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ABSTRACT

A systematic study using differential scanning calorimetry (DSC) has been pecr-
formed on the annealing behavior of an aromatic polyetherimide (Ultem 5001).
Although crystallization from the melt did not occur, crystallinity was easily induced in
the presence of methylene chloride. With annealing, a sharp melt endotherm of the sol-
vent-treated polyetherimide was observed. The melt temperature determined after anncal-
ing for 30 minutes increased progressively as the annealing temperature increased lcading
to an extrapolation to an apparent equilibrium melt temperature of 369°C. However,
the melt temperature, as well as crystallinity, increased with the increase of the resi-
dence time at each annealing temperature. X-ray dilfraction data revcaled two distinct
crystalline phases: a low temperature (alpha) phase obtained by crystallization for onc-
half hour at 248°C and 258°C, and a high temperature (beta) phase obtained at 258°C
for three hours, or exceeding 258°C. Values of heat of fusion per gram of crystallite
were consistent with a range 247 J/g to 261 J/g for the samples of higher crystallinity.
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INTRODUCTION

Solvent induced crystallization (SINC) has been well established in polycarbonate 3 and
polyethylene terephthalate. 45 Wilkes et al.! showed that well- -developed spherulitic texture
can be induced in polycarbonate by exposure to a nonreactive liquid or vaporous organic cnvi-
ronment. In their studies using scanning electron microscopy (SEM), they also observed dis-
tinct plastic deformation of the induced spherulites in the polycarbonate samples which had
been cct’xbjected to deformation at temperatures slightly above the glass transition temperature
of 145°C.

Recently, several other SINC studies have been reported on high temperature thermoplas-
tics mcludmg polyarylate6 polylmrdesulfone, polyethenmrde, poly(aryl ether ketone ketonc)
(PEKK) LaRC-TPI (the NASA Langley Research Center-Thermoplastic Polyrmlde)
and a thermoplastlc polyimide based on 44'~|sophtha|oyld|phthahc anhydride (IDPA) and
1,3-bis(4- ammo phenoxy-4’-benzoyl)benzene (1,3- BABB) In the study of solvent crystallized
polyarylate Berger showed a transition from shear deformation to crazmg for an initially duc-
tile amorphous material. PEKK, as pointed out by Avakian et al.,? displayed two different
crystal structures after either exposure to methylene chloride vapor at room temperature or
low temperature annealing. These crystal structures were different from those obtained by
slow coolmg from the melt or by high temperature annealing. Such behavior was not
observed in poly(aryl ether ether ketone) (PEEK), which displayed only a single crystal form.”
Crystallization which was attrrbuted to the presence of residual solvent from processing also
occurred in LARC-TPL!

Ultem aromatic polyetherimide, first reported by Serfaty,15 is an amorphous thermoplastic
with the following structure for a commercially available Ultem 1000.

Our studies have been carried out on Ultem 5001-based materials which is a new aro-
matic polyetherimide with improved solvent resistance, but its chemical structure is not known
in the literature. Results showed that crystallization occurred when the Ultem 5001 matcrials
were exposed to methylene chloride. 6 Despite the original toughness, the solvent exposcd
polyetherimide film specimens became brittle. Although crystallization of Ultem 5001 poly-
etherimide can be easily induced in the presence of methylene chloride, attempts to achicve
thermal crystallization in these materials have not yet been successful. Samples appear to be
amorphous once exposed to a processing temperature above the melting point and do not
appear to crystallize unless exposed to solvent.

The reluctance to crystallize from the melt in these high temperature polymers is parlly
due to the hlgh viscosity of their melts. For example1 LARC-TPI has a viscosity in the rchon
of 10° - 10° Pa-s at approximately 100°C above Tg,* which is significantly higher than in con-
ventional thermoplastics. As a result, crystallization from the meclt is kinetically hindcred and
an amorphous, yet crystallizable, glass is formed upon cooling. However, the introduction of
a good swelling agent will create sufficient mobility to allow the glass to crystallize.




The purpose of this report is to determine the effect of thermal history on the crystalliza-
tion behavior of Ultem 5001 polyetherimide. Results of a systematic study using differential
scanning calorimetry (DSC) on the annealing of solvent-treated polyetherimide are presented
in this report. Degree of crystallinity as determined by wide angle X-ray diffraction, along
with X-ray evidence for two different crystalline phases, are also included in this report.

EXPERIMENTAL

Ultem 5001 polyetherimide film was obtained from the General Electric Company. Experi-
ments of solvent-induced crystallization were carried out in methylene chloride and in chloroform
at room temperature. The solvent-treated films were then dried in vacuum for 24 hours. A
dried sample, weighing 4 mg to 5 mg, was prepared in an aluminum pan for each annealing trcat-
_ment which was carried out via a Perkin-Elmer DSC in a nitrogen atmosphere. Annealing tem-
peratures of 248°C, 258°C, 268°C, 278°C, 287°C, and 297°C were chosen for this study.

Thermal properties were determined via DSC, typically at a heating rate of 20°C/min.

Wide angle X-ray diffraction data were obtained with a T.E.C. model 210 position-scnsitive
detector mounted on a Picker fourircle goniostat using monochromatic radiation at 1.5418 A
and a Lecroy 3500 multiple-channel analyzer. A standard sealed copper anode X-ray tubc was
used at 40 kV and 20 mA. The thin film specimens from the DSC pans were mounted as trans-
mission samples onto a metal disc sample holder, using cellophane tape (Scotch Brand Tape
Core Series 2-4600). The detector, as configured, had a useful range of 20° in the Bragg anglc
20. In order to obtain complete data for each specimen, three J)atterns were measured for cach
specimen: one centered at 20 = 22° spanning 20 = 12° to 32°% a second centered at 20 =
40°, spanning 20 = 30° to 50°% and a third centered at 20 = 60° spanning 20 = 50° 10 70°.
A counting time of two hours was routinely used for the Ultem patterns. Since the cellophane
tape also scattered X-rays, blank patterns of tape alone were measured then subtracted from the
specimen patterns. The blank patterns proved to be amorphous with a single diffuse peak show-
ing a maximum at 20 = 19°. The counting time for the blank patterns was lengthened to 19
hours to improve the precision of the blank subtraction process.

The X-ray diffraction patterns were transmitted from the diskette storage of the Lecroy
3500 multiple channel analyzer to a VAX (TM Digital Equipment Corporation) 11/730 com-
puter for analysis. The data were subjected to three operations:

e The data were corrected for background (using the cellophane tape blank patterns).
e The Lorenz-polarization correction factor fLp described by Alexander!” was applied.

e Crystalline peaks evident in the data were curve-fit by a Marquardt iterative method'®

to determine peak parameters.

The second and third calculations are described more fully in the Appendix.

RESULTS AND DISCUSSION
Annealing Studies

Crystallization occurred immediately after Ultem 5001 films were exposcd to liquid mcthy-
lene chloride. The originally translucent films Yecame completely opaque and brittle. A typi-
cal DSC thermogram, with a broad melting endotherm in the first heating scan up to 327°C,




is shown in Figure 1, Curve 1 for the methylene chloride exposed specimen; the peak ol the
endotherm is at 265°C. The sample was then quenched. Thereafter, a second heating scan
was carried out, which displayed a glass transition temperature of 230°C without any mclting
endotherm, shown in Figure 1, Curve 2. This indicated that crystallites induced by mcthylcne
chloride exposure were completely removed by heating above the melt temperature. However,
the first heating scan in Figure ! shows no glass transition but a baseline shift after the endo-
thermic peak. This can be partly due to an abnormally small increment between the glass
transition temperature and the melt temperature, such that a very diffuse glass transition is
masked by the melting of paracrystalline structure. Such a small temperature increment can
also retard the nucleation since sufficient supercooling required for crystallization will bring
temperatures close to the glassy regions.
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Figure 1. DSC.thermograms for a typical methylene chioride-treated
Ultem 5001 specimen: (1) first heating scan; (2) second heating scan.

Our first attempt to separate the melting transition from the glass transition was carricd
out by annealing solvent-treated specimens at the peak of the melt temperature for 10 min-
utes (see Curve 1 of Figure 2). The rationale is that annealing at the peak temperaturc,
as is well known for crystalline polymers, will first melt most of the less-than-perfcct crystal-
lites. However, some of the highest melting crystals remain to promote further growth upon
annealing eventually forming larger or more perfect crystallites. Consequently, the resultant
microstructure after annealing will display a shift of the peak to a higher temperaturc. Curve
2 of Figure 2 shows a sharper melting peak, at 280°C which was obtained in the subscquent
heating scan of the annealed sample. As expected, the melt temperaturc was higher than the
original broad endotherm, 265°C, for the unannealed Ultem 5001 specimens.  Again, the cndo-
thermic peak disappcared on the reheating scan (sce Curve 3 in Figure 2) once the sample
was hcated above the melt temperature.
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Figure 2. DSC thermograms of an annealed Uitem 5001 specimen after solvent
exposure: (1) first heating scan to set the anneal temperature; (2) a reheating
scan right after annealing; and (3) second reheating scan after annealing.

Attempts to further enhance crystal growth were carried out by annealing solvent-treated
polyetherimide specimens at.the various temperatures, as listed in Table 1. Each annealing
treatment at the respective temperature required a separate film specimen. Furthermore, the
procedure was carried out in a stepwise fashion; i.e., the sample at 278°C was first annealcd
at 248°C, followed by 258°C, 268°C, and finally at 278°C for 30 minutes at each temperature.
This was required since the seed crystallites would otherwise disappear if the specimens had
been heated directly to the final high annealing temperature.

Table 1. MELT TEMPERATURE AND ENTHALPY OF FUSION FOR ANNEALED ULTEM 5001

Annealed 1/2 Hour Annealed 3 Hours Annealed 19 Hours
Tanneal Temett Enthalpy Tmett Enthalpy Tmett Enthalpy

°c °K °c Jig °c Jig °C Jig
248 521 271 20.5 - ——
258 531 278 17.4 —
268 541 286 133 —
278 551 295 4.0 -
287 560 303 06 305/317 38 310/320 126
297 570 310 03 315/321 20 319/326 11.5
307 580 324 02 330 58




Figure 3 gives the DSC results which shows that the melt temperature of every melting
endotherm is higher than the respective annealing temperature. The melt temperature deter-
mined after annealing for 30 minutes increased progressively as the annealing temperature
increased. However, the glass transition temperature was constant at 230°C for all the
annealed specimens. Table 1 summarizes the melt temperature as well as the enthalpy of
fusion.

. Temperature (°C)
40 120 200 280 360

Endothermic
W

1 1 1 1 1 1

1 1
470 550 630

] L
310 390

Temperature (K)
Figure 3. DSC scans of solvent-treated Uttem 5001 specimens annealed at various

. temperatures for 30 minutes: (1) 248°C (521°K); (2) 258°C (531°K); (3) 268°C (541°K);
(4) 278°C (551°K); (5) 287°C (560°K) (6) 297°C (570°K); (7) 307°C (580°K).




The enthalpy of fusion per gram of sample is dependent upon the degree of crystalliza-
tion and the degree of perfection of the existing crystal content. This was determined by the
area under the endothermic peak which decreased moderately as the annealing temperature
increased. Such a decrease in enthalpy of fusion can be attributed to the reduction in the
recrystallization rate associated with the decrease in the degree of supercooling as the anneal-
ing temperature approaches the true melting temperature. However, the reduced enthalpy of
fusion (per gram of polymer) does not necessarily suggest a reduction in the enthalpy of
fusion per gram of crystallite with an increase in the annealing temperature. The latter will
be elaborated with the X-ray diffraction data in the X-ray Measurements Section.

The reduction in apparent enthalpy of fusion is especially pronounced for the specimens
annealed at temperatures exceeding 287°C for 30 minutes, in which only very small endo-
therms were noticed in the DSC thermograms, as shown in Curves 5, 6, and 7 in Figure 3.
Such annealing treatments of the initially solvent crystallized samples actually proceeded at
temperatures above the temperature range which was associated with the melting endotherm
of Curve 1 in Figure 1.

Extended annealing was then carried out at 287°C, 297°C, and 307°C for time intervals
of three hours and 19 hours, respectively, to increase crystal growth under conditions in which
supercooling was relatively small. As described earlier, individual solvent-contacted samples
were used for each annealing treatment, and all the samples were brought up to their final
annealing temperatures in a stepwise fashion with 30 minute intermediate annealing times.
Figure 4 shows the DSC thermogram obtained for the annealing treatment at 287°C. Instead
of a single melting peak, there is now either a peak with a doublet or a peak with a
shoulder. Temperatures of the melting peaks or the shoulder and melting peak were higher
than the respective annealing temperature and it increased as the residence time at each
annealing temperature increased (see Table 1). A significant increase in enthalpy of fusion
(per gram of sample) also occurred as annealing time increased.
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Figure 4. DSC thermograms of methylene chloride-treated specimens annealed at 287°C
(560°K) and as a function of time: (1) one-half hour; (2) three hours; (3) 19 hours.




With annealing at 307°C, little crystallization occurs at three hours, as shown in Figure 5.
However, when annealing was extended to 19 hours, crystallization was obtained, but only to
a small extent. This can be due to either small supercooling (resulting in unfavorable crystalli-
zation kinetics) or insufficient crystal sites for further growth; therefore, an extended holding
time would be needed for those samples annealed at these higher temperatures.
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Figure 5. DSC thermograms of methylene chioride-treated specimens annealed at 307°C
(580°K) and as a function of time: (1) one-half hour; (2) three hours; (3) 19 hours.

An estimate of the equilibrium relt temperature was determined using the Hoffman-
Weeks?* approach. In this method, crystallization experiments are carried out at several tem-
peratures and values of the experimentally determined melt temperature, Ty, are plotted
against the respective annealing temperature T,. The extrapolation of Ty, versus T¢ to inter-
sect with the line of Ty, = T¢ leads to the determination of an equilibrium melt temperaturc
for the theoretical perfect polymer crystal. Figure 6 shows an apparcnt equilibrium melt tem-
perature of 369°C, based upon samples annealed for 30 minutes. Limited data obtained for
the extended annealing experiments are also included in Figure 6 for comparison.

Experiments on the exposure to another chlorine containing solvent, chloroform, were
also examined briefly. While instantaneous crystallization was observed with methylcne chlo-
ride, Ultem 5001 film first swelled and then dissolved completely .in chloroform. As chloro-
form was removed, the dried polyetherimide film became opaque. Figure 7 shows a broad
endotherm for the chloroform-treated specimen (see Curve 1 of Figure 1). However, a dis-
tinct melting peak at 283°C was observed after annealing at the peak temperature (sce Curve
4 of Figure 4). Thus, although different crystallization behavior was scen in these two chlorine-
containing solvents, similar glass transition temperatures and melting ecndotherms wcre obtainced.
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Figure 7. DSC thermograms for typical chloroform-treated Uitem 5001 film specimens: (1) first heating
scan; (2) second heating scan; (3) first heating scan of another solvent-treated specimen to set the
anneal temperature; (4) a reheating scan right after annealing; (5) second reheating scan after annealing.




X-Ray Measurements

To clarify observed DSC results, X-ray diffraction patterns were run at room temperaturc
(25°C) on specimens removed from the DSC pans. In these data, three different types of dif-
fraction patterns appeared typified by those shown in Figure 8. The first type of pattern, as
shown in Figure 8a, is totally amorphous showing a broad halo peaking near 20 = 17", the scc-
ond type of pattern shows three crystalline peaks superimposed on the amorphous halo as shown
in Figure 8b; and the third type of pattern shows as many as five crystalline peaks, which differs
in position from those of the second type, also superimposed on the amorphous halo, as shown
in Figure 8c. The amorphous peak was always present but the presence or absence, intensities,
and positions of the crystalline peaks varied with annealing conditions. Table 2 shows all of
the crystalline peak 26 values and the corresponding Bragg d spacings classified into two sets:

e Three peaks at d = 5.94, 5.23, and 3.65 A attributed to a low
temperature (alpha) phase.

o Five peaks at d = 6.19, 5.51, 4.75, 4.26, and 3.81 A attributed to a
high temperature (beta) phase.

The alpha phase appears only in two patterns; samples annealed at 248°C or 258°C for
one half hour, and the small number of lines observed is attributed to either crystallite imper-
fection, small crystallite size, or both. Any crystallinity resulting from annealing at tempera-
tures higher than 258°C always manifested itself as the beta phase. Moreover, even at the
258°C annealing temperature the alpha phase, which appears after one half hour of anncal-
ing, transforms to the beta phase after three hours of annealing, indicating that the alpha
phase is metastable relative to the beta phase even at that temperature.

The apparent X-ray crystallinity Xc was calculated from the relative intensities of crystal-
line and amorphous diffraction curves, based on methods originated by Matthews, Peiser, and
Richards'® and by Hermans and Weldmger Since a detailed unit cell structure has not been
determined for the Ultem 5001 polyethenmlde, it was not possible to a?ply the more rigor-
ous methods, such as those of Ruland?! and of Kavesh and Schultz,®>?* for determination of

crystallinity.
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Figure 8a. WAXS patterns of methxlene chloride-treated specimen
annealed at 297°C (570°K) for one-haif hour.
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Figure 8b. WAXS patterns of methylene chioride-treated specimen
annealed at 248°C (521°K) for one-half hour.
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Figure 8c. WAXS patterns of methylene chloride-treated specimen
annealed at 287°C (560°K) for 19 hours.

As implemented here, after background and Lorenz-polarization corrections are applied to
the data between 20 = 12° and 32° any observed crystalline peaks are resolved mathemati-
cally from the total scattering envelope. From the peak fit parameters, the individual crystal-
line peak areas are summed to yield a total crystalline area of A¢; X is then calculated as
the ratio of A; to the total area Ag:

Xe = Ac/ A . (1)

Crystallinity values determined from the X-ray diffraction patterns are included in Table 3
along with values of heat of fusion per gram of crystallite AH/X;. The crystallinity values arc
quite low, ranging from 0 to 0.083. The two highest crystallinities are observed at 0.083 and
0.070 for the alpha-phase samples obtained by crystallization for one half hour at 248°C and
258°C, respectively; the samples showing beta-phase crystallinity have, at best, X values up to
0.053 obtained for one half hour at 268°C. Since the X values havc a precision of no
better than, and possibly less than, two significant digits, it is anticipated that considcrable
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error would propagate into the AH/X. values, particularly at the lower X. values. Nonethe-
less, it appears that the AH/X. values are quite consistent for the samples exceeding X, =
0.030; those five samples show AH/D. values of 247 J/g, 249 J/g, 251 J/g, 261 J/b, and 263
J/g. Note that two members of this group are alpha-phase samples and three are beta-phasc
samples. Evidently, the two crystalline phases have the same or quite similar heats of tusion.

Table 2. CRYSTALLINE PEAKS FOR ULTEM 5001 FOR VARIOUS ANNEALING CONDITIONS

Temperature Time 20* d Phase d (ave.)
(°C) K (hrs.) (deg.) G A)
258 531 0.5 14.90g 5.94, Alpha ] 5.94
248 521 0.5 14.925 5.935 Alpha _]

258 531 0.5 16.934 5.23¢ Alpha '] 5.23
248 521 0.5 16.96¢ 522 Alpha J
248 521 0.5 24.362 3.653 Alpha ] 3.65
258 531 0.5 24.43¢ 3.643 Alpha _|
287 560 19.0 14.22> 6.225 Beta ]
287 560 3.0 14.22¢ 6.224 Beta |
278 551 0.5 14.340 6.17s Beta ' 6.19
268 541 05 14.379 6.160 Beta |
258 531 3.0 14.403 6.149 Beta J
307 580 19.0 15.93s 5.564 Beta 1
297 570 30 15.982 5.545 Beta |
287 560 19.0 15.99 5540  Beta |
297 570 19.0 15.99; 5.54¢ Beta t 5.51
287 560 3.0 16.002 5.539 Beta |
258 531 3.0 16.29; 5.449 Beta |
268 541 0.5 16.323 5.43¢0 Beta ]
258 531 3.0 18.26¢ 4.857 Beta ]
268 541 0.5 18.667 4.754 Beta |
307 580 19.0 18.813 4717 Beta ' 4.75
297 570 19.0 18.822 4715 Beta |
287 560 19.0 18.94¢ 4.684 Beta J
307 580 19.0 20.759 4.279 Beta 1
287 560 19.0 20.87, 4.25¢ Beta t 4.26
297 $70 19.0 20.90¢ 4.249 Beta ]
258 531 3.0 23.28; 3.82 Beta '|
268 541 05 23.395 3.802 Beta { 3.81
278 551 0.5 23.45; 3.793 Beta J

*Pcak positions have been corrected for nonlinearity of the detector.
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Table 3. CRYSTALLINITY AND CRYSTALLINE HEAT OF
FUSION OF ULTEM 5001 SAMPLES

Annealing Conditions Crystallinity Heat of Fusion
Temperature Time AH AH/ X
(C) K (hrs.) X by X-ray (W) (Ji9)

248 521 05 0.083 205 247
258 531 05 0.070 17.4 249
268 541 05 0.053 13.3 251
278 551 05 0.023 4.0 174
287 560 0.5 0.000 06 0
297 570 05 0.000 03 0
287 560 3.0 0.022 38 173
287 560 19.0 0.048 12.6 263
297 570 3.0 0.010 20 200
297 570 19.0 0.044 11.5 261
307 580 3.0 0.000 0.2 0
307 580 19.0 0.030 58 193
CONCLUSIONS

Although thermal crystallization has not been achieved in Ultem 5001 polyetherimide, a
rapid nucleation for crystal growth can be easily induced by methylene chloride exposurc. As
a result, an initially ductile amorphous polyetherimide is observed to embrittle. DSC data
notes that the melt temperature increases progressively with an increase in the anncaling tem-
perature. This suggests that crystallization at higher temperatures can be achieved through
careful stepwise treatments. The extrapolation leads to an apparent equilibrium melting tem-
perature of 369°C, based upon measurements of samples annealed for 30 minutes. Two dis-
tinct crystalline phases, a lcw temperature (alpha) and a high temperature (beta) phase, were
obscrved by X-ray diffraction. Crystallinity values were quite low, suggesting the profound
clfects of polymer viscosity, as well as the small increment between T, and T, in hindering
crystallization. By combining DSC and X-ray results, values of the heat of fusion per gram
of crystallite are consistent with a range 247 J/g to 261 J/g for the samples of higher
crystallinity. The limited experiments in chloroform indicate that the crystallization bchavior
can be different in other solvents; therefore, it would be of interest to explore the cltect of
solvent, or vapor type, on the crystallization of Ultem 5001 polyetherimide and thermal stabil-
ity of the induced crystals.
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APPENDIX. X-RAY INTENSITY CALCULATIONS

The data were corrected on a VAX (TM Digital Equipment Corporation) 11/730 com-
puter for background, using the cellophane tape blank patterns, and the Lorenz-polarization
correction factor fyp was applied. This factor, which corrects for certain X-ray instrumental
effects, including the polarization effects of both the monochromator diffraction and the sam-
ple diffraction, is given17 by:

ftp = (1 + cos? 26 / cos? 20pm) / (sin2 0 cos 6) (A1)
where 26 is the sample Bragg angle, (the independent variable) and 20, is the Bragg angle
of the monochromator refléction, the graphite (002) reflection in this case. Note that Equa-
tion Al used here differs from the common form given by Alexander;!” ie., 1/cos? 20y, repre-
senting the polarization ratio of the incident beam replaces the cos? 20y, of Alexander. This
results from the geometry of the Picker monochromator, where the monochromator diftraction
plane is perpendicular to the sample diffraction plane, rather than parallel, as assumed by
Alexander. Thercfore, the incident beam has the inverse of the polarization presumed by
Alcxander. It should also be noted that a denominator expression in Alexander’s polarization
factor, which is independent of 26 and, thus, affects all data points equally, is omitted.

The X-ray data analysis programs also include a procedure for peak curve fitting. In this
method, the intensity curve for a selected range of data which includes a peak maximum is fit
to a combination of a straight line baseline, and either a Gauss or Cauchy peak function
given by:

lecaic (20) = A} + Ay - 20 + P(20,A3,A4,A5) (A2)
where the peak function P can be identified as either the Gauss function:

P(20,A3,A4,A5) = G(20,A3,A4,A5) =

Az exp(-(4 In 2 - (20 - As/As)?) . (A3)
or as the Cauchy function:

P(20,A3,A4,As) = C(20,A3,A4,A5) = Az / (1 + (2(20 - Ag)/As)?). (AY)

In cither instance, 20 is the independent variable, while A; through As arc adjustable
parameters, to wit:

A is the constant (intercept) part of the baseline straight line,

A, is the slope of the baseline straight line,

A3 is the maximum intensity of the peak (Gauss or Cauchy) curve,
A4 is the peak position of the peak curve, and

As is the full width at half maximum (FWHM) of the pcak curve.

13




The Marquardt Method, as described by Press et al.,'® is used as an iterative procedure
lor fitting the experimental data Iexp, 20 to the calculated function Icgc 20. The calculation
converges to yield a solution set A; through As for the Gauss, as well as the Cauchy func-
tion; the correct solution is taken as the one with the lower value of xz which is a weighted
least squares parameter.
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