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FLOWFIELD OF A LIFTING HOVERING ROTOR—A NAVIER-STOKES SIMULATION

SUMMARY

‘The viscous, three-dimensional flow field of a lifting helicopter rotor in hover is calculated
by using an upwind, implicit, finite-difference numerical method for solving the thin layer Navier-
Stokes equations. The induced effects of the wake, including the interaction of tip vortices with
successive blades, are calculated as a part of the overall flowfield solution without using any ad hoc
wake models. Comparison of the numerical results for the subsonic and transonic conditions show
good agreement with the experimental data and with the previously published Navier-Stokes calcu-
lations using a simple wake model. Some comparisons with Euler calculations are also presented,
along with some discussions of the grid refinement studies.

INTRODUCTION

The accurate numerical simulation of the flowfield of a lifting helicopter rotor continues to
be onc of the most complex and challenging problems of applied acrodynamics. This is true in
spite of the availability of the present day supercomputers of Cray-2 class and improved numerical
algorithms. However, many advances have been made to date with the use of simpler set of equa-
tions of fluid motion, such as the potential flow equations, to model these complex flowfields. The
equations have been simplified by coupling the solution scheme with an empirical wake model to
bring in the influence of the vortex wake. Solution schemes that use this idea are often grouped
under methods using wake models and cncompass the potential flow (refs. 1-5), the Euler (refs. 6-
8) and the Navier-Stokes methods (refs. 9-12). In contrast to these methods that use ad hoc wake
model« there arc methods that compute the essential details of the induced effects of vortex wake
asa “ the overall flowficld solution. These are called the wake capturing schemes and have
been nstrated for the solutions of the: potential flow (ref. 13), the Euler (refs. 14-17) and the
Navier-o:okes equations (ref. 18).

The basic assumptions of potential flow methods restrict their application to low supercritical
speads without the use of entropy comections. Despite this feature, the potential flow methods. cou-
pled with a wake modeling, have been very useful in the industrial environment for design analysis
(refs. 2-5). On the other hand, the Euler equations contain the essential physics to describe convec-
tion of vortical flows and do not have the restriction on the Mach number. But they still lack the
essential ingredicnts to model the separated flows and inviscid-viscous interactions associated with
shock-induced separated flows. Nevertheless, the Euler methods have been used to model these
complex vortical flows by coupling with wake models (refs. 6-8) as in potential flow methods. But
the major drawback of these metnods is that they have proven to be more expensive in comparison
to the potential flow methods.

Even Navier-Stnkes methods (refs. 9-12) have been coupled with wake models to calculate
these complex flows. Although these methods capture viscous effects adequately, they remain
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limited by the wake modeling, which tends to be restricted to simpie geometries and planforms. In
general, a niajor disadvantage of these methods which use wake modeling is that the technique of
prescribing ¢ wake has 10 be specialized for each blade shape and planform and therefore cannot
easily handle arbitrary blade shapes with twist or taper.

‘Therefore, the weak link in the above wake-coupled methodologies has been the wake mod-
eling. In contrast to the methods using wake modeling, several schemes have attempted to capture
the wake and its effect as a part of the overall solution scheme. These methods range in complexity
from potential flow methods (ref. 13) to a Navier-Stokes method (ref. 18). All of these inviscid
methods (refs. 13-17) wilize finite-volume formulation for the solution methd, Of these different
wake capturing schemes, the potential flow scheme of Ramachandran et al. (ref. 13) appeors 10 be
the most accurate. All of the Euler methods appear to compute the flow in the tip region reason-
ably well. However, the inviscid methods still Jack the ability to capture accurately the formation
of a tightly-braided tip vortex structure, and therefore, the accuracy of the computed wake and
tip-vortex core may be questionable,

The purpose of this study is to develop a calculation method for the solution of Navier-Stokes
equations for the complete flowficld of a lifting rotor, including the wake and its induced effects.
‘The vortex wake and its effects are capiured as a part of the complete flowlield, and thus no arbitrary
inputs are necessary to describe the wake, Although this is not very differens in concept from
the Euler wake-capture schemes discussed above, the Navier-Stokes approach was needed for the
following reasons: 1) better tip-flow simulation, which involves resolving the blade-tip separation
and the formation of a concentrated tip voriex, 2) accurate simulation of strong viscous-inviscid
interaction involving shock induced separation at high blade tip speeds and high collective pitch
conditions, and 3) future modeling of retreating blade and dynamic stall regimes in forward flight.

The numerical code used in this study is an improvement of the version that was developed
previously in related swudies with wake modeiing (ref. 9). One fundamental difference of the new
numerical scheme is the use of Roe’s upwinding in all three direcuons (ref. 19). This feature, cou-
pled with a simplified left-hand-side, has produced an efficient and accurate numerical scheme.
These additional changes in the Navier-Stokes algorithm are based on some of the numerical pro-
cedures described in reference 20 and will be described briefly in the following sections.

The first author (GRS) would like to acknowledge the support of this research by the U.S.
Army Research Office under Contracts DAAL03-88-C-0006 and DAAL03-90-C-0013. Computa-
tional time was provided by the Applied Computational Fluids Branch of NASA Ames Rescarch
Center.

GOVERNING EQUATIONS

The governing differential equations are the thin layer Navier-Stokes equations. These can be
written it conservation-law form in a generalized body-conforming curvilinear coordinate system
as follows (ref. 21):

8,Q+ E +0,F+ 3,6 = ﬁ%ac.? (1)




where T = t, £ = {(z,y,2,t), n = n(z,y,2,t) and { = ((z,y,2,¢). The coordinate system
(z,¥,2,0) is auachcdlothcblulc(secﬁg 1). The veciorof conscn'cdquammch and the inviscid
flux vectors B, F, and § are given by
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where H = (¢ + p) and ¢ = 0 or 1 for the Euler or the Navier-Stokes equations, respectively. In
these equations, U, V, and W are the contravariant velocity components defined, for example, as
U=§+ &u + v+ §w. The Cartesian velocity components are represented by u, v, and w
and the density, pressure, and the total energy per unit volume by p, p, and e, respectively. The
characteristic length and velocity scales are the rotor blade chord and the ambiznt sound speed, and
p and p are nondimensionalized by their respective ambient values. The quantities &g, €, & &y
etc. are the coordinate transformation metrics and J is the Jacobian of the transtormation. For the
thin layer approximation used here, the viscous flux vector S is given by

0
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where Re is the Reynolds number, Pr is the Prandtl number, - is the ratio of specific heats, and a

is the speed of sound. The fluid pressure, p is related to the conservative flow variables, Q through
the nondimensional equation of state for a perfect gas,

(a®)

p=(ry—-l){e—-§(u2+uz+w2)} (4)

For turbulent viscous flows, the viscosity coeficient p in S is computed as the sum of g+ g
where the laminar viscosity, gy, is estimated using Sutherland’s law and the turbulent viscosity, u;,
is evaluated using the Baldwin-Lomax algebraic eddy viscosity model (ref. 22).




NUMFRICAL ALGORITHM

A finite-difference, upwind, numerical algorithm is developed for the helicopter rotor appli-
cations. The evaluation of the inviscid fluxes is based on an upwind-biased flux-difference split-
ting scheme for the right-hand side while an LU-SGS (Lower-Lpper - Symmetric Gauss-3eidel)
scheme, suggested by Jameson and Yoon (refs. 23 and 24), is used for the implicit operator. The van
Leer MUSCL (monotone upstream-centered scheme for the conservative laws) approach (ref. 25)
is used 10 evaluate the conservative variables to obtain the second- or third-order accuracy with
flux limiters 0 as to be TVD (total variation diminishing). The upwind-biased scheme used on the
right-hand side was originally suggested by Roe (ref. 26 ) and laier extended to three-dimensional
flows by Vatsa et al, (ref. 19). The chief advantage of using upwinding is that it climinates the ad-
dition of explicit sumerical dissipation and is known to produce less dissipative solution (ref. 19).
This feature, coupled with a fine grid description in the tip region, increases the accuracy of the
wike simulation. A similar algorithm was used in the finite-volume Euler scheme of reference 17
10 investigate the exact same problem studied here.

The space-discretized form of the differential equation, equation 1, is

5 E‘i#} "EJ‘—} _ ﬁh} - ﬁk-§

0.Q = - Afﬁ i 5
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A Re Al

where §, k, and [ correspond to the €, 0, and ¢ coordinate directions, respectively.

The application of Roe's upwinding (ref. 19) to the numerical flux of the inviscid terms results
in the locally one-dimensional form and can be written, ¢.g., in the € direction, as

B(Qu. Q. (VE/D) o) =5 U B(QR,(VE/D) o) + B(Qu.(VE/DY0p)
- lA(QL)QR) (velj)j+i.)|(QR - Ql:)]

(6)

where A is the Roe-averaged Jacobian matrix and Qy, and Qp are the left and right state variables.
The scheme degenerates to the first-order accuracy if Q;, = Q; and Qg = Qj41. Higher-order
schemes can be constructed from a one-parameter family of interpolations for the primitive vari-
ables, p, u, v, w, and p. For example,

pr={1+ %{[(1 - )V +(1+£)A)}p;

pr={1 - B+ )+ (1= A Loy

where V and A are backward and forward difference operators, and » is a parameter that contols
the construction of higher-order differencing schemes. For example, to construct the third-order
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scheme in the present method, x = :}. Koren's differentiable limiter (ref. 27) is used. The limiter
¥ is calculated as
3VpsApi+ ¢

- 7
Vi 2(Ap; — Vp))T + 3Vp;Ap; + ¢ N

where a small constant, typically ¢ = 10-¢, is added to prevent the division by zero. Similar
formulae are used for the other primitive variables. The viscous flux terms are discretized using
second-order central-differencing (ref. 21).

The time marching integration procedure uses the LU-SGS method. The details of this scheme
are described elsewhere (ref. 20). ‘The final form of this algorithm can be written for a first-order
time accurate scheme as .

LDUAQ" = ~AtRHS" (8)

where

L=1—AtA |ju+BtVEA* — AtB™|ju1+ AtV,B* - ALC™|juy + ALV C*
D=(I+AUA* = A+ B* = B+ 8" =) |jual™
U=1+AtA jur+ AtAeA™ + AtB* i1+ 818,87 + AtC* |jup + AtAC-

where At is the time step, RHS represents the discretized steady state terms, e. g., equation 5, and
nrefers to the current time-level. Also, A* = %(A +0¢), A" = %(A —ag).0¢ = [U| + are + ¢,

e = 0.01 typically, and 7¢ = \/ £ + f,,z + £,2. As aresult of the simplified form of the Jacobian

terms, e.g., A*, the block diagonal matrix D reduces to a scalar diagonal matrix. Thus this method
requires only two (one forward and one backward) sweeps with scalar inversions and leads to less
factorization error. Lastly, additional source terms have been introduced to account for the rotation
of the blades because of the blade-fixed coordinate system used here.

The present numerical scheme uses a finite-volume method for calculating the metrics. The
chief advantage of such a formulation is that the metrics, including the time metrics, can be formed
accurately (ref. 28), and this approach captures the free-stream accurately (ref. 17). To be compati-
ble with the present finite-difference numerical scheme, the metrics are evaluated at the grid nodes
instead of the cell centers of a standard finite-volume method (ref. 20). Also, the time metrics are
evaluated in the same manner as in a finite-difference scheme, which is less expensive compu-
tationally than rigorous evaluation of the time metrics. However, free-stream subtraction is then
required to restore accuracy to the time-metric terms.

The flowfield of a hovering rotor is initially quiescent (ref. 29) and the evolution of the flow-
ficld is monitored as the blade is set in motion. To take advantage of the quasi-steady nature of
the hovering rotor flowfield, a locally-varying time step is used in the integration procedure to
accelerate convergence, as suggested in reference 30.
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Grids and Boundary Conditions

Body-conforming grids were generated for the rotor blades using an elliptic solver. Because of
the cylindrical nature of the flow of a havering rotor, a C-H cylindrical grid topology was chosen,
as in reference 17. In contrast to the experimental model rotor that has a square tip, the present
numerical scheme approximates this as a bevel tip because of the H-topology of the grid in that
direction (scc ref, 31).

The standard viscous grids used here had 217 grid points in the wrap around (along the chord)
direction with 144 points on the body, 71 points in the spanwise (radial) direction with 55 points
on the blade surface, and 61 points in the normal direction. The grid was clustered near the leading
and trailing edges and near the tip region to resolve the tip vortex. It was also clustered in the
normal direction (o resolve the viscous flow near the blade surface. There are about 15 points in
the boundary layer with a spacing of the first grid point from the surface equal to 5x10=5§ chord
(that translates 10 a y* = O(1)). A coarse grid was constructed from this fine viscous grid by
removing every other point in all three directions. The inboard plane near the axis of rotation was
located at a radial station equal to one chord. The grid outer boundaries were set at 8 chords in all
directions. The same grids were used for the Euler calculations.

Figure 1 shows the coarse grid that was used in the computations. Because of the symmetry
of the hovering flow and the periodic boundary condition described below, the calculations could
be performed for only one blade. Figure !a shows the cylindrical nature of the grid in the plane
of the rotor, and figure 1b shows an isometric view of the grid boundary for a single blade. For
clarity, the figure shows only the blade and side boundaries. The bottom surface and other grid line
are omitted. Also shown is the coordinate system, where x is in the chordwise direction, y is in the
radial direction, and z is in the normal direction. The blade motion is counterclockwise,

All the boundary conditions are applicd explicitly. The radial inboard and far-ficld boundaries,
as well as the upper boundary of the cylindrical mesh, are updated by means of a characteristic-
type boundary condition procedure, although the Roe's upwinding used in the numerical procedure
would otherwise treat the boundaries in a 1-D characteristic sens¢ anyway. At the wall a no-slip
boundary condition is used for the viscous calculations. The Euler calculations use an extrapolation
of the contravariant velocities at the surface. The density at the wall is determined by a zeroth-
order extrapolation. The pressure along the body surface is calculated from the normal momentum
relation (see, for example, ref, 21). The total energy is then determined from the equation of state.

To capture the information in the wake region of the blade, a periodicity condition is used
to swap the information, after interpolation, at the front and back boundaries of the cylindrical
grid topology (sce fig. 1b). This is also done in an explicit manner. At the bottom boundary, the
scene of the far-field wake, an approximate condition based on the normal velocity is used. For an
outflow condition, all conserved flow quantities are extrapolated from the grid interior except for
the energy, which is calculated by prescribing the free-stream pressure. For inflow at this boundary,
the free-stream (ambient) conditions are specified.




RESULTS AND DISCUSSION

‘The test cases considered in this study correspond to the experimental model hover test con-
ditions of Caradonna and Tung (Ref. 29). The experimental model consists of a two-bladed rigid
rotor with rectangular-planform blades with no twist or taper. The blades are made of NACA 0012
airfoil sections with an aspect ratio of 6. Three experimental conditions were chosen from among
the data: 1) tip Mach number My, = 0.44, collective pitch 8 = 8°, and the Reynolds number based
on the tip speed, Re = 1.92x 104, 2) My, =0.877,0 = 8% and Re = 3.93% 10¢; and 3) Muip =0.794,
=12°and Re = 3.55x 108,

Fine Grid Navier-Stokes Results

Surface pressures are shown in figures 2-4 for the three experimental conditions considered.
These calculations were done on a fine grid consisting of nearly one million points. Figure 2 shows
the surface pressures for the conditions of My, =0.44, 6 =8° and Re =1.92x 108, Inthis figure, the
present calculations are compared with the experimental data of reference 29 and the results from a
previous Navier-Stokes calculation that used a simple wake model (ref. 9). The present calculations
agree well with the experimental data for all radial sations. There are some improvements in the
results at y/R = 0.50 and 0.96 over the previous results from reference 9. It should be pointed
out that the calculations of reference 9 used a O-O grid topology with nearly 700,000 grid points
having a grid clustering similar to the present grid.

Figure 3 shows a comparison of surface pressures for the condition of M;;, =0.877, 6 =8° and
Re=3.93x10°. Atthis transonic low condition, the present calculations show excellent agreement
with the experimenial data for all radial stations. In contrast to the calculations of reference 9, the
present results show shock locations and shapes that are well captured. The inboard regions of the
flow are also predicted more accurately; this indicates that the present computed wake is superior
to the approximate wake model of reference 9.

Figure 4 shows a comparison of surfuce pressures for the condition of My;, =0.794, 6 = 12° and
Re =3.55%10%, Because of the high collective pitch, this case is more severe in terms of the shock
strength and shock-induced boundary layer separation, even though the tip speed is slightly less
than the previous case. The results show goad agreement of the calculations with the experimental
data, especially near the tip.

Figure 5 shows the extent of shock-induced boundary layer separation for the transonic cases
discussed above. These are delincated as surface particle flow details and are created by releasing
fluid particle tracers at one grid point above the surface and forcing them 1o stay in that plane. Such
a view mimics the surface oil flow details measured in a laboratory experiment. Figure 5a shows
the details of this flow for the case of Mj;p = 0.877 and 6 = 8°. The separation and reattachment
locations are apparent in this figure. It is seen that this flow condition produces a mild shock-
induced separation in the outboard part of the blade. In contrast, the shock-induced separation
and viscous-inviscid interaction are much stronger for the case¢ of My;, = 0.794 and 6 = 12°, The
surface particle flow pattern for this more severe case is shown in figure 5b. As seen, the extent of
the separation is much larger for this flow condition than for the case of figure 5a. It is interesting,




however, 1o note that the scparation patterns in the tip region are approximately the same for these
cases.

A general comparison of the present results with the experimental data can be made by exam-
ining the bound circulation distribution. Figure 6 shows such a plot of dimensionless circulation,
T/Q R?, as function of r/ R for 8 = 8* case and tip speeds of 0.44 and 0.877, corresponding 1o the
data presented in figures 2 and 3. Here r is the radial distance from the rotation axis, R is the radius
of the rotor, Q is the constant angulat velocity of the rotor, and I is the circulation. The integrated
local lift values are used from both the coarse and fine grid calculations to compute the dimension-
less circulation shown in figure 6. Also shown are the integrated data from the experiments, which
were reported to be essentially independent of tip speed. The calculations show a fair agreement
with the experiments, except in the inboard part of the blade. This suggests that only the near-field
cffecis of the tip voriex arc captured as well as desired. There are two possible reasons for the
poor agrecment it he inboard part of the blade. First, the voriex wake becomes diffused in the
far-ficld grid, so its induced effect is significantly diminished. Sccond, the inboard plane boundary
condition may be indequate. In contrast to the experimental observation, the present calculaticns
show some dependency on the blade tip speed.

In the tip region the agreement is also not very good. ‘This may be due to the bevel tip that
is used in the computation compared 10 the square-tipped blade in the expesfments. Overall, how-
ever, the surface pressure distributions appear to agree better wiih the experiments than the bourd-
circulation distribution. Relatively minor discrepancies in the pressure distributions near the lead-
ing edge, where the experimental transducer locations are relatively sparse, scem to translae into
significant differ¢nces in the circulation distribution.

‘The chicf advantage of the Navicr-Stokes methods is to predict the separated flow in the tip
region and the associuted detailed structure of the tip vonex. The prediction of the overall shed-
wake geometry is the most important step in the process of accurate modeling of the complete hover
flowficld. ‘The ability to keep this shed wake (including the vortex structure) intict from diffusing
due 10 the numerical dissipation is a more complex issue. The ability 10 convect this shed wake
without numerical dissipation *stermines if the inflow in the inboard parts of the blade is correct.

Figure 7 shows a near-ficld view of the tip voriex particle path trajectory for the experimental
conditions of My;, =0.794 and 8 = 12° corresponding 10 figure 4. These trajectories are generated
by releasing particles of fluid in the vicinity of the tip of the blade on both surfaces and allowing
them to move freely in time and space. It is apparent from this that the particles released right on
the tip become bruided and stay together in the vicinity of the core. As observed before (ref, 31), the
process of formation of the tip vortex involves braiding of fluid particles from both upper and lower
surface of the blade. As the process of braiding of fluid particles from upper and lower surfuces
continues, the tip vortex lifts up from the upper surface and rolls inboard in the downstream wake.

After idemtifying the fluid particles in the vicinity of the core in figure 7, fewer particles were
released on the tip of the blade in the proximity of the quarter-chord region to trace out a trajectory
of the tip vortex path. Figure 8 show two views of this trajectory. The computed tip vortex trajectory
in space for a single blade is shown in figure 8a. Figure 8b shows a vitw of the tip vortex looking
from the top which highlights the contraction of the wake. The contraction of the wake at 180°
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and 360" azimuthal positions is approximately 12.8% and 18.2% of the radiu?, respectively, in
agrecment with the experimental observation of 12.5% and 17% for this flow condition.

Fine Grid versus Coarse Grid Resule

The results presented in the preceeding sections were calculated on a fine grid of nearly cne
million points. The initial test calculations were made primarily on a coarse Navier-Stokes grid of
109x36x 31 size. This grid was generated by removing cvery other point from the fine grid in all
three directions. The cuter dimensions of the grid and the grid topology are thus the same as for
the pre-ious fine grid.

Figure 9 shows a comparison of surface pressure distributions for the fine and coarse grids
for the experimental condition of My, = 0.877, 6 = 8% and Re = 3.93x10f. It is surprising to
see such good agreement of the coarse grid results overall with those of the fine grid and with
the experiments. In the regions where the shocks are very strong, there are slight differences as
expected. The results inboard of y/ R = 0.50 show a bigger difference as seen from figur; 6. These
quasi-steady results for the coarse grid took about one hour of CPU (central processor unit) time
on the Cray-2 supercomputer.

Euler versus Navier-Stokes Results

Asdiscussed carlier, there have been several attempts (0 capture rotor wakes using Euler meth-
ods (refs. 14-17). The vortex formation in the tip region of a wing or a helicoper Istade is a result
of complex three-dimensional scparated flow, and it is not clear how the Euler smxthods are able to
mimic viscosity and scparation to produce a voriex structure. Nevertheless, iivse Euler methods
have been able to predict the pressure distributions and spanwise blade lexeling reasonably well
for the outer part of the blade. Against this background, a limited comparisen: of surface pressures
has been made for the Euler and Navier-Stokes methods calculated on the sare fine grid of about
onc million points. It may be noted that the Euler version of the code did not exhibit any stability
probiems with this fine Navier-Stokes grid.

A typical comparison of the Euler results with the Navier-Stokes results is presented in fig-
ure 10 for the experimental test condition of My, = 0.877, 6 = 8°, and Re = 3.93x 10, Because it
neglects viscous-inviscid interaction, the Euler method overpredicts the shock wave strength and
position fory/ R > 0.80. Otherwise, the Euler results are in good agreement with the Navier-Stokes
resuits, which show mild shock-induced separation for this flow condition (sce fig. 5a). The over-
all agreement of surface pressures cenainly does not reflect the details of the flow near the blade
surface, especially the separation pattern and voriex wake details as predicted by the Navier-Stokes
method. The details of the wake structure need 10 be investigated, further.

CONCLUSIONS

The lifting hovering rotor flowfield is caleulaied by meuns of an implict, completely upwind,
finite-difference numerical procedure for the solusdon of t5in layer Navier-Stokes equaii 28 using
a cylindricai ©-11 grid topology and body fixed coordinawes. Th., voriey wake and its induced
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effects are captured as a part cf the overall numerical solution by tie use of a periodicity condition,
and the method therefore does not use any ad hoc wake models. The present numerical results
are in good agreement with the experimental data, and they represent an improvement over the
previously published Navier-Stokes results that used a simple wake model, Therefore, the method is
prom;sing. However, several impoctant issues such as drag, power, and the detailed wake geometry
remaia to be examined in detail.

The good agreement of the surface pressures predicted by the Euler method with those of
Navier-Stokes results seems to suggest that the details of surface flow including separation and
tip voriex details are not important foe predicting airloads. This needs further investigation. The
robustness of the present methodology for Euler calculations is also demonstrated. Comparison
of coarse and fine grid results indicate that the farfield wake effects are not as well captured with
coarse grids. The numerical method is fairly efficient and runs at 145 MFLOPS on the Cray-2
supercomputer. The quasi-steady Navier-Stokes calculations presented here for coarse and fine
grids took approximately 1 hour and 15 hours of CPU time, respectively, on this machine.
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Fig. 1 Coarse C-H cylindrical grid topology for a two-bladed rotor; a) view in the plane of the
rotor, and b) isometric view showing the grid boundaries for a single blade.
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Navler-Stokes captured wake resulls — Present
~=== Navier-Stokes prescribed wake results - Ret, 9
& O Experimental data - Ref. 29
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Fig. 2 Comparison of surface pressures for a lifting hovering rotor; My, = 0.44, 6 = 8°, and
Re =1.92 108,




Havier-Stokes captured wake results — Present
==== Navins-Stokes prescribed wake resulis —~ Ref, 9
® O Expurimental data - Rel. 29
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Fig. 3 Comparison of surface pressures for a lifting hovering rotor; Mip = 0877, 0 = 8°, and
Re =3.93x10°,




Navier-Stokes capturad wake resulls - Present
® O Experimental data ~ Ret. 29
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Fig. 4 Comparison of surface pressures for a lifting hovering rotor; My, = 0.794, § = 12°, and
Re =3.55%106.
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Fig. 5 Computed surface particle flow detail highlights the shock-induced boundary layer separa-
tion for the flow conditions of a) M;,, = 0.877, 6 = 8°, and Re =3.93x 105, and b) Mip = 0.794,
9 =12°, and Re =3.55x 106,
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Navier-Stokes fine grid,
------ Navler-Stokes coarse grid
—«— Navler-Stokes line grid
—~— Navier-Stokes coarse.grid

Present

030~ O  Experimenls M5 =0.877
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Fig. 6 Comparison of bound circulation distribution for the case of collective pitch @ = 8° with tip
speeds of My, = 0.44 and 0.877.

Fig. 7 Calculated tip vortex particle flow details showing the near-field view for the condition
Muip =0.794, 0 = 12°, and Re =3.55x 106,
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[

(b)

Fig. 8 Calculated tip vortex trajecotry for the flow conditions of Fig. 7; a) view showing the
captured tip vortex path and its vertical descent, and b) view highlighting the contraction of the

wake.



—— Navler-Stokes caplured wake results - Fine grid (217 > 71 * 61)
-==~ Navler-Stokes captured wake results - Coarse grid (109 ~36 * 31)
® O Experimental data - Ref, 29
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Fig. 9 Comparison of surface pressures with coarse and fine grids for the case of M;,, = 0.877,
0 =8° and Re =3.93x 108,




~—— Nav]cs-Slokes caplured wake resuits — Present
===« Euler cagiured wake results - Prasent
® O Experimental data -~ Rel, 29
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Fig. 10 Comparison of surface pressures for Euler and Navier-Stokes solutions; My, = 0.877,
2 =8° and Re =3.93x 105,

~J
tv




..“!!S.!.\.._ Ragert Docurinidtion Page

fqmes Advauat st

"8 Paroming Orgarizaeon Name ard AGrest

1 Repeet No. 2 Cvanmeni Aeorimon e 2 Feoperis Cataiog N5
NASA T™-102862
SAAYSCOM. ‘IR 8:006 _
.T&SA'QYS,CQA‘LJ}&.DQ&NQ Toserbaa
Flowficld of a Lifiing Hovering Kotor—A Mavier-Siokes Augus: 1990
Simulation ¢ Pasr by Gigoeitason Cood -
"7 Avnoriz) B, Aoty Sopanizanon Regort NO
G. R, Srinivagan,® J. D. Bacder,** S. Obuyashi,’ and AX274
W, J. McCrogkey** 10, Work Unel No.
50360

KN Genext No
Amcs Rescarch Comier, Molfett Fckd, CA 9460351000 and peac o Gt

Aerollighidynarmics Directorase, WS, Anny Aviation Rescarch andd

Technology Activity, A Receh Comer, Mofeu Fiekd, CA 4035100 T3 Typa o Rapont 00 Period Cowered
13 Sponsorng Aguncy Narme and Addreis ‘Technical Memorindum

and U8, Anny Avation Systéms Comimand, St Lows, MO 63101798

H reetnicd 't Ssteenth unpean Rotoveralt Foeurn, Glagaw, Scorland, Spe 18:21, 1990,
P of Conter: G, R. Stinivadn, Amcs Rearch Conier, MS 2380, Molfen Ficld, CA - 40351000
(415) GOR-478 or FIS 461447
*JAL Avociaez, e, **ULS, Anny Acrollighlynamics Diccerorse, US. Anhy Aviaton Research and ‘Tochnology
Acuvity, Afixd Roacarch Conier, Molfott Fickl, CA 40353000, *MCNT Instituie,

16 ABIRACT L ooade

17 “the viscous, three-dimensional flowfickl of « lifting helicopter sotor in hover i3 calculated by using an
upwind, implicit, finite-difference mimencal methad for solving the thin layer Navier-Stakes equations.
‘The induced effects of the wake, inchwding the interuction of[xip vortices with successive blikdes, are
caleulated as u part of the overall Nlowfield solution without using any ad hae wake models. Comparison
of the numerncal resulis for the subsoric and ransonie conditions show good agreement with the experi
mentad dat and with the previously published Navier-Stokes caleulations using a simple wake model,
Some comparisons with Euler caleulations are also presented, nlong with some discussions of the grid
refinement studies. T

17 Key Words (Suggesd by Autor{s]} 18 Distnbuton Statement
Navier-Stokes, Hover, Lifting rotor, Unclassified-Unlimited
‘Transonic, Turbulent flow

Subject Category - 02

19 Sccurity Classit (ol whis repoa) 20 Sceudty Classt {of this page) 21 No. of Paces 22 Price
Unclassified Unclassified 2% AO2

NASA FORM 1626 ocT
For sale by the Nasonal Techncal Informaton Secvice, Sprnghicld, Virginia 22161



