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1.0 INTRODUCTION

Nonlinear structural analyses include materially nonlinear problems such as nonlinear constitutive

equations with small deformations, geometrically nonlinear problems normally associated with

buckling, or a combination of both types of nonlinearities (1). If the tangent stiffness matrix, K, is

defined to include both types of nonlinearities, a limit or bifurcation point is characterized by a

critical state at which the tangent stiffness matrix satisfies the static stability criterion

KCAU C = 0 (1-1)

in which Au c denotes the vector (eigenmode) of displacement increments. Solutions for the

displacement vector beyond critical points are important for describing the failure process and for

making comparisons with experimental data (2, 3).

Most solution schemes for nonlinear problems are based on step-by-step load incrementation and

an iteration procedure to correct for the linearization error. To trace nonlinear response beyond

critical points, several methods have been proposed to circumvent the singularity that appears in the

tangent stiffness matrix. One method is to detect the presence of negative pivots from the

decomposition of K and then replace K c with an expression of the type Kc + 711 with T] > 0 so

that this matrix is "safely" positive definite in the vicinity of critical points (4). A second method

consists of suppressing the iterations around the critical point and reversing the sign of the load

following the appearance of the negative pivot (5, 6). In order to avoid deviating too far from the

equilibrium path, very small load steps have to be used in the range where no iterations are

performed. Because it is extremely difficult to obtain converged solutions around critical points by

simply prescribing external load increments, it has been suggested that the load level become a

function of another variable. Direct displacement control (7), arc-length control (8), self-adaptive

"hyperelastic" constraints (9), and indirect displacement control (10) are designed to provide such a

constraint function through which the load level changes from iteration to iteration. For the case of

snap-through in geometrically nonlinear problems, direct displacement control fails and arc-length

control appears to be a robust procedure. However, for materially nonlinear analyses, a global

norm on incremental displacements as used in arc-control is often less successful due to localization

effects, and it may be more appropriate to employ only one dominant degree of freedom or to omit

some degrees of freedom from the norm of incremental displacements. Such a scheme is often

referred to as one of "indirect displacement control." The disadvantage of modifying the constraint

condition is that the constraint function becomes problem dependent.



Recently, with the increase in interest in softening which is accompanied by localization, the need

for a robust solution strategy has become of paramount importance. Efforts have been made

towards modifying arc-length control so that the constraint equation is sensitive to the change of

state variables -within the localization zone. One modification is to use the eigenvector of the lowest

eigenvalue of the tangent stiffness matrix as a trigger to move the solution from the unstable,

unlocalized path (11, 12). Another one is the minimization of a function of an out-of-balance force

vector to seek a dominant direction and a line search procedure along that direction (4). The line

search method improves the convergence characteristics of arc-length control by introducing a

variable step-length parameter, which scales the usual iterative displacement vector (13). Since

these solution strategies have not been applied routinely to multidimensional problems involving

general constitutive equations, they must be considered as tentative measures in the search for a

general robust scheme. A bett-r mathematical foundation is required for the application of line

search techniques when tracing unstable equilibrium paths, and the issue of appropriate incremental

quantities needs further consideration. It has been pointed out that existing procedures will not

eliminate the difficulties associated with the dependence on increment sizes and on alternative

equilibrium states, although nonlocal constitutive models may reduce the mesh-dependency of

numerical solutions (11).

In general, arc-length control is still commonly used in geometrically nonlinear problems and, with

some modifications, in materially nonlinear analyses since arc-length control can trace the post-peak

response even for snap-through and snap-back problems. Occasionally, lack of convergence is

reported even after the limit or bifurcation point has been traversed. One reason might be due to the

fact that the load increment in the first iteration has to be prescribed according to some condition,

and there is a sign change of the load increment during the transition from the pre-peak to the post-

peak regimes. The choice of sign proves to be very important in calculations, and guidelines for

sign change are discussed by Crisfield (5). The basic idea is that the sign of the load increment

follows that of the previous increment unless the determinant of the tangent stiffness matrix

changes sign, in which case a sign reversal is applied to the load increment. Usually, the L-D-LT

decomposition is used to factor the tangent stiffness matrix. The determinant of K' is equal to the

determinant of the diagonal matrix, D, and the appearance of negative eigenvalues corresponds to

the appearance of negative pivots in the decomposition. Since more than one negative pivot may

appear simultaneously, the sign of each pivot, and not the product of the pivots, must be monitored

to detect the appearance of negative eigenvaues. Unfortunately, numerical calculations involve

finite digit arithmetic, and if the pivots are small, slight perturbations may produce large numerical

errors (14). Therefore, an incorrect conclusion may be inferred with respect to the sign of the load

increment, and the iterative procedure may not converge.
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To circumvent some of these difficulties, and to accommodate the physical feature that softening is
accompanied by localization, an alternative constraint approach is proposed that automatically yields
the appropriate load increment With the use of a suitable measure of strain, the point in the body
with the maximum value of this measure is located at each load step, and an increment in a
combination of the strain components at this point is prescribed. The resulting equations represent
a slight extension to those used previously by Crisfield, de Borst, and their co-workers (5, 10).
However, as illustrated through the solution to model problems in plane strain and plane stress,
such a modification appears to result in a solution scheme from which the complete post-peak
regime is easily obtained.
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2.0 THEORETICAL FORMULATION

Consider a spatially discretized system based on the finite element method in which the vector of
nodal displacements is denoted by u and an increment by Au. With a superscript defining the
element, the incremental strain-nodal displacement relation over an element is given by

Aee = B eAue (2-1)

in which e denotes the strain vector and B relates the strain and nodal displacement components
through a differential operator and interpolation functions. If s denotes the stress vector and C the
continuum tangent stiffness, then the incremental relation between stress and strain is

As = C:Ae (2-2)

If Re represents the domain of an element, then the element tangent stiffness matrix is

K= fBTCBedV (2-3)

Re

in which dV denotes the volume element. The global tangent stiffness matrix, K, is obtained

through a sum of the element contributions.

Only proportional loading will be considered; then the load vector is given by gq in which q is

fixed and g represents the magnitude of the load. For nonlinear problems K depends on u from

geometrical and material nonlinearities of which only the latter will be considered. One method for
obtaining solutions is to solve the incremental equilibrium relation

KAu =Ag.q (2-4)

in which A g is given and

=9 P+A. U =uP+Au K = K(u) (2-5)
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The superscript p denotes the variable at the end of the previous incremental step. Because the

updated stiffness matrix is not known, an iterative procedure is required to obtain a solution. If I is

used as the iteration count, and with u 0 = U , one approach is to solve iteratively

K 118u I= APgq uI= UlI1+ 8u1 K 1-1= K(u, 1 ) (2-6)

umtil a convergence criterion is met. However, for problems in which a limit load and softening are

expected, A gL cannot be prescribed and, instead, must be determined indirectly as part of the

iterative solution procedure. To remove the resulting indeterminacy, a combination of displacement

components and load increment is often prescribed in an "arc control" method, which permits a

solution to be obtained even if the tangent stiffness matrix contains zero or negative eigenvalues. If

this constraint is left open for the moment, such procedures are obtained by recasting (2-6) in the

form

K 1-18U != 8glq + r1 l1  r,_l= gl_lq- JBTs 1 dV
R (2-7)

g1l = R1'-I + 8gl gto =  Lp

in which the residual r1I1 is included to prevent incremental drifting away from the equilibrium

state. This equation is identical to that derived by de Borst (10), but with a different point of view.

However, an alternative form of (2-7) is more common. Let

p 1 = g 0 q - fBTs I-1dV (2-8)
R

Then (2-7) becomes

K I_18u 1 = Ailq + p 1_1  g I= g 0 + Ail (2-9)

At this stage the subincrement in the solution vector is considered to be the sum of two parts:

5



Bu I= Agltuq + au P Au Au + 8u Au0=0
(2-10)

K 8u =q K 8UP= n

With this formulation the proposed method involving total strain control and its relationship to

existing methods can be conveniently described. Conventional arc control methods specify the load

increment in terms of global norms of displacement increments at the current iteration. Modified

methods include contributions to the arc control of the increment in the displacement from the

previous iteration. The basic point, however, is that global norms are used. For problems

involving softening and localization, such norms may not be sensitive enough. Instead it is

proposed here that a "localized" norm be used for this particular class of problem.

With the separation of the displacement increments into the parts given by (2-10), i: follows from

(2-1) that the increment in the strain vector for an element is

Aee= BeAuP + A pB'eAu q  (2-11

Suppose a linear combination of the increments in strain, Ae, is prescribed. Define an element

constraint vector ce such that

Ae = ce Ae' (2-12)

Since AuP = Bu 7 = 0 for I = 1 if the convergence criterion is satisfied at the end of the previous

increment, and since (2-12) is to be fixed throughout the load step, then the load increment. A 4j1 .

must satisfy the following equation:

6



Ae for I = 1
A CT BceSUq

(2-13)
cCTBCSU P

I

AI '=- T BCSu for I> 1
¢ e TB eBu q

I

For a general problem, it is logical to choose the governing element to which the constraint is to be

applied as that element which has experienced the most distortion as reflected through a suitable

norm of strain. For problems in which softening is a possibility, the critical element will be the one

that first reaches the limit state, and this element is usually the one that continues to be critical

because it softens the most. The use of (2-13), with the increment, Ae, always assumed to be of

the same sign for consecutive load steps, avoids the difficulties associated with a singular tangent

stiffness matrix at the limit load and with multiple negative eigenvalues in the post-peak regime.

Rots (15) proposed a similar approach with a constraint condition involving the displacement

components on either side of an active crack. However, ae prescribes A IJ. instead of the crack

opening displacement in the first iteration. As a result there is a potential problem involving the

monitoring of negative pivots for transitioning critical points. With the proposed approach

involving total strain control, the sign and magnitude of AL1 are automatically adjusted throughout

the iteration procedure.

With regard to a convergence criterion, the results of numerical investigations indicate that the

energy criterion, which involves the product of the out-of-balance force with the increment in

displacement, is not satisfactory, although a component of force may be large, the corresponding

component of displacement increment is sufficiently small to cause the criterion to be satisfied.

This situation arises frequently at limit points. Therefore, in the numerical examples of the next

section, convergence is based on the following combined force and displacement criterion:

7
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(2-14)liAglq + p -_Ill
11,&p q + pol TO,

where the 2-norm is inferred. This criterion is also used by Padovan and Tovichakchaikul (9).
Although different values for the tolerances can be specified, for this study they were chosen to be

C U = C = 0.001. For most cases the part based on displacement is satisfied first.
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3.0 NUMERICAL SOLUTIONS TO PLANE PROBLEMS

To illustrate the robustness of the proposed solution scheme, a simple bilinear hardening and

softening model is used to simulate material behavior. The nonlocal aspect of post-peak response

is not addressed and, therefore, post-peak solutions that depend on mesh size are to be expected.

The invariants of stress, g, and plastic strain, e , are defined in the usual manner from the

deviators of stress, sd and plastic strain, epd:

2 3e)(31

The yield function is assumed to be

s-H (3-2)

in which H is a hardening-softening function and HL denotes the limit, or maximum, value. With

the definition

,= (FP ED -- (3-3)

-P
eL

a bilinear relation for the hardening-softening function is conveniently described as follows:

-PH=Ho+ (HL- H0) e  05 < P

eL

H=HL(l-mF*) 05 *< (34)

H=O -* > I
m

9



in which H0 denotes the elastic limit. The value of the plastic strain invariant at the limit state, e L

is assumed to be a unique value no matter which stress path is followed. The parameter, m, merely

reflects the rate of softening. The yield and consistency conditions are given by f = 0 and df = 0,

respectively. An associated flow rule is used. Normally, solutions to model problems in plane

strain are given because the displacement formulation implies that the plane strain condition is

satisfied easily. However, with the exception of some additional algebra involving the use of the

tangent moduli, solutions to problems in plane stress can also be obtained for the same geometric

configurations with little additional computational effort. Both classes of plane problems are

considered next.

The geometry and notation for the plane problem is shown in Fig. 1. The dimensions used for the

analysis are Lx = 1 m and Ly = 1.5 m. In order to accommodate isochoric deformation, the

argument of Nagtegaal et al. (16) for the use of a four-node element composed of four triangles

defined by the two diagonals in the quadrilateral is considered to be persuasive and, therefore, the

same element is used in this study. The lateral surfaces are stress-free (except for plane strain)

while the boundary condition at y = 0 consists of zero vertical displacement and a lateral constraint

of zero displacement at one point which is x = 0 unless specified otherwise. The load is applied

through a mechanism that provides no lateral constraint and ensures that the displacement in the y-

direction is the same for all points on the upper surface. Since the plasticity model is that of von

Mises, significant plastic deformations are exhibited in shear bands oriented at 45 deg to either

coordinate. Another implication that follows from the use of the von Mises model is that the same

results are obtained for loading in tension and compression so such a differentiation is not made in

the subsequent description. Element mesh configurations I, II and IH are defined to be 3 x 3, 5 x 7

and 9 x 13 rectangular grids, respectively.

In the elastic regime, the material is assumed to be isotropic as defined through Young's modulus.

E, and Poisson's ratio, v. Material parameters, which are considered to be representative of a class

of geological materials, are chosen as follows (unless specified otherwise): E = 50 GPa, v = 0.2.

PL -: 0.011, H0 = 0, HL = 55 MPa, and m = 0.1. The zero value for the elastic limit is chosen

partly for convenience and partly so that unloading can be easily detected because the loading and

unloading moduli are different right from the initiation of loading. Initial imperfections are

introduced by letting E L = 0.01 and HL = 50 MPa at a point in the body designated with the

symbol V.

10
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Figure 1. Geometry of the plane problem.



The first model problem is one of uniform loading in the y-direction under the assumption of plane

strain (components with a subscript z are zero) with all components of displacement prescribed to

be zero for the point at the origin. The constraint condition for the total strain increment in the
critical element was chosen such that the increment in y-y component of normal strain is prescribed.

The evolution of the deformation field for element configuration M1 is shown in Figs. 2(a) and 2(b)

for plane strain. Because of the symmetrical location of the imperfections obtained by using an odd

number of elements in each coordinate direction, two shear bands develop and intersect one end of

the body. For the same mesh configuration and also for plane strain, Figs. 3, 4,5, and 6 show

the failure modes that develop for different choices of the locations of initial imperfections and

slightly different boundary conditions. The sensitivity of failure modes to imperfections and

boundary conditions has been pointed out previously by Leroy et al. (17). For Figs. 3 and 4, the

lateral constraint is at x = 0, while for Figs. 5 and 6 the constraint is at x = 1.0 and x = 0.5,

respectively. Figure 3 shows crossed shear bands while Fig. 4 shows a single shear band that

does not intersect either the top or bottom surface. Figure 5 is a mirror image of Fig. 4 because of

the switch in location of the lateral constraint on the boundary. The symmetrical location of the
lateral boundary constraint in Fig. 6 is reflected in a correspondingly symmetrical deformation
field.

For plane stress and for the point at the origin fixed, Fig. 7 illustrates the corresponding final post-

peak deformation field.

The effect of the size of the prescribed total strain increment for mesh configuration I is shown in

Fig. 8 for plane strain. For the largest increment of 0.01 the peak load is achieved in only two

steps so larger increments would not be meaningful. The fact that no signicant differences are
displayed can probably be attributed to the use of a bilinear hardening-softening function.

For plane strain and for mesh configuration I, load-deflection curves are given in Fig. 9 for various

values of the softening parameter. Form = 0.01, 0.1 and 1.0, the peak load per unit thickness and

the corresponding deflections are (58.6 MN/m, 0.0171 in), (58.3 MN/m, 0.0160 mn) and

(52.8 MN/m, .0140 in), respectively. The loads and deflections shown in the figure are

normalized with respect to these values.

For plane stress and also for mesh configuration 1, Fig. 10 shows the effect of the softening
parameter m on the load-deflection response. For m = 0.01, 0.1, and 1.0, the peak loads per unit
thickness and the corresponding deflections are (56.1 MN/m, 0.0169 m), (55.7 MN/m, 0.0168 mn)

and (53.6 MN/m. 0.0150 in), respectively. As can be seen for both plane strain (Fig. 9) and plane
stress (Fig. 10), numerical difficulties are not encountered for the full range of post-peak behavior

12
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(a) Intermediate post-peak.
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(b) Final post-peak.

Figure 2. Deformed mesh in the post-peak regime for plane strain and constraint at x =0.
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Figure 3. Final post-peak defomation field with two weak elements in the uppermost comers.
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Figure 4. Final post-peak deformation field with the weak element at the center.
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Figure 5. Final post-peak deformation field with constraint at x = 1.
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Figure 6. Final post-peak deformation field with constraint at x = 0.5.
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Figure 7. Final post-peak deformation field for plane stress.
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Figure 8. The effect of the size of prescribed total strain increments on numerical solutions.

19



1.5-

E 
//

0Z 0.5-m=

M =.1

0-
0 0.5 1 1.5 2 2.5 3

Normalized displacement

Figure 9. The effect of the softening parameter on load-dsplacement curves for plane strain.

20



1.5 -__ . - o _ l

E I
0.5-m

M 0.01

0 0.5 1 1.5 2 2.5 3

Normalized displacement

Figure 10. The effect of the softening parameter on load-displacement curves for plane stress.
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ranging from almost perfect plasticity to a slight reversal where the post-peak response is taken
down to a load that is close to zero. However, it must be emphasized that for this study nonlinear
geometrical effects are not included, so that the potential problems discussed by de Borst (18),
which are associated with mesh distortion and lockup, are precluded.

T
In monitoring the negative pivots in the L-D-L decomposition of the tangent stiffness matrix, it
was noted that for the case of plane stress, negative pivots did not appear until those elements in the
softening zone attained a high degree of softening. In other words, it seemed that the appearance of

negative eigenvalues (immediate post-peak regime) was not accompanied by the appearance of
negative pivots. Since this result is contrary to basic theory in matrix analysis, there must be an
explanation involving round off and numerical accuracy. The results for plane strain are consistent

with what might be expected from theory.

Because a local constitutive model is used, a mesh dependence is expected for the post-peak
response. Such a dependence is shown in Figs. 11 and 12 for plane strain and plane stress with
m = 0.1 and a prescribed strain increment of of 0.001. The need for nonlocal models to prevent
this mesh dependency has been discussed by Schreyer and Chen (19), Chen and Schreyer (20),
and Pijaudier-Cabot and Bazant (21), among others. Chen (22) has extended the above analysis
procedure to show that the mesh dependency is significantly reduced for soil-structure interaction

problems when a nonlocal constitutive model is used.
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Figure 11. Illustration of mesh dependence for plane strain.
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4.0 CONCLUSIONS

A slight modification to existing arc-control methods for obtaining numerical solutions to problems

exhibiting post-peak softening is proposed in which a particular linear combination of the

components of the total strain increment is prescribed at a critical point. There is no reason why the

method could not be easily extended to include any norm of the total strain increment tensor. Then

the load increment is automatically determined with the result that the procedure is particularly

robust for transitioning critical points at which an eigenvalue of the tangent stiffness matrix is zero.

The examples involve materially nonlinear problems, but the procedure should also be applicable to

geometrically nonlinear cases.

The examples show that the evolution of failure modes is quite sensitive to the location of initial

imperfections and to boundary conditions. Such results are in agreement with many experiments

involving materials such as concrete where laboratories have reported significantly different failure

loads and failure mechanisms for specimens composed of one batch of concrete. The current

analysis indicates that such diversity may be entirely consistent with the slightly different boundary

conditions associated with different experimental apparatuses.
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