
RADC-TR-90-348
Final Technical Report
December 1990

ASSISTANT FOR SPECIFYING QUALITY
SOFTWARE (ASQS) MISSION AREA
ANALYSIS

Advanced Technology, Inc.

Douglas Schaus DTICS LECTE
N JAN 29 19911

4 APPROVED FOR PUBLIC RELASE, 01S PUB111-7N UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Forre Base, MY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
al~d is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-348 has been reviewed and is approved for publication.

APPROVED:

Project Engineer

APPROVED: 4 0a W
RAYMOND P. URTZ, JR.
Technical Diitctor
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COEE) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE FOMB Npo. 70-08
P~mk recomri gsowtorcv hK 5-n rtmrno is emd to avog ge i rc.i ow respoirm ndcirgq 5 mm tar rLevewYvrs_=M swo SW a ngoa ~8sWcocs
gat-eorg w-o rMWv VVwu OuS "m couamr w-o fTm~r'rq To cobown of rtaron San corr1W1s rewoig To5 b~zoo' 6SWte or ne r aooat tris
coea d rrrac m.xh-.g s.ggem~ for re-'g wistasomxto Wawa. o Hatws San Dradrmie for rietomuo Opwingr. "wRews, 1215 Jsff wsez'
Dawts mr'.a SiLs 1204. Arktez% VA 2=.A= ant to"5r OfY'ca of Mwagwri wid Bu.d Pepwwez Reoction ProaeZ (0704-M1 s. Was'wigezL OC 205Mt

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ASSISTANT FOR SPECIFYING QUALITY SOFTWARE CASQS) C - F30602-67-D-0094
MISSION AREA ANALYSIS Task 0004

6. AUTHOR(S)PE-678
PR - 2527

Douglas Schaus TA - QC
___ ___ __ ___ ___ __ ___ ___ __ ___ ___ __ ___ ___ __ ___ ___ __ WI -)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Advanced Technology, Inc.
2121 Crystal Drive
Arlington VA 22202

9. SPONSORING/MONI TORING AG17NCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Rome Air Development Certer (COEE)
Griffiss AFB NY 13441-5700 RADC-TR-90-348

11. SUPPLEMENTARY NOTES RADC Project Engineer: Roger J. Dziegiel, Jr./COEE/(315)330-4063
This work was performed by Advanced Technology, Inc. under Subcontract to lIT Research
Institute. Route\26N. Rome NY 13440.

1 2a. DISTRIBUT1ON/AVAILAZIU1TY STATEMENT [12b. DISTRIBUTION CODE

Approved for public release, distribution unlimited

13. ABSTRACT(m-n '2~W os This report documents the Mission Area Analysis (MAA) conducted to
identify mission and system characteristics that impact software quality. Characteris-
tics were used to develop a set of rules that link characteristics to quality factors
or characteristics to characteristics. This analysis did not determine what the actual
software quality requirements are for the systems reviewed. This determination is made
during a consultation with the Assistant for Specifying Quality Software (ASQS). The
main objectives of the MAA were to: 1) develop mission profiles for the five Air
Commnications (C3); and Force-Mission Management; 2) determine what software quality
factors are impacted by the respective missions; and 3) create rules and questions for
use in ASQS.

The MAA tried, with limited success, to move the Software Quality Framework from the
theoretical to general practice by creating processes for determining software quality
goals and placing them into an expert system.

14. SUBJECT TERMS __[5 NUMBER OF PAGES
Mission Area Ana11 '=i, Software 2,!lity Framework, Software Quality, 166
Software Quality Specification, Expert System t16PRICE CODE

17. SECURITY CLASSIFICATION 18a SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UIMITATION OF ABSTRACT
OF RFtJORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIE SAR
NSN4 7540-1 .2915 Stvwaw F or, 2?8 (Rev 2-BOl

Pragated b~v ANSI Sta Z39-iB
298-102

TABLE OF CONTENTS

Chapter Section Eag

Executive Summary x

I. Introduction

1.0 Background 1-1

1.! Purposc 1-2

1.2 Study Objectives 1-2

1.3 Software Quality Factor Definitions 1-2

II. Approach

2.0 System Lifecycle 2-1

2.1 Feasibility Analysis 2-2

2.2 Knowledge Representation 2-3

2.2.1 Mission Area and Software Types 2-5

2.2.2 Projects and Functions 2-6

2.3 Knowledge Acquisition 2-7

2.3.1 Domain Experts 2-8

2.3.2 Staffing 2-8

2.3.3 Domain Considerations 2-9

2.3.4 Quality Factor Def'iitions 2-9

2.4 Knowledge Representation 2-10

2.4.1 Rules and Queries 2-10

lIl. Intelligence System Software Analysis

3.0 Scope 3-1

3.1 Intelligence System Software Description 3-1 -I on For

3.2 Software Quality Factor Applicability 3-2 ;RA&I
% B 0"

3.3 Tactical Intelligence System Notional Architecture 3-5 .nced 0

3.4 Applicability of Quality Factors by Software Function 3-6 ion

3.4.1 Message Processing 3-7

3.4.2 Data Fusion/Correlation 3-7 but Ion/

3.4.3 Situation Assessment 3-8 Lability Codes
Avnil Rrd/or,

Is t NpedAl

TABLE OF CONTENTS (Cont)

Chapte Section

3.4.4 User-System Interface 3-8

3.4.5 System Monitor and Control 3-8

3.4.6 System Software 3-9

3.4.7 Collection Management 3-9

3.4.8 General Considerations 3-9

3.5 Mission-Oriented Rules and Queries 3-10

3.6 System Security 3-11

3.6.1 Class I Rules 3-11

3.6.2 Class II Rules 3-18

3.6.2.1 Determining the Level of System Requirements 3-18

3.6.2.2 Data Exposure (DE)/System Risk (SR) 3-21

3.6.2.3 Determining the Impact of Security Requirements 3-23
on Quality

3.7 Message Processing 3-26

3.7.1 Class I Rules 3-26

3.7.2 Class II Rules 3-26

3.8 User-System Interface 3-28

3.8.1 Class I Rules 3-28

3.8.2 Class II Rules 3-29

3.9 Indications and Warning/Intelligence Analysis 3-30

3.9.1 Class I Rules 3-30

3.9.2 Class II Rules 3-30

3.10 Collection Management 3-32

3.10.1 Class I Rules 3-33

3.10.2 Class II Rules 3-33

3.11 General Considerations 3-34

3.11.1 Error Recovery 3-35

3.11.1.1 Class I Rules 3-35

3.11.1.2 Class 11 Rules 3-35

3.11.2 Crisis/Time Constrained Operations (CT) 3-37
3.11.2.1 Class I Rules 3-37

3.11.2.2 Class II Rules 3-37

iii

TABLE OF CONTENTS (Cont)

Chaprte Section

3.11.3 Authenication 3-38

3.11.4 Communications Field Integrity 3-40

3.11.5 Fault Tolerance (1') 3-41

3.11.6 High-Order Language (HOL) 3-44

3.11.7 Interface Complexity 3-46

3.11.8 Testing (TE) 3-47

3.11.9 Architecture 3-49

IV. Satellite Software Analysis

4.0 Scope 4-1

4.1 Satellite System Software Definition 4-1

4.2 Software Quality Factor Applicability 4-1

4.3 Satellite System Notional Architecture 4-3

4.4 Applicability of Software Factors by Component 4-5

4.4.1 Command and Control/Data Communications 4-5

4.4.2 Attitude Control, Propulsion and Power 4-5

4.4.3 General Considerat~ons

4.5 Factor Applicability Conclusions 4-6

4.6 Query Development 4-8

4.7 Satellite Software Analysis 4-12

4.7.1 Software Features 4-12

4.8 Burn Time 4-14

4.8.1 Query BT. 1 4-14

4.8.2 Query BT.2 4-15

4.8.3 Query BT.3 4-16

4.8.4 Querty BT.4 4-16

4.9 Communication Frequencies 4-17

4.9.1 Query CF.1 4-17

4.9.2 Query CF.1.1 4-19

4.9.3 Query CF.2 4-20

4.9.4 Query CF.2.1 4-21

iv

TABLE OF CONTENTS (Cont)

Chapter Section

4.9.5 Query CF.3 4-21

4.9.6 Query CF.4 4-22

4.9.7 Query CF.5 4-23

4.9.8 Query CF.6 4-23

4.9.9 Query CF.7 4-24

4.10 Data Encryption 4-24

4.10.1 Query DE. 1 4-24

4.10.2 Query DE.2 4-25

4.10.3 Query DE.3 4-25

4.10.4 Query DE.4 4-27

4.10.5 Query DE.5 4-27

4.10.6 Query DE.6 4-28

4.10.7 Query DE.7 4-29

4.11 Fault Tolerance 4-30

4.11.1 Query FT. 1 4-30

4.11.2 Query FT.2 4-31

4.11.3 Query FT.3 4-31

4.11.4 Query FT.4 4-32

4.11.5 Query FT.5 4-33

4.11.6 Query FT.6 4-33

4.11.7 Query FT.7 4-34

4.11.8 Query FT.8 4-35

4.11.9 Query FT.9 4-35

4.11.10 Query FT.10 4-36

4.12 High-Order Language 4-37

4.12.1 Query HOL.1 4-37

4.12.2 Query HOL.2 4-38

4.12.3 Query HOL.3 4-38

4.12.4 Query HOL.3.1 4-39

4.12.5 Query HOL.4 4-40

4.12.6 Query HOL.5 4-40

V

TABLE OF CONTENTS (Cont)

Chapter Section

4.12.7 Query HOL.5.1 4-41

4.12.8 Query HOL.6 4-41

4.12.9 Query HOL.7 4-42

4.13 Interface Complexity 4-43

4.13.1 Query IC. 1 4-43

4.13.2 Query C.2 4-44

4.13.3 Query IC.3 4-44

4.13.4 Query IC.4 4-45

4.13.5 Query IC.5 4-46

4.13.6 Query IC.6 4-47

4.14 Movable/Adjustable Subsystems 4-48

4.14.1 Query MAS. 1 4-48

4.14.2 Query MAS.2 4-49

4.15 Memory Utilization/Management 4-50

4.15.1 Query MU. 1 4-50

4.15.2 Query MU.2 4-50

4.15.3 Query MU.3 4-51

4.16 Orbital Characteristics 4-52

4.16.1 Query OC.3 4-52

4.17 Processing Capabilities 4-53

4.17.1 Query PC.1 4-53

4.17.2 Query PC.2 4-53

4.18 Power Sources 4-54

4.18.1 Query PS. 1 4-54

4.18.2 Query PS.2 4-55

4.18.3 Query PS.3 4-55

4.18.4 Query PS.4 4-56

4.19 Testing 4-57

4.19.1 Query TE. 1 4-57

4.19.2 Query TE.2 4-58

vi

TABLE OF CONTENTS (Cont)

Chapter Section ag

V. Conclusions and Recommendations

5.0 Conclusions 5-1

5.1 Recommendations 5-2

List of References R-1

Appendix A-Mission Area Decompositions A-i

vii

LIST OF FIGURES

Number T Page

2.1 Expert System Lifecycle 2-1

2.2 ASQS Context Tree 2-4

3.1 Tactical Intelligence System Notional Architecture 3-5
3.2 Quality Factor Increase/Decrease Scale 3-36

4.1 Satellite System Notional Architecture 4-4

4.2 Quality Factor Applicability Matrix 4-6

viii

LIST OF TABLES

Number Ti

1.1 Factor Definitions 1-3

1.2 Quality Factor Criteria Definitions 1-4

2.1 ASQS Feasibility Analysis 2-3

3.1 Tactical Intelligence System Functions 3-6

4.1 Satellite Component Attributes 4-8

4.2 Software Quality Factor Characteristics 4-9

4.3 Satellite Software Query Topics 4-10

4.4 Software Features 4-13

ix

Executive Summary

This report documents the Mission Area Analysis (MAA) conducted to identify mission and system

characteristics that impact software quality. These characteristics and their supporting rationale

were used to develop rules for an expert system, the Assistant for Specifying Quality Software

(ASQS). ASQS automates the quality specification process addressed in Specification of Software

Ouality Attributes. Software Ouality Specification Guidebook. RADC-TR-85-37. Vol II. This
process is part of a quality specification and measurement approach adopted by Rome Air

Development Center (RADC) as the Software Quality Framework (SQF).

The MAA builds on a mission taxonomy used in the Software Test Handbook. RADC-TR 84-53.

Vol. I that includes five Air Force mission areas; Armament, Avionics. Missile-Space, Command,
Control and Communications (C3) and Force-Mission Management. Each mission area was

reviewed to identify those characteristics that impact system software quality according to the

Software Quality Framework quality factor definitions The rationale behind each identified

characteristic was captured based on expert opinions and document research. The result was a set
of rules that linked characteristics to characteristics and characteristics to factors.

To optimize available resources, the reviews of the MAAs examined in detail two mission areas

and two specific types of software. Conclusions of this comprehensive review of a limi.d MAA

domain included:

- Additional review(s) should be conducted to cover all five Air Force Mission Areas
- Limitations of current expert systems technology dictate that the software quality

framework be extended to achieve the precision needed for expert systems.

Rules were developed for a satellite and an intelligence systems. Some of them were limited based

on the criteria (e.g., when estimating to what extent a particular mission attribute impacted software
quality). The knowledge base and the Software Quality Specification Framework and its basic
premises should be expanded to assist in continuing the development of ASQS. The effectiveness

of future knowledge acquisition will be dependent on getting knowledge engineers involved in an

actual development effort, with free access to experts, system requirements, and software designs.
This is because trying to re-create, from expert recall, the undocumented rationale or key decisions

made which influenced a program's quality goals is too subjective and resource intensive.

In summary, the MAA review has made progress in moving the software quality framework

further into general practice. Additional work is recommended to enhance the depth of the

X

software quality framework. Then, expert systems technology can be applied to realize additional

benefits in the useage of software quality specifications.

xi

I. Introduction

This document is the final report on the Mission Area Analysis (MAA) conducted by HT Research

Institute (IITRI) and Advanced Technology Inc. (ATI) in support of the Assistant for Specifying

Quality Software (ASQS), an expert system developed by Dynamics Research Corporation (DRC).

1.0 Background

Software quality metrics have not been widely used as a tool by acquisition managers because the

utility of metrics is not clearly perceived by them. Software quality metrics, to be either predictive

or evaluative value to tie acquisition manager, must be described in a way that is relatable to the

software products end use. Accordingly, if they are perceived as having a "real life" relationship to

software functional and/or performance requirements, metrics might receive better acceptance

among acquisition managers.

The bulk of the work done to date in the field of software metrics has concentrated on the software

science aspects of metrics, as opposed to the utility of metrics for actual software development

efforts. Studies, such as the RADC Software Quality Framework, have developed metrics that

describe attributes of software, but they are not descriptive of the ability of the software to meet

end use requirements. Complicating this picture is that the factors defined describe very general

characteristics (efficiency, integrity, correctness, flexibility, etc.) as do the criterion measures

(autonomy, distributedness, virtuality, generality, etc.) and the metrics (access control, self-

sufficiency, accuracy checklist, etc.). This is not to say that the measures as measures are invalid.

On the contrary, their validity is not the issue. What may be an issue is that these measures may be

at a level of abstraction removed from the average acquisition manager's understanding of quality

terms. There is nothing in the structure that either predicts or evaluates in a direct way if the

software will meet the required functional and performance requirements. And this tends to be the

acquisition manager's primary preoccupation: will the software meet the requirements?

The problem is twofold. First, the quality specification process must produce a relevant and

tailored application of the current metrics to a user's acquisition program. Second, the metrics

need to be reviewed, and if necessary, expanded to ensure they give meaningful measures of how

well the software meets the program requirements. The former is the focus of ASQS and the

Mission Area Analysis. The latter is a validation effort which is a natural follow-on to the MAA,

but it was beyond the scope of this task.

1-1

1.1 Purpose

The purpose of this analysis was to identify characteristics of a mission-specific software systems
that help determine software quality requirements as defined by the Specification of Software

Quality Attributes. Software Quality Specification Guidebook. Characteristics were used to
develop a set of rules that link characteristics to quality factors or characteristics to characteristics.

This analysis did not determine what the actual software quality requirements are for the s .,:ms

reviewed. This determination is made during a consultation with ASQS.

1.2 Study Objectives

The main objectives of the Mission Area Analysis were to:

a. Develop mission profiles for the five Air Force mission areas, Armament, Avionics,

Missile-Space; Command, Control, and Communications (C3); and Force-Mission

Management.

b. Determine what software quality factors are impacted by the respective missions.

c. Create rules and questions for use in ASQS.

1.3 Software Quality Factor Definitions

This analysis used the quality factors and definitions as stated in the Specification of Software

Quality Attributes. Software Quality Specification Guidebook. For clarity and understanding, the

Software Quality Framework (SQF) terms and definitions are summarized below.

The software quality factors are divided into three categories -- Performance, Design and

Adaptation. These three categories are defined as follows:

Performance: The ability of the software to function as designed and to function in the
presence of hardware and software faults and errors.

Adaptaion: The process by which the software is used beyond its original requirements,
such as extending or expanding capabilities and adapting the software for use in another application

or a new environment.

1-2

Design: The process by which the software is systematically engineered, designed, and

tested to ensure the minimization of software failure and the need for future redevelopment.

The three quality factor categories are subdivided into the thirteen software quality factors which

are further divided into a criteria. TABLE.1.1 lists the categories and factor definitions.

TABLE. 1.2 lists the criteria definitions.

TABLE 1.1. Factor Definitions

lPeronniance

The ability or the software to opUmze its use (speed, size,
Efficiency: execution, etc.) or resources (memory, data storage, processor

speed, etc.).
Integrity: The ability of the software to detect and repel attempts to access the

system or its software by unauthorized users.
Reliability: The ability of the software to accomplish the function it was

designed to perform.
Survivability: The ability of the software to operate in a degraded mode (presence

of errors, software failures or hardware failures).
Usability: The amount of effort required to properly use the software.

Adaptation
The ability to change the s lware to increase its capability or

Expandability: performance by enhancing current functions or by adding new
functions or data.

Flexibmity- ----- The-ability to change the software missions, functions, or data to
satisfy other requirements.

Interoperability: The ability to couple software of one system to software of one or
more systems.

Portability: The ability to transport software from one operating environment
(hardware, configuration or software system) to another.

Reusability: The ability to convert a software component for use in another
________________application.

Design
Correctness: The extent to which te software design, coding, and

------- implementation conforms to its specifications and standards.
Maintainability: The degree to which software errors or failures can be located and

fixed within a specified time period.
V----- The degree to which the software operation and performance can

be tested and verified.

1-3

TABLE 1.2. Quality Factor Criteria Definitions

IPerfomance
Accuracy: Those characteristics of sotware which provide the required

precision in calculations and outputs
Anomaly Those characteristics of software which provide for continuity of
Management operations under and recovery from non-nominal conditions
Autonomy: Those characteristics of software which determine its non-

dependency on interfaces and functions
Those characteristics of software which determine the degree to

Distributedness: which software functions are geographically or logically separated
within the system

Effetiveness- Those characteristics of the software which provide for minimum
Comm: utilization of communications resources in performing functions
Effectiveness- Those characteristics of the software which provide for minimum
Processing: utilization of processing resources in erforming functions
Effectiveness- Those characteristics of the software which provide for minimum
Storage: utilization of storage resources

Those characteristics of software which deternneoperations and
Operability: procedures concerned with operation of software and which

provide useful inputs and outputs which can be assimilated
Those characteristics of software which provide for continuity of

Reconfigurability: system operation when one or more processors, storage units, or
communication links fails

System Those characteristics of software which provide for control and
Accessibility: audit of access to the software and data
Training: Those characteristics of software which provide trasition from

current operation and provide initial familiarization

1-4

TABLE 1.2. Quality Factor Criteria Definitions (Cont)

Adaptation
Application Those characteristics of software which determine its
Independence: nondependency on database system, microcode, computer

architecture, and algorithms
Augmentability: Those characteristics of software which provide for expansion of

capability for functions and data
Those characteristics of software which provide for the use of

Commonality: interface standards for protocols, routines, and data
representations

Document Those characteristics o' software which provide for easy access to
Accessibility: software and selective use of its components
Functional Overlap: Those characteristics of software which provide common

functions to both systems
Functional Scope: Those characteristics of software which provide commonality of

functions among applications
Generality: Those characteristics of software which provide breadth to the

functions performed with respect to the application
Those characteristics of software which determine its non-

Independence: dependency on software environment (computing system, utilities,
input, outPut routines, libraries)
Those characteristics of software which provide for clear

System Clarity: description of program structure in a non-complex and
understandable manner

System Those characteristics of software which provide the hardware,
Compatibility: software, and communication compatibility of two systems

Those characteristics of software which present a system that does
Virtuality: not require user knowledge of the physical, logical or topological

characteristics

Design
Completeness: Those characteristics of softwarewhich provide full

implementation of the functions required
Consistency: Those characteristics of software which provide for uniform

__ design and implementation techniques and notation
Those characteristics of software which provide a thread of origin

Traceability: from the implementation to the requirements with respect to the
specified development envelope and operational environment

Visibility: Those characteristics of software which provide status monitoring
of the development and operation

General
Modularity: Those characteristics of software which provide a structure of

highly cohesive components with optimum coupling
Self-Descriptiveness: Those characteristics of software which provide explanation of the

...............___ imlementation of functions
Those characteristics o-sof tw which provide for definition and

Simplicity: implementation of functions in the most noncomplex and
understandable manner

1-5

II. Approach

2.0 System Lifecycle

The Mission Area Analysis covered three of the expert system lifecycle phases shown in Figure

2.1. The emphasis was placed on knowledge acquisition and knowledge representation with some

effort allotted to validation. Like the lifecycle for traditional software, the phases shown below are

not always distinct and sometimes involve some overlap. In performing the knowledge acquisition

for ASQS, certain facts about the task and the domain were uncovered that normally are addressed

during the feasibility analysis. They impacted this effort and will likely impact future efforts to

populate the ASQS knowledge base.

Figure 2.1. Expert System Lifecycle

2-1

2.1 Feasibility Analysis

One method of improving the likelihood of success in expert system construction is to choose a
manageable task. The task should not be too difficult, and a good model of how the task is

performed should exist. ASQS is an R&D activity attempting to automate a complex method in a

useable, consistent manner. Other quality programs do not appear to be as comprehensive as
ASQS, therefore it should not be expected that mission area experts will be thoroughly familiar

with this technology and may require additional training. When evaluated against these criteria,
ASQS has several shortcomings. First, the real-world model for determining and assessing

software quality is varied and not well-defined. There are few, if any software quality axioms and
the Software Quality Framework (SQF) attempts to formalize the process and provide

standardization. A universally accepted quality specification process that can be captured for

implementation in an expert system does not currently exist. Therefore the mission analysis

required a search for the process in addition to an attempt to document the process.

Scope is the second problem which exists. ASQS attempts to capture the rationale for determining

the software quality requirements of an unbounded number of Air Force missions. Although only
five mission areas are explicitly mentioned in the ASQS operational concept, they actually represent

a very broad range of Air Force missions. Accordingly, the number of requirements and system

architectures that ASQS must address, which potentially impact software quality, is substantial.
Multiply this by the number of judgements that are made to define the software requirements (and

their resulting quality constraints) and the inherent risks to the success of ASQS are evident. It

could be easily argued that ASQS is attempting to capture the system engineering process in an

expert system.

TABLE 2.1 summarizes the key risk areas of ASQS. All of the risks are significant, however, the

last one, What will the criteria be for success?', is perhaps the most important. The SQF defines

software quality as a precise and quantifiable science.. The risk is high if ASQS is expected to

exactly predict the proper quality levels for system software because the knowledge domain is so
large and the real-world definition of quality is still evolving, but if the objective is to gain a better

appreciation of the system software quality goals, then the risk is more reasonable.

2-2

TABLE 2.1. ASQS Feasibility Analysis

Criteria Impact Risk
Level

Does ASQS have a The best expert system tasks are High
narrow focus? rather limited in nature and have a

narrow focus.
Are experts It is generally difficult to attempt a Medium
demonstrably better task that has proved equally difficult
than amateurs? for experts and novices. This

suggests the task is inherently
difficult. I

Are the rules of It is important to know whether the High
software quality the criteria for performing the task
stable? are still changing; otherwise it will

be difficult to capture knowledge.
Is a human expert It is essential to have access to Low
available and experts who will be dedicated to the
committed? project and provide the domain

knowledge.
Is the skill of Teaching material or internal Medium
software quality documentation and guidelines for
specification taught performing the expert system task
or documented? are valuable sources of information.
What will the criteria It is important to know what will High
for success or failure constitute success for the expert
be? system. Does the expert system

have to be 100% correct, or will
something less be acceptable?

2.2 Knowledge Representation

The knowledge representational scheme (i.e., the context tree) used by ASQS is shown in Figure
2.2. The context tree is a hierarchical view of how knowledge is organized within ASQS. It
parallels a standard development process that starts with general mission requirements and
continues through detailed system design. As one progresses through the tree, more system
characteristics are known and quality attributes estimated. For this analysis, each level in the
schema was matched to the appropriate specification and design documents. This helped define the
type of knowledge required to support rule development at each level. Mission Area (MA) is
equivalent to a mission needs or operational concept document; Software Type (ST) and Project

(PR) are equivalent to an A-Level or System/Segment Specification and System Design Document;
and Function (FN) and Main Specification (MS) are equivalent to the B-Level or Software
Requirements Specification and Software Design Document.

2-3

MISSION AREA
(MA)

SOFTWARE TYPE
(ST)

PROJECT (PR)

FUNCTION (FN)

MAIN
SPECIFICATION

(MS)

Figure 2.2. ASQS Context Tree

Since levels of the context tree potentially yield quality data the factors are general enough to justify
conclusions with as little as a mission statement. The value of examining a system in more detail is
to quantify to what extent the factor applies. If possible, this would require a detailed knowledge
of the requirements and design constraints, and estimates of how t ach impacts a factor. For this

analysis, confidence values were assigned to the ASQS rule conclusions, even though it was very
subjective. Confidence values ranged from 0 to 1, with .3 and below defined as weakly indicated,
greater than .3 and up to .5 defined as moderately indicated, and greater that .5 defined as strongly
indicated. ASQS through its reasoning chain aggregates the confidence values and determines the

factor rating.

The five Air Force Mission Areas (MA) are divided into Software Types (ST) which are broad
categories of systems used to perform the selected mission. In general, MA- and ST-level rules act
like metarules. They are not directly executed by the inference engine and are used to select the

rules appropriate for a given mission area and system analysis. The next three levels Project (PR),
Function (FN), and Main Specification (MS) contain rules that conclude functional or quality
characteristics. PR- and FN-level rules determine the actual system and the functions it performs.
The Main Specification (MS) is the quality specification associated with each function. MS-level

rules determine most of the characteristic-to characteristic and characteristic-to-factor correlations.

2-4

2.2.1 Mission Area and Software Types

The Mission Area Decompositions (MAD) contained in Appendix A, summarize the major
missions and system categories (software type) in five Air Force mission areas; Armament,
Avionics, Missile-Space, C3, and Force-Mission Management. Representative Air Force systems
are listed under the software type as examples of systems associated with a specific software type.
The actual number of fielded systems fitting under a given software type can be extensive, so a
generic example called a generic project was developed based on a composite of the representative
systems. The generic project allocates the major mission functions performed by a software type
into a notional design or architecture, which can be used as a starting point for quality evaluations.

Missions are broad statements of the responsibilities and functions of an organization or system.
Several sources such as Air Force System Command Regulations, Air Force product division fact
books, A-Level Specifications, and Armed Forces Communications and Electronics Association
(AFCEA) course material on command centers, were unsuccessfully used to develop mission
definitions that could be categorized into distinct groupings of software systems. The alternative
was to organize the mission areas according to the Air Force product divisions. Although
somewhat arbitrary, it was a reasonable and fast approach for partitioning the mission and software

domains.

The MAD builds on work done by Boeing Aerospace Corporation for the Software.Test
Handbook. RADC-TR-84-53. Vol II and reflects the mission responsibilities of the Air Force
product divisions. This is especially true for the Armament, Avionics, Missile-Space, and C3

mission areas which match the missions of the Armament Division, Eglin AFB, the Aeronautical
Systems Division (ASD), Wright-Patterson AFB, the Space Systems Division (SSD), Los Angeles
AFB, and the Electronic Systems Division (ESD), Hanscom AFB. The Force-Mission
Management mission area is the only one that is not closely aligned with a product division and it
includes systems that are not specific to one mission area. However, since Force-Mission
Management systems tend to be command and control related, they have characteristics very
similar to those of a C3 system. Therefore, Force-Mission Management is addressed under the C3

mission area reducing the mission areas to four.

Boeing categorized systems for the Armament Mission area into three software types; Threat
Systems, Missile Systems, and Scoring Systems. Threat systems include defensive and offensive
radar systems, targeting and tracking systems, and electronic countermeasure systems. Missile
Systems are typically air-to-air and air-to-ground missile systems while Scoring Systems include

2-5

proximity detectors for projectiles used in aerial gunnery training. After a review of Armament
Division, the original software types were changed to Range Systems, Guided Weapon Systems,
and Sensor Fuzed Weapons. This decomposition better reflects the system responsibilities of the
Armament Division while eliminating the potential confusion between Armament missile systems
and Missile-Space missile systems.

The Avionics mission area decomposition in Boeing's Test Handbook was mostly unchanged.
The five software types, Avionics, Test Equipment, Air Crew Training Devices, Flight Controls,
and Reconnaissance and C3 were retained and only minor name changes were made. Avionics
(software type) was renamed Aircraft Software, Reconnaissance and C3 was renamed
Reconnaissance and Electronic Warfare, and Air Crew Training Devices was renamed Training
Simulator Software. These changes were made for clarity sake or to better reflect the current
mission responsibilities of ASD.

Boeing's work under the C3 mission area was based solely on the mission functions of the
Strategic Air Command (SAC) and no software types were addressed. To give a more
representative view of the Air Force C3 mission area, four software types were created based on
the mission responsibilities of ESD: Strategic C3 systems, Tactical C3 systems, Intelligence
Systems and C3 Countermeasures, and Advanced Decision Systems.

The Missile-Space mission area was changed and expanded. Boeing divided Missile-Space into
Ground Control and Communications, Prelaunch Checkout and Launch Systems, Launch Vehicle
Systems and Space Vehicle Systems. Based on an analysis of the Ballistic Missile Office and
Space Division missions, the Prelaunch Checkout and Launch Systems software type was deleted
since many of its mission functions fit under Launch Vehicle Systems. Ground Control and
Communications was renamed Satellite Communications and Ground Control. This reflects the
satellite emphasis in communications, navigation and meteorological support. A Defense and
Surveillance Systems software type was added to accommodate mission functions relating to the
Strategic Defense System (SDS).

2.2.2 Projects and Functions

Each software type at the PR level is associated with a notational architecture called a generic
project. It shows a top-level design with its software configuration items or components. For
example, a typical command and control system might have a communications component,
message handling component, data base manager component, and user interface component. Each

2-6

component performs functions whose attributes determine the component's quality requirement or
goal. Components in the generic project are assigned default quality goals based on expert
validation. These default values are assumed to represent typical quality objectives for a software

type. In ASQS, components (and their supporting rule base) can be copied from the generic

project to a user's project if applicable.

Ideally, a component functional decomposition could be developed for a generic project which has

a quality allocation extending down to the lowest defined function. For every function, there
would be unique attributes that determined its quality goal to allow the user of ASQS added

flexibility to find and copy a generic function and incorporate it into his functional decomposition.

Conceptually this approach seemed feasible, but it was not possible to capture supporting quality
data at such a level of detail and create function unique rules.

Functional attributes that might impact quality could only be estimated at a system or component
level and even at this level, the data rarely supported more than a subjective estimate. Attempting
to make quality assessments at lower levels of a functional decomposition was much too arbitrary
to yield meaningful results. For this analysis, software requirements specifications and system

design documents were used to identify the lower level functional characteristics. Some

decompositions went as far as the fourth and fifth levels, but only to support a quality estimate at

the component level. Several of the system or software requirements specifications used for the
MAA explicitly stated the system quality requirements. The Worldwide Military Command and

Control System (WWMCCS) Information System (WIS) and the Navy's Ocean Surveillance
Information System (OSIS) specifications addressed most of the quality factors contained in the

Framework. However, in reviewing the design documentation, it was not clear on how the

specified quality requirements were allocated and implemented in the software design.

2.3 Knowledge Acquisition

Knowledge acquisition was performed using expert interviews combined with document research.

Three experts were used with five to fifteen yearv experience in system acquisition and

development. Their program background included the Air Force's Granite Sentry program,
Intelligence Data Handling System (IDHS), Defense Satellite Communications System (DSCS),

and Worldwide Military Command and Control System (WWMCSS) and the Navy's Ocean

Surveillance Information System (OSIS) and Global Positioning System (GPS).

2-7

All the experts were given an overview of the Software Quality Framework, ASQS, and the ASQS
context tree at the beginning of the interview process and attempted to describe software quality
within the context of the SQF. None of the experts used the formal quality specification process in
their respective programs. Correlation between the Framework and expert data had to be based on
interpretation or extrapolation. Review of actual specification documents found no strong link
between the SQF and the design process. The OSIS and WWMCCS specifications addressed the
quality factors but this reflected more a compliance with a document format requirement rather than
an analysis based on the SQF specification process.

2.3.1 Domain Experts

Two domain experts, one for Satellite Systems were selected to support the functional and quality
analyses in tht. Missile-Space and C3 mission areas. Their role was to help develop mission
functional profiles, supplement the research data derived from the specifications, and help derive
rules and queries. Other experts were used on a limited basis to assist with the functional
decompositions in the remaining three mission areas.

The availability of qualified domain experts is an issue when dealing with any large domain. In
this analysis, beside the number needed, the type of experience was critical. Many of the available
experts had experience based on an acquisition or end-user viewpoint which was adequate for
defining major mission functions, but unsatisfactory for understanding the detailed software
aspects of a system. The experts used in this study generally addressed system quality issues from
an A-specification level therefore, most of the detailed software characteristic data came from
published books, journals, or proceedings. This information was relevant to the domain but
lacked a the practical and focused input of an expert which meant the knowledge engineer assumed
much of the expert's responsibility for identifying major domain concepts and reasoning chains.

2.3.2 Staffing

Effective knowledge acquisition requires the knowledge engineer to be familiar with the system
under review. This helps make the entire process more productive from interviews to rule
development. From the beginning of the task, one knowledge engineer should have been assigned
for each mission area. Even with only two mission areas, the amount of data to be captured and
analyzed was substantial for one person. It was not until the latter half of the task that the staffing
was increased to two knowledge engineers.

2-8

2.3.3 Domain Considerations

The size of the domain was an early issue. Trying to capture software quality data for five Air
Force mission areas is a sizeable task from a knowledge acquisition standpoint. As we proceeded

with the functional decompositions, it became apparent that each mission area had a number of
different software systems with different software quality concerns. The size problem was

compounded by trying to find experts who could authoritatively address the various systems. The
compromise was to focus the mission analysis in two mission areas, Missile-Space and C3. In
addition, specific software types were selected for study. For Missile-Space it was a satellite

system and for C3 it was an intelligence system.

Three representative system and/or software specifications were used during the analysis, the

Multiple Satellite System (MSS), the Ocean Surveillance Information System (OSIS), and the

World Wide Military Command and Control System (WWMCCS). Each was reviewed to

determine top-level mission functions as well as software characteristics. Other system

specifications and information were also used to provide supporting functional or characteristic
data to include the Strategic Defense System (SDS) Phase I architecture studies, the Granite Sentry

System Specification, and the Forward Area Air Defense Command, Control, and Intelligence
(FAAD C2I) Design Plan. Although functional decompositions were developed for each mission

area, the emphasis was placed on the Missile-Space and C3 mission areas.

2.3.4 Quality Factor Definitions

Software quality is an acknowledged concern but not a well-defined discipline. Like specification

methodologies used to describe software systems, the quality framework provides a high-level

abstraction mechanism to enhance the understanding of software quality issues. The definition and
precision to completely describe a software quality design remains to be fully developed. A need

for software quality was acknowledged by domain experts we interviewed and in some cases it
could be addressed within the context of the framework definitions for soune of the more

commonly known factors such as reliability. Other factor definitions were subject to interpretation
which made it difficult to determine the specific factor being impacted. For example, some see

flexibility and expandability as measuring the same qualities while Others define integrity as data

integrity and not security.

2-9

2.4 Knowledge Representation

2.4.1 Rules and Queries

The rules fall into two general classes. The first class of rules (Class I) are those that directly relate
a functional or software characteristic(s) to one or more of the 13 software quality factors. The

second class of rules (Class II) are those that relate one set of functional or software characteristics
to another set. These two classes of rules provide a reasoning chain from software functions to

quality factors.

Each rule contains parameters whose value must be known before the rule will execute. If ASQS
is unable to determine parameter values from its known facts then it queries the user for the

missing data. In general, the Class I rules would not have queries associated with their
parameters. The Class I parameters would be determined by the applicable Class II rules.

The final rule and query set developed from the Mission Area Analysis is not contained in this

report, but will be included in the ASQS Software Product Specification being developed by
Dynamics Research Corporation. All rules in the ASQS knowledge base are cross-referenced to

this document.

2-10

III. Intelligence System Software Analysis

3.0 Scope

This analysis is applicable to the Command, Control and Communications (C3) mission area and

the software type Intelligence Systems and C3 Countermeasures.

3. 1 Intelligence System Software Description

Intelligence system software is assumed to include all those functions performed to collect,

process, evaluate, disseminate, and display intelligence data (Collection in this instance means to

receive raw data from other systems or sensors that are external to the intelligence system). For the

purpose of this analysis, intelligence systems are divided into two categories, strategic and tactical.

Strategic intelligence systems include those that store historical intelligence data, perform trend

assessment, or help make intelligence estimates or predictions. Many are used as a source for

planning new weapons development programs, developing strategic doctrine, or conducting

technology assessments. They contain large encyclopedic data bases that are slowly changing and

operate in a non- to near-real time mode. Strategic intelligence systems have minimal

communication or security software requirements because they generally operate in highly secure

facilities with no external communication interfaces.

Tactical intelligence systems are service specific, focus on a theater of operations, operate in a near

real time mode and can be fixed or mobile. They generally have a communication segment, a

sizeable data base, a complex man-machine interface, some type of security requirement and

perform a specialized application (e.g., signal intelligence correlation). Tactical intelligence

systems will often have multilevel security considerations driven by multiple data classifications,

varying user clearances and communication interfaces with other secure and non-secure systems.

The following general rules can be derived from above:

Rule GE. 1: IF Intelligence-Mission AND Tactical-System THEN Time-Critical

Rule GE.2: IF Intelligence-Mission AND Strategic-System THEN Not-Time-Critical

3-1

Query: Is the intelligence system considered a tactical system or strategic system?

This analysis uses a fixed tactical intelligence system as the basis for all functional and software

quality assumptions.

3.2 Software Quality Factor Applicability

The first step is to determine if any of the thirteen software quality factors apply to intelligence

system software. If factors are found to be non-applicable, this information will be used to write
mission-level rules that will eliminate factors from further consideration based on the selection of

the mission area and software type.

The principal mission of the tactical intelligence system is to receive, process and disseminate

timely information on mobile targets of interest. This information is provided to Air Force and
other services at all levels of command. A key aspect of a tactical intelligence system is its ability

to process data, through both automatic and analyst interactive means, in near real time.

Typical inputs for the system come from external reports, queries, messages, and related data, and

local analyst workstation interaction. These inputs are processed in both automatic and manual
modes. Those inputs from external sources that require immediate attention are processed
automatically by the system software. For example, the correlation of contact reports to existing

tracks. Other automated system capabilities could include generating message processing summary
reports or alert filtering.

A tactical intelligence system usually supports multiple users logged on to alphanumeric and
graphic workstations. Inputs are entered through a combination of keyboard keystrokes, hard and

soft function keys, and graphic input devices. Tasks performed include reviewing automatic
processing results, generating summary reports, updating graphic displays, word processing, and

accessing and updating a data base. External inputs can automatically trigger alerts to multiple
analysts in the event of a change in contact reports or other significant external data. System
outputs include target data updates, command support information, administrative reports, graphic
displays, hard copy reports, and general system status data.

Given this system description, an attempt can be made to form some initial assumptions on the
applicability of the quality factors to a tactical intelligence system by first examining those quality

factors that make up the attribute of software Performance.

3-2

E w . Efficiency is an important quality goal of intelligence software since a tactical
intelligence system often processes several types of data to include human intelligence (HUMINT),
communication intelligence (COMINT), electronic intelligence (ELINT), imagery, and general
tactical reports. During normal operations this represents a large volume of data to process which
increases considerably during a crisis situation. Bottlenecks and throughput become critical issues.
Since it is not economically feasible to run every intelligence system on a CRAY computer, the
alternative is to develop efficient software algorithms and routines that maximize the supporting
hardware.

Intgrly. Integrity is necessary because of its close relationship to security. Although many
intelligence systems run in a system high mode where physical and personnel security measures
play large roles, increased demands for DoD-wide information access and transfer are requiring
systems with multi-level security software solutions. This increases the integrity requirements of

the software.

Reliabiliy. Reliability is a concern since tactical intelligence systems perform mission critical
functions round-the-clock, reliability is a concern.

Survivaility. Survivability is necessary since intelligence systems, because of their mission
critical nature, must be able to operate in a degraded mode.

Usability. Usability is a concern.since intelligence systems operate in a near real time environment

sometimes in crisis situations. Experts are not always available which means less experienced
people must be able to run the system with a minimal learning curve.

Next, are the Design quality factors

Corctess. System security is a major driver in tactical intelligence systems. The design of
system security measures for the software should be simple and small to allow for careful checking
of its accuracy. This implies a need for correctness.

Maintainabiiw. Maintainability is a concern because of an intelligence system's mission-critical
nature, downtime or degraded operation due to software failures should be minimized. A
maintainable design helps quickly isolate software problems and reduce the amount of downtime or

degraded operation.

3-3

Verifiability. Intelligence systems help make operational assessments or tactical decisions based on
some form of automatic or manual data analysis. If the system goes down due to a software
failure, any fix must be quickly tested to ensure the correctness and accuracy of its operation.

The Adaptation factors.

E abj l4. Expandability is applicable because intelligence systems have long life cycles over
which several upgrades are made to enhance or improve existing mission capabilities.

ibility. Tactical intelligence systems perform highly specialized missions with security
considerations th t limit its value or use outside the intelligence domain. However, within the
intelligence community, there is a trend to upgrade current systems to take advantage of new
technologies or fulfill broader missions. This implies a need for more flexible software designs.

In1c~rabU. A design that reflects some level of software interoperability is required since a
tactical intelligence system often must communicate with other intelligence or C3 systems via
satellite, long-haul packet network (e.g., Defense Data Network), or other types of communication
nets. Software designs need to accommodate inter-system interfaces for increased DoD
information access and transfer and greater operations-intelligence integration.

&. There is a need in the intelligence community to promote commonality and technology

transfer to improve the Air Force's capability for monitoring and managing time-critical intelligence
data. To achieve this goal, more software designs emphasize portability through the use of Ada or
secure operating systems that run on widely used hardware (e.g., VMS on DEC).

Uusbilily. Tactical intelligence systems employ common communication, message processing,
and data base designs that are strong candidates for reusability. Since reliability is a prime
concern, new intelligence software would benefit from the use of operationally proven code.

In summary, all thirteen software quality factors are relevant at the system level for tactical
intelligence systems. However, as the system is functionally defined, not all the factors are

applicable to each function in software design. The next step is to take a closer look the tactical
intelligence system functions to determine what is the quality allocation.

3-4

3.3 Tactical Intelligence System Notional Architecture

The notional architecture for a tactical intelligence system is shown in Figure 3.1. The major
components in the notional architecture are message processing; data fusion/correlation; situation
assessment; user-system interface; system monitor and control; system software; collection
management; and general considerations. Each component is described below.

Figure 3.1. Tactical Intelligence System Notional Architecture

Message Processing. The message processing component is responsible for the receipt and
preliminary processing of messages received from external communication circuits and for the
assembly and transmission of messages generated as output to those circuits. The message
processing function also contains the communications interface needed for transmission and receipt
of data.

Data Fusion/Correlation. The data fusion component is a specialized application used to process
intelligence data and perform assessments. This includes identifying contacts, processing ELINT
data, and associating contacts to tracks.

Situation Assessment. The situation assessment component is a set of software tools used to
evaluate threat situations and provide tailored intelligence products.

User-System Interface. The user-system interface component provides the man-machine interface
such as the display of graphics and text. It also provides those interactive functions needed to
develop input (e.g., word processing), manipulate files, or process alerts.

3-5

System Monitor and Control. The system monitor and control component provides system status

monitoring, security services, operational configuration control, initialization and restart services,

system management, performance monitoring, and network communications control.

System Software. The system software function provides data base management and operating

system services.

Coilection Management. The collection management component performs those functions that

support the collection of intelligence data requests and sensor tasking.

General Considerations. General considerations is not an real architectural component, but rather a

group of system attributes not attributed to a specific component. Such attributes include factors

such as time constrained operations and error recovery.

3.4 Applicability of Quality Factors by Software Function

TABLE 3.1 provides representative mission functions that are performed by the components to

give some insight into the operational requirements of the system that influence the quality

allocation.

TABLE 3.1 Tactical Intelligence System Functions

Message Processing Maintain communication status
Message accountability
Message receipt
Message distribution
Message gencration
Message validation
Protocol processing

Data Fusion/Correlation Sensor data analysis

Situation Assessment Assessment aids
Indications and warnings

User-Systc m Interface Text entry
Text display
Template displays
Variable function keys
Graphic processing and display

3-6

TABLE 3.1 Tactical Intelligence System Functions (Cont)

System Monitor and Control System security
Network management
System administration
System recovery and restart
System initialization

System Software Data base management
Operating system services

Collection Management Requirements collection
Sensor tasking
Report generation

General Considerations Crisis/time constrained operations
Error recovery
Higher order language use

3.4.1 Message Processing

Message processing performs a series of functions that involve external and internal software

interfaces. It includes providing the device drivers required by a communication interface

controller as well as initiating the various protocol processing routines. This implies a need for

interoperability and expandability. In addition, since communication protocols are somewhat

standardized, the message processing software has a greater chance of being applied to other

applications and a portable and reusable design is beneficial. During message processing,

validation is performed for incoming and outgoing message traffic. It is the first and last security

check for data that is sent to or received from external users or systems; therefore integrity is

important. Since the message processing is a transparent function, usability is not applicable.

Parsing of incoming messages and assembly of outgoing messages are functions that could cause

data bottlenecks which requires an efficient software design.

3.4.2 Data Fusion/Correlation

The data fusion/correlation software is the heart of the automatic processing in a tactical intelligence

system. It provides the ability to quickly assess and correlate incoming intelligence data generated

by SIGINT, ELINT, COMINT, etc. sensor systems. Many of the routines are mathematically

based and support various statistical computations. Their outputs are used to make operational

assessment and confidence estimates so reliability and verifiability are important. Because many

3-7

of the routines can be processing intensive, efficiency is also a concern. Data fusion algorithms are
common to other intelligence applications and increases the need for portability, reusability, and
interoperability in the software design.

3.4.3 Situation Assessment

The situation assessment software is a set of tools (assessment aids) used to analyze and respond
to indications and warnings. It helps screen and filter intelligence data based on specific
parameters defined by a user. These parameters trigger alerts (indications and warnings) which are
flashed on a user's terminal. Filtering is a means of highlighting critical intelligence information
used in making operational assessments and recommendations. Reliability, survivability,
usability, correctness, and verifiability are important design concerns.

3.4.4 User-System Interface

The User-System Interface provides the man-machine interface for control of the text and graphic
displays and provides the functions needed to manipulate, analyze, and send intelligence data. It
must be highly usable to promote rapid and effective user responses Some level of security is
enforced by the workstation software which implies a need for integrity. Expandability and
flexibility are desired because of the different types of intelligent graphic and text display devices
used by the system. In addition, changing display technology as well as evolving terminal display
standards demand a flexible and expandable software design.

3.4.5 System Monitor and Control

The system monitor and control software provides the system security, software management
utilities that maintains error and security logs, monitors and displays equipment status and CPU
usage, manages process queues and performs system start, shutdown, and resource allocation. A
primary attribute of this software is that it extends the security features of the system software to
meet the system security requirements. This implies a need for integrity as well as correctness,
maintainability, verifiability, and reliability. Security features often adversely impact the efficiency
of a system so efficiency is a design concern. Many of the functions performed under system
monitor and control involve some limited interface with a security or system administrator,
therefore usability is a minor design concern. Similar to the system software, system monitor and

control functions are essential to the basic operation of the system. It must operate at all times and

support a degraded mode of operation so survivability is important.

3-8

3.4.6 System Software

The system software generally consists of non-developmental items such as the database manager

and the operating system. They significantly influence the extent to which the quality factors will
apply to the developmental software. Choosing an operating system that has been certified to the
appropriate security level would likely decrease the need for integrity in the application software,

an ideal situation from a quality viewpoint because the software would not only rate high in
integrity, but also in correctness, reliability, verifiability, and maintainability. However, the
number of off-the-shelf operating systems that are rated compliant for multilevel secure
applications are very limited. The non-developmental software would perhaps contribute little to
the software integrity in most tactical intelligence systems because efficiency, reliability,
survivability are also impacted. Tactical intelligence systems store and process large amounts of
data under near real time constraints using distributed architectures and they rely heavily on the
operating system and the database manager to provide responsive, accurate and reliable support. If
prioritized according to the mission requirements, tactical intelligence systems should emphasize
reliability, integrity, efficiency, flexibility, and survivability for off-the-shelf or non-developmental

software.

3.4.7 Collection Management

Collection management involves both data base and user-interface functions and provides critical
mission support. Its software has attributes similar to those found in the user-system interface and
system software, therefore there is a need for usability, reliability, survivability and correctness.

The Collection Management function monitors the status of data required by the system. It defines

data requirements and will task the appropriate sensor(s) to acquire the required data. It will
provide reports of the status of specific data collection through, and may contain algorithms to
analyze alternate data sources to compensate/correlate for degraded sensor(s), erroneous sensor

data, or conflicting sensor data, the latter typically being the result of fusion algorithms that may
not adequately compensate for asynchronous sensor readings, or ambiguous sensor data.

3.4.8 General Considerations

General considerations are those system attributes that are not specific to any component. For
example, the use of a high order language such as Ada might imply portability and reusability.

3-9

Time crisis/time constrained operations is obviously not confined to particular component but is
considered a system attribute.

3.5 Mission-Oriented Rules and Queries

The following sections present sets of rules and associated questions that are focused on the
intelligence mission area. A subset of the notional architecture and its functions were choosen
based on the expert's knowledge of the subject or the feasibility of evaluating a functions quality
attributes. In some cases, only the top level function could be evaluated (e.g. Message
Processing), whilt others like System Monitor and Control, could be assessed at a lower
functional level (e.g. System Security). The specific functions that were addressed are:

* System Security
* Message Processing

• User-System Interface
* Indications & Warning
* Collection Management
* Error Recovery

" Crisis/Time Constrained Operations
* General Considerations.

For each of the selected functions, a set of rules is pisen~cd that ,ddLiubs nly features within an
intelligence system, but should not be considered exhaustive. The intent has been to provide a
balanced mixture of depth and breadth within the rule set so that it is a viable building block for
future expansion.

Each rule is presented in the following general format. The rule, itself, is expressed, followed by
any associated questions that would be used during an ASQS consultation session. A short
rationale explaining the rule is offered for validation of the conclusion(s) drawn.

The rules fall into two general classes. The first class of rules, Class I, are those that directly relate
a functional or software characteristic(s) to one or more of the 13 software quality factors. The
second class of rules, Class II, are those that relate one set of functional or software characteristics
to another set. These two classes of rules provide a reasoning chain from software functions to
quality factors.

3-10

Each rule contains parameters whose value must be known before the rule will execute. If ASQS

is unable to determine parameter values from its known facts, it queries the user for the missing

data. In general, the Class I rules do not have queries associated with their parameters. The Class
I parameters are determined by the applicable Class II rules.

An estimate of confidence values was made for the rule conclusions when implemented in ASQS.

These values range from 0 to 1, with .3 and below defined in this analysis as weakly indicated,
greater than .3 and up to .5 defined as moderately indicated, and greater that .5 defined as strongly
i ASQS through its reasoning chain aggregates the confidence values and determines the

factor rating.

3.6 System Security

The following rules apply to issues related to multi-level security. The first set of rules relate the

security function to the quality factors. The questions associated with these rules are very general,
and will normally not be the basis for quality factor evaluation in the security area because of their
generality. Instead, the second set of rules, which relate features of systems to security, will be the

basis for concluding that one or more of the Class I security rules apply.

3.6.1 Class I Rules

Rule SE. 1: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the

implementation of) AND System-Security-Requirements-High, THEN it is strongly indicated that

Efficiency-Is-Needed.

Query: None.

Discussion: "Trusted" software for systems with a rating of A or B must execute continuous

control of data and resources within the system, including user access privileges and external

communications interfaces. For systems with a high security requirement, a considerable percent
of processing bandwidth is expended in performing the access control and audit processes, which
implies that the security software must be highly efficient so that computational resources are
available for performing mission-oriented applications. Substantial effort must be expended during
the design phase so that the security software possesses a high degree of efficiency.

3-11

Rule SE.2: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the

implementation of) AND the System-Security-Requirements-Low, THEN it is weakly indicated

that Efficiency-Is-Needed.

Query: None.
Discussion: "T-usted" software for systems with a rating of C must execute continuous control

of data and resources within the system, including user access privileges and exterial

communications interfaces. Considerable processor bandwidth is required to perform the access
control checking and auditing, which implies that the security software must be efficient enough so

that adequate processing capacity exists to perform mission functions.

Rule SE.3: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of) AND System-Security-Requirements-High, THEN it is strongly indicated that

Integrity-Is-Needed.

Query: None.

Discussion: The software function is considered to enforce a security policy if the function,
alone or in combination with other functions, implements the security mechanisms through which
the specific requirements of the security policy are achieved. A security policy is the set of laws,
rules, and practices that regulate how an organization manages, protects, and distributes sensitive
information. When a software function is responsible for enforcing a security policy, the software

implementing the function is "trusted". "Trusted" software is directly responsible for detecting and
repelling unauthorized attempts to access the system or its data. For systems with a high security

requirement (an "Orange Book" rating of B or above), significant effort must be expended to

detect and repel unauthorized access attempts.

Rule SE.4: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the

implementation of) AND System-Security-Requirements-Low OR No-System-Security-

Requirements, THEN it is weakly indicated Integrity-Is-Needed.

Query: None.

Discussion: For systems with a low security requirement (an "Orange Book" rating of C) or for

systems with no security requirement (an Orange Book rating of D), the security related software
must still detect and repel unauthorized access attempts. For this level of security requirement,
commercial "best practice" is usually acceptable, that is, the security features normally available

3-12

within commercial software is adequate to enforce security requuiements. No increased integrity
factor rating is necessary arising solely from the system security requirements.

Rule SE.5: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of) AND User-Interaction, THEN it is weakly indicated Usability-Is-Needed.

Query: None.
Discussion: "Trusted" interface software must be easy to use so that users are not frustrated or
denied service because of complex or lengthy data input or verification procedures.

Rule SE.6: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of) AND System-Security-Requirements-High THEN it is strongly indicated

Reliability-Is-Needed.

Query: None.
Discussion: "Trusted" software must accomplish the function(s) it was designed to perform so
that the security policy defined for the overall system is executed. Security-related software must
perform as designed if the rules governing access to data are to be enforced. For systems that
qualify for a rating of B or higher, significant trust is placed in the security enforcement
mechanisms' ability to perform its defined function(s).

Rule SE.7: IF a Function-Enforces-Security-Policy(i.e., implements, or supports the
implementation of) AND the System-Security-Requirements-Low THEN it is weakly indicated

Reliability-Is-Needed.

Query: None.
Discussion: "Trusted" software must accomplish the function(s) it was designed to perform so
that the security policy defined for the overall system is executed. Security-related software must
perform as designed if the rules governing access to data are to be enforced. For systems that
qualify for a rating of C or lower, trust is placed in the security enforcement mechanisms' ability

to perform its defined function(s).

Rule SE.8: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of) AND the System-Security-Requirements-High, THEN it is strongly indicated
that Survivability-Is-Needed.

3-13

Query: None.
Discussion: "Trusted" software must accomplish the function(s) it was designed to perform so
that the security policy defined for the overall system is executed. Security-related software must

perform its access control and audit functions under all operating conditions, including periods
when the system is missing resources due to failure or removal. For systems where a high level of

mandatory protection (i.e., Orange Book Division B or A), special care must be taken to ensure
that the security-related functions of a system operate in a continuous manner.

Rule SE.9: IF a Function-Enforces-Security-Policy (i.e implements, or supports the
implementation of) AND System-Security-Requirements-High, THEN it is strongly indicated
Verifiability-Is-Needed.

Query. None.
Discussion: It must be possible to verify the correct performance of the security-related

fuaction. The degree to which security verification must be accomplished depends upon the
specific security criteria applied to the system, e.g. a formal rating level such as defined in the

"Orange Book." Security-related software for systems with a division rating of A or B must be
subjected to rigorous testing so that high confidence may be placed in its operation and
performance. Systems that qualify for a rating of B and higher must be verified so that all flaws
are "removed or neutralized". This level of verification exceeds that normally required for
command and control software.

Rule SE.10: IF Function-Enforces-Security-Policy (i.e implements, or supports the

implementation of) AND System-Security-Requirements-Low OR No-System-Security-
Requirements, THEN it is weakly indicated Verifiability-Is-Needed.

Query: None.
Discussion: It must be possible to verify the correct performance of the security-related

function. The degree to which security verification must be accomplished depends upon the
specific security criteria applied to the system, e.g. a formal rating level such as defined in the

"Orange Book." Security-related software for systems with a division rating of C or D, must be
subjected to rigorous testing so that high confidence may be placed in its operation and

performance. Systems that qualify for a rating of C or D are essentially subject to the same level of
verification as that normally required for command and control software. Security requirements

alone do not indicate an increased need for verifiability.

3-14

Rule SE.11: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the

implementation of) AND System-Security-Requirements-High THEN it is strongly indicated that

Correctness-Is-Needed.

Query: None.

Discussion: Security-related, or "trusted", software must conform precisely to its specifications

and standards as defined in the system security policy. The basis for trusting the software-

implemented security mechanisms in their operational setting is derived from the extent to which

the software implementation conforms to the specifications from which it is built. For systems

with a high security requirement, a significant dependency is placed upon the correct operation of

the security software (and hardware).

Rule SE. 12: IF a Function-Enforces-Security-Policy (i.e implements, or supports the

implementation of) AND System-Security-Requirements-Low, THEN it is weakly indicated

Correctness-Is-Needed.

Query: None.
Discussion: Security-related, or "trusted", software must conform to its specifications and

standards as defined in the system security policy. The basis for trusting the software-

implemented security mechanisms in their operational setting is derived from the extent to which

the software implementation conforms to the specifications from which it is built. For systems

with a rating of C, the correct operation of the security software (and hardware) is essential to

meeting system mission objectives.

Rule SE. 13: IF a Function-Enforces-Security-Policy (i.e implements, or supports the

implementation of) AND System-Security-Requirements-High THEN it is weakly indicated

Maintainability-Is-Needed.

Query: None.
Discussion: Security-related software is normally tested to such a degree that few latent errors

remain in the operationally released version. The degree to which this is true depends upon the

security rating determined for the overall system--the higher the rating the fewer latent errors are
acceptable. System security requirements are high if the system qualifies for an Orange Book

rating above level C. Because of the rigor of testing and repair before operational acceptance, the

need for latent error identification and correction is small.

3-15

Rule SE. 14: IF a Function-Enforces-Security-Policy (i.e implements, or supports the
implementation of) AND System-Security-Requirements-Low OR No-System-Security-
Requirements, THEN it is strongly indicated that Maintainability-Is-Needed.

Query: None.
Discussion: Security-related software is normally tested to such a degree that few latent errors
remain in the operationally released version. The degree to which this is true depends upon the
security rating determined for the overall system--the higher the rating the fewer latent errors are
acceptable. Systems with a low security requirement (for example, levels C and D in the "Orange
Book") may possess latent defects and must be repairable rapidly and easily so that operational

systems may be corrected in a rapid manner.

Rule SE.15: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of) AND System-Security-Requirements-High, THEN it is weakly indicated
Expandabiity-Is-Needed.

Query: None.
Discussion: Changes to security-related software are usually only made if the security policy is
changed. At present, the process of security certification and accreditation is so time and resource
intensive that changes to an approved system security policy are infrequently made. Frequently,
policy changes of any significance require major modifications of hardware and/or software,
reflecting the close coupling between all the enforcement mechanisms that implement the security
functions. The higher the security rating of the system, the more intensive the coupling, with the
net effect that expandability becomes less practical within the existing state-of-the-art.

Rule SE. 16: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of) AND System-Security-Requirements-Low OR No-System-Security-
Requirements, THEN it is weakly indicated Expandability-Is-Needed.

Query: None.
Discussion: Changes to security-related software are usually only made if the security policy is
changed. At present, the process of security certification and accreditation is so time and resource
intensive that changes to an approved system security policy are infrequently made. For systems
with a security rating of C or below, changes are more technically and economically feasible

because the degree of reverification involved is lower than for more formally verified systems

(those with a rating of B and higher).

3-16

Rule SE.17: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of), THEN it is weakly indicated Flexibility-Is-Needed.

Query: None.
Discussion: Software which implements security mechanisms is usually intended to perform
only those unique functions (e.g., user login). Because of the need to "trust" these software
mechanisms, they are highly specialized and normally would not be applied to accomplish non-
security functions.

Rule SE.18: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of), THEN it is weakly indicated Interoperability-Is-Needed.

Query: None.
Discussion: Software which implements security mechanisms must be able to interact with other
software components. For example, the secure file control mechanism must be able to respond to
application program/user requests for data, as well as requests for data from other systems.

Rule SE.19: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of), THEN it is weakly indicated Portability-Is-Needed.

Query: None.
Discussion: Software which implements security mechanisms is usually tightly bound with its
operational hardware environment (see Rule SE.12 discussion). With the present state-of-the-art,
only a limited degree of portability can be achieved, especially with "primitive" security functions
(e.g. file access control) that are normally implemented within the operating system. Security
functions that can be "layered" on more basic functions will admit a higher degree of transferability
to other platforms.

Rule SE.20: IF a Function-Enforces-Security-Policy (i.e., implements, or supports the
implementation of), THEN it is strongly indicated Reusability-Is-Needed.

Query: None.
Discussion: Security-related software is independent of the specific intelligence application in
the sense that common security requirements apply to many different intelligence mission systems.
The requirements for verifiability and integrity result in the availability of extensive design and

3-17

performance data on security software elements, with the consequence that the software can be

applied in many different specific applications where the policy enforced by the software/hardware
combination remains constant.

3.6.2 Class II Rules

The following rules/questions provide a basis for determining whether the security Class I rules

apply to a particular software function. These would be used during an ASQS consultation session

and can be applied/asked in any order, except that the rules for determining the general system
security level should be evaluated first.

3.6.2.1 Determining the Level of System Security Requirements

The rules given below may be used to determine the level of security required by the system. The

rules/questions result in an assessment that High, Moderate, Low, or Not Applicable security
requirements are indicated. A score of High implies that the probable security requirements equate
to an "Orange Book" division rating of A (Verified Protection) or B (Mandatory Protection). A
score of Low implies that the probable security requirements equate to a division rating of C
(Discretionary Protection). A score of Not Applicable implies that there are no special

requirements and equates to a division rating of D (Minimal Protection). The latter rating division
is reserved for those systems that have been evaluated but do not meet the security evaluation
criteria for a higher evaluation class.

Given that security issues apply at all, a binary (High/Low) security assessment is used here
because such a division allows for some granularity in requirements without immersing the user in
the full details of a security requirements analysis. Further, the Orange Book evaluation criteria

require a significant difference in systems between each rating division (A-D). The largest "delta"
in requirements occurs between divisions B and C, thus the use of two general ratings (High/Low)

using the division distribution stated is consistent with the Orange Book formal criteria.

With these observations in mind, the rules presented here may be used to "painlessly" determine

the general security aspects of the users system of interest. The rating assessment is based on the

computer security requirements evaluation methodology developed by Mr. H. 0. Lubbes, Senior

Manager, Security Policy, Code 32-123, Space and Naval Warfare Systems Command
(SPAWAR). The method, which is intended for use by acquisition managers, requires that certain

risk factors be quantified and evaluated. A matrix that relates risk evaluation outcomes to Orange

3-18

Book division/class ratings is used to determine the system security level (A-C). The risk factors

considered are: local processing capability, communications path, user capability, and data
exposure (difference between clearance of lowest-cleared user and classification of the most-

sensitive data).

The matrix recommends a B 1 or higher level under the following conditions:

-Data exposure=l and System risk>6

-Data exposure =2 and System risk >3

-Data exposure >2.

Data exposure is calculated as the difference between the level of the least-cleared user of the

system and the maximum level of data processed by the system. Levels range from 0

(uncleared/unclassified) to 7(top secret-special background investigation with more than one
compartment/top secret with two or more categories). Thus, the data exposure index ranges from

0 to 7. The system risk index ranges from 3 (representing a user capability for output-only on a
store and forward network using a receive-only or fixed function terminal) to 9 (representing a user
with full programming capability on a direct connect or interactive network using a programmable

device/terminal). Here, the general assumption is that the system of interest requires that users
(people) access sensitive data via some functional equivalent of a terminal.

Define data exposure as high if the data exposure index exceeds 1, that is, if there are users on the

system with clearances at least 2 levels lower than the classification of the most sensitive data

processed. Thus, the presence of secret-cleared users on a system that processes top secret data,

would constitute a high level of data exposure risk.

Define data exposure as xvyhigh if the data exposure index exceeds 2, that is, if there are users on

the system with clearances at least 3 levels lower than the classification of the most sensitive data

processed. Thus, the presence of uncleared users on a system that processes secret data, would

constitute a very high level of data exposure risk.

Define data exposure as lo if the data exposure index is less than 2, that is, if the maximum

classification of data processed on the system is no more than one level higher than the lowest
clearance level of any user of the system. Thus, if a system processes top secret compartmented

data and all users have a clearance of top secret with special background investigation and
authorization for at least one compartment, the data exposure risk is rated as low.

3-19

Define system risk as high or Integrity-Is-Moderately-Indicated if the system risk index is greater

than 3, that is, if there are users who:

-Have output-only access from any type of terminal using any type of duplex

connection (such as, a store and forward network, via direct connection, or on an

interactive network);

-Have transaction processing access from any type of terminal using any type of

(duplex) connection;

-Have any type of access via a programmable device (e.g., workstation) using any

type of connection.

Define system risk as v=high or Integrity-Is-Strongly-Indicated if the system risk index is

greater than 6, that is, if there are users who:

-Have output-only access from a programmable device via direct connection or an

interactive network;

-Have transaction processing access from a fixed function interactive terminal via

direct connection or an interactive network;

-Have transaction processing access from a programmable device using any type of

(duplex) connection;

-Have full programming access from an interactive terminal or a programmable

device.

Define system risk as lIw or Integrity-Is-Weakly-Indicated if the conditions described above are

not met for users on the system of interest.

The following rules codify the definitions presented above. We assume that the system security

requirements are initially not applicable, unless modified as a result of applying one or more of

these rules.

Rule SS. 1.1 IF Data-Exposure-Low AND System-Risk-Low THEN System-Security-

Requirements-Low.

Query: None.

Discussion: This is case one from the Lubbes matrix (data exposure=l and system risk<7).

Rule SS. 1.2 IF Data-Exposure-Low AND System-Risk-High THEN System-Security-

Requirements-Medium.

3-20

Query: None.
Discussion: This is case one from the Lubbes matrix (data exposure=l and system risk>6).

Rule SS.2.1 IF Data-Exposure-Medium AND System-Risk-Low, THEN System-Security-
Requirements-Medium.

Query: None.
Discussion: This is case two from the Lubbes matrix (data exposure=2 and system risk>3).

Rule SS.2.2 F Data-Exposure-Medium AND System-Risk-High, THEN System-Security-
Requirements-High.

Query: None.
Discussion: This is case two from the Lubbes matrix (data exposure=2 and system risk>3).
Rule SS.3.1 IF Data-Exposure-High, THEN System-Security-Requirements-High.

Query: None.
Discussion: This is case three from the Lubbes matrix (data exposure>2).

3.6.2.2 Data Exposure (DE)/System Risk (SR)

The next set of questions may be used to determine the low/high/very high settings for the data

exposure level and the system risk level, again based upon the definitions above. The first series
(DE.1-DE.3) establishes the data exposure level. The second series (SR.1-SR.7) determines the

system risk level.

Rule DE. 1: IF Sensitive-Data OR Classified-Data THEN Data-Exposure-Low.

Query: Will any sensitive or classified data be processed on the system?
Discussion: If yes, data exposure level is set as low. If no, security issues are not relevant, and
no further questions are necessary. Set system security requirements as not applicable.

Rule DE.2: F Data-Exposure-Low AND Lower-User-Clearance THEN Data-Exposure-Level-

Medium.

3-21

Query SE.2. 1: Will any user have a clearance that is lsthan the classification of data
processed on the system (e.g. secret-cleared users on a system with top secret data)?
Discussion: If yes, set data exposure level as high. If no, data exposure remains at low.

Rule DE.3: IF Data-Exposure-Low AND Significantly-Lower-User-Clearance THEN Data-

Exposure-High.

Query: Will any user have a clearance that is significantly less than the classification of data
processed on the system (e.g. uncleared users on a system with secret data)?
Discussion: If yes, set data exposure level as very high. If no, data exposure remains as high.

Rule SR. 1: F Output-Only-Access AND Two-Way-Communication THEN System-Risk-

High.

Query: Will users have output-only access from terminals connected to the system via any
type of duplex (two-way) communications (such as, direct access, access via a LAN or a DDN
circuit)?
Discussion: If yes, set system risk level as high. If no, system risk remains at low.

Rule SR.2: IF Transaction-Processing-Access AND Two-Way-Communication THEN
System-Risk-High.

Query: Will users have transaction processing access from any type of terminal using any

type of duplex (two-way) communications?
Discussion: If yes, set system risk level as high. If no, system risk remains as set.

Rule SR.3: IF User-Programmable-Device THEN System-Risk-High.

Query: Will users have any type of access from a programmable device using any type of

communications?
Discussion: If no, system risk remains as set and no more questions are necessary.

Rule SR.4: IF Output-Only-Access AND User-Programmable-Device AND Direct-Connect OR
Interactive-Network THEN System-Risk-High.

3-22

Query: Will users have output-only access from a programmable device using a direct

connection or an interactive network (such as and LAN or a DDN circuit)?
Discussion: If yes, set system risk level as very high, and no more questions are necessary.

Rule SR.5: IF Transaction-Processing-Access AND User-Fixed-Function-Device AND Direct-
Connect OR Interactive-Network THEN System-Risk-Very-High.

Query: Will users have transaction processing access from a fixed function interactive
terminal using a direct connection or an interactive network (such as and LAN or a DDN circuit)?
Discussion: If yes, set system risk level as very high, and no more questions are necessary.

Rule SR.6: IF Transaction-Processing-Access AND User-Programmable-Device AND Two-
Way-Communication THEN System-Risk-Very-High.

Query: Wil! users have transaction processing access from a programmable device using
any type of duplex (two-way) connection?
Discussion: If yes, set system risk level as very high, and no more questions are necessary.

Rule SR.7: IF Full-Programming-Access AND Interactive-Terminal OR User-Figranumable-

Device THEN System-Risk-Very-High.

Query: Will users have full programming access from an interactive terminal or a

programmable device?
Discussion: If yes, set system risk level as very high, and no more questions are necessary. If
no, system risk remains as set, and no more questions are necessary.

3.6.2.3 Determining the Impact of Security Requirements on Quality

The following rules/questions use the software features/functions to determine whether any

security-related processing occurs within the system of interest. These rules, in combination with
the security requirements evaluation are translated into quality factor assessments using the Class I

rules given above.

Rule SE. 1.2 IF the function Controls-Access-To-Data OR Control-Access-To-Users, THEN
Function-Enforces-Security-Policy (FESP).

3-23

Query: Does the function determine or control access between users and data or other
users?
Discussion: Access mediation is a major function of the trusted computer base, and has a key
role in implementing the security policy.

Rule SE.2.2 IF the function Creates-Data-Files OR Deletes-Data-Files, THEN Function-
Enforces-Security-Policy

Query: Does the function create or delete data files?
Discussion: The security policy governs the creation/destruction of objects, in particular, data
files. The software that does this must implement the governing policy.

Rule SE 3.2 IF Changes-User-Security-Characteristics, THEN Function-Enforces-Security-

Policy.

Query: Does the function change or alter users security access characteristics, i.e.,
password, clearance, privileges?
Discussion: The security policy governs this process.

Rule SE.4.2 IF the function Changes-User-Security-Labels OR Changes-Data-Security-Labels,
THEN Function-Enforces-Security-Policy.

Query: Does the function change security labels for users or for data?
Discussion: The security policy governs this process.

Rule SE.5.2: IF the function Controls-Data-Exchange-Between-System-Components, THEN
Function-Enforces-Security-Policy.

Query: Does the function control data exchange between system components?
Discussion: The security policy governs this process.

Rule SE.6.2: IF the function Labels-Human-Readable-Output, THEN Function-Enforces-

Security-Policy.

Query: Does the function perform or control the labelling of human-readable output (e.g.,
messages, displays, graphics, reports)?

3-24

Discussion: The security policy governs this process.

Rule SE.7.2: IF the function Controls-Security-Level-Terminal-User, THEN Function-Enforces-

Security-Policy.

Query: Does the function change or control a users security level during a terminal session?

Discussion: The security policy governs this process.

Rule SE.8.2: IF the function Records-Access-Trail between users and data (or other users or

interfaces), THEN Function-Enforces-Security-Policy.

Query: Does the function record an audit trail of accesses between users and data (or other

users or interfaces)?

Discussion: The security policy governs this process.

Rule SE.9.2: IF the function Performs-Recovery OR Performs-Restart following a failure OR

other discontinuity, THEN Function-Enforces-Security-Policy.

Query: Does the function perform recovery and/or restart following a failure or other

discontinuity?
Discussion: The security policy governs this process.

Rule SE.10.2: IF the function performs System-Security-Admin-Services, THEN

Function-Enforces-Security-Policy.

Query: Does the function perform security-related administrative services?
Discussion: The security policy governs this process.

Rule SE. 11.2: IF the function performs a User-Logon-Service, THEN Function-Enforces-

Security-Policy.

Query: Does the function perform a user log-on service?

Discussion: The security policy governs this process.

Rule SE 12.2: IF the function Mitigaies-Denial-Of-Service, THEN Function-Enforces-Security-

Policy.

3-25

Query: Does the function mitigate denial of service?

Discussion: The security policy governs this process.

3.7 Message Processing

These rules are primarily focused on functions performed by an intelligence system to receive,

profile, store, and disseminate record message (e.g., AUTODIN/DSSCS) traffic.

3.7.1 Class I Rules

Rule MP. 1: IF Automatic-Mode, THEN it is weakly indicated Integrity-Is-Needed, Reliability-

Is-Needed, Correctness-Is-Needed,Verifiability-Is-Needed.

Query: None.

Discussion: Within an intelligence system, any function performed substantially by the software

must perform as expected on each instance the function occurs (reliability). The processing

performed must be correct, as determined through rigorous verification. If data security is

involved, the quality of high integrity is essential.

Rule MP.2: IF Automatic-Mode, THEN it is weakly indicated Efficiency-Is-Needed, Usability-

Is-Needed, Maintainability-Is-Needed, Expandability-Is-Needed.

Query: None.

Discussion: Automatic processes will generally be provided the resources necessary to

accomplish their activities consonant with mission objectives (i.e., parsing and distributing a

message within N seconds of receipt for each AUTODIN/DDN priority level). Such processes

must be highly useable to the extent that operator/user participation is involved (e.g., correcting an

invalid routing address, or determining the distribution for an unusual message). Because

automatic processes encapsulate, generally one policy or approach, the software must be amenable

to reasonable change as policies or requirements change.

3.7.2 Class II Rules

Rule MP. 1.1: IF the function Receives-And-Store-Incoming-Data AND Processing-Unavailable,

THEN Automatic-Process.

3-26

Query: Does the function receive and store incoming data during periods when the daa
cannot be processed upon receipt?
Discussion: Such a process is performing an automatic function of receiving and storing data

pending processing by the unavailable processing unit (e.g., the message router is unavailable and
incoming message traffic must be collected for later distribution).

Rule MP.2.1 IF the function Performs-Text-Processing OR Performs-Message-Text-Parsing OR
Performs-Message-Profiling OR Performs-Message-Analysis THEN .- omatic-process.

Query: Does the function perform message text parsing, profiling, analysis, and/or

routing?
Discussion: These functions are normally perfonned in an automatic mode by a message

processing system.

Rule MP.3. 1: IF the function performs Error-Detection-And-Correction, THEN Text-Analysis.

Query: Does the message handling function perform error detection and correction?
Discussion: Message handling systems generally perform some level of error detection and

correction in an automatic mode, e.g., the use of EDC codes to prevent a garbled transmission.

Rule MP.4. 1: IF the function Log-Messages OR Archive-Messages, THEN Function-Enforces-

Security-Policy AND Automatic-Mode.

Query: Does the function log or archive a copy of all messages processed by the system?
Discussion: The logging function is normally an automatic process. Further, the message log
file contains messages of differing classification. The security policy establishes the rules

governing the message log. The logging software is a FESP component because it maintains the
message log, and must be "trusted" to do it in accordance with the security policy.

Rule MP.5. 1: IF the function performs Approved-Message-Release, THEN Function-Enforces-

Security-Policy and Automatic-Process.

Query: Does the function perform message release for approved messages?

3-27

Discussion: Once the releasing official has approved the message for transmission, the

transmission process is normally automatic. Generally, the security policy governs message

release processing.

3.8 User-System Interface (US)

These rules are more general in nature, and focus on the interface between the software system and

its human users. The rules center upon the concept that the human/machine interface, if any, is

generally a critical function. The criticality of the interface to successful mission accomplishment is

usually recognized in the term "user-friendly", as related to the system-user interface. For

intelligence systems, the system-user interface is the communications pathway through which data

processed by the software and hardware passes to the intelligence analyst (user). Because the

analysts' assessments and actions are based, at least in part, on system processed data (e.g.,

messages profiled/distributed, historical database holdings, initial automated assessments) the

form/fit/function of the system-user interface is an important element of the system. It is critical to

mission accomplishment in the sense reflected here.

3.8.1 Class I Rules

Rule US. 1: IF the function is a Critical-Function, THEN it is weakly indicated Reliability-Is-

Needed, Survivability-Is-Needed, Usability-Is-Needed, Correctness-Is-Needed.

Rule US.2: IF Complex-And-Significant-Data AND Basis-For-Actions-And-Assessments

THEN it is weakly indicated Usability-Is-Needed

Query: None.

Discussion: A critical system function is one that is essential to achievement of system mission

objectives. Such a function must always be performed (reliability), even in a degraded mode of

operation (survivability). Critical functions normally involve some level of operator/user

involvement, so that usability is a significant issue. Because of the essential nature of the function,

it must be possible to verify that the function is performed in a correct manner (correctness). The

need for correctness implies a need for verifiability, but the function and its implementation in

software are more important than the ease by which the implementation can be verified. That is,

verifiability (or ease thereof) should not rate higher than the essential correctness of the

implementation, even at the expense of requiring more work to perform the verification.

3-28

3.8.2 Class II Rules

Rule US. 1.1: IF the function supports users who are "watch-standing", THEN Extensive-

Human-Interaction.

Query: Does the function support users who are "watch-standing"?

Discussion: The watch officer support activities within an intelligence system place significant

demands on the system-user interface. In particular, the officer acts based upon data presented to

him via the system-user interface.

Rule US.2.1: IF Extensive-Human-Interaction AND Intelligence-Mission THEN the function is a

Critical-Function AND a Basis-For-Actions-And-Assessments

Query: Does the function require extensive interaction with human users, such as analysts, watch

officers, intelligence sensor specialists?

Discussion: Extensive user-system interaction in an intelligence-oriented mission implies that the

system-user interface is a used as a basis for actions and assessments and performs a critical

mission role.

Rule US.3.1: IF Alphanumeric-Workstation AND Graphic-Display, THEN Complex-And-

Significant-Data.

Query: Does the workstation support both alphanumeric and graphic displays?

Discussion: The use of multi-media displays indicates that the system provides complex, and

significant, data to its human users. For intelligence systems, the data is the basis for actions and

assessments, therefore the user-system interface performs a critical function.

Rule US.4.1: IF the function must be self-explanatory, THEN Extensive-Human-Interaction.

Query: Does the function include an extensive "help" facility to aid users in the

performance of their assigned tasks?
Discussion: A self-explanatory requirement implies that the user interface is extensive.

Rule US.5. I: IF Different-Classes-Of-Users, THEN the Extensive-User-Interface.

3-29

Query: Does the function support different groups of users, e.g., system administrator,

intelligence analyst, who perform differing mission roles?

Discussion: For intelligence systems, the requirement to support different groups of users
implies that the system-user interface must have customized elements, and therefore that the

interface is extensive.

3.9 Indications and Warning (I&W)/Intelligence Analysis

Within an intelligence system (excluding dedicated sensor signal processing systems) there are two

major functions: the quick analysis of near-real time data for I&W; and the longer-term continuing

assessment of data (for trends identification and military technology capabilities determination).

The rules that follow address this functional area by providing linkage from specific I&W/analysis

activities to assessments concerning the quality factors.

3.9.1 Class I Rules

Rule IW. 1: IF the function performs or contributes to the generation of Near-Real-Time-

Intelligence-Assessment (I&W/intelligence assessment), THEN it is strongly indicated Reliability-

Is-Needed and Survivability-Is-Needed, Usability-Is-Needed, Correctness-Is-Needed,

Expandability-Is-Needed, Interoperability-Is-Needed. It is moderately indicated Efficiency-Is-

Needed, Maintainability-Is-Needed, and Flexibility-Is-Needed.

Query: None.

Discussion: Because the data are the basis for actions and assessments, the processes that

manipulate the data must perform correctly and accurately. Speed and reliability are major

considerations, so that usability is significant. Because intelligence systems must accomodate new

or upgraded sensor sources, expandability is significant. Interoperability is a factor because most

intelligence analysis systems must share their "processed" intelligence with a variety of users.

Efficiency is an important consideration, but not at the expense of reliability and survivability.

Similarly, maintainability and flexibility must be considered, but generally do not override the

performance quality factors.

3.9.2 Class II Rules

Rule IW. 1.1: IF the function prepares Sensor-Data-Time-History-Display, THEN I&W-

Intelligence-A ssessmen t.

3-30

Query: Does the function prepare time/history displays of sensor-derived data?

Discussion: This is an I&W/intelligence assessment-related process.

Rule IW.2. 1: IF the function provides Trend-Analysis-Tools, THEN I&W-Intelligence-

Assessment.

Query: Does the function provide trend analysis tools (e.g. regression, correlation,

ANOVA, histograms)?

Discussion: This is an I&Wfintelligence assessment-related process.

Rule IW.3.1: IF the function retrieves data on Coverage OR Sensor-Characteristics OR

Exploitation-Requirements TEN I&W-Intelligence-Assessment.

Query: Does the function retrieve data on coverage, sensor characteristics, exploitation

requirements?

Discussion: This is an I&W/intelligence assessment-related process.

Rule IW.4. 1: IF the function provides analysts files on Intelligence Data AND Trend-Analysis,

THEN I&W-Intelligence-Assessment.

Query: Does the function provide analysts files on current/historical intelligence data for

purposes of trend analysis?

Discussion: This is an I&W/intelligence assessment-related process.

Rule IW.5.1: IF the function provides Computational-Aids, THEN I&W-Intelligence-

Assessment.

Query: Does the function provide analysts with computational aids (such as areas of

probability, coverage calculations, line of site, closest point of approach)?

Discussion: This is an I&W/intelligence assessment-related process.

Rule IW.6.1: IF the function Defines-Alert-Levels OR Defines-Alert-Conditions from intelligence

data, THEN I&W-Intelligence-Assessment AND Automatic-Process.

3-31

Query: Does the function define or identify alert levels or conditions from intelligence data
without analyst involvement?
Discussion: This is an I&W process. Performing the process without user involvement makes
the process subject to the automatic processing rules discussed above.

Rule IW.7. 1: IF the function produces Externally-Transmitted-Data AND Alert-Conditions OR

Trend-Assessments, THEN I&W-Intelligence-Assessment AND Critical-Function.

Query: Does the function produce externally transmitted data based upon alert conditions or

trend assessments?
Discussion: This is an I&WAntelligence assessment-related process. Performing the process
without user involvement makes the process subject to the critical function rules discussed above.

Rule IW.8.1: IF the function performs the Correlates-Sensor-Data to tracked objects, THEN
I&W-Intelligence-Assessment AND Automatic-Process.

Query: Does the function perform the automatic correlation of sensor data to tracked

objects?
Discussion: This is an I&Wfinteligence assessment-related process. Performing the process
without user involvement makes the process subject to the automatic processing rules discussed
above.

Rule IW.9. 1: IF the function Defines-New-Tracked-Object, THEN I&W-Intelligence-Assessment

AND Automatic-Process.

Query: Does the function initiate the definition of a new tracked object without operator
intervention/participation?

Discussion: This is an I&WAntelligence assessment-related process. Performing the process
without user involvement makes the process subject to the automatic processing rules discussion.

3.10 Collection Management (CM)

As with the I&W/intelligence analysis functions, the collection management mission within
intelligence systems is very important. The quality factor impacts of collection management
requirements within an intelligence system are initially codified in the rules that follow.

3-32

3.10.1 Class I Rules

No explicit rules of this class are stated here, Instead, Rule CM. 1.1 states a relationship between a

collection management-related function and critical functions. These latter functions are related to
the quality factors using Class I rules presented above.

3.10.2 Class II Rules

Rule CM. 1.1: IF the function performs Collection-Management, THEN Critical-Function

Rule CM.1.2: IF the function performs Collection-Management, THEN Time-Constraint.

Query: None.
Discussion: Within an intelligence system, the collection management function is very important to
mission success. This impl;es *-he rules apply that consider critical intelligence functions. Further,
collection management often deals with quick response activities, implying the need to operate
within time constraints. Thus the rules that consider time constrained operations apply.

Rule CM.2. 1: IF the function performs the input, tabulation, retrieval, and/or display of sensor
availability and status, THEN Collection-Management

Query: Does the function perform the input, tabulation, retrieval, and/or display of sensor

availability and status data?
Discussion: This is a collection management-related function.

Rule CM.3. 1: IF the function provides Sensor-Location-Data Or Coverage-Data OR Footprint-
Data, THEN Collection-Management.

Query: Does the function provide sensor location, coverage, or "foot print" data?
Discussion: This is a collection management-related function.

Rule CM.4. 1: IF the function supports Aggregation-Of-Tasking-Requirements AND Resolution-

Of-Tasking-Requirements-Conflicts, THEN Collection-Management.

Query: Does the function support aggregation and deconfliction of tasking

requests/requirements?

3-33

Discussion: This is a collection management-related function.

Rule CM.5.1 IF the function performs the Processing-Collection-Requests AND Validation-
Collection-Requests AND Input-Collection-Requests THEN Collection-Management.

Query: Does the function perform the input, processing, and validation of user collection
requests?
Discussion: This is a collection management-related function.

Rule CM.6. 1: IF the function alerts the operator/user that a tasking needs to be reviewed, THEN
Collection-Management.

Query: Does the function alert the operator/user that a tasking needs to be reviewed?
Discussion: This is a collection management-related function.

3.11 General Considerations

This section will address the functional attributes of the intelligence system to determine queries
and/or rules that are relevant to developing quality goals but might not be unique to a mission area
or specific type of system. In some cases, rules are provided. Starting with section 3.11.3,
Authentication, only queries are listed from which rules may be derived. For each query, we have
estimated which quality factors are impacted. We have also attempted to place a magnitude on this
impact by using pluses. The scale runs up to plus-three (See Figure 3.2). This method permits an
impact weighting on a "best judgement" basis.

+ Slightly Increase

++ Moderately Increase

... Strongly Increase

FIG 3.1 Quality Factor Increase/Decrease Scale

3-34

3.11.1 Error Recovery

The proper restart/recovery of an automated intelligence system is another critical function.

Frequently, the system must achieve some level of processing security as part of recovery, before

activity can continue, therefore security issues play an important role in establishing quality

requirements. In addition, restart/recovery mechanisms are increasingly accomplished using

software algorithms, which places greater quality demands on those components that implement

them. The rules that follow codify some important considerations related to error recovery. It

should be noted, that these rules are somewhat general in nature, and could be applied to other than

intelligence-oriented systems.

3.11.1.1 Class I Rules

No explicit rules of this class are stated here. Instead, Rule ER. 1.1 states a relationship between

restart/recovery, security processing, and automatic processing. These latter functions are related

to the quality factors using Class I rules presented above.

3.11.1.2 Class I Ru'les

Rule ER. 1.1: IF the function performs Error-Detection AND Corrective-Action, THEN

Automatic-Processing and Function-Enforces-Security-Policy.

Query: None.

Discussion: The restart recovery mechanisms implemented in software must ensure that the

system restarts in a secure state as directed by the systems security policy. The fact that many

recovery activities are performed automatically upon detection of a fault implies that the factors

associated with automatic processing are significant.

Rule ER.2.1: IF the function performs Component-Status-Checking THEN Error-Detection.

Query: Does the function periodically check the status of components?

Discussion: Self-evident.

Rule ER.3.1: IF the function executes Diagnostic-Routines, THEN Periodic-Component-Status-

Checking.

3-35

Query: Does the function execute diagnostic routines?

Discussion: Self-evident.

Rule ER.4.1: IF Faulty-Condition-User-Alerts, THEN Component-Status-Checking.

Query Does the function alert the operator of a faulty condition, such as a communications line

failure?
Discussion: Self-evident.

Rule ER.5.1: IF the function Detect-Failures OR potential Overflow-Conditions, THEN
Component-Status-Checking.

Query: Does the function monitor system resources to detect failures or potential overflow

conditions?
Discussion: Self-evident.

Rule ER.6.1: IF the function implements a Timeout-Condition AND Failue-To-Receive-Data,
THEN Error-Detection AND Corrective-Action.

Query: Does the function implement a timeout condition(s) on failure to receive expected

data?
Discussion: Self-evident.

Rule ER.7.1: IF the function implements Error-Handling AND Faulty-Condition OR Invalid-Data
based upon a status indicator, THEN Error-Detection AND Corrective-Action.

Query: Does the function implement error handling for a faulty condition or for invalid data

based upon a status indicator?
Discussion: Self-evident.

Note: When this rule is invoked, an additional question should be asked to determine if automatic

error correction occurs.

3-36

3.11.2 Crisis/Time Constrained Operations (CT)

Many systems, those for intelligence being included, must perform their mission during different,

and perhaps hostile, conditions. The rules that follow provide an initial look into this complex

area, which should be examined in considerably more detail at some future time.

3.11.2.1 Class I Rules

Rule CT.1: IF the function must complete discrete operations within a Time-Constrained-

Operations THEN it is strongly indicated Efficiency-Is-Needed, Verifiability-Is-Needed and

Expandibility- Is-Needed.

Query: None.
Discussion: Functions that are time-constrained normally place a significant design burden on

the designer to ensure that the time budgets are met within the profiled processing workload.

Software efficiency is essential for that reason. Verifiability is very important because the
implementation must be subjected to test against the specified timing conditions. Time-constrained

operations can take on varying degress of importance depending on whether the system is

operating in a routine or crisis/wartime mode. For this analysis, a tactical intelligence system is

assumed to have timing requirements consistent with crisis/wartime operation that pose high risks
if not met. In addition, significant timing problems are often not evident until after the system is

delivered, therefore expandability is needed to meet current and future requirements.

3.11.2.2 Class II Rules

Rule CT.1.1: IF the function must support Crisis-Processing (e.g., elevated levels), THEN

Time-Constrained-Operations

Query: Does the function support routine, crisis, and/or wartime missions in terms of

information processing workload?

Discussion: Routine, crisis, and wartime requirements for intelligence systems are generally

stated in terms of data processed within some time constraint.

Rule CT.2. 1: IF the function must process incoming data at an increasing volume profile over
time, TH-EN Time-Constrained-Operations.

3-37

Qtery: Does the function have a requirement to process data of increasing volume over
time?
Discussion: Processing workload is normally associated with a time constraint, e.g., number of
messages to be processed or distributed per second. For this rule, "over time" refers to future
time, e.g., the requirement to handle an increase in message volume during the next year.

3.11.3 Authentication

AU. 1 Is there a requirement to determine what individual, process, or device is at the other end of
a communications network?

Response 1: YES
Discussion: Local Area Networks (LANs) and Wide Area Networks (WANs) are used in
intelligence systems. Both networks are vulnerable to several security threats that would influence
the software integrity requirements. An initial assessment should be made of what level of
protection is needed regardless of whether or not the information is classified, sensitive, or national
security related. This query attempts to determine whether network security is a potential

consideration based on a need for identification.
Action: Ask query AU 1.1

Impact: Integrity +

Response 2: NO
Discussion: If identification is not needed, a basic element of software-enforced network
security is missing so network software integrity requirements are minimal. In these cases,
security measures such as physical security, administrative security, communications security, etc
are likely used to provide network security. The network probably is housed within a single
facility or all systems communicating on the network are evaluated at the same level of security or
trust. Since integrity requirements are low but the mission is still intelligence, verifiability and
reliability should be increased to ensure the validity of the output.
Action: Ask query CF. 1.
Impact: Verifiability +

Reliability +

AU. 1.1 Do you have to identify and authenticate the location of the hardware or operating
system at the distant end-point or in any intermediate system involved in the network
communication?

3-38

Response 1: YES

Discussion: Combined identification and authentication requirements imply some access control

and therefore an increase in integrity. Identifying and authenticating the hardware location or
operating system requires functionality at the data link layer or the network layer of the Open

Systems Interconnection (OSI) model. Data is being exchanged between nodes and there is a need

to ensure correct routing, detection of data errors, and reliable data transfer. No interactive

capability is implied. Its likely this is a long haul packet switching network like DDN. A major

security concern is with masquerading, where an unauthorized node or an authorized node that is

untrusted or comprised acts like an authorized node to get access to data. Authentication is a

protective measure against this threat. As integrity is increased so is correctness, reliability, and

verifiability. These factors help determine a level of assurance in the software responsible for

enforcing the security policy (i.e., trusted software). Correctness because trusted software must

closely conform to specification; reliability because it must enforce the security policy without

failure; and verifiability because trusted software operation must be well verified. Connecting

systems with each other and the network requires increased interoperability.

Action: Ask query AU. 1.2

Impact: Integrity ++

Interoperability ++

Reliability +

Correctness +

Verifiability +

Response 2: NO

Discussion: There is a requirement for identification but no authentication. The source or

destination of the data is known but there is no mechanism to verify it. Some integrity is implied

but the assurances are not a priority. Interoperability is slightly increased to accommodate the data

exchange.

Action: Ask query CF. I

Impact: Integrity +
Interoperability +

AU 1.2 Do you have a requirement to identify and authenticate the application or user at the

distant end-point involved in the network communication?

3-39

Response 1: YES
Discussion: There is a functionality requirement for authentication at the application layer. At
this level of capability, full interactive processing is allowed as well as data exchange.

Masquerading is still a concern. Integrity is strongly increased because of the higher level of
system interaction and greater risk for unauthorized access. Full interactive capability increases
interoperability considerations. A more secure design places an emphasis on assurances therefore
correctness, verifiability, and reliability are increased along with the integrity.
Action: Ask query CF. 1 under Communication Field Integrity

Impact: Integrity ++
Interoperability ++

Correctness ++

Verifiability -H-

Reliability ++

Response 2: NO
Discussica: Users are only exchanging data over the network. The discussion under AU 1.1,
"No Answer", applies.

Action: Ask query CF. 1
Impact: None

3.11.4 Communications Field Integrity

CF. 1 Do you have a requirement to protect communication against unauthorized modification
such as message stream modification through insertion, deletion, or replay?

Response 1: YES
Discussion: Modification of data can be used to compromise communication between trusted

nodes, even when some level of authentication is used. Protection measures are likely to include
some type of encryption mechanism. Encryption places added quality and reliability requirements
on software. For example, protocol control information must be sent around the encryption unit
through a bypass. The software to implement the bypass must be trusted not to send user data
through the bypass, this implies increased integrity. Encryption, depending on the algorithm,
could adversely impact throughput therefore a greater need for efficiency. Integrity leads to greater
assurance requirements. Assurance refers to a basis for believing that the functionality will be
achieved. It involves verifiability and proof of correctness through testing.

3-40

Impact: Integrity ++

Reliability -H-

Correctness ++
Verifiability ++

Efficiency +

Response 2: NO
Discussion: This situation is similar to Response 2 under query AU. 1. Modification of data is
likely a threat, but the software is not the enforcer of the security policy.
Action: Ask query CF. 1

Impact: None

3.11.5 Fault Tolerance (FT)

FT. 1 Is there a standardized method for performing error detection, handling, and recovery for

each software function?

Response 1: YES

Discussion: When we say that there are standard error detection, handling, and recovery

procedures, we can be sure that each function has a method to increase its reliability and

survivability. Procedures (or features) to enhance reliability and survivability need to possess
these features themselves; therefore reliability and survivability should be increased.
Action: Ask Query FT.2

Impact: Reliability ++
Survivability ++

Response 2: NO.
Discussion: A NO response can mean one of two things; (1) there is no error detection, or, (2)
there are no standard procedures. If the former, it means that survivability has been discarded.
Therefore, the reliability of all functions must be extremely high to ensure that there are no errors.
This instance of no error detection is very rare. The latter implies that each function performs its

own fault tolerance. Again, this would imply that reliability and survivability requirements for
these functions should be moderate. However, without standard procedures, testing and error
correction will be much more difficult. As such, the software needs to have a slight increase in
maintainability to offset the absence of standard procedures.
Action: Ask query FT.2

3-41

Impact: (1) Reliability +++

(1) Survivability -

(2) Survivability ++

(2) Reliability ++

(2) Maintainability +

FT.2 Will critical hardware component redundancy be employed such as master-checker

processor pairs?

Response 1: YES

Discussion: A YES response implies some type of fault tolerant design. The combination of

additional processors as well as the supporting operating system helps increase the system

survivability. This places less emphasis on application software reliability, survivability,

maintainability, and verifiability.

Action: Ask query FT.2.1.

Impact: Reliability -

Survivability -

Maintainability -

Verifiability -

Response 2: NO

Discussion: The implication is that there is a single CPU responsible for providing its own fault

tolerant features and that these features are limited. The application software must assume

increased error detection and correction responsibility to function properly. Reliability,

survivability, maintainability, and verifiability should all be increased.

Action: Ask query FT.3

Impact: Reliability +
Maintainability +

Verifiability +

Survivability +

FT.2.1 Does the system support dynamic changing of CPUs used in master-checker pairs

as part of a fault tolerant design?

Response 1: YES

3-42

Discussion: Dynamic switching of CPUs when faults are detected implies operating software

capable of automatically transition processing to a different CPU without interruption or loss of

data. Some processors will notify the user of a detected error but require a processor shutdown
and a system reconfiguration before processing is again started. In the first case, the operating
software performs the fault tolerant functions, placing less of a burden on the application software.

Action: Ask query FT.3

Impact: None

Response 2: NO
Discussion: The operating system software does not possess strong fault tolerant features
therefore fault recovery must be performed by the application software. An increase in verifiability
and maintainability are appropriate to ensure the proper operation of the reconfigured system or
resolve software problems that occur as a result of the reconfiguration.
Action: Ask query FT.3
Impact: Maintainability +

Verifiability +

FT.3 Will critical software routine redundancy be employed?

Response 1: YES
Discussion: Software redundancy is the use of multiple routines to perform identical functions.
A calculation is a good example. The sine of a number can be calculated by using a routine that
uses the definition of sine (with factorials and all) and another that uses a library function within a
given language and, perhaps, a third which uses the cosine or tangent of the appropriate
complementary angle. The results are compared and the majority answer is taken. If there is no
majority, the software uses the value from the module that has been deemed most accurate or
reliable. As this "polling" process increases the reliability of the calculation, the reliability of each
individual module does not necessarily have to be increased. As such, there is no need to increase
or decrease functional reliability if software redundancy is used.
Action: Ask query FT.4

Impact: None.

Response 2: NO
Discussion: The absence of software redundancy implies that each software module must be
more reliable as it is the only module that performs that specific function. As such, reliability

3-43

should be moderately increased. Further, the absence of backup implies that survivability and
maintainability will also be important.

Action: Ask query FT.4

Impact: Reliability ++

Survivability ++

Maintainability ++

FT4 Will the software provide techniques for recovering from all hardware failures?

Response 1: YES.

Discussion: (1) If FT.2 = YES, the requirements need to be stepped up to a moderate level for
all factors. (2) If FT.2 = NO, Survivability levels should be highly increased. The reasoning here

is that the software is the only method of countering hardware failures or errors.

Action: Ask query HOL.1.

Impact: (1) Reliability ++
(2) Survivability +++i

(1,2) Survivability ++
(1,2) Maintainability++

Response 2 NO.
Discussion: (1) If FT.2 = YES, no change from the FT.2 requirements. There is hardware

redundancy and the software only has to counter some hardware faults (2) If FT.2 = NO, there is
also no change from the FT.2 requirements. There is no hardware redundancy and the software

only has to counter some hardware faults. Obviously, certain hardware faults may prove fatal as
there are no recovery procedures. This is probably a cost/benefit decision.

Action: Ask query HOL. 1.

Impact: None.

3.11.6 High-Order Language (HOL)

HOL. 1 Will the software be exclusively developed in a high-order computer language such

as PASCAL, FORTRAN, or Ada?

Response 1: YES.

Discussion: The use of a high-order language (HOL) does not impact the requirements of the
software. However, it is one of the most important contributors to adaptability requirements. Use

3-44

of a high-order language enhances program modularity, generality, self-descriptiveness,

simplicity, functionality, and independence. These attributes add to the maintainability,

expandability. reusability, reliability, and survivabit, of the system. Employing a high-order

language in the development of system software might not require the software to possess these

quality factors, but it will add to the overall system quality.

Action: Ask Query HOL.2.

Impact: None.

Response 2: NO.

Discussion: The use of a language other than an HOL (assembly, machine) does not aid in the

attainment of the software quality factor criterion of modularity, generality, self-descriptiveness,
simplicity, or independence. As such, there is a need for the software to compensate for these

missing qualities that an HOL would provide. Therefore, the requirements for maintainability,

survivability, reusability, reliability, and expandability all need to be increased to a moderate

degree. This will ensure that the software will possess the same levels of these factors as code

written in an HOL. In addition, the most dangerous language capability that could be offered to

programmers is assembly language, with its unlimited capacity for controlling and subverting a

system. If assembly language is used, then it is assumed that the system software supports

compilers that accept assembly. This means that correctness, verifiability, and reliability should all

be increased to counter the decreased integrity of the system software.

Action: Ask Query HOL.2

Impact: Survivability ++

Reusability ++

Maintainability ++

Reliability ++

Expandability ++

Correctness ++
Verifiability - 1-

HOL.2 Will intelligence system software be developed using identical languages and

subsets thereof?

Response 1: YES.

Discussion: This is the preferred scenario as far as minimizing the impact on the software

quality factors. There is no significant impact.

Action: Ask Query HOL.3

3-45

Impact: None.

Response 2: NO.

Discussion: The use of different languages and/or subsets thereof take away the inherent

maintainability, expandability, and reusability characteristics that would be present were one subset
or language used. As such, these factors should be slightly increased to ensure necessary software

quality.

Action: Ask query HOL.3

Impact: Expandability +

Maintainability +

Reusability +

HOL.3 Does the language contain inherent fault tolerance detection and recovery

capabilities such as Ada's exception handling?

Response 1: YES.

Discussion: This will make the implementation of software Reliability and Survivability easier,

but, it does not impact the need for these factors.

Action: Ask query IC.1

Impact: None.

Response 2: NO.

Discussion: The absence of inherent fault tolerance features within the programming language

puts an added requirement on the software -- that of providing those fault tolerance procedures the

language does not possess. Working in C would be a nightmare here because there is no type

checking whatsoever, as one example. Again, we get into the bind where the need to manually
provide a feature doesn't necessarily mean the quality factor the feature will enhance is required by

the feature. In this case, it is suggested that Reliability and Survivability requirements be slightly

increased.

Action: Ask query IC. I

Impact: Reliability +

Survivability +

3.11.7 Interface Complexity (IC)

IC. I Have all software function interfaces been standardized?

3-46

Response 1: YES.
Discussion Once again, an attractive attribute of the software but it doesn't impact the software

quality factors. It does add to the correctness and maintainability of the interface software but does
not imply a variation in the requirements for software quality.

Action: None.

Impact: None.

Response 2: NO.

Discussion: This implies that the interface between each software function is unique. This
would impact correctness and maintainability in that the assurance that the interfaces conform to
standards and specifications is doubtful, at best, and the uniqueness of the interfaces will prevent

the normal learning curve to apply to the detection and correction of interface errors as each
interface is different. As such, correctness and maintainability requirements need to be increased

slightly.

Action: None.

Impact: Correctness +

Maintainability +

3.11.8 Testing (TE)

TE. 1 Have all processing functions been assigned processing times to determine the probability

of satisfactory functional performance?

Response 1: YES.

Discussion: This is yet another method for preventing error or fault manifestation. Each

processing function has a time range assigned to it. If a result has been produced within this space
of time, no error checking is performed. Should the processing time be less than or greater than

this range, there is a reasonable doubt as to the accuracy, precision, and reliability of the output.
The accuracy and reliability of this timing feature, however, needs to be assured so as to only call

upon these output checking routines when necessary. Constant invocation of a checking routine
could add considerable time to the overall processing time which could prove crucial depending
upon the timeliness requirements of the data being checked. Further, the survivability and

maintainability of this time checking routine is required to ensure the availability and operation of

the routine. For all three factors, a moderate increase is required.

Action: Ask query TE.2.

Impact: Survivability ++

3-47

Reliability ++

Maintainability ++

Response 2: NO.
Discussion: Given a checking routine such as in query TE.3, and the absence of this time checker,

the efficiency of the software most likely needs to be increased moderately. Why? Those other
routines take time and they may seriously impact processing time. Increasing the efficiency of the

code to permit faster average processing times will enable those other checking routines to offer a

true benefit.

Action: Ask query TE.2.

Impact: Efficiency ++

TE.2 Are error tolerances specified for all input and output data?

Response 1: YES.

Discussion: This checking feature of the software will help to ensure reliability of results and to

prevent possible software errors due to manipulations on data that are of the wrong type, out of

range, etc. As a result of the addition of this reliability feature, reliability should be slightly

increased. This feature will also enhance the survivability of the software, as input that may cause
faults and errors will be detected before processing is commenced. Thus, it is in our best interest

to increase the survivability of this software slightly to ensure that it operates in the presence of

faults.

Action: Ask query TE.3.

Impact: Survivability +

Reliability +

Response 2: NO.

Discussion: The absence of input testing indicates that the software must be able to gracefully

handle erroneous input. This implies an increase in survivability to a moderate level. The

reliability of the software is not necessarily affected as, given the erroneous input, how could we

expect the function to give a reasonable answer? Survivability would ensure the software wouldn't

cough too much given the input. Maintainability is also needed to locate the source of input error

and to perform timely corrections is required.

Action: Ask Query TE.3.

Impact: Survivability ++

Maintainability +

3-48

TE.3 Will all computational outputs be tested to ensure they fall within expected ranges?

This query is very much like TE.2. There is one subtle difference, checking the inputs ensures the
data is appropriate for the function it is about to enter. Checking output ensures the data is
appropriate for the function it just left. One is necessary to ensure software failures will not occur
because of bad input, the other ensures that the function has worked properly. Both features,
however, can be designed and implemented in identical manners. As such, the requirements are
identical.
Response 1: YES.
Discussion: See TE.2, Response 1.
Action: Ask query NA.l.

Impact: Survivability +
Reliability +

Response 2: NO.
Discussion: See TE.2, Response 2.
Action: Ask query NA.1.
Impact: Survivability ++

Maintainability +

3.11.9 Architecture (AR)

AR. 1 Will the system be geographically dispersed?

Response 1: YES
Discussion: If a system is geographically dispersed then there is an implication of a distributed
architecture that would require, at a minimum, some type of a communication interface. Since the
system is likely to handle sensitive information, communication security would be an issue.

Action: Ask query AR.2

Impact: No quality factor impact. Determines need for communications.

Response 2: NO
Discussion: The system is located in one facility and it has limited or no communication

requirements.

Action: Ask query AR.2

3-49

Impact: None

AR. 1.1 Is the design an open architecture solution using only industry communication

protocol standards?

Response 1: YES

Discussion: The use of industry standards such as IEEE or ISO improves interoperabiity and

expandability of a system.

Action: None

Impact: Interoperability ++

Expandability ++

Response 2: NO

Discu sion: If there is no adherence to communication standards then the added flexibility is

needed to accommodate integration of the proprietary protocols with industry standard protocols.

Action: None

Impact: Flexibility ++

3-50

IV. Satellite System Software Analysis

4.0 Scope

This analysis is only applicable to the satellite software type within the Missile/Space mission area.

The notional satellite system components are taken from the Missile/Space mission area
decomposition (See Appendix A) and consists of Propulsion, Power, Data Communications,

Command and Control, and Attitude Control. The specific mission packages of the satellite (i.e.,

Surveillance, Communications, Navigation, etc.) are not addressed.

4.1 Satellite System Software Definition

Satellite system software will include all those software functions accomplished either on-board the

satellite or at a ground-based receiving station. Applicable ground-based operations will include

those software functions that receive data from the satellite, generate commands to the satellite, or

interpret the received data. Ground-based software that performs functions such as satellite

tracking or software on-board a launch vehicle which places a satellite in its final orbit, will not be

considered in this evaluation.

4.2 Software Quality Factor Applicability

Some of the thirteen software quality factors may not apply to satellite system software. If factors

are found to be non-applicable, this information will be used to write mission-level rules that will

eliminate factors from further consideration based on the selection of the mission area and software

type.

For satellite system software, Adaptation the quality factors expandability, flexibility, portability,

and reusability, take a slightly higher precedence. This is mainly due to the method by which

satellite systems are developed. Generally speaking, satellite systems are developed in phased

deployments, or blocks. Due to the complexity of technical requirements and the ongoing

advancement of technologies applicable to satellite systems, deployed satellites do not usually

satisfy all existing requirements. As such, follow-on systems, or block upgrades, are routinely

planned to accommodate unfulfilled and new requirements using technology that has matured since

the initial system was fielded. In this respect, adaptability of satellite software is key to the

devc!opment, deployment, and operation of follow-on systems. As it is important in these follow-

4-1

ons, the need for initial designs to consider adaptability as a software requirement will reap great

dividends as follow-on systems are planned and developed.

If we expressed this precedence in terms of a system-level rule, it would read:

IF satellite-software-type THEN expandability, flexibility, portability and reusability take

precedence.

InItrorabilitX-The software quality factor of interoperability can be eliminated from this analysis

as not applicable to satellite software. Interoperability deals with the coupling of software between

systems. Each satellite system is usually autonomous -- that is, it processes mission data and

reports it to some source. This source, like NORAD for example, receives data from a variety of

sources -- some satellites, some not satellites. Correlation of mission data is done in an

environment that is removed from these sources and the sources do not communicate with each

other. Very few satellite systems even permit communication between space platforms within the

same system or alone other systems. When software is coupled, it implies that the action of one

system's software has a direct impact on the action of another system and its software. An

example where satellite systems would be coupled is presented here. A radar satellite detects a

bomber raid with some certainty. It passes this information directly to an intelligence and

reconnaissance (IR) satellite for verification. The IR satellite acts upon this data and commands its

sensors to look in the proper direction. This is not the way this operation takes place. A central

control center, like NORAD, would receive the radar detection and would then direct the IR

satellite to verify. Interoperability is not deemed applicable to satellite software since there would

be no direct communication between these two satellite systems. As such, interoperability is not

deemed applicable to satellite software.

Usabiflt-Usability has not been deemed applicable to satellite software and can be eliminated from

this analysis as not applicable to satellite software. The vast majority of the system software is

transparent to the user -- either located on-board the satellite or embedded in routines that the user

cannot directly access. The user interface portion of the software represents a very small fraction

of the total software.

Remaining Ouality Factors-The remaining seven software quality factors are all deemed applicable

to satellite software. Of these, extra emphasis can be placed on some of the factors. As previously

stated, adaptability factors are. in general, important to satellite software. Additionally, because so

much of the software is removed from programmer/analyst access, reliability and survivability

4-2

need to be emphasized. The ability for the software to perform as anticipated, even in the presence

of software failures and errors, is paramount to the success of the satellite's mission.

Maintainability should be a prime concern in the development of ground-based software as this

software is accessible and is critical to proper command generation. Efficiency, integrity, and

correctness are important, but less then Adaptation and other Performance factors. Integrity
ensures the unauthorized direction or use of a satellite. Correctness is important because the ability

to recover from or change defective software is very limited once the satellite is launched. With an
emphasis on correctness, the ability to verifly and validate software is critical, so verifiability is
applicable. Efficiency is closely tied to the satellite's mission. If it is a spaced-based radar, its
algorithms for sampling incoming signals must be very efficient to maximize detection capability.

Communication satellites have similar considerations. The general assumption for satellites is that
efficiency is applicable.

4.3 Satellite System Notional Arcitecture

Figure 4.1 shows the satellite system notional architecture. Each component is described below
with the exception of General Considerations. This component contains those attributes which are

system, not component specific.

Figure 4.1. Satellite System Notional Architecture

Propulsion. This component provides the required thrust to perform platform attitude adjustments

-- whether it be to stabilize the platform in its current orbit or to transfer the platform into a

completely new orbit. This would include the firing of the on-board engines, adjustment of the
bum to minimize the acceleration of the maneuver on the satellite hardware, the attainment of the
proper delta V (change in velocity) to accomplish the attitude change, and the termination of engine

activity upon maneuver completion.

4-3

Power. This component provides the electrical power necessary for the satellite to perform its

mission as well as the means for the other generic functions to perform their required tasks. This

unit consists of some sort of power source, usually a combination of solar antenna and batteries

(although nuclear power/propulsion is on the way), as well as a means to distribute and monitor

the electrical output to the various subsystems. Additionally, the Power unit must successfully

monitor and dissipate excess heat created by the electrical generation process and microprocessor

operation.

Data Communication. This component provides the communication capability between platform

and either a ground, air, or sea terminal site on the earth. This includes the receiving/sending of

commands from/to the earth terminal (and vice versa), the sending of telemetry and mission data

and all functions required to establish the communication link, encode the commands, alter

frequencies, etc. The hardware and software to perform these functions is co-located, both on the

space platform and at various ground terminals.

Command and Control. The control center for the entire platform. Data from all sources is

accepted, actions to be taken are determined, and commands issued to subsystems to accomplish

these actions. This includes the receipt of ground commands and their execution, the monitoring

of platform health and status, performance of the satellite's primary mission, data storage and

retrieval, command decoding, and all other operational functions not specifically performed by the

other four generic functions. The software to perform these activities is primarily located on-board

the space platform.

Attitude Control. This component maintains the proper stability, orientation, navigation and

guidance of the platform. It has the ability to sense the platform position relative to celestial

navigation guides and to inform the command and control unit of any discrepancies to the norm.

When the command and control subsystem deems an orbit correction is necessary, the attitude

control unit controls the propulsion subsystem thruster bum and attitude correction.

General Considerations. This component contains those attributes which are system, not

component specific. General considerations would contain functional requirements that can not be

allocated to other top level functions. It may also contain functions that could be allocated to

multiple top level functions. This could include functions such as "packaging" which would affect

the software vulnerability to nuclear, chemical or biological effects.

4-4

4.4 Applicability of Software Factors by Component

This section will look at each satellite component and its functions to determine which of the

software quality factors are applicable.

4.4.1 Command & Control and Data Communications

The importance of the functions performed by these components, deems that all software quality

factors are applicable. Because it is a space platform most of the hardware and software functions
necessitate reliability and survivability. The possibility of unauthorized command receipt and

action necessitates the applicability of integrity. The limitations of on-board resources causes

efficiency to be an applicable factor. Correctness is self-evident for all functions in that any

software developed for the Department of Defense (DoD) must conform to a rigid set of

specifications and standards. Maintainability is applicable to those portions of the software that are

easily accessible to technicians and programmers. Reusability and expandability are applicable

mainly because of our previous discussion on satellite software development and adaptability.

Verifiability is important because of the autonomy of satellite systems. Portability and flexibility

are important from a program development and Life-Cycle-Cost perspective.

4.4.2 Attitude Control, Propulsion, and Power

These three components all have two major characteristics in common -- one, they are all

physically located on-board the space platform and, two, they have no direct interaction with

ground-based functions. These components all receive and send commands to each other or the

on-board portion of the command and control component. As such, the need for integrity is not

foreseeable. The software is embedded within the subsystems and even the command and control

component doesn't physically access them, but merely sends commands to them. As integrity is

an integral part of the data communication and command and control functions, we can eliminate it

here.

Expandability, for much the same reason, is also deemed unnecessary. While we do desire the

software to be reusable, its isolation from human access makes it a poor candidate to be expanded
within the framework of its existing application. Whatever capability that is designed into the

software that is put on-board the satellite is all that will be available, no matter how easily the

software coul be expanded. No further consideration will be given to the expandability of this

software.

4-5

4.4.3 General Considerations.

General considerations is not an actual architectual component, but rather a group of system

attributes not attributed to a specific component. Such attributes include factors such as time

critical operations and error recovery.

4.5 Factor Applicability Conclusions

The discussions in the previous four sections have helped us to narrow the problem to those

factors and functions that have been deemed applicable. Figure 4.2 is an applicability matrix of

software quality factors to software functions. Those shaded areas have been deemed non-

applicable.

S/W QUALITY 9
FACTOR C

SATELLITE
COMPONENT

COMMAND &
CONTROL

ArnITUDE
CONTROL

PROPULS1014

POWER

DATA
COMMUNICATIONS

Figure 4.2. Quality Factor Applicability Matrix

To support the applicability conclusions, we could establish the following rules. The rules are

placed in two groups, system level or function level, depending on the scope of impact.

4-6

Rule SAT.l: IF Satellite-Software-Type THEN NOT System-Interoperability

Rule SAT.2: IF Satellite-Software-type THEN NOT System-Usability

Rule SAT.3: IF Satellite-Software-type THEN NOT System-Flexibility

Rule SAT.4: IF Satellite-Software-Type THEN NOT System-Verifiability

Rule SAT.5: IF Satellite-Software-Type THEN NOT System-Portability

Rule SAT.6: IF Satellite-Software-Type AND Generic-Project THEN a Command-And-Control

component.

Rule SAT.7: IF Satellite-Software-Type AND Generic-Project THEN an Attitude-Control

component.

Rule SAT 8: IF Satellite-Software-Type AND Generic-Project THEN a Propulsion component.

Rule SAT.9: IF Satellite-Software-Type AND Generic-Project THEN a Power component.

Rule SAT. 10: IF Satellite-Software-Type AND Generic-Project THEN a Data-Communications

component.

Funtioneel

Rule PRO. 1: IF the Propulsion component AND Generic-Project THEN NOT Function-Integrity

Rule PRO.2: IF the Propulsion component AND Generic-Project THEN NOT Function-

Expandability

Rule PWR. 1: IF the Power component AND Generic-Project THEN NOT Function-Integrity

Rule PWR.2: IF the Power component AND Generic-Project THEN NOT Function-

Expandability

4-7

Rule ATC.1: IF the Attitude-Control component AND Generic-Project THEN NOT Function-

Integrity

Rule ATC.2: IF the Attitude-Control component AND Generic-Project THEN NOT Function-

Expandability

4.6 Query Development

The next stage in the analysis is to develop queries that probe into the details of the system

functions and operations. A four step process was used in this development. The first two steps

determined important attributes of the satellite components and software quality factors. These two

lists are contained in TABLES 4.1 and 4.2, respectively. TABLE 4.1 gives a list of activities that

the components must accomplish or concern themselves with. TABLE 4.2 lists characteristics of

the quality factors. The process to develop rules and queries can then draw upon each software

function and attempt to apply these operations to the individual software quality factors. Generally

speaking, these lists aided the analyst in quantifying Hw had to be investigated.

TABLE 4.1. Satellite Component Attributes

Propulsion: Amount of fuel
Type of fuel
Burn time

Power: Maximum power requirements
Type of batteries
Type of power source
Size and weight of power source
Minimization of energy emittance

Data Communications: Frequency of transmissions receiver/transmitter
Size and flexibility of communication antenna

Command & Control: On-board memory capacity
On-board processing capacity
Encryption/decryption techniques
Error detection and recovery

4-8

TABLE 4.1. Satellite Component Attributes (Cont)

Attitude Control: Orbit altitude
Degree of precision required
Need to change orbital planes
Flexibility of communication and mission hardware

General Considerations: High-order language usage

TABLE 4.2. Software Quality Factor Characteristics

Efficiency: Compiler efficiency (optimization)
Memory utilization/management
Processing efficiency
Assembly vs High-order language use

Integrity: Authorized access to software
Encryption of data
Authentication messages

Reliability: Precision of calculations (engineering accuracy)
Fault tolerance
S/W failures

Survivability: Fault tolerance (error recovery, reconfigurability)
Interface complexity
Separate power sources
Redundancy (H/W and S/W)
Internal testing

Correctness: Inputs, processing, & outputs clearly defined
Standard I/O protocol between software units
Standardized data representations

Maintainability: Error detection/recovery
Software modifications
Integration complexity

Expandability: Spare memory storage capacity
Spare I/O channel capacity
Spare processing capability
Spare communication channels
Interface compatibility

Reusability: Standard subset of implementation language
Modularity of design

4-9

The third step in this process was one of organization and correlation. The attributes as shown in

TABLE 4.3, are organized into query topics which cover both functional aspects of the system as

well as important characteristics of the software. For each topic, the affected quality factors and

components are listed.

TABLE 4.3 Satellite Software Query Topics

Query Toic Quality F Component

Communication Frequencies Efficiency Data Comm
Expandability C2

Integrity
Maintainability
Reliability
Reusability
Survivability

Data Encryption Integrity C2 , DC
Maintainability
Reliability
Survivability

Fault Tolerance Efficiency All
Maintainability
Reliability
Survivability

High-order Language Efficiency All
Expandability
Maintainability
Reliability
Reusability
Survivability

Interface Complexity Correctness All
Efficiency
Expandability
Maintainability
Reliability
Reusability
Survivability

4-10

TABLE 4.3 Satellite Software Query Topics (Cont)

Movable/Adjustable Subsystems Efficiency All
Maintainability
Reliability
Survivability

Memory Utilization/Management Efficiency All
Expandability
Reliability
Survivability

Processing Capabilities Correctness All
Efficiency
Maintainability
Reliability
Survivability

Propellents Reliability Propulsion
Efficiency Attitude Control
Survivability Power
Maintainability

Power Source Efficiency All
Reliability
Survivability

Testing Correctness All
Efficiency
Maintainability
Reliability
Survivability

The final step in the process was the development of queries. This analysis was based on expert

knowledge of actual Air Force space systems as well as literature available on the Voyager

spacecraft and on all ongoing Air Force satellite systems.

Explaining the reasoning and logic in moving from TABLE 4.3 to the and queries is very difficult.

As the primary purpose of this analysis is to determine the impact upon the function's software

quality factors, these queries were developed with this in mind -- what needs to be asked within

this query topic that will tell us something about how much of a particular quality factor needs to be

present within the software. The analysis starting in Section 4.7 discusses the responses to the

queries and evaluates them in terms of their impact on the software functions and quality factors.

4-11

4.7 Satellite Software Analysis

This section will take a look at each satellite function and determine the impact of each possible
response on the software quality factors. This analysis will accomplish several things:

1. Determine the order, within a query topic, in which the questions should be asked.

2. Provide a judgement as to the relative requirement for one software quality factor over
another for each software function.

3. Address issues pertaining to the evaluation of software quality factor requirements.

4. Give some insight into satellite software functions and software quality factors.

The impact of each quality factor on a function is measured in terms of indicated (+), moderately
indicated (-+), or strongly indicated (+++), respectively. In many of the queries, the factor impact

could be traced to a particular function. In those cases where no function is listed under the impact
section, the quality impact is system wide and not function specific.

4.7.1 Software Features

Many of the queries ask if the system contains a certain feature. By feature, we mean a software

routine that performs a function that aids in the enhancement of certain software quality factors.
For example, a softw.",e routine may check each received command for authenticity to enhance the
system integrity, or, a polling routine accesses three different modules and then takes the majority
answer to enhance the reliability of a calculation, or, a diagnostic routine is implemented that

detects errors and aids in the maintenance of the software. The question is this -- does a routine
that enhances a particular software quality factor need to possess a greater degree of that quality
factor itself? Should a feature that enhances Integrity possess more integrity than one that ensures
something else? Does a reliability enhancement need to be more reliable than the function it

enhances? Does a fault tolerance enhancement need to be more maintainable than the modules it is
checking? These are not always simple questions to answer.

The issue initially arose in the analysis of some of the data encryption queries. While the features
in question did add a certain degree of integrity to the system, it was not clear as to whether or not
these features, themselves, required an increased degree of integrity. After all, we're trying to
determine what the software requirements are, not the requirements for the system. In this case we
ruled that, no, integrity was not needed in any increased degree within the software that

implemented this feature. But what about reliability? An enhancement that aids in the reliability of

4-12

the system would, so it would seem, need to be reliable. In fact, even the feature to implement

integrity should be reliable. Similarly, maintainability of a maintainability enhancement is not

necessarily required.

Ideally, we would wish all software ever written to be efficient, reliable, survivable, maintainable,

reusable, correct, expandable, and to possess integrity. Unfortunately, this is never the case, and

if it were, the software would be unaffordable. So, we had to make a decision -- what software

features should contain the quality factor they seek to enhance at a system level. TABLE 4.4

follows and indicates the choices we have made.

TABLE 4.4 Software Features

NO YES

Correctness Refiabiity.

Efficiency Survivability

Expandability

Integrity

Maintainability

Reusability

We can discuss each one to present the reasoning behind these selections. Reliability and integrity

have already been discussed. Survivability is similar to reliability in that if the survivability

enhancement fails, the survivability of the entire system could be jeopardized. Correctness,

reusability, efficiency, expandability, and maintainability can all be addressed together. Software

that ensures that operational code contains these respective characteristics is usually run during

testing and verification. As this testing does not impact the mission, there is no need for them to

possess the characteristic they ensure. A claim for reusability could be made, but then again, these

routines are not usually part of operational code, such as the case with reliability and survivability

features. They can be characterized as off-the-shelf diagnostic programs that read operational code

and report on the containment of the various software quality factors.

4-13

4.8 Burn Time

4.8.1 Query BT.1

Query: Is there sufficient spare fuel to permit a reasonable amount of additional platform attitude

adjustments in the case where the system has been deployed and, for one reason or another, more

are required than were planned?

Response 1: YES

Discussion: There is spare fuel. This implies an increase in overall satellite weight. This means
that more fuel is necessary to make the early attitude adjustments. We need more fuel to move the

satellite as it is now heavier due to the addition of spare fuel -- there obviously is an optimum point

for which adding more fuel produces no additional (and perha. s fewer) attitude adjustments. More

adjustments imply more firings of the engines. The more times the engines are fired, the higher the

probability that they will fail. Since more engine firings are now necessary, this firing mechanism

(hardware and software portions) must be more reliable. This firing mechanism is part of the

Propulsion function, therefore, Propulsion reliability needs to be increased moderately.

Packing extra fuel on-board indicates the possibility of a longer performance life. A longer satellite
life implies the hardware and software components of all functions will be required to operate

longer, under the adverse conditions of the space environment, yet still perform their intended

functions reliably and in the presence of potential hardware and software failures. This impacts the

quality factors of efficiency, reliability, and survivability for all the satellite functions, not just

Propulsion. Reliability needs to be slightly increased, while survivability should be moderately
increased as there is a great potential, over time, for the componCts to develop errors and faults.

Action: None

Impact: Propulsion Power Data Comm

Reliability ++ Reliability + Reliability +

Survivability ++ Survivability ++ Survivability ++

Command & Control Attitude Control

Reliability + Reliability +

Survivability ++ Survivability ++

Response 2: NO

4-14

Discussion: There is no spare fuel, there is no chance of providing additional attitude adjustments.

The Attitude Control function must now be highly reliable. We only have so many engkle firings

at our disposal. For the Attitude Control function to tell us to move when, in fact, we may not
have to, would have a significant impact on the missior. A slight increase in Propulsion reliability

is also required. For each attempt at a burn, some small amount of fuel (depending upon the type,

method of ignition, etc.) may be expended. With a limited fuel resource, this ignition system must

perform its job with a minimum number of misfires.

Action: None
Impact: Attitude Control Propulsion

Reliability +++ Reliability +

4.8.2 Query BT.2

Query: Are the thruster requirements only for one, continuous bum?

Response 1: YES

Discussion: This response implies that there are no attitude adjustment bums. One continuous

bum would imply that the satellite is uermanently changing its orbital plane or has the potential for

one maneuver to evade a potential physical attack. If it is the latter, the Propulsion function must

be highly reliable. If is the former, there is no great need for a change in reliability. A YES

response to this query also implies that there is either no Attitude Control function or that the

attitude adjustments are performed by a means other than propulsion. In the latter case, Attitude

Concrol reliability needs to be moderately increased to ensure proper orientation of the satellite and

platform stability in order for the satellite mission to be performed.

Action: None

Impact: Attitude Control Propulsion

Reliability ++ Reliability +++

Response 2: NO

Discussion: A NO response implies intermittent burns -- most likely to perform attitude control

functions. Many of the items discussed in the YES response to Query BT. I apply here, save the

extended satellite life discussion. Multiple firing imply moderate Propulsion reliability

requirements. Likewise, Attitude Control reliability is highly required.

Action: Ask Query BT.3

Impact: Attitude Control Propulsion

Reliability +++ Reliability ++

4-15

4.8.3 Query BT.3

Query: For intermittent thruster firing requirements, will the average burn time be less than 20

seconds?

Response 1: YES

Discussion: Many attitude adjustments. None, or few, orbital maneuvers. The BT.2 NO

response criteria applies.

Action: Ask Query BT.l

Impact: Attitude Control Propulsion

Reliability +++ Reliability ++

Response 2: NO

Discussion: Few attitude adjustments. One or more orbital maneuvers, evasive or otherwise.

BT.2 YES responses apply.

Action: None

Impact: Attitude Control Propulsion

Reliability ++ Reliability +++

4.8.4 Query BT.4

Query: Is the design of the Propulsion system and choice of fuel type one that optimizes fuel

efficiency or burn time, i.e., change in velocity parameters?

Response 1: Fuel Efficiency.

Discussion: This implies longer, steadier burns -- those usually used for orbital transfers. Also,

fuel efficiency implies a moderately higher requirement for Attitude Control reliability. If we are to

conserve fuel, there should be fewer requirements to adjust the platform.

Action: Ask Query BT.2

Impact: Attitude Control

Reliability ++

Response 2: Burn Time (delta V)

Discussion: This implies shorter bums and greater changes in velocity. More attitude adjustments

and potential maneuvers against threats. Attitude Control reliability is slightly decreased as

4-16

platform adjustments are expected to be made frequently. Propulsion reliability is highly

increased. The potential for quick, threat evading maneuvers and frequent attitude adjustments

imply a multitude of engine firings that must be accomplished to permit the satellite to perform its

mission.

Action: Ask Query BT.2

Impact: Attitude Control Propulsion

Reliability Reliability +++

4.9 Communication Frequencies

4.9.1 Query CF.1

Query: Are there methods for transmitting/receiving information under enemy jamming

conditions?

Response 1: YES

Discussion: A YES response indicates that the developers believe that jamming presents a

reasonable threat to the system. As such, the design of the satellite has most likely incorporated

some techniques to permit transmission and receipt of data during those periods where the normal

mode of communication is unavailable. Probably the most common technique is the location of

ground sites in locations that the enemy will not be able to jam -- Australia, the U.S. mainland, the

South Pacific, etc. A second simple technique would be to only transmit when the conditions are

favorable -- when no jamming is present. More complicated techniques would include

predetermined frequency shifts and intersatellite relays. The more simplistic of these techniques

really requires no additional software robustness but are more scheduling and planning problems.

Frequency hopping and intersatellite relays require a bit more sophistication -- both in hardware

and software requirements. Under frequency hopping conditions, the hardware and software must

be able to send and receive signals at a multitude of frequencies. The increased bandwidth

capabilities of ground- and space-based jammers require these frequency shifts to be across a

number of bands (X, S, C, etc.) rather than merely a shift of 1 or 2 GHz within the X band, for

example. This places tremendous requirements on the hardware in terms of optimizing weight and

size of instrumentation. Software features such as expandability (a wide spectrum of radio

frequencies), reliability (effective and timely shifts of frequencies, availability of all modules),

efficiency (optimizing code to reduce memory storage requirements), and survivability (use of

alternate frequencies should partial hardware failure occur) are necessary to insure confident

4-17

communications operations. These factors would all apply to the Data Communications functions.

Each of these factors should be significantly increased over standard requirements.

Frequency hopping also implies that we are able to detect the presence of jamming. This capability

impacts both the space-borne and ground-based components of the satellite functions Data
Communications and Command & Control. This feature is a survivability characteristic in that the

failure to operate must be detected and steps taken to re-establish the communication links. As
such, Data Communications and Command and Control software survivability need to be
significantly increased. Integrity is also impacted as the software must discriminate between an

acceptable command, a jamming environment, and an unauthorized command. This issue is
examined in greater detail in section on Data Encryption. For our purposes here, however, we can
conclude that software integrity requirements need to be slighltl,, increased when 'equency

hopping techniques are employed.

The second of the more sophisticated techniques -- intersatellite relays -- requires a different set of
requirements. Now, each satellite must be in view of at least one other satellite at all times. This
will ensure the transferring of data to a satellite that may be jammed from normal space to ground
operations. The capability requires a moderate increase in Data Communications reliability. The

constellation will be operating more on its own, or autonomously. That is, there will be less direct
ground control of each satellite. Not only does this require more reliability, it probably requires a
separate design and development of software solely for this purpose. If autonomy was not an
initial design consideration, the threat analysis has now deemed that it is necessary, to some

degree. This new requirement may impact cost and schedule, but would not cause any significant

increase or decrease in the other software quality factors.
Action: Ask Query CF. 1.1

Impact: None.

Response 2: NO

Discussion: A NO response most likely means that the designers do not feel that the jamming of
communication data is a threat to their system. This position may be based upon the orbital

inclination or altitude, the frequency of transmission, or the knowledge of enemy intelligence with

respect to their jamming capabilities. In any case, a NO response would not have a significant
impact upon the functions and their software quality factors.

Action: Ask Query CF.5.

Impact: None.

4-18

4.9.2 Query CF.1.1

Query CF. 1.1: What method will be used to counter this jamming?

Response 1: COMMUNICATION IN THE ABSENCE OF JAMMING.

Discussion: Mostly a scheduling and planning problem. The ability to detect the presence of

jamming is required. Slightly increase Data Communications integrity requirements.

Action: Ask Query CF.5.

Impact: Data Communications

Integrity +

Response 2: FREQUENCY HOPPING.

Discussion: As previously mentioned, significant increases in Data Communications

expaxibdility, reliability, efficiency, and survivability. Slight increase in integrity. Command and

Control suwvivability is significantly increased.
Action: Ask Query CF.5.
Impact: Data Communications Command & Control

Expandability +++ Survivability +++

Reliability

Efficiency +++

Survivability +++

Integrity +

Response 3: INTERSATELLITE RELAYS.

Discussion: As previously mentioned, Data Communications reliability should be moderately

increased.

Action: Ask Query CF.5.

Impact Data Communications

Reliability ++

Response 4: NONE OF THE ABOVE.

Discussion: This implies some other technique which may be a combination of the aforementioned

ones or some other method we haven't discussed is employed. The techniques mentioned above

represent some of the common methods for countering a jamming threat. Other techniques that

may influence the quality factors may exist. A "None of the Above" response, in this case, means

T= .foation exists to conclude a fictor change.

4-19

Action: Ask Query CF.5.

Impact: Data Communications

Reliability +

4.9.3 Query CF.2

Query: Are the transmitting and receiving frequencies identical?

Response 1: YES.

Discussion: A YES response indicates that an adversary attempting to jam these communications
could accomplish this task with less difficulty than were two, widely separated, frequencies used.

Of course, if the frequency chosen was one for which an adversary had no jamming capability (see

CF.4), then this would not be an unsound choice. There may, howe. er, be some added confusion
involved with the discrimination of incoming and outgoing messages. This would necessitate a

slight increase in Data Communications and Command and Control software integrity. The

requirements for transmit/receive hardware would be reduced as the same equipment can perform

in both modes. However, the reliability and efficiency of this hardware and accompanying
software needs to be moderately increased to ensure operational availability. If the hardware or

software fails, there is no communication capability. This further necessitate a moderate increase

in the software survivability. These last three requirements are for the Data Communications

function.

Action: Ask Query CF.3.

Impact: Data Communications Command & Control

Integrity + Integrity +
Reliability ++

Efficiency ++

Survivability ++

Response 2: NO.
Discussion: A NO response here does not really tell us too much. We know that separate

hardware/software is required for each mode. There is also less susceptibility to a complete

communications knockout. The answers to other CF queries will determine the true impact of a

NO response.

Action: Ask Query CF.2.1.

Impact: None.

4-20

4.9.4 Query CF.2.1

Query: Are they within the same band range (X, C, S, etc.)?

Response 1: YES.
Discussion: Some of the same restrictions and needs as in the Query CF.2 YES response apply
here. Dual mode hardware may still be employed depending upon the spread within the band. An
additional item not mentioned in the aforementioned analysis concerns the maintainability of
ground-based Data Communications software. Software failures to communications systems that
do not have hardware redundancy or are used in both transmit and receive modes requires a
significant increase in maintainability. Why? Because failures here knock out all communications.
Software that is maintainable permits errors to be detected and corrected quickly and efficiently -- a
must if all communications have ceased. The requirement for this need on-board the satellite is

moot until techniques are developed to recover and repair satellites in orbit.
Action: Ask Query CF.3.
Impact: Data Communications (ground portion)

Maintainability +++

Response 2: NO.
Discussion: A NO response, on the other hand, indicates that there are most likely separate
hardware and software that perform transmit and receive operations. There may also be hardware
redundancy. Even without redundancy, the possibility may exist for the failed component to be
temporarily replaced by the still active component. Survivability would then play a role as the
ability to operate with existing faults or errors is imperative to ensure the remaining component was
available and functioning properly. Moderately increase the survivability requirement.
Action: Ask Query CF.3.

Impact: Data Communications

Survivability ++

4.9.5 Query CF.3

Query: Are there other satellite systems operating at (or near) these frequencies?

Response 1: YES.

Discussion: Potential problems arise when a particulaj irequency or band become too crowded.
Steps must be taken to insure there are unique characteristics for the signals. Discrimination

4-21

between signals becomes an issue. Command and Control integrity, both on the ground and on
the platform, should be slightly increased. Depending upon the complete functionality of the Data
Communications function, some (or all) of this discrimination may be accomplished here. A slight
increase in this function's software integrity would also be necessary.

Action: Ask Query CF.4.
Impact: Data Communications Command and Control

Integrity + Integrity +

Response 2: NO.
Discussion: This could represent a greater design risk to the Data Communications function as a

whole but there is no real effect on the degree of any particular software function. There may be

reasons that there are no other systems developed at these frequencies -- the technology is not

present, there is too great a jamming threat, etc.

Action: Ask Query CF.4.

Impact: None.

4.9.6 Query CF.4

Query: Are the data communication frequencies easily jammed by jammers.

Response 1: YES.
Discussion: If the frequencies are easily jammed from jammers, there are usually two reasons that
the developers have continued to pursue these frequencies. One, the mission of the satellite is such
that there is no perceived threat from these jammers -- an enemy might not care to jam this system.
For military applications this case wold be very unlikely. The second reason would be that the

developers are planning to use some of the techniques discussed in the CF. 1 query, YES response.
As such, no requirements determination can be made here. Instead, Query CF. 1 should be asked.
Action: Ask Query CF. 1.
Impact: None.

Response 2: NO.
Discussion: A NO response indicates that either the orbital altitude, inclination, or method of
operation is such that the existing jammers are not deemed a threat. Under these circumstances, no
variations in software requirements would be necessary.

Action: Ask Query CF.5.

4-22

Impact: None.

4.9.7 Query CF.5

Query: Are spare communications channels available?

Response 1: YES.
Discussion: Implies that there are methods for communicating in a jamming environment and/or in

case of hardware failures. The criteria previously discussed under Query CF. 1.1, FREQUENCY

HOPPING response, apply.

Action: Ask Query CF.7.

Impact: Data Communications Command & Control

Expandability ++ Survivability +++

Reliability +++

Efficiency +++

Survivability +++

Response 2: NO.

Discussion: Implies no frequency hopping capability. No reduction or increases in software

requirements. Communications hardware redundancy should be employed to prevent the need for

spare channels.

Action: Ask Query CF.7.

Impact: None.

4.9.8 Query CF.6

Query: Are there methods and procedures for the continuation of communications given a software

failure within a transmitter or receiver?

Response 1: YES.

Discussion: This implies that some sort of on-board software redundancy or fault detection and

recovery scheme is being utilized. These techniques may be applied in either the Data

Communications or Command and Control functions. Software survivability requirements ne-ed to

be moderately mcreased for these functions.

Action: None.
Impact: Data Communications Command and Control

4-23

Survivability ++ Survivability ++

Response 2: NO.

Discussion: No software backup. Therefore, reliability needs to be moderately increased for the

Data Communications function.

Action: None.

Impact: Data Communications

Reliability ++

4.9.9 Query CF.7

Query: Is there a requirement for the satellites of the constellation to communicate with each other?

Response 1: YES.

Discussion: The requirements under Query CF. 1.1, INTERSATELLITE RELAY response,

apply.
Action: Ask Query CF.6.

Impact: Data Communications
Reliability ++

Response 2: NO.
Discussion: No reduction or increase in software requirements.

Action: Ask Query CF.6.

Impact: None.

4.10 Data Encryption

4.10.1 Query DE.1

Query: Will all telemetry, tracking, communications, and mission data be encrypted?

Response 1: YES.

Discussion: Integrity requirements are increased for Data Communications and Command and

Control. Encrypticn implies a need for integrity.

Action: Ask Query DE.6.

Impact: Data Communications Command and Control

4-24

Integrity ++ Integrity ++

Response 2: NO.
Discussion: Secure telemetry is not required and therefore Integrity is not an issue. Both the Data
Communications and Command and Control functions are effected.
Action: Ask Query DE.4.
Impact: None

4.10.2 Query DE.2

Query: Will password and/or security clearances be required to access telemetry, tracking and
communication data at the receiving terminals?

Response 1: YES.
Discussion: Merely implies that there will be some sort of control placed upon the distribution of
system data. Password control is usually provided via the system software, therefore, a slight
increase in Command and Control integrity is required. Security clearances are usually enforced
physically or through software. If they are provided via the software, another increase in
Command and Control integrity would be warranted, bringing the total requirement to a moderate
level. These precautions are relatively easy to implement and usually prove difficult to bypass.
System entry by unauthorized personnel using authorized passwords is another matter completely.
Action: Ask Query DE.3.
Impact: Command and Control

Integrity ++

Response 2: NO.
Discussion: Means that the data is, one, unclassified/non-sensitive (probably not too likely) or,

two, that all potential users are cleared to access all data or, three, physical security is substantial.
No direct impact on software quality.
Action: Ask Query DE.3.
Impact: None.

4.10.3 Query DE.3

Query: Will some sort of authentication process be employed by the on-board software to ensure
commands received are genuine?

4-25

Response 1: YES.
Discussion: The implementation of this feature will greatly increase the system's integrity. As this
feature is predominantly provided by the system software, unauthorized access to this software
must be guarded. Therefore, integrity requirements for the Command and Control function should
be moderately increased. It was at this point that the issues mentioned in section 4.7.1 were
encountered. In rethinking the question, we came to the conclusion that since the implementation
of this feature increased system integrity, it is not necessarily true that the feature itself needs to
possess an increased level of integrity. Providing that this software is highly reliable, the
requirement for the feature to possess Integrity has been significantly decreased (from its

moderately increased state). If a potential unauthorized user cannot get past this on-board
command authentication, the remainder of the system software is buffered from these erroneous
commands. Reliability, however, remains high.

Action: Ask Query DE.5.

Impact: Command and Control

Reliability +++

Response 2: NO.
Discussion: Without this feature, unauthorized access to the system will present a greater risk to
the system them with the authentication process. Therefore, if a system doesn't require or possess
such a feature, chances are it is not necessary. This implies autonomous Command and Cont-ol to
a certain extent. Then again, it is very unusual for a satellite to be designed that does not receive
some type of ground communication. The key word here is "on-board" software. If the
authentication is done somewhere else (on the ground, perhaps, via an echo of the message for
confirmation, etc.). Assuming there is some sort of authentication, but not on-board, the

requirements for reliability and integrity should not be impacted. A ground-based authentication
process necessitates, however, an increase of maintainability and survivability of the software.
Both in a moderate degree and to the Command and Control function. Why? Being ground-

based, there is direct access to the software. The importance of this process in the overall

operation of the satellite system is obviously crucial. Failures in this software need to be repaired
quickly and to continue to function in a degraded mode while these fixes are being implemented.

Action: Ask Query DE.5.

Impact: Command and Control

Maintainability ++

Survivability ++

4-26

4.10.4 Query DE.4

Query: Will all up-linked system commands be encrypt4?

Response 1: YES.
Discussion: Command and Control must be more reliable than if data was not encrypted? Not

necessarily. It simply has an additional step in the processing of the commnd. Reliability should
be slightly increased. This is to ensure the proper decoding of the command into a form that the
system can implement. Because it is located on-board the satellite, the survivability of this
software should also be slightly increased to ensure proper operation even if a failure (hardware or
software) occurs to the components performing the function.
Action: Ask Query DE.2.

Impact: Command and Control

Reliability +
Survivability +

Response 2: NO,
Discussion: Non-encrypted uplinks can be intercepted and enable an adversary to counterfeit
commands. There is no software procedure, even encryption, which will prevent an adversary
from receiving a command if it is generated in a region where the adversary's antenna can pick it

up. Therefore, proper planning and uplink procedures are required to ensure these links are not
intercepted. There is no direct effect on software quality.
Action: Ask Query DE.2.

Impact: None.

4.10.5 Query DE.5

Query: Are there security procedures invoked when an unauthenticated command is received?

A follow on to Query DE.3. Primarily, these security procedures would notify the ground site that
unauthorized commands have been received and, most likely, transmit the received command for
ground analysis.

Response 1: YES.
Discussion: A YES response implies that there will be an additional system feature that is activated
upon receipt and detection of an unauthorized message. This also implies that somehow the fact

4-27

0

that the message is unauthorized has been detected. If this detection routine was not fu.nctioning

properly there could be some serious consequences to the system. For instance, an authorized

command could be rejectee or an unauthorized command (from an unauthorized user, not

necessarily a comnand that is unrecognizable) could be implemented. As such, the reliability of

this detection routine function, probably located in the Command and Control function, nee-', to be

significantly increased.

Action: Ask Query DE.7.

Impact: Command and Control

Reliability +++

Response 2: NO.

Discussion: A NO response indicates that unauthorized messages, should they be detected, are

simply ignored. This implies that there is no analysis done on these unauthorized commands to

determine their source, their intention, etc. No need to beef up software quality to simply discard

messages.

Action: Ask Query DE.7.

Impact: None.

4.10.6 Query DE.6

Query: Is there a capability to change or abandon the encryption codes once the system is

deployed?

Response 1: YES.

Discussion: The ability to change or abandon encryption c -,des is an outgrowth of the detection

and analysis of unauthorized commands. Or, perhaps, it could be a routine occurrence to counter

the absence of this detection and analysis. In either case, the Data Communications and Command

and Control functions would need to have increased reliability and survivability (moderate) to

insure the successful transition from one code to the next and the successful operation of this

transition should there be a partial hardware or software failure. For ground-based components of

this process, a moderate increase in maintainability would aid in the timely correction of any

ground based software failures or errors.

Action: Ask Query DE.4.

Impact: Data Communications Command and Control

Reliability ++ Reliability ++

Survivability ++ Survivability ++

4-28

MaintainabiliLy ++ Maintahiability ++

Response 2: NO.

Discussion: No effect on the software quality factors.

Action: Ask Query DE.4.

Impact: None.

4.10.7 Query DE.7

Query: Is there a software verification procedure by which the Command aid Control function

ensures the received command is an acceptable command?

This questions differs from DE.3 in that DF 3 determines if the received c3mmand comes from a.i

authorized user. This verification determines if that authorized command makes any sense -- i.e. is

it a legitimate action for the system to take. This serves as an augmentation to the authentication

process.

Response 1: YES.

Discussion: Permits the authentication process, if it exists, to be slightly less reliable as this

procedure does serve as a second line of defense. However, without some sort of authentication

procedure (highly unlikely), this module must be extremely reliable and survivable. This module

is most likely located on-board the satellite which would rule out the) ed for excessive

maintainability.

Action: None.

Impact: Command and Control

Reliability +++

Survivability +++

Response 2: NO.

Discussion: Unacceptable commands will cause software errors. Some of these errors may fail

gracefully, some may not. Command and Control survivability (fault tolerance) must be
significantly increased to ensure that an unacceptable command will not pull the entire system

down but can be discarded without incident.

Action: None.

Impact: Command and Control

Survivability +++

4-29

I~ I II I I

4.11 Fault 7'ole. ance

4.11.1 Query FT.1

Query: Is there t standaroed method for performing error detection, handling, and recovery for

each software function?

Response 1: YES.
Discussion: When we say that there are standard error detection, handling, and recovery
procedures, we can be sure tihat each function, or the Command and Control function depending
upon the answer to FT.4 and FT.5, has a method to increase its reliability and survivability. As

mentiored earlier, procedures (or fea:ures) to enhance reliability and Survivability need to possess
these features themselves. Therefore, based upon FT.4 and FT.5, tither the Command and

Control or all functions must have a moderate increase in reliability and survivability.

Action: Ask Query FT.4.

Impact: IF FT.4=Yes, THEN All Functions. IF FT.4-No, the Only the Command and

Control Function.

Response 2: .0.
Discussion: A NO response can mean one of two things; (1) there is no error detection, or, (2)

there are no standard procedures. If the first is the case, it means that survivability has been

discarded. Therefore, the reliability of all functions must be extremely high to ensure that there are

no errors. This instance of no error detection is ,-'vry rare. The second case implies that each
function performs its own fault tolerance. Again, this would imply that reliability and survivability

requirements for these functions should be moderate. However, without standard procedures,
testing and error correction will be much more difficult As such, thtu software needs to have a
slight increase in maintainability to offset the absence of standard procedures. For functions that
have ground components, Data Communications and Command and Control, this requirement

should have an extreme increase.

Action: Ask Query FT.4

Impact: (1) Reliability +++ (2) Reliability ++

Survivability ++
Maintainability +(+++ for ground components, data

communications, ond cor'mand

and control)

4-30

4.11.2 Query FT.2

Query: Will critical hardware component (power distribution, command and control processor,
communications, etc.) redundancy be employed?

Response 1: YES.
Discussion: Hardware redundancy implies that the mission life of the satellite is probably longer
than were no redundancy employed. This implies that the software needs to be designed for a
longer life-cycle than normal. This impacts reliability, survivability, and maintainability (for Data
Communications and Command and Control ground-based software) over all functions that have
hardware redundancy. Depending upon the nature of the redundancy (N-modular, triple modular,
etc.) and the actual functions where this is applied, the software requirements will vary. A rule of
thumb would be to at least slightly increase the requirements for these three factors across all
functions. Should FT.5 = YES, only the Command and Control function should be affected.
Action: Ask Query FT.8.
Impact: IF FT.5=YES, THEN Only the Command and Control Function. IF FT.5=NO,

THEN All Functions.

Response 2: NO.
Discussion: The absence of hardware redundancy implies that the software will have to perform
even in the presence of hardware failures. The real question is, will the software have to recover
from al hardware failures, or only a select group? Query FT.8 will answer this question. For
now, we can assume that some software recovery is required. Therefore, survivability
requirements need to be slightly increased. This applies to whatever functions are providing fault
tolerance. Query FT.8 will determine if this requirement needs to be augmented.
Action: Ask Query FT.8.
Impact: Survivability + (only functions containing fault tolerance)

4.11.3 Query FT.3

Query: Will critical software routine redundancy be employed?

Response I: YES.

4-31

Discussion: Software redundancy is the use of multiple routines to perform identical functions. A

calculation is a good example. The sine of a number can be calculated by using a routine that uses
the definition of sine (with factorials and all) and another that uses a library function within a given

language and, perhaps, a third which uses the cosine or tangent of the appropriate complementary

angle. The results are compared and the majority answer is taken. If there is no majority, the

software uses the value from the module that has been deemed most accurate or reliable. As this

"polling" process increases the reliability of the calculation, the reliability of each individual module

does not necessarily have to be increased. As such, there is no need to increase or decrease

functional reliability if software redundancy is used.
Action: Ask Query FT.6.

Impact: None.

Response 2: NO.
Discussion: The absence of software redundancy implies that each software module must be more
reliable as it is the only module that performs that specific function. As such, reliability should be
moderately increased. Further, the absence of backup implies that Survivability (on space-based

routine) and maintainability (on ground-based routines) will also be important. Suggest a moderate
increase in these factors as well.

Action: Ask Query FT.6.

Impact: Reliability ++
Survivability ++

Maintainability ++

4.11.4 Query FT.4

Query: Will each software function provide its own fault tolerance procedures?

Response 1: YES.
Discussion: If FT. I = YES, there are no additional requirements. If FT. I = NO, then the
requirements listed in FT. 1, NO response, case (2) apply.

Action: Ask Query FT.2.

Impact: See discussion.

Response 2: NO.

Discussion: If FT. I = YES, ask Query FT.5. If FT. I = NO, assume there is no Survivability.

Enact FT. 1, NO response, case (2) requirements for each function.

4-32

Action: If FT. 1 = YES,

Ask Query FT.5.
Otherwise,

Ask Query FT.2.
Impact: See Discussion.

4.11.5 Query FT.5

Query: Will all fault tolerance responsibility reside with the Command and Control function?

Response 1: YES.
Discussion: FT. 1 = YES, FT.4 = NO, FT.5 = YES. Increase Command and Control

survivability and reliability moderately.
Action: Ask Query FT.2.
Impact: Command and Control

Reliability ++

Survivability ++

Response 2: NO.
Discussion: FT.1 = YES, FT.4 = NO, FT.5 = NO. An unlikely combination. Most likely all
fault tolerance is done by the hardware. Should this occur, software Reliability should be slightly
increased for all functions to aid in hardware operation and availability.
Action: Ask Query FT.2.

Impact: Reiability +

4.11.6 Query FT.6

Query: Are error tolerances specified for all functional input data?

Response 1: YES.
Discussion: This checking feature of the software will help to ensure reliability of results and to
prevert possible software errors due to manipulations on data that are of the wrong type, out of

range, etc. As a result of the addition of this reliability feature, reliability should be slightly
increased. This feature will also enhance the survivability of the software as input that may cause
faults and errors will be detected before processing is commenced. Thus, it is in our best interest

4-33

to increase the survivability of this software slightly to ensure that it operates in the presence of

faults.

Action: Ask Query FT.7.

Impact: Survivability +

Reliability +

Response 2: NO.

Discussion: The absence of input testing indicates that the software must be able to gracefully

handle erroneous input. This implies an increase in survivability to a moderate level. The
reliability of the software is not necessarily affected as, given the erroneous input, how could we

expect the function to give a reasonable answer? Survivability would ensure the software wouldn't

cough too much given the input. Maintainability also arises in those ground-based components. A

slight increase in the ability to locate the source of input error and to perform timely corrections is

required.

Action: Ask Query FT.7.

Impact: Survivability ++

Command and Control Data Communications

Maintainability + Maintainability +

4.11.7 Query FT.7

Query: Are all computational outputs tested to ensure they fall within expected ranges, types, etc.?

This query is very much like FT.6. There is one subtle difference, checking the inputs ensures the

data is appropriate for the function it is about to enter. Checking output ensures the data is

appropriate for the function it just left. One is necessary to ensure software failures will not occur

because of bad input, the other ensures that the function has worked properly. Both features,

however, can be designed and implemented in identical manners. As such, the requirements are

identical.

Response 1: YES.

Discussion: See FT.6, YES response.

Action: Ask Query FT.10.

Impact: Survivability +

Reliability +

4-34

Response 2: NO.

Discussion: See FT.6, NO response.

Action: Ask Query FT.10.

Impact: Survivability ++

Command and Control Data Communications

Maintainability + Maintainability +

4.11.8 Query FT.8

Query: Should the software provide techniques for recovering from all hardware failures?

Response 1: YES.
Discussion: (1) If FT.2 = YES, the requirements need to be stepped up to a moderate level for all
factors. (2) If FT.2 = NO, survivability levels should be highly increased. The reasoning here is
that the software is the only method of countering hardware failures or errors.

Action: Ask Query FT.3.

Impact: (1) Reliability ++ (2) Survivability ++

Survivability ++
Maintainability ++

Response 2: NO.
Discussion: (1) If FT.2 = YES, no change from the FT.2 requirements. There is hardware
redundancy and the software only has to counter some hardware faults; (2) If FT.2 = NO, there is
also no change from the FT.2 requirements. There is no hardware redundancy and the software
only has to counter some hardware faults. Obviously, certain hardware faults may prove fatal as
there are no recovery procedures. This is probably a cost/benefit decision.

Action: Ask Query FT.3.

Impact: None.

4.11.9 Query FT.9

Query: Should the software provide alternative methods for onboard message routing should

normal communication channels fail?

Response 1: YES.

4-35

Discussion: There needs to be spare message channels on-board the platform to ensure the

interface between functions should a failure exist. This feature would prevent the isolation of one

function from the remainder of the system. This would obviously improve the software

survivability. As such, this feature needs to be survivable in and of itself to a slight degree.
Maintainability would not be an issue as the communication links previously discussed provide

spare channels for the ground-based portions of the Data Communications and Command and

Control functions. Additionally, reliability needs to be slightly increased to ensure the successful

switch from a failed channel to an alternate channel.

Action: None.

Impact: Reliability +

Survivability +

Response 2: NO.

Discussion: In the presence of communication failures and no alternate channels, the interface

between functions is doomed. An extreme increase in the survivability of the software is required

to prevent these failures from interrupting system operation. If hardware redundancy is employed

(FT.2 = YES), this survivability requirement can be reduced to a moderate level as the redundancy

provides a hardware backup.

Action: None.

Impact: Survivability +++ (++ if redundant hardware employed)

4.11.10 Query FT.10

Query: Does the satellite have a "watchdog timer" that determines the probability of satisfactory

functional execution?

Response 1: YES.

Discussion: This is yet another method for preventing error or fault manifestation. A time limit is

set for execution. If a result has been produced within this space of time, no error checking is
performed. Should the processing time be greater than this range, there is a possibility of the

software stuck in an endless loop, inadvertant jump in the program counter, etc. If this situation

occurs, then a process such as that in Query FT.7 would be employed. The accuracy and

reliability of this thinng feature, however, needs to be assured so as to only call upon the test

routines when necessary. Constant invocation of a checking routine could add considerable time to
the overall processing time which could prove crucial depending upon the timeliness requirements

of the data being checked. Further, the survivability and maintainability of this watchdog timer

4-36

routine is required to ensure the availability and operation of the routine. For all three factors, a

moderate increase is required.

Action: None.

Impact: Survivability ++
Reliability ++

Maintainability ++

Response 2: NO.
Discussion: Given a checking routine such as in Query FT.7, and the absence of this watchdog

timer, the efficiency of the software most likely needs to be increased moderately. Why? Those

other routines take time and they may seriously impact processing time. Increasing the efficiency

of the code to permit faster average processing times will enable those test routines to offer a true

benefit.

Action: None.

Impact: Efficiency ++

4.12 High-Order Language

Given the way in which satellite systems are developed and the need for satellite software to be
adaptable, the use of a high-order language is one of the most important contributors to this

adaptability requirement. Use of a high-order language enhances program modularity, generality,

self-descriptiveness, simplicity, functionality, and independence. These attributes add to the
maintainability, expandability, reusability, reliability, and survivability of the system. Employing a
high-order language in the development of system software might not require the software to

possess these quality factors, but it will add to the overall system quality.

4.12.1 Query HOL.1

Query: Will the software be developed in a high-order computer language such as JOVIAL,

FORTRAN, or Ada?

Response 1: YES.

Discussion: The use of a high-order language (HOL) does not impact the requirements of the

software.

Action: Ask Query HOL.2.

Impact: None.

4-37

Response 2: NO.

Discussion: The use of a language other than an HOL (assembly, machine) does not aid in the

attainment of the software quality factor criterion of modularity, generality, self-descriptiveness,

simplicity, or independence. As such, there is a need for the software to compensate for these

missing qualities that an HOL would provide. Therefore, the requirements for maintainability,

survivability, reusability, reliability, and expandability all need to be increased to a moderate

degree. This will ensure that the software will possess the same levels of these factors as code

written in an HOL.
Action: Ask Query HOL.5.

Impact: Survivability ++

Reusability ++

Maintainability ++

Reliability -+

Expandability ++

4.12.2 Query HOL.2

Query: Will a compiler be used to optimize machine code size and execution speed?

Response 1: YES.
Discussion: A compiler that optimizes code takes inefficient HOL code and turns it into efficient

machine code. As such, the efficiency is a concern.

Action: Ask Query HOL.3.

Impact: Efficiency ++

Response 2: NO.

Discussion: A compiler that does not optimize machine code implies that the HOL code needs to be

fairly efficient on its own accord. Therefore, the requirement for software efficiency is minimal.

Action: Ask Query HOL.3.

Impact: None

4.12.3 Query HOL.3

Query: Will the compiler produce machine code for a processor that is currently space-qualified?

4-38

Response 1: YES.
Discussion: This response does not impact the software quality factors.

Action: Ask Query HOL.4.
Impact: None.

Response 2: NO.
Discussion: Two reasons a compiler might be used that produces machine code for a non-space

qualified processor are:

(1) The code will be run on a ground-based processor, or
(2) Space qualification for the processor is pending.

The first of these instances does not cause any adverse impact on the software quality. The second
instance does, however. A processor that has not been successfully operated in a space

environment presents a high risk to the satellite's development. The risks may, however, be

reasonable given the processor's capability above those currently available. In any case, the

reliability, survivability, and efficiency or the software should be increased to offset the unknown

quantities of the processor. A moderate requirement should be sufficient.
Action: Ask Query HOL.3.!.

Impact: None.

4.12.4 Query HOL.3.1

Query: Is the processor ground-based?

Response 1: YES.
Discussion: No impact as previously discussed.

Action: Ask Query HOL.4.

Impact: None.

Response 2: NO.
Discussion: Moderate impact to reliability, survivability and efficiency as previously discussed.

Action: Ask Query HOL.4.

Impact: Reliability ++
Survivability ++
Efficiency ++

4-39

4.12.5 Query HOL.4

Query: Will a standard subsets of the high-order languag: be utilized so as to minimize the need

for development of specialty host processors?
'4

Response 1: YES.
Discussion: No impact on the software quality.
Action: Ask Query HOL.5.
Impact: None.

Response 2: NO.
Discussion: Implications are the same as those of Query HOL.3.1, NO response.

Action: -Ask Query HOL.5.
Impact: Reliability ++

Survivability ++
Efficiency ++

4.12.6 Query HOL.5

Query: If assembly code is used, will the assembly code be for a processor that is currently space-

qualified?

Response 1: YES.

Discussion: No impact.
Action: Ask Query HOL.6.

Impact: None.

Response 2: NO.
Discussion: As with Query HOL.3, an additional query needs to be added that would determine if

the processor was ground-based or space-based.
Action: Ask Query HOL.5. 1.

Impact: None.

Response 3: NOT USED.
Discussion: Assembly language is not used.

4-40

Action: If HOL.1 = YES,

Ask Query HOL.7.

Otherwise, Ask Query HOL.6.
Impact: None.

4.12.7 Query HOL.5.1

Query: Is the processor ground-based?

Response 1: YES.
Discussion: No impact.

Action: Ask Query HOL.6.
Impact: None.

Response 2: NO.
Discussion: Much like that for Query HOL.3.1, NO response. Since we're talking assembly
language, reusability and expandability requirements may be needed as well. If HOL. 1 = YES,
then both HOL and assembly languages are being used. If this is the case, expandability and
reusability requirements should be moderately increased on those functions using assembly
language.

Action: If HOL.1 = YES,

Ask Query HOL.7.

Otherwise Ask Query HOL.6.
Impact: (1) Reliability ++

Survivability ++
Efficiency ++

If HOL.1 = YES,
case (1) requirements above, plus,

Reusability ++

Expandability ++

4.12.8 Query HOL.6

Query: Will all satellite function software be developed using identical languages and subsets

thereof?

4-41

Response 1: YES.

Discussion: This is the preferred scenario as far as minimizing the impact on the software quality

factors. There is no significant impact.

Action: Ask Query HOL.7.

Impact: None.

Response 2: NO.
Discussion: The use of different languages and/or subsets thereof take away the inherent

maintainability, expandability, and reusability characteristics that would be present were one subset
or language used. As such, these factors should be slightly increased to insure necessary software

quality.

Action: Ask Query HOL.7.

Impact: Expandability +

Maintainability +

Reusability +

4.12.9 Query HOL.7

Query: Will the language employed contain inherent fault tolerance detection and recovery

capabilities such as Ada's exception handling?

Response 1: YES.
Discussion: This will make the implementation of software reliability and survivability easier, but,

it does not impact the need for these factors.

Action: Ask Query IC.1.

Impact: None.

Response 2: NO.
Discussion: The absence of inherent fault tolerance features within the programming language puts
an added requirement on the software -- that of providing those fault tolerance procedures the
language does not possess. Working in C would be a nightmare here because there is no type

checking whatsoever, as one example. Again, however, we get into the bind where the need to
manually provide a feature doesn't necessarily mean the quality factor the feature will enhance is

required by the feature. In this case, it is suggested that reliability and survivability requirements
be slightly increased per our section 4.7.1 discussion.

4-42

Action: Ask Query IC.1.
Impact: Reliability +

Survivability +

4.13 Interface Complexity

4.13.1 Query IC.A

Query: Are the inputs, outputs, and processing functions clearly defined for all software

functions?

Response 1: YES.

Discussion: One would hope that the answer to this question would be YES. A clearly defined

description of functional activities and expected inputs and outputs adds tremendously to overall

correctness of the final code, as well as its testing, verification, and maintenance. It also adds to

the subsequent expansion and reuse of the code as its purpose, process, and data are all

meticulously documented. While this process does contribute to code quality, there is no direct

code quality requirements that this process specifies.

Action: Ask Query IC.2

Impact: None.

Response 2: NO.

Discussion: While this situation is not conducive to the development of reliable, survivable,

efficient, maintainable, or correct code, it is also the situation where the best design is usually not

implemented correctly. It is difficult enough to adequately develop code when the design is

detailed and documented. When the design is sketchy and the doctullentation incomplete the

problems are even more extreme. Where this is the case, at least a moderate increase in each of

these factors for whichever functions are impacted is required. We can add expandability and

reusability to this as we have already set th- precedeice of adaptability quality factors, and, next to

using an HOL, a detailed design and full documentation is the next best activity in assuring

software adaptability.

4-43

Action: Ask Query IC.2.

Impact Reliability ++
Survivability ++

Efficiency ++
Maintainability ++
Correctness ++
Expandability ++

Reusability ++

4.13.2 Query IC.2

Query: Are there methods for operational testing of function interfaces to verify data content and

format?

Response 1: YES.
Discussion: As a software feature that enhances system Reliability and Survivability, we can place

a slight increase on the Command and Control software for these quality factors. As most of these
interfaces will be located on-board the satellite, Maintainability is not an issue.
Action: Ask Query IC.3.

Impact: Command and Control

Survivability +
Reliability -

Response 2: NO.
Discussicn: No operational testing would imply that these interfaces must be thoroughly tested and

ve-ified prior to deployment. Command and Control survivability and reliability should be
increased moderately to insure their proper operation.

Action: Ask Query IC.3.

Impact: Command and Control

Survivability ++

Reliability 4+

4.13.3 Query IC.3

Query: Have all software function interfaces been standardized?

4-44

Response 1: YES.

Discussion: Once again, an attractive attribute of the software but it doesn't impactthe software
quality factors. It does add to the correctness and maintainability of the interface software but does

not imply a variation in the requirements for software quality.

Action: Ask Query IC.4.

Impact: None.

Response 2: NO.
Discussion: This implies that the interface between each software function is unique. This would

impact correctness and maintainability in that the assurance that tle interfaces conform to standards

and specifications is doubtful, at best, and the uniqueness of the interfaces will prevent the normal

learning curve to apply to the detection and correction of interface errors as each interface is

different. As such, correctness and maintainability requirements need to be increased slightly.

Action: Ask Query IC.4.

Impact: Correctness +

Maintainability +

4.13.4 Query IC.4

Query: Are there methods for the Command and Control function to authenticate/verify receipt of

messages to/from other software functions?

Response 1: YES.

Discussion: The authentication and verification process here is very similar to that performed on

commands received from the ground sites. Commands still need to be verified in terms of the
sender/receiver, the verification that the message received/sent is appropriate /correct, and, in the

case of receipt from the Data Communications component, the command received is from an
authorized user. The reliability of this software needs to be moderately increased to assure the

proper performance of this feature. Incorrect operation could lead to catastrophic errors or system

failure. Additionally, survivability and maintainability are impacted as the operation of this

software in the presence of errors and faults, as well as the timely detection and correction of these

errors and faults, is highly desired. A moderate increase in these factors is necessary.

Action: Ask Query IC.5.

Impact: Command and Control

Reliability ++
Survivability ++

4-45

Maintainability ++

Response 2: NO.
Discussion: The absence of procedures to authenticate/verify messages/commands within the

Command and Control function implies that there must be extreme software reliability and

survivability within this function. This is to ensure that any errors in message generation do not

significantly impact the individual functions. Similarly, ground-based Command and Control

activities need to increase maintainability requirements to a moderate level to ensure timely

detection and correction of errors.

Action: Ask Query IC.5.

Impact: Command and Control

Reliability ++

Survivability +++

Maintainability ++

4.13.5 Query IC.5

Query: Have the functional interfaces been designed in a manner to permit minimal data transfer

time and optimal processing efficiency?

Response 1: YES.

Discussion: This feature greatly benefits the efficiency of the functional interfaces. This has most

likely been achieved through the use of assembly language routines (noted for fast processing

speeds) or an optimizing HOL compiler. In either case, the software must possess some degree of

efficiency above the norm. While this is different from the Query HOL.2 analysis -- the question

there specifically stated that an optimizing compiler was used. If that question has been answered

YES, then these requirements would coincide with the Query HOL.2, YES response. Otherwise,

a slight increase in efficiency, as previously stated, is required.

Action: Ask Query IC.6.

Impact: If HOL.2 = YES

then No Impact

Otherwise,

Efficiency +.

Response 2: NO.

4-46

Discussion: Optimal processing times are usually critical in the fulfillment of space missions,
especially where surveillance and communications are of concern. A design that has not optimized

the functional interfaces is most likely relying on highly reliable and highly efficient software to do

it for them. As such, the requirements for these factors should be at an extremely high level. This

will ensure the requirements for timely mission data are delivered and that there is ample exchange

of information within the system to make this timeliness possible.

Action: Ask Query IC.6.

Impact: If HOL.2 = YES

then Reliability ++
Efficiency +.

Otherwise,
Reliability +++

Efficiency +++.

4.13.6 Query TC.6

Query: Are there methods for recovering data that is lost due to a software interface failure?

Response 1: YES.
Discussion: If methods are available for recovering data it probably means that there is some kind

of back-up memory which stores commands, data, etc. There is probably a limit on the number of

commands/pieces of information that can be stored, with the older pieces of information being lost

as new information is saved. This would permit, upon reconfiguration, the regeneration of the

history back-up. Each function would need to maintain their own backup to ensure that commands

that have already been acted upon are not regenerated. The methods for backing up, reconfiguring,

and ensuring data recovery need to be reliabie. Probably no more reliability is required than would
normally be implemented. The efficient storage and accessing of the data, however, is most

definitely required. This would permit the storage of the maximum number of

commands/information possible which would greatly aid in the overall system survivability. As

such, efficiency requirements should be moderately increased. Likewise, survivability

requirements should be slightly increased.
Action: Ask Query IC.7.

Impact: Efficiency ++

Survivability +

Response 2: NO.

4-47

Discussion: The impact of absence of methods for recovering lost data is severe. Operational

capability of the platform is in severe jeopardy. Reliability, survivability, and maintainability all

need to be increased significantly. This will minimize the probability of interface failures and data

loss, while increasing the probability of operation in the presence of faults and timely detection,

correction, and recovery from these errors/faults.

Action: Ask Query IC.7.

Impact: Reliability +++

Survivability +++

Maintainability +..

4.14 Movable/Adjustable Subsystems

4.14.1 Query MAS.

Query: Are the mission, power, and communication requirements such that the attitude of the

platform must be within strict tolerances in order for proper subsystem operation?

Response 1: YES.

Discussion: When platform attitude needs to be kept within strict tolerances, certain activities are

implied. First, there will be many attitude adjustments. This implies a need for greater Attitude

Control reliability. Second, more engine firing will be required to accommodate these extra

adjustments. This means an increase in Propulsion efficiency and reliability, per our discussions

with Bum Time. Requirements for each of these are identical to Query BT.2, NO response.

Action: Ask Query MAS.2.

Impact: Attitude Control Propulsion

Reliability ++ Reliability ++

Efficiency +

Response 2: NO.

Discussion: There is no need for increased Propulsion reliability or efficiency. There would,

however, be additional requirements placed upon the Power and Data Communications functions

in that they must be able to perform their functions when not necessarily in an optimum

configuration. This would entail a slight increase in efficiency and reliability to ensure the

optimum use of the hardware resources and the successful completion of their mission under

adverse circumstances.

Action: Ask Query MAS.2.

4-48

Impact: Power Data Communications

Reliability + Reliability +

Efficiency + Efficiency +

4.14.2 Query MAS.7

Query: Will there be methods or procedures that ensure the continuation of mechanically steered
antennas and electronically steered mechanism functions in the event of their failure?

Response 1: YES.

Discussion: For mechanically steered antennas and the requirement for strict platform attitude

tolerances (MAS.1 = YES), a failure to the mechanisms that adjust these antennas could prove

catastrophic. The most logical choices for the continuation of operations is either through
hardware redundancy or, for software failures, ground generated commands that specifically task

the Attitude Control function to move antennas, thus, perhaps, bypassing the failed module.

Hardware redundancy, in this instance, has no direct impact on software requirements. Ground

generated commands that "manually" maneuver these antennas do have impacts on software

requirements. Software procedures that detect and analyze hardware and software failures need to
be highly reliable. This would include any procedure within the Command and Control or Attitude

Control functions that perform this activity. Additionally, there could be movable portions of the

Power, Propulsion, or Data Communications functions that may not operate properly and would

need to contain procedures to detect these failures. As such, maintainability (error detection),

survivability (continuation of operation), and reliability need to be moderately increased to assure

the combined operation of these functions.

Action: None

Impact: Reliability +4-

Maintainability ++

Survivability ++

Response 2: NO.

Discussion: Without defimed procedures and methods of countering these failures, we must insure

they do not happen. Hardware failure prevention is beyond the realm of software capabilities.

Software failures, however, are not. Features such as input/output checking, timing constraints,

software redundancy, etc. need to be employed to eliminate the probability of these errors

occurring. This implies a high degree of Reliability, Survivability, and Maintainability in the

system software.

4-49

Action: None

Impact: Reliability +++

Maintainability +++

Survivability +++

4.13 Meaory Utilizatioi/lanagement

4.15.1 Query MU.1

Query: Are there software procedures that will ensure the minimization of data loss due to memory

failure?

Response 1: YES.

Discussion: The simplest procedure to ensure minimization of data loss is to back-up the data in

various locations and to periodically update this back-up. This problem is very similar to Query
IC.6, except this is at the data level rather than the command level. These procedures will enhance

the reliability and survivability of the system and, as such, these factors should be slightly

increased. Additionally, software efficiency is needed to a moderate degree to compensate for the

increased execution time needed to maintain data backups.
Action: Ask Query MU.2.
Impact: Reliability +

Survivability +

Efficiency ++

Response 2: NO.

Discussion: Without procedures to ensure the minimization of data loss to memory failure, we

must again rely on the hardware not to fail. There is no impact on software requirements.

Action: Ask Query MU.2.

Impact: None.

4.15.2 Query MU.2

Query: Will there be any software fault detection and recovery techniques used to specifically

detect main memory failure and to provide restoration?

Response 1: YES.

4-50

Discussion: These procedures will most likely resemble those diagnostic routines that prepare,
check, and verify RAM and disk storage space on a PC. These routines are inherently survivable.
They detect errors and permit memory storage to continue, but do need to be moderately reliable in
order to ensure data is not stored in what has been determined to be a bad sector or address of

RAM.

Action: Ask Query MU.3.
Impact: Reliability 4+

Response 2: NO.
Discussion: No real impact to the software. This implies that the hardware needs to be highly

reliable.

Action: Ask Query MU.3.

Impact: None.

4.15.3 Query MU.3

Query: Is the storage of redundant files minimized throughout the system?

Response 1: YES.

Discussion: Assuming this minimization has not been done at the expense of ensuring reliable
back-up, this would indicate the software needs to be moderately efficient in its back-up
procedures. In addition, this procedure needs to be moderately reliable to ensure the data back-up

is not compromised.

Action: None.

Impact: Efficiency ++

Reliability ++

Response 2: NO.
Discussion: A memory hog. Software efficiency should be significantly increased to help in the

reduction of the redundant files. Other software factors are not impacted.

Action: None.

Impact: Efficiency +..

4-51

0

4.16 Orbital Characteristics

4.16.1 Query OC.3

Query: Have the communications capabilities been optimized for a specific orbital altitude and

inclination?

Response 1: YES.

Discussion: There is no impact to software quality.
Action: Ask Query OC.4.
Impact: None.

Response 2: NO.
Discussion: If the communication capabilities have not been optimized for this specified orbit,
there may be periods where communication between ground and satellite or between satellite and
satellite may be difficult, if not impossible. The impossible is tough to correct with software, the
difficult can become more probable if we ensure the availability and operation of the
communication software. This implies that the reliability, survivability, maintainability, and
efficiency of the Data Communications function be developed at a moderate increase over normal
requirements. While this addition to the software's quality may not ease the difficulty of some
transmissions, it should aid in those cases where the function is performing at the outer fringes of
its capability. Whether the cost of achieving this additional capability is worth the benefit of having
it remains to be seen.
Action: Ask Query OC.4.
Impact: Data Communications

Survivability ++

Reliability ++

Maintainability ++

Efficiency ++

4-52

4.17 Processing Capabilities

4.17.1 Query PC.1

Query: Will there be any on-board processing of mission data?

Response 1: YES.

Discussion: On-board processing of mission data implies an extra requirement for the Command

and Control function -- data processing. This not only impacts the Command and Control

function, but also the Data Communications function. With processed data now being

downlinked, encryption will surely be used. The processing of mission data implies a need for the

processed data to accurately reflect the contents of the unprocessed data. As such, reliability of the

software that processes this data is important. Likewise, the survivability of this software is

crucial. Processing speed and efficiency are also important as this processed data usually has some

timeliness associated with it. After all, that's why the processing is done on-board.

Action: Ask Query PC.2.

Impact: Command & Control / Data Communications

Reliability ++

Survivability ++

Response 2: NO.

Discussion: There is no impact upon the software quality.

Action: Ask Query PC.2.

Impact: None.

4.17.2 Query PC.2

Query: Will each function have its own processing capability, as opposed to the Command and

Control function accomplishing all processing?

Response 1: YES.

Discussion: Implies processing within each function. No additional software requirements.

Action: None.

Impact: None.

4-53

Response 2: NO.
Discussion: This implies centralized processing and would require a moderate increase in

Command and Control efficiency, reliability, survivability, and maintainability.
Action: None.
Impact: Command and Control

Survivability ++
Reliability ++

Maintainability ++

Efficiency ++

4.18 Power Sources

4.18.1 Query PS.1

Query: Are there means to operate the system should the main power source fail?

Response 1: YES.

Discussion: If the main power source should fail, there may be additional battery capacity to
permit the satellite to continue operations until either the main power source is restored or these
extra batteries are drained. As this deals with an extra hardware resource, the efficiency of the
Power function should be moderately increased. As there may be power back-ups for each of the
individual functions, the efficiency of all functions should be increased slightly.

Action: Ask Query PS.2.
Impact: Power All Other Functions

Efficiency ++ Efficiency +

Response 2: NO.
Discussion: The absence of a power source back-up implies the power source should have a high
probability of availability and operation -- this implies high reliability, survivability, and efficiency

of the Power function.
Action: Ask Query PS.2.
Impact: Power

Efficiency +++

Reliability +++

Survivability +++

4-54

4.18.2 Query PS.2

Query: Are there methods for dissipating excess energy so as to minimize enemy detection and

tracking which may be used to direct threats against the satellite?

Response 1: YES.
Discussion: If the excess heat is dissipated in an efficient manner, there should be no added threat
to the system from enemy attack. This dissipation of excess energy implies a very efficient cooling
system is in place for the Propulsion and/or Power functions. As this dissipation is crucial to the
survivability of the platform and to the performance of the satellite's mission, survivability of the
software needs to be extremely high.

Action: Ask Query PS.3.
Impact: Propulsion/Power

Efficiency +++

Reliability +++

Survivability +++

Response 2: NO.
Discussion: If there is no heat dissipation capability, it is because it is not needed -- i.e., the
natural dissipation of heat in the space environment is sufficient to ensure proper operation and
non-illumination of the platform. There are no added requirements placed upon the software's

quality.
Action: Ask Query PS.3.
Impact: None.

4.18.3 Query PS.3

Query: What is the source of the platform's electrical power?

Response 1: SOLAR.
Discussion: A method of power generation that has been used on numerous satellites over the
course of 30-odd years of satellite development. No additional software requirements are

necessary.
Action: Ask Query PS.4.
Impact: None.

4-55

Response 2: NUCLEAR.
Discussion: Very similar to the OTHER response to FL.2. Heat dissipation becomes a

tremendous problem and our experience with this type of power generation in space is very

limited. Requirements are as in FL.2, OTHER response.

Action: Ask Query PS.4.
Impact: Propulsion Power

Reliability +++ Reliability +++

Survivability +++ Survivability +++

Maintainability ++ Maintainability ++

Efficiency +4-i

Response 3: BATTERIES ONLY.

Discussion: Batteries that cannot be recharged are used on small, short life-cycle satellites for very

specific, many times highly classified, missions. This ensures little or no heat dissipation and very

efficient, reliable operation. When the batteries are discharged, the mission is over. No additional

software requirements are needed.
Action: Ask Query PS.4.

Impact: None.

4.18.4 Query Ps.4

Query: Are there methods for continuing power distribution to a function in the event of a failure

to the main method of distribution?

Response 1: YES.
Discussion: Operating in the presence of errors or failures implies increased software survivability

- to a moderate degree in this case. There is also a hardware component of this back-up

distribution process. This would indicate a requirement for slightly increased efficiency to ensure
optimal management of these back-up resources.

Action: None.

Impact: Power

Efficiency +

Survivability ++

Response 2: NO.

4-56

Discussion: As in other stated cases, no back-ups mean higher reliability, survivability, and
efficiency in the main systems. A significant increase is necessary due to the importance of the
Power function to the overall mission of the satellite.

Action: None.

Impact: Propulsion

Efficiency +++

Reliability +++

Survivability +++

4.19 Testing

4.19.1 Query TE.1

Query: Will the software perform tests (e.g. Built-In Tests (BIT)) to assure on-board hardware

operation and availability?

Response 1: YES.
Discussion: There will be software diagnostics to assess the status and health of the function
hardware. This feature will ensure the reliability of the satellite functions and augment the
survivability and maintainability of the function. The reliability of these diagnostic routines is
important to their proper functioning, which in turn ensures the detection of errors, potential
situations where failures may occur, and aid in the correction of these problems. Therefore,
software reliability needs to be moderately increased. The operation of these diagnostics in the
presence of errors is also important. The survivability needs to be increased moderately.

Action: Ask Query TE.3.
Impact: Reliability ++

Survivability ++

Response 2: NO.
Discussion: The absence of software initiated tests for all functions (or only some of the functions)
presents a tremendous void in assuring the reliable, survivable, and efficient operation of the
function hardware. For functions not containing testing procedures, these three factors need to be

significantly increased to ensure the continuous operation of the function hardware and software.

Action: None.
Impact: Reliability +.

Survivability +++

4-57

Ffficiency +++

4.19.2 Query TE.2
Query: Will the softare be developed in such a manner as to permit modular testing?

Response 1: YES.
Discussion: This has no impact on software quality.
Action: Ask Query TE.4.
Impact. None.

Response 2: NO.
Discussion: This implies that the software needs to be redesigned or that the test plan needs to be
rethought. There are DoD standards and, most likely, contract specifications which will require
modular testing. This obviously impacts software correctness, as wel! as maintainability. If only
system testing is allowed, module maintenance will be a nightmare. Correctness and

maintainability requirements need to be significantly increased.

Action: Ask Query TE.4.

Impact: Correctness +++

Maintainability +i1++

4.19.3 Query TE.3

If Query TE. I = NO, skip this Query.

Query: Will there be software procedures that will correct those discrepancies discovered during

on-board testing?

Respoonse 1: YES.

Discussion: Rather than actually "correct those discrepancies", the software will literally permit
operation in spite of them. This obviously requires a tremendous level of software survivability.

Other factors are not directly influenced.

Action: Ask Query TE.4.

Impact: Survivability +++

Response 2: NO.

Discussion: There are no additional requirements.

4-58

Action: Ask Query TE.4.
Impact: None.

4.19.4 Query TE.4

Query: Has source code been thoroughly inspected and evaluated in order to reduce the redundancy
by maximizing the use of macros, procedures, and functions?

Response 1: YES.
Discussion: No additional software requirements.

Action: None.
Impact: None.

Response 2: NO.
Discussion: This indicates that a comprehensive software review has not been accomplished. This
impacts the correctness of the code. Additionally, unless the modularity of the code is optimized,
maintainability, survivability, reliability, reuseability, and expandability are impacted. The only
requirement of the software that this response implies, however, is a moderate increase in
correctness. The other system factors benefit from correct code.

Action: None.
Impactt: Correctness +++

4-59

V. Conclusions and Recommendations

5.0 Conclusions

The main objective of this study was to build a baseline knowledge base for ASQS. Towards this

objective, five Air Force mission areas were reviewed and two specific software types, Intelligence
System and Satellite System were investigated. Domain specific knowledge was captured through

expert interviews and research, the salient system characteristics were analyzed, and estimates were

made on their quality impacts within the context of the Software Quality Framework.

The five Air Force mission areas, Avionics, Armament, Missile-Space, C3 and Force-Mission

Management, were examined as part of the Mission Area Analysis (MAA). A schema of missions

and system categories (software types) was created based on Air Force product divisions such as

Space Division, Electronics Systems Division, etc. and the types of systems they develop or

manage.

The MAA uncovered two significant points. First, the five mission areas could be reduced to four.

Force-Mission Management is a command and control mission which from a software perspective,

is functionally similar to a C3 system. Second, the five mission areas include a the large number of

systems with different software characteristics that ASQS must address. From a knowledge

acquisition standpoint, it is a sizeable domain to be examined. This posed several problems to
include access and availability of domain experts, the amount of financial and personnel resources

required to capture and validate the data, and the overall quality of the knowledge base. For these

reasons, this analysis was reduced to the two software types, Satellite Systems and Intelligence

Systems.

Notional architectures were developed for the generic projects under the intelligence and satellite

systems. A-level, and to a limited degree, B-level specifications were reviewed to create the generic

projects for a given software type. Based on the notional architectures, domain experts addressed

the software quality issues but generally only at the system level. This reflected a general lack of

understanding and experience with the Software Quality Framework. Because of this, rules

linking functional and mission characteristics to software quality factors were primarily derived

from interpretation of the expert or research data. No standard quality specification process was

uncovered in this analysis.

5-1

The satellite and intelligence systems software analysis produced suggested rules and queries. The
rules were divided into Class I (characteristic to factor) and Class H (characteristic to characteristic)
rules. The queries are questions presented to a user when additional information is needed by
ASQS to conclude a functional characteristic or a factor requirement. Two approaches were used.
The first was to develop Class I rules, followed by the Class II rules, and then the related queries.
This approach was best for processes that were well-defined such as a risk index computation for
determining computer security levels. The second was to develop queries that have software
quality implications and then derive the rules. This approach was appropriate when there was no
consensus on a process to decide the factor requirement (e.g., portability) but there was some
evidence to suggest a rule. A majority of the framework factors seemed to fit this category.

Establishing their requirements was more an arbitrary process then a systematic one.

5. 1 Recommendations

The purpose of ASQS is to transition the concept of software quality into practical use. Much
effort has been placed in developing the expert interface, but the greater problem is the knowledge
base and its acquisition. For ASQS to be successful, it not only must overcome the difficulties in
representing key elements of a quality process, it also must define those elements. The Software
Quality Framework is suppose to define quality, but a lack of validation and general use has failed
to make it an industry or DoD accepted standard.

The future of ASQS is tied to the Framework or possibly another quality specification and
measurement process. In either case, knowledge acquisition must be conducted in conjunction with
a development program with free access to the experts, their design process, and development
environment. Such an effort would have the greatest chance of identifying the key requirements
and design decisions that impact software quality.

5-2

LIST OF REFERENCES

Air Force Space Command, Electronic Systems Division, Granite Sentry Phase I System
SW ification, GS-SS-01-87-1 1, Draft, November 1987.

Abrams, M.D., Schaen, S.I., .and Schwartz, M.W., Strawman Trusted Network
Itrretatin Environments Guideline, Proceedings of the 1 th National Computer
Security Conference, October 1988.

Baker, E. and V.L Cooper, Transitioning Software Ouality Metrics Into General Use,
Unpublished paper, September 1987.

Bowen, T.P, Wigle, G.B., and Tsai, J.T., Specification of Software Ouality Attributes
Software Oualiy Evaluation Gd Rome Air Development Center, Report
No. RADC-TR-85-37, Vol. El, February 1985.

Bowen, T.P, Wigle, G.B., and Tsai, J.T., Specification of Software Ouality Attributes
Software Quality Spification GUidebo, Rome Air Development Center, Report
No. RADC-TR-85-37, Vol. H, February 1985.

Defense Communication Agency, Muliple Satellite System Speification, Draft, February
1987.

Department of Defense-Computer Security Center, Technical Rationale Behind CSC-STD-
004-85: Computer Security Requirements, CSC-STD-004-85, June 1985.

Department of Defense-Computer Security Center, Trusted C puter System Evaluation
CrjcAL DoD-5200.28-STD, December, 1985.

Johnson, H.L.and Layne, Modeling Security Risk in Networks. Proceedings of the 1 Ith
National Computer Security Conference, October 1988.

Koss, W.E., The Selection and Management of Software Prototyps, Air Force Space
Division, Report No. DoD-VA946-PM-89-1, March 1989.

Landwehr, C.E. and H.O. Lubbes, Determining Security Requirments for Complex
Systems with the Orange Book, Proceedings of the 8th National Computer Security
Conference, September 1985.

Landwehr, C.E. and H.O. Lubbes, An Approach to Determining Computer Security
Requirements for Nav Systems. Naval Research Laboratory Report No. 8897,
May 1985.

Lubofsky, M and Koss, W.E., Evaluation Criteria for the Review of Software
Reouirements and Cmuter Prog=a Development S ocifications, Air Force
Systems Command Space Division, Los Angeles, CA., October 1987.

Nugent, W, Computer Security Considerations for a Tactical Army System. Proceedings
of the 11 th National Computer Security Conference, October 1988.

Presson, E., Software Test Handbook Software Test Guidebook Rome Air Development
Center, Rome, NY., Report No. RADC-TR-84-53, Vol. I, March 1984.

R-1

Space and Naval Warfare Systems Command, OSIS Baseline Up1grade (OBU) Security
Architecure PD60-MO1 125, December 1988.

Space and Naval Warfare Systems Command, OSIS Baseline Uperade (OBU ProgmM
lesignl Sgecifd~flgmm Design Document. PD60-S00960, August 1988.

Space and Naval Warfare Systems Command, OSIS Baseline Upgrade (OBUD Software
Rconiremengs SecificatinL PD60-SO1 105, April 1988.

Strategic Defense Initiative Office, SDI System Reauirements and Rationale, CDRL Item
B003, Contract MDA903-85-C-0068, February 1988.

Strategic Defense Initiative Office, Allocated Functional RJuirements, CDRL Item B004,
Contract MDA903-85-C-0068, Februar 1988.

R-2

PREFACE

To provide a focus, and develop meaningful results for this effort, it was necessary to
develop top-level notional (functional) architectures for the Air Force Mission Areas.
These mission area notional architectures provide a top level allocation of mission area
functions. They are presented in this appendix in an "outline" format and correspond to the
hierarchical formats presented in Sections 3 and 4.

These notional architectures are composites, developed by ATI from multiple Air Force,
Navy, DOD, and NASA system specifications. The notional architectures are designed to
be generic, that is, they are designed to be representative of multiple systems. A
primary discriminator in the selection of the top level functions was the commonality of
functions (consensus) among the different systems.

The goal of the notional architectures is to provide a standardized starting
place/methodology that can be readily expanded for specific systems. These notional
architectures were developed to a level that will allow users to have a strong *stepping-
off" point, without burdening them with excessive detail that could preclude effective
detailed functional allocations. The notional architectures are contained in the following
pages of this appendix.

A-1

ARMAMENT

Range Systems
Representative Projects: Defensive and Offensive Radar

Tactical Threat Systems
Strategic Threat Systems
Advanced Threat Systems
Targeting and Tracking Systems
Electronic Countermeasures

Guided Weapon Systems
Representative Projects: Advanced Medium Range Air-to-Air Missiles

Remotely Piloted Vehicle
Generic RPV

Mission Management
Preflight Plannng

Data Input
Data Update
Data Validation

Communications
Uplink Management
Downlink Management

raining
Flight Dynamics Simulation
Interact Image Simulation

Maintenance
Recovery
Console Operation
Fault Detection
Fault Location
Emergency Procedures

Mission Execution
Flight Execution

As Planned
Deviation from Plan
Handoff
Lost Link
Cued Landmark

Waypoint
Dead Reckoning
Operator Directed
Preplanned

Maneuver
Circle
Racetrack
Figure Eight
Manual

Payload Management
Rcennaissanc

Scene Tracking
Offset Scene Tracking
Target Tracking
Offset Target Tracking
Passive Ranging
Cued Target

A-2

ARMAMENT

Area Search

Burst Correction
Laser Ranging

Laser Ranging
Detect Laser Reflected EnerComute Azimuth and Elevator Commands

Target Designation
Generic Air-to-Air Missile

Preflight Checkout and Initialization
Ensure that all the elements (sensors, processors, warhead, communcations, electronic
counter measures/electronic counter-countermeasures [ECM/ECCM] are in full operating
condition, with measured checkout values falling within tolerance limits. This process also
involves inserting target acquisition data pertinent to navigation/guidance and to formulating
terminal engagement tactics. How navigation/guidance and terminal engagement data are
acquired, how and when they are inserted into the missile and the intrinsic quality of the
data determine the degree of a missile', smartness.

Navigation and Guidance
This function is performed with respect to self-contained (inertial) reference or with respect
to external references such as stars or terrain features; or navigation satellites, ground
beacons or ground based navigational networks.

Engagement Tactics and Counter-counter Measures (CCM)
Sating, Arming and Fusing
Missile-borne Sensors

Sensor Fuzed Weapons
Representative Projects: Proximity Detector Fuzes

Laser Guided Bombs
Generic Fuze

Built-In-Test1/0 Test
ROM Test

Checksum Operation
Timer Test
RAMTes
Graphics
Trajectory Calculation
Performance and Statistics Calculation
Trajectory Calculation Algorithms
Analog-to-Digital Conversion
Telemetry (discrete and continuous)
Front End Formatting and Filtering

A-3

AVIONICS

Aircraft Software
Representative Projects: Multirole Fighter Trainer Aixvaft

Bomber
Generic Multirole Fighter

Control and Display Management
Head-U Display

Project Collimated Symbology
Disla Flight Information
Display Navigational Steering Info
Display Weapon Delivery InfoDigital D3islav Indicators

Store Mgmt Info
Caution and Advisory Info
Built-In-Test Info
Sensor InfoHorizonta Indicato

Uop-Front Control
Autopilot
IFF
TACAN
Instrument Landing System
ADF
Data Link

Status Monitoring
Built-n-Tet

Store Fail Indications
Signal Data Recording

Aircraft Fatigue Strain Data
Engine Parameter Data
Target Parameter Data

Electronic Flight Controls
Roll and Pitch Control
AulgiQk
Automatic Throttle Control
SalLWamiag
Navigation and Flight Aids
Inertial Navigation

Ground Alignment
General Navigation Data

Air Data Conute
Provide Pressure Altitude
Determine Mach Number
Calculate True Airspeed

Maetic AzimuthD
Communication, Radio Navigation, and Identification
Threat aring

Voice Alerting System
Audio Alerts

Secur Voice Communcation
Interrogation Receipt and ResponseAirborne Vectoring

Bearing and Range Caluculation
Stores Management

A-4

AVIONICS

Perform M&a=o Invent=r
Perform Wea-n Status-
Perform Weapon Seltion
Perform Weaoo Release

Rack/Launcher Lock/Unlock Operation
Electronic Warfare
Detect and Decieve Fire Control and Guidance Radars
Dispense Chaff. Flare and Jammer Payloads
Tbreat DeteQtion and Supession
Tactical Sensors
Radar Se

Target Detection
Target Designation
Target Tracking
Target Navigation

Forwared Looing Infrared Set
Selectable Fields-Of-View Target Detection/TrackingLaser Spot Tracker/Strike Camer
Laser Illuminated Detection
Laser Illuminated Tracking

Test Equipment Software

Generic ATE

Flightline Test Equipment

Intermediate Shop Test Equipment

Depot Test Equipment

Operaing System

SujQo Software

Compilers/Interpreters

Assemblers

Linkers

Loaders

Control Software

Signal Generators

Unit Under Test MUT

A-5

AVIONICS

Activate Control Software

Measure Response
Training Simulator Software

Generic Aircraft Trainer

Real World Modules

Engine

Weapons Systems

Rotor

Fuselage Characteristics

Cockpit Displays and Instruments

Pilot Symboloy

Fuel System

Hydraulic System

Landing Gear System

Communication System

Navigation System

Human Interface

Motion cues to the pilot

Visual cues to the pilot

Aerodynamic forces and equations of motion

A-6

AVIONICS

System Control and Environment Modules

Executive Module

Global Database

Dic nteralface

Processing Units

Memory Units

Communication Links

Evaluation or Data gathering Modules

Data Collection and Reduction

Pilot Evaluation

Video and Digital Data Recording

Test Scenarios

Sampling Rates

Data Storage

Part Task Trainers

Weapon System Trainers
Flight Controls Software
Representative Projects: Primary Avionics Software System (PASS)

Generic Flight Controls

User Interface

System Control

Guidance Navigation and Control

Vehicle System Management

A-7

AVIONICS

Vehicle Systems Checkout

Flight Computer Operating System

Reconnaissance and Electronic Warfare Svsterr.

Generic Reconnaissance and EW

A-8

COMMAND, CONTROL AND COMMUNICATONS

Strategic C3 Systems
Representative Projects: Force Management Information System

Granite Sentry

Generic Command and Control System
System Monitor and Control
Status Monitoring and Peporting

Error Messages
Performance Montoring and Reporting
Restart and Recovery
Analyst Interaction
Word Processing Interface
Graphics Display
Grphics Int'raction
Function Select
Display and Sound Alarms
Message Handling
Message Deliver
Message Accountability
Message Receipt
Message Validation
Communications
Maintain Communication Status
Perform Data Integrity Checks
Security
Test and Exercise
Receive and Process Exercise Messages
Generate and Record Exercise Messages
Message Scenario Generation
Simulate Interceptor Status
Post Exercise Playback and Analysis

Intelligence Systems and C3 Countermeasures
Representative Projects: SAC On-line Analysis and Retrieval System

Intelligence Data Handling System
Automated Message Handling System

Generic Intelligence System
Message Processing
Communications Handling

TTY Handler
Data Communications Handler
Asynchronous Protocol Handler
Synchornous Protocol Handler

Message Input Processing
Security and Format Identification
Process Contact Messages/Reports
Process Query/Response Message
Process Narrative Message
Message and Security Logging

Message Output Process
Routing Process
Message Formatter
Secure Processing Check

Data Fusion/Correlation

A-9

COMMAND, CONTROL AND COMMUNICATONS

Automatic Corrlation
Alert Routing
Ambiguity Routing
Dynamic Updates
Recovery
Status Logging

Data Fusion/Coreation Aids

Review and Evaluation
Ambiguily Processing-
S tatistical Calculation
Computational Aids
Time/S ed/istanee Calculaton
Projection and Interception
Intelligence Data Base Management
Sensor Characteristics Data Base Manazemeat
Platform Technical Characteristics Data Base Mgmt
Record Message File Data Base Mgt
History of Coverage Data Base Mgmt

Situation Assessment
Re=mr Generation
Crhteria File Management
Analysis Su=~r
Area Mae&Cent
Threat ManagementTred Analysi

Knowledge Based Aids
Collection Management
User Require-ments Input and Display
User Requirements File Maintenance (Store. Retrieve. Modify)
User Request Review
Sensor Reference Data Review
Sensor Selection

Manual
Automatic
Tasking Request Generation
Selection Algorithm Replacement

Tasking Status Review
Alert to Revisit Tasking

Tasking Message Gereration
Manual
AutomaticRe=r Generation
Preformatted
Ad-hoc

User-System Interface
Workstation Executive

Batch chedulingLogin/lo&out Control

Word Processing Interface

Graphic Sceen Annotpaio

A-10

COMMAND, CONTROL AND COMMUNICATONS

GmpbiG Lib=~
Ahanurneric Diapav
System Monitor and Control

Master Controller
Slave Controller
Network Controller
Interactive Controller

Data Processing Control
Process Scheduler
Queue Manager

System Logging
System Status and Statistics Display
Security Audit Trail Log Reporting
Status of Communicaton Lines
Performance Instrumentation

Nework Communications
Message Router
Network Communications Services
Task Authorization

Distributed File Managmen
File Transfer
File Print

Recovry
Node Recovery
Node Restart/Reconfiguration
Standalone Workstation Recoe
Processing Recovery
Recovery from Process Abort
Operation Recovery
Recovery from Disk Failure
External Communications Link Recovery
Network Communicatons Link Recovery

System Software
Data Access Utilities

DBMS Interface
DBMS Load Utility
Archive
Restore
File Management
Data Access Security

DBMS
Operating System Software

Tactical C3 Systems
Representative Projects: JTIDS

Airborne Warning and Control
Systems (AWACS)

Airborne Battlefield Command and
Control Center (ABCC)

WWMCCS

Generic Tactical C3

A-11

COMMAND, CONTROL AND COMMUNICATONS

Surveillence

IQmcn
Active and passive tracking

Identification friend or foe
Data Display and Control
W9aon asigment ad control
Air defense, artiller

Ar traffic control
DeQvent ontrol
Data ProcessingExecutive

Program management
Schedule execution sequence of comp prog components
Failure recovery
ErrordtctQn
Er .ransin
System reconfiguration

Sui~llence
Update azimuth, time, attitude, and navigation ref data
Evaluate radar and IFF reports
Perform association and correlation
DisWlay targt meors
Update flight plans
Identify and monitor tracks
Initialize track data
Select the prope" sensor data for smoothing
Test for target manuevers
Smooth sensor inforation
Deerine track Quality
Predict target position. size, velocity

Wea"on

Controlled ai
Executive
Uv~date controlled aircrft parareter
Select and organize command infornation
Manage computer communciation oo
Tactics and profile selectSelect mission =oile narmeters
Monitor mission ;oress and guidance computations
GuidanceSolve inter c euations

Air defense artiller
Exchange track and command information with Army Air Defense
Command posts.

Comunications
TADIL-A interupt processing
Interrut pmcessing of TADIL-A
Perform net controller functions
Schedules transmission ofTADIL-A messages
Encoder
Encode track. summary. and operational status data

A-12

COMMAND, CONTROL AND COMMUNICATONS

Transfer to the output buffer
Sechedule messages for transmission
Prepare TADIL-C messages
Control time of TADIL-C message transmission
Decoder

UDiaiaka
Display executive
Display intiaizatin
Determine displav capacity alerts. alarms. console assignments. and presentation
Schedule sitatuation and tabular displav generators
Sensor display
Convert sensor reports and strobes into symbols
Update the sensor history buffer
Format data for display
Situation display
Transform system data into symbols. alphanumerics, coordinates, lines and circles
Address display data to consoles
Tabular display
Update and generate tabular dislays
Interrogate data base
Extract data
Process and format data

Presentation line generation
Processing control
Switch action processing
Switch action implementation

Internal Simulations
Message generation
Exercise tape processing
Flight simulation
Radar and IFF reiorts
Positional updating
Radar ECM-activit
Automaticu ng

Batle aff
Mission monitoring
Process data from the command/battle staff data base
Alarms and monitoring
Check of anomalies in mission profiles
Late arrivals
Flight path deviations
Data base management

Reallocate drum SpaceReriedaa

Special application processing

Communications
System Maintenace Control
CommunicationsExternal and internal commniations

Secure voice and data transmission/reception

A-13

COMMAND, CONTROL AND COMMUNICATONS

Console-to-console communications
Flightcrew intercom
Maintenance intercom

UHF. VHF/AM and TDMA relay
TA Ir
Navigation and Guidance
Command

The command function includes both onboard command functions and those assigned by
higher authority relative to external elements.

SuDrvision of internal opgrations
Re-source managemet
Threat assessment
Air defense battle progress assessment
Monitor/evaluate offensive air
Direct E-3A aircraft
Report to external elementsPlan air ogrations
Support
Daa nxrng
Simulation and excercise

Advanced Decision Systems
Representative Projects: MAC Command & Control Information Processing

System

Generic Advanced Decision System
Warning
Situation Monitoring
Evaluation
Situation Assessment
Decision-Making and Support
Force Management
Force and Resource Monitoring
Operations Planning and Scheduling
Frce Em lomentMomni g
Order and Mission InstMuctions
Battle Management/Reconstitution
Emloyment and Execution of Forces (Initial & Reconstituted)
Holities Termination

A-14

MISSILE/SPACE

Satellite Communications and Ground Control
Representative Projects: Air Force Satellite Control Network

Consolidated Space Operations
Center

NAVSTAR Global Positioning
System

Satellite Early Warning System

Generic Satellite
Command and Control
Fault Detection and Correction

Determine State-of-Health Status
Determine Payload Status

CoLmand Decoding and Generation
Receive level and timing interrupts
Preprocess data as input
Perform intermediate processing

Command decoding
Error re%=
Generate commands for subsystems and telemetry as output

Telemenr Modulatod Demodulation
Command detection
Telemetry modulation
Transmit
Receive
Perform Antenna Pointing

Record Flieht Data
Attitude Control
Orbit Adjust/Thruster ControlSense orientation
Maintain stibiliw

Propulsion
Power
Distribution and generation
Monitor and control battery chare
Automatic load shedding
Data Communications
Execute Routing and Congestion Control
Perform Link-Level Control

Establish Link
Perform Link Access Control
AccoImmodate variable length Rackets

Prioritize demand assig nt
Multiplex link control data
Perform Link Error Control
.Aknowled Le/Retransnission Error Protocol
Link TerminationPriority Preemption

Minimm Linlk Quality Threshold
Radio Range Time
Link Synchronization
Clock Synchronization

A-15

MISSILE/SPACE

Link Quality Monitoring
Measure Signal to Noise Ratio
Bit and Packet Error Rate Measurement
Link Flow Control
Link Addressing
Perform Enrio
Perform Packet Transmission/Reception
Demodulme and Decode Packet
Perform Baseband Store and Forward Processing
Inspect Packet Address
Apply Routing Rules

Generic Ground Control
Telemetry
Tracking
Receive ranging data
Obtain antenna azimuth and elevation data
Transmit rang& tones

Determine phase shift
Calculate slant range

Command

Space Vehicle Systems
Representive Projects: Space Shuttle

Generic Space Transportation System
Primary Mission SensorsVehicle, Acouisition and Tracldng

Earth Observations

Launch Vehicle Systems
Representative Projects: Atlas

Titan
Payload Assist Module
Inertial Upper Stage

Generic Launch Vehicle
Prelaunch Checkout and Countdown
Telemetry and TrackingCritical Performancee Data
Rceive/Decode Destructnfma
GuidanceReceive Target and Tjetor Spcifieations
Conute Reo~uired Velbgitv Vector
Send Steering Commands
Send Thrust Termination Signal
Navigation
Inertial Naviation

Strap-down Inertial

Cgopute Total Acceleration
Q==ut velocity
Comute Position

A-16

MISSILE/SPACE

Output to Guidance Computer
Gimble-Angle Readout

Cornute Total Acceleration
Con-ute yeiogiy
Comute Position
Oumut to Display Device

Control
Launch Traject Control

Guidance
Cmute Posi gity and Acceleration
Thrust Termination
Vehicle Inspection
Vehicle Control

IglitionControl
Orbital Flight Control

Spin Stabilization
Attitude Control
Altitude Control
Programmed/Velocity
Inertial
RendezvousPassive
Actve
Re-Entry
Prored/Veloci Cutff

Transmit
Receive
Measure Signal Phase Shifts
Measure Signal Time Delay

Data Management

Data Transmiss'ic
Signal Procsn
Communications
Propulsion

Defense and Surveillance Systems
Representative Projects: SDI

Generic Surveillence System
Surveillance, Acquisition and Track

Filter Out Background
Receive Image or SignalConvert to Coordinates

Conare with Background
Filter Sensor Data
Separate by Sensor Type
Determine Observation- TI
Costruct Object Tv= Emtt

A-17

MISSILE/SPACE

Store Object Type Entry
Associate Observation with TrackCorrlate Data to Track
Undat Track Entry

Correlate Unknown ObservationsCorrelate Obiect to O -ct
Prioritize Sensor for Observation Data
Cor 1s New Track Entry

Determine Initial Trajectory

Improve Trajectory
Refine Trajectory
Compare with Other TracksCom=ar Track LocationU~date Missile Track

Predict TrajectoryGenerate Obseration Window
Determine Impact Point
Determine Sensor Coverage

Task Sensor
Determine Dat Requird

Determine Sensor
Generate Sensor Search Commands
Receive Handover

Identif Objec
Convert to System Units
Compare with Known Data
Compare with Previous Data
Request Object Tracking
Task for Discrimination
Detemnine Disgimination Method
Determine Discriminator and Senso
Generate Discriminator Commands

Assess Objects for Genera Threat
Determine Type of General Threat
Prepare Target Data
Prepare Resource Threat

A-18

