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Abstract , f

When a computer monitors a physical process, the computer uses sensors to determine the
values of the physical variables that represent the state of the process. A sensor can sometimes
fail, however, and in the worst case report a value completely unrelated to the true physical value.
The work described in this paper is motivated by a methodology for transforming a process
control program that cannot tolerate sensor failure into one that can. In this methodology,
a reliable abstract sensor is created by combining information from several real sensors that
measure the same physical value. To be useful, an abstract sensor must deliver reasonably -- d

accurate information at reasonable computational cost.
In this paper, we consider sensors that deliver multidimensional values (e.g., location or

velocity in 3 dimensions, or both temperature and pressure). Geometric techniques are used
to derive upper bounds on abstract sensor accuracy and to develop efficient algorithms for
implementing abstract .nnr- Avallebllty Coo"
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witz. Office of Naval Research/code Kot I c

I Introduction 1133. 1/22/91

One of the oldest techniques in fault-tolerance is using replication to mask failures [Sho68]. For

example, TMR, the triple module redundancy scheme, masks the failure of a signal by feeding three

independently computed copies of the signal into a majority voter [vN56]. TMR can be easily
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extended to NMR, or n-module redundancy, whereby n independent copies are fed into a majority

voter. With NMR, Up to f = [nj -J signal failures can be masked.

As stated here, N MR assumes a very weak failure model, making it a highly applicable technique.

One doesn't, for example, need to know the nature of the faults, the frequency of faults. or the

distribution of faulty signal values in order to design a system that uses NMR. The only time such

properties are considered is when appropriate values of f and n are computed. This same weak

failure model has been applied to several problems in distributed systems; for example, consen-

sus [NT88] and reliable broadcast [CAS86], and has also been incorporated into a methodology for

building fault-tolerant distributed programs [Sch9o,Lam84].

One of us (Marzullo) has been working on the proh1-m of writig provably correct prograilms

that monitor and control physical processes. The state of a physical process is usually represented

by a set of values for a corresponding set of continuous physical variables, such as the temperature

or pressure of a reaction vessel. Physical values are usually measured by accessing sensors. such

as thermometers or pressure gauges. A sensor, however, has a limited accuracy which gives some

uncertainty in the value of the physical variable it senses, and the real-time nature of physical

processes combined with uncertain execution.times can increase the uncertainty in the measured

value of the physical variable. If this uncertainty is too lrge or if the underlying sensor is faulty.

then the measurement will be useless to a control program.

One can model the value of a sensor as as a random variable and then convolve the values

of different sensors that measure the same physical variable. Doing so will improve the accuracy

of the measured value, but it will also introduce a failure model that is expressed in terms of a

(possibly unknown) probability distribution. Instead, in [Mar90] we have represented the value of

a physical variable as a contiguous interval and applied the same weak failure model of assuming

no more than f out of n sensors are incorrect. We have derived tight bounds on the accuracy

of the resulting measured physical values and have presented efficient algorithms (O(n log n)) for

masking the faults of such sensors. The bounds for this problem are derived by considering intereI
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graphs [Go180].

One limitation of the work in [Mar90] is that it is applicable only to sensors that measure a

single, independent, real value. An example of a sensor that does not fit this model is one that

measures the location of some physical object in 3D space. If such multidimensional sensors are

used then a naive approach to masking failures is to consider the x component separately from

failures of the y and z components, but doing so limits the accuracy of the resulting value. For

example, any sensor found to be faulty by examining the x components should most likely be

discarded when considering the y and z components. This paper extends [Mar90] by considering

such multidimensional sensors.

We assume that rcal seusors have the following properties. Let si be a sensor of some physical

variable 'F. A measurement si is a continuous set of values that conform to some shape, such as a

continuous interval, a rectangle, a sphere, etc. We say that si is correct if it is not too inaccurate

and always includes the value of the actual physical variable. More precisely, for some upper bound

act on the accuracy of si,
def

si correct = J E si A 1sil< acc

Thus, a real sensor can fail in two ways: it can fail to contain the true value or it can report

a region so large as to be useless. For the purposes of this paper, we assume such large-rginn

sensors can be detected and discarded by preprocessing the real sensor data (n and f will have to

be adjusted). Thus for the remainder of this paper, we can assume without loss of generality that

all sensors are accurate (report regions of reasonable size) and that a sensor can be incorrect only

by failing to contain its corresponding true value.

Let si and si (i 0 j) be the measurements by two abstract sensors for the same physical value

V. If si and si both contain the correct value, then the intervals si and sj must intersect, and their

intersection must contain the (unknown) value V.

Consider a set S = {l, 32,. ., an} of n independent measurements of the same physical value. If

f or less measurements do not contain the correct value, then any set of n - f mutually intersecting

3



measurements may contain the correct value within their intersection, since they each share a

common value. Conversely, any point not contained in at least n - f measurements cannot be

the correct value; if it were, then there would be more than f faulty sensors. So, the cover of all

(n - f)-cliques must contain the correct value. (An (n - f)-clique corresponds to a value where at

least (n - f) sensor mesurements intersect.)

We have one further constraint: any program written to deal with a single measurement assumes

that the sensor delivers a region of some expected shape (e.g., rectangle, sphere, cube, etc.), so we

require the cover to also have this same shape. This constraint allows us to improve a program

based on a single (unreliable) real sensor by changing only the sensor; the real sensor is replaced by

several real sensors whose inputs are combined to produce a single abstract sensor. The program

can use the resulting abstract sensor just as it originally used the single real sensor.

To summarize, we have the following goals for our abstract sensor:

1. It should be guaranteed (assuming no more than f failures) to deliver a region containing the

true physical value.

2. It should deliver a shape that is within the same class as the shapes delivered by the individual

real sensors.

3. It should be accurate. In other words, assuming no more than f failures, it should deliver

a region that is not significantly larger than a region that might be delivered by a single.

correct real sensor.

4. It should be efficient to compute. An abstract sensor is useless unless it can be computed in

a reasonable amount of time.

It is useful to define f1 ,,(S), the smallest region the satisfies goals 1 and 2. In other words.

Il,.(S) is the smallest figure of the correct shape that covers all (n - f)-cllques in S. For instance.

if the individual sensors report intervals in one dimension then T",n(S) is the smallest interval that
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contains all the (n - f)-cliques. It is clear that the (unknown) true value V is a member of 1f,(5)

as long as no more than f measurements are faulty.

Figure 1 illustrates I1 ,, (S) for measurements that are rectangles. The left-hand figure shows

four measurements, and the right-hand figure shows the rectangle that covers all 3-cliques of the

measurements.

IIg
II
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(a) (b)

Figure 1: 11,4(S) for Rectangular Measurements.

Although 2fI(S) always contains the correct value and is defined for all I 0 < f < n, it may

be difficult to compute or its size jIf,,,(S)1 may be too large to be of use to any control program.

In the following sections, we derive upper bounds on IJ.T,,(S)j as a function of f, n, and the

sizes of si E S. We use this information to develop algorithms for abstract sensors. The results

derived in [Mar90] for 1D intervals are summarized in Section 2. In Section 3 we derive upper

bounds and algorithms for measurements that are d-dimensional rectangles, and in Section 4 we

discuss abstract sensors for measurements that are d-dimensional circles. Note that the results OIL

circles actually hold for any class of convex shapes in which the shapes are geometrically similar

and share the same orientation.
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2 Linear Sensors

In (Mar90], Marzulo shows that for linear sensors - sensors that report 1D intervals - _tn ( S ) can

be found efficiently and that for f < 2, ZJL,(S) has reasonable size. The upper bounds on 1f n,(S)

are stated in the following two theorems.

First, we need some notation. Define the functions mini and maxi to be the izh smallezt and

largest values of a set of n values respectively. Note that mini is the same as maxn..i+i. For

example, if S = {13, 14,15} then min3(S) = maxl(S) = 15.

Theorem 1 Let S be a set consisting of n intervals. If0 < f < 2 then IIf,n(S)I _ min 21+1{It :3

3 E S}.

Thus, when f < 1L, the resulting abstract sensor is as accurate as one of the original sensors.

ZIn(S ) can also be computed efficiently: O(n log n) time, by sorting the endpoints of the n intervals.

then moving through the endpoints in order, keeping track of the depth at each instant.

The second theorem states that there is no upper bound on the size when f 1.

Theorem 2 Given a set {tl,t 2 , ...,et} of n lengths and 2 < f < n, then for any length A >

max{fi,1 2 , ... ,,}, there exists a set ofn intervals S = {1,32, ...,.in whereVi : 1 < i < n: =

and II,,,(S) = A.

2.1 Multidimensional Sensors and Projection

The ID results on intervals can be used directly to give results for multidimensional sensors. For

a d-dimensional sensor, we project the region for sensor si onto each of the d orthogonal axes. We

now have d separate 1D problems. These problems can be solved individually and then recombined

to produce a d-rectangle.

There are several possible disadvantages to this approach:

1. Information may be lost. For example, the knowledge that a sensor's x-coordinate cannot

possibly be correct should be used to toss out the entire sensor.
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2. A d-rectangle is not necessarily the desired shape. For example, our abstract sensor may be

required to report a circle.

3. The size of the resulting sensor may be larger than necessary (see Figure 2).

I I

I I

(a) (b)

Figure 2: Intersection vs. Intersection of Projections (n = 3,1 = 1)

In fact, projection techniques are the method-of-choice in some situations (see Section 3), but

these situations depend on the shapes involved and the relationship between f and n.

3 d-Rectangles

If si is constrained to be a d-dimensional rectangle, then another upper bound can be placed on

the size of zjn(S).

Theorem 3 Let S be a set consisting of n d-dimensional rectangles. If0 < f < " then 1If. (S)I <

min2df+1{-1 : j E S}.

The proof of this theorem is based on a counting argument that shows If,n(S) is contained in

at least n - 2df of the original rectangles.
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The bound on f given in the theorem is tight. Figure I shows a 2D example where f = and

If,,(S) is larger (in area) than any of the original rectangles. Similar examples can be built for any

dimension d.

This theorem shows that increased accuracy comes with a price: if it is desired that I$f.,(S)l

be at least as accurate as some measurement in S, then the amount of replication needed increases

quickly (linearly) with d. For example, in order to tolerate a single failure for measurements that

are 3D rectangles, a sensor must be replicated at least 7 times.

3.1 Algorithms for Rectangles

For 2D problems (and for 1D problems), efficient algorithms exist to compute If,,(S) directly.

Consider rectangles in two dimensions. The smallest rectangle containing all of the (n - f)-cliques

can be found in O(n log n) time by using a sweep-line combined with Bentley's segment tree (see.

for instance, {PS85]). Note that, although the entire boundary of the (n - f)-cliques can be of

complexity n2 , we need only determine the left, right, top, and bottom boundaries. This can be

done efficiently by keeping depth information within the segment tree.

Unfortunately, this technique does not generalize well to higher dimensions. For instance. 3D

rectangles (rectangular parallelopipeds) require a sweep-plane with dynamic insertion and deletion

of 2D rectangles.

There is however, an efficient algorithm that reports a d-rectangle for any d that is almost as

good as the minimal d-rectangle that we desire. This uses the projection technique, converting a d-

dimensional problem into d 1-dimensional problems. The results of these separate ID problems are

combined to produce the projection rectangle, a d-rectangle that is guaranteed to be of reasonable

size. The algorithm is based on the following theorem.

Theorem 4 Let S be a set consisting of n d-dimensional rectangles. If 0 < f < " then the size

of the projection rectangle is < min2df+lf{Ij : 3 E S}.
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Note that the projection rectangle can be computed in O(dn log n) time and has exactly the

same size bound as Zj,,(S). Thus, if our goal is create an abstract sensor that is at least as accurate

as some measurement in 5, the projection rectangle is as good as If,,,(S).

The full paper will include examples showing that neither If,,,(S) nor the projection rectangle

is necessarily larger than the other.

4 d-Circles

If si is constrained to be a d-dimensional circle (sphere in 3D) then the following upper bound can

be placed on the size of If,,(S):

Theorem 5 Let S be a set consisting of n d-circles. If 0 < f < " then [Tt,n(S)I _ min(d+l)I+l {

3 E 5)}.

The proof of this theorem will appear in the full paper. Note that this bound grows more slowly

with d then does the bound of Theorem 3. For example, in order to tolerate a single failure for

measurements that are spheres, a sensor must be replicated at least 4 times.

Algorithms for d-circles are not as efficient as algorithms for d-rectangles. Even in 2D. it

appears that to find the (n - f)-cliques, it is necessary to build the entire arrangement of n circles.

Since n circles can have Q(n2 ) intersections, building the arrangement must take time I( n2%.

(The incremental algorithm for building an arrangement of circles takes worst-case time O( nA4( n))

where A4 is an almost-linear function related to Davenport-Schinzel sequences [EGPRSS]; using

randomization, the arrangement can be built in expected time O(m + n log n) where m is the

number of intersections [Mul89].) Of course, we can replace each d-circle by a d-square that

contains it and use the rectangle techniques, but this may produce an answer less accurate than

desired.
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5 Discussion

',ve have shown how several real sensors (that measure the same multidimensional physical data) can

be combined to produce a reliable abstract sensor. This process can be done efficiently, reporting a

region guaranteed to be of reasonable size, for d-rectangles provided f < a where n is the number

of real sensors and f is the number of real sensors that are faulty. For d-circles, an abstract sensor

region of reasonable size exists provided f < d-' but determining this region is considerably less

efficient. As mentioned in the Introduction, the results on size bounds for circles actually hold

for any class of convex shapes in which the shapes are geometrically similar and share the same

orientation.

Improved results are possible if sensors are known to report d-rectangles that are all the same

size and orientation. In this case, the projection technique can be used to create an abstract sensor

which reports a d-rectangle of the standard size in O(dn log n) time provided f < 2. Note that for

this case, the required relation between f and n is independent of d. The reported rectangle may

not correspond to any of the original rectangles, but it will be bounded by the correct size.

In contrast, for identically sized circles, the smallest circle covering all of the (n - f)-ciques

may be larger than the initial circles even when f < 2. Of course, the bound in Theoreia 5 still

applies; JI1 ,.(S) is bounded by the size of the initial circles when f < +1*

In this shortened version of our work, we have room for only a brief mention of fast approxima-

tion techniques. A grid of equal-sized buckets can be u ?d to detect (n - f)-cliques, leading to a

linear-time abstract-sensor algorithm at the cost of some accuracy. This technique works for both

d-rectangles and d-circles, but is more accurate for rectangles.
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