AI_Test");
BV.CLOCK := EV.CLOCK + 1.0;

AI.Brief(Otf, ID, Accum_Var AI);

-- Report prints out the following:

-=- x: 2 Mean 1.000 Std: 0.816 Var: 0.667

~- Sum: 1.000 Min: 0 Max: 2

AI.Report (Accum var AX);

EV.Clock := Ev.Clock + 1.0;
AI.Assign(Accum Var AI, 3);
EV.Clock := Bv.Clock + 1.0;
AI.Brief (Otf, ID, Accum Var_ AI);
~- Report prints out the following:
-- x: 3 Mean: 1.600 Std: 1.020 Var: 1.040
~= Sum: 5.000 Min: 0 Max: 3
AI.Report (Accum var_ AI):
AI.Assign(Accum Var AI 4);
AI.Mean (Accum Var AI, Result AI, Error_ AI);
AI.Variance (M:cun Var_AI, R.sult Al Brroxr_AIl);
AI.Std Dev(Accum | Vnr AL, R.lult_ ,Error AI) ;
-- AI. R.pozt (Accun Var _AI);
-- Do report to file.
Prop := false;
AI.Report (Otf2,Accum Var_ AI, Pxop);
AI.Reset (Accum Var AI) ;
end case;
end Stat_Example;

7.0 HASH TABLES

Evada contains two hash table packages. Hash tables provide a capability for quickly
inserting, accessing, and deleting numbers in an array. The use of hash tables is appropriate when
(1) these numbers have a wide range of values, and (2) there are relatively few numbers. A detailed
explanation of hash tables is found in a boock by Tennenbaum and Augenstein.* In an EARS
simulation, hash tables may be used, for example, in duplicate message detection.

7.1 PACKAGE Hsh

Package Hsh, whose specification is given below, contains subprograms for creating,
accessing, and deleting hash tables. The comments within the specification explain what these
subprograms do.

with Nat_Lnk, Unchecked Deallocation;
use Nat_Lnk;

package Hsh is

Undef_ Mem Loc, Passed End Of Table, Corrupted Hash_Table
: exception;

Redundant_Inclusion
: exception;

type TABLE is
private;

-- Init creates a table whose size is the smallest
-- prime number grester than Size.
function Init
(Sizxe : POSITIVRE)
return TABLE;

-- Include inserts the value Nat into table Ht.
procedure Include
(Bt : TABLE;
Hat : MATURAL);

-- Includad tells whether or not Nat is a member
-- of table Ht.
function Included
{ Bt : TABLE:;
1 Nat : NATURAL)
\ return BOOLRAN;

~- Mambers returns the number of members in table
-- Bt.
function Mambers
{ Bt : TABLR)
return NATURAL;

-- Remove ramoves a mamber Nat from table Ht.
Procedure Remove
{ Ht : TABIR;
Nat : MATURAL;
Found : in out BOOLRAN)

continued

*Tennenbaum, A. and M. Augenstein. 1981. Data Structures Using Pascal. Prentice-Hall,
Englewood Cliffs, NJ.

65

-- Traverse returns the first member of the
-- table Ht in Nat. When the table has
-- no members then Found is false.
procedure Traverse
(Ht : TABLE:;
Nat : in out NATURAL;
Found : in out BOOLEAN);

-~ Next may only be called after Traverse Next,
-~ or delete. For non-empty tables returns
-~ member Nat. For empty tables returns Found
-~ set to false.
procedure Next
(Ht : TABLE;
Nat : in out NATURAL;
Pound : in out BOOLEARN):

-- Delete may only be called after Traverse Next,
-- or delete. For non-empty tables returns
-~ member Nat and deletes it from table Ht.
procedure Delete
{ Ht : TABLE;
Nat : in out NATURAL;
Found : in out BOOLEAN);

-- Dump removes all members from the table.
procedure
(Ht : in out TABLE);

-- Destroy removes all members from the
-- table and deallocates the memory.
procedure Destroy

{ Ht : in out TABILIE);

-- Package Sort sorts the table into a
-= linked list according to the criteria
-=- defined in the user specified function.
generic
with function ">"
(ML, M2 : WATURAL)
return BOOLEAN;
package Sort is
type NATURAL STRUCTURE is
array (NATURAL range <>)
of NATURAL;

type NATURAL_ARRAY is
access NATURAL STRUCTURE;

-~ Produce produces a sorted array of elements.
function Produce
(Bt : TABLE)
return NATURAL_ARRAY;

-- Free deallocates memory used by array.

procedure Free is
new Unchecked Deallocation

end Sort;

-- Private portion of specification deleted in
~-- this documentation

end Hsh;

7.2 PACKAGE Hash

Package Hash, whose specification appears below, provides capabilities that are similar to
those provided by Hsh. Package Hash is a generic package that is instantiated with the type REC,
its access type, MEMBER, and two user-provided functions. The first function, Same, compares
two members, while the second, Key, calculates a unique integer key for a member.

The package specification for Hash, with comments describing what the subprograms do,
is given below.

with Unchecked Deallocation, Link;

generic

type REC is
private;

type MEMBER is
access REC;

-- The user writes a function Same that compares two
-- members and returns true when they match.
with function Same
(M1, M2 : MEMBER)
return BOOLEAN;

-=- The user writes a function that returns an integer
-- key that is unique to the member.
-=- The key is used by the Hash subprograms to access
-- the member.
-=- An explanation of the use of keys is found in
-- data structures texts, such as, "Data Structures
-~ Using Pascal”, by Tenenbaum and Augenstein.
with function Key
(Mbr : MEMBER)
return INTEGER;

package Hash is

Undef_Mem Loc, Passed End Of Table, Corrupted Hash_Table
: exception;

Redundant_Inclusion
: exception;

package Ink is
new Link (REC, MEMBER);

use Lnk;

type TABLIE is
private;

~=- Init creates a table whose Size is the smallest
-- prime number greater than size.
function Init
(Size : NATURAL)
return TABLR;

== Include inserts the value Nat into table Ht.
prooedure Include

continued

67

(Bt : TABIR;
Mbr : MEMBER)

-- Included tells whether or not Nat is a member
-- of table Bt.
function Included
{ Ht : TABLE;
Mbxr : MEMBER)
return BOOLEAN;

-- Members returns the number of members in table
-- Bt.
function Members
(Ht : TABLE)
return NATURAL;

~- Find searches the list to find a list member
-~ guch that Same (Match,Mbr) is true.
procedure Find
(Bt : TABIE;
Match : MEMBER;
Mbr : out MEMBER;
Found : in out BOOLEAN);

-- Remove removes a member Nat from table Ht.
procedure Remove
(Bt : TABLE;
Match : MEMBER;
Mbr : out MEMBER;
Found : in out BOOLEAN);

-- Traverse returns the first member of the
-~ table Ht in Mbr. When the table has no
-~ members, then Found is false.
procadure Traverse
(Bt : TABLE;
Mbr : in out MEMBER;
Found : in out BOOLEAN);

-- Next may only be called after Traverse, Next
-- or delete. For non-empty tables it returns
~~ member Nat. For empty tables it returns Found
-- set to false.
procedure Next
(Ht : TABLE;
Mbr : in out MEMBER;
Found : in out BOOLEAN);

-- Dalete may only be called after Traverse,
-- Next, or Delete. For non-empty tables it
-~ returns member Mbr and deletes it from
-- table BEt.
procedure Delete
(Bt : TABLR;
Mbr : in out MEMBER;
Found : in out BOOLEAN),

-~ Dump removes all mambers from the table.
procedure Dump
(Ht : in out TABIRE);

-- Destroy removes all members from the

continued

-- table and deallocates the memory.
procedure Destroy
(Bt : in out TABIE);

generic
with function ">*
(M1, M2 : MEMBER)
return BOOLRAN;

-- Produce produces a sorted array of
-- elements.
package Sort is
type MUMBER STRUCTURE is
array (NATURAL range <>)
of MRMBER;

type MEMBER ARRAY is
access MEMBER STRUCTURE;

-- Produce produces a sorted array of elements.
function Produce
(Bt : TABIR)
return MEMBER ARRAY;

-- Free deallocates memory used by array.
procedure Free is
new Unchecked Deallocation
(MEMBER_STRUCTURE, MEMBER ARRAY);

end Sort;

private -- Hash

type Lat is
access List;

type VAR is
record
Chained : BOOLEAN := False;
Chain : Lst := null;
Mbr : MEMBER := null;
end record;

type HASH_ARRAY is
array (NATURAL range <>)
of VAR;

type CTRL REC is
record
Current : MATURAL := 0;
Inlist : BOOLEAN := False;
Rot : BOOLEAN := TRUE;
end record;

type TABLE_ARRAY
(Size : EATURAL) is
record
Store : HASH_ARRAY (0 .. Size);
Ctrl : CTRL REC;
Mambers : NATURAL := 0;
end record;

type TABLE is
access TABLR ARRAY;

end Hash:

69

8.0 BIBLIOGRAPHY

Booch, G. 1987. Software Engineering with Ada. Benjamin/Cummings Publishing Company, Menlo
Park, CA.

Russell, E. 1983. Building Simulation Models. C.A.C.1, Inc., Los Angeles, CA.

Graybeal, W., and U. Pooch. 1980. Simulation Principles and Methods. Winthrop Publishers,
Cambridge, MA.

70

]

suggestions for reducing this burden, to Washington Headquarters Sesvices, Directorate for information Operations and
mbmmammwwmmm(ommulwmm DC 20503.

REPORT DOCUMENTATION PAGE Fom Approved
Public reporting burden for this collection of Information is estimated 10 average 1 hour Per respoNse. Inciuding te time for reviewing Insin g existing data sources, gathering and
maiitaining the daia needed, and compieting and reviewing the collection of information, Send comments mmmum rden estimate or mwamm information,

Reports, 1215mmmgmray Sulte 1204, Artington, VA 22202-4302,

1. AGENCY USE ONLY (Loave bianky 2 REPORT DATE
December 1990

3. REPOAT TYPE AND DATES COVERED
November 1989 — July 1990

4. TITLE AND SUBTITLE

USER'S GUIDE TO AN EVENT-ACTIVATION RECORD APPROACH TO
SIMULATION MODELING IN ADA

5. FUNDING NUMBERS

PE: 0602232N
PROJ: RC32A13

8. AUTHOR(S)
H. Mumm and R. Ollerton

WU: DN309082

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Ocean Systems Center

San Diego, CA 92152-5000 NOSCTD 1944

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR!
AGENCY REPORT NUMBER

Naval Ocean Systems Center

Block Programs

San Diego, CA 92152-5000

11. SUPPLEMENTARY NOTES

128 DISTRIBUTION/AVAILABIUTY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

can be modeled in SIMSCRIPT can be modeled using EARS.

units and by writing additional ones.

This document explains how to install and use the Event-Activation Record Approach to Simulation Modeling in
Ada (EARS) simulation libraries, Version 1.0, that were developed by the Naval Ocean Systems Center, Code 854. This
software was designed to compile and execute using the Vax Ada compiler. EARS is a discrete-event sxmulatlon system that
uses an event-activation record approach. It has capabilities similar to those provided by SIMSCRIPT. All simulations that

From a set of user-defined event types, EARS automatically generates much of the source code for many Ada
packages and subprograms that are needed for simulation development. This allows a user to quickly start writing an EARS
simulation. The user tailors the simulation to a particular application by adding Ada source code to the generated program

This document contains an actual simulation example using EARS. The document also includes the Ada source
code for linked list packages, statistical packages, and hash table packages, as well as examples of how they are used.

14. SUBJECT TERMS

15. NUMBER OF PAGES

EARS | 77
Ada linked list
instantiation discrete-event simulation 18. PRICE CODE
elaboration hash tables
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500

Standard form 208

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

Defense Technical Information Center

INITIAL DISTRIBUTION

0012
0144
171
40
41
411
411
411
85
8503
854
854
921
961
964

Patent Counsel
R. November
Dr. M. Vineberg
Dr. R. C. Kolb
A. Justice

D. Hayward

B. Ollerton

H. Mumm

R. Casey

Dr. C. Warner
R. Merk

Dr. N. Dave'
J. Puleo
Archive/Stock
Library

Alexandria, VA 22304-6145

NOSC Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

(1)
(1)
(1)
1)
1)
(1)
(1)
(8)
(1)
(1)
1)
(1)
(1)
(6)
3)

(4)

(1)

1)

