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Abstract

The Electrical Engineering Department at the Air Force Institute of Technology has

been investigating the capabilities of Kalman filter algorithms to improve tracking

performance of short- and long-ranged airborne targets. Previous research has included

linear and extended (nonlinear) Kalman filters. Filter configurations have used multiple

model adaptive filter structures and a Kalman filter/correlator tracker arrangement. The

performance of the Kalman filter tracker has shown substantial improvements over

conventional correlation trackers in tracking airborne targets on benign trajectories to highly

dynamic maneuvers up to 20-g's, without loss of lock.

In the tracking scenario, a forward looking infrared radar (FLIR) sensor provides

measurements to update filter estimates of the (state) variables of interest. The filter

algorithm then propagates the state estimates to the next sample time. The -:ates have

included position, velocity, and acceleration of the target's intensity centroid -s well as

atmospheric states. Recently, a low-energy laser, scanned along the filter's estimate of the

target velocity vector, has provided additional measurements to a separate Kalman filter for

estimating the hardbody center-of-mass of a missile at a range of two-thousand kilometers.

This thesis furthers the investigation of tracking the center-of-mass of a missile

using FLIR measurements and low-energy laser illumination of the missile hardbody. The

aiming of the laser is affected by the accuracy of a filter's estimate of the intensity centroid,

which in turn is affected by atmospheric jitter and vibration/bending of the space-based

platform. In this research, a linear correlator/Kalman filter provides estimates to

compensat- for the atmospheric jitter and vibration/bending modeled in the computer-

simulated truth model, and it estimates the location of the apparent intensity centroid of the

target's plume. This filter provides the best attributes of the standard correlator tracker and
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the Kalman filter: the correlator uses the FLIR measurement data to provide a template of

the size and shape of the intensity centroid to develop offset tracking errors, provided to the

filter as "pseudo-measurements"; and the Kalman filter, with its internal dynamics model,

provides estimates of the state variables, and propagates the estimates to the next sample

time.

Two filter estimation processes are considered in this research. In the first

arrangement, a six-state linear correlator/Kalman filter with two position states, two

velocity states, and two atmospheric jitter states provides estimates of the location of the

target intensity centroid and velocity vector. A low-energy is scanned along the estimated

velocity vector from the intensity centroid estimate to illuminate the missile hardbody, in

order to obtain measurements of the center-of-mass for a separate one-state filter, which is

tracking the hardbody center-of-mass without assuming that it is necessarily displaced

along the estimated velocity vector from the intensity centroid. The second arrangement,

consists of an eight-state filter, which augments the six-state filter described with two

additional bias states to estimate the hardbody center-of-mass. The bias states are also used

to provide the low-energy laser scanning direction following an initial reflection using the

six-state filter velocity vector estimate.

An ideal hardbody of a missile is modeled as an ideal reflector ("on" or "off"), and

the test results are compared to a more realistic hardbody reflectivity model. The

reflectivity model considers the curvature of the missile and the angle to the low-energy

laser source (FLIR image plane). The testing is accomplished both with and without a

plume pogo (oscillatory) motion that is modeled in the truth model, which has a frequency

of 10 Hertz and an amplitude of approximately 34 meters. The research also includes a

study of using a single low-energy laser scan vs. a sweep (multiple scans) to obtain the

center-of-mass measurements.
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The results of the one-state filter in estimating the center-of-mass provides the same

performance as the two center-of-mass states in the eight-state filter. The single scan of the

low-energy laser provides laser reflection measurements only 10-20% of the time, while

the method of sweeping the low-energy laser provides a measurement at each sample time.

For the single scan of the low-energy laser, both filters have mean error estimates of the

center-of-mass on the order of 2 meters with a standard deviation of approximately 8

meters, with the plume pogo applied to the intensity centroid. When the low-energy laser

sweep is used, the errors for both filters are on the order of .0005 meters (less than 1.0

inch) with a standard deviation of 0.25 meters (less than 10.0 inches), with the plume pogo

applied to the intensity centroid. The enhanced reflectivity model provides the same

performance trends as the hardbody binary model; however, it is shown that the

performance of the realistic reflectivity model is dependent on the sensitivity of the low-

energy laser sensor.

It is determined that the cause of the apparent movement of the intensity centroid is

caused by the inaccuracy of the filter's estimate provided to point the FLIR line-of-sight

vector at the next predicted position of the target. This condition results in the small

number of successful single low-energy laser scan reflections; the condition is overcome by

the low-energy laser sweep.
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Kalman Filter Tracking of a Reflective Target Using
Forward Looking Infrared Measurements

and Laser Illumination

I. Introduction

Research is the first step in determining how an idea may be implemented. Most

advances in technology are directly attributable to previously accomplished research. If the

results of the research are developed into a physical use, there may be additional

technological advances made in design and fabrication of materials, and in building

processes. Additionally, the combination of independently developed technologies can

create new systems which may not have been otherwise realized.

The research outlined in this thesis is such an effort. It uses the attributes of three

independently developed technologies to conduct research into a missile tracking system for

the Strategic Defense Initiative (SDI). The three technologies involved in the research are:

the Kalman filter, the forward looking infrared (FLIR) sensor, and the laser. The research

is accomplished using computer simulations.

The concept of the Kalman filter was first published by 1960 [7, 8]. Based on a

dynamics model of the system, the filter algorithm uses external measurements to estimate

the optimum value of a desired state vector. The recursive nature of the filter makes it very

desirable since it reduces computational loading. Kalman filtering is recognized as being an

ideal solution to navigation data processing problems for both space and terrestrial vehicles

[II A Kalman filter was a part of the Apollo space vehicle navigation system, and filters

are currently being used in military navigation systems [1]. In addition to improving

navigation solutions, the algorithm has shown improved performance over the conventional
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correlation tracker in tracking benign to highly dynamic targets [2, 3, 6, 9, 10, 11, 21, 22,

24, 25, 26, 27, 28, 29, 30].

Since the early 1920's, IR has been exploited in sciences, engineering, medicine,

space sciences, industry and commercial enterprises. The military expanded research of the

infrared (IR) spectrum during the 1940's. In military applications, IR is used with search

and tracking devices for aircraft particularly when passive sensors are desired so as not to

broadcast to a target that is being tracked, and in seeking and homing devices for guided

missiles. The FUR sensor is just one of the many applications of IR technology. [5]

Since the development of the first laser in the Hughes Research Laboratories in

1960, the laser has found uses in medical, industrial, scientific, and military applications

[9]. The military interest in the laser is due to the its ability to transmit a narrow beam of

high energy to a target almost instantaneously. If a high-energy laser is focused on a target

long enough, the laser can literally bum through the skin of the vehicle and destroy it.

The Air Force Institute of Technology (ANT) has been engaged in the development

of improved short- and long-ranged tracking systems for the past twelve years. The

Kalman filter, the FLIR, and the laser technologies complement each other as applied to the

AFIT-research scenario (Figure 1.1) for ground- and spaced-based tracking systems: (1)

the FUR senses the intensity centroid of a target vehicle's exhaust plume; (2) the Kalman

filter uses the FLIR information to update its system state estimates and predicts the future

position of the vehicle's intensity centroid and velocity vector; (3) a low energy laser is

scanned along the estimated velocity vector from the intensity centroid so as to intercept the

vehicle; (4) as the vehicle is scanned by the low-energy laser, the reflection is received by a

laser sensor co-located with the FLIR; (5) upon completion of a scan across the target, the

center of mass of the vehicle is estimated by the filter and vehicle lock is established; and.
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Figure 1.1. ART Tracking System

(6) following lock-on, the high energy laser is fired on the vehicle using the pointing

information provided by the Kalman filter. As described, this system requires a high-

energy laser, an accurate pointing system, and an accurate estimate of the target position.

Many technological advances are necessary before the tracking system can be implemented

over a distance of many hundreds of kilometers. The FLIR sensor must be able to detect

and differentiate between minute changes in the target and background clutter over the

long distance. Following a successful acquisition, the tracking system must then maintain

lock on the target for a continuous amount of time for the high-energy laser to affect the

target with its energy. If this is not accomplished, the laser will benignly "paint" the target.

To understand the critical aspect of the tracking system, ccni'ter the aiming angle accuracy
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required. The angle must be correct to within four one-hundred-thousandths of one degree

(0.7 microradians) to track a typical missile at a distance of 2000 kilometers [27].

1.1 Background

The Air Force Weapons Laboratory (AFWL) at Kirtland Air Force Base, New

Mexico, has sponsored research for the purpose of developing tracking algorithms in

support of SDI development beginning with the initial thesis [21] in 1978. This section

provides a general overview of the AFIT-developed tracking system.

The AFIT tracking system, in its present state, consists of two sources of

measurement inputs to two separate Kalman filters: the FLIR measurement and the reflected

low-energy laser measurement. The measurements are readily identified in Figure 1.I.

The FLIR obtains its information from the surrounding medium without providing a

stimulus, while the laser measurement consists of firing a low-energy laser at the target to

obtain a reflection. The former is considered a passive measurement, while the latter is an

active measurement.

The FLIR consists of a 300 x 500 dimensional array of pixels, or picture elements.

Each pixel is able to detect infrared radiation (IR) through an angle of 15 microradians in

two orthogonal directions (azimuth and elevation). In the case of a missile target, the

primary IR emission is produced by the hot gases of the target vehicle's exhaust. The array

is reduced to an 8 x 8 tracking "window" in the FUR plane to keep the mathematics

manageable and reduce computational loading. This field-of-view (FOV) has proven Io be

satisfactory at close distances of twenty kilometers in maintaining track on targets flying

benign trajectories to targets performing 20-g jinking maneuvers.

When the detectors of the 8 x 8 FOV are excited by a received signal, the measure-

ment information is given to the Kalman filter algorithm which has been propagating the
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optimum location of the target's intensity ccntroid since the last measurement. The filter

computes the estimate of the target position and continuously commands a controller to

center the target in the sensor FOV. Since the low-energy and high-energy laser share the

FLIR optical aperature, the lasers are continually pointing at the estimated position of the

target's intensity centroid.

The FUR capabilities have been tested in a number of different ways as described

in Section 1.2. However the use of a low-energy laser measurements to aid in the location

of the target hardbody has not yet been fully examined. The simulation of the low-energy

laser and its receiving sensor were initiated in the previous thesis [2]. This concept is very

important to the advancement of this tracking problem, since the location of the hardbody

cannot be identified from the FUR data alone; the FLIR can only track the intensity

.entroid of the target. The low-energy laser is used to scan along the Kalman filter

estimated velocity vector of the target. Once the reflection of the target is received by the

laser sensor, which is co-located with the FUR on the space-based platform, the Kalman

filter algorithm will use the additional inputs to determine the center of mass of the target

hardbody, and begin tracking.

The Kalman filter algorithm might be considered as the heart of the tracking acqui-

sition process just described. This linear optimal estimator has replaced the previously em-

ployed correlation algorithm used by the AFWL. The potential increase in tracking perfor-

mance of the Kalman filter over that of correlation tracking is readily understood from a

comparison of the two procesces. The correlation tracker operates under the simple prin-

ciple that the current FLIR image data compared with the previous sampled data provides

the necessary offset information to command the controller to the new estimate of the tar-

get's position. Since this cross-correlation of the data and the subsequent pointing of the

tracker takes time, the tracking system has an inherent lag built into its response.

Additionally, the correlation tracker cannot distinguish between actual target motion and
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"apparent" target motion caused by atmospheric jitter phenomenon (to be discussed

subsequently), and assumes that the detected translation in the image is directly

proportional to the translation of the target in the spatial domain. The correlation scheme

does not require explicit information about the target vehicle, the environment between the

sensor and the target, or any sources of data corruption in the system. Thus it is a rather

robust tracking technique. However, since the correlation algorithm does not consider

these effects in the tracking solution, it is not considered to be an optimal tracker.

The inadequacies of the correlation tracker have been overcome by AFIT research

[2, 3, 6, 9, 10, 11, 21, 22, 24, 25, 26, 27, 28, 29, 30] using linear and extended Kalman

filtering techniques. The real world corruption (noise) found in the FLIR signal,

atmospheric jitter, and the mechanical vibrations and bending of the optics hardware and

platform are modeled into the filter algorithm to account for the errors in the tracking

solution. Modeling of these error sources provides a significant increase in tracking per-

formance over the correlation tracker in estimating the target position. Additionally, the

(adaptively estimated) size, shape, and dynamics characteri;tics of the target are

incorporated into the Kalman filter algorithm, which provides the ability to propagate the

optimal estimate of the target position into the future.

The simulation "real world" truth model in this research provides modeling of the

missile plume intensity centroid, and models a 3-dimensional reflective target onto the

2-dimensional FLIR plane. The truth model also incorporates a model of the atmospheric

jitter [21], bending/vibration phenomenon [11]. and the plume pogo effects [26]. The six-

state filter in this research models the dynamics of the target and the atmospheric jitter

phenomenon. Filter tuning, as discussed in Chapter IV and V, is used to compensate for

mismodeling and/or the absence of explicit state variables, such as bending/vibration [10]

and plume pogo effects [26] (in this case), in the filter model The truth model is discussed

in Chapter IV, and the three filter models used in this research are discussed in Chapter V.
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1.2 Summary of AFIT Research

This thesis advances the research of fifteen previous master's theses accomplished

at AFIT in this area of study. Though other references are used to support this research

project, by far the majority of the background information as well as the computer software

development has been obtained from the AFIT graduate students [2, 3, 6, 9, 10, 11, 21,

22, 24, 25, 26, 27, 28, 29, 30]. Numerous papers [16, 17, 18, 19, 20, 31] have also

been published describing the findings and accomplishments of the research. This section

is devoted to the research advancement pertaining to each of the fifteen previous AFIT

theses.

Research into tracking a target vehicle using a linear Kalman filter was started at

AFIT in 1978 by Mercier [17, 21]. His primary emphasis was to compare the correlation

tracker performance to that of an extended Kalman filter under identical conditions. The

correlation algorithm used was obtained from the AFWL [21]. An eight-state real world

truth model was developed consisting of two target position states and six atmospheric jitter

states. The position states defined the target in each of two FLIR plane coordinate direc-

tions (azimuth and elevation), by accurately portraying target trajectories in three-

dimensional space and projecting onto the FLIR image plane. The atmospheric effects

were modeled by means of a third order shaping filter as given by the Analytic Sciences

Corporation (TASC) [12]; three states defined the atmospheric distortion in each of the two

FUR plane coordinate directions. The Kalman filter dynamics model consisted of four

states: two target position states and two atmospheric jitter states. As in the truth model,

the two target position states defined the target position in each of two FLIR plane

coordinate directions; the atmospheric jitter position states were defined in the same

manner. in the filter the position and atmospheric states were each modeled as a first-

order, zero-mean, Gauss-Markov processes. The FLIR provided sampled data

measurements to the filter at a 30 Hertz (Hz) rate. The FLIR measurement noise due to

1-7



background clutter effects and internal FLIR noises were modeled in the filter as both

temporally and spatially uncorrelated. The target was considered as a point source of light

(i.e., a long range target) having benign dynamics. The corresponding Airy disc on the

FLR image plane was modeled as a bivariate Gaussian distribution with circular equal

intensity contours. The correlation tracker and the extended Kalman filter were compared

across three different signal-to-noise ratios (SNR) using a ten-run Monte Carlo analysis

(Chapter III) to obtain the tracker error statistics. The results of the correlation tracker and

the extended Kalman filter are shown in Table 1.1 for a Gaussian intensity function

dispersion, Ug, equal to one pixel. (For a Gaussian intensity function dispersion equal to

one pixel, most of the useful information is containe in an area of about five pixels

square.)

Table 1.1. Kalman Filter and Correlation Tracker Statistics Comparison [21]

Signal-to-Noise Correlation Tracker Extended Kalman Filter

Ratio Mean Error l Mean Error 10

20 7.0 8.0 0.0 0.2

10 8.0 10.0 0.0 0.2

1 15.0 30.0 0.0 0.8

Error in Pixels

While the correlation tracker showed dramatic degradation as the SNR was de-

creased, the Kalman filter showed only a minor change in its performance at the lowest

SNR tested. The extended Kalman filter was shown to be superior to the correlation track-

er by an order of magnitude in the root mean square (rms) tracking error, provided the

models incoiporated into the filter were a valid depiction of the tracking scenar'o. This

success motivated a follow-on thesis to improve filter modeling and further increase the

performance.

1-8



The research accomplished by Harnly and Jenson [6, 16] investigated modeling

improvements in the filter and tested more dynamic target simulations. A comparison was

made between a new six-state filter and a new eight-state filter. The six-state filter target

dynamics model included the four previous states as well as two velocity states in the FLIR

plane coordinates (azimuth and elevation); the dynamics model of the eight-state filter

included two acceleration states in the FLIR plane coordinates as well. The acceleration

was modeled as Brownian motion (BM) (a = w, where w is a zero-mean white Gaussian

noise). The filter was also designed to perform residual monitoring of the rms errors.

Residual monitoring allowed the filter to react adaptively, and maintain track, by quickly

increasing the covariance values in the filter-computed P matrix, which in turn increased

the filter gain K. (These terms are discussed in Chapter II and IV). A recommendation

was also made to examine increasing the FOV during target jinking maneuvers to avoid

losing lock. The intensity contours of the target were modeled as elliptical patterns as

opposed to the earlier circular equal intensity contours in order to simulate closer range

targets. The major axis of the target FLIR image was aligned with the estimated velocity

vector. A number of different target trajectories were tested against the six-state and eight-

state filters, and while the six-state filter performed well during jinking maneuvers, the

eight-state filter performed better tracking high-g target maneuvers.

Other approaches to modeling the dynamics of the target in the filter were

considered by Flynn [4]. He used the Brownian motion (BM) acceleration target dynamics

model [6] and a constant turn rate (CTR) dynamics model. The CTR model portrayed the

target behavior by modeling the acceleration as that associated with a constant rate of turn

dynamics. Concatenating such constant turn rate segments together provides an accurate

portrayal of manned target trajectories. Additionally, a Bayesian multiple model adaptive

filter (MMAF) was developed using the BM dynamics model. A MMAF (Figure 1.2)

consists of a bank of K independent Kalman filters, each of which is tuned to a specified
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Figure 1.2. Muliple Model Filtering Algorithm

target dynamics characteistic. The time histories of the residuals of these K filters are

processed to compute the conditional probability that each discrete parameter value is

"correct". The residuals of the Kalman filter, based upon the "correct" model, are

expected to be consistently smaller (relative to the filter's internally Computed residual

rms values) than the residuals of the other mismatched filters [4]. If that is true, then the

multiple model adaptive filter algorithm appropriately weights that particular Kalman filter

more heavily than the other Kalman filters. These values are used as weighting coefficients

to produce a probability-weighted average of the elemental controller outputs [4].

Therefore, the state estimate is actually the probablistically weighted average of the state

estimate generated by each of the K separate Kalman filters. Testing of the three filter

models was conducted for three different flight trajectories which included 2-g, 10-g, and

20-g pull-up maneuvers. Unfortunately, the residuals of the K Kalman filters did not
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differ from each other enough to perform the weighting function properly, and MMAF did

not track well. The BM and CTR filters both performed equally well at 2-g's. The CTR

filter was found to be substantially better than the BM filter for 10-g and 20-g pull-up

maneuvers.

Mercier had assumed that the filter had a priori knowledge of the target shape and

intensity profile. Singletery [28] improved the realism in the target model by developing a

model in the FLIR plane which included multiple hot spots. However, he returned to the

case of very benign targets. The filter did not assume a priori knowledge of the target size,

shape, or location. A new data processing scheme (Figure 1.3) was developed which

Y Y yd(ti+) + Y. (ti+)

8 Fxu8 1 Pad Prcssn ScNegating F1Expnential [ F

I-I

Input with F --No Phase _10" Smoothing __' F
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Z(ti ) KlaFilter

ResultsX of ] x d,x (ti-+)  To Controller._.

Propagation [Y = y(ti+l)

Figure 1.3. Data Processing Scheme using FFT and IFFT [28]



included the use of the Fast Fourier Transform (FFT) and the Inverse Fast Fourier

Transform (IFFT). The plan included two data paths for processing the intensity

measurements z(ti). On the first path, the 8 x 8 array of intensity measurements from the

FLIR are arranged into a 64-dimensional measurement vector. This measurement vector is

applied to the extended Kalman filter (as in prior work). The purpose of the second path

is to provide centered target shape functions to be time-averaged with previous centered

shape functions in order to generate the estimated target image template (h in Figure 1.3)

and partial derivatives of it with respect to the states (H in Figure 1.3). This requires the

use of the shifting theorem of Fourier transforms. The shift theorem states that a

translation of an image in the spatial domain results in a linear phase shift in the spatial

frequency domain. To negate the translational effects in the spatial domain, the Fourier

transform of the translated image is multiplied by the complex conjugate of the desired

linear phase shift [28]. In essence, the translation of an intensity pattern in the spatial

domain can be negated by multiplying its Fourier transform by the complex conjugate of

the resulting linear phase shift [28]. The extended Kalman filter model, in path one, which

was developed by Mercier [21] was used to provide the optimal estimate of the linear

translation. The filter state estimates are used to develop the complex conjugate of the

linear phase shift and provide the centered measurement functions. Before the IFFT is

taken, the resulting centered pattern is exponentially smoothed to yield an approximation to

averaging the result with previously centered frames of data, to minimize the effect of

measurement noise. The result is a centered pattern with noise effects substantially

reduced. Following the application of the IFFT, the spatial derivative is used to determine

the linearized function of intensity measurements (H of Figure 1.3) and the nonlinear

function of intensity measurements (h of Figure 1.3). These are both used by the Kalman

filter in processing the next sampled measurement [28]. The results of this data processing

scheme were inconclusive due to filter divergence problems. Despite the problems

encountered with the filter, the concept was considered to have filter performance potential.
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Rogers [27] continued the work of developing a Kalman filter tracker which could

handle multiple-hot-spot targets with no a priori information as to the size, shape,

intensity, or location of the target. However, he continued the application to benign target

motion, as Singletery [28] had done before, in order to concentrate on the feasibility of

adaptively identifying the target shape. Using digital signal processing on the FLIR data

(as described above) to identify the target shape, the filter uses the information to estimate

target offset from the center of the FOV, which in turn drives a controller to center the

image in the FLIR plane. Algorithm improvements included replacing the Forward-

backward difference block of Figure 1.3 with a partial differentiation operation

accomplished as a simple multiplication before the IFFT block.

Rogers [27] also considered an alternative design that used the target image h (as

generated in Figure 1.3) as a template for an enhanced correlator, as shown in Figure 1.4.

The position offsets produced as outputs from the correlator were then used as "pseudo-

measurement" inputs to a linear Kalman filter. Its performance was compared to the results

of earlier extended Kalman filters that used the raw FLIR data as measurements [6]. The

improved correlation algorithm of Figure 1.4 compares the FLIR image to an estimated

template instead of the previous image, as is done in the standard correlator. This tracking

concept is thus a hybrid of correlation tracking and Kalman filtering [27]. Although the

extended Kalman filter performed well without a priori knowledge of the shape and

location of the intensity centroid, the improved correlator used with the linear Kalman filter

outperformed the extended Kalman filter while providing reduced computational loading.

Millner [22] and Kozemchak [9] tested an extended Kalman filter and the linear

Kalman filter/enhanced correlation algorithm against close range, highly maneuverable

targets. The linear four-state filter used in the previous research was replaced by an eight-

state filter consisting of position, velocity, acceleration, and atmospheric jitter states in the

two coordinates of the FLIR plane (azimuth and elevation). Two target dynamics models
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Figure 1.4. Linear Kalman Filter/Enhanced Correlator Algorithm [27]j

were also developed. The target was first modeled as a first-order Gauss-Markov

acceleration process, and secondly with a constant turn-rate model. Both filters performed

well without a priori knowledge of the target size, shape, and location using the FFT data

processing method for identifying the target shape function [27, 28]. However, at

maneuvers approaching 5-g's, the filter performance degraded considerably. It was noted

that the tracking was substantially better when the Kalman filter dynamics model closely

matched the target trajectory.

The Bayesian MMAF technique [4] was reinvestigated by Suizu [29] based on the

recommendations of the previous work. The MMAF (Figure 1.2) consisted of a Kalman
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filter which was tuned for benign target maneuvers and obtained sampled measurement

inform,-1tin from an 9 x 8 pixel FOV in the FLIR plane. A sernd filter was tuned for

dynamic maneuvers and obtained sampled measurement information from a 24 x 24 pixel

FOV in the FLIR plane. The technique allowed the MMAF to maintain track on benign

target trajectories and highly maneuvering trajectories up to 20-g's at a distance of 20

kilometers. The MMAF was configured for both the linear Kalman filter/enhanced

correlation algorithm [27] and the extended Kalman filter. The results of the MMAF

tracking for both filters was very good. The state rms tracking error was on the order of

0.2 to 0.4 pixels (one pixel being equivalent to 20 p-rad on a side).

The potential of the MMAF technique with the FFT processing method was

continued by Loving [11]. A third filter was added to the bank of filters which was tuned

for intermediate target maneuvers and obtained sampled measurement information from the

8 x 8 FOV in the FLIR plane. This MMAF showed significant performance over all the

previous filters. Additionally, a Maximum A Posterori (MAP) algorithm was developed

and compared with the Bayesian MMAF. The MAP algorithm differs from the Bayesian

MMAF in that the MAP algorithm uses the residuals of the separate filters to select the one

filter with the highest probablistic validity, while the MMAF uses a probability-weighted

average of all the filters in the bank. The MMAF and the MAP techniques produced similar

results and delivered performance that surpassed previous filters.

Netzer [24] expanded the study of the MMAF algorithm. He investigated a steady-

state bias error that resulted when tracking a target exhibiting a high-g constant turn-rate

maneuver. A major cause of this bias is the MMAF mistuning the x-direction (azimuth)

while maintaining lock on the highly dynamic y-direction (elevation) transient. This

motivates the concept of individual x- and y-channel filters in the MMAF, which would

allow adaptive filtering for the x- and y-channels independently [24]. The size of the FOV

was also investigated. When a target came to within five kilometers of the FLIR platform,
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the 8 x 8 FOV was saturated with the intensity centroid image, iesulting in a loss of track.
This an is mctatcs " ha FOV to maintain lock for targets and azo war-nrts the

possibility of adding another Kalman filter which is tuned for extremely harsh maneuvers at

close ranges. A study of the aspect ratio (AR) associated with target's intensity centroid

was also accomplished to identify filter tracking characteristics for various target image

functions [24]. This study used "greyscale plots" of the kind shown in Figure 1.5 to

support the analysis. A greyscale plot is a pictorial display of an image in which shading of

the image is used to indicate similar parameters. In this case, the plot indicates regions

of varying levels of the intensity of the target image in a 24 x 24 pixel FOV. Four different

AR of 0.2, 0.5, 5, and 10 were compared to the nominal AR of 1. The results showed that

tracking was slightly impaired for images with AR as high as 5. The reduced performance
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Figure 1.5. Greyscale Target Image [24]
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is primarily along the semi-major axis of an elliptically modeled intensity centroid.

Additionally a taroet-decov exnerimnt wn- condurted in which a high intensity decoy was

also located in the FOV with the target. Since the decoy was modeled with different

dynamics not given to the filter, it was hoped that the filter would reject the decoy. This

was not the case; the filter loutked onto the hotter decoy image. This indicates that the

inability of the current filter algorithm to reject this type of bright hotspot requires isolating

the target image in a small FOV or some other concept to ensure tracking of the desired

target.

The previous research c,,'ts [1. 1. 24, 29] used Gauss-Markov acceleration models

in the development of the MMAF. Tobin [30] implemented the CTR dynamics model in

another MMAF. His results showed that the Gauss-Markov MMAF exhibited smaller bias

errors while the CTR MMAF gave smaller steady state standard deviation errors; both

filters had comparable rms errors. Motivated by earlier research [24], he also developed an

8 x 24 pixel FOV for both the x- and y-directions of the FLIR image plane. The results

showed that the filter maintained lock on a target during a highly dynamic maneuver in the

y-direction while maintaining substantially better steady state bias performance in the

benign x-direction.

Leeney [10] expanded the previously used Gauss-Markov truth model by

incorporating bending and vibrational states. The elemental filters in the MMAF were not

modeled with this information through explicit state variables, but performed well up to a

10-g maneuver. A performance investigation was also conducted as to the effects of

increasing the measurement update rate from the previously used 30 Hz to 50 Hz. The

sampling rate of 50 Hz showed a minor performance improvement, but also increased the

computational loading because of the higher rate. A preliminary study was also done on

replacing the 8 x 24 pixel FOV in the x- and y-directions [30] on the FLIR plane with a

single 8 x 24 pixel FOV, which is also known as the rotating rectangular field-of-view
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(RRFOV). The idea was to align the long side of the rectangular FOV with the semi-major

axis Uf the inter it, centroid by aligning it with an cstimate of the acceleration vector.

(Actually, the higher precision velocity estimate was used instead of the noisier acceleration

estimate, and it was assumed that the acceleration direction would be essentially orthogonal

to the velocity vector directien.) Additionally, the five elemental Kalman filters in the

MMAF bank would be reduced to four by using this FOV rotation scheme. The results

were not conclusive, but the insight provided motivation to continue the study.

The RRFOV research was continued by Norton [25]. He discovered that the

appropriate choice of the filter dynamics driving noise Q dictated the filter's response to a

high-g jinking maneuver, and that the size of the FOV could be reduced to an 8 x 8 pixel

rotating FOV, which is also known as the rotating square field of view (RSFOV). His

investigation showed that a non-rotating square FOV could provide good er-,formance, bwt

that the dynamics noise strength Q matrix value must be large in the dl otion of the

acceleration vector. A mathematical matrix transformation was developed which rotated the

Q matrix to keep the larger values aligned with the acceleration vector. A study of both the

rotating FOV and rotating the Q matrix provided advantages and disadvantages for each

method. Both methods are affected by the tuning parameters used to represent the rms

level of acceleration of the target, which also contributes to error biases. The rotating FOV

improves the x-direction (azimuth) estimation for dominant y-direction (elevation)

dynamics from previous MMAF algorithms, but does not improve y-direction estimation

for dominant y-direction dynamics. Rotating the Q matrix adaptively improves estimation

of both x- and y-directions and improves the jink maneuver error transients, but is

dependent on the orthogonality of the velocity and acceleration vectors and proper initial

tuning parameters. The conclusion was that both methods employed together provide the

ability to adjust filter characteristics to differentiate between harsh and benign dynamics in

any orientation of target acceleration (lotating Q) while at the same time maintaining view
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resolution in the directions of both benign and harsh dynamics (rotating FOV). Therefore,

the combination alows for tracking highly maneuvering targets without sacrificing the

resolution provided by the smaller RSFOV [25].

The research up to this point was primarily directed towards tracking aircraft and

missiles from a ground-based FLIR plane. Rizzo [26] initiated research on a space-based

platform which could track targets using the same filtering techniques. Since the linear

Kalman filter/enhanced correlator algorithm had proven to be computationally more

efficient than the extended Kalman Filter, it was chosen as the system filter. The plume

"pogo" (oscillation) phenomenon of a missile in the boost phase of flight was modeled in

the truth model and one of two filters used for the analysis. The pogo was modeled as a

second order Gauss-Markov process, and applied in the direction of the missile velocity

vector. The plan was to go adaptive on the pogo states using the MMAF algorithm,

treating the pogo amplitude and oscillation frequency as uncertain parameters. Although

the elemental filters were developed, no MMAF performance was accomplished.

Three rotation schemes were also developed and tested. The first scheme, referred

to as the rotating field of view (RFOV), involved using the 8 x 8 FOV filter and aligning a

single axis of :he FLIR plane with the estimated velocity vector of the target; therefuie one

of the coordinate axes of the FOV would stay aligned with the oscillation of the plume.

The second scheme, referred to as the diagonal rotating field of view (DRFOV), used the 8

x 8 FOV with the diagonal aligned with the oscillation of the plume. The motivation behind

this scheme is that the 8 x 8 FOV is oriented in such a fashion will be able to "see" more of

the target's intensity image, thus enabling the sensor to obtain more measurement

information [261. The third tracking scheme was the RRFOV developed from previous

research [10, 30]. The RFOV, DRFOV, and the RRFOV algorithms [24] were tested

along with the non-rotating field-of-view (NRFOV) filter. The NRFOV is the standard

tracker used in previous studies [10, 24, 30]. The DRFOV scheme was shown to be
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superior to the other three tested for providing enhanced tracking of a missile hardbody

whose plume is undergoing a pogo phenomenon.

The eight-state filter (without pogo states) and the ten-state filter (with pogo states,,

surfaced a problem that may have gone unnoticed in previous work. Following tuning of

the filters with the twelve-state truth modei, it was discovered that the eight-state filter

outperformed the ten-state filter. An investigation into the cause of the irregularity revealed

that there was a se.-ous observability problem in the ten-state filter, as well as a slight

problem with the observability in the eight-state filter. The affected states were velocity and

acceleration. A recommendation was made to remove the acceleration states in the ten-state

filter, and to model the velocity states in this new eight-state filter as a first-order Gauss-

Markov processes.

Eden [2] resumed the research of the space-based FLIR platform. The scope of the

tracking problem was expanded by requiring the filter to track the hardbody of the missile

rather than the intensity centroid of the FLIR. Since the FLIR could not supply the needed

information about the hardbody relative to the image center of intensity to the Kalman filter,

another measurement source was developed. Under the advisement of the AFWL, the new

measurement source was identified as a low-energy laser. The laser provides actively

acquired measurement data while the FLIR obtains its measurement information passively.

The scheme called for a six-state Kalman filter (consisting of two position states, two

velocity states, and two atmospheric jitter states) to provide a velocity vector estimate for

the target. The low-energy laser is then be scanned along this vector from the image center

of intensity to intercept the hardbody. The hardbody was modeled as a rectangle with

binary reflectivity. When the low-energy laser illuminates the hardbody, the reflection is

received by a low-energy laser sensor on the platform. This information is provided to a

single-state Kalman filter which estimates the distance between the center of mass and the

center of intensity along the velocity vector direction. For this thesis, the laser beam width
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at the target was modeled as 2.75 meters. The ceiler-ot-mass was defined as the midpoint

of the scan across the hardbody if the centerline of the laser beam crossed the aft end of the

missile and the top (nose) of the hardbody, or if the laser beam crossed the aft end and one

of the sides of the hardbody. Another estimation of the center-of-mass was founo as the

center of the area of overlap between the hardbody and the laser beam if the laser beam

centerline did not cross the hardbody. This case was found to occur along the aft comers

of the hardbody when the laser did not completely cross the hardbody. The results of the

laser scan showed that the interception of the laser with the hardbody occurred only

10-20% of the time. This low ratio of hitting the target was attributed to the six-state filter

being tuned for estimating only the intensity centroid location on the FUR plane and not for

precise velocity estimation. Since the velocity vector must be accurately estimated for

active illumination of the target to be a viable concept, it was recommended that the filter

also be tuned for accurate velocity estimates.

1.3 Thesis Objectives

This thesis follows the research of the previous thesis [2] with the supp)rt of all the

work already accomplished by the AFIT students. The objectives of this thesis support the

continued development of Kalman filter models and simulations which test the filter for

tracking long-range tugets. The two primary goals of this thesis, as described in the

following paragraphs, are to design a new filter which determines the location of the target

hardbody using the FLIR and low-energy laser measurement data, and to develop a three-

dimensional reflective target in the FUR plane. Secondary objectives include: the

development of a laser sweeping technique to ensure a maximum number of reflectivity

measurements from the low-energy laser; developing additional target trajectories which

will test the three-dimen,;ionl reflectivity model at different orientations in the FLIR FOV;

an investigation into using Doppler shift information to determine the hardbody location

relati.e to the center of intensity; and improving the atmospheric model to account for
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ionospheric and tropospheric distortions. A flow chart of the objectives for this thesis is

shown in Figure 1.6.

As previously stated, this thesis emphasizes the development of a computer-

simulated three-dimensional target onto the two-dimensional FLIR plane. Prior research

[2] used a simulated two-dimensional missile model in the form of a rectangle in which

the reflectivity was "on" or "off' (i.e., the reflectivity did not vary over the surface). This

-'ondel is enhanced to account for the varying reflective surfaces of the target vehicle when a

low energy laser is scanned along the hardbody. Before this is accomplished, the tracking

Separate One-State Filter
Center-of-Mass Error into
X- and Y-Components

Rotate X- and Y- Components
into the Along-Track and the
Across Track Components

Design Eight-State Filter
Which Consists of Two
Center-of-Mass Error States

Investigate Low-Energy Develop 3-Dimensional
Laser Sweeping Techniques Hardbody Reflectivity Model

Compare Results of

One-State Filter with
Eight-State Filter

Doppler Tracking Atmospheric Mvlcdelin~g

Figure 1.6. Thesis Objectives Flow Chart
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error represented in the previous research [2] by a straight line between the estimated target

center of mass and the true center of mass is separated into two components. This data

is analyzed to determine in which direction (using azimuth and elevation or along-track and

across-track as reference coordinate directions) the greatest error in the estimate exists.

This information is used to design a new eight-state Kalman filter consisting of two

position states, two velocity states, two atmospheric jitter states, and two tracking error

states which depict the distances between the target center-of-mass and its image center of

intensity. The new filter is measured against a previously developed truth model

(composed of two target position states, six iunospheric jitter states, four vibration states,

and two pogo states). In parallel with testing the new filter, a number of techniques are

investigated to determine the best method of scanning the low-energy laser in order to

locate the hardbody in the shortest amount of time. The single target trajectory used to test

an earlier system [2] and two other trajectories are developed to take advantage of the new

insights that the new target reflectivity model may provide. Another research area includes

an investigation into using Doppler information to determine the measurement of the

hardbody vs. center of intensity. Additionally, the atmospheric modeling is enhanced.

1.3.1 Separation of Error Statistics on the FLIR Plane. The determination of the

location of the hardbody in the shortest amount of time is critical to the operation of SDI.

From the FLIR data alone, there is no information on the location of the missile hardbody

center of mass, but only the center of intensity of the infrared image of the hardbody/plume

combination. An algorithm was added to the tracking system that would accept processed

information about the offset of the missile hardbody center of mass from the apparent

intensity centroid on the FUR [2]. The sweeping of a low-energy laser up and down the

estimated velocity vector from the estimated intensity centroid in the FUR image plane was

previously simulated [2] to determine the location of the vehicle. Then a midpoint line

between the two points where the sweepline intersected the hardbody/background bound-
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ary was calculated as an indication of the location of the hardbody center of mass. The er-

ror between this estimate of the simulated target's center of mass and its true center of mass

was left as the straight-line-difference between the two points, and statistics were gathered

[2] on the magnitude of this line. This gives no insight into the weighting of the error on

the two-dimensional FLIR plane. The errors of the estimate and the true location of the

simulated missile need to be separated to gain this additional information on Eden's model.

Therefore, the scalar distance between the actual (simulated) missile center of mass and the

estimated center of mass is separated into the two error components on the FLIR plane.

These may be obtained in one of two ways: separated either into the x- and y- (azimuth

and elevation) components, or into the along-track and across-track components. The

second method is emphasized since it is thought that it gives better information relative to

the principal axes directions of the error phenomenon. It is anticipated that along-track

errors are small while across-track errors are large, since the latter is due to estimated

velocity vector angular orientation errors (which are fundamentally larger than magnitude

errors along the sweep direction) [15]. The information gained from this effort is analyzed

and the filter is tuned to obtain the optimum estimates.

1.3.2 Development of Eight-State Kalman Filter. The knowledge gained from

separating the tracking information of Eden's work is used to develop a new eight-state

Kalman filter using Rizzo's [26] suggested four-state target dynamics model (two position

states and two velocity states), which was developed by Eden [2], the two atmospheric

jitter states from previous research, and two additional states to account for the two error

components of the target's displacement of the center-of-mass from the intensity centroid.

This filter is tested against Eden's two-Kalman filter design (which consists of the six-state

filter and an additional one-state filter to estimate the distance from the center of intensity to

the center-of-mass along the estimated velocity vector direction). When the eight-suite filter

design is accomplished, tuned, and tested with the previously developed twelve-state truth
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model, the filter will be applied to a three-dimensional reflectivity target developed as a part

of this research.

1.3.3 Missile Reflectivity Model. This research objective is one of the primary

objectives of this thesis. It involves the development of a computer simulated three-

dimensional missile model transformed onto the two-dimensional FLIR plane. This model

is an enhancement of Eden's two-dimensional rectangle simulation on the FLIR plane His

model consisted of a binary-valued reflectivity function ("on" or "off"). The enhanced

model may include a conical forward section (nose cone) and will account for the varying

reflective surfaces of a missile by rounding the reflectivity function. With this model in

simulation, the simulated low-energy laser will provide more representative measurement

information to the Kalman filter since the varying reflectivity of the target will be modeled

into the laser return sensor developed by Eden. The modeling approach may follow that

used by Rizzo [26] to model the plume at high altitudes. The method to model the plume

involved using a Gaussian intensity distribution from which a second Gaussian dis-

tribution, offset from the first, was subtracted. Under this method, half of a Gaussian

density function would be used to model the reflectivity function of the forward end (nose)

of the missile and a second half-density function would simulate the aft end of the missile.

A straight line made between the two density functions completes the along-track shape. A

Gaussian intensity distribution would model the across-track (rounded) surface of the

missile. Another method considered involves enhancing the existing rectangular model [2]

with discrete reflectivity line-segments along the longitudinal axis of the missile.

Numerical weighting of the discrete line-segments would simulate the reflectivity of the

surface when the low-energy laser strikes the surface. The chosen reflectivity model will

provide additional information as the low-energy laser scans the vehicle. The calculated

distance between the rise and fall-off of the low-energy laser return will provide

information as to which part of the vehicle was swept by the laser with respect to the

1-25



dimensions of the model. This information will be used to obtain a better estimate of a

probable location of the center of mass than the simple midpoint computation now

incorporated.

1.3.4 Laser Sweeping Technique Investigation. When the FLIR information has

been processed by the Kalman filter and the filter has determined the best estimate of the

location of the center of intensity, the next step is to scan the low-energy laser to illuminate

the vehicle and obtain further information for the filter to estimate the target's center of

mass. However, since the estimate of the filter is based on noisy data, it is not highly

probable that a fine-beam laser scan to this estimated point would consistently intercept the

hardbody. A sweeping technique is needed to ensure illumination of the hardbody in the

shortest time. The method may be a fixed procedure or it may be variable based on other

information. Radar acquisition techniques such as cross-scanning or spiraling outward

from an arbitrary "best guess" location of the target have been used to achieve lock-on.

The best approach for the low-energy laser scan appears to be either a wide-beam straight-

line sweep or a dithering sweep (which is similar to the cross-scanning technique).

Additional information gained from the initial interception of the hardbody (as stated in

Section 1.3.1) will be used to determine subsequent sweeping to determine the location of

the center of mass. (Once the center of mass is realized, other parts of the vehicle may be

easily identified from this reference point.)

1.3.5 Filter Performance Evaluation. With the enhanced model and the eight-state

filter fully developed, an investigation into the new filter's performance will be further

evaluated with the truth model (composed of two target position states: actually the result of

accurate three-dimensional trajectory simulation and projection into the FLIR image plane;

six atmospheric jitter states; four vibration states; and two pogo states). The initial testing

(described in Section 1.3.2) will be done with the vibration and pogo states turned off (i.e.,

the dynamics driving noise set to zero). The two-state pogo model developed by Rizzo [26]
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and the four-state vibration model developed by Leeney [10] will be turned on separately

and together in the truth model. The filter's ability to determine the hardbody center of

mass from an oscillating intensity centroid and with vibration inputs will be investigated.

Some tuning of the filter may be required to be able to estimate the hardbody precisely

enough in the face of the plume "pogo" phenomenon and the vibration effects.

1.3.6 Trajectory Analysis. The new target reflectivity model allows an opportunity

to examine other trajectories. Eden's work considered a single trajectory which was

perpendicular to the low-energy laser. This trajectory will also be used in this research to

test the Kalman filter, the new reflectivity model, and the scanning techniques. The

enhanced model of the missile and the modeled pogo effect with the different trajectories

will provide a realistic simulation which will give insight into Kalman filter performance.

1.3.7 Doppler Shift Analysis. This area of study involves determining a

measurement of the hardbody vs. the center of intensity using Doppler shift information.

The missile provides a different Doppler return from that of the background as it moves

along its trajectory, so Doppler information could be used to discern the hardbody from the

background. The filter-estimated location of the intensity centroid and its velocity vector

will be used in the same way as the low-energy laser scan concept. In the computer

simulation, a Doppler scan is simulated in the same manner as a low-energy laser scan,

through perhaps to different precision (i.e., measurement noise variance) of indicating the

line of demarcation between the hardbody and the background.

1.3.8 Improved Atmospheric Modeling. Atmospheric modeling has been in-

corporated into the previous software to account for jitter affects. However, since the

direction of the research direction has transitioned from aircraft to space-based systems, the

atmospheric model must be enhanced. This objective is very important to the long term

study. These atmospheric disturbances are especially important with the introduction of
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active target illumination using the low-energy laser. The laser signal will be greatly

attenuated and twice refracted before the information is received by the laser sensor. The

information given to the Kalman filter will be distorted from the true information. This will

require that atmospheric modeling in the filter compensate for the data and still arrive at the

same estimate of the target center of mass location as if there were no atmosphere to affect

the signal. There have been many attempts to model the constantly shifting atmosphere.

The atmospheric properties considered as essential to the definition of the atmospheric

particle interactions are the total density including fluctuations and cross-correlations,

temperature, molecular, and atomic composition, electron density, ion composition, and

solar flux. These properties are modeled in the 1959 ARDC Model [23]. When a new

atmospheric model is developed for the truth model, the filter will be tested to determine

how well it estimates the location of the hardbody in this refined tracking environment.

1.4 Thesis Overview

This chapter described the AFIT-developed tracking system consisting of a Kalman

filter, a FLIR sensor, and a low-energy laser (with sensor). The background surrounding

the development of this tracking system was provided, and included a review of the

previous AFIT research accomplished over the past twelve years. Chapter II gives a

mathematical summary of the linear Kalman filter and extended Kalman filter algorithms.

Chapter III defines the simulation space used to provide orientations of the FLIR image

plane and the target model in the computer program. The truth model dynamics and

measurement models, which represent the real world environment in the simulation, are

developed in Chapter IV. The dynamics and measurement models of the three Kalman

filters used in this research are described in Chapter V. Chapter VI provides filter

performance analyses and discusses other investigations conducted in this research.

Chapter VII presents the final conclusions regarding this research and makes

recommendations for further study.
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II. Kalman Filter Theory

2.1 Introduction

A Kalman filter is an optimal estimator that provides estimates of variables of

interest (known as states) for a particular system. The filter estimates a state in terms of its

conditional mean and covariance. The mean and covariance describe the conditional

Gaussian distribution or density function for the states, conditioned on knowledge of the

measurements received. The a priori statistics of the mean and covariance provided to the

filter before the first measurement is received are defined respectively by:

x = E(x(t,)) (2-1)

Po = E [x(to)-X.][x(to)-xo] (2-

where the (-) notation indicates an estimated value, and E{ } is the ensemble average of the

possible outcomes.

For the application of tracking a target, the variable of interest is the position of the

target. With its internal dynamics model of the target, the Kalman filter is able to predict the

future position of the target. At a prescribed sample rate, the filter is updated with

measurements provided by physical sensors. The filter propagates the state "conditioned"

on this measurement time history Z(ti) given by:

z(t 1 )

Z(ti) = (2-3)

Z(ti) I

where z(tj) is the measurement data available at sample time (tj).
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Then the conditional mean and covariance of the state variables are given respectively by:

(ti+) = E {x(ti) IZ(ti)} (2-4)

P(ti) -- E NO -X(ti+)][x(ti)- x (ti ) I f (2-5)

The following sections provide a summary of the mathematical background for the

linear Kalman filter and the extended Kalman filter. A complete development is available in

references [12, 13].

2.2 Linear Kalman Filter

To implement the Kalman filter algorithm, a model of the system dynamics and

discrete-time measurements must be available. A system may be modeled by a continuous

linear system with sampled data linear measurements. The general continuous system

model is of the form:

x(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2-6)

where

F(t) = homogeneous state dynamics matrix

x(t) ; vector of states of interest

B(t) = control input matrix

u(t) = deterministic control input vector

G(t) = driving noise input matrix

w(t) = driving noise vector

and the mean and strength, Q(t), of the white Gaussian noise is given by:
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E w(t)} = 0 (2-7)

E {w(t)w T(t + 7)j - Q(t)6(r) (2-8)

The equivalent discrete-time system model of Equation (2-6) is required to

implement the algorithm on a digital computer. For a time-invariant system, the general

form of the discrete-time state cp2ace form (denoted by the d subscript) of the linear Kalman

filter is given by [12]:

x(ti+1) = )(ti+l , ti) x(ti) + Bd(ti)U(ti) + Gd(ti)Wd(ti) (2-9)

where

()(ti+l, ti) the system state transition matrix defined as an n-by-n

matrix that satisfies the differential equation and initial

condition given by:

d[(( t, to)]

dt = F(t) )(t,t) (2-10)

(D(t0 ,to) = I (2-11)

x(t i ) - discrete-time vector of states of interest

Bd(ti) = discrete-time control input matrix

u(ti) - discrete-time deterministic control input vector

Gd(ti) = discrete-time driving noise input matrix

wd(ti) = discrete-time, independent, white Gaussian noise process

with mean and covariance statistics defined by:

E Iwd (ti)= 0 (2-12)

= " { Q(ti) ti= tij (2-13)0 tw w,
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where

ti.l

Qd(ti) = ID(ti+1-T) G(7)Q(7)GT(T)(D(ti1+- r)dT (2-14)

Ii

The Kalman filter is given measurement information at a prescribed rate to improve

its estimate of a desired state. The discrete measurement model is defined as follows:

z(ti) = H(ti)x(ti) + v(ti) (2-15)

where

z(ti) = m-dimensional measurement vector

H (ti) = state observation matrix

x(ti) = vector of states of interest

v (ti) = white Gaussian measurement noise

The white Gaussian measurement noise v is independent of both x and w for all time and

has a mean and covariance, R, given by:

E v(ti)= 0 (2-16)

E{V(ti)VTtj) -  R ti= tj

The state conditional mean and covariance estimates are propagated from time ti +,

just after measurement incorporation at time ti, to the next sample time just before

measurement incorporation ti+ , by numerical integration of the following propagation

equations:

x(t/ti) = F(t)x(t/ti) (2-18)

P(t/ti) = F(t)P(t/ti) + P(/ti)F I(t) + G(t)Q(t)G 1(t) (2- 19)
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where the initial conditions are:

(t) = (2-20)

P(to) PO (2-21)

When a measurement becomes available, x and P are updated using the following

update equations:

K(ti) = P(ti-)HT(ti)[H(t)P(ti-) HT(ti) + R(ti)]-1 (2-22)

x (ti+) = x(ti-) + K(ti)[z(i-) - H(ti)x(ti-)] (2-23)

P (ti+) = P(ti-) - K(ti)H(ti)P(ti-) (2-24)

where K is the time varying Kalman filter gain which continually changes due to the rela-

tive weighting of the covariances of the state estimates and the measurement uncertainties.

2.3 Extended Kalman Filter

An extended Kalman filter is used to estimate the states of a nonlinear stochastic

system in cases where the system model and/or measurements of interest are not linear.

Since it is desired to use a first-order filter, the nonlinear dynamics and measurement

equations are linearized by performing a Taylor series expansion about the most recent

value of the state estimate [12]. The series is then truncated after the first order terms

which result- in the linearized set of equations. Since the extended Kalman filter is a first

order approximation of the solution, it does not produce an optimal estimate as does the

linear Kalman filter for the linear class of problems.
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A nonlinear system is described by the following stochastic differential equation:

x(t) = f[x(t), u(t), t] + G(t)w(t) (2-25)

where now the state dynamics vector, f, is a nonlinear function of the state values x(t),

system inputs u(t), and time t. The statistics of the white Gaussian noise are given by

Equations (2-7) and (2-8).

The sampled-data measurements aiay also be a nonlinear function of the states and

of time. The discrete measurement equation takes on the form:

z(ti) - h[x(ti), ti] + v(ti) (2-26)

where h is a nonlinear function of the state x at time ti and of time ti itself. The statistics

of v at time ti are given by Equations (2-16) and (2-17).

Given a nonlinear model, the method used to obtain a linear approximation is based

on perturbation techniques. Assume a nominal solution, x,,(.), with an initial condition

x - x o, is generated which satisfies the deterministic differential equation given by:

Xn (t) = f[ Xn(t), u(t), t ] (2-27)

where f and u(t) are the same as in Equation (2-24) and xn(t) are the nominal points along

the nominal state trajectory. Additionally, define nominal measurcments as noise-free

measurements that would be taken along the nominal trajectory:

Zn(ti) = h[xn(ti), ti] (2-28)

where xn(ti) is the nominal state value at sample time ti and h is the same as in Equation

(2-26).

2-6



Now if a perturbation of the state from the assumed nominal trajectory is

considered, the result can be found by subtracting Equation (2-27) from Equation (2-25).

The stochastic equation then becomes:

[x(t) - x ,(t)] = f[x(t), u(t), t]- f[xn(t),u(t),t] + G(t)w(t) (2-29)

where the statistics of w(t) are given by Equations (2-7) and (2-8). This equation can be

expressed in a Taylor series expanded about a nominal solution, xn(t), assuming that u

does not assume perturbation values:

[x(t) -x(t)] af~x, u(t), t] [x(t) - x, (t)] + h.o.t. + G(t)w(t) (2-30)
aX x=x,(t)

A linear approximation of Equation (2-30) is obtained by keeping only the first

order term of the expansion:

6x(t) = F[t ; xn(t)] 5x(t) + G(t)w(t) (2-31)

where

F[t; x'(t)] af[X, u(t), t (2-32)
ax -x,(t)

Equation (2-32) is the first order approximation to the solution and is valid as long

as the deviations are small enough for the higher order terms to be negligible. The strength

of the white Gaussian noise w(.,.) may be increased to account for the effect of the higher

order terms which are neglected in the first order approximation.

Similarly, the effects of the state perturbation on the measurement are:

5z(ti) = H ti; x '(ti)] 6x(ti) + v(ti) (2-33)
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where
h [x. ti ]]

H [ti;Xn(ti)] = -- I, j (2-34)

The basic idea of the extended Kalman filter is to relinearize about each estimate

x (ti+) once it has been computed [12]. The result is then propagated forward to time ti+1,

and updated if a measurement is available. The system is then relinearized about a new

nominal trajectory. The filter accomplishes the propagation by integrating the following

equations from t i toti+1 "

x(titi) = f[x(t/ti ), u(t), t] (2-35)

P(t/ti) = F[t; x(t/ti)] P(/t) + P(t/ti)F T[t; x(t/ti)] + G(t)Q(t)G T(t) (2-36)

where

F[t ; Xitti)] = f[~) ~) (2-37)
X~~x-xuttiZ )

and the initial conditions are given by the results of the previous measurement update:

(ti/ti) = x (ti +) (2-38)

P(ti/t ) = P (t, +) (2-39)

The filter update equations incorporate the measurement z(t) given by:

K(ti) = P(ti-)ft'r [tj ; x(t-)] H [t1 ;(t)] P(ti-) Hr[ti ; i(t-) + R(' 1 ) (2-40)

x (i) = X(i-) + K(t d z(t - h [x(ti) ,ti] (2-41)

P (ti +) = P(t,-) - K(t,)Il[i; X(ti-) ]P(ti-) (2-42)
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where

H~ti'~ ti-] = h[x,ti][

, , (2-43)ax Xx-x(ti- )

A comparison of the extended Kalman filter propagation and update equations with

the linear Kalman filter propagation and update equations reveals that, for linear vector

functions f [x(t), u(t), t ] and h [x(ti), ti] from Equations (2-25) and (2-26), the extended

Kalman filter relations reduce to the linear Kalman filter equations. Since the linear system

model is completely representative of the first-order terms of the Taylor series expansion,

the extended Kalman filter propagation and update equations reduce to the linear Kalman

filter algorithm under the conditions [13].

2.4 Summary

This chapter provided the mathematical background theory of the linear and extend-

ed Kalman filters. The linear Kalman filter is an optimal estimator, while the extended

Kalman filter is a good approximation for nonlinear models. The limitations of the first

order approximations inherent in extended Kalman filter algorithms are recognized, but the

results have proven to be very good in previous AFIT theses associated with this

application. For the computer simulation used in this research, the truth model (Chapter

IV) is composed of linear and nonlinear functions, while the three Kalman filters studied

have dynamics and measurement models (Chapter V) which are linear.
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III. Simulation Space

3.1 Introduction

The AFIT tracking scenario described in Chapter I is simulated on a digital

computer. To accomplish the simulation, a "simulation space" is defined [6, 9, 24] to

propagate the target along a realistic trajectory, and to provide a means of mathematically

projecting the target's infrared image and velocity vector from a three-dimensional space

into the FUR plane's two-dimensional image plane. For the purpose of this thesis, the

formulated simulation space is coded into a FORTRAN computer !anguage for use on a

digital computer. This chapter relates the simulation space to the target model, and covers

the process of pointing the FLIR sensor at the target during tracking. The target trajectory

is also presented.

3.2 Coordinate Frames

The simulation space is defined relative to three coordinate frames: a system inertial

reference frame, a target reference frame, and an a-[3-r reference frame. There are also

four special coordinate frames associated with the a-fl--r reference frame: the a-fl (FLIR)

plane, the absolute a-J3-r reference frame, the trans-FLIR plane, and the along-

track/across-track (ALT-ACT) plane. The a-fl--r reference frame is used to translate the

target's apparent intensity image onto the a-l (FLIR) image plane. The trans-FLIR plane

is the FLIR plane translated to the target's true center of mass. The ALT-ACT frame is a

rotation of the trans-FLIR plane by an angle 0, shown in Figure 3. 1, with one of the axes

aligned along the longitudinal axis of the hardbody and the other being across the

hardbody. Figure 3.1 shows the origin and the orientation of each of the three primary

firames and their relationships to the other frames. A description of each reference frame is

given in the following paragraphs.
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Figure 3.1. Three Primary Coordinate Frames in Simulation Space

3.2.1 Inertial Reference Frame. The inertial reference frame is an North-Up-East

(NUE) frame located with its origin at the center of the FLIR sensor. The simulation of the

target flight occurs in this frame. The unit vectors of this frame are represented by:

ex north, tangent to earth's surface, defines zero azimuth

ey - up, perpendicular to the earth's surface

ez  east, completes right-hand coordinate set
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3.2.2 Target Reference Frame. The target reference frame has its origin at the

center of mass of the target. The frame is orientated with one of the unit vectors pointing

along the velocity vector of the target. The unit vectors of this frame are represented by:

e- along the velocity vector

ep-, epp, define a plane perpendicular to the target velocity

vector, e,

where

the subscript 'v' indicates along the velocity vector

the subscript 'pv' indicates perpendicular to v

the subscript 'ppv' indicates perpendicular to both v and pv

3.2.3 a-fl-r Reference Frame. The a-f3-r reference frame is defined by the

azimuth angle a' and the elevation angle f3' measured with respect to the FLIR line-of-

sight (LOS) vector e. (The FUR LOS vector er defines the pointing direction of the FLIR

FOV, which may not point directly at the target.) The true azimuth a and the true elevation

/3 are referenced from true north and and the horizon. The purpose of this frame is to

project the velocity and position of the target onto the FLIR plane. The unit vectors of this

frame are represented by:

er - coincident with the LOS vector, defines the pointing direction

of the FUR FOV

ea, ep - define a plane perpendicular to er, rotated from the inertial

e, and ey by the azimuth angle a and the elevation angle /3

3.2.4 a-fl (FLIR Image) Plane. As previously mentioned, this is a plane in the

a-fl-r reference frame. The FLIR plane is used to obtain the measurements of the

position and the velocity vector components of the target's intensity cenuoid as the target

propagates along its trajectory. (The target velocity vector in the FLIR plane is
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geometrically derived, as described in Section 3.3.3; there are no measurements of this

velocity vector.) Recall the FLR sensor only provides information on the target's intensity

centroid, and cannot supply information on the location of the target's hardbody. A view

from the inertial frame through the FUR plane is shown in Figure 3.2. As seen in Figures

3.1 and 3.2, the LOS vector e, projects through the center of the the FUR plane, and

defines the pointing position for the FLIR sensor. When looking through the FLIR plane

along the LOS vector, the FLIR x-axis (ea) is positive to the right and the FUR y-axis (e3)

is positive down. This coordinate system allows for the distance to the target to be

measured positive along the e, vector, which completes the right-hand coordinate set. The

LOS vector also serves as the aiming source for the low-energy and high-energy lasers.

a-fl Plane LO0S e

(FLIR) 
VetrI

Up e
eya

North i+x FUR

East Apparent Intensity
Inertial ez +Y JR Centroid Image
Frame

Intensity centroid shown
offset from ideal location
at center of FLIR planc

Figure 3.2. FLIR Image Plane
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Since the distance to the target is so large (approximately 2,000 kilometers), the

azimuth angle a' and the elevation angle Pi', shown in Figure 3.1 and 3.2, are considered

very small, allowing the use of small angle approximations for the angles. Using the small

angle approximations, then angles a ' and fl' are linearly proportional to the cartesian

coordinates x and y in the FLIR plane. The x and y distances from the center of the FLIR

FOV are the errors associated with tracking the intensity centroid of the target. These

errors are measured in pixels on the a-fl plane.

3.2.5 Absolute a-3--r Reference Frame. The absolute a-fl-r reference frame is

similar to the a-fl--r reference frame except that the absolute frame is fixed in inertial space

at the initial a-fl-r coordinates of the target. During the simulation, this coordinate

system defines the pointing direction of the FLIR LOS vector er, and is also used to define

the true and filter estimated target positions and velocity components on the FLIR plane.

The coordinates of the target position and velocity components are continuously updated

from the stu-t of the simulation.

3.2.6 Trans-FLIR Plane. Quadrant I of the FLIR plane (as seen through the FLIR

plane towards the target) is shown with the trans-FLIR plane and ALT-ACT plane in

Figure 3.3. The trans-FLIR plane is defined as the result of translating the center of the

FLIR FOV to the true center-of-mass of the target hardbody. The frame is used to

determine the VFLIR and YFLIR coordinate errors of the Kalman filter estimate of the

hardbody center-of-mass for performance analysis.

3.2.7 ALT/ACTPIane. The ALT-ACT plane is shown in the FLIR plane in Figure

3.3. This plane is a rotation of the trans-FLIR plane by the true angle Ot of the target

trajectory. The ALT-ACT plane is used to determine the tracking error mean and cov-

ariance, where the error is the difference between the estimate of the hardbodv center-of-

mass and the true center-of-mass in the target's along-track and across-track components.
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Figure 3.3. FUR Plane, Trans-FLIR plane, and ALT-ACT plane

This frame provides an orientation of the center-of-mass errors which is easier to visualize.

The previous thesis [2] estimated only the scalar magnitude of that error as measured in the

FLIR plane. As mentioned in the objectives (Section 1.3), this thesis determines the FUR

x- and y-components of that error, then rotates the error to determine the along-track and

across-track components of the error in the ALT-ACT plane.

3.3 FLIR Image Plane

The FLIR plane is of primary importance in determining the performance of the

Kalman filter in tracking a target. The target flight trajectory occurs in the inertial

coordinate system, while the projection of the target and its dynamics onto the FLIR plane

provides a means of generating simulated measurements and estimating the target

trajectories. The measure of success is found in the errors that are calculated in this plane.

A description of the geometry comprising the FLIR plane is summarized in this section.
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Figure 3.4. Pictorial of 8 x 8 FLIR Field-of-View

3.3.1 FLIR Field-Of-View Geometry. The FUR FOV in this thesis consists of an

8 x 8 pixel array shown pictorially in Figure 3.4. The detected information provided by

each pixel is a function of the varying intensity of the IR image and background noise. The

resolution of each of the discrete pixel elements provides a measure with which the errors

in the Kalman filter's estimate of the azimuth and elevation of the target's intensity centroid

are determined. The units of the errors are in "pixels". The pixel length has typically been

20 microradians per side of each pixel. This value was reduced to 15 microradians [26] for

studying the long range tracking of a missile target (i.e., 1 pixel = 15 microradians). The

pixel distances and errors become meaningful in the simulation through a pixel

proportionality constant denoted as kp with units of radians/pixel. For this thesis the value

of the pixel proportionality constant is kp = 0.000015 radians/pixel. At a distance of

2,000 kilometers, the relationship of pixels and meters is: 1 pixel = 30 meters.
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3.3.2 Target Model on FLIR Image Plane. The target intensity model, as viewed

by the FLIR plane, is modeled using two Gaussian intensity functions as developed in a

previous thesis [26]. The difference between these intensity functions represents the

plume hotspot of the target, as shown in Figure 3.5. In addition, the target hardbody itself

has recently been modeled as a rectangle in the FLIR plane [2]. As one of the primary

objectives of this thesis, a better three-dimensional reflective target model is developed.

The FLIR sensor can only "see" the IR intensity shape function of the target, therefore the

intensity centroid model is emphasized. The modeling of the hardbody as it relates to the

low-energy laser measurements, and the determination of the target center of mass, are

discussed in Chapters IV and V.

The radiated energy from a single intensity function is modeled as a bivariate

Gaussian distribution with elliptical constant intensity contours in the FLIR image plane.

As mentioned above, the target's plume is modeled using two bivariate Gaussian densities.

a-fl Plane
(FLIR)

Centroid of
Apparent Target
Intensity Profile

yp 4t) Two Gaussian
Intensity Functions
(Target Plume

I: Represented by
x t ) Subtracting 'Trailing"

Function from
"Leading" Function)

8 x 8 Array
I I - of Pixels

Intensity centroid shown

offset from ideal location
at centcr of FLIR plane

Figure 3.5. Target Image (Difference of Two Intensity Functions) in FLIR Field-of View
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One function is subtracted from the other (the "trailing" intensity function is subtracted

from the "leading" intensity function), resulting in the contour map shapes shown in Figure

3.5. This simulation of the target plume represents a good approximation of empirically

observed plume intensity profiles.

The bivariate Gaussian intensity function is given by the following equation:

I [x, y, Xpeak(t), Ypeak(t)] = Imax exp[-0.5[Ax Ay ]P-I[AAy] T] (3-1)

where

Ax = (X -Xpeak) 2OS0 I + (Y - Ypeak) sinO t

Ay = (Y -Ypeak) COS0 1 - (X - Xpeak) sin0 r

01 true target orientation angle between the projection of the

velocity vector perpendicular to the LOS vector and the

x-axis in the FLIR plane

x, y = reference coordinate axes on the a-f3 plane

Xpeak, Ypeak = coordinates of the peak intensity of the single Gaussian

intensity function

lza = maximum intensity function

P = 2 x 2 target dispersion matrix whose eigenvalues (Cr2 and a,)

define the dispersion of the elliptical constant intensity

contours (along the velocity vector and perpendicular to that

velocity vector, respectively in the a-f plane; see Sections

3.2 and 3.3.4)

The geometry of the two intensity functions that define the target to the FUR sensor is

shown in Figure 3.6. The spatial definition of the intensity functions along the e, axis is

based on the assumption [26) that the dispersion of a missile's exhaust plume at high
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Figure 3.6. Orientation of Target Gaussian Intensity Functions
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altitudes is approximately 20 times the diameter of the missile [26]. Additionally, at high

altitudes the plume often appears to envelope the target, at least partially [26]. The model

of the target hardbody was chosen to be 40 meters long by 3 meters in diameter. With this

target geometry, the first centroid was placed 65 meters behind the target center of mass to

simulate the composite centroid of the plume being close to the exhaust nozzle of the

missile. The second intensity function was arbitrarily placed at 1 i0 meters to simulate one

of many different plume shapes. The shape of the plume, and the relative distance of the

composite centroid of the plume with respect to the aft end of the target, can be varied by

changing the location of the second intensity function.

In this simulation, the centroids of the two intensity functions remain fixed in the

target frame (without the effect of plume pogo oscillations; see Chapters IV, and VI). The

external forces acting on the target other than thrust and gravity are assumed negligible.

Therefore, the sideslip angle and the angle of attack are considered to be zero. With these

simplifications of the target, Figure 3.7 shows that the semi-major axis of the plume

intensity centroid (difference between two elliptically-shaped Gaussian intensity functions)

is aligned with the velocity vector's projection onto the FLIR image plane. These

conservative assumptions provide for a simplified geometry while retaining the essential

features of the trajectory simulation necessary for a valid performance analysis of the

tracking system.

3.3.3 Target Velocity Projection onto FLIR Image Plane. As discussed in Section

3.2.1, the target is propagated through inertial space by the truth model (Chapter IV) in the

simulation. The two intensity functions, which define the target's intensity profile, are

projected onto the FLIR image plane (Section 3.3.2) as the simulation occurs. The general

discrete-time state space form of the equation that models the target in the truth model is

given by Equation (2-9):
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Target Velocity Vector on FLUR Image Plane

where

(I)(ti+i, ti) = the systemn state transition matrix

x(tj) = discrete-time vector of states of interest

Bd(t,) = discrete-time control input matrix

11(t:) = discretr: time deterministic control input vector

Qj (t1 ) discrete-time driving noise Input matrix

WI~ti d'screte-t'me, zero-mean, white GUSSin noise process

with independent comnonents
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The target is propagated through 3-dimensional inertial space, and projected onto the FLIR

plane. Equation (2-9) is used to express the desired time histories of the true azimuth a(ti)

and true elevation fl(ti) angles (Section 3.2.3) as the solution to the state space model.

Therefore, the azimuth angle a ' and the elevation angle f3' are computed such that the

result of the discrete-time forcing function Bd(ti)u(ti) passing through Equation (2-9) are

the desired a(ti) and f(ti) time histories. (In the simulation, the (i(ti)wd(ti) is not used

in the generation of the a(ti) and flti) time histories.) The truth model contains the

deterministic control input matrix Bd(ti) and the deterministic input control vector u(ti),

while the three Kalman filteis used in the simulation do not have control functions (i.e.,

they are not informed of the actual trajectory being performed by the target). The projection

of the target's inertial velocity vector onto the FUR image plane is given by the

deterministic input vector:

U t) '(ti) ' t (3-2)

,where

= 2-dimensional true target deterministic input vector

a ) target aziIuth rate in the FLIR plane

'(ti) = target elevation rate in the FLIR plane

This projection is based on the FLIR and target intensity centroid ge ometry shown in

Figure 3.8 [6]. The horizontal projection of the range to the target\', intensity centroid is

givsen by ,. Ihe azinmuth velocity is derived from Figure 3.8h). [rom the diagram:

I It)
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v, v, components of the target's inertial velocity in the e , an~d ez directions,

respectively.
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The elevation velocity is derived from Figure 3.8(c). From the diagram, it can be seen that:

/3(t) = arctan [(t)] (3-5)

Taking the time derivative of this equation and noting from Section 3.2.4 that/3() = /3 '(t)

gives the elevation velocity in the FLIR plane as:

rh(t)vy(t) - Y(t)rh(t) (3-6)

r2(t)

where

r (I)v 1) + Z( )v,(/)
rhr (1)

rh (i)

Vy= component of the target's inertial velocity in the ey direction.

3.3.4 Target Image Projection onto FLIR Image Plane. As described in earlier

research [2, 11, 26, 30], the target intensity centroid image projection geometry, shown in

Figure 3.9, relates the current target intensity image to an initial "reference target" imag on

the FUR plane. The reference image is oriented on the FLIR image plane to correspond to

the largest apparent planform at a specified range. The angle 0 is defined from the positive

x axis to the projection of the target's velocity vector on the FUR image plane. The target

intensity image in the FLIR plane, as shown in Figure 3.7, is defined by the dispersion

along the principle axes of the intensity function's two bivariate Gaussian images as seen

by the FUR sensor:

= u ,, r (3-7)

( + os( (5

= 7[ ( ,--- -(AR - I)
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where

,.o , pvo = the initial dispersions of the target inten'ity functions along

ev and epv in the target frame of the reference image

o, oP = the current dispersions of the target's image

ro  = initial sensor-to-target range of the reference image

r = current sensor-to-target range

v = initial velocity vector of the target

v = magnitude of v

VILOS = projection of v on the (a-fl) plane; i.e., the component of

v perpendicular to the LOS vector

v-±Los = magnitude of vILos: V ILOS = 2 +2

= angle between v and the (a-fl) plane

AR = avo aspect ratio of the reference image

ey v ±LLOS Target
~Intensity

~Centroid
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Figure 3.9. Target Inten,; tv Centroid linage Projection (eometrv onto FI.1R Irmag2e Plane
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The locations of the intensity functions are initialized in the target frame as a

displacement from the target's center of mass. Then the hotspots are rotated by the target

orientation angle, 01, in the FLIR image plane (refer to Figure 3.7). As the target

propagates through inertial space in the simulation, the output of the FLIR sensor is

simulated by projecting the target's two intensity functions (which are used to create the

simulated plume intensity centroid) onto the FLIR image plane. In previous AFIT research

[2, 26, 25], these "hotspots" remained fixed with respect to the target frame, while the

locations of the intensity functions in the FUR plane changed as the target changed its

orientation relative to the FLIR sensor. As a part of this research, the plume pogo

phenomenon [26] is applied to the intensity centroids. With the pogo forcing input

applied, the intensity functions do not remain fixed in the target frame relative to the target

center-of-mass, and the composite image centroid oscillates along the velocity vector,

producing an additional perturbation to the intensity functions in the FLIR plane.

3.4 FLIR Sensor Pointing Controller

The FLIR sensor is directed to track the target ba.,ed on the Kalman filter's

propagated estimate of the target's position. The link between the filter command and

proper positioning of the FUR sensor is the pointing controller. Ideally, the command

from the filter to the pointing controller, provides positioning of the FUR sensor within

one sample period (1/30 second). This would mean that the process of pointing the FUR

sensor would occur between the measurements provided to the filter by the FUR sensor.

However, due to mechanical servo lags, the positioning process is not actually

accomplished completely before the next measurement is received. Furthermore, if the

filter is not aware of the pointing lag at the time of a measurement update, the filter could

interpret the motion of the FLIR as target motion and provide inaccurate estimates of future

states [24].
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A study was accomplished in a previous thesis [24] in which a controller model

was studied to determine the necessity of including the controller dynamics lag in the

simulation. The study revealed that the filter interprets the pointing controller time lags as

due to atmospheric jitter. This implies some robustness on the part of the Kalman filter to

perform nominal tracking in the presence of unmodeled actuator dynamics. Therefore, the

controller in the simulation is an ideal lag-free model for this research.

3.5 Target Trajectory

The missile trajectory used in the simulation is a point mass influenced by a thrust

force and a gravitational force, described by the following inverse square-law force field

equation [26]:

FG = G I2(3-9)FG- 2

r
where

FG = force of attraction between missile and the earth

G = universal gravitation constant

in,, m2  = mass of earth and missile, respectively

r = distance between the eau-th's center and the missile center of gravity

For the purposes of this study, all other external forces on the missile (atmospheric

drag, deterministic solar effects, etc.) are assumed negligible; and the missile is assumed to

have constant mass over the simulation interval of ten seconds. To obtain an expression

for the missile acceleration, Newton's second law gives:

F = ma (3-10)

where

F = external force(s) acting on the missile

n = conistant mass of the missile

= inertial acceleration uf the missile
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From the deriveQ inertial acceleration, the components of the missile's inertial velocity and

position are obtained oy integration techniques. The deterministic inertial position and

velocity components are used to project the velocity onto the FLIR image plane (Sections

3.3.3 and 3.3.4), and the resulting FLIR plane position coordinates from the truth model

propagation cycle represent the first two states in the truth model state vector of

Equation (2-9). The thrust and mass parameters used to describe the simulated ballistic

missile are based upon the Atlas missile specifications [26].

The initial conditions of the target's inertial position and velocity vectors for the

simulation are:

e., 27,000 meters

e) = 100,000 meters

e = 2,000,000 meters

V = -2500 meters/second

v = 4330 meters/second

Iv = 0 meters/second

With these initial conditions, the range of the target is on the order of 2,000 kilometers and

traveling at a speed of 5,000 meters/second. Figure 3.10 shows the pu.itin of the target at

the start of the simulation relative to the FLIR image plane. The relative magnitudes of the

initial velocity components v, and vy form an initial velocity vector orientation angle of 60'

for the target in the inertial frame. The components of acceleration are calculated based on

the above mathematical discussion.

The initial condition in the e, direction is made large to simulate the large effective

range when considering an orbiting platform that is undergoing bending/vibrational effects.

The reason that the e, direction is chosen to generate a large effective range is because it is a

"benign" axis when implementing the ballistic missile trajectory for this simulation. All
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Figure 3.10. Missile Trajectory in Inertial Space Relative to FLIR Image Plane

of the missile dynamics are simulated to occur in a plane parallel to the inertial e(-ey

plane. Therefore, the ez axis is basically used to scale the desired range when considering

an orbiting optical platform in the simulation. The effective range is also used in

determining the required pixel proportionality constant k, (Section 4.3.1), as well as being

involved in the various coordinate frame transformations that have been implemented in the

simulation software over the past twelve yea-s. The large initial component in ez does not

affect the true missile trajectory as generated by the mathematical development at the

beginning of this section, since the only forces acting on the missile are assumed to be the

thrust force and the force due to the earth's gravitational attraction. Both of these forces are

simulated to occur in a plane parallel to the e,-ey plane. [26]
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3.6 Summary

This chapter described the coordinate reference frames used in the simulation to

establish the target on the FLIR sensor. The three primary coordinate frames are: the

inertial reference frame which is used to translate the target; the target reference frame

which defines the axes of the missile; and the a-fl-r frame which is used to define the

apparent image of the target's intensity centroid on the FLIR sensor. The target FLIR

image is modeled as the difference of two Gaussian intensity functions with elliptical

constant-intensity contours. The position and velocity of the target's intensity centroid is

established on the FLIR image plane using geometric relationships between the inertial

frame, the a-f--r frame, and the target frame. The Trans-FLIR plane and the ALT-ACT

frames are used to identify the taxget hardbody center-of-mass. The target is kept in the

FLIR FOV by the commands received from the pointing controller which uses propagated

Kalman filter data to point the FLIR sensor. The initial conditions of the target trajectory

define a nominal Atlas missile at a distance of 2,000 kilometers from the space platform,

and cl'mbing at an angle of 600. "I he trajectory is determined by the first two states of the

truth model, which is covered in the next chapter.
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IV. Truth Model

4.1 Introduction

The design process of a Kalman filter must include testing in the dynamic

environment in which the filter will operate. Since it is difficult and expensive to test each

filter modification in an actual real world, an alternative is to define a "real world"

environment in a computer simulation. This simulated description of the real world is

called a truth model. This model of the dynamic environment in which the filter will

perform must contain as many states as needed to provide a realistic test for the filter. The

Kalman filter is typically derived from this "truth model" by reducing the model to meet

computer processing and memory requirements, while at the same time ensuring that it

meets the performance specifications.

The truth model is developed by accomplishing data analysis on information

obtained from instruments measuring physical phenomena of the real world environment.

Then mathematical shaping filters [12] are developed and validated in the real world

environment until the models meet, or exceed, the specifications required of the filter. It is

essential to expend enough effort in its generation to be confident that it adequately

represents the real world, since the ensuing performance evaluation and systematic design

procedure of the Kalman filter is totally dependent upon this assumption [12].

A diagram of the computer simulation used to conduct a performance analysis of a

Kalman filter design is shown in Figure 4.1. The truth model, which is a linear or non-

linear nt-dimensional state model, is driven by a zero-mean white Gaussian noise wt (',.)

that provides the real world measurements z (.,.) to the Kalman filter under evaluation.

The measurements are corrupted by a zero-mean white Gaussian noise vt (,). (The

notation (.,.) indicates a stochastic process as a function of the two arguments, time t and

the elementary outcome (o.) In actual operation, the filter obtains measurement data from
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Figure 4.1. Computer Software Simulation Diagran of
Truth Model and Kalman Filter [12]

physical sensors. The filter uses the measurement input to update the state estimates x, and

propagate its estimates to the next sample period.

The true state xt from the truth model is related to the important variables of interest

by a linear (or non'inear) transformation:

yI(t,) = C I(t) xt(,t,.) (4-1)

where y(t,-) represents the real world variables of interest. The state estimate x(,) from

the Kalman filter is also processed by a linear transformation which is nominally the

identity matrix since this will give all the states of interest estimated by the filter.

Therefore, we obtain y(t,.) which is the estimate by the Kalnan filter of the values of the

variables of interest before and after the update:

y( ,ti-) O f"~t) xv t'-) 04-2)

(t, )  t,) x(t ) 4.3)
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The analysis of the Kalman filter penormance with the truth model is determined by

the difference, or "true error" of the filter estimates. The values of the errors may be

obtained both before and after the measurement update:

el(ti- ) = y(ti.) - yt(ti. ) (4-4)

et(ti +  ) = y(ti+  ) _ y 1(ti ) (4-5)

For instance, the Kalman filter state vector for this thesis consists of two position

states, two velocity states, two atmospheric jitter states, and two center of mass offset error

states. The truth model consists two position states, six atmospheric jitter states, four

vibration/bending states, and two plume pogo states. The truth model has a total of

fourteen states while the Kalman filter has eight states, which means that the fourteen-state

truth model gives (assuming the modeling is correct) a better representation of the real

world than the model within the Kalman filter under test. Moreover, the filter is never

told" the actual trajectory simulated in the truth model, and the FUR measurement

generation and processing by the enhanced correlator is represented by a simple linear

model within the filter. In this thesis, the primary interest is the error in the estimate of the

hardbody location, which is a linear combination of the position states and the center of

mass offset errors. Secondary interests include: the two target dynamics states, the two

centroid intensity position states (for shape function identification), and the velocity error

(to determine the sweepline orientation of the low-energy laser). Therefore, using

Equations (4-4) and (4-5), the true error between position estimated by the filter and that

estimated by the truth model is calculated. The statistics of this error indicate the quality of

the tracking performance of the filter.

The purpose of the Kalman filter performance analysis is to characterize the enors

in th- filter's estimates. The analysis often also includes a sensitivity study to determine

how the performance changes when the strLuctUre of the filter is adjusted (i.e., when states
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are added to or subtracted from the filter, or when covariances are adjusted). The truth

model may also be adjusted to simulate a changing sensor environment. Since the system

is a stochastic process, the analysis is accomplished by examining the statistics of the error.

There are two different methods used to obtain the statistical information about the

filter errors. One means is by using a Monte Carlo study, and the other is by using a co-

variance analysis. They both provide essentially the same information, however they each

have differing limitations which makes them useful under different conditions.

The Monte Carlo analysis correctly provides statistical information on linear and

nonlinear systems with Gaussian or non-Gaussian noises. The error analysis is accom-

plished by completing many computer runs of the filter, then obtaining the sample statistics

from the average of the runs. Figure 4-2 shows the outputs of three such Monte Carlo

computer simulation runs. The number of computer runs required to obtain good statistics

on the filter errors is dependent on the application, but 10 to 20 runs are usually sufficient

for most applications. (Ten runs are used to obtain the statistics for this thesis.) The

computer time to accomplish many runs can be very costly and time-consuming.

Sample value of
error in estimate of
variable of interest

et(t,W°1

et(t,(D2 )

Figure 4.2. Outputs of Three Monte Carlo Runs [12]
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An alternative to using the Monte Carlo method is to use a covariance analysis. A

covariance analysis may be used if the truth model is in the form of a linear system driven

by a white Gaussian noise which provides linear measurements to the filter that are

corrupted by white Gaussian noises. A single computer run generates a time history of the

covariance of the true estimation errors Pe (-) committed by the filter as given by Equations

(4-4) and (4-5). The square roots of the diagonal terms of this matrix are the standard

deviations (lo values) of the estimates of the critical variables. These values are directly

comparable to the results of the Monte Carlo method, but they are generated in a single

computer run.

The Kalman filter design must provide the best possible performance estimation.

Therefore, the filter must be "tuned" to obtain the optimal performance. This is accom-

plished by varying the initial uncertainty in the state estimates Po. strength of the white

Gaussian dynamics noises Q, and the uncertainty in the measurements as depicted by the

measurement noise covariance R. These parameters account for the actual noises and

disturbances in the physical system, and provide a means of identifying now adequately the

filter model represents the real world. A simple model (few states) has higher values of

covariances or strengths of uncertainties/noises assigned while a complex model (many

states) will have lower values assigned.

The covailance analysis can be a very effective tool in tuning the filter. Since a sin-

gle computer simulation run provides a complete set of statistics, a run provides a basis to

study performance changes when the covariance parameters of the filter are adjusted. The

Po matrix determines the transient performance of the filter, while the Q and R matrices

predominantly determine the steady-state performance. By properly selecting the noise

terms Q and R, and the initial values for the covariance P matrix, the actual estimation

error,) of the filter are reduced. Figure 4.3 shows three covariance runs during -he process

of tuning the P. Q, and R terms in a filter.
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When a filter is properly tuned, an "error budget" may be established. An error

buc.get is determined by individually turning on individual error sources (or groups of error

sources) in the truth model to determine the separate effects of the sources. The analysis

will indicate the rank order of importance of the error sources. This information can be

used to reduce the filter states (replacing the removed states with white Gaussian noise of

appropriate strength, as found by means of tuning).

rrns error i

.f"' V/ / If" True" rms error

(a) Time

Computed rms error

"True" rmns err or

(b) Time

rms error

Computed rms error
'True" rms error

(C) Time

Figure 4.3. Filter Tuning Covariance Analysis: (a) the filter is weighting
its internal model too heavily and underestimates its own errors; (b) the filter
overestimates its own errors; (c) the filter is properly tuned [12]
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4.2 State Description

The introduction of this chapter pointed out that the truth model should have as

many states as necessary to give a good portrayal of the real world environment in which

the filter will operate. The truth model used in this thesis is a result of past theses [10, 21,

26], and is composed of fourteen states. The states are as follows:

2 target dynamic states

6 atmospheric states

4 mechanical bending states

2 pogo oscillation states

The dynamics of the target's intensity centroid on the FUR plane is the result of

target dynamics, atmospheric jitter due to distorted infrared wavefronts, bending/vibration

of the optical hardware, and pogo effects of the exhaust plume's oscillatory nature. The

location of the true target image on the FUR plane is measured in pixels from the center of

the FOV in the x and y FLIR plane directionN. The true target location is given by:

X = x d + .1Ca + Xb + Xp cosOf (4-6)

Yc =Yd + Ya + Yb - Xp sinO, (4-7)

where

XC, Yc = target image intensity centroid coordinates

Xd, Yd = coordinate deviation due to target dynamics

xa, Ya = coordinate deviation due to atmospheric jitter

xb Yb = coordinate deviation due to bending/vibration of optical hardware

xp = coordinate deviation due to pogo oscillations along

the velocity vector direction

0, = true target orientation angle (refer to Figure 3.7)
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Equation (4-7) has a minus sign associated with the pogo component, due to the coordinate

definition of the FLIR coordinate frame (refer to Section 3.2.4). The seven output states

Xd, Xa, xb, Xp, Yd, Ya, Yb comprise the output states, which are used to develop the fourteen

stochastic differential equations necessary to describe the truth model mathematically. The

states xd and Yd are each modeled by first-order differential equations; the states xb, Yb, and

xp are each modeled using second-order differential equations; and Xa and Ya are each

modeled with third-order differential equations. The dynamics part of the truth model is

made up of these fourteen differential equations when arranged in state-space form.

The rest of this chapter presents the dynamics model, the measurement models that

give the Kalman filter periodic measurement updates, and the initial conditions of the truth

model equations and target trajectory. Chapter III describes the simulation space in which

the models are defined.

4.3 Dynamics Model

The mathematical representation for the fourteen-state truth model state vector is the

augmentation of a two-state deterministic target dynamics model, a six-state stochastic

atmospheric jitter model, a four-state bending/vibration model, and a two-state stochastic

plume pogo model. The augmented system is described by a first-order, stochastic

differential equation given by:

xt(t) = Ftxt(t)+Btu,(t)+Gtw,(t) (4-8)

where

Ft 14 x 14 time-invariant truth model plant matrix

x t(t) 14-dimensional truth model state vector

B 1 14 x 2 time-invariant truth model distribution matrix

u ,(t ) 2-dimensional deterministic input vector
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G t  - 14 x 14 noise distribution matrix, (G t = I)

W (t) = 14-dimensional, white Gaussian noise process with unit

strength components, and mean and covariance kernel statistics:

E(wt(t)) = 0 (4-9)

W1 (t)w T(t+ 7)) = Q16(7)(4-10)

To simulate the target dynamics model on a digital computer, the following equiva-

lent discrete-time solution to Equation (4-8) is found from linear algebra techniques [12]:

Xt(ti+i) = dI(t(ti+ 1,t i)x(ti) + Btd Utd(ti) + GtdWtd (ti) (4-11)

where the state transition matrix (D,(ti +1, ti) is given from solving the differential equation:

d1t FtI (t, ti) (4-12)

with the initial condition: I)t(ti, ti) = I

and

x t(ti) = 14-dimensional discrete-time truth model state vector

Bid = 14 x 2 discrete-time truth model distribution matrix

UId (ti) = 2-dimensional discrete-time input vector

GOd = 14 x 14 discrete-time noise distribution matrix, (Gtd = I)

Wtd(ti) = 12-dimensional discrete-time, white Gaussian noise process with

mean and covarinne ,tatistics:

494-13)
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E Wtd(ti )wzi)d =Qd = f QD(ti,-)GIQtGtI t(tji-7)d7 (4-14)

where Qt is defined in Equation (4-10). The discrete-time input distribution matrix Btd is

defined as:

B.d f (It (ti+-r7) B (4-15)

i

The discrete-time truth model, like the continuous-time case, consists of two target

states, six atmospheric states, four mechanical bending/vibration states, and two plume

pogo states. These states are realizable in the x and y coordinate axes of the FLIR plane.

The fourteen states are oriented in the FUR plane as:

XFLIR YFLIR

1 target state 1 target state

3 atmospheric states 3 atmospheric states

2 bending/vibration states 2 bending/vibration states

2 plume pogo states

where the plume pogo states are neither XFLIR nor YFLIR. These states are augmented into

the truth model state vector.

Xd (2.1)

xa -- (4-16)

Xb I
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where

Xd = 2-dimensional target dynamics state vector

Xa = 6-dimensional atmospheric state vector

Xb = 4-dimensional bending/vibration state vector

xp = 2-dimensional plume pogo state vector

The discrete-time truth model state transition matrix (D, is givcn as:

(D I x2) 0 2.4) 0(2.2)I - " I I

I a I0 6
0 6 2) I a(6 x6  I I64 62

(17t  = . .. .. .. .-I I I (4-17)
0 (4x2) 0 (4x6) 0(4.2)

I I I

L 0 (a~2) 0I .(6, 02.4) 47'

The discrete-time truth model distribution matrix B td is given by:

B ddc2 2)

0 (6x2) 4-8
Btd (4-18)

0 ((42)

The discrete-time truth model white Gaussian noise process w td is given by:

0(2.1)

W da(6x,)

w - -- (4-19)
W db .1 )

WI dp 12,0
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where

W da(ti) = 6-dimensional discrete-time, white Gaussian noise

related to atmospheric jitter states

w db(tl) = 4-dimensional discrete-time, white Gaussian noise

related to bending states

W dp(ti) = 2-dimensional discrete-time, white Gaussian noise

related to plume pogo states

From Equations (4-11) and (4-16) through (4-19), it can be seen that the truth model is in a

block diagonal form, which permits the models for target dynamics, atmospheric jitter,

bending/vibration, and plume pogo to be presented separately. The following sections

provide a detailed evaluation of each of the discrete state models which form the stochastic

discrete-time truth model.

4.3.1 Target Model State Description. The a-fl plane (FLIR image plane, Section

3.2.4) is coincident with the FLIR sensor FOV (Figure 3.3), and perpendicular to the LOS

vector er. In the simulation, the 3-dimensional target dynamics are projected onto the FLIR

image plane. As discussed in Section 3.2.4, the position and velocity components of the

target's intensity centroid are obtained from the azimuth and elevation displacement angles

(a ' and 3', respectively). Since the distance to the target is simulated as 2,000

kilometers, small angle approximations are used in approximating the angle displacements

to the cartesian coordinate system of the FUR image plane. These "pseudo" angles a' and

/3' are referenced from the current LOS vector, as shown in Figure 4.4.

The pseudo angles a ' and /3' are measured in microradians, and the linear

translational coordinates xd and Yd, which locate the target intensity function on the FLIR

plane, are measured in pixels of displacement from the center of the FLIR FOV. These two

measurements are related by the pixel proportionality constant kp, which is the angula,
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Figure 4.4. Target Image on a-fl Plane with "Pseudo" Angles

FOV of a single pixel. The pixel proportionality constant used in this research is

approximately 15 microradians/pixel. This value is carried over from previous research

[2, 26]. Prior to this current value for the pixel proportionality constant, the value of 20

microradians/pixel was used [4, 6, 9, 10, 11, 21, 22, 24, 25, 27, 28, 29, 30]. The value

was reduced for the study of long-range targets to improve the resolution of the target's

intensity centroid on the FLIR image plane. This finer resolution of the FLIR allows the

8 x 8 FOV to "see" the shape of the target's intensity function.

The derivation of the state space model of the target dynamics begins by assuming

that the azimuth and elevation rates (a' and P3', respectively) remain essentially constant

over each sample period At (i.e., ti, 1 - t i ). Then the discrete targets dynamics model is:
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Ard(ti+1) = -Xd(ti) + (a')(At) (4-20)

Ydt~)=Yd(ti) (~)A)(4-2 1)

Arranging these equations in state space form yields:

Xd (ti+11) = Dd(ti+l, ti)Xd(ti) + Bd Ud(ti) (4-22a)

[1 O~[X~t)1+ [' 0 [aL (4-22b)

where

a'( idcx-- measured in microradians/s.econd and constant over the time

interval At

f3'(tO d1 measured in microradians/second and constant over the time

interval At

At = sample time interval, ti+1 - t

kr pixel proportionality constant (15 microradians/pixel)

Using these relationships in block form of the overall truth model, by inspection of

Equation (4-17), the upper left block is:

-) [2 ]2 (4-23)

and the upper block of Equation (4-18) is:

Bd, =) " A (4-24)
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and the input vector in Equation (4-11) is given by:

= cz£'(i)]

u i I (4-25)

The minus sign of the lower right term in Equation (4-24) is due to the difference in the y

axis orientations between the inertial coordinate frame and the FLIR coordinate plane (refer

to Figures 3.1 and 3.2).

The two target dynamic states of Equation (4-16) are used to propagate the missile

along its trajectory. The trajectory is represented on the FLIR image plane by the xd and Yd

position coordinates. This truth model deterministic trajectory could have been contained in

"look-up" tables, where the exact coordinates of the missile's position are stored for every

time increment of the simulation. There are two advantages to re.'resenting the

deterministic truth model in the form of Equation (4-22). First, Equation (4-22) can be

substituted back into Equation (4-10) to form a single augmented vector differential

equation that defines the truth model. Second, since Equation (4-22) is in state space form,

white (or time-correlated) noise can be added, if desired, to account for non-deterministic

type terms such as wind-buffeting or solar effects acting on the missile's hardbody. The

latter advantage can provide further testing of the Kalman filter algorithm.

4.3.2 Atmospheric Jitter Model. The atmospheric jitter model used in the

simulation was developed in coordination with the AFWL [21]. The process used to model

the translational displacement of the intensity function due to disturbances in the

atmosphere is based on a study by The Analytic Sciences Corporation [21 ]. Using power

spectral density characteristics, the atmospheric jitter phenomenon is modeled as the output

of a third-order shaping filter driven by white Gaussian noise [2 1 ]. The empirical power

spectral density and the shaping filter approximation are shown graphically in Figure 4.5.
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Figure 4.5. Atmospheric Turbulence Spectral Representation
and Filter Approximation [2 1J

With this model, one can identify the effects of the atmospheric disturbance on the

FLIR plane target image. The Laplace domain representation of :his shaping filter transfer

function is given by:

Xa(S) K (4-26)
wa (S)=

(S +0) 1)( S + .0)

where

x a output of shaping filter

W a zero-mean,scalar, unit-strength white Gaussian noise

K a = gain, adjusted fcr desired atmospheric jitter rms value

1 = break frequency, 14.14 radians/second

(=2 double-pole break frequency, 659.5 radians/secona
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The atmospheric jitter model iIn the y FLIR direction is identically modeled as the

shaping filter in the XF[IR direction, where y, is the same output of the shaping filter

defined in Equation (4-26). The two shapinp filters are assumed to be independent of each

other. Each shaping filter is composed of three states to comprise the six atmospheric

states of the second block on the right side of Equation (4-16). The atmospheric jitter can

be expressed in Jordan canonical form as [21]:

Xa(t) = F0x,(t) + Gaw(t) (4-27)

where

F0  6 x 6 time-invar iant atmospheric plant matrix

x( t) 6-dimensional atmospheric state vector

Ga 2 x 6 noise distribution matrix

Wa(t) 2-dimensional, independent, white Gaussian iwi'se process with

unit strength components, and mean and covanance statistics:

E(w(t)l = 0 (4-28)

E ,; ta(t = Q () j6(7) 4-29)

The atmospheric plant matrix Fa is defined as:

-Wi 0 0 0 0 0

0 -,, 0 0 0 0

o o -coj-, 0 0 0
F0  (4-30)0 0 0 -w1  0 0

0 0 0 0 -(43 0

o 0 0 0 0 -
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The noise distribution matrix Ga is:

(-,) -W)2 02

(W,- (2)

2 2
Ka w 1 0)2 o
(0)O- w,)

Ga 2 2

2 
2

(W 1 02)
2  

( - 1

0 K. ., 2

2
(w)- w,) ( -1

2 2

0

To simulate the atmospheric jitter model on a digital computer, the discrete-time

equivalent to Equation (4-27) is the atmospheric jitter partition of the augmented truth

model in Equation (4-10), and is given by:

Xa (ti +) = (l)a (ti +1, ti ) X (ti) + IV, (ti) (4-32)

The state transition matrix in Jordan canonical form for the time-invariant plant matrix (l)a of

Equation (4-27) is given by [21]:

() all 0 0 0 0 0

3 a 22 (1) a23 0 0 0

(1a(At) 0 0 (1)a33 0 0 0 (4-33)

0 0 0 (1) a44 0 0

0 0 0 0 ,I),a55 (1a

0 0 0 0 0 (Da
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where

l =Oa44 = exp(-cO)At)

D2= a22=D a f5 exp(-o°2At)

Da23 -- a56 = At exp(-co2 At)

(Da33 -- a66 = exp(-i 2 At)

At = sample time interval, ti+I - ti

The 6-dimensional, discrete-time, white Gaussian noise wda (ti) process has mean and

covariance statistics defined by:

E (wd. (ti)) = 0 (4-34)

Tf T
E\Wda(ti)Wda (ti) - Qda = f q (t+i-7) GaQa G a a(tii7) dT (4-35)

4.3.3 Bending/Vibration Model. The mechanical bending states, which occupy the

third block in Equation (4-16), were added to the truth model [10] to account for the

vibrational phenomenon that exists for a non-rigid optical platform involved in collecting

the TR image data of the plume. Based on tests at the AFWL, it was concluded that the

bending phenomenon in both the x FLIR and y FLR directions can be represented by the

output of a second-order shaping filter driven by white Gaussian noise. The second order

model is a good representation of the bending/vibration phenomenon. The dominant

vibration response and the filter approximation are shown graphically in Figure 4.6. The

Laplace domain transfer function for the bending model is [10]:

2
X b(S) KbOnb(4 -36)
Wb(S) = 2 2 (4-36)
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where

Xb = mechanical bending disturbance

Wb = zero-mean, unit strength, white Gaussian noise

Kb gain adjustment to obtain desired rms bending output,
2

(Kb = 5 x 10-13 rad4/sec 4 )

=b damping coefficient, equal to 0.15

o =, undamped natural frequency for bending, (&),,1, n radlsec)

4. 6-IIE40 1 4- 21 r 2 6 S Q ZI I

Ga ss riv Approxim ti~n

- - 6E40

I1E-41 - - - - 4

6-4---- -- --- E-42

C44

Frqunc (Hz)

Fgur 4..DmnnEVba4r4epneSpcrm[0
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The bending/vibration model in the y FUR direction is identically modeled as the

shaping filter in the .tFLIR direction, where Yb is the same output of the shaping filter

defined in Equation (4-36). The two shaping filters are assumed to be independent of each

other. Each shaping filter is composed of two states to comprise the four bending/vibration

states of the third block on the right side of Equation (4-16).

The linear stochastic differential equation that describes the bending/vibration is

given by:

Xb(t) = Fb Xb(t) + Gbwb(t) (4-37)

where

Fb = 4 x 4 time-invariant bending plant matrix

Xb (t) = 4-dimensional mechanical bending state vector

Gb = 4 x 2 noise distribution matrix

Wb (t) = 2-dimensional, independent, white Gaussian noise process with

unit strength components:

E(wb(t)) = 0 (4-38)

E{Wb (t)Wb (t + 7)} Qb 5(7) =[0 0] 5(7) (4-39)

The bending vibration plant Fb is defined as:

0 I 0 0

2- ., 2 b orbz 0 0

Fb = 
(4-40)

0 0 0 1
2

0 0 -On -2 bon
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The noise distribution matrix Gb is:

0 0
2

Gb= Kb(~ (4-41)
o o

2

o K b (jn

To simulate the bending/vibration model on a digital computer, the discrete-time

equivalent to Equation (4-37) is the bending/vibration partition of the augmented truth

model in Equation (4-10), and is given by:

Xb(ti+1) = (Dib(ti+1, ti)Xbai) +Wdb(ti) (4-42)

The state transition matrix in Jordan canonical form for the time-invariant plant matrix (rDb Of

Equation (4-37) is given by [10]:

'Pb 11 Pb 12 0 0

4) b (At) ( ~b21 Db 22 00 (4-43)
0 0 Db 33 ~b34

0 0 (D4 (Db44

where

= ~b3 = exp(ub~) [cs~wAt) + L±sin(WbAt)I

Db 12 = Db34 = exp(-cbAt) [-Lsin(wbAt)]

(Db21 = Db43 exp(- ob At) [ 1 - (. )sin(&wbr)

(D2 = D exp(-ac At) [cos(o) At) - "~ bsin(ao At)]

At = sample time interval, ti~ - t

=b real part of the root of the characteristic equation in

Equation (4-36), (Ub = -0.47 124 second-1)

=~ imaginary part of the root of the characteristic equation in

Equation (4-36), (&0b = 3.10605 radians/second)
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The 4-dimensional, discrete-time, white Gaussian noise process vector wdb (t i ) has mean

and covariance statistics:

E (Wdb(ti)} = 0 (4-44)

E Wdb(ti)Wdb(ti) Qdb = f b(ti+I7) GbQbG b(b(ti+1-r) dr (4-45)

4.3.4 Plume Pogo Model. The plume pogo model was developed [26] to account

for the oscillatory plume phenomenon of a typical missile in the boost phase of flight.

Though experimental data was unavailable, a second-order Gauss-Markov model was

developed using physical insight, and visual observation of the pogo effect on various

missiles in flight. The model allows for the study of the amplitude and frequency

characteristics of the oscillatory nature of the plume, and the effect this phenomenon has on

tracking a missile using a Kalman fdter.

To implement the pogo phenomenon in the 8 x 8 FOV, the non-oscillating plume is

designed to "fit" into a 5 x 5 FOV window (within the 8 x 8 FLIR FOV). Based on this

assumption, and the 2,000 kilometer range of the target from the FLIR plane, the

referenced hotspot dispersion in the epv direction of the target frame (Equation 3-8) is

chosen to be 1 pixel when projected onto the FUR image plane. With an intensity centroid

aspect ratio of 1.5, the hotspot dispersion along the e, direction is 1.5 pixels when

projected onto the FUR image plane. The pixel proportionality constant kp required to

meet these specifications is on the order of 15 microradians/pixel, as presented in Section

4.3.1.

The second-order shaping filter driven by white Gaussian noise is described in the

Laplace domain by the following transfer function:
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2

xP (s) K p(,o (4-46)
Wp (s) s + )

where

Xp plume pogo shaping filter output along the direction

of the velocity vector

wp zero-mean, unit strength, white Gaussian noise

P = assumed damping coefficient, (" = 0.05)

,p = nominal undamped natural frequency for pogo; assumed

range is 0.1 - 10 Hertz, with a nominal value of 1.0 Hertz

Kp gain adjustment to obtain desired rms pogo amplitude

determined by [26]:

K 2 cyp 1P (4-47)
(O1)

where

c p desired rms pogo along the velocity vector of the missile

Oscillations due to this effect are modeled along the direction of the missile velocity

vector. The mathematical expression that describes the pogo effect takes the form of a

two-state linear stochastic differential equation given by:

01 0
XP(tX) p2 j xP(t) + 2 60p(t) (4-48)

where

Xp (t) = 2-dimensional pogo state vector derived from Equation (4-46)

wp (t) = 1-dimensional zero-mean, white Gaussian noise of unit strength:
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E(w,(t)} 0 (4-49)

E{Wp(t)Wp(t+T)} = Q,6(t-T); Q, = 1 (4-50)

To simulate the pogo model on a digital computer, the following equivalent

discrete-time model for Equation (4-48) is the pogo partition of the augmented truth model

in Equation (4-10):

Xp(till) = (D4 (ti+1,ti)xp(ti)+Wdp(ti) (4-51a)

(Dp P,(At) Olp 12(At)l

xp(ti+1 = x p(ti) + W dp(ti) (4-51b)
(Dp 21( A t) Oip 22(At)_

where

Dpn,(At) =41_ 2exp(-- p oAt) sin[or7I1 At +arctan

1~pl2(At) = 41-t ex(-rctAtsin( rp l . p)
A t

"~p
P 12(At) 2 exp (-COwrAt) sin (w, 4 1- At)

2 exp At) sin (w,, 1
2 At

( t _exp (-Wpo At) sin [ o,, N11 At + arctan( + ;r]

At = sample time interval, ti+1 - ti

The 2-dimensional, discrete-time, white Gaussian noise process w dp(ti) has mean and

covariance statistics:

E wd (ti )} = 0 (4-52)

E(Wdp(ti)Wip(ti)} = QIp = (D/ti+l7) GpGT (DT (ti+,-7)d7 (4-53)

4i
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Figure 4.7. Plume Pogo Oscillation Relative to the Equilibrium Point

The 2-dimensional pogo state vector represents the position of the plume image

intensity centroid and its velocity along the longitudinal axis of the missile. As shown in

Figure 4.7, the plume oscillates about an equilibrium point also located on the longitudinal
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axis. The location of this equilibrium point is defined by the initial positions of the two

intensity functions in the target coordinate frame (refer to Section 3.3.2 and Figure 3.6).

The equilibrium point remains equidistant from the hard body center-of-mass throughout

the simulation. Figure 4.7 shows the location of the equilibrium point relative to the

plume's centroid for both positive and negative pogo. (The crescent-shaped plume shown

in Figure 4.7 is one of many equal-intensity contour lines of the actual plume.) For the

simulation, it is assumed that the velocity vector lies coincident with the longitudinal axis of

the missile. As stated in Section 3.5, the angle of attack and sideslip angle of the missile

are also assumed negligible, and have zero values for the simulation. [26]

4.4 Measurement Models

In the simulation, the truth model provides discrete measurements to the filter in

place of the real world measurements from physical sensors. The Kalman filter depends on

the accuracy of these measurements to update its state estimate, then propagates the result to

the next measurement update. Two different types of measurements are provided to the

filter during the course of the simulation. The 8 x 8 pixel FLIR sensor array provides

measurements on the position of the intensity centroid of the target, while the low-energy

laser and associated sensor provide information on the location of the target hardbody

center-of-mass relative to the target center of intensity. The FLIR measurement is given to

the filter every 1/30 second. The filter estimation of the intensity centroid is used as a

starting point for the low-energy laser scan. For the one-state center-of-mass filter, the

low-energy laser is scanned along the filter estimated velocity vector. For the eight-state

filter, which is an augmentation of the six-state FLIR filter and a two-state center-of-mass

filter, the low-energy laser is scanned along the six-state filter estimated velocity vector

until the first reflection; then on -ubsequent low-energy laser scanning, the laser scan

direction is based on the two-state filter estimate of the scan direction (using the two filter

estimated bias states). For both filters, a center-of-mass measurement is provided to the
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filter only if the laser "hits" the hardbody (i.e., laser reflection occurs). Sweeping of tne

low-energy laser about he velocity vector provides increased reflection returns, and

improves the estimate of the hardbody center-of-mass; this is discussed in more detail in

Sections 5.3 and 5.4. The measurement models, which are used to simulate the 8 x 8

FLIR sensor array and the low-energy laser reflection returns, are discussed in the

following two sections.

4.4.1 FLIR Model. The FLIR sensor is composed of an 8 x 8 array of pixels

which are sensitive to IR signals (actually extracted out of a larger total array of 300 x 500

pixels), and tracks the plume intensity centroid, or "hotspot", of the target. As discussed in

Section 3.3.2, the intensity function of the missile's plume projection on the FLIR focal

plane is modeled as the difference of two bivariate Gaussian intensity functions, as shown

in Figure 3.5, and also in Figure 4.8. The form of the (non-Gaussian) plume is obtained

I Equal intensity

Contours

Centroid of
Y P(t) Apparent Target

Intensity Profile

8 x 8 Array
-of Pixels

Intensity centroid shown
offset from ideal location
at center of FLIR plane

Figure 4.8. Resulting Target Intensity Function on FLIR Image Plane
for Difference Between Two Gaussian Intensity Functions
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by subtracting the "trailing" intensity function from the "leading" intensity function (as

shown in Figures 3.5 and 3.6), the characteristic size and shape of a ballistic missile's

plume at a particular altitude is well modeled. This data is corrupted by spatially correlated

and temporally uncorrelated background noise according to models of actual data taken

from a FLIR sensor looking at various backgrounds [25].

For this model to be useful, several parameters must be known: the size of the

major and minor axes of the elliptical contours of each bivariate Gaussian function, and the

orientation of the principal axes in the FLIR image plane. The intensity measurement

produced by each pixel of the FLIR FOV is the average intensity on that pixel that results

from the sum of the target's intensity function, and the correlated background and FLIR

noises. For the 8 rows and the 8 columns of the FOV, the intensity measurement

corresponding to the pixel in the jth row and k Ih column at sampling time ti is given by:

= I fp {I i-,y,Xpek, (ti),ypek,(0 1)
ZJk(ti) = - p el k

-2 I y () x ly + nj(t) + bjk(ti) (4-54)

where

zJk(ti) = output of pixel in the fh row and klh column

Ap = area of one pixel

1, 12 = intensity function of first and second Gaussian intensity

function, respectively

x, y = coordinates of any point within pixeljk

X1kI, Y a, = coordinates of maximum point of the first

Gaussian intensity function
x, 2, Y ak 2  coordinates of maximum point of the second

Gaussian intensity function
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njk (ti) effect of internal FLIR sensor noise cn pixel

in the jfh row and kh column

bjk (ti) effect of spatially correlated background noise on pixel

in thefh row and Ph column

The FLIR sensor noise, njk (ti), is the result of thermal noise and dark current in

the IR sensitive detectors (pixels). This noise is assumed to be a corrupted noise which is

both temporally and spatially uncorrelated [26]. The spatially correlated background noise

bjk (ti) developmnt is covered in the next ;ection.

4.4.1.1 Spatially Correlated Background Noise. The existence of spatially

correlated background noise, bJk (ti), in FLIR data was observed during a tracking

operation by personnel at th, AFWL. The data analyzed wa-s obtained as the sensor tracked

an approaching air-to-air missile. The FLIR started traLking the missile with a background

of clear blue skies, and changed to ground clutter when the missile descended below the

horizon. The data analysis concluded that spatiai correlation existed in the background with

a correlation distance of approximately two pixels [6].

In the simulation, the spatially correlated background noise, b jk (ti), is represented

in the FLIR plane as a radially symmetric, exponentially decaying pattern characterized by

the distance of approximately two pixels in the FUR image plane for the correlation to drop

an order of magnitude (i.e., essentially to zero). This effect is accomplished by main-

taining non-zero correlation coefficients between each pixel and its two closest neighbors

symmetrically in all directions (i.e., including first and second neighboring pixels). The

8 x 8 pixel FOV provides (4 measurements, numbered from I to 64 starting from the left

hand corner of the array and proceeding across the rows, as shown in Figure 4.9 [6]. The

generation of spatially correlated white Gaussian noises is accomplished by allowing non-

zero cross correlations between the measurement noises bk (ti) associated with each of the
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 4.9. FLIR Field-of-View Pixel Numbering Scheme

64 pixels of Figure a.9. Then the matrix of the correlated measurement noise in Equation

(4-54) is:

b(ti) = 64-dimensional vector of spatially

correlated noise with statistics:

E(b(ti)} = 0 (4-55)

Lf b(ti)b(tj)} = R i, (4-56)

where R is a 64 x 64 measurement noise covariance matrix. This matrix describes the

spatial correlation between pixels, and is given by [6]:

I rl, 2  rl, 3  ... r,,64
r,, 2  1 r2,3 ... r2,64

R = orr r 3  rZ3 1 .. (4-57)

...... ... ... ..4
rl6(A26 r31, 6 ... 1
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2

where oR is the variance of each scalar noise and the correlation coefficients: 7jk are

evaluated to reflect the radially symmetric, exponentially decaying pattern described

previously. The specific realizations of the spatially correlated noise matrix b are simulated

using a Cholesky square root decomposition of R and a Gaussian noise generator with unit

variance. The 64-dimensional spatially correlated background noise b(ti) is modeled as:

b(ti) = VR - b'(ti) (4-58)

where

S= Cholesky square root

b'(ti) (A-dimensional vector of discrete, independent white

Gaussian noise with statistics:

E~b'(ti)) = 0 (4-59)

E b'(ti)b (tj) = I8 (4-60)

where I is a 64 x 64 matrix.

As previously stated, the spatial correlation model is represented in the FLIR plane

as a radially symmetric, exponentially decaying pattern. A correlation distance of one pixel

is used in the simulation, sin,.c it fits the data for the first neighboring pixel and is essentially

zero for the second neighboring pixel and beyond. Additionally, the exponential model

prevents the R matrix from becoming ill-conditioned (i.e., R remains positive definite,

which allows the Cholesky square root to be taken).

4.4.2 Low-Energy Laser Reflection Models. The laser reflection measurement

model simulates the low-energy laser reflecting off the target hrdbody (refer Figure 1.1).

In the previous thesis [2], the reflection model consisted of a binary-valued reflectivity

function. Therefore, reflection information was equally obtained over the entire vehicle.
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The hardbody reflectivity model, developed in this thesis, is enhanced to include a varying

reflection surface over the vehicle. The reflection return from this latter scenario provides

an increase in the realism of the simulation. In the simulation and this thesis document, the

hardbody models are depicted in the a-f3 (FLIR) plane relative to the plume intensity

centroid. However, it is important to remember that the FLIR can only "see", and

determine dynamic parameters relating to, the intensity centroid of the plume, and can not

provide any information concerning the hardbody.

The purpose of the low-energy laser reflection measurement is to provide an input

to the Kalman filter for estimating the center-of-mass of the target hardbody relative to the

target plume center of intensity. The identification of the hardbody center-of-mass [2, 26]

is a recent request by the AFWL to study the possibility of tracking the actual hardbody of

the missile as opposed to the intensity centroid. The scenario, as previously discussed in

Chapter I, calls for the FLIR sensor to provide measurement information on the position ot

the intensity centroid to a Kalman filter. The filter processes the FLIR measurement, and

provides an updated estimate of the target's velocity vector along which a low-energy laser

is scanned to obtain a reflection (although the eight-state filter uses its two offset estimates

to determine the sweep direction, rather than the estimated velocity direction; see next

paragraph for further detail). A second Kalman filter uses the center-of-mass measurement

to update its estimate of the offset between the FLIR target intensity centroid and the

hardbody center-of-mass, and propagates the estimate to the next sample period.

Although the reflection models discussed in this chapter are part of the truth model,

the description of the measurement models should be understood in the context of the

Kalman filter(s) using the measurements. Therefore, a short description of the filter

configurations used in this thesis is nov, provided. In this thesis the center-of-mass

ey;timate is accomplished using two filter-processing schemes, and twe low-energy laser

reflection models (of the hardbody). In the first configuration, a six-state (FLIR) filter is
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used to obtain estimates of the position and orientation angle of the intensity centroid in the

FLIR plane. A one-state center-of-mass filter (which is independent of the six-state filter)

uses the measurements obtained from scanning a low-energy laser along the estimated

velocity vector (computed from the information provided by the six-state filter) to update its

estimate of the hardbody center-of-mass. In the second configuration, an eight-state filter,

composed of the same six-state filter and two center-of-mass states, performs the same

basic estimations as the six-state/one-state configuration. The two states used for

estimating the center-of-mass obtains center-of-mass measurements as a result of the low-

energy laser scan along the velocity vector until the first laser reflection occurs, at which

time the filter's two center-of-mass states in the XFLIR and YFLIR directions are used to

estimate the laser scanning angle. The two center-of-mass states in the eight-state filter are

independent of the other six states in the fil:er.

The low-energy laser scan from the intensity centroid along either the six-state

filter's estimate of the velocity vector or the direction provided by the two bias states of the

eight filter, provides a computed center-of-mass measurement to the filter only if the laser

crosses the missile hardbody. The calculation of the center-of-mass measurement is

accomplished as the midpoint between the initial and final intersections of the low-energy

laser and the hardbody.

The low-energy laser binary model developed in the previous thesis [2] and the

enhanced reflectivity model developed in this thesis are presented in the next two sections,

with only a single scan of the low-energy laser considered in the presentation. A low-

energy laser sweep technique, developed as a part of this thesis effort, is presented later in

this section. (As defined in this document, a low-energy scan is a single attempt to obtain a

reflection from the hardbody, and a low-energy laser sweep is a series of laser scans.) The

low-energy laser sweep ensures a reflection from the target hardbody, providing a new

center-of-mass measurement for the filter (one-state or eight-state) at each sample time.
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The low-energy laser sweep is applicable to both the binary model and the reflectivity

model, although the computation of the center-of-mass differs due to the properties of each

model (Section 4.4.3).

4.4.2.1 Hardbody Binary Model. In the previously used hardbody binary

measurement model [2], the target is represented as a rectangle with its longitudinal a:xis

aligned with the true velocity vector in the FLIR image plane. The trget hardbody, like the

intensity centroid, is propagated along the inertial tr.jectory by the first two states of the

truth model. The low-energy laser scar at the target is also simulated as a rectangle. The

smaller side (width) of the low-energy laser rectangle represents a realistic finite width of a

laser after it has traveled 2,000 kilometers, and the longer side represents the result of the

puiposeful scan of the laser. In the simulation of the six-state/one-state filter combination,

after the FLIR measurement is incorporated into the filter algorithm, the updated target

orientation angle Of is used to determine the orientation of the laser beam scan at the target.

Once the iow-energy laser is "scanned" along the filter estimated velocity vector vf (using

the six-state filter estimate), the intersection of the rectangles determines if the laser "hit" the

target. (In the eight-state filter, the scan direction is determined by the two components of

the estimated offset rather than by the estimated velocity direction.) Figure 4.10 shows the

binary model as it appears in the FLIR image plane. The four corners of the hardbody

define the rectangular model, the center of which is the true center-of-mass, offset from the

intensity centroid. In the simulation this offset distance is arbitrarily defined as the distance

from the center of the two Gaussian intensity functions, which define the target plume

model (Figure 3.6), to the hardbody center-of-mass (87.5 meters or 2.9167 pixels). This

distance relates well with the location of the plume intensity functions developed in a

previous thesis [26].

Since the target propagates along its trajectory in 3-dimensional inertial space, as

described in Section 3.5, the hardbody model is projected into the 2-dimensional FLIR
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Figure 4.10. True Intensity Centroid and Hardbody Binary Model in FUR Image Plane

plane. The projection of the 3-dimensional missile onto the 2-dimensional FLIR plane

involves the target projection geometry of Section 3.3.4. From Figure 3.8, the projection

of the length of the target hardbody onto the FLIR image plane is:

MLFLIR = MLActual cos y (4-61)

where

MLFLU = FLIR plane projection of missile length

MLActual = true missile length in pixels

y = angle between vt and the FLIR plane

Since the missile is cylindrical, the 3-dimensional projection of the missile diameter

onto the FLIR plane is equal to its diameter. In the simulation, the length of the missile is

40 meters (1.333 pixels), and thc width is 3 meters (0.1 pixels).
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The low-energy laser rectangle (which represents a scan at the target location) is

oriented with one end of the centerline located at the filter's estimate of the center-of-

intensity location (the center of the FLIR FOV), as shown in Figure 4.11. The diagram in

Figure 4.11 suggests that the filter estimates of the intensity centroid, the orientation angle

Of, and the computed velocity vector vf are equal to the truth model values, which is not

generally true. The real world description is presented in Chapter V.

The second endpoint of the low-energy laser scan rectangle is determined by

projecting the low-energy laser three times the truth model offset distance between the

hardbody center-of-mass and the intensity centroid (3 x 87.5 meters = 262.5 meters or

8.75 pixels). This length ensures the low-energy laser model is long enough to scan the

entire hardbody with an oscillating plume. (The affect of the plume pogo phenomenon is

-Y FUR

V t = Vf

True and Filter-Estimated
Center-of-Mass

Low-Energy
Laser ScnFour Corners

Define Hardbody
Rectangle

True Location and
Filter Estimate of

/f Intensity Centroid

Figure 4.11. Ideal Low-Energy Laser Scan at Target Location
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discussed in Chapter VI.) The location of the low-energy laser's second centerline

endpoint is determined as:

xp = xc+L cos Of (4-62)

Yp = Yc- L sin Of (4-63)

where

xp, yp the FUR plane coordinates of the second centerline

endpoint of the laser rectangle

Xc , Yc = the FLIR plane intensity centroid coordinates

L = the length of the laser rectangle

Of = six-state (FLIR) filter (or eight-state center-of-mass bias

states') estimate of velocity vector orientation angle

In the simulation, if the low-energy laser scan does not cross the hardbody (i.e., the

missile rectangle and the laser rectangle do not overlap), the filter does not do an update,

and it then propagates the updated state estimate(s) and covariance value(s) to the next

sample period. When the low-energy laser scan results in a laser "hit", an estimate of the

center-of-mass is computed based upon the intersection of the hardbody and the low-

energy laser rectangles.

The scenario for determining the center-of-mass measurement for the one-state

filter, or the two center-of-mass states in the eight-state filter, follows previous theses

[2, 26]. The FLIR provides measurement information (which is processed by an enhanced

correlation algorithm, Chapter V) to the filter on the position of the target's intensity

centroid and orientation angle Of. The updated filter estimate of the location of the intensity

centroid is used to aim the low-energy laser at the intensity centroid, and scan the low-

energy laser along the six-state filter's estimated target velocity vector in the case of the

one-state center-of-mass filter, or along the eight-state center-of-mass bias states' estimate
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of the velocity vector (once the first laser reflection is received by the low-energy laser

sensor).

The truth model low-energy laser sensor receives the reflection of the low-energy

laser off the hardbody (refer to Figure 1.1), and provides noise-corrupted center-of-mass

measurements to the filter. There are six possible low-energy laser/hardbody intercepts that

are considered in the simulation when the low-energy laser is scanned along the (one-state

or eight-state) filter-estimated velocity vector. The cases are shown in Figure 4.12. The

previous thesis [2] considered the first three cases (a), (b), and (c) of the low-energy laser

initially crossing the aft end (bottom) of the hardbody and continuing across to a side or the

forward end (top) of the hardbody. For this thesis, three additional cases are provided in

the simulation, (d), (e), and (f), which consider the low-energy laser initially crossing

either side of the hardbody and continuing through the forward end of the hardbody, and

the case of the laser crossing both sides of the hardbody. These additional cases were

essential due to the apparent "jitter" of the target on the FLIR plane, as discussed in

Chapter V and VI.

For a single low-energy laser scan, non-sweep condition, the center-of-mass is

cdculated as the midpoint of the laser centerline segment that covers the hardbody. For this

type of measurement acquisition, the accuracy of the center-of-mass computation depends

on the orientation of the laser scan and the hardbody. The optimum orientation for a single-

scan scenario is affected by the accuracy of the six-state filter's estimate of the intensity

centroid location and the target orientation angle estimate. With only a single scan and the

calculation of the center-of-mass dependent on an optimum scan of the low-energy laser

across the hardbody, it is apparent from Figure 4.12 that the measurement provided to the

filter is inaccurate. Repeated scans of the low-energy laser (i.e., a sweep) to intercept the

hardbody gives better results, as described later in Section 4.4.3. The center-of-mass

measurement is computed as an offset from the filter-estimated intensity centroid. Before
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Figure 4.12. Six Cases of Low-Energy Laser Scan Crossing Hardbody
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being provided to the filter, the offset measurement is corrupted with white Gaussian noise.

The low-energy laser sensor measurement model becomes:

z (ti) = Lo(ti) + v (ti) (4-64)

where

z (ti) = low-energy laser sensor output at time ti

Lo(ti) = offset between center-of-mass and the intensity centroid

v (ti) = discrete, white Gaussian measurement noise with statistics:

E (v (ti)) 0 (4-65)

R ti= tjE vti~vtj)) 0 ti6 t(4-66)

where R is the variance of the white Gaussian measurement noise v.

4.4.2.2 Hardbody Reflectivity Model. In addition to the enhancements made to the

hardbody binary model of the previous section, a hardbody reflectivity model is also

developed for this thesis. While the hardbody binary model gives an "on or off' indication

of a laser reflection, the hardbody reflectivity model provides a more realistic portrayal of a

missile by considering the curvature of the missile and the target image projection angle 7,

shown in Figure 3.9. The reflectivity design chosen for this research consists of the

rectangular hardbody model of the previous thesis [2] modified to include 29 discrete-

weighted line-segments along the length of the model. The target image projection angle y

provides a scaling factor of the reflection function if the missile centerline is oriented other

than 900 to the FLIR image plane. The concept of the hardbody reflectivity model is

shown in Figure 4.13 relative to the FLIR image plane.

The hardbody reflectivity model is based on the empirical data, shown in

Figure 4.14, obtained from the 65 85th Test Group, Holloman AFB, NM [3]. The data was
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Figure 4.14. Empirical Radar Reflection Data of Cylinder [3]
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obtained from a radar return off a 20 x 249 inch cylinder with hemispherical endcaps as it

was rotated longitudinally in the plane of the radar source. This information is considered

similar to the reflection return of the low-energy laser off the missile hardbody. Though

the data was obtained from rotating the cylinder about its diameter, the data also

represents a good approximation for the case of a radar scan across the diameter of the

cylinder.

The information provided in the empirical graph of Figure 4.14 is incorporated into

the cross-sectional and longitudinal reflectivity functions which define the hardbody

reflectivity model. The cross-sectional reflectivity function models the curvature of the

cylindrical hardbody, while the longitudinal reflectivity serves as a scaling factor

determined by the projection angle y (see Figures 3.9 and 4.13). The development of the

two reflectivity functions for the hardbody reflectivity function is presented in the following

paragraphs.

The model of the cross-sectional reflectivity function, which closely duplicates the

important aspects of Figure 4.14, is shown in Figure 4.15. The graph of Figure 4.14

shows that if the cylinder is other than perpendicular to the source, there is a substantial

reduction in signal return (reflection), and a non-zero threshold of the graphical data occurs

at approximately 15 degrees off both sides of the peak reflections at 900 and 2700. This

angle is applied to the 3.0 meter cross-section of the two-dimensional binary model. Using

geometric techniques, the threshold at the 15 degree point is transformed to approximately

0.7 meters off the centerline of the missile. Therefore, the strength of the received signal is

a constant value from 0.7 meters to the radius at 1.5 meters. The amplitude of the data is

incorporated into the model by adding 14 offset line segments on either side of the

centerline of the binary model (for a total of 29 discrete line segments). This offset scheme

represents a discrete sensitivity of 0. 1 meters (approximately 4 inches) across the

2-dimensional hardbody longitudinal axis. The amplitude of the cross-sectional reflectivity
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Figure 4.15. Hardbody Reflectivity Model Cross-Sectional Reflectivity Function

function consists of reflection magnitudes corresponding to the empirical data of

Figure 4.14. For this thesis, an arbitrary value of 50 (units of magnitude of reflection) is

used to represent the peak reflection of the cross-sectional reflectivity function's center

line segment; the remaining line segments are scaled according to the empirical data of

Figure 4.14. The results of the scaling produced the cross-sectional reflectivity function

shown in Figure 4.15.

In the computer software, the scaled reflection magnitudes are assigned to the 29

discrete line-segments along the longitudinal axis of the 2-dimensional hardbody. The

reflection magnitude assigned to each line segment is determined by the cross-sectional

reflectivity function of Figure 4 15. The discrete implementation of the cross-sectional

reflectivity function is shown in Figure 4.16. Notice that the reflectivity funkct;on also

yields that the portions of the original rectangle far from the missile cc~nterline have zero
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reflection, therefore the effective reflective surface area of the hardbody is less than that of

the binary model. As is discussed later, the effective surface area "visible" to the low-

energy laser sensor is a function of the sensitivity of the sensor.

As previously stated, the longitudinal reflectivity function is related to the target

image projection angle , which projects the target in the 3-dimensional inertial frame into

the 2-dimensional FLIR plane, as shown in Figure 4.13. The longitudinal reflectivity

function is represented by a function similar to the cross-sectional reflectivity finction. The

ordinate axis consists of the longitudinal angular offset from 900 to the low-energy laser

source (i.e., from the FLIR plane), and the abscissa axis is the scaling factor associated

with angular offset. The longitudinal reflectivity function is shown in Figure 4.17.

Reflectivity Function Magnitude
Values vs. Displacement from
Hardbody Centerline 50

0 1 25 25
0 1 23 4 5 9 131 1 13 9 54 3 20

I I

[4 3.0 m

Figure 4.16. Discrete Implementation of Cross-Sectional Reflectivity FwnctiOn
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Figure 4.17. Hardbody Reflectivity Model Longitudinal Reflectivity Function

The sensitivity level of the low-energy laser sensor is also a factor in determining

the reflectivity received at the sensor. This sensitivity is represented in the simulation as a

threshold limit below which the low-energy laser sensor can not detect the reflection return.

This factor, represented as , also contains any noise associated with the sensor. As an

example of the reflectivity model in the simulation, consider the hardbody at an angle of

200 to the FLIR image plane. In this orientation, the maximum amount of reflection energy

received at the sensor is 50 (units of magnitude) times a scaling factor of 0.02, which gives

1.0 (units of magnitude). However, if the low-energy laser sensor sensitivity is also 1.0

(units of magnitude), then the sensor will not detect the reflection; the low-energy laser

sensitivity, in this case, must be less than 1.0 to detect the reflection off the missile

hardbody. As this example shows, the sensitivity factor u of the low-energy laser sensor

can represent the physical limitations of the sensor.
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From the discussion the total reflectivity function is represented by:

m

RT= I [AiF(y)] (4-67)
n-I

where

RT = total reflectivity received by the low-energy laser sensor

m = number of line segments crossed by laser scan; Figure 4.16

u = sensitivity threshold function of low-energy laser sensor,

f a if a >_ thresho!d
u(a) = \0 if a< threshold

A, - cross-sectional reflectivity function reflection amplitude

of the ith discrete line segment

F() = longitudinal reflectivity scaling function, where y is the angle

between target v and the a-f3 plane; Section 3.3.4, Figure 3.9

and Figure 4.13

The center-of-mass measurements provided to the filter by the enhanced reflectivity

model are the same as the binary model for a single scan concept. The projection of the

hardbody reflectivity model onto the FLIR image plane is given in Equation (4-61), and the

positioning of the low-energy laser in the simulation is given by Equations (4-62) and

(4-63). The low-energy laser hardbody crossings are the same as for the binary model,

shown in Figure 4.12. The Kalman filter measurement Equations (4-64), (4-65), and

(4-66) are also applicable to the hardbody reflectivity model.

4.4.3 Low-Energy Laser Sweeping of Hardbody. The previous two sections

describe the hardbody binary and reflectivity models used for this research. The center-of-

mass computation in the discussion consists of the midpoint of the low-energy laser
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crossing of the hardbody. Additionally, a single low-energy laser scan is considered in the

discussion, so the accuracy of the center-of-mass measurement is dependent upon the

orientation of the low-energy laser crossing the hardbody (Figure 4-12). The single laser

scan provides only 15-20% low-energy laser "hits" (reflection returns), as determined in

previous research [2], and verified in this research. This results in fewer measurements for

the Kalman filter than desired, which degrades filter performance.

The reason for the small number of low-energy laser reflection returns is found in

this research to relate to the Kalman filter's positioning information provided to the FLIR

pointing controller (Section 3.4). The filter provides its propagated estimate of the next

position of the target's intensity centroid to point the FLIR LOS vector er. This problem is

not evident if the Kalman filter tracker is tracking the intensity centroid, but for tracking the

hardbody, the accuracy of the propagated estimate for pointing the FUR sensor is critical to

the low-energy laser concept consider in this research, since the low-energy laser is fired

through the FLIR plane aperature (i.e., one end of the laser scan rectangle in Figure 4.12

should actually be at the origin, since that origin is placed at the predicted intensity centroid

location). As pointed out in the Chapter I, the tracking system must perform acquisition

and lock-on of the target in the shortest time possible, with "pinpoint" accuracy. The

problem with pointing of the FLIR sensor is covered as a thesis investigation in Chapter

VI. The following two sections consider the problem of accurately determining the center-

of-mass of the hardbody binary and reflectivity models despite the pointing problem to

verify the feasibility of the concept.

4.4.3.1 Center-of-Mass Computation with Binary Model. The design of

the low-energy laser sweep uses the previously developed low-energy laser scan [2].

However, rather than performing a single scan of the low-energy laser, the initial laser scan

is offset clockwise from the filter estimated velocity vector, as shown in Figure 4.18, and a

sweep (a series of low-energy laser scans) is implemented in the counter-clockwise
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Figure 4.18. Hardbody Binary Model Center-of-Mass with Low-Energy Laser Sweep

direction so as to illuminate the entire hardbody. For this thesis the offset required is 30'

without the plume pogo applied, and 350 with the plume pogo applied. This otfset size is

determined by a study of the "apparent" movement of the intensity centroid in the FLIR

plane (which is actually due to the inaccurate positioning of the FLIR FOV on the target).

(The movement of the centroid in the FLIR plane is also seen in the Xd(ti-) plot, discussed

in Chapter VI). The coarse sweep increment is chosen as 0.1 degrees to ensure that the

closest coordinates to the comers of the binary model are obtained for the initial crossing

of the hardbody, then 0.05 degree increments are used for the remainder of the laser sweep

across the hardbody itself.

The determination of the hardbody binary model center-of-mass is computed from

locating the initial forward (top) and aft (bottom) crossing coordinates of the hardbody in
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I
the FLIR plane of the low-energy laser, and the final forward and aft crossing coordinates

of the hardbody as the low-energy laser completes the sweep. The coordinates provide two

measure of the center-of-mass, computed as the crossing point of the diagonals of the

forward and aft coordinates obtained from the low-energy laser sweep, as seen in Figure

4.18. The low-ene-gy laser crossing conditions given in Figure 4-12 apply as the low-

energy laser crosses tike hardbody.

4.4.3.2 Center-of-Mass Computation with Reflectivity Model. The

computation of the hardbody reflectivity model center-of-mass using the low-energy laser

sweep technique follows the same procedures as described for the hardbody binary model,

except the computation of the center-of-mass is computed in a different manner. Since the

"comers" of the reflectivity model are not visible to the low-energy laser sensor, these

points cannot be used as they are with the hardbody binary model. Instead, the maximum

reflection intensities of the forward and aft ends of the hardbody are obtained as the low-

energy laser crosses the hardbody. The center-of-mass is computed as the midpoint

between the forward and aft coordinates of the maximum reflection return. The low-energy

laser sweep for determining the hardbody reflectivity model center-of-mass is shown in

Figure 4-19. As previously stated, unlike the hardbody binary model, the reflection from

the hardbody reflectivity model that is available to the low-energy laser sensor is dependent

on the orientation of the hardbody with respect to the FLIR image plane, and the sensitivity

of the low-energy laser sensor.

4.5 Truth Model Parameters

The truth model parameters assigned to variables, and initial conditions are

presented in this section. The parameters may appear in other parts of this thesis; however,

the values are repeated here to provide a consolidated listing for the reader.
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Figure 4.19. Hardbody Reflectivity Model Center-of-Mass with Low-Energy Laser Sweep

4.5.1 Target Trajectory Initial Conditions. The target trajectory is covered in

Section 3.5. The initial conditions of the target's inertial position and velocity vectors for

the simulation are:

e, 27,000 meters

y - 100,000 meters

e = 2,000,000 meters

V, - -2500 meters/second

vy 4330 meters/second

v - 0 meters/second
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The relative magnitudes of the initial velocity components, v, and vy, form an initial

velocity vector orientation angle of 60 o for the target in the inertial frame.

4.5.2 Target Model, Dimensions, and Orientation. For this thesis, the target

model consists of an intensity centroid model and a hardbody binary or enhanced

reflectivity model. Each of the two bivariate Gaussian intensity functions (differenced to

produce the plume image) is modeled with elliptical constant-intensity loci with an aspect

ratio of 1.5 and a semi-minor axis of one. The hardbody binary and reflectivity models are

represented by a rectangle in the FLIR image plane. The hardbody is 40 meters (1.33

pixels) long and 3 meters (0.1 pixels) in diameter. For this study the offset distance of the

hardbody center-of-mass from the intensity centroid is 87.5 meters (2.92 pixels). In the

simulation, the intensity centroid and the longitudinal axis of the hardbody are aligned with

the velocity vector, and the hardbody has zero sideslip and zero angle-of-attack.

4.5.3 Intensity Functions. The maximum intensity value of each intensity

functions in Equation (3-1) is 20 intensity units. The two Gaussian bivariate intensity

functions, which represent the plume hotspots, are centered at 65 meters and 110 meters

behind the missile.

4.5.4 Atmospheric Jitter. The variance and mean squared value for the

atmospheric jitter process in the truth model, given by x, and Ya in Equations (4-6) and

(4-7), is 0.2 pixels2 [30].

4.5.5 Bending/Vibration. The values used for the second-order transfer function
2

that models the bending/vibration phenomenon (Equation 4-36) are: Kb = 5 x 10-13

rad4/sec 4 ; b = 0.15; Wnb = t rad/sec.

4.5.6 Plume Pogo Characteristics. For this research, the frequency of the pogo

oscillation is 10 Hertz and the pogo rms value is 33.6 meters (1.12 pixels). These values
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represent the maximum pogo oscillation as determined in previous research [26]. The size

of the plume relative to the hardbody is on the order of 30 times the diameter of the missile

at the altitudes of interest [26].

4.5.7 Spatially Correlated Background Noise. The rms value of vjk, which is the

summed effect of the spatially correlated background noise bjk and the FLIR sensor noise

njk in Equation (4-54), is one. This produces a signal-to-noise ratio of 20, which is typical

of many tracking scenarios of current interest [26].

4.5.8 Low-Energy Laser Measurement Dimensions. The calculation of the

center-of-mass is found using a low-energy laser beam scan represented as a rectangle at

the target. The length of the laser beam scan is 262.5 meters (8.75 pixels), which is three

times the truth model hardbody offset distance. The laser beam width is 0.1 meters

(approximately 4.0 inches). The measurement noise associated with the low-energy laser

sensor is obtained by taking 1.0 % of the length of the hardbody, and dividing by the pixel

proportionality constant kp times the range to the target, giving a variance (rms value) of

0.000178 pixels2. (This value is a refinement of the va'ue used in the previous thesis [2] of

0.004444 pixels 2, obtained using 5.0% of the length of the hardbody.)

4.5.9 Reflectivity Measurement Model. The variable p represents the threshold

of the low-energy laser sensor. The value of the low-energy laser sensor threshold must be

less than 1.0 (units of magnitude reflection) to detect the peak intensity reflection from the

hardbody for a projection angle y greater thani, or equal to, 160.

4.6 Summary

This chapter presented the mathematical description of the truth model used in the

simulation. The model dynamics consist of two deterministic target trajectory states, six

stochastic atmospheric jitter states, four stochastic bending/vibration states, and two
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stochastic plume pogo states. The infrared measurement model consists of a combination

of the Gaussian intensity functions with the result being non-Gaussian. The measurements

from the FLIR sensor are subject to spatially and temporally uncorrelated FLIR sensor

noise, and spatially correlated and temporally uncorrelated background noise. The low-

energy laser measurement model provides information to the filter on the location of the

hardbody center-of-mass relative to the estimated center of intensity. The availability of the

measurement is dependent on the accuracy of the filter estimates of the intensity centroid

position and low-energy laser scan orientation angle in the FLIR image plane. The

hardbody binary and refined reflectivity measurement models were described and related to

the measurements obtained for the Kalman filter. The reflectivity model provides a realistic

portrayal of the real world environment, and has a smaller effective cross-sectional area,

which is a function of the sensitivity of the low-energy laser sensor. A sweep techniqu

was described which ensures that a measurement is available at each Kalman filter sample

period. The parameters and initial conditions of the truth model were also presented in this

chapter.
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V. Filter Models

5.1 Introduction

The Kalman filter, in the AFIT tracking scenario of Figure 1.1, uses its internal

dynamics model and the periodic measurements provided by the FUR sensor and low-

energy laser sensor, to update the filter states. The filter then propagates the states to the

next measurement sample time. The filter maintains lock on the target depending on the

accuracy of its internal dynamics model and the measurements it receives from the FUR

and low-energy laser sensors (Chapter IV).

The Kalman filter dynamics model is a reduced and simplified version of the

simulation truth model. The filter algorithm is limited to the least number of necessary

states in order to process the state estimates in the shortest possible time. Increasing tLe

number of states can inhibit the number of measurements that can be processed by the filter

or the implementable sample rate, and subsequently reduce filter performance.

This thesis study uses three linear Kalman filter models: a six-state (FLIR) filter, a

one-state (center-of-mass) filter, and an eight-state filter composed of the six-state filter and

two additional states to estimate the center-of-mass. In this research, the combination of

the six-state filter and the one-state state filter performance in estimating the center-of-mass

of the missile hardbody is compared to that of the eight-state filter. The six-state filter,

common to both filter schemes, is a development from a previous thesis [2, 26], which

uses an enhanced correlator [27] to process FLIR measurements before being provided to

the filter. Figure 5.1 shows the data processing for both filter schemes. In the case of the

six-state/one-state filter scheme, following the filter update of the states, a low-energy laser

is scanned along the estimated velocity vector. If a laser reflection is received by the low-

energy laser sensor, this measurement information is provided to a separate one-state filter

(2] to estimate the hardbody center-of-mass distance from the estimated center of intensity.
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Figure 5.1. Data Processing for Two Filter Schemes Considered
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In the second filter scheme, an eight-state filter (developed in this thesis) augments the

original six-state filter with two additional states to estimate the FLIR x and y coordinates

of the hardbody center-of-mass displacement from the intensity centroid. It uses its two

center-of-mass bias states to determine the scan of the low-energy laser, following an initial

low-energy laser scan using the six-state filter estimate of the target velocity vector. The

dynamics and measurement models for each of the filters is covered in the following

sections, as well as the enhanced correlation algorithm, and a FUR FOV rotation scheme

which maximizes the use of the FLIR viewing surface by rotating the diagonal of the FUR

FOV along the estimated velocity vector of the target.

5.2 Six-State Filter

The six-state filter model is a development over twelve years of research [2, 6, 21,

22, 26, 27]. The filter consists of two target position states, two target velocity states, and

two atmospheric jitter position states. The filter is the same as that used in the previous

thesis, except for choice of tuning parameters (Section 5.2.3). The proper tuning of the

six-state filter is essential to the tracking of the intensity centroid, as well as to providing

accurate estimation of the target velocity vector along which to scan the low-energy laser,

and estimate the hardbody center-of-mass location.

5.2.1 Dynamics Model. The six-state filter dynamics model is a reduced version

of an eight-state filter which included two acceleration states [26]. The acceleration states

were eliminated from the model due to observability problems [2, 26]. The six-state

Kalman filter used in this research is based upon the state vector:

X 1  X d

C2  Yd

Xf= 3  V x (5-1)

X 4  Vy

"C 5 X aX 6 y
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where

xd = x component of centroid position (azimuth), reLative to center of FOV

Yd = y component of centroid position (elevation), relative to center of FOV

vx = t Lomponent of centroid velocity

vy = y component of centroid velocity

Xa = x component of atmospheric jitter

Ya = y component of atmospheric jitter

The six states are coordinatized in the a-fl (FLIR) plane. The target velocity and

atmospheric jitter position states are each modeled as an exponentially time-correlated first-

order Gauss-Markov process. A ccmparison of the filter states with the truth model states

in Equation (4-16) shows that the atmospheric jitter model is reduced from the six states

defined in the truth model to two states in the filter model. The filter model does not

consider the the high frequency effect of the double pole in Equation (4-26). Therefore, the

order of the filter's atmospheric model is reduced. The atmospheric state reduction does

not greatly affect the filter's performance since the dominant characteristic of the

atmospheric jitter is contained in the first-order term. The bending'vibration states are not

modeled in the filter since past research [10 found no significant degradation in filter

performance without these states. The pogo states are not modeled in the filter for this

research. (The pogo effect is to be investigated to determine if it is necessary to model the

plume oscillation in the filter.) The six-state filter model is described by the following time-

invariant, linear stochastic differential equation:

Xf(t) = Ffxf(t)+Gfwf(t) (5-2)
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where

F 6 x 6 time-invariant system matrix

xj (t) = 6-dimensional filter state vector

Gf 6 x 4 time-invariant noise distribution matrix

wf (t) =4-dimensional, white Gaussian noise process with independent

components, and mean and covariance statistics:

E~ft)= 0 (5-3)

E{ wjft)wfJ(t + 7)) = f67)(5-4)

The tune-invariant system rnatnx Ff is:

o0C 1 0 0 0

() 0 0 1 0 0

o 0) - 0 0 C,

7Y

o 0 0 0 -(5)5C)

7-

0 0 0 0 0 -
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The noise distribution matrix Gf is:

0 0 0 0-
0 0 0 0
1 0 0 0

Gf- 0 1 0 0 (5-6)
0 0 1 0
0 0 0 1

The strength of the white Gaussian noise wf, given by Qf, is:

2
2u x. 0 0 0

2

0 2(y 0 0

Qf =2 2

0 0 0. 0
7a.x (5-7)

22ua

0 0 0

7a

where

x, Ty = conelation times for the intensity centroid x and y velocities

t a, ' 7 a) = con-elation time for the atmospheric jitter position process

in the x and y directions
2 2

or., Cy variance and mean-squared value for the intensity centroid

x and y velocities
2 2

'a, a, variance and mean-squared value for the atmospheric jitter

position process

To simLiate the filter dynamics mode: on a digital computer, the discrete-time filter

propagation equitions [12] are used to propagate the state estimates and error covariance

forward to the next measurement update:
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Xf(tJ+ 1) = Off(At) Xf (ti+) (5-8)

T
Pf(ti+ 1) = Off(At) Pf(t+)%f(At) + Qdf (5-9)

where

xf(ti) filter estimate of the 6-dimensional state vector

Off(At) 6 x 6 time-invariant state transition matrix for propagation

over the sample period: At = ti+l - ti

Pf(ti) = 6 x 6 filter covariance matrix

(ti-) = time instant before FLIR measurement is incorporated into

the estimate at time ti

(ti ) time instant after FLIR measurement is incorporated into

the estimate at time ti

Qdf 6 x 6 filter dynamics noise covariance given by:

1i+I f ti~lT T

Qdf = f Of (ti+,-7) GfQfGT 4f (ti+l- 7) dr (5-10)

Ii

The time-invariant state transition matrix Of (At) is:

1 0 D13 0 0 0

0 1 0 D24 0 0

0 0 (33 0 0 0
=f(0t)0 (5-11l)

0 0 0 ()44 0 0

0 0 0 0 055 0

0 0 0 0 0 (1)6

5-7



where

(D13 = T ,[I - exp(--)

024 = 7'yI1 -eCXP(--A)
(l)

0133 = exp(----

0 = exp(---W))

(D66 = exp(--M)

At = sample time interval, tj+j - t

The filter dynamrics noise covariance Qdf is:

qdfJJ 0 qdfJ3 0 0 0
0 qdf _o 0 q df24 0 0

Qd qdf3J 0 q df33 0 0 0 (5-12)
Qf0 q df42 0 q df44 0 0

o 0 0 0 q dfSS 0
0 o 0 0 0 q df66

where

2 (Al) P( 2(AI)
qdfll = 2 cx7r*, f(At) - 2Tj1 - exp( -) + -41 - exp( l

Ix 2

q df22 = 2u Tyy {(At) - 27- [I -exp(- ~)+ [2A)
ly 2 Vep(

2 (A)_ 2(At)
qdfl3 = 2cxf{2Trx[I - exp(- -I -[ - exp-

2 (At) - 2(At)
q df24 = 2c f{2 7,[1 - exp(- A~) -I - exp(- - )MJ

q df31 = q df 13

q df 33 = cr2 1 -exp(- 2!)]

qdf42 = q df24
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2 2(At))
qdf44 = cy[1I - exp(- =-

2qdf55 - Ua[1 -e 2(A )

2 2(A))
qdf66 = a[1 - exp(---

At = sample time interval, tj+1 - ti

For a non-rotating FOV (NRFOV) FLIR sensor, the propagated intensity centroid

position states x (t- 1 ) and x 2(ti 1) are applied as control signals to the pointing controller

(Section 3.4). The pointing controller points the FLIR sensor centerline (LOS vector, er) at

the filter-estimated position of the target's center of intensity following the filter's

propagation of the state estimates. In addition to the position signals, for a diagonal

rotating FOV (DRFOV) FUR sensor, the filter's estimates of the velocity states x 3 (ti-+l) and

X4 (til) are used to rotate the FOV to align the filter's estimate of the velocity vector with

the diagonal of the FOV (Section 5.2.2.4).

5.2.2 FLIR Measurement Model. This section discusses the data processing

algorithm used to process the FLIR measurement information to update the Kalman filter.

The computer simulation for this thesis uses an enhanced correlation algorithm, shown in

Figure 5.2, which was developed in a previous thesis [27]. This algorithm combines the

best features of a standard correlation tracker and a Kalman filter. The correlation tracker

provides template generation of the intensity function, while the Kalman filter uses its

internal dynamics model to provide future estimates of the intensity function position based

on the template information. The correlator provides "measurements" of position offsets of

the target centroid that are well represented by linear models; therefore, a linear Kalman

filter is used as opposed to the nonlinear extended Kalman filter.

The enhanced correlation algorithm uses the properties of the Fourier transform to

process the raw FUR measurements to identify the target intensity shape function
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Template Generation
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Array t Shift of Data

Image thetComplex One Smple
Correlation arm Conjugate b - Period Image

(IFFI) Storage

Kalman Filter Translation R x FLIR/ e rto

-'Vd(ti+l) Yd(ti+l) Contoller/

Figure 5.2. Enhanced Correlator/Linear Measurement Model Data Processing Algorithm

(template) through the noise-corrupted data, and provides computational efficiency.

Specifically, the "shifting property" of the Fourier domain is used with updated filter

estimates to center the template in the FLIR plane. The enhanced correlation algorithm is

explained in more detail in the next section.

The enhanced correlation algorithm is affected by a FLIR plane rotation scheme,

which maximizes the use of the available surface area of the FLIR 8 x 8 FOV. The rotation

of the 8 x 8 FLIR plane was investigated in earlier research for high-g dynamic target

maneuvering [25, 26]. The diagonal rotating FOV (Section 5.2.2.5) aligns the filter

estimated target velocity vector with the diagonal of the FLIR plane to keep the target in the
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FOV during any type of maneuvering. This feature is not necessary for the relatively

benign trajectory of a missile, but it is considered in this research as a tracking option. The

rotation of the FUR plane requires that rotations are also performed on data going into and

out of the the enhanced correlation algorithm. The DRFOV rotation of the FLIR image

plane is covered in Section 5.2.2.5.

5.2.2.1 Enhanced Correlation Algorithm The FLIR sensor provides "raw"

measurement information concerning the location of the apparent intensity function of the

target on the FLIR plane. Before this information is given to the filter, it is processed

through an enhanced correlation algorithm, shown in Figure 5.2. The original thesis work

[21] showed that a Kalman filter outperformed a standard correlation tracker (Table 1.2).

However, a later thesis [27] suggested that an enhanced correlation algorithm could replace

the 64-dimensional measurement model used as the basis for an extended Kalman filter that

processed raw FLIR measurement data directly. A linear Kalman filter is used with the

enhanced correlation algorithm since the output measurements to the filter are linear

measurebcunts. The enhanced correlation algorithm is "enhanced" over the standard

correlation algorithm in the following ways [26]:

I. The most current FUR data frame is correlated with a template (which is an

estimate of the target's intensity function), as opposed to correlation with the

previous FLIR data frame.

2. Instead of outputting the peak of the correlation function, the enhanced correlator

outputs the center of mass of the portion of the correlation function (intensity

centroid) which is greater than some predetermined lower bound. This technique is

known as "thresholding". As a result, the enhanced correlator does not suffer the

problem of distinguishing global peaks from local peaks, as do many conventional

"peak-finding" correlation algorithms.
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3. Using the enhanced correlation algorithm, the FLIR/laser pointing commands are

determined via the Kalman filter propagation cycle estimates, as opposed to the

output of a standard correlation algorithm.

4. The Kalman filter state estimate x (ti+) is used to center the template, so the offsets

seen in the enhanced correlation algorithm should be smaller than in the

conventional correlator described in [21]. This increases the amount of "overlap"

between the actual FLIR data and the stored template, thus improving overall

performance.

The enhanced correlation algorithm uses the 8 x 8 array of target intensities obtained

by the FLIR measurement, to establish a 64-element shape function from the target

intensity profile (Section 4.4.1). The intensity functions are centered on the FLIR plane by

the "shifting property" of the Fourier Transform, i.e., negating phase shifts are applied in

the spatial frequency domain, which is the domain that the correlation takes place (Section

5.2.2.2). Exponential smoothing, as indicated in Figure 5.2, is then used to average the

result with previously centered images, to yield an updated template. The current FLIR

data is correlated against the template of the previously stored shape function (Section

5.2.2.3) that has been centered on the FLIR image plane. The outputs of the enhanced

correlation algorithm are two linear offsets x, and Yc that yield highest correlation of the

current data with the template. These "pseudo-measurements" (Section 5.2.2.4) are then

fed into a linear Kalman filter update cycle. The Kalman filter updates the states based on

the pseudo-measurements and its internal models, then propagates the updated state

estimates, xd (t +]), to the next measurement (sample). The target position estimates,

.xd (ti-) and Yd (ti+i), are applied to the FLIR/laser controller which centers the FLIR FOV

and laser sensors to point in the direction of the predicted location of the target at the next

sample time (Section 3.4). The filter also provides the updated estimate. x, (ti+), which is
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used to center the FLIR intensity profile to be included in the template generation for the

next measurement.

5.2.2.2 Data Processing in the Fourier Domain. All of the information of a

two-dimensional intensity pattern can be preserved by a set of eigenvalues and

eigenfunctions. Hovever, to retain all of the information of a profile could require an

infinite set of eigenvalues and eigenfunctions. Therefore, it is desirable to process the

FUR measurement data in a coordinate system which has properties more conducive to

recognizing patterns in the spatial coordinate system. As described in the previous

sections, the Kalman filter uses the pseudo-measurements (correlator outputs) derived from

raw intensity functions to update the state estimates. Noise-corrupted FUR data is

processed through the enhanced correlation algorithm to determine the target's intensity

profile (template). The process of determining the target intensity template from the noisy

data is readily accomplished in the Fourier domain. Additionally, the "translational shift"

for centering the template is easily accomplished in the Fourier domain; the difficult

correlation in the time domain is a simple multiplication in the Fourier domain. Fourier

transforms also lend themselves well to optical implementation, which reduces the

computer resources requiied.

5.2.2.3 Template Generation. The template, shown by the boxed in area of

Figure 5.2, reconstructs the shape, size, and location of the intensity centroid using the raw

noise-corrupted FLIR measurements as its input. The outputs of the correlator are the two

linear x and y coordinate FLIR measurements, which are provided to the Kalman filter.

These measurements are referred to as "pseudo-measurements" due to the preprocessing

that is done on the raw FUR data before being given to the filter. This section and the

following section explain the generation of the template and the resulting pseudo-

measurements by discussing the significance of each of the template generation blocks of

Figure 5.2.
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The template generation begins with an input of a FLIR frame of data to the

enhanced correlator of Figure 5.2. Using the property of the fast Fourier transform (FFT),

which states that a translational shift in the spatial domain is equivalent to a linear phase

shift in the frequency domain, the phase shift is computed by:

Fg(x -X.,y- )= G(f, fy)exp,{-j 2r((f • x. +fy. Yi)} (5-13)

where

F{.} = Fourier Transform operator

g(x, y) - 2-dimensional spatial data array

G (f, fy) = F.g(x,y)}

fx, fy = spatial frequencies

The Fourier transform is implemented in the software using the Cooley-Tukey

algorithm [27]. After the raw data is transformed into the Fourier domain by the FFT, the

target shape function is "centered on the FLIR plane" by phase shifting the transformed

function an amount equal to:

Xshoi(ti) = Xd(ti + ) + Xa(ti+) (5-14)

Ysgif(ti) = Yd(ti +) + Ya(ti+) (5-15)

where xd, Yd, xa, and Ya are the state estimates described by Equation (5-1).

Once the data is centered on the FLIR plane, it is incorporated into an updated

template for the next sample period. In the simulation, the Kalman filter's first update cycle

is bypassed to form the initial correlation template.

Temporal averaging of centered images using a true finite memory averager could

require a large computer memory. A template, used in a finite memory averager [13], is

normally accomplished by averaging over the N most recent centered intensity functions.
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The memory size N is chosen according to how rapidly the shape functions change.

Highly dynamic intensity functions require small values of N, while slowly varying

functions use large N values. The averaging is intended to accentuate the target intensity

function and to attenuate the corrupting background and FLIR noises. To overcome the

computer storage problem, the enhanced correlation algorithm employs an "exponential

smoothing" technique which reduces the storage requirement to a single FLIR frame of

data. Exponential smoothing yields a very good approximation of N averaged samples of

data. The template is maintained by the exponential smoothing algorithm given by:

I(ti) = YI(ti) + (1 -7)I(ti1) (5-16)

where

1(ti) "smoothed estimate" of the target's intensity function

(i.e., the template)

I(ti) "raw" intensity function from the current FUR data frame

7 = smoothing constant: 0 < 7< 1

The smoothing constant y is comparable to the N value of the true finite memory averager.

From Equation (5-16), it can be seen that large values of y emphasize the current data

frame, which corresponds to small N values in the finite memory filter. Based on previous

studies [11, 29], a smoothing constant of y= 0.1 is used for this thesis.

With the formation and storage of the correlation template for the next sample

period, the current FLIR measurement is compared to the previously stored template

obtained from the last sample time. This cross-correlation between the current

measurement and the template is accomplished in the Fourier domain. The results from the

cross-conelation are the x and y FLIR plane pseudo-measurements provided to the linear

Kalman filter.
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5.2.2.4 "Pseudo-Measurements". The current FLIR measurement frame is

used to form the template for the next sample update, and is cross-correlated with the

previous template in the Fourier domain (Figure 5.2) to determine the position offsets from

the center of the FOV to the centroid of the target intensity image. The cross-correlation is

computed by taking the inverse fast Fourier transform (IFFT) of the equation [27]:

F{g(x, y) * I(x, y)} = G(f , fy)L*(f,, fy) (5-17)

where

F{.} = Fourier Transform operator

g(x, y) measured target intensity function of the current FLIR

data frame

I(x, y) = expected target intensity function (i.e., the template)

g(x, y) * i(x, y) = cross-correlation of g(x, y) and I(x, y)

G(f, fy) = F{g(x,y)}

U (f, fy) = complex conjugate of F{I(x, y)}

Once the IFFT is accomplished on the data, the correlation function,

g(x, y) * I(x, y), is "thresholded" at 30% of the function's maximum value, values below

this threshold level are set to zero [11, 24]. The location of the center-of-mass of the

thresholded function represents the relative displacement between the current FUR data

frame and the template. The result of the IFFT is the offset of the thresholded FLIR

intensity centroid from the center of the FLIR FOV. This offset is assumed to be the result

of the summed effects of target dynamics, atmospheric jitter, and measurement noise. The

x- and y-component offsets out of the correlator are the pseudo-measurements provided to

the Kalman filter. The offset measurements are modeled by:
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Xof t = Xd + Xa + Vfl (5-18)

Yoffimt = Yd + Ya + Vf2 (5-19)

where Xd, Yd, Xa, and Ya are as defined in Equation (5-1), and vfl and vf 2 are the

measurement noises associated with each offset coordinate. The state space representation

of Equations (5-18) and (5-19) is:

z(ti) = Hfxf(ti) + Vf(ti) (5-20)

where

z(ti) = [Xoffset (ti), Yoffset (ti)]T

Hf = 2 x 6 measurement matrix

xf(ti) = state vector of Equation (5-1)

vf(ti) = 2-dimensional, discrete, white Gaussian

measurement noise with statistics:

E {v(ti) = 0 (5-21)

(R ti= tj
E (v0vy) = 0 (5-22)

The FLIR measurement matrix Hfis:

H =[1 0 0 0 1 0 1Hf 0 1 0 0 0 (5-23)

The measurement noise vj(ti) reflects the corrupting effects of the spatially correlated

background noise (Section 4.5.7), the FLIR sensor noise, and the errors due to the

FFT/IFFT processes. The covariance matrix Rf (with units of pixels 2) associated with this

cumulative error is [6, 22, 27]:
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R= 0.00363 0.005981 (5-24)

Due to the linearity cf this measurement model, the Kalman filter processes the

correlator pseudo-measurements of Equation (5-20) using a linear update cycle. This

update cycle is defined by the equations [12]:

K(ti) = Pf(ti') HTHP(t- H -1 (5-25)

ffi f fft~jHf + R]

xf(ti+) = xf(ti-) + K(ti)[z(ti) - Hfxf(ti-)] (5-26)

Pj (ti +) = Pf(ti-) - K(ti)HfPf(ti-) (5-27)

where

K(ti) = 6 x 2 filter gain matrix

Pf(ti) 6 x 6 filter covariance matrix

Hf = 2 x 6 measurement matrix; Equation (5-23)

Rf= 2 x 2 measurement noise covariance matrix; Equation (5-24)

xf(ti) 6-dimensional estimated state vector, Equation (5-1)

Z(ti )  -- 2-dimensional mo-asurement vector; Equation (5-20)

(t1 -) = time instant imnediately before measurements are

incorporated at time ti

= time instmt immediately after measurements are

incorporated at time ti

5.2.2.5 Field-of-View Rotation The FOV used in this research is an 8 x 8

diagonal rotating FOV (DRFOV). Previous researci [10] investigated a larger 24 x 24

FOV to ensure tracking of the target during high-g maneuvers. Additionally, further

research [25, 26] investigated different orientations and rotation schemes of an 8 x 8 FOV.
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The DRFOV essentially accomplished the same objective as the larger 24 x 24 FOV. The

DRr'-V scheme is shown in Figure 5.3. It incorporates the maximum benefit from the

8 x 8 FLIR FOV by continually aligning the diagonal of the FLIR plane along the filtei-

estimated velocity vector of the target. Since a missile target exhibits a rather benign

dynamic trajectory, and based on !he previous research accomplished (Section 1.2), the

8 x 8 DRFOV is capable of ensuring that the target remains in the FOV at all times under

the constraints of the testing, which initially includes no staging and no plume pogo

phenomenon. It is possible that staging events may create acceleration characteristics

which could warrant a closer investigation of the size anor orientation of the FUR FOV.

In additioi, to staging, the maximum amplitude of the plume's pogo along the longitudinal

axis could possibly cause the 8 x 8 FOV tracker to lose lock on the target. The effect of the

plume pogo on the filter performance on the FUR FOV is evaluated in this research

(Chapter VI).

Nor. Rotated -t f

Field-of-View f-__(NRFOV) 
RJR

+ XFLIR

+Y FLUR

Diagonal Rotated 
,+

Field-of-View
(DRFOV)

Figure 5.3. DRFOV Rotation Scheme [26]
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Figure 5.4. Data Processing Algorithm for Rotating Field-of View [26]

The inc poration of the DRFOV requires that the structure of the data processing

algorithm is modified to provide commaaiding of the controller to rotate the FOV plane,

and to ensure that the states, residuals, and measurements are processed in the non-

rotated FOV. The changes to the enhanced correlation algorithm (Figure 5.2) are shown

in Figure 5.4 when the FLIR FOV is rotated.

It is interesing to compare the data proces'ding algorithms of previous theses with

the current algorithm. The original data pro~cessing algorithm [28] is shown in Figure 1.3,

and the first enhanced correlation algorithm [27] is shown in Figure 1.4. Additionally. a

comparison should be made with the enhanced correlation algorithm with a non-rotated
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FLIR FOV (Figure 5.2). The operation of the DRFOV and the data processing algorithm

modifications Pre discussed in the following paragraphs. (Refer to Figure 5.4 throughout

the discussion.) The description of the enhanced correlation algorithm without a rotated

FOV is found in the previous four sections of this chapter.

As discussed in a previous thesis [26], the design of the DRFOV rotation scheme is

dependent upon the filter's estimate of the target's positive velocity orientation angle Of.

This angle is the filter's estimate of Ot shown in Figures 3.7 and 4.8. The filter's estimate

of Of is given by:

Of = arctan (5-28)

The terms vx and vy are the third and fourth states of the six-state filter's state vector.

Therefore, in addition to providing the translational velocity states, the filter is also

estimating the velocity orientation angle. The filter can provide control inputs to the FLIR

sensor and perform both a translation of the center of the FOV and a rotation of the FOV

during on-line processing of the algorithm. The negative sign in the numerator of Equation

(5-28) is due to the FUR coordinate frame discussed in Section 3.2.4 and shown in Figure

3.2. The filter velocity vector orientation angle 0 in the FLIR plane (Figure 3.9) is positive

in the counter-clockwise direction from the positive x-axis looking from the inertial

reference frame through the FLIR plane at the target along the LOS (er) vector.

In the computer simulation, the rotation of the FLIR sensor for the DRFOV scheme

is accomplished by applying the incoming FLIR measurements to a rotation matrix before

the data is applied to the data processing algorithm. This rotation is shown in Figure 5.3 as

the "Rotate" block following the incoming 8 x 8 input array (FLIR measurements). The

amount of rotation is dependent on the angle Of given by Equation (5-28). The actual

rotation of the FUR plane is further simulated by performing a rotation on the Gaussian
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intensity functions rather than the FLIR plane itself. For example, for a positive velocity

orientation, a negative rotation is accomplished on the location and orientation of the

individual Gaussian intensity functions. Conversely, a negative rotation of the FLIR plane

is accomplished for a negative velocity orientation, by performing a positive rotation on the

location and orientation of the individual Gaussian intensity functions. For the DRFOV the

rotation angle needed to align the target velocity vector with a diagonal of the FOV is

determined by:

Of = --- (5-29)
4

where V is the estimate of the necessary rotation angle based on Of to rotate the filter's

estimate of the velocity vector along the diagonal of the FLIR plane, as shown in

Figure 5-5.

V -

a-fl Plane
(FLIR) 450

+X FUR

i+Y H.IR

Figure 5.5. DRFOV Rotation Geometry
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The angle obtained from Equation (5-29) is used to rotate the two intensity

functions used to model the target plume. Fich of the intensity functions, defined by

Equation (3-1), is rotated using the rotation algorithm given by [25]:

x1'P cosyt -sinyr x P'

]= [ % [(5-30)
' I ~ sinyp" coswtp Y P

where the primed variables correspond to the rotated coordinate system.

The bivuiate Gaussian intensity function of Equation (3-1) is then given by [25]:

I [x', Y', X'peak(t), Y'peak(t)] = Imax exp[-0.5[Ax'Ay']P-I[Ax'Ay'] T] (5-31)

where

Ax' = (x' - X'peak) COS AO + (y' - Y'peak) sin A

Ay' = (Y' - Y'peak) cos AO - (A' - X'peak) sin AO

AO = difference between the tnth model velocity orientation angle and

the filter computed velocity orientation angle (i.e., AO = 0, - Of)

x', y' rotated coordinates from the original FUR coordinate frame via the

same rotation matrix used in Equation (5-31)

X'peak, Y'peak rotated coordinates of the peak intensity of the single Gaussian

intensity function

I,,= maximum intensity function

P = 2 x 2 target dispersion matrix whose eigenvalues define the dispersion

of the elliptical constant intensity contours (along the velocity vector

vector and perpendicular to that velocity vector, respectively) in the

a-fl (FLIR) plane (Sections 3.2 and 3.3.4)
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Once the incoming FLIR measurements are rotated to align the diagonal of the FLIR

plane with the estimated target velocity vector, the data processing algorithm shown in

Figure 5.4 operates in the same manner as previously described, but now the data is

transformed into a rotated coordinate system. Figure 5.4 also shows two other rotations on

data before it enters or leaves the data processing algorithm. The translational shifts to

center the incoming FLIR data, given by Equations (5-14) and (5-15), are accomplished in

the correlation algorithm. The shift information is computed by the Kalman filter in the

filter coordinate system, while the image data is represented in a rotated coordinate system

simulating the DRFOV. Therefore, to implement the DRFOV data processing algorithm,

the translational shift data from the filter is rotated by the same transformation that was used

on the FLIR measurement data:

X'sho cosv -sinys (5-32)

Y'shif L sinyr cosy" Y shi

where Vshift and Yshif are given by Equations (5-14) and (5-15).

The transformation given by Equation (5-32) is accomplished in the "Rotate" block

following the Kalman filter shown in Figure 5.4. Now the current image image data and

the filter's estimate of the target centroid, given by the shift Equations (5-14) and (5-15),

are both in the rotated coordinate frame, and the template generation proceeds as described

in Section 5.2.2.3.

The third rotation required is shown in Figure 5.4 by the "Rotate" block following

.he IFFT. The outputs of the IFFT are the linear XFLIR and YFIIR offsets between the

current data image and the centered template from the previous sample period. These

offsets, given by Equations (5-18) and (5-19), are the pseudo-measurements described in

Section 5.2.2.4. The colTelator provides these linear measurements to the Kalman filter for
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its update cycle. Since the Kalman filter processes the measurements in the unrotated filter

coordinate frame and the linear offsets from the enhanced correlator are in the rotated

frame, the measurements must be rotated opposite to the rotations performed on the filter

shift data and the intensity function peaks. The rotation, shown by the "Rotate" block of

Figure 5.4, is given by: r z r - -'
Z cos sinyp z1-

22 [-sin; cosr][Z '1 2

where zi and z2 are the components of the two-dimensional measurement vector of

Equation (5-20) in the filter coordinate frame. The measurements z', and z' 2 are the linear

offsets provided by the enhanced correlator in the rotated FOV.

5.2.3 Filter Parameters. This section describes the modeling parameters, initial

conditions, and tuning parameters for the six-state filter used in this research. There may

be some duplication of information. This is purposefully done to ensure the reader has

knowledge of pertinent parameter values during the course of reading the document, as

well as a single reference place for the information.

5.2.3.1 Modeling Values. The filter target dynamics correlation time

constants 7- and ry for this research are both equal to 8.5 seconds. These values represent

a target with rather benign dynamics. The atmospheric correlation time constants

SIXa. Ad are both set equal to 0.0707 seconds in the simulation.

5.2.3.2 Initial Conditions. In the tracking simulation, the filter is initialized

to zero error for the position and velocity states. These are not realistic initial conditions for

the filter in the real world, however since the values are established from previous research

[30], these initial conditions remain the same. The position states -,I and -V2 are initialized

with the intensity centroid of the target centered in the FLIR FOV. The velocity states .V3
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and x4 are initialized in accordance with the target's initial trajectory conditions (Section 3.5

and 4.5.2), and the transformation Equations (3-4) and (3-6). The atmospheric states x5

and x6 are initialized to zero.

The initial state covariance matrix P(to) is:

10 0 0 0 0 0
0 10 0 0 0 00 10 200 0 0 0

P(to) = 0 0 2000 0 0 0 (5-34)
0 0 0 2000 0 0
0 0 0 0 .2 0

L0 0 0 0 0 .2J

where the position states x1 and x? and the atmospheric states x5 and x6 have units of

pixels 2; the velocity states x3 and x4 have units of pixels2/seconds 2.

The measurement covariance matrix Rf (with units of pixels2) is [18, 27]:

Rf= [0.00363 0 (5-35)

2 2

5.2.3.3 Tuning Values. The filter dynamics variances .. and a are both

set equal to 800 pixels 2/seconds2 without plume pogo applied to the intensity centroid, and
2 2

also with plume pogo applied. The atmospheric variances or and cr are both set equal to

0.2 pixels 2. This corresponds to the truth model value of 0.2 pixels 2.

5.3 One-State Filter

The one-state (center-of-mass) filter generated in the previous research [2] estimates

the distance from the center of intensity to the hardbody center-of-mass using the updated

six-state (FLIR) filter states. This one-state (center-of-mass) filter uses the six-state (FLIR)

filter's estimate of the target's velocity vector to obtain measurements from the low-energy
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laser scan, which the filter uses to estimate the hardbody center-of-mass location. The

center-of-mass position offset estimate is calculated as a bias distance along the estimated

velocity direction from the filter's estimate of the intensity centroid. The measurement

provided to the center-of-mass filter is from a low-energy laser sensor, which receives the

reflections of a low-energy laser scanned along the FLIR filter's estimated velocity vector

direction, emanating from the estimated center of intensity location. Figure 5.6 shows the

physical representation of estimating the hardbody center-of-mass for the one-state (center-

of-mass) filter, and the dependence of the one-state filter on the FLIR filter's estimate of

the intensity centroid location and the estimated velocity vector of the target. Except for the

dependence on the FLIR filter to provide the centroid velocity estimates, the center-of-mass

filter computations are independent of the FLIR filter. Additionally, the FLIR filter has no

knowledge of the existence of the center-of-mass filter.

-Y FUR
Vrf

True Offset Vt

Bias Low-Energy
Laser Scan

Filter Estimated True Hardbody
Offset Bias Center-of-Mass

Filter Estimated
Center-of-Mass

True Intensity Centroid Position

E." ---- Filter Estimated Intensity Centroid +AFLR

Figure 5.6. One-State Filter Estimate of Missile Hardbody Center-of-Mass
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5.3.1 Dynamics ModeL As previously stated, the offset between the intensity centroid and

the hardbody center-of-mass is represented as a bias. Therefore, the dynamics model for

the one-state filter is a simple integrator, with driving pseudo-noise for filter tuning

purposes. The single-state representation of the linear, time-invariant, stochastic

differential equation is given by:

Xf(t) = Ffxf(t) + Gfwf(t) (5-36)

where

Ff - 0 (since the model is represented as a bias)

xf(t) state representing offset distance between missile center-of-mass

and intensity centroid

Gf time-invariant noise distribution matrix; Gf = 1

wf(t) independent, white Gaussian noise process with

mean and covariance statistics:

E(wf(t)) = 0 (5-37)

E{wf(t)wf(t+ 7)} = Qf8(7) (5-38)

To simulate the filter dynamics model on a digital computer, the scalar discrete-time

propagation Equations (5-8) and (5-9) are used to propagate the state estimates and erroi

covariance forward to the next measurement update:

Xf(ti+ 1) = dIf(At) xf(ti +) (5-39)

Pf(ti-+ 1) -Df (At) Pf(ti+)Pf(At) + Qdf (5-40)

where

Xf(ti) filter estimate of the I -dimensional state vector

(Df(At) time-invariant state transition scalar for propagation

over the sample period: At = ti+I - ti ; (If(At) -

Pf (ti) filter variance
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(ti-) = time instant before FLIR measurement is incorporated into

the estimate at time t1

(ti +) - time instant after FUR measurement is incorporated into

the estimate at time ti

Qdf filter dynamic noise covariance given by:

tt T T ( -1

Qdf f Of (ti+- 7) Gf QfG f -f(t +l- 7) dr (5-41)

ti

where Qdf = (f(At) since Gf - Of = 1.

5.3.2 Measurement Model. The low-energy laser measurement is provided to the

filter if the laser intercepts the hardbody, and a reflection is received by the low-energy

laser sensor. The measurement is a noise-corrupted bias given by the offset distance

between the FLIR filter's estimate of the intensity centroid and the computed center-of-

mass determined using the low-energy laser scan. The discrete-time measurement model is

the scalar version of Equation (5-20), given by:

z(ti) = Hf Xf(ti) + vf(ti) (5-42)

where

z(t=) offset measurement given as the distance from the FUR filter

estimated intensity centroid and the computed center-of-mass

Hf measurement distribution, Hf = 1

xf(t i ) center-of-mass offset state

vf(ti) discrete, white Gaussian measurement noise with statistics:

E v (t0)-- 0 (5-43)

E~vftti== 0
E (v(ti)v(tj)) = {Rf ti t (5-44)

ti tj

where Rf = R, (true measurement variance) = 0.000178 pixels 2.
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Due to the linearity of this measurement model, the Kalman filter processes the

computed center-of-mass measurements of Equation (5-42) using a linear update cycle.

This update cycle is defined by the scalar version of Equations (5-25), (5-26), and (5-27),

given by:

K(ti) = Pf(ti-) HJ[HfPf(ti-) Hf + R]1  (5-45)

xf(ti+) = xf(ti-) + K(ti)[z(ti) - Hf xf(ti-)] (5-46)

Pf(ti+) = Pf(ti-) - K(ti)HfPf(ti-) (5-47)

where

K(ti) = filter gain

Pf(ti) = filter covariance

Hf = measurement distribution matrix, Hf = 1

Rf = measurement noise variance

Xf(ti) = center-of-mass offset state

z(ti) = scalar measurement, Equation (5-40)

(ti-) = time instant immediately before measurements are

incorporated at time ti

(ti+) = time instant immediately after measurements are

incorporated at time t,

5.3.3 Filter Parameters. This section describes the modeling parameters, initial

conditions, and tuning parameters for the one-state filter used in this research.

5.3.3.1 Modeling Values. The one-state dynamics model is a simple

integrator with driving pseudo-noise, for filter tuning purposes. The strength of the white

Gaussian noise driving the integrator given in Equations (5-38) is given in Section 5.2.3.3

for the low-energy laser scan and sweep configurations tested.
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5.2.3.2 Initial Conditions. In the tracking simulation, the filter center-of-

mass offset state is initialized to a 1.0 pixel error. This value represents an arbitrary value

with which to test the filter performance. The initial variance is 0.2 pixels 2. This value is

selected to reflect the confidence of the initial state value.

5.2.3.3 Tuning Values. The filter was tested with and without a sweeping

of the low-energy laser following the initial scan. (The results of the testing is covered in

Chapter VI.) For the case without a low-energy laser sweep, a filter dynamics strength

value of 0.3 pixels2/seconds 2 is used without plume pogo applied to the intensity centroid,

and 0.35 pixels2/seconds 2 is used when plume pogo was applied. For the case with a low-

energy laser sweep, a filter dynamics strength value of 0.7 pixels 2/seconds 2 is used for the

cases with and without plume pogo applied to the intensity centroid.

The value for the true and filter measuiement noise variance of the center-of-mass

estimate is equal to 0.000178 pixels2 . This value is arbitrarily determined as 1.0% of the

length of the hardbody (in meters); the conversion to pixels2 is accomplished by dividing

the 0.4 meters by the pixel proportionality constant k. times the range to the target, and

squaring the result. (The value of the measurement noise variance is a change from the

previous thesis [2] value of 0.004444 pixels 2 to reflect the accuracy of the measurements

obtained in this research.) The truth model offset distance (to be estimated by the filter) of

the true hardbody center-of-mass from the midpoint between the two Gaussian intensity

functions (Figure 3.5 and 3.6), is determined as 87.5 meters (2.917 pixels).

5.4 Eight-State Filter

5.4.1 Dynamics Model. The eight-state filter is composed of the six-state filter

(Section 5.1) augmented with a modification of the one-state filter (Section 5.2). The six-

state (FLIR) part of the filter is designed to operate independently as it does when used in

conjunction with the previous one-state (center-of-mass) filter. The two additional states
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comprise the x and y center-of-mass offset components, whereas the one-state filter only

estimated a scalar distance that was presumed to be along the estimated velocity direction

from the center of intensity. This part of the filter is independent of :he FLIR part of the

filter, except for the dependence on centroid intensity infr:'mation. The eight-state Kalman

filter used in this research is based upon the state vector:

X d

X2 Yd

X 3 VX

xf X v' (5-48)
X5 X

X6 Ya
X7 Xo 0

where

Xd = x component of centroid position (azimuth), relative to center of FOV

Yd = y component of centroid position (elevation), relative to center of FOV

vx = x component of centroid velocity

vy = y component of centroid velocity

Xa = x component of atmospheric jitter

Ya = y component of atmospheric jitter

x = x component of center-of-mass offset

Y = y component of center-of-mass offset

The first six states are as described in Section 5.1. The offset states Vo and yo

estimate the x and y bias components of the center-of-mass offset between the filter's

estimate of the intensity centroid and the target center-of-mass. The eight-state filter is the

same as the working combination of the six-state filter and the one-state filter, except that

the one-state center-of-mass offset estimate is replaced by the x and y bias components in
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the eight-state filter. The eight-state filter model is described by the followiig time-

invariant, linear stochastic differential equation:

xf(t) = Ffxf(t) + Gfwf(t) (5-49)

where

Ff = 8 x 8 time-invariant system matrix

xf (t) = 8-dimensional filter state vector

Gf = 8 x 6 time-invariant noise distribution matrix

wf(t) = 6-dimensional independent, white Gaussian noise

o~rocess with mean arid covariance stat'stics:

E(Wf(t)} = 0 (5-50)

E( f(t)JtT) = QJGo T) (5-51)

The time-invaliant system matrix Ff Is:

0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 _ 0 0 () 0 0
"x

0 0 0 . 0 0 0 0
Ff Ty

o 0 0 0 0 0 0

a,

o 0 0 0 0 0 0
Ta' (5-52)

0 C) 0 0 0 u 0

0) 0 0 0 0) ( 0 0
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The noise distribution matrix Gy is:

o 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 00 0 0 0 0 0

G 0 1 0 0 0 0 (5-53)o 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

L0 0 0 0 0 1j

The strength of the white Gaussian noise Wf , given by Qr, is:

20"
2 0 0 0 0 0

2

0 0 0 0 0
7"y
T

V

2a

0 0 0 0 0
7"
ax

Qf2"

o 0) 0 01 0

0Q0 0 07

(5-54)

o 0 ) 0 0
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2) 2

a, U)y variance and mean-squared value for the intensity centroid

x and y velocities
2 2
aa, 0a>. = variance and mean-squared value for the atmospheric jitter

position process

Qo = noise strength associated with the x bias offset component

for determining the center-of-mass estimate

Qo = noise strength associated with the y bias offset component

for determining the center-of-mass estimate

To simulate the filter dynamics model on a digital computer, the discrete-time

propagation equations [12] are used to propagate the state estimates and error covariance

forward to the next measurement update:

xf(ti- i) = 1f(At) Xf (ti+) (5-55)

T

Pf(ti-+ 1) = (DI(At) Pf(ti+)l)f(At) + Qdf (5-56)

where

xf(ti) filter estimate of the 8-dimensional state vector

()f(At) 8 x 8 time-invariant state transition matrix for propagation

over the sample period: At = t, - ti

Pf(ti ) = 8 x 8 filter covariance matrix

(ti-) = time instant before FLIR measurement is incorporated into

the estimate at time ti

(t" ) time instant after FIIR measurement is incorporated In~to

the estimate at time t,

QU- 8 x 8 filter d.,namics noise covarlance -iven by:
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Qdf = f Df (ti-T) GfQfGf>Dj(ti+-)dr (5-57)

The time-invariant state transition matrix Of (At) is:

1 0 (I 13 0 0 0 0 0

0 1 0 P4 0 0 0

0 0 () 33 0 0 0 0 0

0 0 0 (44 0 0 0 0
(fA)= 0 0 0 0 (D 55 0 0 0 (-8

(5-58)
0 0 0 0 0 066 0 0

0 0 0 0 0 0 (77 0

0 0 0 0 0 0 0 (88

where

(1)13 = T I - exp(-_ _)]

D 4 = 7yl- exp(- (At_ ))
ly

(1)33 = exp(- (A_/})

144 = exp(- (At)- )

;y

y (Al)= exp(- AO)

(66 =exp(- )A- 2

'a,

(D77 ()8S = I

At sample time interval, t, -t,
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The filter dynamics noise covariance Qdf is:

qdfl 0 q df13 0 0 0 0 0

0 q df22 0 qdf24 0 0 0 0

q df3J 0 q df33 0 0 0 0 0

Qdf 0 qdf4 0 q df44 0 0 0 0

of 00 0 0 qdf55 0 0 0 (559)

0 0 0 0 0 q df 66 0 0

0 0 0 0 0 0 qdf77 0

0 0 0 0 0 0 0 qdf88_

where

4 'dfl = 2 oj {(At) - 2 1- exp(- + 2 -exp-

2

qadf11 = 2a~{rj1t. 2-,e[p. exp(- (-[1)] e+( 2[1}p-2A),
qdf22 = 2rYT{(At) - 2[1- exp(-A)-))] + - exp( 2At

2 2
-- .- Z ]-1 -1-exp(- --At)

qdf33 = a2{2[1 - exp(- A)2

qdf24 = 2cr{2 Ty[lI- exp(- A LLD 2 [- exp(- A )]}

q df34 = q df13

qdf4 = a 2[1 - exp( 2(At)]
'

x

q2f? = q d(f24

q df44 = Oa[ 1 - exp(- 2(At)

'lfc =2 2(M
q df55 = or,,[I - exp(-

q df66 = or, [I - exp(- -.- I)]

qdf77 = QAt

qdfN = Q, At

At = sample tin,2 interval, t,, - t.

N&here Q, and Q, are as described in -quition (5-54).
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5.4.2 Measurement Models. The FUR measurement model is the same as for the

six-state filter discussed in Section 5.2.2. There are two separate update cycles in the

eight-state filter to provide FLIR measurements to the six-state (FLIR) part of the filter, and

to provide center-of-mass measurements to the two-state (center-of-mass) part of the filter;

first the FLIR measurement update cycle is performed, then the center-of-mass update cycle

is performed if the low-energy laser scan (or sweep) results in a reflection return from the

hardbody. For the FLIR measurement, the Hf matrix given in Equation (5-23) becomes a

2 x 8 matrix, with zeros in columns seven and eight, to satisfy the measurement

independence of the first six-states from the last two center-of-mass bias states. (The low-

energy laser measurement Hf matrix is covered in this section.) The FLIR measurement

covariance matrix Rf given by Equation (5-24) and the low-energy laser measurement

covariance matrix (covered in this section) are augmented into a 4 x 4 diagonal matrix. The

eight-state filter's low-energy laser measurement model, shown in Figure 5.7, is the same

-Y FLIR
Vt Vf

Low-Energy
TruesOffset Laser Scan

Bias True Hardbody
Center-of-Mass

Filter Estimated
Center-of-Mass

S(Yo afterlaser

I O *fd 0a OfXo, "hit" using O

$ True Intensity Centroid Position
. Filter Estimated Intensity Centroid +-1 JR

Figure 5.7. Two-State Filter Estimate of Missile flardbodv Center-of-Mass
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as the one-state filter noise-corrupted measurement model of Equation (5-42), except that

the eight-state filter model consists of the x and y offsets of the measurement. The discrete-

time low-energy laser measurement model is given by:

Z(ti) = Hfxf(ti) + Vf(ti) (5-60)

where

z(ti) x and y offset measurements of the distance between the FLIR

filter estimated intensity centroid and the computed center-of-mass,

where the straightline measurement, given by Equation (5-42),

is resolved into two components as:

Z(ti) (Cos Of)

z(ti) (-sin O )

(The minus sign in the second measurement is necessary

due to the sign convention of the a-fl (FLIR) plane, (Figure 3.1))

Hf = 2 x 8 measurement distribution matrix

Xf (ti) = 8-dimensional filter state

vf(ti) = discrete, white Gaussian measurement noise

with mean and covariance statistics:

E (v (/)= 0 (5-61)

E (v= (Rf ti= tj (5-62)E {~t~v~j) = 0 tic tj

The low-energy laser measurement matrix Hf is:

11f[0 0 0 0 0 0 1 0(5-63)tf= 00 0 0 0 0 0 1

The measurement covariance matrix Rf (with units of pixels 2 ) is:

Rf = 0 .0 0 0 17 8  0 ( 5-0 4)
o 18 .(X)017' 1]
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where the values of Rf are the sa" -e as the value used in the one-state filter, since the

uncertainty of the estimate in the x and y directions is not known. (Sensitivity studies,

which are not covered in this thesis, may reveal that the x and y covariances are not equal.)

Due to the linearity of this measurement model, the Kalman filter processes the

FLIR measurements of Equation (5-20) and the computed center-of-mass measurements of

Equation (5-60) using a linear update cycle. Since the first six-states are decoupled from

the two center-of-mass states, the FUR measurements are unaffected by the center-of-mass

measurements, and center-of-mass measurements are not affected by the FUR

measurements. The two, uncoupled update cycles are defined by Equations (5-25), (5-26),

and (5-27), given by:

K(ti) = Pf(t) [HfPf(ti-) Hf + R] 1  (5-65)

Xf(ti +) = xf(ti-) + K(ti)[z(ti) - Hf xf(t i- ) (5-66)

Pf(ti+) = Pf(ti-) - K(ti)HfPf(ti-) (5-67)

where

K(ti) = 2 x 8 filter gain matrix

Pf (ti) = 8 x 8 filter covariance matrix

Hf = 2 x 8 measurement matrix; Equation (5-63)

Rf 2 x 2 measurement noise matrix; Equation (5-64)

xf(ti) = 8-dimensional state vector, Equation (5-48)

Z(ti) = 2-dimensional laser measurement matrix; Equation (5-60)

(ti-) = time instat nmmediately before measurements are

incorporated ,t time ti

t time instant immediately after measurements are

incorporated at time ti
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5.4.3 Filter Parameters. This section describes the modeling parameters, initial

conditions, and tuning parameters for the eight-state filter used in this research.

5.4.3.1 Modeling Values. The filter target dynamics and atmospheric jitter

characteristics of the eight-state filter are the same as the six-state filter (Section 5.2.3.1 ).

5.4.3.2 Initial Conditions. The initial conditions for the first six states of

the eight-state filter are the same as for the six-state filter (Section 5.2.3.2). The initial

conditions for states x7 and x8 are 0.5 and -0.5 pixels. These magnitudes provide the

equivalent initial condition as the one-state filter (for filter performance comparison

purposes). The minus sign in front of the x8 initial condition is due to the coordinate system

of the a-3 (FLIR) plane (Figure 3.1). This gives the state the proper sign convention.

The initial state covariance matrix P(to) is:

10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 2000 0 0 0 0 0

0 0 0 2000 0 0 0 0 (5-6 )
0 0 0 0 .2 0 0 n

0 0 0 0 0 .2 0 0
0 0 0 0 0 G .2 0

0 0 0 0 0 0 0 .2

where the position states x, and x2 , the atmospheric states x5 and x6 , and the center-of-

mass states x 7 and x8 have units of pixels 2; the velocity states x3 and X4 have units of

pixels 2/seconds 2.

The measurement covariance matrix Rf (with units of pixels 2) is:

0.00363 0 0 0 1
R0 0 0.00598 0 0 (5-69)f 0 0 0. 000178 0

0 0 0 0.000178
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2 2

5.4.3.3 Tuning Values. The filter dynamics variances oa and a)y are both

set equal to 800 pixels 2/seconds 2. For the single low-energy laser scan (i.e., no sweep),

the filter dynamic variances of the center-of-mass states, x7 and x8, are 0.25 pixels2 and

0.35 pixels 2 , respectively, without plume pogo applied to the intensity centroid; the

variances with plume pogo applied are 0.25 pixels 2 and 0.40 pixels2 , respectively. For a

low-energy laser sweep, the filter dynamic variances of x 7 and x8 are 1.0 pixels2 and 1.4

pixels 2 for both the cases with and without plume pogo applied to the intensity centroid.
2 2

The atmospheric jitter variances c aand a> are both set equal to 0.2 pixels 2. This

corresponds to the truth model value of 0.2 pixels2 .

5.4 Summary

This chapter presented the three filter models used in the course of performing

research into determining if low-energy laser measurements can be used with FLIR sensor

measurements to determine the location of the center-of-mass of the missile hardbody. The

six-state filter and the one-state filter are previously developed filters [2, 4, 6, 9, 10, 11,

21, 22, 24, 25, 26, 27, 28, 29, 30]. The eight-state filter, developed in this thesis, is an

augmentation of the six-state filter and two-states to estimate the . and y components of the

location of the center-of-mass of the missile hardbody. The six-state filter and the one-state

filter operate independently in determining the center-of-mass of the hardbody, except for

the need by the one-state filter to use the six-state filter's updated estimates of the intensity

centroid position and velocity. The eight-state filter operates in a similar manner. A

performance analysis of these filters is presented with respect to a single scan of the low-

energy las2r, and with a sweep of the low-energy laser, in Chapter VI.
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VI. Procedures and Results

6.1 Introduction

This chapter presents the results of the research objectives given in Chapter I and

the findings of three studies conducted during the course of the research. The Doppler

investigation and the atmospheric modeling improvements were not accomplished,

however the research of this thesis provided insight into both topics, which are covered in

Chapter VII. The three studies/investigations include: low-energy laser sensitivity study;

intensity centroid movement in the FUR image plane investigation; and a six-state filter

dynamics noise trajectory study. The diagonal rotating field-of-view (DRFOV) was not

used in this research due to possible problems with the rotation algorithm. Since the

benign dynamics of a missile do not require the maximum efficiency of the FLIR image

plane, the testing was not affected. The DRFOV is discussed in Chapter VII as a possible

solution to obtaining a reflection from the hardbody with a single scan of the low-energy

laser.

The configuration of the truth model is such that the atmospheric jitter and

bending/vibration models are activated during all simulation runs. The truth model plume

pogo model is turned on and off to test the six-state/one-state filter performance and the

eight-state filter performance in estimating the center-of-mass without, and with plume

pogo applied to the intensity centroid. (This research is primarily interested in the one-state

center-of-mass filter performance and the two-state center-of-mass part of the eight-state

filter. The one-state filter is referred to by this name since it is a separate filter, while the

two-state center-of-mass augmented filter is part of the eight-state filter, therefore it is

referred to as the eight-state filter with reference to the center-of-mass estimates.) The low-

energy laser is used as a single scan along the filter-estimated sweep direction (i.e., no

sweep) and as a sweep (multiple scanning) to test both center-of-mass filters for the cases
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when few successful measurements are provided, and when measurements are provided at

every sample period (1/30 second). The hardbody binary model is tested in various

configurations: without low-energy laser sweep and without plume pogo; without low-

energy laser sweep and with plume pogo; with low-energy laser sweep and without plume

pogo; and with low-energy laser sweep and with plume pogo. The enhanced hardbody

reflectivity model is only tested with the filters using a low-energy sweep, and without and

with plume pogo applied to the intensity centroid. (For this thesis, since emphasis is

placed on obtaining an accurate measurement of the center-of-mass for the filter, the

reflectivity model is designed exclusively for use with a low-energy laser sweep; the

software can be altered to also include the non-sweep conldition.)

Each simulation run consists of 10 Monte Carlo runs over a 10 second period of the

target's trajectory. The collection of the statistics of the filter's actual rms mean error, the

filter's computed mean error, and the actual standard deviation (G) of the eTor is given in

Appendix A. The statistical data is collected from 2 to 10 seconds to avoid ha,,ing thc

transient performance from influencing the steady-state results. The statistics data is

presented both graphically in the appendices (which are referred to throughout the

discussion of this chapter), and in tabular form within the text of this chapter. Appendix B

gives a description of the two types of performance plots used in the analysis of the filters,

and also provides example plots with annotations.

Before beginning the filter analysis, two sections are devoted to providing the

reader with the background necessary for a more thorough understanding of the data

reported in this chapter. In Section 6.2, the softwaue validation accomplished during the

course of the research is given to provide reader confidence that every effort is made to

ensure the data results are accurate. In Section 6.3, the simulation coordinate frames, given

in Section 3.2, are discussed relative to the three descriptions of the filter estimated center-

of-mass error: the straight-line magnitude en-or m , the x and y components of the error-
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and the along-track (ALT) and across-track (ACT) components of the error, defined as

along and across the centerline of the missile, respectively.

6.2 Software Validation

During the course of this thesis research, the software and the modeling techniques

were continuously scrutinized to avoid misrepresenting the data obtained from the

simulation runs. In many cases, the software was revalidated with results from previous

theses, and in some cases, the software was changed to correct coding errors.

Additionally, emphasis was placed (-n ensuring that correct modeling values were used in

the truth model and the filter models. This self-imposed part of the thesis research was

considered as important as the thesis objectives, since without having confidence that the

software and modeling are correct, the results, at best, are questionable. The following

paragraphs discuss some of the more important software findings.

The most significant finding of incorrect sottware implementation was the noise

(random number) generator. In the process of accomplishing runs over different time

intervals (of 7 and 8 seconds) due to a software missile trajectory problem, it was noted

that the statistics changed dramatically. The problem was isolated to the random number

generator (which provides the white Gaussian noise in the simulation). A proven reliable

random number generator with a longer correlation time (i.e., longer time between any

possible repetition of numbers) was installed into the software, which corrected a data bias

problem that was also under investigation. The missile trajectory problem is due to the

simulated hardbody crossing the y-z plane inertial coordinate system. The problem occurs

due to the representation of the hardbody in the software; upon crossing the y-z plane. the

missile model requires both positive and negative x coordinates to define the hardbody, for

which the simulation model is not equipped. The trajectory of the missile initial conditions

were changed, without compromising the study, to avoid this software limitation.
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In the process of determining the cause of the bias problem, which was corrected

by the replacement of the random noise generator, the correlation algorithm was

investigated (as a potential source of the problem). The correlation algorithm provides the

position offset "pseudo-measurements" of the target's location to the six-state Kalman

filter; therefore, it was suspected that the correlator may be providing biased measurements.

The statistics of the correlator were gathered, which provided a validation of the accuracy

of the correlator measurements: the x offset mean measurement was found to be 0.002

pixels with a standard deviation of 0.025 pixels, and the y offset measurement was found

to be - 0.003 pixels with a standard deviation of 0.030 pixels (where a pixel _ 30 meters

for the 2,000 kilometer distance of the target from the FUR image plane). These standard

deviation values indicate an increase in performance over that determined by [10], where

the x offset measurement standard deviation was determined as 0.060 pixels and the y

offset measurement standard deviation was given as 0.077 pixels. This difference may be

due to changing the random number generator.

The modeling parameter values of the truth model, and the modeling and tuning

parameter values of the filter models, were also investigated. The truth model value of the

atmospheric jitter standard deviation was corrected to the 0.2 pixels defined in [26]. The

other values were all found to be correct, and the filter parameters were changed, due to

tuning requirements, as described in Sections 5.2.3, 5.3.3, and 5.4.3.

6.3 Coordinate Transformations of the Center-of-Mass Error

One of the thesis objectives described in Section 1.3 is to compare the one-state

filter [2] center-of-mass estimate with that of the two-state partition of an eight-state filter

developed in this thesis for refined estimatioi. of that center-of-mass location. Another

objective is to portray the one-state filter results in the x and y coordinates, and in the ALT

and ACT coordinates of the missile hardbody. The trans-FLIR coordinate system and the

6-4



ALT-ACT coordinate system, described in Section 3.2, are used to transform the

magnitude error in [2] into x and y errors, and into the ALT and ACT offset errors.

Additionally, the x and y center-of-mass states of the eight-state filter are also transformed

into the ALT-ACT frame for comparison wit' the one-state filter in this coordinate system

The standard tleviation of the filter-computed error is also transformed to obtain tuning

insight into each of the coordinate systems. This error description analysis may provide

improvements in representing the filter errors, and could also give insight concerning

which coordinate frame the filter should be tuned to obtain optimum performance. The

three different descriptions of the center-of-mass error are shown in Figure 6. 1.

The transformation of the magnitude m error for the one-state filter into the ALT-

ACT coordinate system is accomplished by determining the angle A in Figure 6.1(a) using

the x and y error values of (b) to determine q. The angle A is found by:

Ai = 0, - q (6-i)

where 01 is the true orientation angle of the target maectory. (The true orientation angle 0,

is used, as opposed to Of, since the errors must be represented in a fixed, known

coordinate system.) Then the ALT and ACT components of the error aUe:

ALT - in cos A (6-2)

ACT = in sin A (6 3)

Equations (6-I) through (6-3) are also used for the eight state filter, wheie the x and y for

determining q- are the errors from the two center-of-mass states.

For the one-state filter, the filter-com puted enor variance is transformed into the x

and y coordinate system using:

P '1 PT" 1 6-4)
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Figure 6. 1. Three Descriptions of Center-of-Mass Error
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where

P = 2 x 2 covariance matrix in the trans-FLIR plane

P = scalar error variance obtained from one-state filter statistics

T = 1 x 2 transformation matrix given by:

T = [cosot sint] (6-5)

Then to transform P' into the ALT-ACT coordinates, a second transformation is

performed:

P" = T P'TT (6-6)

where

P 2 x 2 covariance matrix in the ALT-ACT plane

P 2 x 2 error covariance matrix

T 2 x 2 transformation matrix given by:

= F cosot sinot ]

L-sinOz cosOt  6

The eight-state filter error consists of the x and y components of the two center-of-

mass states x7 and x8 , respectively. The transformation of the error covariances into the

ALT-ACT coordinate frame is accomplished using Equation (6-6) with the transformation

matrix of Equation (6-7).

The diagonal terms of the resulting error covariance matrices are plotted with the

filter's actual rms error, as described in Appendix B. The cross terms of the transformed

error cova-iance mat-ix for the one-state and the eight-state transformations are small in ali

cases.
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6.4 Six-State Filter Performance Analysis

With the understanding of the previous two sections, this section and the following

three sections discuss the performance of the three filters used during this research. The

six-state filter, as pointed out in Chapter 1, is a development from previous theses [2, 26].

The filter is not changed from the previous research. The evaluation of filter performance

is improved with the replacement of the random noise generator, discussed in Section 6.2.

The primary purpose of the six-state filter is to track the intensity centroid of the missile

using FLIR measurements to update its algorithm, then the filter propagates the estimate to

the next sample time. This propagation -stimate at ti- is used to command the pointing

controller (Se tion 3.4) to position the FLIR plane before the next sample time.

The filter error statistics are shown in Table 6.1 for the case without plume pogo

applied to the intensity centroid, and Table 6.2 gives the fltci error statistics for the case of

plume pogo being applied to the intensity centroid at 10 Hertz with an amplitude of

approximately 34.0 meters (1.12 pixels). This plume pogo represents the maximum

frequency and amplitude researched by [26]. The filter performance is slightly degraded

when plume pogo is applied, as is expected since the filter is not currently modeling the

plume pogo phenomenon. The degradation is more significant for the standard deviation at

ti- for the target position and apparent intensity centroid position than at ti +, which means

that the filter has a much harder time of tracking the missile with the realistic plume pogo

phenomenon applied. A solution to this problem could be the addition of two plume pogo

states to the filter.

The performance plots of the six-state filter are shown in Appendix C and Appendix

D. The plots in Appendix C pertain to the non-oscillating intensity centroid, and Appendix

D contains the plots when plume pogo is applied to the centroid. Filter tuning is the same

for both cases. (The reascn for not retuning the filter for the application of plume pogo is

discussed in the next parafraph.) A comparison of Tables 6.1 and 6.2, and Figures C.4,
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6.1. Target and Intensity Centroid Statistics Without Plume Pogo

Averaged Error mean (ti-) mean (t) 1o (ti) 1a (ti+)

Target (xy) - 0.059 -0.017 0.769 0.709

Target (Yd) 0.125 0.054 0.926 0.877

Centroid (x,) - 0.056 0.006 0.512 0.172

Centroid (y,) 0.083 - 0.022 0.545 0.253

Table 6.2. Target and Intensity Centroid Statistics With Plume Pogo

Averaged Error mean (ti-) mean (ti) lo (ti-) lo (ti+)

Target (xd) - 0.047 - 0.006 0.907 0.809

Target (yi) 0.179 0.109 1.163 1.102

Centroid (x.) - 0.040 0.022 1.094 0.216

Centroid (y,) 0.129 - 0.025 1.693 0.223

Error in Pixels

C.8 , D.4, and D.8, show a significant increase in the standard deviation of the target and

intensity centroid estimates at ti- with plume pogo. The target values at ti- are the pointing

errors of the FLIR FOV. The consequence of these errors is discussed in Section 6.8.2.

Appendix C also contains the filter statistics for the estimation of the atmospheric

jitter phenomenon. The atmospheric performance plots are shown in Figures C.1 1 through

C.16. During the six-state filter tuning it was determined that the filter's atmospheric jitter

variance is strongly coupled with the dynamics noise of the filter. Though the filter

atmospheric jitter variance is the same as the truth model value, the plotted atmospheric

jitter computed error was below the actual rms error plot. Attempts to the tune the

atmospheric model created significant loss in tuning ability of the dynamics noise values for

the filter estimated position states. It was decided to leave the atmospheric jitter variance at

the truth model value of 0.2, and tune the dynamics noise for the best possible
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performance. Under these conditions, following many different dynamics noise values,

the tuning of the six-state filter used the same values as previous thesis [2, 26] (see Section

5.2.3.3). The tuning of the dynlamics noise, as shown in Figures C.1, C.2, D.1, and D.2,

is the maximum which could be obtained.

6.5 One-State Filter Performance Analysis

The testing of the one-state center-of-mass filter is accomplished for a variety of

configurations. The filter is tested with a single scan of the low-energy laser, and with a

sweep (i.e., multiple scanning) of the low-energy laser. The single low-energy laser scan,

due to the 10-20% reflections obtained for a simulation run, represents the case of

minimum measurements to the filter, on the other hand, the low-energy laser sweep method

provides a measurement to the filter at each sample time (i.e., 100% reflections). The filter

is also tested with and without the plume pogo applied to the intensity centroid. This tests

the filters robustness, which is the ability of the filter to adapt to an environment different

from the one which it was designed. The filter is also tested with the hardbody binary

model and the hardbody reflectivity model, described in Chapter IV. 'I he tuning values of

the filter are given in Section 5.3.3. The filter performance of the one-state filter is much

better than expected.

The tabular time-averaged performance results of the one-state filter testing are

given in Tables 6.3 through 6.8. Tables 6.3 through 6.6 are the results using the hardbody

binary model without and with plume pogo, and without and with a low-energy laser

sweep. Tables 6.7 and 6.8 are with the hardbody reflectivity model results for the case of a

low-energy laser sweep, and without and with plume pogo applied to the intensity centroid.

(As mentioned in the introduction to this chapter, for this thesis, the reflectivity model is

designed exclusively for use with a low-energy laser sweep.) As described in Section

4.4.3, the hardbody reflectivity model computes the center-of-mass differently than the
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Table 0.3. One-Swte Filter Statistics Without Sweep and Pogo for Binary Model

Averaged Error mean (ti-) mean (ti+) lo r(ti-) lo (ti+)

Magnitude (m o) 0.060 0.060 0.205 0.204

x 0.037 0.037 0.212 0.212

0 0.043 0.048 0.240 0.239

ALT -0.060 -0.060 0.205 0.204

ACT -0.007 - 0.007 0.244 0.244

Errc" in Pixels

Table 6.4. One-State Filter Statistics Without Sweep and With Pogo for Binary Model

Averaged Error mean (ti-) mean (ti+) 10 (ti-) 1 (ti+)

Magnitude (MO) -0.072 -0.072 0.231 0.229

X 0.010 0.010 0.231 0.230

Yo 0.078 0.078 C.270 ,' 269

ALT -0.072 -0.072 0.231 ,_.230

ACT 0.030 0.030 0.262 0.262
Error in Pixels

hardbody binary model due to the reflective nature of the model design, therefore filter

performance also gives an indication of the effectiveness of the enhanced hardbody

reflectivity model.

The performance plots of the one-state filter are provided in Appendices E, F, G,

and H. Each set of plots for a particular configuration of testing show the center-of-mass

error as a magnitude, in the x and y components of the magnitude error, and in the ALT-

ACT components of the magnitude error, as described in Section 6.3. Keep in mind that

the one-state filter has only one state to tune, therefore following the transformation of the

errors into the x and y components of the magnitude error, or the ALT-ACT components o,'

the error, the filter may not appear to be tuned in the transformed coordinate frame. This

condition provides insight into which coordinate system should be used to tune the filter.

(This subject is accomplished as an independent study in Section 6.8.3.)
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Table 6.5. One-State Filter Statistics With Sweep and Without Pogo for Binary Model

Averaged Error 1 mean (ti-) mean (ti +) 10 (ti-) 1F(ti')

Magnitude (m.o) 0.000 0.000 0.149 0.013

X -0.003 0.000 0.076 0.007
Y0 0.000 0.000 0.129 0.01!

ALT 0.000 0.000 0.149 0.013

ACT 0.003 0.000 0.012 0.001

Error in Pixels

Table 6.6. One-State Filter Statistics With Sweep and Pogo for Binary Model

Averaged Error mean (ti-) mean (ti') 11 (:j-) I a(ti+)

Magnitude (mo) 0.000 0.001 0.171 0.013
xo -0.003 0.000 0.085 0.006

Yo 0.001 -0.001 0.149 0.011

ALT 0.000 0.000 0.171 0.013

ACT 0.003 0.000 0.015 0.001

Error in Pixels

Table 6.7. One-State Filter Statistics With Sweep and Without Pogo for Reflectivity Model

Averaged Error mean (ti-) mean (tia)  I a (ti-) 1o (ti +)

Magnitude (m o) 0.000 0.000 0.149 0.013

xo -0.003 0.000 0.076 0.006

Yo 0.000 0.000 0.129 0.011

ALT 0.000 0.000 0.149 0.013

AC'T 0.003 0.000 0.012 0.001

Error in Pixels

Table 6.8. One-State Filter Statistics With Sweep and Pogo for Reflectivity Model

Averaged Error mean (ti-) mean (ti') ILa (ti-) 1Y (ti +)

Magnitude (to) 0.000 0.000 0.171 0.013
X0  -0.003 0.000 0.085 0.006

YO 0.001 0.000 0.149 0.011

ALT 0.000 0.000 0.171 0.013

ACT 0.003 0.000 0.015 0.001
Error in Pixe'N
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For the case of a single low-energy laser scan without plume pogo applied, refer to

Table 6.3 and Appendix E. The percentage of measurements the filter successfully

received is approximately 20% of the total sample periods during the simulation. The filter

performance shows that it is tracking well but with an average mean error of approximately

0.060 pixels (1.8 meters) and an average standard deviation of approximately 0.2 pixels

(6.0 meters). Although the filter performs consistently, it does not meet the accuracy

requirements as described in Chapter I. For the case of the low-energy laser scan and the

plume pogo applied to the intensity centroid, refer to Table 6.4 and Appendix F. The filter

performance degrades very little from the case without plume pogo, which provides insight

into the robustness of the filter. The number of low-energy laser reflection returns

(resulting in measurements for the filter) remained on the order of 20%. Notice the

complete loss of measurements in the plots of Appendix F at 7 seconds into the simulation;

the filter recovers quite well following the receipt of another measurement. Also notice

from Fig !res E.1 and F.1, that the filter is tuned rather well for both the cases just

discussed, however this is not reflected in the x coordinate of the error (Figures E.4 and

F.4) or the ACT coordinate of the error (Figures E.11 and F.11), while the y coordinate of

the error (Figures E.5 and F.5) and the ALT coordinate of the error (Figures E.10 and

F.10) are tuned. This is explained by noting that the trajectory of the missile in the

simulation is primarily in the y direction, which results in the filter tuning affecting this

direction more than the x direction, and since the filter is tuned in the near-ALT direction of

the missile, this coordinate error is also tuned much better than the ACT direction.

The hardbody binary model and the enhanced reflectivity model are both tested for

the filter with a low-energy laser sweep, and without and with plume pogo applied to the

intensity centroid. The sweep of the low-energy laser, as described in Section 4.4.3 for the

hardbody binary model and the reflectivity model, provides laser reflection returns at each

sample time for the filter. Tables 6.5 through 6.8 give the results of the testing for both
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models. However, since the hardbody binary model and the reflectivity model results are

almost identical, only the reflectivity model plots presented, as found in Appendices G and

H. A close look at the results in Tables 6.5 through 6.8 indicates that without or with pogo

applied, there is a mean error of less than one-inch. (0.001 pixels =_ 1.2 inches). The

standard deviation of the error, even with pogo applied, is approximately 0.008 pixels

(10.0 inches). The plots shown in the appendices provide the visual analysis of the tabular

data. The effect of the pogo on the filter is seen in the plots of Appendix H; however, as

with the single laser scan, the filter adjusts to the pogo oscillations very well. Notice in the

plots of the ACT coordinate of the error that, as with the single low-energy laser scan, the

filter is not tuned for this direction. This is not the case when there are two states to

estimate (and tune), as is the case for the eight-state filter.

6.6 Eight-State Filter Performance Analysis

The eight-state filter performance is a mirror image of that of the one-state filter.

laries o.5, and 6.i0 give me hardbody binary nidel resuils for a single low-energy laser

scan without and with plume pogo applied, and Appendices I and J give the corresponding

performance plots. Tables 6.11 through 6.14 give the results of the hardbody binary

model and the hardbody reflectivity model for the caac with a, . laszr sweep. and

without and with plume pogo applied to the intensity centroid, Appendices K and L contain

the associated performance plots of the filter (using the enhanced hardbody reflectivity

model). The eight-state filter performance plots consist of the x and y coordinates (of the

two center-of-mass states x7 and x8 ), and the ALT and ACT coordinate errors. Notice

that, with two states to tune the filter, the filter is tuned well in both coordinate frames.

Refer to Section 5.4.3 for the eight-state filter tuning values. This filter also has a mean

error less than one-inch and a standard deviation of 10.0 inches for a low-energy laser

sweep with plume pogo applied.
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Table 6.9. Eight-State Filter Statistics Without Sweep and Pogo for Binary Model

Averaged Error mean (ti-) mean (ti') 1 (t'-) 1 (t,+)

X 0.047 0.047 0.211 0.210

Y 0.046 0.046 0.245 0.245

ALT -0.064 -0.064 0.205 0.205

Xf" -0.017 -0.017 0.248 0.248

Error in Pixels

Table 6.10. Eight-State Filter Statistics Without Sweep and With Pogo for Binary Model

Averaged Error mean (ti-) mean (ti') lo (ti-) lo (ti+)

x 0.050 0.049 0.228 0.228

Y 0 0.061 0.061 0.256 0.255

ALT -0.078 -0.078 0.215 0.215

ACT -0.012 -0.012 0.265 0.265

Error in Pixels

6.7 One-State vs. Two-State Center-of-zlass Filter Comparison

One of the primary objectives of this thesis is to compare the performance of the

one-state center-of-mass filter with that of the two-state center-of-mass estimator within the

eight-state filter. Another objective of the thesis is to evaluate a realistic reflectivity model

of the missile hardbody. Since the testing of the filters used both of the hardbody models,

this section compares the performance of the one-state and two-state center-of-mass filters,

and provides an additional comparison of the two hardbody models.

By performing a comparison of the tabilar one-state filter performance data in

Tables 6.3 through 6.8 with the performance data of the eight-state center-of-mass filter

(states .7 and t) in Tables 6.9 through 6.14, it is clear there is no advantage of having

two states to estimate the hardbody center-of-mass. As can be seen in the tabular data and
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Fable 6.11. Eight-State Filter Statistics With Sweep and Without Pogo for Binary Model

Averaged Error mean (ti-) mean (ti+) Ic (t-) Iy(ti+)

7 0 0.000 0.000 0.196 0.007

Y 0 0.000 0.000 0.210 0.011

ALT 0.000 0.000 0.170 0.013

ACT 0.000 0.000 0.246 0.(X)2

Error in Pixels

Table 6.12. Eight-State Filter Statistics With Sweep and Pogo for Binary Model

Averaged Error mean (ti-) mean (ti+) lo (ti-) lo (ti)

0 0.000 0.000 0.191 0.006

y 0.000 0.000 0.221 0.01I

ALT 0.000 0.000 0.170 0.013

ACT 0.000 0.000 0.239 0.002

Error in Pixels

Table 6.13. Eight-State Filter Stat. With Sweep and Without Pogo for Reflectivity Model

Averaged Enor mean I ti) mean (ti+) Io (tj-) l__7_(t,_+)

0.000 0.000 0.200 0.007

0.000 0.000 (,.2 10 0.011

ALT 0.000 0.000 0.149 0.013

AC ).(XX) 0.000 0.246 0.(X)2

Error in Pixels

Table 6.14. Eight-State Filter Statistics With Sweep and Pogo for Reflectivity Model

Averaged Error mean (ti-) mean (ti') Io (ti-) lo (ti+)

x 0.000 0.000 0.191 0.006

Y 0.000 0.000 0.221 0.011

ALT 0.(X) 0.000 0.170 0.()1 3

/\CF 0.M0 0.0(X) 0.239 0.002

Error in Pixel,
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the plots in the appndix, the principle error is in the ALT direction, therefore the one-state

filter, which is basically tuned for the ALT direction (as shown in the AL i ".ning plots of

the Appendix E through H), performs as well as the two-state filter. The data also shows

that the ACT direction (for which the one-state filter is not tuned) has relatively small

errors, so the one-state filter does not lose performance estimation of the center-cf-mass

with its single (ALT) state. This condition exists since the missile has such a benign

trajectory in the cross axis of flight (i.e., the ACT direction).

For the one-state filter, the six-state filter's estimate of the target velocity vector is

used to determine the low-energy laser single scan of the target, while the eight-state filter

center-of-mass states (states X7 and x8) are used to estimate the sweep angle following an

initial reflection return using the velocity vector estimate. (The purpose of this scanning

scenario is to provide the two center-of-mass states with good initial conditions.) The true

velocity vector for the 10 second flight is: 0 = 59.95' . The statistics gathered for the six-

state filter estimate of the velc-1ty vector are: Of = 59.590 with 3 + 0.03'. T" e two

bias states of the eight-state filter statistics for estimating the velocity vector are determined

as: tan 1 N, /-Y = 59.30' with = + 0.410. While the six-state filter estimate is more

precise, the number of low-energy laser measurements for the one-state filter and the eight-

state filter is approximately 10-20% for a single laser scan. The sample period of 30 Hz

was increased to 50 Hz to determine if an increased sampling period would create more

measurements; however, this did not improve the number of low-cnergy laser reflections.

(In fact, the percentage of possible laser measurements decreased to 10%.) The

measurement problem for both filters is solved by implementing the low-energy laser

sweep, which provides a measurement to the filter at each sample time. (The low-energy

laser sweep method is discussed further in Chapter VII.) The problem of obtaining a

measurement at each sample time using a single low-energy !aser scan is discussed in

Section 6.8.1.

6-17



6.8 Studies and Investigations

Three studies evolved during the research of this thesis. The first study involves

the hardbody reflectivity model developed for this thesis. The hardbody reflectivity model

provides a more realistic portrayal of the real world, and therefore creates a lower

probability of obtaining measurements for the filter with its realistic modeling, compared to

the hardbody binary model. This study is conducted to show the effects of losing

reflection measurements due to the lower threshold limitations of the low-energy laser

sensor in the spaced-based platform (Figure 1.1). In another study, an investigation into

the problem of not obtaining a higher percentage of laser reflection measurements, given

the accuracy of the filter-estimated velocity vector (given in Section 6.7), for a single low-

energy laser scan is discussed. The last study considers the performance advantages of

tuning the Kalman filters (used in this research) in the ALT-ACT coordinates, as opposed

to the x and y FLIR coordinates.

6.8.1 Low-Energy Laser Sensor Sensitivity. The introduction of the hardbody

reflectivity model creates more realistic uncertainties in obtaining measurements for the

Kalman filter. The design of the reflectivity model includes a low-energy laser sensor,

which may be thresholded to reflect a physical design limitation of the space-based

hardware. This testing also gives insight into the filter's need to have good measurement

updates to perform its tracking function.

The trajectory of the missile in the simulation, as given in Section 3.5, creates a

projection angle 7 (Figures 3.9 and 4.13), between the missile and the FLIR image plane,

from 1.520 to 2.84' during the course of the 10 second computer run. Therefore, this

range of y gives a discrete value of the longitudinal reflectivity function as 0.5, as

described in Section 4.4.2.2. If the low-energy laser seasitivity is set to 25, then the

missile reflection would be invisible to the sensor (i.e., 50 units of cross-sectional
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reflection magnitude times 0.5 for the value of the longitudinal reflectivity function scaling

factor gives 25 units of reflection magnitude, arid 25 - 25 = 0. (In this case, the low-

energy laser sensitivity must have a value less than 25 units of reflection mngnitude to

detect a reflection return from the hardbody). To test the reflectivity model software, the

initial condition of the z velocity component in the inertial reference frame is changed from

zero to 180.0 meters/second. This creates a new missile trajectory, which gives a range of

the y angle from 3.91' to 5.09'. Therefore, if the low-energy laser sensitivity is 9.0 units

of reflection magnitude (for a y angle range up to 7.00), the sensor will lose the target as

the 2 angle exceeds 5.00, which requires a low-energy laser sensitivity value less than 9.0

units of reflection magnitude. The test is accomplished using the eight-state filter with the

hardbody reflectivity model, and a low-energy laser sweep with plume pogo applied to the

intensity centroid. The results would probably be the same for the one-state filter with the

same low-energy laser sensor sensitivity, but was not tested. The test results of the eight-

state filter are shown in Appendix M (compare with Appendix L). As expected. the filter

lost lock on the target as the projection angle y exceeded 5.00. This shows the requirement

for adequate sensor technology to meet the needs of the tracking system.

6.8.2 Intensity Centroid Movement. The most curious problem encountered

during this thesis is the "apparent" movement of the intensity centroid on the FLIR image

plane. The target velocity estimates of the six-state filter are accurate enough (as given in

Section 6.7) that a single low-energy laser scan along the velocity vector should provide a

reflection each sample time, but this is not the case. To overcome this problem, the low-

energy laser sweep technique was developed in this thesis, which provides measurements

to the filter at each sample time. The low-energy laser offset angle, described in Section

4.4.3, needed to be 300 when plume pogo was not applied to the intensity centroid, and

350 when plume pogo is applied. (This required offset to sweep the low-energy laser

equates to approximately a 1.0 pixel (30 meter) standard deviation of the intensity
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centroid.) Initially, the atmospheric jitter or the bending/vibration phenomenon was

suspected of being the problem. Tle filter models the atmospheric jitter, and as shown in

Appendix C, Figures C. 11 through C.16, the filter is well tuned and the errors are zero

mean with a consistent standard deviation of 0.5 pixels (15 meters) at ti- and at ti+. The

bending/vibration phenomenon is not modeled by the filter, and as determined by [10],

does not affect filter performance substantially. However, to be certain these physically

modeled phenomenon did not cause the movement of the intensity centroi., the truth model

plots of the atmospheric jitter and the bending/vibration phenomenon over the simulation

were obtained, as shown in Appendix N. The results show that the atmospheric jitter and

the bending/vibration phenomenon could not vtuse the large magnitude centroid movement

that is being exhibited. Additionally, as mentioned in Section 6.7, the sample period of

30 Hz was increased to 50 Hz to determine if a shortened sampling period would create

more measurements. This did not improve the number of low-energy laser reflections, and

by the increased number of potential laser measurements due to the increased sampling rate,

the percentage of successful laser reflections actually decreased from 20% to 10%.

The solution to the problem of the centroid movement is related to the propagated

estimate of the six-state filter at ti- (just before the next sample time). This propagated

estimate is used to command the FLIR sensor pointing controller (Section 3.4) to point the

FLIR plane LOS vector er. If the propagated estimate is in error, then the center of the

FUR plane will not be positioned correctly to obtain a low-energy laser reflection return

from the missile hardbody when the laser is scanned along the velocity vectai (ul ihe two-

state filter bias estimated scan direction). Therefore the "apparent" movement of the

intensity centroid is due to the positioning of the FLIR plane, and not to the centroid itself,

as was initially suspected. This apparent movement of the intensity centroid in the FLIR

plane can be seen in the six-state filter performance plots of the x and y target location

estimates at ti-, shown in Figures C.3, C.4, D.3, and D.4. (The approximate 1.0 to 1.5
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pixel standard deviation shown in the plots compares well with the experimental results

obtained of the centroid movement in the process of determining the required angle offset

of the low-energy laser from the filter-estimated velocity vector Of for the sweep

technique.) Figure 6.2 shows pictorially the reason for the apparent movement of the

intensity centroid. Since the low-energy laser is fired through the LOS vector er of the

FUR plane, the FLIR must be locked onto the intensity centroid to obtain a high percentage

of low-energy laser reflection returns for a single scan. Figure 6.2 shows the intensity

centroid in the FUR FOV for three different times in the trajectory in an apparent

oscillatory motion about the center of the FLIR plane. Since the low-energy laser is

fired from the center of the FUR plane along the velocity vector, the first and third low-

energy laser firings in Figure 6.2 result in no reflection returns; the middle case results in a

reflection return, which also provides the filter with a measurement update. Some possible

solutions to this problem are discussed in Chapter VII.

Flight Path of Missile
During 10 Second Laser "Miss" -'

Simulation (- - ) 1

Laser "Hit"

Laser "Miss"

-# Plane FT2 Intensity Centroid
F in the FLIR Image

.0 Hardbody Plane at Time ti

"Lffi"i Low-Energy Laser
ex  - Fired Through FLIRImage Plane at Time ti

Filter-EstimatedIntensity Centroid at
Inerti,-l Frame Center of FLIR FOV

Figure 6.2. "Apparent" Intensity Centroid Movement in FLIR Image Plane

6-21



6.8.3 Filter Dynamics Tuning. In previous research, as in this thesis, filter tuning

has beer. accomplished in the x and y FLIR coordinate system. However, it is proposed

that the optimal tuning of the filter is most likely accomplished in the missile coordinate

frame, the ALT-ACT frame. This applies to the FUR filter as well as to the center-of-mass

filter. Furthermore, in the trajectory of the missile tracking study [2, 26], the filter has

been tuned for a single trajectory with an orientation angle of 60', therefore it is suspected

that there could be a performance degradation if the target trajectory is aitci,' without

retuning the filter.

The testing of this hypothesis was accomplished by adjusting the trajectory to

approximately 750; the target's initial x, and Yo velocities were changed to -1294

meters/second and 4829 meters/second, respectively, while keeping the zo velocity zero

(Section 3.5), and maintaining the speed of the missile at 5,000 meters/second. The filter

remained tuned for the 60' trajectory. The six-state/one-state filter configuration was used

for the test with the enhanced hardbody reflectivity model, and a low-energy laser sweep

with plume pogo applied to the intensity centroid. The results of the simulation run are

shown in Tables 6.15 and 6.16 for the target and intensity centroid estimates by the six-

state filter, and for the one-state filter estimates of the center-of-mass coordinates,

respectively. A comparison of these results with those obtained from the 600 trajectory,

Tables 6.2 and 6.8, shows areas of performance improvement and performance loss for the

filters. The six-state-filter results show an overall improvement in the x and y directions

of the target and intensity centroid estimates at ti'. The x component error standard

deviation also shows improvement at ti-, while the y direction standard deviation

performance is degraded by almost 0.2 pixels (6.0 meters). This means that the filter is

providing the pointing controller with worse estimates than for its tuned condition at the

60' trajectory. The one-state filter estimates of the center-of-mass shows an overall mean

and standard deviation performance improvement in the x direction at both ti- and W,

6-22



Table 6.15. Six-State Filter Target and Intensity Centroid Statistics for Trajectory at 75'

Averaged Error mean (ti-) mean (ti+) 1o (ti-) 1o (ti+)

Target (xd) -0.031 - 0.010 0.821 0.749

Target (Yd) 0.144 0.066 1.227 1.070

Centroid (x,) - 0.042 - 0.010 0.728 0.209

Centroid (y) 0.087 - 0.029 1.877 0.250

Error in Pixels

Table 6.16. One-State Filter Center-of-Mass Statistics for Trajectory at 750

Averaged Error mean (ti-) mean (ti +) 10 (ti-) l (ti+)

Magnitude (mo) -0.008 -0.005 0.245 0.229

Xo 0.001 0.001 0.076 0.008

Yo 0.008 0.005 0.234 0.028

ALT -0.008 - 0.005 0.245 0.029

ACT 0.000 0.000 0.030 0.002
Error in Pixels

while the y direction performance is degraded. This error may not appear significant at

first, but the mean error has increased from 0.0005 pixels (less than 1.0 inch) to 0,008

pixels (nearly 10.0 inches), and the standard deviation at ti+ has increased from 0.011

pixels (13.0 inches) to 0.028 pixels (33.0 inches). (Notice that the ALT error is associated

with the magnitude error and the error in the y direction, in this case.)

The results at the 750 trajectory are considered to be a large deviation from the

results obtained with the tuned filters at the 60' trajectory. Even at this small angle of

change, the tuned filter performance is degraded substantially. (Further testing at angles

below 60' were hampered by software limitations.) Though there was insufficient time in

this thesis to test the idea, it appears that the optimum tuning of the filters occurs in the

ALT-ACT coordinate frame. Additionally, since initial acquisition of a target could be in

any orientation, a variably-tuned filter may be necessary to track the target in different
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trajectory orientations. The strength of the dynamics variance for tuning the filter would

possibly be a function of the FUR projection angles 0 and y (Figures 3.9 and 4.13).

6.9 Summary

This chapter presented the results and findings of this thesis. The one-state center-

of-mass filter performs as well as the two states devoted to estimating the center-of-mass in

the eight-state filter. The reason for this outcome is related to the benign trajectory of the

simulated missile target. Since the ACT component in flight does not change, a one-state

filter estimating the ALT component of the missile dynamics provides excellent tracking

performance. Moreover, the missile velocity direction is a good search direction for

finding the hardbody center-of-mass from the infrared image center of intensity, provided

that the latter is located precisely in the FLIR image plane. The "apparent" movement of the

intensity centroid, which motivated the low-energy laser sweep, is the result of the large

standard deviation associated with the propagated filter estimates used to point the FLIR

plane. Although the problem was overcome by the use of a low-energy laser sweep, the

time required to perform the sweep is not considered a final solution to the problem. The

use of the ALT-ACT coordinate system to provide another description of the center-of-

mass errors also gave insight into using this coordinate system to tune the filter as well. A

trajectory test showed that there were changes in the performance of both the s-x :ate filter

and the one-state filter when the trajectory was changed without retuning the filter. The

initial acquisition of a target could be in any orientation, therefore a variably-tuned filter

may be necessary to track the target in different trajectory orientations in the FLIR image

plane. The hardbody reflectivity model provided the same basic performance trends as the

hardbody binary model. However, it was also shown that there are physical hardware

constraints associated with the low-energy laser sensor sensitivity.

6-24



VII. Conclusions and Recommendations

7.1 Introduction

This chapter gives the the conclusions of th'. thesis and makes recommendations

for further research. It should be pointed out that not all the objectives described in

Chapter I were completed, but other objectives developed during the research were

accomplished instead. As is the case with any endeavor subjected to limited time,

considerations and decisions were made to optimize the time devoted to current versus

further research, even if the objectives needed to be altered.

7.2 Conclusions

This thesis has developed a number of conclusions through the accomplishment of

the research objectives, and the additional studies conducted during the course of this

thesis. Chapter VI presented the findings of the research, and also provided some

conclusions and recommendations for further study. The following sections consolidate

previous conclusions with other insights obtained in this research, and makes further

recommendations for continued research into tracking a missile hardbody using a Kalman

filter with FLIR and low-energy laser measurements.

7.2.1 One-State vs. Two-State Center-of-Mass Estimation. One of the primary

objectives of this thesis was to test a one-state filter, designed to estimate the center-of-

mass of a missile hardbody using FLIR and low-energy laser measurements, against an

eight-state filter with two states to estimate the center-of-mass. The one-state filter

presumes that the direction of the offset between the hardbody center-of-ma,&; and the

infrared image center of intensity is well approximated by the filter-estimated velocity

direction in the FUR image plane. In contrast, the eight-state filter estimates the two

comoonents of the this offset in the FLIR image plane, without presuming such
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directionality. The one-state filter and the eight-state filter are tested: without plumc pogo

of the intensity centroid and with plume pogo applied; with a single scan of the low-energy

laser and with a sweep; and with the hardbody binary model and with the hardbody

reflectivity model. The one-state filter performs as well in each case as the eight-state filter.

The absence of measurements for the single-scan of the low-energy laser provides poor

performance with an average mean error of 2.0 meters and a standard deviation of ±8.0

meters. This aspect of the testing shows the reliance of the filter on good measurements at

each sample update: for these tests there are many sample periods in which the low-energy

laser did not intercept the missile hardbody so that there are no successful measurements

for :(-rdating the center of mass state variable estimates. Additionally, an increase in the

sample period from 30 Hz to 50 Hz shows no performance increase. The respective

average mean error and standard deviation for the filters, for the case of plume pogo and a

low-energy laser sweep for both the hardbody binary model and the reflectivity model, is

found to be on the order of 1.0 inch and a standard deviation of ±10.0 inches. These are

much better statistics than expected, and the one-state filter performance is even more

surprising. However, following the evaluation of the data, the one-state filter performance

is logical. The data shows that the error is much greater in the along-track (ALT) direction

than in the across-track (ACT) direction, therefore, the one-state filter performs well since it

is tuned for the ALT direction. From this research it appears that a one-state filter is

sufficient to estimate the center-of-mass of the hardbody, given the rather benign trajectory

of a missile in flight. Since the objective of the tracking problem described in Chapter I

emphasizes time as a critical issue, the need for only one state to perform the hardbody

estimates provides a decrease in computer processing time to process the Kalman filter

algorithm.

7.2.2 Hardbody Binary vs. Reflectivity Model. The design of the enhanced

hardbody reflectivity model is accomplished to provide increased realism in the simulation.
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The model includes the curvature of the missile and its angular orientation with respect to

the FLIR plane, as factors in reducing the reflection strength of the low-energy laser return

signal. Since the emphasis is placed on achieving a good measurement for the filter, the

reflectivity model is designed for a low-energy laser sweep (but could be adapted to a

single low-energy laser scan as well). The low-energy laser sensor is designed to allow

thresholding to simulate a design hardware limitation. For all cases in which the low-

energy laser could detect the low-energy laser reflection return, the performance of the

hardbody reflectivitv model in providing measurements is equal to the binary model. The

discrete-valued design of the model created instances of the low-energy laser "jumping

over" the peak intensity reflection (needed for the center-of-mass calculation), and this is

overcome by decreasing the sweep increments of the low-energy laser sweep across the

hardbody. The model is tested for the case of a design limitation associated with the low-

energy laser, and as expected, when the low-energy laser could no longer sense the low-

energy laser reflections, the filter diverged for lack of measurement updates, and lost track

of the missile (however, the FUR filter continued to track the intensity centroid).

7.2.3 Low-Energy Laser Sweep. The design of the low-energy laser sweep is

implemented in the software due to the uncertainty as to why the low-energy laser was only

crossing the hardbody approximately 20% of the time. Since a Kalman filter relies on

frequent measurement updates, the early solution was to provide the updates to test the

filter performance, then determine the problem associated with the need for the sweep

routine. The low-energy laser sweep routine is not an optimal tool for obtaining filter

measurements. The routine increased computer run time, and therefore the overall tracking

scheme described in Chapter 1 would be degiaded. However, the low-energy laser sweep

provides the analysis that concludes a one-state filter can provide accurate estimates of the

hardbody center-of-mass if measurements are provided to the filter at each sample time.

The low-energy laser sweep routine should be used in the simulation, until the problem of
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obtaining a reflection from a single scan of the low-energy laser is solved; this will provide

continued testing of the center-of-mass filter with the necessary measurement updates. Tae

scan could also be altered to supply fewer than the optimal number of measurements

(i.e., missing some measurements for updating) to determine where the filter performance

breaks down.

7.2.4 Doppler Shift Investigation. As mentioned in the opening of this chapter,

the Doppler investigation was not directly accomplished. However, the Doppler

phenomenon is similar to the low-energy laser sweep developed for this thesis. The low-

energy laser sweep illuminates the vehicle in much the same way as a Doppler frequency

return would "illuminate" the hardbody against the background. Therefore, the low-energy

laser in the simulation can represent the Doppler frequency shift, by changing the

simulation cross-sectional intensity function tu be constant over its entire surface. The

accuracy with which the line of demarcation between the hardbody and the background is

discerned might also be varied. The results of this testing would possibly give the same

results as found in the low-energy laser testing: the low-energy laser sensor technology is a

limiting factor in detecting a reflection return, and it is suspected that the same would be

true for a Doppler shift sensor in detecting the noise corrupted frequency shift between the

missile hardbody and the background.

7.2.5 Atmospheric Modeling. The need for improved atmospheric modeling was

explained in the thesis objectives in Chapter I. Unfortunately, this objective was not

accomplished, and is left for a future thesis to put the "near perfect" filter tracking to the test

by increasing the realism of the atmospheric distortion on the laser signal. For this thesis,

the laser traveled unhindered both to and from the target. In the real world, of course, this

is not the case. The atmosphere creates bending and refraction of the laser beam, as well as

reducing the sending strength of the signal at the target and the reflected signal strength at

the low-energy laser sensor.

7-4



7.2.6 Variable Target Dynamics Tuning. This topic arises from the representation

of the filter center-of-mass errors being described in the ALT-ACT reference frame. The

results of the testing revealed that the one-state filter is rather well-tuned in the ALT

direction, while it is slightly overtuned in the ACT direction. However, since the one-state

filter is tuned for the ALT direction (by default), its performance in the ALT direction is not

surprising. Using the six-state filter and the one-state filter, the trajectory of the missile in

the simulation was changed from 60' to 75'. There were both good and bad performance

advantages changes for both filters. The performance changes (both good and bad)

indicate that the filter may need adaptive, or variable, tuning to cope with the different

possibilities of a target orientation in the FLIR plane. The variable tuning may need to be a

function of the FLIR and target projection angles, which define the 3-dimensional model in

the 2-dimensional FLIR plane.

7.3 Recommendations

The following recommendations are suggested for further study in using a Kalman

filter to track a missile hardbody using FLIR and laser measurements. Many of the

recommendations have previously been mentioned, however they are provided here as a

reference source for the reader.

7.3.1 One-State Center-of-Mass Filter. The one-state filter performed much better

than anticipated. Its continued testing will provide increased confidence in the findings of

this thesis, that a one-state estimator provides accurate estimation ot the hardbody center-

of-mass. The low-energy laser sweep routine and the hardbody reflectivity model provide

testing aspects of the filter under different, more realistic conditions. Tho low-energy laser

scan can be made to provide less than optimal amounts of measurements to the filter to test

the point at which the filter performance significantly degrades. This type of testing should

be repeated for the addition of other models that improve the realism of the simulation.
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Improving the atmospheric model would be one such case. Additionally the filter should

be tuned in the ALT-ACT frame and subjected to testing in a number of flight orientations

to measure the adaptation of the filter under a variable tuning arrangement.

7.3.2 "Apparent" Intensity Centroid Movement. The accurate one-sample period

prediction estimation of the six-state filter, to command the pointing controller, is currently

the only problem in the way of being able to obtain reflection measurements at each sample

time using a single scan of the low-energy laser. As previously mentioned, the low-energy

laser sweep routine is not an optimum method of obtaining the measurements. The tuning

of the FLIR filter in the ALT-ACT coordinate frame may assist in the filter estimating the

location to next point the FLIR line-of-sight vector. Additionally, the state that is saved by

the success of the one-state filter for estimating the hardbody center-of-mass, could be

replaced with two plume pogo states to estimate the movement of the intensity centroid

when the realistic plume Pogo is applied. The one-state filter is not affected by the

application of the plume pogo, however the six-state filter estimate of the target location and

apparent intensity centroid location was significantly degraded. (An obvious question is

% hv didn't ihe six-state filter degradation affect the performance of the one-state filter

estimate? The answer is that the measurement provided to the filter is associated with the

location of the intensity centroid at a particular sample time in the FLIR image plane,

therefore an accurate measurement of the center-of-mass offset in the FLIR image plane is

obtained from the estimated intensity centroid location despite large errors in the centroid

estimate.) If the pogo is estimated well, the standard deviation of the centroid estimate may

be reduced. Furthermore, if the tun;-g , f he f:!tor i the ALT-ACT frame is valid, the

filter estimate may improve significantly. From this discussion, a nine-state filter is

proposed that consists of the six-state filter (with its two position states, two velocity
states, and two atmospheric jitter states), one state for estimating the haudbody center-of-
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mass, and two states fo, estimating the plume pogo. (Additional states may also be

necessary to estimate further changes to the atrr.ospheric model.)

Another possible solution to the problem of obtaining a reflection return with each

single scan of the low-energy laser may be with the diagonal rotating field-of-view

(DRFOV) [26]. The DRFOV was not used in this thesis. By aligning the filter-estimated

velocity vector (which is accurately estimated by the filter) along the diagonal of the FUR

plane, then firing the low-energy laser along the velocity vector has the potential to

dramatically increase the number of low-energy laser reflections obtained using a single

s:can. The DRFOV was used by [2] to obtain the FLIR sensor measurements of the target's

intensity centroid in the rotated field-of-view, however the low-enery laser was not fired

in the direction of the missile hardbody in this rotated frame.

7.3.3 Improve Atmospheric and Bending/Vibration Modeling. The improved

modeling of the atmospheric disturbances in the simulation requires changes to the truth

model, and possible changes to the filter as well. With the improved hardbodv retlectivitv

model and low-energy laser sensor, an improved atmospheric model will provide a more

accurate analysis of the one-state filter to track the missile hardbody. The bending vibration

modeling should also be examined, since the current modeling relates to a close-rarne

target. With the long-range missile target considered, the bending/vibration phenomenon is

:;ignificantly amplified over the greater distance.

7.3.4 Variable Target Dynamics Tuning. The investigation of the ALT-AF

coordinate frame has created insight into tuning filters in this frame as opposed to the x and

y FLIR plane coordinate system. This method warrants investigation since it may help in

more accurately estimating the location to point the FLIR sensor, which could improve the

number of successful measurements obtained from the low-energy laser scan. The filter
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tuning may also need to be adaptive, or variable, to provide good tracking for different

target trajectory orientations.

7.3.5 Alternate Low-Energy Laser Sweeping Technique. The low-energy laser

sweep developed for this thesis is one possible sweeping method to ensure that a

measurement is available to the filter at each update time. As prevl,usl" mentioned, a

sweep is not necessarily desired, but if the filter estimation to point the FLIR plane does not

improve, or improves but,;ot well enough to obtain the necessary measurements required

for good filter performance, a low-energy laser sweep may be required. An alternate

sweeping technique consists of a sinusoidal scan from the intensity centroid along the filter

estimated velocity vector. The variables of the sweep are frequency and amplitude. This

sweeping method could prove to be more efficient than the current method, if a low-energy

laser sweep continues to be necessary.
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Appendix A. Data Processing Statistics Method

The performance of the Kalman filters used in this thesis is evaluated using ten

Monte Carlo computer runs. A Monte Carlo analysis involves collecting statistical

information generated from simulating samples of stochastic processes [12]. Previous

research has demonstrated that ten Monte Carlo runs provide sufficient convergence to the

actual statistics resulting from an infinite number of runs [4, 5, 21].

In the simulation, the truth model generates simulated physical effects such as

atmospheric jitter, mechanical bending, and plume pogo, to provide a realistic

representation of the target in the real world as it is propagated through inertial space. As

the target moves along its trajectory, the Kalman filter attempts to track the target using its

internal dynamics model and periodic measurements provided by modeled hardware (ex:

FUR sensor, low-energy laser and sensor). After collecting N samples of truth model and

filter model data for ten separate Monte Carlo runs, the true error statistics can be

approximated by computing the sample mean error and variance of the error for the ten

runs. These sample statistics provide a measure of the filter's performance.

The sample mean error and variance of the error for a filter's estimates are

computed by:

- (A-r1)E(t,)- ~ t)~ Ji(A-I)
n-1

2 N 2'F t ' N -2
a (t,) N- I L u\,A)- tJ)J N- 1 E (ti) (A-2)

n-A
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where

-E(t1) = sample mean of the error of interest at time ti
2

a (ti) = sample variance of the error of interest at time ti

x ,,n'ti) = truth model value of the variable of interest at time ti during

simulation n

xp,(ti) = filter estimate of the variable of interest at time ti during simulation n

N - number of Monte Carlo runs

The variables of interest for this simulation are the position of the target's intensity

centroid in azimuth and elevation (Xd and Yd respectively), the velocity states (v and vy),

the offsets in azimuth and elevation due to atmospheric jitter (xa and y, respectively), and

the offsets of the target hardbody center-of-mass from the intensity centroid in azimuth and

elevation (x, and Yo, respectively). Statistics on the variables for target's position and

target center-of-mass in azimuth and elevation provides for evaluation of the filter's

performance. The error committed in estimating the apparent location of the intensity

centroid of the target's image on the FLIR plane is also important, since it provides an

indication of how well the filter algorithm is adaptively determining the target's shape

function and centroid location. The location of the intensity centroid is needed to center the

the data on the FUR plane for use in the correlation algorithm's template generation.

The statistics are calculated before the measurement update at (ti-) and after the

update at (ti+) for all sample times ti . They are reduced further to obtain average scalar

values over the time of the run, by temporally averaging the mean error and standard

deviation (o) time histories over the last eight seconds of the ten second simulation used in

this thesis. The first two seconds are not used to ensure that the data reflects only steady-

state performance. The errors are measured in units of pixels, where a pixel is 15

microradians on a side (or approximately 30 meters at a distance of 2,000 kilometers).
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Appendix B. Examples of Performance Plots

In this thesis, there are two different types of data plots used to assess the

performance of the three filters evaluated. The first type of performance plot, shown in

Figure B.1, provides filter tuning information, by comparing the actual rms error of the

filter vs. the filter-computed rms error, i.e., how well the filter "thinks" it is performing.

The second type of performance plot, shown in Figure B.2, provides a primary tracking

performance evaluation. The plot shows the sample mean filter error (for a particular state

or parameter) averaged over the ten Monte Carlo computer runs, and also shows the

average ± I Y (sample standard deviation) for the ten runs. The mean ± 1 o data plots are

generated just before the filter receives its measurement (from FLIR or low-energy laser

scan) at ti-, and after the measurement update is incorporated into the filter at ti +. The

filter's state estimates after the measurement is incorporated at ti -, provides the lowest

average mean error and the smallest ± lc. A filter tracker with a larger standard deviation

is ineffective in tracking, and in the case of this thesis, in scanning a low-energy laser to

obtain a reflection return from a missile hardbody.

The state estimates of the target azimuth (x) and elevation (y) position at ti-,

estimated at the previous time t- j, are used to generate the control signals for the FLIR

sensor pointing controller (Section 3.4) to point the FLIR sensor. The position errors at

time ti-, which are less accurate than just after the measurement at time ti +, result in an

"apparent" movement of the intensity centroid in the FLIR plane (Section 6.8.2).

The filter vs. actual true rms error plots shown in Figures B.3 and B.4 are

examples from estimating the center-of-mass of the hardbody, with and without a low-

energy laser sweep. In the case of a single low-energy laser scan (i.e., no sweep), for this

thesis, the filter-computed error can be discerned from the true rms error by knowing that

the filter error is more stable in visual appearance on the plots than the rms error.
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Appendix C. Six-State Filter Performance Plots

Without Plume Pogo

This appendix contains the six-state (FLIR) filter error plots for the case of no

plume pogo of the intensity centroid. The errors are labeled in the azimuth (x) and

elevation (y) directions in the FLIR image plane. The filter error plots for the modeled

atmospheric error are also contained in this appendix. The atmospheric data shown in the

plots is the same for all configurations of filter testing considered in this thesis, since the

six-state filter tuning and armospheric parameters remain the same for all testing. For the

discussion pertaining to these plots, refer to Chapter VI, Section 6.4.

C-l



4

E

0
R

p

I

E

L

s

TIME IN SECONDS

Figure C.1. Six-State Filter vs. Actual rms Target Azimuth Error Without Plume Pogo
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Figure C.2. Six-State Filter vs. Actual rms Target Elevation Error Without Plume Pogo
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Appendix D. Six-State Filter Performance Plots

With Flume Pogo

This appendix contains the six-state (FLIR) filter error plots for the case of

including plume pogo of the intensity centroid. The errors are labeled in the azimuth (x)

and elevation (y) directions in the FLIR image plane. The atmospheric data plots are not

presented in this appendix, since the plots shown in Appendix C are the same for all

configurations of filter testing considered in this thesis; the six-state filter parameters and

atmospheric parameters remain the same for all testing. For the discussion pertaining to

these plots, refer to Chapter VI, Section 6.4.
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Figure D.1L Six-State Filter vs. Actual rms Target Azimuth Error With Plume Pogo

E

R

0

N

p

I

S 1

TIME IN SECONDS

Figure D.2. Six-State Filter vs. Actual rms Target Elevation Error With Plume Pogo
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Appendix E. One-State Filter Performance Plots Without

Low-Energy Laser Swpv-p c, nd Plume Pogo

This appendix contains the one-state (center-of-mass) filter error plots for the case

of no low-energy laser sweep and with no plume pogo of the intensity centroid. The

center-of-mass errors are presented as a magnitude between the true center-of-mass and the

filter estimated center-of-mass, the azimuth (x) and elevation (y) components of the

magnitude error, and the along-track and across-track components of the magnitude error.

The hardbody binary model is used for the single scan of the low-energy laser (i.e., no

sweep), since the hardbody reflectivity model is software configured for a sweep routine;

(The hardbody reflectivity model is used for the low-energy laser sweep plots, which are

also representative of the hardbody binary plots.) For the discussion pertaining to these

plots, refer to Chapter VI, Sections 6.5 and 6.7.
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Figure E.8. One-State Filter Center-of-Mass Azimuth Error at ti + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure E.9. One-State Filter Center-of-Mass Elevation Error at t + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure E.14. One-State Filter Center-of-Mass Along-Track Error at ti + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure E.15. One-State Filter Center-of-Mass Across-Track Error at ti + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Appendix F. One-State Filter Performance Plots Without

Low-Energy Laser Sweep and With Plume Pogo

This appendix contains the one-state (center-of-mass) filter error plots for the case

of no low-energy laser sweep and with the intensity centroid subjected to plume pogo. The

center-of-mass errors are presented as a magnitude between the true center-of-mass and the

filter estimated center-of-mass, the azimuth (x) and elevation (y) components of the

magnitude error, and the along-track and across-track components of the magnitude error.

The hardbody binary model is used for the single scan of the low-energy laser (i.e., no

sweep), since the hardbody reflectivity model is software configured for a sweep routine.

(The hardbody reflectivity model is used for the low-energy laser sweep plots, which are

also representative of the hardbody binary plots.) For the discussion pertaining to these

plots, refer to Chapter VI, Sections 6.5 and 6.7.
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F-4



E 1.0-

R

N

0

I

x

S

L - J"A if l -A I AA AL IAA I
S 0.0 1 10IFVVV

TIE IN SECONDS
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Figure F.7. One-State Filter Center-of-Mass Elevation Error at t - for Binary Model
Without Low-Energy Laser Sweep and With Plume Pogo
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Figure F. 13. One-State Filter Center-of-Mass Across-Track Error at t, - for Binary
Model Without Low-Energy Laser Sweep and With Plume Pogo



0.5-

E
R 0.0-

O
0

R

N

P

pI

L

S

TIME IN SECONDS
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Appendix G. One-State Filter Performance Plots With
Low-Energy Laser Sweep and Without Plume Pogo

This appendix contains the one-state (center-of-mass) filter error plots for the case

of a low-energy laser sweep and with no plume pogo of the intensity centroid. The center-

of-mass errors are presented as a magnitude between the true center-of-mass and the filter

estimated center-of-mass, the azimuth (x) and elevation (y) components of the magnitude

error, and the along-track and across-track components of the magnitude error. The

hardbody reflectivity model is used for the low-energy laser sweep plots, which are also

representative of the hardbody binary plots. (The hardbody binary model is used for the

single scan of the low-energy laser (i.e., no sweep), since the hardbody reflectivity model

is software configured for a sweep routine.) For the discussion pertaining to these plots,

refer to Chapter VI, Sections 6.5 and 6.7.
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G-2



0.

R

I3 0

-00

T3EI EOD

I

L

0 2 0 I10

TIME IN SECONDS

Figure G.3. One-State Filter Center-of-Mass Magnitude Error at t2 for Reflectivity
Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure GA4. One-State Filter vs. Actual rms Center-of-Mass Azimuth Error for Reflect-
ivity Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure G.6. One-State Filter Center-of-Mass Azimuth Error at t i - for Reflectivity
Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure G.9. One-State Filter Center-of-Mass Elevation Error at t * for Reflectivity
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Figure G. 10. One-State Filter vs. Actual rms Center-of-Mass Along-Track Error for Re-
flectivity Model With Low-Energy Laser Sweep and Without Plume Pogo

0. 25-

0.20

E

0
0.15

0 o10-

I

TIKE IN SECONDS

Figure G. 11. One-State Filter vs. Actual rms Center-of-Mass Across-Track Error for Re-
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Appendix H. One-State Filter Performance Plots With

Low-Energy Laser Sweep and Plume Pogo

This appendix contains the one-state (center-of-mass) filter error plots for the case

of a low-energy laser sweep and with the intensity centroid subjected to plume pogo. The

center-of-mass errors are presented as a magnitude between the true center-of-mass and the

filter estimated center-of-mass, the azimuth (x) and elevation (y) components of the

magnitude error, and the along-track and across-track components of the magnitude error.

The hardbody reflectivity model is used for the low-energy laser sweep plots, which are

also representative of the hardbody binary plots. (The hardbody binary model is used for

the single scan of the low-energy laser (i.e., no sweep), since the hardbody reflectivity

model is software configured for a sweep routine.) For the discussion pertaining to these

plots, refer to Chapter VI, Sections 6.5 and 6.7.
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Figure H.3. One-State Filter Center-of-Mass Magnitude Error at t, + for Reflectivity
Model With Low-Energy Laser Sweep and Plume Pogo
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Figure H.8. One-State Filter Center-of-Mass Azimuth Error at t1 + for Reflectivity
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Figure H.9. One-State Filter Center-of-Mass Elevation Error at t, + for Reflectivity
Model With Low-Energy Laser Sweep and Plume Pogo
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Figure H. 10. One-State Filter vs. Actual rms Center-of-Mass Along-Track Error for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Appendix I. Eight-State Filter Performance Plots Without

Low-Energy Laser Sweep and Piut Pogo

This appendix contains the eight-state (center-of-mass) filter error plots for the case

of no low-energy laser sweep and with no plume pogo of the intensity centroid. The

center-of-mass errors are presented as the azimuth (x) and elevation (y) components of the

error, and the along-track and across-track components of the error. The hardbody binary

model is used for the single scan of the low-energy laser (i.e., no sweep), since the

hardbody reflectivity model is software configured for a sweep routine; (The hardbody

reflectivity model is used for the low-energy laser sweep plots, which are also

representative of the hardbody binary plots.) For the discussion pertaining to these plots,

refer to Chapter Vi, Sections 6.6 and 6.7.
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Figure 1. 1. Eight-State Filter vs. Actual rms Center-of-Mass Azimuth Error for
Binary Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.2. Eight-State Filter vs. Actual rms Center-of-Mass Elevation Error for
Binary Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.3. Eight-State Filter Center-of-Mass Azimuth Error at t - for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.4. Eight-State Filter Center-of-Mass Elevation Error at t- for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.5. Eight-State Filter Center-of-Mass Azimuth Error at ti + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.8. Eight-State Filter vs. Actual rms Center-of-Mass Across-Track Error for
Binary Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.9. Eight-State Filter Center-of-Mass Along-Track Error at tI - for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo

o 1-6

0.4-

3

R

0

I

N

S

TINE IN SECONDS
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Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.11. Eight-State Filter Center-of-Mass Along-Track Error at t, + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Figure 1.12. Eight-State Filter Center-of-Mass Across-Track Error at t, + for Binary
Model Without Low-Energy Laser Sweep and Plume Pogo
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Appendix J. Eight-State Filter Performance Plots Without

Low-Energy Laser Sweep and With Plume Pogo

This appendix contains the eight-state (center-of-mass) filter error plots for the case

of no low-energy laser sweep and with the intensity centroid subjected to plume pogo. The

center-of-mars errors are presented as the azimuth (x) and elevation (y) components of the

error, and the along-track and across-track components of the error. The hardbody binary

model is used for the single scan of the. low-energy laser (i.e., no sweep), since the

hardbody reflectivity model is software configured for a sweep routine; (The hardbody

reflectivity model is used for the low-energy laser sweep plots, which are also

representative of the hardbody binary plots.) For the discussion pertaining to these plots,

refer to Chapter VI, Sections 6.6 and 6.7.
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Figure J.1. Eight-State Filter vs. Actual rms Center-of-Mass Azimuth Error for Binary
Model Without Low-Energy Laser Sweep and With Plume Pogo
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Figure J.2. Eight-State Filter vs. Actual rms Center-of-Mass Elevation Error for Binary
Model Without Low-Energy Laser Sweep and With Plume Pogo
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Figure J.5. Eight-State Filter Center-of-Mass Azimuth Error at ti + for Binary Model
Without Low-Energy Laser Sweep and With Plume Pogo
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Figure J.6. Eight-State Filter Center-of-Mass Elevation Error at t + for Binary Model
Without Low-Energy Lasei Sweep and With Plume Pogo
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Figure J.9. Eight-State Filter Center-of-Mass Along-Track Error at ti - for Binary
Model Without Low-Energy Laser Sweep and With Plume Pogo

0.4-

E
R

R 0.2-

R

S

-0 4

Figre I I
0 6

TuME IN SECONDS

Figure J.10. Eight-State Filter Center-of-Mass Across-Track Error at t, - for Binary
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Appendix K. Eight-State Filter Performance Plots With
Low-Energy Laser Sweep and Without Plume Pogo

This appendix contains the eight-state (center-of-mass) filter error plots for the case

of a low-energy laser sweep and with no plume pogo of the intensity centroid. The center-

of-mass errors are presented as the azimuth (x) and elevation (y) components of the error,

and the along-track and across-track components of the error. The hardbody reflectivity

model is used for the low-energy laser sweep plots, which are also representative of the

hardbody binary plots. (The hardbody hilia,,' mode! ik used for tic singlc scan of the low

energy laser (i.e., no sweep), since the hardbody reflectivity model is software configured

for a sweep routine.) For the discussion pertaining to these plots, refer to Chapter VI,

Sections 6.6 and 6.7.
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Figure K.3. Eight-State Filter Center-of-Mass Azimuth Error at ti - for Reflectivity
Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure K.4. Eight-State Filter Center-of-Mass Elevation Error at t - for Reflectivity
Model With Low-Energy Laser Sweep and Without Plume Pogo
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Model With Low-Energy Laser Sweep and Without Plume Pogo

0.0

R

I

S I

K-



0.5-

0.4-

R
R

0
R

N

P 0.3-

I
9
I

L
S

0.1

0.0

0 4 6 10

TIME IN SECONDS

Figure K.7. Eight-State Filter vs. Actual rms Center-of-Mass Along-Track Error for Re-
flectivity Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure K.8. Eight-State Filter vs. Actual rms Center-of-Mass Across-Track Error for Re-
flectivity Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure K.9. Eight-State Filter Center-of-Mass Along-Track Error at t - for Reflectivity
Model With Low-Energy Laser Sweep and Without Plume Pogo
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Figure K.10. Eight-State Filter Center-of-Mass Across-Track Error at ti"-for Reflectivity
Model With Low-Energy Laser Sweep and Without Plume Pogo
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Appendix L. Eight-State Filter Performance Plots With

Low-Energy Laser Sweep and Plume Pogo

This appendix contains the eight-state (center-of-mass) filter error plots for the case

of a low-energy laser sweep and with the intensity centroid subjected to plume pogo. The

center-of-mass errors are presented as the azimuth (x) and elevation (y) components of the

error, and the along-track and acioss-track components of the error. The hardbody

reflectivity model is used for the low-energy laser sweep plots, which are also

representative of the hardbody binary plots. (The hardbody binary model is used for the

single scan of the low-energy laser (i.e., no sweep), since the hardbody reflectivity model

is software configured for a sweep routine.) For the discussion pertaining to these plots,

refer to Chapter VI, ,ccti,-ns 6.6 and 6.7.
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Figure L.1. Eight-State Filter vs. Actjal rms Center-of-Mass Azimuth Error for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure L.2. Eight-State Filter vs. Actual rms Center-of-Mass Elevation Error for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure L.3. Eight-State Filter Center-of-Mass Azimuth Error at tj - for Reflectivity
Model With Low-Energy Laser Sweep and Plume Pogo
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Model With ILow-Energy Laser Sweep and Plume Pogo
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Figure L.7. Eight-State Filter vs. Actual rms Center-of-Mass Along-Track Error for
Reflectivity Model With Low-Energy Laser Sweep, Plume Pogo
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Figure L.8. Eight-State Filter vs. Actual rms Center-of-Mass Across-Track Error for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure L. 11. Eight-State Filter Center-of-Mass Along-Track Error at ti + for Reflectivity
Model With Low-Energy Laser Sweep and Plume Pogo

110-2

0.4-

R

* 0.2-I I

I 0.0- A
I

S

-0 4 l ' '

0 a 4 1 10

TIME IN SECONDS

Figure L. 12. Eight-State Filter Center-of-Mass Across-Track Error at t + for Reflectivity
Model With Low-Energy Laser Sweep and Plume Pogo
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Appendix M. Low-Energy Laser Sensor Sensitivity Plots

This appendix contains the eight-state (center-of-mass) filter error plots from a

study of the low-energy laser sensitivity. The study is conducted using the hardbody

reflectivity model with a low-energy laser sweep and the intensity centroid subjected to

plume pogo. (A comparison can be made with the plots in Appendix L.) The center-of-

mass errors are presented as the azimuth (x) and elevation (y) components of the error, and

the along-track and across-track components of the error. For the discussion pertaining to

these plots, refer to Chapter VI, Section 6.8.3.
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Figure M. 1. Study: Eight-State Filter vs. Actual rms Center-of-Mass Azimuth Error for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.2. Study: Eight-State Filter vs. Actual rms Center-of-Mass Elevation Error for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.3. Study: Eight-State Filter Center-of-Mass Azimuth Error at ti - for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.4. Study: Eight-State Filter Center-of-Mass Elevation Error at ti for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.5. Study: Eight-State Filter Center-of-Mass Azimuth Error at ti + for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.6. Study: Eight-State Filter Center-of-Mass Elevation Error at ti + for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.7. Study: Eight-State Filter vs. Actual rms Center-of-Mass Along-Track Error
for Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.8. Study: Eight-State Filter vs. Actual rms Center-of-Mass Across-Track Error
for Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.9. Snady,: Eight-State Filter Center-of-Mass Along-Track Error at ti for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M.10. Study: Eight-State Filter Center-of-Mass Across-Track Error at tj - for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Figure M. 11. Study: Eight-State Filter Center-of-Mass Along-Track Error at ti + for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo

I

2.0-

E
R
R

0
R o. 5-

P o -

I
x
E
L
S

-0 5-

4
TIME IN SECONDS

Figure M. 12. Study: Eight-State Filter Center-of-Mass Across-Track Error at ti + for
Reflectivity Model With Low-Energy Laser Sweep and Plume Pogo
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Appendix N. Truth Model Atmospheric and

Bending/Vibration Plots

This appendix contains the simulation truth model plots of the atmospheric and

bending vibration phenomenon for a study to determine the cause of the "apparent"

intensity centroid movement. The plots represent the azimuth (x) and elevation (y)

directions in the FLIR image plane. The atmospheric plots are determined by adding truth

model states x3 and x4 and truth model states x6 and x7 (Chapter IV, Sections 4.3 and

4.3.2). The truth model bending/vibration states plotted are x9 and x1 l (Chapter IV,

Sections 4.3 and 4.3.3). For the discussion pertaining to these plots, refer to Chapter VI,

Section 6.8.1.
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