AN EXPERIMENTAL INVESTIGATION INTO NO\textsubscript{X} CONTROL OF A GAS TURBINE COMBUSTOR AND AUGMENTOR TUBE INCORPORATING A CATALYTIC REDUCTION SYSTEM

by

Christopher Karl Behrens

March 1990

Thesis Advisor: D. W. Netzer

Approved for public release; distribution is unlimited.
Best Available Copy
An initial experimental investigation was conducted to examine the feasibility of NOx emission control using catalytic reduction techniques in the jet engine test cell environment. A modified T-63 gas turbine combustor and an augmentor tube, 21 feet in length and containing a perlite catalyst, were used as a gas generator and catalytic reduction system. Four data runs were made. Three runs were completed without the catalyst installed. Temperature and velocity profile measurements were obtained in order to calculate augmentation ratios for different engine fuel to air ratios. NOx, CO, and unburned hydrocarbon concentrations in the exhaust were measured to provide a baseline for further tests. A fourth data run was made with the perlite catalyst installed in the augmentor tube. A 64 percent NOx reduction was observed, however the large pressure drop across the catalytic bed deemed the current configuration impractical. Recommendations for alternative configurations are...
Block #19 - ABSTRACT (Continued)

presented. The results of the investigation have proven that further study
is warranted.
An Experimental Investigation Into NOx Control of a Gas Turbine Combustor and Augmentor Tube Incorporating a Catalytic Reduction System

by

Christopher Karl Behrens
Lieutenant Commander, United States Navy
B.S., Iowa State University, 1978

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1990

Author: Christopher Karl Behrens

Approved by: D.W. Netzer, Thesis Advisor

R.P. Shreeve, Second Reader

E.R. Wood, Chairman
Department of Aeronautics and Astronautics

iii
ABSTRACT

An initial experimental investigation was conducted to examine the feasibility of NO\textsubscript{x} emission control using catalytic reduction techniques in the jet engine test cell environment. A modified T-63 gas turbine combustor and an augmentor tube, 21 feet in length and containing a perlite catalyst, were used as a gas generator and catalytic reduction system. Four data runs were made. Three runs were completed without the catalyst installed. Temperature and velocity profile measurements were obtained in order to calculate augmentation ratios for different engine fuel to air ratios. NO\textsubscript{x}, CO, and unburned hydrocarbon concentrations in the exhaust were measured to provide a baseline for further tests. A fourth data run was made with the perlite catalyst installed in the augmentor tube. A 64 percent NO\textsubscript{x} reduction was observed, however, the large pressure drop across the catalytic bed deemed the current configuration impractical. Recommendations for alternative configurations are presented. The results of the investigation have proven that further study is warranted.
TABLE OF CONTENTS

I. INTRODUCTION

II. EXPERIMENTAL APPARATUS

- **A. COMBUSTOR**
- **B. AIR SUPPLY**
- **C. VITIATED AIR HEATER**
- **D. FUEL SUPPLY**
- **E. THERMOCOUPLES AND PRESSURE TRANSUDER INSTRUMENTATION**
- **F. AUGMENTOR TUBE AND INSTRUMENTATION**
- **G. CATALYTIC BED**
- **H. GAS SAMPLING AND ANALYSIS EQUIPMENT**
 - 1. Model 900 Heated Sample Gas Dilution and Conditioning Unit
 - 2. Model 10AR NO/NO_x Analyzer
 - 3. Model 810 Total Hydrocarbon Analyzer
 - 4. Model 48 GFC Ambient CO Analyzer
- **I. CONTROL ROOM**
- **J. DATA ACQUISITION AND REDUCTION SYSTEM**

III. EXPERIMENTAL PROCEDURE
IV. RESULTS AND DISCUSSION 46

V. CONCLUSIONS AND RECOMMENDATIONS 51

APPENDIX A - HP BASIC "T63NOX" COMPUTER PROGRAM 53

APPENDIX B - RUN CHECKLIST .. 66

APPENDIX C - HOT RUN DATA .. 69

LIST OF REFERENCES ... 73

INITIAL DISTRIBUTION LIST .. 75
LIST OF TABLES

1. T-63 PERFORMANCE RATINGS 10
2. SUMMARY OF RESULTS .. 46
LIST OF FIGURES

1. Schematic of T-63 Combustor Components 8
2. Photographs of T-63 Gas Turbine Combustor 9
3. Schematic of Air and Fuel Supply Systems
 (Adapted from [Ref. 11]) 11
4. Photographs of Augmentor Tube on Stand 15
5. Photograph of Variable Diameter Blocking Plate
 Installed on Front of Augmentor Tube 17
6. Augmentor Tube Flow [Ref. 12] 18
7. Photograph of Kiel Stagnation Pressure Probe 20
8. Photographs of Kiel Probe on Traversing Stand 21
9. Schematic of Augmentor Tube and Instrumentation 22
10. Photograph of Catalyst Enclosure 23
11. Schematic of Sample Gas Flow Path 25
12. Photograph of Model 900 Heated Sample Gas
 Dilution and Conditioning Unit 27
13. Photograph of Model 10AR NO-NO× Gas Analyzer 28
14. Conceptual Schematic of Model 10AR
 NO-NO× Gas Analyzer [Ref. 14] 30
15. Photograph of Model 810 Total Hydrocarbon Analyzer . 31
16. Photograph of Model 48 GFC CO Analyzer 34
17. Flow Schematic of Model 48 CO Analyzer [Ref. 16] 35
18. Diagram of Model 48 GFC Spectrometer [Ref. 16] 37
19. Photograph of T-63 Control Panels 39
20. Photograph of HP Data Acquisition and Control System 41
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Augmentation ratio</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>Methane</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>DACU</td>
<td>Data acquisition and control unit</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>f</td>
<td>Fuel to air ratio</td>
</tr>
<tr>
<td>F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>Iron oxide</td>
</tr>
<tr>
<td>GFC</td>
<td>Gas filter correlation</td>
</tr>
<tr>
<td>GPM</td>
<td>Gallons per minute</td>
</tr>
<tr>
<td>HP</td>
<td>Hewlett-Packard</td>
</tr>
<tr>
<td>m</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolts</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>NPS</td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>N(_2)</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>O(_3)</td>
<td>Ozone</td>
</tr>
</tbody>
</table>
P Pressure
ppm Parts per million
psi Pounds per square inch
R Rankine
SCFH Standard cubic foot per hour
SFRJ Solid fuel ramjet
T Temperature
UHC Unburned hydrocarbon
V Velocity

Subscripts
a Air
augup Upstream of catalyst position in augmentor tube
avg Average value across augmentor tube
bp Bypass
c Cor Astor
exl Upstream of quench air in combustor
t Stagnation/total
ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. David Netzer, for his outstanding and enthusiastic support and patience during the past several months. It has been a sincere pleasure working with a true professional in his field. A hearty thank you also goes to Mr. Harry Conner, a super technician, for the help, knowledge, and experience he provided which proved to be invaluable. I would be remiss if I did not thank another fine group of professionals, Mr. Pat Hickey, Mr. Don Harvey, and Mr. John Moulton, who were there when I needed them with advice, support, and a rapid response to our never ending needs.

Last but not least, I have to thank my wife, Marla, and my kids, Brandy, Brett, and Ashley, who for the past couple of years have given me everlasting support, love, and inspiration and have sacrificed some of the things otherwise enjoyed on a typical shore tour.
I. INTRODUCTION

With continually increasing worldwide industrialization and the resulting further destruction of natural cleansing agents, environmental concerns and pollution control are currently of paramount importance and they will continue to be so into the future. A major portion of the total sources of pollutants are the particulate and gaseous products of combustion. There are four principle chemical classes of these pollutant species which have the largest impact:

1. Nitrogen oxides (NO\textsubscript{x})
2. Carbon monoxide (CO)
3. Organic compounds (unburned or partially burned hydrocarbons (HC) or soot)
4. Sulfur oxides (SO\textsubscript{x}). [Ref. 1]

These combustion species can also be described as either primary pollutants, which are emitted directly to the atmosphere (soot or nitric oxide, NO) or secondary pollutants which are formed by chemical/photochemical reaction of primary pollutants after being emitted into the atmosphere and exposed to sunlight (i.e., ozone, O\textsubscript{3}) [Ref. 2]. Some pollutants fall into both categories such as nitrous oxide (NO\textsubscript{2}), which is emitted directly from combustion exhausts but is also formed in the atmosphere photochemically from nitric oxide (NO).
Of the total nitrogen oxides (NO\(_x\)) emitted from engine exhaust, about 90% is NO which oxidizes to NO\(_2\) in the atmosphere. In the presence of sunlight, NO\(_2\) decomposes photochemically to give atomic oxygen (O) which combines with molecular oxygen (O\(_2\)) to give ozone (O\(_3\)). The reaction of ozone with other hydrocarbons in the atmosphere forms carbon dioxide (CO\(_2\)) and other secondary products which result in photochemical smog or a brownish discoloration of the atmosphere. [Ref. 3]

The U.S. Navy and U.S. Air Force have been very interested in studies looking for economical alternatives in controlling pollution emissions, specifically soot and NO\(_x\) emissions from their gas turbine engine test cells (which are used in research and engine performance recertification after a rework or overhaul). As new generation engines exhibiting somewhat higher exhaust temperatures and pressure ratios are introduced, it can be expected that they will produce more NO\(_x\) emissions than current engines. For civilian aviation, such emission standards are set by the Environmental Protection Agency (EPA) and will most likely become more stringent in the future. The overall objectives of these efforts are to reduce the emission of NO\(_x\) and other pollutants, minimize the damage to the atmosphere and satisfy current state and EPA regulations.
Commonly, gas turbine engine test cells are comprised of an instrumented static test stand, an augmentor tube, and a vertical exhaust stack. The augmentor tube provides an enclosure to reduce the velocity and temperature of the exhaust, enable potential engine noise suppression, and provides a capability to physically "treat" the exhaust gases, while the exhaust stack vents the gases into the atmosphere.

Currently, NO\textsubscript{x} emission control is envisioned to use some type of catalytic reduction process within the augmentor tube. This could involve a technique combining the injection of some substance (i.e., ammonia or isocyanic acid [Ref. 4,5,6]) into the exhaust flow inside the augmentor tube and a catalytic surface (i.e., iron oxide, perlite, or vermiculite [Ref. 7]) installed inside the tube further downstream. This technique of NO\textsubscript{x} control centers around the chemical treatment of the combustion products or exhaust of the engine. The introduction of fuel additives in the engine (thereby changing the combustion species in the exhaust) and the use of staged combustion have also been studied, but will not be addressed here.

Previous research at the Naval Postgraduate School since 1982 has primarily focused on the effects of fuel composition and additives on engine exhaust particulate emissions or solid soot concentrations (as last reported in 1988 by Lindsay [Ref. 8]). Lindsay's research utilized an actual Allison T-63-A-5A
engine combustor section modified to allow the use of nonintrusive, optical techniques (three wavelength transmittance/forward laser light scattering measurements) to measure the actual size and concentration of solid exhaust particles (soot) across the combustor and augmentor tube.

Conversely, a primary goal of this research was to investigate an effective NO\textsubscript{x} control process, entailing a combination of exhaust treatment techniques, to accommodate the operational ranges and variables experienced in the gas turbine engine test cell environment. The challenge exists in determining an overall NO\textsubscript{x} control strategy since catalytic reduction has been found to be very temperature dependent. In addition, the technique must be applied without severely compromising the proper functioning of the test cell (pressure drop, augmentation ratio, etc.). This makes it particularly difficult to apply to different engines, engine power settings, and corresponding augmentation ratios in the gas turbine engine test cell environment. Previous research at the Naval Postgraduate School has not touched upon this concept before, but it has been under study by the U.S. Air Force, at the Naval Air Propulsion Center, and at other government laboratories and agencies.

Recent studies have observed greater amounts of CO (700 ppm at idle to 45 ppm at 75% power) and unburned hydrocarbons (950 ppm at idle to 3 ppm at 75% power) at low gas turbine
power settings. At high power settings, larger amounts of NO_x (10 to 60 ppm) and smoke have been observed. The general trend reflects that high concentrations of NO_x are not normally present together with high levels of CO. In afterburner, gas turbine engines may emit much higher concentrations of both CO (900 ppm) and NO_x (80 to 100 ppm) [Ref. 7].

The variation of concentrations with power settings and other variables in the test cell environment confirms the difficulty which exists in providing an efficient NO_x control process over all operating conditions. To date, studies indicate that NO_x reductions of up to 90-100% are possible depending on catalytic bed temperatures, catalyst volume and composition, and engine power setting [Ref. 7].

At the outset, the scope and following objectives were set for this investigation utilizing the Allison T-63 combustor as a gas generator.

1. Re-plumb all fuel and air lines and re-instrument the T-63 engine and ensure the engine, associated hardware and software operate satisfactorily.

2. Design and build a test stand for the 21 foot augmentor tube.

3. Install and calibrate a new gas sample dilution and conditioning unit, NO_x analyzer, carbon monoxide analyzer, and unburned hydrocarbon (UHC) analyzer.

4. Determine the average velocity, temperature, and mass flow rate of the gas exhaust at the end of the augmentor tube prior to the installation of the catalytic bed.
5. Install an iron oxide (Fe$_2$O$_3$) catalytic bed (available from the Von Didier-Werke Corp., West Germany) at the aft end of the augmentor tube and determine the effect of the catalytic bed on NO$_x$, CO, and UHC concentrations, augmentation ratio, and pressure drop as the combustor exhaust passes through the bed.

6. Measure the concentrations of NO$_x$, CO, and UHC before and after the catalyst while varying the augmentation ratio, engine exhaust temperature, and engine fuel to air ratio to determine the practicality of using such a technique in the gas turbine test cell environment.
II. EXPERIMENTAL APPARATUS

A. COMBUSTOR

A full scale Allison T-63-A-5A Gas Turbine combustor (Figures 1 and 2), as modified by Grafton [Ref. 9] was used to generate jet exhaust gases. Grafton [Ref. 9] installed a quench manifold forward of the exhaust nozzle and just aft of the turbine nozzle block to simulate the temperature drop of the combustor exhaust gases which would normally take place upon turbine work extraction. In this investigation, the quench air to the manifold was supplied at approximately 20 deg. F (480 deg. R) and at a flow rate of between 0.5 and 0.6 lbm/sec. The required quench air was supplied from a single air line branching off from the main air line through a sonic choke ($D_{bp} = 0.237$ in.) sized to provide a 0.5 lbm/sec flow rate assuming a minimum of 475 psi air pressure was provided upstream of the choke. The quench air line branch was located prior to the main air sonic choke and vitiated air heater. New combustor ignitor and air heater torch transformers were also obtained and installed prior to the experiments.

The combustor apparatus used in this experiment was moved from the test cell utilized by the Lindsay experiment [Ref. 8], necessitating installation of all new fuel and air lines as well as re-instrumentation of the combustor. Prior to
Figure 1. Schematic of T-63 Combustor Components
Figure 2. Photographs of T-63 Gas Turbine Combustor
initial engine test and data runs, all fuel and air lines were leak tested under high pressure.

Pertinent T-63 engine data is provided below in Table I at standard sea level static conditions.

Table I. T-63 PERFORMANCE RATINGS [Ref. 10]

<table>
<thead>
<tr>
<th>Rating</th>
<th>(f)</th>
<th>(\dot{m}_{\text{air}}) (lb/s)</th>
<th>(\dot{m}_{\text{fuel}}) (lb/s)</th>
<th>(T_t) (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff</td>
<td>0.019</td>
<td>3.17</td>
<td>0.061</td>
<td>1380</td>
</tr>
<tr>
<td>Military</td>
<td>0.019</td>
<td>3.17</td>
<td>0.061</td>
<td>1380</td>
</tr>
<tr>
<td>Normal</td>
<td>0.017</td>
<td>3.04</td>
<td>0.053</td>
<td>1280</td>
</tr>
<tr>
<td>90% Normal</td>
<td>0.017</td>
<td>2.95</td>
<td>0.049</td>
<td>1226</td>
</tr>
<tr>
<td>75% Normal</td>
<td>0.015</td>
<td>2.82</td>
<td>0.043</td>
<td>1148</td>
</tr>
</tbody>
</table>

Note: compressor ratio = 6.25, \(P_c = 92 \) psia
engine length = 40.4 in, height = 22.5 in,
width = 19.0 in, dry weight = 138.7 lb.

B. AIR SUPPLY

Compressed air for the combustor and quench manifold was provided from a 3000 psi tank storage system (Figure 3). Compressed air was supplied to the tank system using two compressors with an in-line air drier system to remove moisture. Air flowed from the tanks, through several valves, to a dome loaded pressure regulator operated from the system control panel inside the control room. The dome loaded pressure regulator provided a stable pressure to the main air sonic choke (\(D_a = 0.42 \) in.), which when instrumented with a
A thermocouple and pressure transducer was used by the computer to determine the air mass flow rate to the combustor. The sonic chokes were sized to obtain an approximate 1.7 - 1.9 lbm/sec mass flow rate of primary air, 0.5 lbm/sec of quench air, and a 90-100 psi combustor chamber pressure. The quench air branch was located after the dome loaded pressure regulator and prior to the main air sonic choke.

C. VITIATED AIR HEATER

A vitiated air heater was installed between the main inlet air sonic choke and the inlet of the combustor, providing a means to vary the combustor inlet temperature. An ethylene charged ignitor torch was used to start the hydrogen fueled air heater. Make-up oxygen was added downstream of the air heater prior to entering the combustor inlet. This oxygen was added to replace the oxygen burned in the air by the vitiated air heater, ensuring that the correct molar/mass composition of inlet oxygen and nitrogen entered the combustor. The torch and heater gas introduction into the main air and vitiated air heater was controlled via solenoid valves remotely activated from the control room.

Sonic chokes were placed in the lines between the heater fuel and make-up oxygen gas bottles and the point of injection into the vitiated air heater. The chokes were sized assuming an air heater pressure of 250 psi and hydrogen fuel to air
of 0.0015, yielding an air heater temperature of 860 deg. Rankine. Using the one dimensional, isentropic flow expressions with fixed properties, the heater fuel and make-up oxygen sonic choke diameters were determined to be 0.035 and 0.070 inches respectively.

D. FUEL SUPPLY

A remotely controlled, pressurized 20 gallon tank provided fuel to the combustor. Nitrogen was used to pressurize the tank using a remotely controlled dome loaded pressure regulator. From the tank, NAPC #4 (Suntech 4) fuel was supplied through a series of filters, through a throttle valve in the control room, into a turbine flowmeter, to an electric solenoid shutoff valve and into the combustor (Figure 3). Fuel flow rate, in gallons per minute, was available from a digital display in the control room and was provided to the HP data acquisition system via the HP 3497 DACU scanner channel 25. The displayed flow rate was the result of the output of the turbine flowmeter.

E. THERMOCOUPLES AND PRESSURE TRANSDUCER INSTRUMENTATION

Chromel-Alumel (Type K) thermocouples were used to measure the various temperatures in the high pressure air lines and combustor as well as inside the augmentor tube. The thermocouple and pressure transducer outputs were provided to the Hewlett-Packard (HP) 3497 Data Acquisition/Control Unit
(DACU) of the HP-3054A data acquisition system for recording and flow rate calculations. The following provides a summary of thermocouple and transducer locations and their associated data acquisition scanner channel number used to input the measurements into the microcomputer:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>HP-3497 DACU CH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa (main air pressure)</td>
<td>24</td>
</tr>
<tr>
<td>Pc (combustor chamber pressure)</td>
<td>23</td>
</tr>
<tr>
<td>P_{hf} (heater fuel, H_2 pressure)</td>
<td>22</td>
</tr>
<tr>
<td>P_{ho} (heater make-up oxygen pressure)</td>
<td>21</td>
</tr>
<tr>
<td>T_{a} (main air temp)</td>
<td>60</td>
</tr>
<tr>
<td>T_{cin} (combustor inlet air temp)</td>
<td>61</td>
</tr>
<tr>
<td>T_{ex1} (combustor exhaust upstream of quench)</td>
<td>62</td>
</tr>
<tr>
<td>T_{ex2} (combustor exhaust downstream quench)</td>
<td>63</td>
</tr>
<tr>
<td>T_{ho} (heater make-up oxygen temp)</td>
<td>64</td>
</tr>
<tr>
<td>T_{hf} (heater fuel temp)</td>
<td>65</td>
</tr>
<tr>
<td>T_{augup} (augmentor tube, upstream of catalyst)</td>
<td>66</td>
</tr>
<tr>
<td>T_{augdl} (augmentor tube, downstream catalyst)</td>
<td>67</td>
</tr>
<tr>
<td>T_{augd2} (augmentor tube, downstream catalyst)</td>
<td>68</td>
</tr>
</tbody>
</table>

F. AUGMENTOR TUBE AND INSTRUMENTATION

An augmentor tube, 21 feet long and two feet in diameter, (Figure 4) was used during the experiment. The tube was suspended on a rigid castor system mounted on a heavy stand constructed of four-inch angle iron. The castor system
Figure 4. Photographs of Augmentor Tube on Stand
enabled the augmentor tube to be slid into the proper position for each data run from its storage position. The purpose of the tube was to capture the primary jet exhaust of the T-63 combustor, mix the exhaust with inducted ambient air, and enable the air mixture to be treated by the catalyst located inside the augmentor tube, 4.5 feet from the exit. Gas samples are taken prior to and after the catalytic bed to determine the effectiveness of the catalyst in scrubbing the exhaust of NO\textsubscript{x}.

A variable diameter blocking plate was attached at the forward end of the augmentor tube at the T-63 exhaust (Figure 5). Varying the opening diameter of the tube enabled a variable augmentation ratio, i.e., the ratio of the induced ambient air (air drawn into the tube by the jet exhausting into the tube) flow rate to the T-63 exhaust flow rate (Figure 6). This in turn created variable amounts of colder ambient air induction into the tube to viscously mix with the T-63 exhaust gases, and also provided the required cooler catalyst inlet and augmentor exhaust temperatures. For this experiment, a five inch diameter orifice plate was attached to the blocking plate.

In order to determine the total mass flow through the augmentor tube, an average velocity and temperature near the exit of the tube had to be measured. To find the velocity, static and stagnation pressures were obtained 30 inches from
Figure 5. Photograph of Variable Diameter Blocking Plate Installed on Front of Augmentor Tube
Figure 6. Augmentor Tube Flow [Ref. 12]
the exit plane of the augmentor tube. Static pressure was measured with an eighth-inch static port installed flush with the inside of the tube. The stagnation pressure across the tube radius was obtained with a modified United Sensor KT-18-C/A-12-C Kiel probe (Figure 7) enclosed within a 0.375 inch stainless steel tube. The Kiel probe was mounted on an electric motor-driven traversing platform (Figure 8) mounted on an adjustable stand. The Kiel probe was introduced into the flow through an orifice in the wall of the augmentor tube. The probe could extend from 2.5 inches from the wall to the tube centerline at 11.75 inches. The traversing Kiel probe was controlled by a DC motor speed control box in the control room. Low pressure transducers on the adjustable stand were connected through Pacific amplifiers into an Omega strip chart recorder for recording static and total pressure as well as probe position in the augmentor tube.

Figure 9 provides a schematic of the augmentor tube and associated instrumentation including thermocouple, catalyst basket, and sample gas probe locations.

G. CATALYTIC BED

A stainless steel, circular basket was manufactured to enable different varieties of catalyst species to be inserted into the augmentor tube. The enclosure (Figure 10) was 23.25 inches in diameter and five inches wide, producing a maximum
Figure 7. Photograph of Kiel Stagnation Pressure Probe
Figure 8. Photographs of Kiel Probe on Traversing Stand
Figure 9. Schematic of Augmentor Tube and Instrumentation

NOTES: DRAWING NOT TO SCALE
ALL DIMENSIONS IN INCHES

AUGMENTOR TUBE: TOTAL LENGTH= 21 FEET
I.D.= 23.5 INCHES

BLOCKING PLATE WITH
5 INCH ORIFICE

THERMOCOUPLES

STATIC PORT
KIEL PROBE PORT

HEATED SAMPLE HOSE

3-WAY SOLENOID VALVE

SAMPLE PROBE

T-63

Catalyst

AUGMENTOR TUBE TEST STAND

NOTES: DRAWING NOT TO SCALE
ALL DIMENSIONS IN INCHES
Figure 10. Photograph of Catalyst Enclosure
of 1.2 cubic feet of catalyst bed volume. The stainless steel screen mesh containing the catalytic material was made of 0.063 inch wire with a 0.187 inch mesh spacing. A removable door along the width of the basket provided for removal or replacement of catalytic material. The basket was machined so that it could be slid into the augmentor tube and secured 4.5 feet from the tube exit plane. Assuming a flow velocity of 40 feet/sec, minimum residence time through the enclosure was 0.01 seconds.

H. GAS SAMPLING AND ANALYSIS EQUIPMENT

Figure 11 shows a schematic of the sample gas flow path to the analyzers after being collected by two stainless, 1/4 inch sample probes in the augmentor tube. One sample probe was positioned upstream and one downstream of the catalyst enclosure. A three-way solenoid valve connected the heated sample line from the downstream sample probe in the augmentor tube, the upstream sample probe, and the heated sample line to the gas analyzers. The electric solenoid valve was operated from the control room via a toggle switch on the T-63 control panel. The sample lines were set to heat the sample to a temperature of 275 deg. F to prevent water condensation.
Figure 11. Schematic of Sample Gas Flow Path
1. Model 900 Heated Sample Gas Dilution and Conditioning Unit

Sample gas was drawn at about 1.3 SCFH from the stainless sample probes in the augmentor tube through a heated sample line and introduced into a Thermal Electron Model 900 Heated Sample Gas Dilution and Conditioning Unit (Figure 12). The Model 900 blended dry dilution air at a 20:1 dilution ratio with the gas sample to reduce its dewpoint, preventing the formation of condensate at room temperature [Ref. 13]. The conditioned sample (output of the Model 900) was then delivered to the following instruments at seven SCFH and ten psig for further analysis:

1. Thermo Electron Model 10AR Chemiluminescent NO/NO\textsubscript{x} Analyzer

2. Model 10AR NO/NO\textsubscript{x} Analyzer

From the Model 900 Sample Conditioning Unit, a portion of the sample gas was provided via teflon tubing into the Thermo Electron Model 10A Rack-Mounted Chemiluminescent NO-NO\textsubscript{x} Gas Analyzer (Figure 13) for continuous measurement of nitric oxide (NO) and nitrous oxides (NO+NO\textsubscript{2} or NO\textsubscript{x}). The Model 10AR was capable of measurement ranges from 2.5 to 10,000 parts per million (ppm) and had a sensitivity of 0.1 ppm.

26
Figure 12. Photograph of Model 900 Heated Sample Gas Dilution and Conditioning Unit
Figure 13. Photograph of Model 10AR NO–NO$_x$ Gas Analyzer
The basis of the instrument is the chemiluminescent reaction of NO and ozone (O_3) or $NO+O_3 \rightarrow NO_2+O_2$. Light emission results when excited NO$_2$ molecules revert to their ground state.

To measure NO, the gas sample was blended with ozone produced by an internal ozonator in a reaction chamber within the Model 10AR (Figure 14). The resulting chemiluminescence was measured through an optical filter by a sensitive photomultiplier (PM). The filter and PM responded to light in a narrow wavelength band unique to the chemiluminescent reaction. The output of the PM was linearly proportional to the NO concentration. [Ref. 14]

To measure NO$_x$, the sample gas was diverted through an NO$_2$-to-NO converter in which the nitrogen dioxide (NO$_2$) was thermally converted to nitric oxide (NO) for subsequent measurement via the chemiluminescent process. The chemiluminescent response in the reaction chamber to the converter output mixture was linearly proportional to the NO$_x$ concentration entering the converter. [Ref. 14]

3. Model 810 Total Hydrocarbon Analyzer

A raw portion of the exhaust gas from the heated sample line was provided to the Thermo Environmental Instruments Model 810 Total Hydrocarbon Analyzer (Figure 15) at atmospheric pressure at a sampling flow rate of 2500 ml/min (5.3 SCFH). The sample gas for the Model 810 bypassed the
Figure 14. Conceptual Schematic of Model 10AR NO-NO\textsubscript{x} Gas Analyzer [Ref. 14]
Figure 15. Photograph of Model 810 Total Hydrocarbon Analyzer
Model 900 due to the high dilution ratio of the Model 900 and the low concentrations of hydrocarbons expected in the exhaust. The Model 810 measured hydrocarbon concentration ranges of 0.1 to 10,000 ppm with an accuracy of 0.1 ppm utilizing an internal hydrogen flame ionization detector. The detector operated by ionizing volatile organic compounds using a hydrogen flame. The gas sample was mixed with hydrogen prior to the flame. External combustion air was provided for combustion of the sample in the flame. Normally, sample flow and hydrogen flow were equal and combustion air was five to ten times greater. Upon combustion, the hydrogen flame burned the organic compounds in the sample to generate carbon dioxide and water. Carbon ions were also formed in the process. This process occurred in an electrical field between two electrodes, one near the hydrogen flame and one around the flame or a collector electrode. The potential difference between the two electrodes caused movement of ions to one or the other electrode. A small ion current flowed, was amplified, and provided to the microprocessor system of the Model 810. [Ref. 15]

The Model 810 required calibration with a known span gas (known concentration of hydrocarbons), zero air (less than 0.1 ppm concentration of hydrocarbons), combustion air or oxygen, and hydrogen.
4. Model 48 GFC Ambient CO Analyzer

Another small portion of the conditioned sample gas from the Model 900 Conditioning Unit was drawn off and introduced into the Thermo Electron Model 48 Gas Filter Correlation (GFC) Carbon Monoxide (CO) Ambient Analyzer (Figures 16 and 17) at a flow rate of about one liter per minute at atmospheric pressure. The Model 48 was capable of measuring CO concentrations from 0.1 to 1000 ppm with an accuracy of 0.1 ppm utilizing non-dispersive infrared absorption techniques. Since infrared absorption is a non-linear measurement technique, the Model 48 transformed the basic analyzer signal into a linear output. This was done internally by the Model 48 by storing the calibration curves in computer memory and subsequently using the curves to accurately linearize the instrument output over a desired range. An internal temperature and pressure transducer provided outputs into a microcomputer to make corrections to instrument output, resulting in CO concentration measurements which were unaffected by changes in sample gas pressure and temperature.

The sample gas CO concentration in the Model 48 was determined using an internal Gas Filter Correlation Spectrometer. GFC spectrometry is based upon the comparison of the detailed structure of the infrared absorption spectrum of the measured gas to that of other gases also present in the
Figure 16. Photograph of Model 48 GFC CO Analyzer
Figure 17. Flow Schematic of Model 48 CO Analyzer [Ref. 16]
sample. The technique is implemented by using an input of a high concentration of CO (known span gas) as a filter for the infrared radiation transmitted through the analyzer (GFC). The basic components of the GFC CO spectrometer are shown in Figure 18. Radiation from an IR source is chopped and then passed through a gas filter alternating between CO and nitrogen due to rotation of the filter wheel. The radiation then passes through a narrow bandpass interference filter and enters a multiple optical pass cell where absorption by the sample gas occurs. The IR radiation then exits the sample cell and falls on the IR detector. [Ref. 16]

The CO gas filter acts to produce a reference beam which cannot be further attenuated by CO in the sample cell. The nitrogen side of the filter wheel is transparent to the IR radiation and produces a measure beam which is absorbed by CO in the cell. The chopped detector signal is modulated by the alternation between the two gas filters with an amplitude related to the concentration of CO in the sample cell. Other gases do not cause modulation of the detector signal since they absorb the reference and measure beams equally. This means that the GFC system responds specifically to carbon monoxide. The sensitivity of the Model 48 is increased to 0.1 ppm with a lower detectable limit of 0.02 ppm by using multiple pass optics in the sample cell leading to a large path length or improved sensitivity. [Ref. 16]
Figure 18. Diagram of Model 48 GFC Spectrometer [Ref. 16]
I. CONTROL ROOM

A main control room and associated control panels were located adjacent to the test cell in the NPS Combustion Lab, Building 217, NPS Annex. The control room provided a secure and quiet space to control and visually observe the experiment as well as house the sample gas conditioning unit, gas analyzers, and data acquisition system. Figure 19 provides a photograph of the layout of the control panel including controls for:

1. main air (red guarded)
2. T-63 air heater torch and gases (red guarded)
3. T-63 combustor ignitor
4. T-63 combustor fuel system and tank vent
5. fuel tank pressure and hand loader.

Adjacent to the panel was a digital readout of the JP fuel flowrate in gallons per minute (GPM) as well as a jet exhaust temperature readout for safety backup. The main air pressure gauge and hand loader were located on the solid fuel ramjet (SFRJ) air heater console near the T-63 combustor control panel.

J. DATA ACQUISITION AND REDUCTION SYSTEM

A Hewlett-Packard HP-3054A automatic data acquisition/control system located in the control room
Figure 19. Photograph of T-63 Control Panels
provided test data acquisition, reduction, and system control for the experiment. The system included a HP-3497A data acquisition and control unit (DACU), a HP 3456A digital voltmeter, and a HP-9836S microcomputer with a HP-9153C hard disk drive (Figure 20). The test controlling software program (Appendix A) was written in HP Basic 5.1 and loaded from the HP-9153C hard disk for each test run. The software was programmed for transducer calibration, setup of gaseous flows, data acquisition and reduction for each hot data run.
Figure 20. Photograph of H-P Data Acquisition and Control System
III. EXPERIMENTAL PROCEDURE

Prior to any data runs, the T-63 combustor, augmentor tube, traversing probe system, gas analyzers, and associated software were checked and tested to ensure the equipment operated satisfactorily after installation.

The sample gas analyzers were calibrated with their respective zero and span gases. In accordance with Reference 14, the Model 10AR NO\textsubscript{x} analyzer was calibrated with a zero gas of less than 0.1 ppm NO and a span gas containing 220 ppm of NO in nitrogen. The Model 48 CO analyzer was calibrated with a zero gas of less than 0.1 ppm CO and a 104 ppm CO span gas. The NO\textsubscript{x} and CO analyzer calibration gases were routed through the Model 900 Dilution and Conditioning unit prior to entering their respective analyzer for calibration, since the actual sample gas would also be conditioned through the Model 900. Since the Model 900 diluted any sample input at a 20:1 ratio, all sample gas readings from the Model 48 and Model 10AR during a data run were multiplied by 20 to obtain the actual specie concentration in ppm.

The Model 810 Total Hydrocarbon analyzer was calibrated with a zero gas of less than 0.1 ppm of methane (CH\textsubscript{4}) in air and a span gas of 50 ppm methane in air in accordance with Reference 15. Since the Model 810 automatically initiated a calibration sequence upon start and at prescribed intervals,
the zero and span gases were permanently plumbed to the unit. Before connecting them to the Model 810, the zero and span gas flow rates were set externally (to 0.53 SCFH) using two flow meters and needle valves. Due to the calibration requirements, the T-63 exhaust sample gas was introduced directly into the Model 810, bypassing the Model 900. All analyzers and the Model 900 were energized one hour prior to a hot data run to ensure proper warmup and operation. This normally allowed enough time for the Model 900 chamber temperature to reach 180 degrees F as required.

All pressure transducers required calibration prior to data collection. The computer program "T63NOX" (Appendix A) was used to complete the calibration. New calibration constants and zero values were obtained and entered into the program for data reduction.

The Kiel total pressure probe and static pressure port transducers were calibrated with a manometer and strip chart recorder in the control room. The calibration resulted in a constant of 10 mV per 0.58 cm of water for the static port and 10 mV per 0.53 cm of water for the Kiel total pressure probe.

With the probes, transducers, and analyzers set, the Run Checklist (Appendix B) was completed and the various flow rates (main air, air heater fuel, heater oxygen) were set in accordance with the "T63NOX" computer program on the H-P microcomputer. On cue from the computer, the air heater and
combustor were ignited from the control panel in the control room. The combustor was operated at normal engine operating fuel to air ratios \((f = 0.017-0.019)\). The Kiel probe traversed across the augmentor tube exit plane and gas samples were taken from both collection probes in the augmentor tube and processed by the gas analyzers.

Originally, four hot data runs were to be completed. Two runs each were to be made both with and without a catalytic bed inserted in the augmentor tube; one of these runs without the vitiated air heater activated. The runs without the catalyst were made to establish the base concentration of \(\text{NO}_x\), \(\text{CO}\), and \(\text{UHC}\) and to determine the augmentation ratios from the average temperatures and velocities across the tube exit plane. \(\text{CO}\) and \(\text{UHC}\) levels were measured since it had been shown (Ref. 4) that their presence can significantly change the effectiveness of a catalyst for \(\text{NO}_x\) reduction. For example, \(\text{NO}\) can be reduced by \(\text{CO}\) using a rhodium catalyst to produce \(\text{CO}_2\) and \(\text{N}_2\). The other two data runs were to be made with an iron oxide catalyst inserted in the augmentor tube following the work of Reference 6. When the iron oxide catalyst became unavailable (due to the supplier deciding that it would not work adequately in the augmentor tube environment), a vermiculite catalyst (an aluminum-iron-magnesium silicate) was ordered to evaluate the recent results of Reference 7 within the augmentor tube environment. This
material was not delivered in time for evaluation. Course perlite (an inexpensive, amorphous, sodium-potassium-aluminum silicate) was then obtained for testing (also based on the recent results of Reference 7), but the grain size proved to be too small for the catalytic bed screen mesh. A finer mesh screen was therefore attached to both sides of the coarse wire basket. A fourth data run was then completed with the catalyst, but without activating the vitiated air heater. The run was made to evaluate the effectiveness of the perlite catalyst for NO_x reduction and to determine the effect of the catalytic bed on the augmentation ratio.
IV. RESULTS AND DISCUSSION

A summary of the results of the four data runs is presented below in Table II. A more comprehensive data output for each run appears in Appendix C.

Table II. SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>RUN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>air heater used</td>
<td>no</td>
</tr>
<tr>
<td>catalyst installed</td>
<td>no</td>
</tr>
<tr>
<td>\dot{m}_a (lbm/sec)</td>
<td>1.92</td>
</tr>
<tr>
<td>f</td>
<td>0.017</td>
</tr>
<tr>
<td>V_{avg} (ft/sec)</td>
<td>41.5</td>
</tr>
<tr>
<td>AR</td>
<td>1.17</td>
</tr>
<tr>
<td>T_{augup} (deg. R)</td>
<td>903</td>
</tr>
<tr>
<td>T_{exl} (deg. R)</td>
<td>1550</td>
</tr>
<tr>
<td>NO$_x$ (ppm)</td>
<td>26</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>360</td>
</tr>
<tr>
<td>UHC (ppm)</td>
<td>135</td>
</tr>
</tbody>
</table>

Notes: For Run #4:
* unable to calculate
+ data taken early in test
gas concentrations:
upstream/downstream of catalytic bed
It is evident from the data of runs 1, 2, and 3 that as the combustor temperature increased, exhaust NO\textsubscript{x} levels also increased and UHC concentrations decreased as expected for gas turbine combustors and confirming the trend found in Reference 7. CO levels were quite high for the first three runs except for run #2, which is suspect. As the combustion temperature and augmentation ratio decreased, CO levels should have increased. This behavior was not observed and could have been the result of either the low combustor flow rate or improper functioning of the CO analyzer. Overall CO and UHC levels were somewhat higher than reported in Reference 7. Differences could have been attributed to defined power settings and combustion temperatures in the engine data of Reference 7. Additionally, the Model 810 UHC analyzer used in the tests had experienced calibration problems during the experiments.

The average velocities near the augmentor tube exit (18.5 feet downstream of combustor exhaust) for the first three runs were fairly close in value. The velocity and temperature profiles were fairly uniform with a relatively constant velocity (constant stagnation pressure) in the center of the flow as expected. The flow did exhibit slightly greater velocities near the wall of the tube, possibly the result of the mixing process between the engine exhaust and augmentor air in the large diameter augmentor tube. The lower velocity
and augmentation ratio during run #2 (vitiated air heater activated) was a result of an initial combustor overtemperature condition at the normal operating fuel to air ratio upon ignition. This required a reduced fuel-to-air ratio to be used. The resulting correction was too severe and produced a much lower combustor exhaust temperature.

Run #4 was accomplished with a perlite catalytic bed inserted 4.5 feet from the tube exit. Temperatures entering the bed were initially 989 deg. R (529 deg. F). Due to the large pressure drop caused by the catalytic bed obstructing the flow through the tube, the augmentation ratio was greatly reduced, resulting in the tube temperature being increased substantially as the run progressed. The velocity profile downstream of the catalyst exhibited areas of flow reversal and substantially higher velocities near the wall due to an inexact seal between the wall and catalyst enclosure. Additionally, fine particles of perlite were inducted into the Kiel probe head, hampering efforts to obtain a reliable average exit velocity. Based upon the measured data and the observed very high augmentor tube wall temperature, the augmentation ratio was known to be very small.

The perlite catalytic bed did provide for a 64% reduction in NO\textsubscript{x} which was on the order found in Reference 7 (for a subscale test) for a perlite + MgSO\textsubscript{4} bed at 860 deg. R. The long residence times (probably on the order of 0.01-0.03
seconds), large exposed surface area of the catalyst particles, and higher bed temperatures probably contributed to the apparent success of the perlite catalyst. The catalyst also appeared to cause a decrease in CO and UHC. This may be the result of the oxidation of CO over the catalyst.

It was apparent from these initial tests that the catalytic reduction of NO\textsubscript{x} in test augmentor tubes is practical. However, to not adversely affect the augmentor flow rate, the catalysts will have to be distributed in such a manner to reduce flow rate resistance. Two such methods are; (1) placing the catalyst material in tubular structures (honeycombs) and, (2) treating only the central region of the flow where the NO\textsubscript{x} levels are at their highest values.

In this initial investigation, the augmentor tube diameter was made large and the augmentor inlet orifice small in order to provide low velocities (30-40 ft/sec) through the catalytic bed. This was done to determine the effectiveness of the catalyst under the most ideal conditions and with a minimum of catalytic material. Augmentation ratios as high as five and velocities as high as 1000 ft/sec are not uncommon in full-scale test cells. Once the most effective catalyst is found, it must be evaluated over the full range of velocities and temperatures encountered in the test cell environment.

Another issue which must be addressed is the impact of soot (which can accumulate with run time) on the effectiveness
of the catalyst.
V. CONCLUSIONS AND RECOMMENDATIONS

Most of the initial objectives for this investigation were met. The T-63 combustor, associated instrumentation, and software operated satisfactorily. A test stand for the augmentor tube was designed and built. The sample gas analyzers were set up and calibrated and a sample flow system was constructed for transporting the exhaust sample from the probes in the augmentor tube to the analyzers. A long response time was noticed during the tests due to the long sample hose lengths required to transport the sample to the analyzers and small orifice size in the three-way solenoid valve at the augmentor tube stand. Movement of the analyzers to the test cell, increasing the orifice of the solenoid valve, and increasing the sample probe size to 3/8 inch stainless steel could minimize sample travel time and distance to the analyzers and suction resistance in the tubing.

The general velocity and temperature profiles across the augmentor tube were determined to be relatively constant and used to obtain augmentation ratios when practical. The perlite catalytic bed resulted in a 64% NO\textsubscript{x} removal. This supports a conclusion that perlite is a viable, inexpensive catalyst material which could be used in the test cell environment. The large pressure drop observed across the

51
catalytic bed, however, makes the current configuration impractical. Alternative configurations might include:

1. For total exhaust flow treatment, a honeycombed catalyst enclosure could be manufactured which would allow a larger flow velocity through the bed and lower pressure drop. Systems of this type are discussed in Reference 6.

2. Construction of an extractive system involving placement of a smaller, coarse catalytic bed centered along the augmentor tube center axis where the greater concentration of NOx might be expected. To construct this configuration, velocity, temperature, and NOx concentration profiles would have to be found along the augmentor tube to optimize exact catalytic bed placement and NOx removal.

Since time constraints precluded a more in-depth investigation, future efforts, utilizing the current apparatus and various species of catalytic material (Fe2O3 and vermiculite when available), should concentrate on varying the augmentation ratio and fuel to air ratio and measuring NOx, CO, and UHC levels across the catalyst. The effects of these variables in consonance with ammonia or cyanuric acid addition techniques (as discussed in References 4, 5, and 6) on the effectiveness of the catalytic process should be investigated.

In addition, the effects of sooting and much higher augmentor tube velocities and augmentation ratios must be evaluated before a practical solution can be attained.
APPENDIX A

HP BASIC "T63NOX" COMPUTER PROGRAM

10 1.63 VERSION 9, JAN 1990
20 1.63 COMBUSTOR DATA ACQUISITION AND REDUCTION PROGRAM
30 1. THIS PROGRAM IS DIVIDED INTO FIVE PARTS:
40 1 (1) VARIABLE DEFINITIONS AND NOMENCLATURE
50 1 (2) TRANSDUCER CALIBRATIONS
60 1 (3) FLOW CHECKS AND NOZZLE CALCULATIONS
70 1 (4) THE TEST SEQUENCE AND DATA COLLECTION
80 1 (5) POST-RUN OPERATIONS, DATA REDUCTION AND SHUTDOWN
90 1
100 1--
110 1 (1) VARIABLE DEFINITIONS AND NOMENCLATURE
120 1
130 1 SYMBOL DEFINITION
140 1 A ANALOG CHANNEL NUMBER
150 1 Aiir THROAT AREA, AIR FLOW SONIC CHOKE, SQ. IN.
160 1 Ahf THROAT AREA, HEATER FUEL SONIC CHOKE, SQ. IN.
170 1 Aho THROAT AREA, HEATER OXYGEN SONIC CHOKE, SQ. IN.
180 1 Bfair BYPASS AIR FLOW RATE
190 1 Cfair DISCHARGE COEFFICIENT, AIR SONIC CHOKE
200 1 Cdair DISCHARGE COEFFICIENT, HEATER FUEL SONIC CHOKE
210 1 Cdhf DISCHARGE COEFFICIENT, HEATER O2 SONIC CHOKE
220 1 Dairchoke AIR SONIC CHOKE DIAMETER
230 1 Dbpchoke BYPASS AIR SONIC CHOKE DIAMETER
240 1 Date$ TEST DATE, MO-DAY-YR
250 1 Dhfchoke AIR HEATER FUEL SONIC CHOKE DIAMETER
260 1 Dhochoke AIR HEATER OXYGEN SONIC CHOKE DIAMETER
270 1 Fuelid$ FUEL IDENTIFICATION
280 1 Gc 32.174
290 1
300 1 Heaterfuel HEATER FUEL IDENTIFICATION
310 1
320 1 Kgair AIR SONIC CHOKE FLOW RATE CONSTANT
330 1 Kmfuel FUEL FLOW METER RATE CONSTANT (GPM/VOLT)
340 1 Kmhf HEATER FUEL SONIC CHOKE FLOW RATE CONSTANT
350 1 Kmho HEATER O2 SONIC CHOKE FLOW RATE CONSTANT
360 1 Kp PRESSURE TRANSDUCERS CONSTANT (PSI/VOLT)
370 1 Mafr AIR FLOW RATE, LBM/SEC
380 1 Maird DESIRED AIR FLOW RATE, LBM/SEC
390 1 Mfuel FUEL FLOW RATE, GPM
400 1 Mfield DESIRED FUEL FLOW RATE, GPM
410 1 Mhf HEATER FUEL FLOW RATE, LBM/SEC
420 1 Mhd DESIRED HEATER FUEL FLOW RATE, LBM/SEC
430 1 Mho HEATER OXYGEN FLOW RATE, LBM/SEC
440 1 Mhoq DESIRED HEATER OXYGEN FLOW RATE, LBM/SEC
450 1 Pa PRESSURE, AIR SONIC CHOKE, PSIA
460 1 Pboa PRESSURE, BYPASS AIR SONIC CHOKE, PSIA
470 1 Pbar BAROMETRIC PRESSURE, PSIA
480 1 Pch PRESSURE, COMBUSTION CHAMBER, PSIA
490 1 Phf PRESSURE, HEATER FUEL SONIC CHOKE, PSIA
500 1 Pho PRESSURE, HEATER OXYGEN SONIC CHOKE, PSIA
510 1 Ta TEMPERATURE, AIR SONIC CHOKE, R
520 1 Tboa TEMPERATURE, BYPASS AIR SONIC CHOKE, R
530 1 Tauqqq TEMPERATURE, AUGMENTER TUBE UPSTREAM CATALYST, R

53
540 | Tauqd1 | TEMPERATURE, AUGMENTOR TUBE DOWNSTREAM CATALYST, R
550 | Testno1 | TEST 1. NO.
560 | Thf | TEMPERATURE, HEATER FUEL SONIC CHOKE, R
570 | Tho | TEMPERATURE, HEATER 02 SONIC CHOKE, R
580 | Tcin | TEMPERATURE, COMBUSTOR AIR INLET (HEATER OUTLET), R
590 | Tcind | TEMPERATURE, DESIRED COMBUSTOR AIR INLET, R
600 | Tex1 | TEMPERATURE, COMBUSTOR EXHAUST UPSTREAM OF QUENCH, R
610 | Tex2 | TEMPERATURE, COMBUSTOR EXHAUST DOWNSTREAM OF QUENCH, R
620 | BEEP 1000, /.
630 | PRINT USING "8/".
640 | PRINT USING "6/*".
650 | PRINT "763 DATA ACQUISITION *".
660 | PRINT USING "5/*".
670 | PRINT "TURN THE PRINTER ON LINE".
680 | CLEAR 769.
690 | CLEAR 722.
700 | THE Recorded VARIABLES (VOLTAGES) AND LOCATIONS ARE:
710 | (NOTE: THE MAXIMUM ALLOWABLE VOLTAGE INTO THE SYSTEM IS 1.2 VOLTS)
720 | 730 | VARIABLE 3497 DACU SCANNER NUMBER 0
740 | 750 | Pa | 24
760 | Press | 24
770 | Pc | 23
780 | Mexpl | 25
790 | Phf | 22
800 | Pho | 21
810 | Ta | 60
820 | Tcin (inlet air) | 61
830 | Tex1 (upstream of quench) | 62
840 | Tex2 (downstream of quench) | 63
850 | Tho | 64
860 | Thf | 65
870 | Tauqun | 66
880 | Tauqd1 | 67
890 | Tauqd2 | 68
900 | ALL FLOW RATES ARE CALCULATED USING THE ONE-DIMENSIONAL, ISENTROPIC
910 | FLOW EXPRESSIONS WITH FIXED PROPERTIES. SMALL SONIC NOZZLES HAVE
920 | MEASURED DISCHARGE COEFFICIENTS. THE AIR FLOW NOZZLE USES AN ASSUMED
930 | DISCHARGE COEFFICIENT (Cd) OF 0.97.
940 | 950 | M (LPM/SEC)=CdP*AKm/T^1.5
960 | 970 | Km IS THE GAS-DEPENDENT SONIC CHOKE FLOW RATE CONSTANT
980 | 990 | Km=58R((Gamma*Rc/R)((Gamma+1)/(Gamma+1)))^((Gamma+1)/(Gamma-1))
1000 | 1010 | APPROPRIATE CONSTANTS ARE:
1020 | 1030 | GAS MOLECULAR WT. GAS CONST. CP GAMMA Km
1040 | 1050 | AIR | 28.97 | 53.3 | 1.40 | 1.40 | 5328
1060 | 1070 | O2 | 32.0 | 48.3 | 1.40 | 1.40 | 5559
1070 | 1080 | CH4 | 16.03 | 96.4 | 1.32 | 1.32 | 5876
1090 | 1100 | N2 | 28.01 | 55.16 | 1.40 | 1.40 | 5229
1100 | 1110 | H2 | 2.016 | 766.5 | 3.419 | 1.405 | 1.405
1120 | 1130 | Gammaair=1.40
1140 | 1150 | Km=58R=5320
1150 | 54
1160 Kmhf=.1405
1170 Rair=53.3
1180 Rho=48.3
1190 RHf=76.65
1200 Daichoke=.42
1210 Dhochok=.239
1220 Dhochko=.8700
1230 Dhfchko=.040
1240 Maired=1.9
1250 Mpaird=59
1260 Mhosed=33
1270 Mhd=.00285
1280 Mhod=.0228
1290 PRINT USING "6/1" 1300 INPUT "Input the barometric pressure in mm of Hg",Pmm
1310 Pbar=Pmm*.019337
1320 Cdair=.97
1330 Cdhf=.97
1340 Coho=.97
1350 ALL THERMOCOUPLES ARE CHROMEL vs. ALUMEL (TYPE K) WITH
1360 "ELECTRONIC ICE POINTS, TEMPERATURE READINGS (VOLTAGES) ARE
1370 CONVERTED TO DEGREES RANKINE (R) PER "INDUSTRIAL INSTRUMENTATION" BY
1380 D.P. EIXMAN (PAGE 369). THIS CALCULATION IS PERFORMED IN SUBROUTINE
1390 !tcalc. TEN VOLTAGE INTERVALS ARE USED BETWEEN 460 AND 2460 R.
1400 PRINT USING "6/1"
1410 PRINT USING "6/1"
1420 INPUT "WILL THE AUGMENTOR TUBE BE USED? (Y/N)",Aug$
1430 IF Aug$="Y" THEN Aug=U
1440 IF Aug$="N" THEN Aug=0
1450 PRINT USING "6/1"
1460 PRINT USING "6/1"
1470 INPUT "WILL THE AIR HEATER BE USED? (Y/N)",Zz$
1480 IF Zz$="Y" THEN Ht=1.
1490 IF Zz$="N" THEN Ht=0.
1500 PRINT USING "6/1"
1510 PRINT USING "6/1"
1520 INPUT "WILL YOU USE PRE-INITIALIZED VALUES OF CALIBRATION CONSTANTS AND ZE
1530 (Y/N)",Zz$
1540 IF Zz$="Y" THEN TO Initial
1550 TO Transcal
1560 !!!VOLTAGE TO TEMPERATURE (RANKINE) CONVERSION SUBROUTINE!!!
1570 !**
1580 !**
1590 IF Volts=.00153 THEN T=((Volts-.00068)/.0000220)+460
1600 IF Volts=.00153 AND Volts=.00382 THEN T=((Volts-.00153)/.000023)
0)560
1610 IF Volts=.00382 AND Volts=.00609 THEN T=((Volts-.00382)/.000022
71560
1620 IF Volts=.00609 AND Volts=.00831 THEN T=((Volts-.00609)/.000022
2760
1630 IF Volts=.00831 AND Volts=.01056 THEN T=((Volts-.00831)/.000022
51560
1640 IF Volts=.01056 AND Volts=.01285 THEN T=((Volts-.01056)/.000022
94160
1650 IF Volts=.01285 AND Volts=.01518 THEN T=((Volts-.01285)/.000023
34160
1660 IF Volts=.01518 AND Volts=.01752 THEN T=((Volts-.01518)/.000023
414160
1670 IF Volts=.01752 AND Volts=.01988 THEN T=((Volts-.01752)/.000023
641260
55
IF Volts=-.01988 AND Volts=.02225 THEN T=((Volts-.01988)/.000023)+1360

IF Volts=.02932 AND Volts=.03165 THEN T=((Volts-.02932)/.000023)+1460

IF Volts=.03619 AND Volts=.03843 THEN T=((Volts-.03619)/.000023)+1560

IF Volts=.04278 AND Volts=.04491 THEN T=((Volts-.04278)/.000023)+1660

RETURN

Initial: !Initialized values of zeros and calibration constants for all transducers

Testno$="BEHRENS"

Date$="1-30-90"

Fuelidl="0007"

Heaterfuel$="HYDROGEN"

VpaD=.0017222

Kpa=33262.88

VpcC=-.176573

Kpc=.84414

ph#Q.Q3ii869

Kpho=671.61413

Vphf0=-.116153

Kphf=1356.3902

Kmfuel=.5

Transcal: !

!THERE ARE 4 PRESSURE TRANSDUCERS THAT MUST BE CALIBRATED

!TRANSDUCER LINEARITY MUST BE VERIFIED BEFORE THIS CALIBRATION PROCEDURE IS EMPLOYED. THE ORDER OF CALIBRATION IS AS FOLLOWS: Pa, Pc, Phf, Pho

THE FOLLOWING TWO LINES SET UP 722 AND 709 FOR DATA ACQUISITION*

KLEAR 709

CLEAR 722

REMOTE 709

OUTPUT 722;"L1R11STNZ11OSTITIDY";

INPUT "DO YOU WANT TO CALIBRATE TRANSDUCERS? (Y/N)";Yy$

IF Yy$="N" THEN GOTO Endcal

INPUT "DO YOU WANT CONSECUTIVE ORDER OF CALIBRATION? (Y/N)";Yy$

IF Yy$="Y" THEN GOTO Consec

INPUT "DO YOU WANT TO RECALLIBRATE Pa? (Y/N)";Yy$

IF Yy$="Y" THEN GOTO Pacal

PRINT USING "@"
INPUT "DO YOU WANT TO RECALIBRATE Pc? (Y/N)"$,Yy$

IF Yy$='Y' THEN GOTO Pccal

PRINT USING "*"

PRINT USING "*

PRINT "CALIBRATION OF Pa, THE AIR SONIC CHOKE PRESSURE TRANSDUCER**"

PRINT "APPLY MAXIMUM PRESSURE USING THE DEAD-WEIGHT TESTER"

INPUT "ENTER THE MAXIMUM PRESSURE IN psig",Pamax

PAUSE

REMOTE 709

OUTPUT 709;'AC24'

WAIT 2

OUTPUT 722;'T3'

ENTER 722;Pmax

PRINT "VpaMax=';Vpamax,'Pamax=';Pamax

Kpa=(Pamax)/(Vpamax-VpaO)

PRINT 'Kpa=','Kpa

BEEP

INPUT 'READING OK? (Y/N)',Zz$

IF Zz$='N' THEN GOTO Pamaxcal

IF Cons=1 THEN GOTO Pccal

Pccal:

PRINT USING "*

PRINT "***** ZERO PRESSURE *****"

PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"

DISP "HIT CONTINUE WHEN READY TO TAKE ZERO READING"

REMOTE 709

OUTPUT 709;'AC24'

WAIT 2

OUTPUT 722;'T3'

ENTER 722;Pmax

PRINT "VpaMax=';Vpamax,'Pamax=';Pamax

Kpa=(Pamax)/(Vpamax-VpaO)

PRINT 'Kpa=','Kpa

BEEP

INPUT 'READING OK? (Y/N)',Zz$

IF Zz$='N' THEN GOTO Pamaxcal

IF Cons=1 THEN GOTO Pccal

Pccal:

PRINT USING "*

PRINT "***** CALIBRATION ****"

PRINT "APPLY MAXIMUM PRESSURE USING THE DEAD-WEIGHT TESTER"

INPUT "ENTER THE MAXIMUM PRESSURE IN psig",Pamax

DISP "HIT CONTINUE WHEN READY"

PAUSE

REMOTE 709

OUTPUT 709;'AC24'

WAIT 2

OUTPUT 722;'T3'

ENTER 722;Pmax

PRINT "Vpamax=';Vpamax,'Pamax=';Pamax

Kpa=(Pamax)/(Vpamax-VpaO)

PRINT 'Kpa=','Kpa

BEEP

INPUT 'READING OK? (Y/N)',Zz$

IF Zz$='N' THEN GOTO Pamaxcal

IF Cons=1 THEN GOTO Pccal

Pccal:

PRINT USING "*

PRINT "***** ZERO PRESSURE *****"

PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"

DISP "HIT CONTINUE WHEN READY"
2790 PAUSE
2800 REMOTE 709
2810 OUTPUT 709;'AC23'
2820 WAIT 2
2830 OUTPUT 722;'T3'
2840 ENTER 722;Vpc0
2850 PRINT "Vpc0=";Vpc0
2860 BEEP
2870 INPUT "READING OK? (Y/N)";Zz$
2880 IF Zz$="N" THEN GOTO Pc0cal
2890 Pcmaxcal: !
2900 PRINT USING "B"
2910 PRINT "**** CALIBRATION ****"
2920 PRINT "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER"
2930 INPUT "ENTER THE MAXIMUM PRESSURE IN psig";Pcmax
2940 DISP "HIT CONTINUE WHEN READY";
2950 PAUSE
2960 REMOTE 709
2970 OUTPUT 709;'AC23'
2980 WAIT 2
2990 OUTPUT 722;'T3'
3000 ENTER 722;Vpcmax
3010 PRINT "Vpcmax=";Vpcmax,"Pcmax=";Pcmax
3020 Kpc=Pcmax/(Vpcmax-Vpc0)
3030 PRINT "Kpc=";Kpc
3040 BEEP
3050 INPUT "READING OK? (Y/N)";Zz$
3060 IF Zz$="N" THEN GOTO Pcmaxcal
3070 IF Ht=0, THEN GOTO Phfmaxcal
3080 IF Cons=! THEN GOTO Phfcal
3090 GOTO Phf
3100 Phfcal: !
3110 '**
3120 PRINT USING "B"
3130 PRINT "**** CALIBRATION OF Phf, THE T63 AIR HEATER FULL TRANSDUCER ****"
3140 '**
3150 Phf0cal: !
3160 PRINT "**** ZERO PRESSURE ****"
3170 PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"
3180 DISP "HIT CONTINUE WHEN READY"
3190 PAUSE
3200 REMOTE 709
3210 OUTPUT 709;'AC22'
3220 WAIT 2
3230 OUTPUT 722;'T3'
3240 ENTER 722;Vphf0
3250 PRINT "Vphf0=";Vphf0
3260 BEEP
3270 INPUT "READING OK? (Y/N)";Zz$
3280 IF Zz$="N" THEN GOTO Phf0cal
3290 Phfmaxcal: !
3300 PRINT USING "B"
3310 PRINT "**** CALIBRATION ****"
3320 DISP "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER"
3330 INPUT "ENTER THE MAXIMUM PRESSURE IN psig";Phfmax
3340 DISP "HIT CONTINUE WHEN READY"
3350 PAUSE
3360 REMOTE 709
3370 OUTPUT 709;'AC22'
3380 WAIT 2
3389
3390 OUTPUT 722:”I3”
3400 ENTER 722;Vphmax
3410 PRINT “Vphmax=“;Vphmax,”Phmax=“;Phmax
3420 Kph=Phmax/(Vphmax-Vph0)
3430 PRINT “Kph=“;Kph
3440 BEEP
3450 INPUT “READING OK? (Y/N)”,z
3460 IF z=”N” THEN GOTO Phocal
3470 IF Cons=1 THEN GOTO Phocal
3480 GOTO Pho
3490 Phocal:!!
3500 !!
3510 PRINT USING “*
3520 PRINT “##CALIBRATION OF Pho, THE AIR HEATER OXYGEN PRESSURE TRANSUCER##”
3530 !!
3540 Phocal: !
3550 PRINT “###ZERO CALIBRATION###”
3560 PRINT “INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSUCER”
3570 DISP “HIT CONTINUE WHEN READY”
3580 PAUSE
3590 REMOTE 709
3600 OUTPUT 709; “AC21”
3610 OUTPUT 722; ”I3”
3620 ENTER 722;Vph0
3630 PRINT ”Vph0=“; Vph0
3640 INPUT “READING OK? (Y/N)”,z
3650 IF z=”N” THEN GOTO PhoOcal
3660 PhoOcal:!!
3670 PRINT USING “*
3680 PRINT “##CALIBRATION##”
3690 PRINT “APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER”
3700 INPUT “ENTER THE MAXIMUM PRESSURE IN psig”,Phomax
3710 PRINT USING “*
3720 PAUSE
3730 REMOTE 709
3740 Output 709; “AC21”
3750 OUTPUT 722;”I3”
3760 ENTER 722;Vphmax
3770 PRINT ”Vphmax=“; Vphmax,”Phmax=“;Phmax
3780 Kph=Phmax/(Vphmax-Vph0)
3790 PRINT “Kph=“;Kph
3800 BEEP
3810 INPUT “READING OK? (Y/N)”,z
3820 IF z=”N” THEN GOTO Phomaxcal
3830 IF Aug=1 THEN GOTO Augcal
3840 Endcal:!!
3850 Fincal;!!
3860 PRINT USING “*
3870 PRINT “THIS ENDS THE CALIBRATIONS”
3880 :))))))))()))PRE-RUN INPUTS, FLOW RATE CHECKS AND NOZZLE CALCULATIONS
3890 :)))))))()))PRE-RUN INPUTS, FLOW RATE CHECKS AND NOZZLE CALCULATIONS
3900 :)))))))()))PRE-RUN INPUTS, FLOW RATE CHECKS AND NOZZLE CALCULATIONS
3910 !!
3920 ! A. FLOW RATE SET-UPS AND CHECKS
3930 !!
3940 PRINT USING “*
3950 INPUT “DO YOU WANT TO PRESET THE AIR FLOW RATE? (Y/N)”,z
3960 IF z=”N” THEN GOTO Paskip
3970 PRINT “SET THE DESIRED VALUE OF Pa(psig) USING THE HAND LOADER /PRESSURE GAGE”
3980 PRINT USING “*
3990 PRINT “THE HAND LOADER SHOULD BE 20 PSIG MORE THAN DESIRED PRESSURE”

59
400 Paset: !
410 PRINT USING "3/
420 PRINT "MANUALLY INITIATE AIR FLOW BY TURNING 'MAIN AIR' ON CONTROL PANEL"
430 PRINT USING "2/
440 DISP "HIT CONTINUE WHEN READY"
450 PAUSE
460 WAIT 3
470 OUTPUT 709;"R24"
480 OUTPUT 722;"T3"
490 ENTER 722;Vpa
500 OUTPUT 709;"AC60"
510 OUTPUT 722;"T3"
520 ENTER 722;Vta
530 BEEP
540 PRINT USING "8"
550 PRINT "TURN OFF 'MAIN AIR'"
560 DISP 'HIT CONTINUE TO PROCEED'
570 PAUSE
580 Paset=Vpa-VpaB*Kpa+Pbar
590 Volts=Vta
600 GOSUB Tcalc
610 Ta=T
620 Volts=Vti
630 GOSUB Tcalc
640 Tcin=T
650 hair=Kmair*Cdair*Pa*,7854*(Dairchoke2)/(Ta',5)
660 Ppair=Kmair*CdairwPa*,7854*(Dpchoke2)/(la',5)
670 PRINT USING '5A.2X DD DD-DDDD D;"Mair=';Nair
680 PRINT USING '14ADbDDDD';'Mair DESIRED=',Naird
690 Ratio=Mair/taird
700 PRINT USING '20A,D.DDD,2X,3A,tXDDDD.D,1A,3X,3A';'Nair/DESIRED Mair=';Rat
710 b,Ppair=';Bpair
720 Pg=P-Pbar
730 PRINT USING '4A,DDDDD,6A','Pa=','Pg="Psig'
740 PRINT USING '4ADDDDD 3A'Ta ="Ts'
750 INPUT "IS AIR FLOW RATE ACCURATE ENOUGH? (Y/N)";Xx$
760 IF Xx$="Y" THEN COTO Prerun
770 Panew=(Pa1Maird/Mair)-Pbar
780 PRINT "RESET PA TO';Panew'Psiq'
790 DISP 'HIT CONTINUE AFTER RESET OF Pa'
800 PAUSE
810 COTO Paset
820 Prerun:
830 INPUT "DO YOU WANT PRINTOUT OF PRE-RUN DATA?(Y/N)";Xx$
840 IF Xx$="Y" THEN GOTO Preprint
850 Reprin:
860 PRINT "** PRE-RUN DATA, USING AIR ONLY ***
870 PRINT
880 PRINT "DATE:
890 PRINT USING "3A,DDD.D.6A","Pa=";Pa;" Psia"
900 PRINT USING "3A,DDD.D.3A","Tcin=";Tcin;" R"
910 PRINT USING "5A,D.DDDD,11A","Mair=";Nair,;" (Lbm/sec)"
920 PRINT USING "5A,D.DDDD,11A","Bpair=";Bpair,;" (Lbm/sec)"

60
4590 PRINTER IS 1
4600 SKIPPRINT:
4610 DISP "HIT CONTINUE TO PROCEED TO NEXT FLOW RATE SET UP"
4620 PAUSE
4630 Paskip:
4640 IF Ht=0 THEN GOTO Phfskip
4650 PRINT USING "B"
4660 INPUT "DO YOU WANT TO PRESET THE HEATER FUEL FLOW RATE? (Y/N)",Zz$ 4670 IF Zz$="N" THEN GOTO Phfskip
4680 !***
4690 PRINT "SET THE DESIRED VALUE OF Phf USING THE HAND LOADER/PRESSURE GAGE"
4700 !***
4710 DISP "HIT CONTINUE WHEN READY"
4720 PAUSE
4730 Phfset:
4740 PRINT USING "B"
4750 PRINT "MANUALLY TURN ON AIR 'HEATER FUEL' SWITCH"
4760 DISP "HIT CONTINUE TO PROCEED"
4770 PAUSE
4780 OUTPUT 709,"AC22"
4790 OUTPUT 722,"I3"
4800 ENTER 722,Vthf
4810 OUTPUT 709,"AC65"
4820 OUTPUT 722,"I3"
4830 ENTER 722,Vthf
4840 CLEAR 709
4850 PRINT "MANUALLY TURN OFF AIR 'HEATER FUEL' SWITCH"
4860 Pset
4870 DISP "HIT CONTINUE TO PROCEED"
4880 PAUSE
4890 Phf=(Vthf-Vphf0)*Kphf+Pbar
4900 Volts=Vthf
4910 GOSUB Tcalc
4920 Thf=Th
4930 Mhf=Kmhf*Cdhf*Phf*7854*(Dhchoke*2)/(Thf*.5)
4940 PRINT USING "B"
4950 PRINT USING "1A,DD,DDDD;";Mhf="",Mhf
4960 PRINT USING "12A,DD,DDDD;";Mhf DESIRED="",Mhfd
4970 Ratio=Mhf/Mhfd
4980 PRINT USING "18A,DD,DDDD,DD,IA;";Mhf/ Mhf DESIRED="",Ratio,"Thf=";Thf,"R"
4990 Ps=Pgf=Pbar
5000 PRINT USING "5A,DDDD,DDDD,DD,DD,DD,IA,4A,DDDD,DD,IA,";Phf = ";Pg=";P
5100 IF Xs="Y" THEN GOTO Phfskip
5110 INPUT "IS HEATER FUEL FLOW RATE ACCURATE ENOUGH? (Y/N)",Xs$ 5120 IF Xs$="Y" THEN GOTO Phfskip
5130 Phfnew=(Phf*Mhfd/Mhf)-Pbar
5140 PRINT USING "18ADDD,DPVD DD,ADD,DDDD,IA";RESET Phf TO";Phfnew;"Psiq"
5150 DISPB:"HIT CONTINUE AFTER RESET OF Phf"
5160 PAUSE
5170 GOTO Phfset
5180 Phfskip:
5190 DISP "HIT CONTINUE TO PROCEED TO NEXT FLOW RATE SET UP"
5200 PAUSE
5210 Phfset:
5220 PRINT USING "B"
5230 INPUT "DO YOU WANT TO PRESET THE HEATER OXYGEN FLOW RATE? (Y/N)",Zz$ 5240 IF Zz$="N" THEN GOTO Phfskip
5250 !***
5260 PRINT "SET THE DESIRED VALUE OF Pho USING THE HAND LOADER/PRESSURE GAGE"
5270 !***
5280 PRINT "MANUALLY TURN ON AIR 'HEATER OXYGEN' SWITCH"
5290 Pset
5300 DISPB:"HIT CONTINUE TO PROCEED"
5210 PAUSE
5220 OUTPUT 709;"AC21"
5230 OUTPUT 722;"T3"
5240 ENTER 722;Vpho
5250 OUTPUT 709;"AC64"
5260 OUTPUT 722;"T3"
5270 ENTER 722;Vthe
5280 PRINT "MANUALLY TURN OFF AIR 'HEATER OXYGEN' SWITCH"
5290 REEP
5300 DISP "HIT CONTINUE TO PROCEED"
5310 PAUSE
5320 Pho=(Vpho-VphoO)%Kpho+Pbar
5330 Volts=Vthe
5340 GOSUB Tcalc
5350 Tho=T
5360 Mho=Kho*Cdho*Pho.7854*(Dhochoke2)/(Tho.5)
5370 PRINT USING "'MHO='*Mho
5380 PRINT USING "4A.DDDDDDD";"Kho='*Mho Desired=';Mhod
5390 Ratio=Nho/Mhod
5400 Ratio=Pho-Pbar
5410 PRINT USING "5ADDDDDDIX,5A,SX,4ADDDD.DDIX,2A";"Pho=';Pg;'Psig';
5420 "Tho=';Tho;'R@"
5430 INPUT "IS THE HEATER OXYGEN FLOW RATE ENOUGH? (Y/N)?",Xx$
5440 IF Xx$="Y" THEN COlD
5450 Pho=(Pho*Mhod/Mho)-Pbar
5460 PRINT USING "14A,DDDDDDIX;"RESET Pho 0"
5470 DISP "HIT CONTINUE AFTER REST Pho"
5480 PAUSE
5490 GOTO Phoset
5500 Phoskip:
5510 PRINT "THIS COMPLETES PRE-RUN SET-UP"
5520 **
5530 \ (4) THIS PORTION OF THE PROGRAM RUNS THE TEST AND COLLECTS THE DATA
5540 **
5550 ! PRINT USING "B"
5560 DISP "SET TIMEDATE BY PRESSING K19 AND UPDATE, THEN EXECUTE, THEN HIT CON
5570 "TIME"
5580 DEEP
5590 FAUSE
5600 PRINT USING "@"
5610 PRINTER IS 1
5620 \ THE FOLLOWING PROGRAMS THE 3456 DVM
5630 ASSIGN @Scanner TO 709
5640 ASSIGN @Svm TO 722
5650 CLEAR @Svm
5660 OPTION BASE 1
5670 DIM Press(10,5)
5680 DIM Temp(10,6)
5690 DIM Augtem(10,3)
5700 CLEAR @Svm
5710 OUTPUT @Svm:"L1Z10S8FIR3GSTDISTNP0FL01S0T401QX1"
5720 DISP "HIT CONTINUE FOR HOT RUN DATA"
5730 DEEP
5740 FAUSE
5750 DISP **
5760 GOSUB Press
5770 GOSUB Temp
5780 IF Aug=1 THEN GOSUB Aug
5790 GOTO Shutdown

62
5800 !!!
5810 Press: !
5820 PRINT USING "0"
5830 PRINT USING "10/"
5840 PRINT " COLLECTING PRESSURE
5850 PRINT " COLLECTING PRESSURE "
5860 PRINT " COLLECTING PRESSURE "
5870 OUTPUT @Scanner;"AC21AF21AL25AE2"
5880 WAIT .2
5890 OUTPUT @Svm;"50STNT3"
5900 ENTER @Svm USING "$,K";Press(*)
5910 OUTPUT @Svm;"1STNT4"
5920 RETURN
5930 !!!
5800 Aug: ! TEMPERATURE COLLECTING ROUTINE FOR AUGMENTOR TUBE
5810 PRINT " COLLECTING AUGMENTOR TEMPERATURES
5820 OUTPUT @Scanner;"AC66AF66AL65AE2"
5830 OUTPUT @Svm;"30STNR2T3"
5840 WAIT .2
5850 ENTER @Svm USING "$,K";Augtemp(*)
5860 OUTPUT @Svm;"31STNR4"
5870 RETURN
5830 !!!
5840 Shutdown: !
5850 PRINT USING "0"
5860 PRINT " TEST COMPLETE: TURN OFF MAIN-AIR, HEATER CASING "
5870 !!!
5880 ! (5) POST-RUN OPERATION, DATA REDUCTION AND SHUTDOWN
5890 !!!
5900 DISP " HIT CONTINUE TO PROCEED TO DATA REDUCTION "
5910 BEEP
5920 PAUSE
5930 PRE-RUN INPUT
5940 PRINT USING "3/"
5950 PRINT "
5960 PRINT USING "2/"
5970 PRINT USING "14A,7A,5X,14A,7A,5X,14A,9A";"Testno"="Testno","Date"="Date","Fuelid"="Fuelid"
5980 PRINT USING "14A,9A";"Heaterfuel"="Heaterfuel"
5990 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6000 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6010 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6020 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6030 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6040 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6050 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6060 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6070 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6080 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6090 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6100 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6110 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6120 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6130 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6140 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6150 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6160 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6170 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6180 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6190 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6200 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6210 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6220 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6230 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6240 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6250 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6260 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6270 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6280 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6290 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6300 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6310 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6320 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6330 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6340 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6350 PRINT USING "14A,DDD.DDD,6X,14A,DDD.DDD";"Dairchoke"="Dairchoke","Dhtfchoke","Dhchoke"
6400 PRINT USING "*3A,DDDD.DD,6x,14A,DDDD.DD";"Mair=",Mair,"tciind=",tcind
6410 PRINT USING "*3A,DDDD.DD,5X,14A,DDDD.DD,5X,14A,DDDD.DD,4X,14A,DDDD.DD"
6420 PRINT USING "*12A";"FUEL FLOW RATE IN Gal/min, GAS FLOW RATES IN Lbm/sec,
PRESURE IN Pa, TEMPERATURES IN R*
6430 PRINT USING "*5A,6X,6A,5X,6A,7X,6A,9X,6(7A,5X)";"Count","Mair","Mbpair",
"Mfuel","F","Mhff","Min","Phf","Pho","Pc"
6440 FOR J=1 TO 10
6450 Vpa=Press(J,4)
6460 Pa=(Vpa-Vpa0)*Kpa+Pbar
6470 Vpc=Press(J,3)
6480 Pc=(Vpc-Vpc0)*Kpc+Pbar
6490 Vmfuel=Press(J,5)
6500 Mf=Vmfuel*Kfume
6510 IF Ht=1 THEN
6520 Vphf=Press(J,2)
6530 Phf=(Vphf-Vph0)*Kphf+Pbar
6540 Vpho=Press(J,1)
6550 Pho=(Vpho-Vph0)*Kpho+Pbar
6560 IF Ht=1 THEN
6570 Volts=Temp(J,1)
6580 GOSUB Tcalc
6590 If Ht=1 THEN
6600 Ta=T
6610 GOSUB Tcalc
6620 Volts=Temp(J,5)
6630 GOSUB Tcalc
6640 Tho=T
6650 Volts=Temp(J,6)
6660 GOSUB Tcalc
6670 Thf=T
6680 IF Ht=1 THEN
6690 IF Ht=1 THEN
6700 Mair=Kmair*Caair*Fav,7854*(Dairchoke*2)/(Ta,5)
6710 Mbpair=Kmair*Caair*Fav,7854*(Dbpchoke*2)/(Ta,5)
6720 F=.108*Mfuel/Mair
6730 IF Ht=0. THEN GOTO Jump
6740 IF Phf=(Pc*2) THEN Phf=0.
6750 IF Pho=(Pc*2) THEN Pho=0.
6760 Mhf=Kmhf*Cohf*Phh,7854*(Dhchoke*2)/(Thh,5)
6770 Mho=Kmho*Chho*Phh,7854*(Dchoke*2)/(Thh,5)
6780 Jump:
6790 IF Ht=0. THEN
6800 Phh=0
6810 Phh=0
6820 Mhf=0
6830 Mho=0
6840 END IF
6850 IF "Mair=.0001 THEN "Hair=.0001
6860 IF "Boair=.0001 THEN "Boair=.0001
6870 IF "Mfuel=.0001 THEN "Mfuel=.0001
6880 IF "F=.001 THEN "F=.001
6890 IF "Mhf=.0001 THEN "Mhf=.0001
6900 IF "Mho=.0001 THEN "Mho=.0001
6910 IF "Phh=.0001 THEN "Phh=.0001
6920 IF "Pho=.0001 THEN "Pho=.0001
6930 IF "Pc=.0001 THEN "Pc=.0001
6940 IF "Pb=.0001 THEN "Pb=.0001
6950 END
7040 PRINT USING "DDD,3X,MD,DDDE,3X,MD,DDDE,3X,3(MD,DDDE,3X,3(MD,DDDE,3X,3(MD,DDDE,3X,3(MD,DDDE,3X,3(MD,DDDE
7050 NEXT J
7060 PRINT ""
7070 PRINT USING "AAA,5X,9(7A,7X)*;"Count","Ta","Tcin","Tex1","Tex2","Taugup","Taugdl","Taugup","Taugdl","Taugup","Taugdl","Taugup"
7080 FOR J=1 TO 10
7090 Volts=Temp(J,1)
7100 GOSUB Tcalc
7110 Ta=T
7120 Volts=Temp(J,2)
7130 GOSUB Tcalc
7140 Tcin=T
7150 Volts=Temp(J,3)
7160 GOSUB Tcalc
7170 Tex1=T
7180 Volts=Temp(J,4)
7190 GOSUB Tcalc
7200 Tex2=T
7210 Volts=Augtemp(J,1)
7220 GOSUB Tcalc
7230 Taugup=T
7240 Volts=Augtemp(J,2)
7250 GOSUB Tcalc
7260 Taugdl=T
7270 Volts=Augtemp(J,3)
7280 GOSUB Tcalc
7290 Taugd2=T
7300 IF Ta<100. THEN Ta=100.
7310 IF Tcin<100. THEN Tcin=100.
7320 IF Tex1<100. THEN Tex1=100.
7330 IF Tex2<100. THEN Tex2=100.
7340 IF Taugup<100. THEN Taugup=100.
7350 IF Taugdl<100. THEN Taugdl=100.
7360 IF Taugd2<100. THEN Taugd2=100.
7370 IF Ta>4000. THEN Ta=4000.
7380 IF Tcin>4000. THEN Tcin=4000.
7390 IF Tex1>4000. THEN Tex1=4000.
7400 IF Tex2>4000. THEN Tex2=4000.
7410 IF Taugup>4000. THEN Taugup=4000.
7420 IF Taugdl>4000. THEN Taugdl=4000.
7430 IF Taugd2>4000. THEN Taugd2=4000.
7440 PRINT USING "DDD,3X,7(MD,DDDE,4X)*;J,Ta,Tcin,Tex1,Tex2,Taugup,Taugdl,Taugd2",Ta,Tcin,Tex1,Tex2,Taugup,Taugdl,Taugd2
7450 NEXT J
7460 GOTO Finish
7470 Finish: 1
7480 PRINT USING "A"
7490 PRINT "DATA OUTPUT IS COMPLETE"
7500 DISP "SECURE TEST CELL !!!!"
7510 PAUSE
7520 PEEP
7530 END

65
APPENDIX B

RUN CHECKLIST

TEST CELL #1

1. Ensure yellow and top blue air valves in the solid fuel ramjet test cell are closed.

2. Open lower blue valve (opens air line to Test Cell #2 or T-63).

** Note - At least one valve should be open at all times from the main air line to ensure an air vent in case of an accidental component failure.

NITROGEN BOTTLE ROOM

1. Fully open the control room nitrogen bottle. Ensure that there is at least 1000 psi available.

2. Fully open actuator nitrogen bottle. Ensure that there is at least 500 psi available.

CONTROL ROOM

1. Ensure AC master switch is on and the red covered main air switch is closed on the solid fuel ramjet control panel.

2. Ensure there is no pressure set on the gauge on the Air Heater console (the air flow set pressure).

3. Ensure that the T-63 combustion chamber safety thermocouple is installed and operating.

4. Ensure that the fuel tank set pressure (gauge on panel) is less than 500 psi.

FUEL STORAGE ROOM

1. Open nitrogen bottle valve (need at least 400 psi more pressure available in the bottle than the desired fuel line/tank pressure, or 900 psi minimum).
2. Adjust hand loader to read 700 psi.

3. Slowly open the nitrogen gas supply valve located behind the fuel tank near the wall.

4. Very slowly open the fuel line valve from near the bottom of the tank to the T-63.

OUTSIDE/CONTROL ROOM

1. Open main air valve to full open (ensure that there is at least 2500 psi available in outdoor air storage tanks for a run.

2. Ensure all thermocouples are turned on (if required) and pressure transducers and tubing are secure at the test stand.

3. The heated sample line temperature control box should be set to 275 deg. F and the gas analyzers in the control room should be up and operating. The three main switches for the electronic equipment racks should be ON.

4. Load and run the "T63NOX" computer program on the HP microcomputer. The pressure transducers should be calibrated if not already done so, and zeros and constants entered.

5. Set the main air pressure to 600 psi using the hand loader.

6. Set the fuel tank pressure to 500 psi using the hand loader.

7. Go through the flow rate set procedures in accordance with the computer program. This may require opening and resetting the pressures for the air heater fuel and torch gases as well as the heater oxygen tanks in the test cell.

8. Ensure printer is "on-line".

9. Check for personnel near the test cell and for golfers. Activate exterior warning horn and check main air flow rate as cued by the computer.

10. Turn on rocket motor siren.

11. Start strip chart recorder and mark zero/ambient conditions.

12. Activate main air ON.
13. Turn on air heater fuel and heater torch (momentary) until light-off, if required.

14. Ensure T-63 engine ignitor key is installed and in the ON position.

15. Simultaneously, activate the toggled engine ignitor switch and fuel switch. Check desired fuel flow rate (0.33 GPM). Watch for wet or hot start by visually observing exhaust smoke at rig and monitoring the digital combustion chamber safety temperature readout (commence shutdown if temperature reaches 1380 deg. F)

16. When steady-state operation is reached, begin traversing the Kiel probe in the augmentor tube and obtain analyzer measurements.

17. After data gathered, switch fuel OFF and air heater OFF (if applicable). Leave main air ON until engine and augmentor tube are cool.

18. Turn main air OFF, record run time, and calculate fuel used during run. Update fuel board in fuel storage room.

19. Isolate fuel tank with valves and bleed excess fuel in lines with fuel switch activation.

20. Secure all torch and air heater gas bottles in test cell.

22. Vent fuel tank from control panel if desired and close fuel tank nitrogen bottle.

23. Bleed remaining air heater and torch gases from lines and vent with remaining main air in lines. Back off pressure loaders to zero in the control room.

24. Secure analyzers, complete shutdown, and reduce data.
APPENDIX C

HOT RUN DATA

DATE: 3-14-90
Pcr: 573.1 (Psia)
Mair: 1.9048 (Lbm/sec)
BPair: .6168 (Lbm/sec)

PRE-RUN INPUT

<table>
<thead>
<tr>
<th>Testno</th>
<th>Heaterfuel</th>
<th>Date</th>
<th>Fuelid</th>
<th>0007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testno</td>
<td>3-14-90</td>
<td>Fuelid</td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>3-14-90</td>
<td>Fuelid</td>
<td>0007</td>
<td></td>
</tr>
</tbody>
</table>

DATA EXTRACTED

<table>
<thead>
<tr>
<th>Count</th>
<th>Ta</th>
<th>Tcin</th>
<th>Tex1</th>
<th>Tex2</th>
<th>Tauup</th>
<th>Tauup1</th>
<th>Tauup2</th>
<th>Tauup3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>45.8E+01</td>
<td>46.6E+01</td>
<td>15.5E+02</td>
<td>14.0E+02</td>
<td>98.18E+01</td>
<td>88.52E+01</td>
<td>88.99E+01</td>
<td></td>
</tr>
</tbody>
</table>

FUEL FLOW RATE IN Gal/min, GAS FLOW RATES IN Lbm/sec, PRESSURE IN Psia, TEMPERATURES IN R
PRE-RUN DATA, USING AIR ONLY

DATE: 5-11-90
Pa: 580.8 Psia
Mair: 1.9013 (Lbm/sec)
BFair: 6157 (Lbm/sec)

PRE-RUN INPUT

- Air heater used
- No catalyst

DATA EXTRACTED

<table>
<thead>
<tr>
<th>Count</th>
<th>Ta</th>
<th>Train</th>
<th>Teal</th>
<th>Ten2</th>
<th>Taugp</th>
<th>Taugd1</th>
<th>Taugd2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.59E+01</td>
<td>76.74E+01</td>
<td>13.75E+02</td>
<td>12.44E+02</td>
<td>89.24E+01</td>
<td>88.46E+01</td>
<td>89.75E+01</td>
</tr>
<tr>
<td>2</td>
<td>46.59E+01</td>
<td>76.75E+01</td>
<td>13.75E+02</td>
<td>12.44E+02</td>
<td>89.24E+01</td>
<td>88.46E+01</td>
<td>89.75E+01</td>
</tr>
<tr>
<td>3</td>
<td>46.59E+01</td>
<td>76.80E+01</td>
<td>13.74E+02</td>
<td>12.45E+02</td>
<td>89.94E+01</td>
<td>88.50E+01</td>
<td>89.77E+01</td>
</tr>
<tr>
<td>4</td>
<td>46.59E+01</td>
<td>76.80E+01</td>
<td>13.74E+02</td>
<td>12.45E+02</td>
<td>89.94E+01</td>
<td>88.50E+01</td>
<td>89.77E+01</td>
</tr>
<tr>
<td>5</td>
<td>46.59E+01</td>
<td>76.81E+01</td>
<td>13.74E+02</td>
<td>12.44E+02</td>
<td>89.93E+01</td>
<td>88.53E+01</td>
<td>89.80E+01</td>
</tr>
<tr>
<td>6</td>
<td>46.59E+01</td>
<td>76.81E+01</td>
<td>13.74E+02</td>
<td>12.44E+02</td>
<td>89.93E+01</td>
<td>88.53E+01</td>
<td>89.80E+01</td>
</tr>
<tr>
<td>7</td>
<td>46.59E+01</td>
<td>76.81E+01</td>
<td>13.74E+02</td>
<td>12.44E+02</td>
<td>89.93E+01</td>
<td>88.53E+01</td>
<td>89.80E+01</td>
</tr>
<tr>
<td>8</td>
<td>46.59E+01</td>
<td>76.82E+01</td>
<td>13.74E+02</td>
<td>12.44E+02</td>
<td>89.93E+01</td>
<td>88.53E+01</td>
<td>89.80E+01</td>
</tr>
<tr>
<td>9</td>
<td>46.59E+01</td>
<td>76.82E+01</td>
<td>13.74E+02</td>
<td>12.44E+02</td>
<td>89.93E+01</td>
<td>88.53E+01</td>
<td>89.80E+01</td>
</tr>
<tr>
<td>10</td>
<td>46.59E+01</td>
<td>76.82E+01</td>
<td>13.74E+02</td>
<td>12.44E+02</td>
<td>89.93E+01</td>
<td>88.53E+01</td>
<td>89.80E+01</td>
</tr>
</tbody>
</table>
PRE-RUN DATA, USING AIR ONLY

DATE: 3-16-90
P = 577.2 Pa
Mair = 1.8933 (Lbm/sec)
Bpair = .6131 (Lbm/sec)

RUN #3 - No air heater
No catalyst used

PRE-RUN INPUT

<table>
<thead>
<tr>
<th>Testno:</th>
<th>BEHRENS</th>
<th>Date:</th>
<th>3-16-90</th>
<th>Fuelid:</th>
<th>0007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heaterfuel=</td>
<td>HYDROGEN</td>
<td>Dairchoke=</td>
<td>.420</td>
<td>Dhtfuchoke=</td>
<td>.040</td>
</tr>
<tr>
<td>Cdaire=</td>
<td>.970</td>
<td>Gammahf=</td>
<td>1.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNHf=</td>
<td>766.50</td>
<td>Kmhf=</td>
<td>7.1405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kmho=</td>
<td>.5589</td>
<td>Mair=</td>
<td>1.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mhd=</td>
<td>.0829</td>
<td>Vpa=</td>
<td>.0017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kpa=</td>
<td>33.26280000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA EXTRACTED

<table>
<thead>
<tr>
<th>Count</th>
<th>Mair</th>
<th>Mfuel</th>
<th>Mhfd</th>
<th>Mhod</th>
<th>Mhfd</th>
<th>Mhod</th>
<th>Mf</th>
<th>Mhf</th>
<th>Mho</th>
<th>Mf</th>
<th>Mhf</th>
<th>Mho</th>
<th>Pf</th>
<th>Pf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.825E+00</td>
<td>5.911E-01</td>
<td>3.223E-01</td>
<td>1.907E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.826E+00</td>
<td>5.914E-01</td>
<td>3.242E-01</td>
<td>1.917E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.828E+00</td>
<td>5.919E-01</td>
<td>3.250E-01</td>
<td>1.920E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.825E+00</td>
<td>5.907E-01</td>
<td>3.251E-01</td>
<td>1.924E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.827E+00</td>
<td>5.917E-01</td>
<td>3.251E-01</td>
<td>1.921E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.833E+00</td>
<td>5.937E-01</td>
<td>3.253E-01</td>
<td>1.916E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.825E+00</td>
<td>5.946E-01</td>
<td>3.251E-01</td>
<td>1.924E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.825E+00</td>
<td>5.907E-01</td>
<td>3.250E-01</td>
<td>1.924E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.825E+00</td>
<td>5.911E-01</td>
<td>3.250E-01</td>
<td>1.924E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.825E+00</td>
<td>5.907E-01</td>
<td>3.250E-01</td>
<td>1.924E-02</td>
<td>1.000E-04</td>
<td>1.000E-04</td>
<td>10.000E-05</td>
<td>10.000E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Count</th>
<th>T1</th>
<th>Tec1</th>
<th>Ter1</th>
<th>Taurup</th>
<th>Taup2</th>
<th>Taurup2</th>
<th>T1</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.92E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.58E+01</td>
<td>96.78E+01</td>
<td>98.28E+01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.64E+01</td>
<td>96.21E+01</td>
<td>98.68E+01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.65E+01</td>
<td>95.73E+01</td>
<td>98.61E+01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.79E+01</td>
<td>96.27E+01</td>
<td>98.34E+01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.76E+01</td>
<td>96.78E+01</td>
<td>98.35E+01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.70E+01</td>
<td>96.55E+01</td>
<td>98.38E+01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.73E+01</td>
<td>95.67E+01</td>
<td>98.39E+01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.73E+01</td>
<td>95.67E+01</td>
<td>98.38E+01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.73E+01</td>
<td>95.67E+01</td>
<td>98.38E+01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>46.90E+01</td>
<td>47.3E+01</td>
<td>16.94E+02</td>
<td>15.35E+02</td>
<td>99.73E+01</td>
<td>95.67E+01</td>
<td>98.38E+01</td>
<td>98.40E+01</td>
</tr>
</tbody>
</table>
PRE-RUN DATA, USING AIR ONLY

PRE-RUN INPUT

DATA EXTRACTED

<table>
<thead>
<tr>
<th>Count</th>
<th>Testno</th>
<th>Date</th>
<th>Fuelno</th>
<th>Fuelid</th>
<th>Heaterfuel</th>
<th>Dairchoke</th>
<th>Dhffchoke</th>
<th>Cdi</th>
<th>Cdh</th>
<th>Phf</th>
<th>Pho</th>
<th>Pf</th>
<th>Pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BEHRENS</td>
<td>3-19-90</td>
<td>007</td>
<td>1007</td>
<td>HYDROGEN</td>
<td>.420</td>
<td>.040</td>
<td>.970</td>
<td>.970</td>
<td>.970</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUEL FLOW RATE IN Gal/min, GAS FLOW RATES IN Lbm/sec, PRESSURE IN Psia, TEMPERATURES IN R

<table>
<thead>
<tr>
<th>Count</th>
<th>Mair</th>
<th>Mairf</th>
<th>Mfuel</th>
<th>Mhf</th>
<th>Mho</th>
<th>Phf</th>
<th>Pho</th>
<th>Pf</th>
<th>Pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>2</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>3</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>4</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>5</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>6</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>7</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>8</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>9</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>10</td>
<td>1.31E+00</td>
<td>6.08E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
<td>1.73E-01</td>
</tr>
</tbody>
</table>

Count

<table>
<thead>
<tr>
<th>Count</th>
<th>Tair</th>
<th>Tcin</th>
<th>Tfuel</th>
<th>Tex1</th>
<th>Tex2</th>
<th>Tavg</th>
<th>Tavg1</th>
<th>Tavg2</th>
<th>Tavg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>2</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>3</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>4</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>5</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>6</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>7</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>8</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>9</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
<tr>
<td>10</td>
<td>46.36E+01</td>
<td>47.36E+01</td>
<td>15.58E+02</td>
<td>14.16E+02</td>
<td>14.16E+02</td>
<td>98.36E+01</td>
<td>72.36E+01</td>
<td>71.36E+01</td>
<td>71.36E+01</td>
</tr>
</tbody>
</table>

DATE: 3-19-90
Psai: 71.9
Mair: 1.1876
Bair: 0.6112

RUN #4 - No air heater used
Perlite catalyst installed
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Initial Distribution List</th>
</tr>
</thead>
</table>
| 2 | 1. Defense Technical Information Center
 Cameron Station
 Alexandria, Virginia 22304-6154 |
| 2 | 2. Library, Code 0142
 Naval Postgraduate School
 Monterey, California 93943-5002 |
| 1 | 3. Chairman, Code AA
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 2 | 4. Prof. D.W. Netzer, Code AANT
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 2 | 5. LCDR Christopher K. Behrens
 Patrol Squadron Seventeen (VP-17)
 FPO San Francisco, California 96601-5910 |
| 1 | 6. Prof. R.P. Shreeve, Code AASf
 Department of Aeronautics and Astronautics
 Naval Postgraduate School
 Monterey, California 93943-5000 |