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Prior to development of the simplified model, preliminary studies

assessed the impact of linear soil-structure interaction effects

(SSI) upon the response of space frames with flexible mat

foundations and composite beam/slab floor systems. An

extensive parameter study of representative space frames was

conducted, in which response of the frames supported on a modest

soil volume of finite elements was used to determine an

effective distribution of equivalent soil springs. With the

equivalent soil spring distribution in place, each frame was then

subjected to one or more earthquake loads using modal analysis

and appropriate mode combination techniques. Investigation of

flexible mat foundations was limited to frames loaded in the

direction of a horizontal axis of symmetry. Accuracy of the space

frame parameter study model was compared to published

analytical results and found to be sufficiently accurate to

support the following broad conclusions. Within the limits of

linear analysis of uniformly applied horizontal soil loads, mat

flexibility is significant only to the response of the mat

foundation of the structure. Structure forces and displacements

above the mat are only slightly affected by soil and mator

flexibility. This preliminary study provided baseline space frame

calculations for comparisons with the simplified model. 0
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CHAPTER I

INTRODUCTION

OVERVIEW

To better understand the response of civil structures to dynamic

soil loading, recent research has focused on two means of

improving analysis: refining soil and structure material modeis

and expanding computer representation of material and structural

details. Budget and schedule constrain the application of such

improved analyses in the design process. These constraints bear

heavily in the design of most low-rise framed structures--

hotels, office buildings, and parking garages. Running counter to

this trend, the major objective of this research was to generate

recommendations for a reliable simplified design model for low-

rise frames. A preliminary objective of this research was to

assess the impact of linear soil-structure interaction (SSI)

effects upon the response of space frames with flexible mat

foundations. An extensive parameter study of doubly symmetric

frame structures analyzed by advanced techniques provided the

basis for simplified model recommendations.

This dissertation conforms to the style of the Journal of the
Engineering Mechanics Division, ASCE.



BACKGROUND

Comparison of Stick, Planar, and Space Frame Models

Where practical, structural designers have progressed from

simple stick models to more sophisticated planar frame and

space frame models (see Figure 1.1). The stick models capture

principal features of response for many conventional

architectures. In frame structures, such models permit

calculation of displacements at each floor elevation and net shear

forces and bending moments in connecting columns. Planar frame

models permit supplementary calculation of net axial column

forces due to ground motion, as well as net beam and floor slab

forces, moments, and displacements directed in the plane of

ground motion. Space frame models permit calculation of forces,

moments, and displacements--acting in all members and in all

directions. Principal benefits of planar and space frame

structural models are two-fold. First, improved dimensional

modeling allows direct calculation of secondary or supplemental

displacements and stresses in structures. These secondary

responses may control structural design for certain

architectures. For instance, space frame analysis can assess the

torsional response characteristic of asymmetric floor plans.

Second, the expansion of degrees of freedom into multiple

dimensions mobilizes additional flexibility inherent in an actuai

structural frame. This enhanced flexibility typically increases

deflections while reducing forces and moments in members.



stick frame planar frame

s~pace f rame

Figure 1.1 Conceptual illustration of stick,
planar, eno space frame models



Conversely, the simplified models tend to yield conservative

estimates of member forces, but may significantly underestimate

critical displacements of the structure.

Soil-Structure Interaction Models

In the past, research and design engineers have frequently ignored

SSI effects. They have simply applied uniform free-field ground

.* d ,tly to the base of structural frames. As with

restrictions on model dimensionality, restrictions on soil

flexibility also tended to yield conservatively low estimates of

structural strength, as well as unconservatively low estimates of

structure displacements. Subsequent studies (relying upon

improved computer capabilities) have demonstrated reasonable

economy in analysis by introducing progressively improved soil

models. Soil motions dangerous to typical civil structures can

induce large soil shear-strains and nonlinear material response

(e.g., 20, 31, 49). Additionally, if applied loads are strong enough

to cause partial uplift of the structure from the soil, geometric

soil-structure non-linearity will occur (e.g., 1, 5, 11, 16, 35, 41,

47, 57, 61). To directly account for material and geometric non-

linearity, program enhancements increase computer memory

requirements and computational expense compared to linear

solution techniques. To include these non-linear behavior

mechanisms, engineers use cost-effective aoproximations. Based

on non-linear SSI studies (e.g., 20, 31, 49) and response of actual



structures to earthquake and ground shock loading (e.g., 19, 44,

46), they may select linear soil properties which simulate

expected overall soil stiffness and damping. Within acceptable

design tolerances, they may reduce the problem of progressive

loss of soil-structure contact (uplift) using a simplified two-

spring soil moacel suggested by Psycharis and Jennings (35).

Advanced Finite Element Modeling Features of Interest

Published SSI computations for frame structures typically

feature simple stick models. However, recent developments in

general purpose finite element analysis codes can allow

convenient improvement of space frame models with acceptable

computational effort for purposes of research. As implemented

in ANSYS and other general purpose finite element programs, the

Guyan-reduction algorithm (e.g., 12, 24, 45) retains much of the

fundamental character of a space frame structure. This

algorithm systematically redistributes mass, stiffness and

damping in a consistent manner. Mode frequencies and shapes are

generated based on a limited number of active coordinates. Mass,

stiffness, and damping contributions for all nodal coordinates are

accounted for in the formation of effective matrices to represent

tnese properties for the reduced set of coordinates. With

reasonable selection of active coordinates, lowest mode effects

are usually weil represented. Loss of fidelity for higher modes

typically subtracts little from overall response of large civil



engineering structures. The Guyan-reduction algorithm provides a

convenient programing environment for analysis of frame

structures which incorporate both three-dimensionality and

linear SSI effects.

Additionally, the Guyan-reduction can be combined with

substructuring techniques to simplify SSI analysis. With these

features a supporting soil region may be modeled as a

substructure once, and then loaded with various frame

superstructures in separate calculations, thus limiting the cost

of repeated element formation in parametric studies. The number

of degrees of freedom of the substructure may be easily adjusted

to accommodate changes in frequency sensitivity for various

soil-structure systems evaluated in this way. Again, with

reasonable distributions of active coordinates, lower mode

fidelity of the soil substructure can be well preserved., see

Chopra and Guttierrez (10) for further discussion.

CURRENT DESIGN PRACTICE

Critical Structures

To satisfy continuing interest, research engineers have conducted

limited investigations of simple non-linear soil-structure

systems (e.g., 20, 31, 49). However, finding non-linear SSI

calculations to be cost orohibitive for routine tasks, design

engineers frequently make the following approach to structure



design. For critically important axisymmetric structures (such

as nuclear power plant containment vessels or large cooling

towers), the designer may undertake SSI calculations using site

representative linear soil properties consistent with the design

ground motions and anticipated soil shear-strain levels.

Sometimes the designer will use a simple stick model of +he

superstructure, but retain a full three-dimensional

representation of the soil and substructure. The massive mat

substructures required to support these architectures are

approximately rigid. However, secondary responses, such as

structure accelerations at equipment anchorage locations, change

significantly when analysis accounts for slight mat flexibility

(e.g., 23, 36, 58). For critical structures lacking axisymmetry,

designers frequently simplify SSI analysis by retaining stick

frame or planar frame models of the superstructure, but reduce

the soil and substructure model to a two dimensional form.

Low and Medium-Rise Frames

Prominent Analysis Methods

To further reduce computer usage requirements in a highly

competitive design environment, designers of ordinary 'rame

structures generally select from two analysis methods. They may

apply dynamic ground motions to simole stick frame moceis of

the structural frame (e.g., 2, 39, 48). For the vast maionty of

frames designed by this method, the soil is assumed rigid--free-



field ground motion is input directly to the base of the frame.

Such stick frame analysis generally yields conservative

estimates of niet column forces, but may under-predict story

deflections. This trend is dependent upon relatively uniform

distributions of dynamic input with frequency. No other forces or

displacements are directly inferred. A significant counter

examole to this trend may occur with torsional loading or self-

induced torsion resulting from asymmetric geometry, see

Todorovska, Lee, and Trifunac (43). In this case, uniform base

motion does not allow amplification of asymmetric modes,

thereby ieading to possibly unconservative force estimates.

Alternatively, and most commonly, designers may apply code-

specified equivalent lateral static loads to mass concentrations

in one, two, or three-dimensional frame models (e.g., 3). These

statically loaded models tend to yield member forces and

deflections which are lower than typical oeak values comoutec

from dynamic analysis. Resulting frame designs rely upon

implicit relief of forces and moments through energy dissipation

at plastic hinges in the frame. Since hinging is assumed Dut not

explicitly modeied, deflections can be significantly under

computed, regardless of 'he level of dimensionality arc

;tructural detail.



Stick Frame Modeling in Dynamic Analysis

The extent to which the peak excursions in computed forces

accurately reflect the need for non-linear energy dissipation in

an actual design is limited by the accuracy of the specific linear

model used in dynamic analysis. The simplest stick frame model

regularly used to assess response of frame structures is the

snear building model. For this model, the entire horizontal

flexibility of the frame is attributed to bending (and slight shear)

deformation in the columns. Because the floor system is

considered rigid, joints connecting columns at floor elevations

are locked against rotation. If subjected to a dynamic loading

with a uniform distribution of spectral energy with respect to

frequency, this model can be expected to develop greater shearing

forces than a careful three-dimensional model of the same

structure. The three-dimensional model introduces additional

flexibility, primarily through deflection of the floor system in

iow-rise structures. Fiexibiiity in the floor system eifectiveiv

softens the structure response by allowing column rotation.

Another even simpler stick frame model, the cantilever beam.

relaxes all restraint against rotation of column nodes at floor

elevations. These continuous, but unrestrained, joint connections

simulate a structure with no flcor stiffness. This model can be

used to good etfect in aporoximating resoonse of snearwall

structures (where floor systems contribute little to lateral



resistance). However, this model is generally far to,. limber for

typical moment-resisting frames. For such frames, the

cantilever beam model will grossly over-predict deflections and

under-predict shear forces compared to a careful three-

dimensional model. This trend is sensitive to the same loading

considerations described for the shear building model.

In a model proposed by Blume (8) in 1968 , improvement in stick

frame response was sought by artificially adjusting the bending

stiffness of columns in the shear beam model. This adjustment

relied upon assessment of the ratio of column to beam flexibilit)

at the mid-height floor of the frame. This ratio was referred to

as the joint rotation index (p):

all

al eq. 1.1

1C

where 1. and lb are the individual column and girder moments of

inertia, and Lc and Lb are the individual column and girder lengths

of the mid-height floor of the frame. Studies, conducted at the

time this model was proposed, suggested credible simulation of

modal responses for the first three modes, with deterioration at



higher modes. The model may only be used to compute those

structural response features predicted by the shear beam model:

net column shears, moments, and horizontal floor deflections.

The joint rotation index (p) has been applied as recently as 1986,

by Cruz and Chopra (13), to assess practical ranges of floor

flexibility; however, no recent applications of the Blume model

were found in the literature. A principle objective of the present

study was to develop an alternative stick model with a larger

number of degrees of freedom to more directly model the

influence of floor system flexibility on lateral and torsional

flexibility. Ultimately, techniques were also developed to assess

forces and displacements in any structural element, not just net

column response.

Soil Modeling in Dynamic Analysis

Prominent Analysis Methods

Where dynamic SSI calculations are to be performed, designers

often select from two basic approaches for modeling the soil.

Various authors (e.g., 6. 7, 15, 22, 25, 26, 29, 30, 32, 37. 42. 52,

54) refer to these methods as finite element and lumped mass

analysis, or similar names. More recently, research (e.g., 15. 1 7'

has oemonstrated the feasibility of boundary element methods in

-ssessing SSI effects. However, for design of routine frame

structures, practical application of this methoa awaits the

development of general purpose programs which combine boundary



element and finite element techniques. Another recently

introduced method of analysis, the flexible volume method, has

been applied to flexible foundations by Ostadan, Tseng, and

Lilhanand (34).

Finite Element Models

With the finite element method of SSI analysis (used primarily in

the United States), the soil foundation is most often treated as a

two-dimensional material confined by plane-strain conditions.

Appropriate vertical and horizontal dashpots attenuate waves

emanating from the soil-structure interface in a manner

simulating out-of-plane radiation damping. This two-

dimensional method of analysis of soil interaction effects is

almost exclusively implemented with FLUSH, a program authored

by Lysmer, Udaka, Tsai, and Seed (28). This program minimizes

the lateral extent of the two-dimensional soil volume through

special infinite elements. These infinite elements accurately

represent the far field, but only for two-dimensional geometries.

Because the emphasis of this program is on wide ranging linear

soil effects, including layered geologies, the actual planar frame

representation is rather crude. Frequently, soil-structure

nterface motions found with FLUSH are used to drive detailed

frame models, using more general finite element programs. The

FLUSH program assumes most energy radiates from the structure

in planes closely aligned with the direction of propagation of the



free-field soil disturbances. Because of this alignment, two-

dimensional approximation is generally valid.

Where large additional design costs are justified, designers may

extend the finite element procedure and model the soil foundation

with a convenient and effective bounding geometry, such as a

rectangular or hemispherical soil volume. For such models the

structure is located at or near the center of the free surface of

this volume. The other extremities of the soil volume are

constrained by combinations of springs and dashpots

approximating the far field of a soil half-space (e.g., 50, 51).

Lumped Mass Method (Rigid Foundations - Linear Soil Springs)

The lumped mass method (frequently applied in Europe and Japan)

assesses Green's influence function to arrive at an equivalent

elastic foundation. This foundation is defined by a complex,

frequency-dependent impedance function distributed over the

substructure interface. Several researchers have shown direct

calculation of Green's influence function to be practical for a

structure supported by a rigid mat (e.g., 27, 54, 59). With rigid

mat foundations, the complex impedance function can be replaced

with a combination of six frequency dependent springs ano

dashpots. The actual variation of freouency dependence in these

equivalent springs and dashpots is both structure and soil

dependent (see Wolf (58) for numerous examples).
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RESEARCH OUTLINE

Overview

The goal of this research was to promote improved earthquake

and ground shock design practice for low-rise structural frames,

such as office buildings, laboratories, hotels, and parking

structures. To achieve this goal, an efficient space frame model

accounting for SSI effects was first developed. Analysis

performed with this model included an extensive parametric

study of typical low-rise frame structures. Study parameters

embraced a representative range of floor plans, elevations, soil

stiffnesses, and soil loadings. By comparing the response of

typical stick models to the space frame response of the

parameter study, a modified design model was sought which

reflects the response characteristics of more exact analysis.

Finally the study culminated in an assessment of the impact of

various findings on current design practices.

Chronologic Organization

Phase 1 - preliminary investigation of space frames with flexible

mat foundations - included a comprehensive evaluation of the

following parameters:

1. Structural frame eievations ranging from 5 to 20 stories.

2. Rectangular floor plans with overall length to width ratios

ranging from 0.5 to 2.0.
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3. Soil conditions consistent with shear-wave velocities of

500 to 1500 fps.

4. Diverse earthquake types (El Centro, 1940--Mexico City,

1986).

5. Structures uniformly loaded in a horizontal direction,

parallel to a plane of symmetry.

Phase 2 - development of a simplified structural model - was

limited to simulation of space frame response for structures

uniformly loaded in the direction of a plane of symmetry. The

types of issues addressed with these models include:

1. Appropriate distribution of structural inertia and stiffness

in the frame.

2. Acceptable representation of soil-structure interaction

using simple, equivalent springs and dashpots.

3. Significance of frequency dependence of soil properties in

the response of frame structures.

4. Assessment of superstructure forces and deflections.

Phase 3 - extension of the simplified model - assessed the

;nfluence of other loading cases and architectures including:

I. Doubly symmetric frames uniformly loaded in an arbitrary

horizontal direction.



2. Self-induced torsion in mono-symmetric floor plans,

uniformly loaded in an arbitrary horizontal direction.

3. The influence of setback frame profiles in mono-symmetric

floor plans subject to self-induced torsion.

4. Self-induced torsion in asymmetric floor plans, uniformly

loaded in a horizontal direction.

Final design recommendations were statistically evaluated to

delineate the degree of conservatism inherent the proposed

design procedures. Additionally, areas in which these procedures

were unconservative, or fail to predict significant aspects of

structure response, were highlighted.

A Key Technical Approximation of the Study

A secondary objective of this parametric study was to measure

the importance of the SSI effect to overall three-dimensional

response of frame structures with flexible foundations. To

measure the importance of this phenomenon in a practical

manner, analysis of a modest soil volume provided frequency-

independent distributions of effective springs and dashpots.

Ghaffar-Zadeh and Chaoel (18) have demonstrated that frequency-

independent impedances can provide "a satisfactory

approximation of the exact solution over a wide frequency range"

for circular foundations. These impedances were selected for

correct response at the fundamental frequency of soil-structure



system. Earlier work suggested the same approximation to be

valid for more arbitrary floor plans (e.g., 6, 21). Experimental

work by Weissman (55), suggests that regardless of the

foundation shape or level of embedment, "the amount of radiation

damping depends on the natural frequency of the vibrating modes

of the structure relative to the fundamental frequency of the soil

layer ' . Convergence tests were performed for the present study

to insure the soil model provided an accurate distribution of

relative soil stiffness and viscosity over the base of the frame.

In the interests of economy, absolute overall stiffness and

viscosity of the resulting soil mnd.l were allowed to vary from

independently verified rigid-mat examples by as much as one-

third. The sensitivity of rigid-mat structural response to soil

model error was assessed by comparing the results of the present

study with published analytical analyses (e.g., 14, 56, 59). This

error sensitivity was further assessed for flexible mat

calculations by comparing the approximate results of the finite

element analysis of the soil volume over a wide range of relative

soil to mat foundation stiffness ratios.
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CHAPTER II

ANALYSIS AND MODELING OF FRAME STRUCTURES

OVERVIEW

Phase 1 preliminary investigation of response of space frames

with flexible mat foundations provided baseline comparisons

for simpler stick frame analogs (phase 2). Phase 1 also

supplied the rationale for modeling mono-symmetric and

asymmetric space frames with rigid mat foundations - for

comparison with corresponding stick frame analogs (phase 3).

For phase 1, three to twenty story rectangular plan structures

rested upon flexible mat foundations supported by an elastic

soil island of prismatic finite elements. Each frame resisted

horizontal soil loading directed along a plane of symmetry.

Findings of phase 1 calculations suggested more practical soil

and foundation models for use with phase 2 and 3 structures.

In the procedure description to follow, and in later chapters,

these phases are referenced to clarify which models were

developed first and how results obtained from each phase

influenced later models. The remainder of this chapter is

organized to demonstrate space frame model details, stick

frame model detaiis, and itemization of specific calcuiations

and structural details, in that order.



SPACE FRAME RESPONSE

Symmetric Loading of Rectangular Frames

The symmetry of phase 1 floor plans decreased computer costs

significantly. Force and displacement distributions in these

frames must vary symmetrically in opposing halves of the

structure. Prohibiting out-of-plane displacement and rotation

of the structure at the plane of symmetry (in the direction of

loading), reduced the model size by half. Even with this soil

volume reduction, conventional finite element modeiing of soil

in dynamic analysis requires an extensive soil volume beneath

the mat foundation to insure accurate representation. By

examining the soil response of an elastic half-space to an

arbitrary loading couple distributed about a free surface axis

(axis a-a, see Figure 2.1) certain boundary conditions are

easily recognized. In the vertical plane through this axis

dividing the coupled loading, any vertical displacement

resulting from a region of compression on one side of the

dividing axis is exactly balanced by a tension counterpart on

the opposite side of the dividing axis. Similarly, in-plane

horizontal displacements and rotations balance to zero. If the

soil stiffness and surface load on one side of the axis of

symmetry is neglected, the complete set of equvaien

ooundary conaitions at the plane of anti-symmetry must oe

prescribed to insure the resoonse of the remaining cuar*er

region is unchanged. Similar arguments can -e made for the
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response of the quarter-superstructure. By implementing

approximate boundary conditions along this vertical plane of

anti-symmetric response (no in-plane displacements or

rotations), harmonic rocking forces could be applied to just a

quarter region of the soil-structure model (see Figure 2.2). As

demonstrated in Chapter III, this simplification provided

adequate representation of soil-structure interaction at

reduced cost. The results from harmonic loading analysis

permitted calculation of approximate vertical spring

distributions at the interface between the mat foundation and

soil infinity. Distributed springs were required to accurately

represent vertical soil stresses applied over the face of the

flexible mat. Once determined, the vertical soil springs

supported a half frame structure subjected to pseudo-velocity

response spectrum loadings (see Figure 2.2).

To compute vertical soil spring distributions, a quarter region

of each structure and supporting soil volume were modeled

within the bounds of two vertical planes passing through

opposing mid-side points of a given floor plan. In-plane

deflection and rotaticn restraint approximated actual

conditions on the mid-plane normal to the direction of

harmonic loading (plane of anti-symmetry). Recognizing that

mode combination schemes generally approximate phase

differences by describing peak responses as a computed norm
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of all significant modes, the combined modal response can be

viewed as the peak (stationary) response of a single effective

mode'. This interpretation is best justified if the structure is

dominated by one mode, or a few modes with relatively closely

spaced frequencies. To assess the accuracy of these

assumptions, comparisons of small half-space and quarter-

space calculations, as well as comparisons of detailed

quarter-space calculations and elasticity-based solutions for

rigid and flexible mats, are presented below (Chapter III).

Where direct finite element modeling of soil is undertaken in

dynamic soil-structure analysis, a hemispherical region, or

other convenient geometry, frequently describes the soil-

infinity boundary (see Niwa, Katayama, and Penzien; Vaughan

and Isenberg; and Wolf (33, 50, 58) for representative

implementations). If, as described by Wolf (58), all waves

strike normal to the far-field boundary, soil waves

propagating from the structure to the extreme soil boundary

can be perfectly damped (with no reflection) by appropriately

selected dampers isolating each, boundary node. By modeling a

sufficiently large radius for the soii region and locating the

3tructure over the vertex of :he region, waves propagating

'rom -,he structure co impinge upon the spnericai noundary at

approximate right angles at first reflection. Regaraless of
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direction of propagation, this angle of incidence is roughly

constant for all waves emanating from the structure.

As shown by Wolf (58), longitudinal waves striking a

perpendicular surface attenuate perfectly when each boundary

node at this surface is constrained by a normal damper of

magnitude:

Cni = Ps at cp eq. 2.1

where Cni is the viscosity of the damper at boundary node i, ps

is the soil density, at is the tributary area of the soil boundary

at node i, and cp is the compression wave soil velocity.

Additionally, shear waves attenuate perfectly when each

boundary node at this perpendicular surface is constrained by a

oair of dampers, oriented normal to each other and tangent to

the soil surface, of magnitude:

cti = Ps at c. eq. 2.2

where ct, is the viscosity of each damper at boundary node i

and cs is the shear-wave soil velocity. These values of cm and

c, are appropriate for a homogeneous, !inearly elastic,

:sotrooic continuum.



To further reduce the required volume of the soil, rocking

forces on the structure were noted to result in soil wave

energy propagated in directions nearly normal to the axis of

rocking. This assumption is consistent with the justification

for two-dimensional plane-strain analysis in the standard

soil-structure program, Flush (28). Following this assumption,

the soil region was bounded by a cylindrical surface. As

described aDove, three mutually orthogonal dampers restrained

nodes on the far-field surface. Nodes on a vertical plane

parallel to the plane of symmetry, and located beyond the

extreme reach of the widest floor plan investigated, were

constrained to prevent out-of-plane displacement and rotation.

As described above a pair of tangential dampers attenuated

reflected shear waves at this vertical boundary plane.

However, an average angle of incidence was taken into account

for elements at varying radial locations from the rocking axis

of the s. volume. Following the theory elaborated by Wolf

(58), the viscosity values for attenuation of shear waves

striking surfaces at an arbitrary angle is given by:

cfi = Ps at c. cos(c) ea. 2.3

where s the angle of incidence between the wave direction

of propagation and the normal to the reflecting surface.The

maximum Jength and width of floor plans in this investigation
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did not exceed 140 feet Consistent with the findings of

Vaughan, Wojcik, and Isenberg (51), a soil cylinder radius of

200 feet, or 2.86 times the maximum half-length of any floor

plan, provided volume sufficient for acceptable accuracy (see

Chapter I). The width of the soil region, about the axis of

rocking, was 100 feet--1.43 times the maximum half-width of

any floor plan. See Figure 2.3 for details.

Ten vertical planes, six radial planes, and twenty cylindrical

surfaces sub-divided the soil region, with an element node

located at the intersections of all bounding or subdividing

surfaces. Linear-elastic quadrilateral soil elements connected

adjacent soil nodes. The spacing of sub-dividing planes and

surfaces concentrated soil elements beneath the mat

foundations and avoided element aspect ratios exceeding 4:1:1.

The elements with maximum aspect ratios were isolated along

the r=0.0 axis and the rmax surface. Displacements at the r=0.0

axis were essentially zero for all calculations, and the rmax

surface was located far from the superstructure and also

experienced very small displacements. For these reasons, any

inaccuracy induced by the high aspect ratio elements was

substantially mitigated.

Classical (undamped) modal analysis subjected this soil-

structure system to vertically distributed harmonic loads.
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This distribution applied concentrated loads at the centroid of

each floor level, horizontally in the plane of symmetry. The

load magnitude at each floor, including the mat foundation

!evel, scaled in proportion to the building mass at that floor

level. All forces acted in phase with one anothe,- at the

fundamental frequency of the soil-structure system. An

approximate value of this frequency converged rapidly with

simple iteration, as described below. The combined modal

response of the soil and structure produced complex forces in

link elements, between the soil and structure, and complex

vertical displacements of the floor mat, at each link

connection. Complex division of these forces and associated

displacements provided equivalent vertical soil spring and

damper distributions for harmonic loading. This distribution

replaced the soil volume in subsequent earthquake spectral

loading calculations. The equivalent spring and damper

aistributions were computed at each soil-mat interface node

as follows:

T /da = [ k + id/ (2 co)] eq. 2.4

where f is the compiex link axial force, d is the complex mat

vertical deflection at the link, k is the equivalent spring

stiffness, d is the eauivalent dashpot viscosity, and w=2,nf,



where f is the natural frequency of the harmonic forces

applied to the structure.

The appropriate distribution of vertical springs and dashpots

needed to resist rocking at the fundamental period of the soil-

structure system was unique for each frame design and soil

specification investigated. Standard code recommendations

provided good first estimates for the fundamental system

frequency:

T1 = CT hn 3/4 (Eq. 9B) ANSI A58.1-1982 (3)

where, T1, is the fundamental period of the structure, CT = .035

for steel frames and hn is the overall structure height (in

feet). Typically, the assumed input frequency and the

computed fundamental mode frequency converged within five

percent of each other before the third iteration.

Link elements between the soil and mat foundation provided

vertical (axial) rigidity but very low horizontal (shear)

resistance. These conditions are consistent with the bulk of

previous research describing vertical continuity with no

horizontal friction between the soil and mat foundation, see

Dobry and Gazetas; Luco and Westmann; Veletsos and Meek;
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Whittaker and Christiano; and Wong and Luco (14, 27, 52, 59)

for examples.

For all harmonic loading analysis, a single superelement with

two hundred internally distributed degrees of freedom modeled

the entire soil volume. The number and distribution of these

internal degrees of freedom provided sufficient mass points

per radially-oriented wavelength to assure accuracy

consistent with other limitations of the model. Nodes at the

ground level of the soil volume aligned with mat element

vertices for all architectures to be considered. Thus the soil

island superelement mass and stiffness matrices were

computed only three times, for soil shear wave velocities of

500, 1000 and 1500 fps. This superelement implementation

significantly reduced overall computer costs for multiple

frame response calculations.

With equivalent soil springs and dampers computed, each

frame was remodeled as a half-structure truncated at the

plane of symmetry in the direction of ground shaking. As will

be demonstrated in Chapter III, soil springs were computed

with acceptable accuracy at the fundamental frequency of eacn

soil-structure system; however, dashpot magnitudes

approached Quaiitative accuracy only at nigner frequencies fao

=ob/vs > 5, where b is the maximum plan dimension in the



direction of loading). For strong dynamic soil loading, actual

radiation damping was considered to be small compared to

material damping, (see Vaughan and Isenberg (50) for

estimates of 2% radiation damping for a typical nuclear

containment structure). Consequently, for structural analysis

of response to earthquake spectral velocities, only distributed

vertical springs (with no parallel radiation dampers) supported

the flexible mat foundation. For square mat foundations and

rectangular foundations with the long dimension oriented in

the direction of ground motion, a single spring restrained the

structure at the mat center, thus representing horizontal soil

stiffness. For rectangular foundations with the long dimension

oriented normal to the direction of ground motion, a line of

horizontal stiffness springs restrained the structure along the

mat axis parallei to that longest dimension. In the latter case,

the horizontal spring distribution varied according to tributary

area in the direction of loading. In both cases, the total

magnitude of horizontal soil stiffness equaled the value

computed for a rigid, massless mat, see Dobry and Gazetas

(14).

For all earthquake spectrum loadings, a weighted value of

viscous damping was adjusted for each mode. The selected

ANSYS damping option orovides an efiective modal damoing

value as follows:
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m
_ (em Em)

e'= m eq. 2.5

ZEm

where m is the material identifier, em is the damping ratio,

and Em is the elastic strain energy (1 u}T[K]{u}) for material m.

Here u is the nodal displacement vector for elements of

material m, and K is the composite stiffness matrix for these

elements. Viscous damping for soil was 10%, concrete 5% and

steel 2% of critical damping. As will be shown in Chapter III,

the bulk o. strain energy for the most significant modes was

concentrated in the steel columns of the frame, resulting in

effective damping ratios (e') slightly larger than 2%.

As described in Table 2.1, two earthquake spectral loadings

were selected for use in this study. The El Centro 1940 north-

south component of motion was applied to every structure and

soil combination. This earthquake has been extensively applied

in past studies, and is fairly representative of earthquakes

forming the basis for current design spectrum

recommendations. For comparison, the Mexico City 1984 east-

'Nest component of motion was applied to all square plan

douoly symmetric Irames resting on soft soil (vs = 500 fps).

This ePrthauake is not only of unusually high intensity, but has

a peculiar distribution of motion amplitude over the range of



observed frequencies. The majority of the input for this

earthquake is ginited to a band of frequencies ranging from

about .3 to .7 Hz. Figure 2.4 '.ompares these earthquake in

terms of pseudo-velocity versus frequency.

For each calculation the following items were examined:

-- All mat displacements and selected floor

displacements.

-- Maximum shear, axial, moment and twisting

forces for each member size of column and beam.

-- All column forces for each floor.

For the doubly symmetric floor plans (no self-induced torsion),

square root of sum of squares (SRSS) modal combination

provided satisfactory estimates of all response values (see

Chapter III).

Eccentrically Loaded Space Frame Response

Details and analysis of eccentrically loaded space frames,

phase 3, were as described for symmetric loading of

rectangular frames, with two significant simplifications.

First, essentially rigid material properties characterizea the

mat foundation. Second, simple axial and torsional soil
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springs, appropriate for a rigid, massless foundation, see

Dobry and Gazetas (14), replaced the distributed soil springs

for spectral analyses. This soil model required five springs to

resist displacement and rotation along and about two

horizontal axes and rotation about the vertical axis. All soil

springs connected to a node at the center of mass of the mat

foundation (see Figure 2.5). In cases where the center of mass

was located off the actual mat, a centrally located mat noce

was constrained to rotate and displace in a plane containing

this center of mass. Far field ends of soil springs were fixed

an arbitrary distance from the center of mass along axes

parallel to the global axes.

STICK FRAME RESPONSE

Degrees of Freedom

A stick model was constructed by interconnecting umoec

masses using simpie one-aimensional finite eiements of

appropriate bending and/or torsional stiffness (see Figure 2.6).

For all such models developed for phase 2 and pnase 3

calculations, the only independent degrees of freedom were

located at the column ends. Degrees of freedom for symmetric

structures loaded in a plane of symmetry inciuaea 'n-oiar,.

,crzontal and vertical displacement, along wirn n-oiane

-otation. Non-symmetric floor oians, loaaec n arotrarv

airections. required five independent degrees of freecom at
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column ends. For doubly symmetric frames with horizontal

soil motion arbitrarily directed, vertical axis rotations were

negligible--only small computed torsions accumulated from

round-off errors. Axial strains and forces generated in the

columns were similarly negligible, since vertical

accelerations were not allowed.

Equivalent Horizontal and Vertical Stiffness

In all stick frames, horizontal column stiffness in the x and z-

axis giobal directior.s resuited from summation of column

stiffness of corresponding space frame floor plans:

n
IkI Y_ (Ikjl) eq. 2.6

j-,l

wtere Iki is the effective moment of inertia of the kth column

of the n-floor stick frame, lkil is the moment of inertia of the

jth column of the kth floor of the soace frame, and I is the

direction of loading.

Similarly, vertical column stiffness resulted from summation

of column areas in the corresoonding soace frame floor plan as

folluws:

Ak = (Ak, eq. 2.7
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where Ak is the effective area of the kth column of the n-floor

stick frame and Aki is the area of the jth column of the kth floor

of the space frame. This model was influenced very little by

axial stiffness of the columns, since vertical accelerations.

including gravity, were neglected. Also, in the eccentric

models, vertical mass was neglected for reasons given below.

Equivalent Rotational Stiffness of the Floor System

(Horizontal Axes)

For stick frames loaded in the direction of an axis of

symmetry, estimated rotational stiffness at column ends

resulted from summing the approximate static stiffness of the

individual column joints in the corresponding three-dimension

floor plan. A static two-dimensional finite element analysis

of each unique floor system of the frame provided acceptable

inputs for this estimate. Because, for frames exceeding ten

floors, each floor design was modified only once, no more than

two such analyses were required per frame. Moment resisting

beams were reduced in capacity for the upper floors of taller

frames. In each static calculation, the floor system replicated

exactly the corresponding space frame model details (see

Figure 2.7). Column interface nodes rigidly restrained vertical

displacement of the floor. A minimum of in-plane

displacement constraints at free edges of the floor model

prevented in-plane "rigid body" displacements and rotations.
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For symmetric structures, a half structure model terminated

at a line of symmetry ncrmal to the axes of applied loads. At

each column interface node, an applied static moment forced

rotation about the axis of require rotational stiffness. The

magnitude of rotational stiffness at that joint resulted from

division of the applied load by the computed rotation. The

applied moment at each joint scaled in proportion to the

assumptions of portal frame analysis, for which a general

description of features and limitations were published by

ASCE (4) in 1940, and in typical frame analysis text books of

that era. Where all columns in the space frame act as if hinged

at mid-height of each floor, shear along a given column line in

the direction of soil motion distributes in proportion to the

tributary area of floor supported by the columns along the line.

These conditions are a reasonable approximation of dynamic

frame response at the instant of peak displacement, provided

the overall frame response is dominated by a single,

fundamental mode. The resulting individual rotational

stiffnesses were summed into a single torsional stiffness

oriented to resist rotation of the column ends about a

horizontal axis perpendicular to the direction of soil motion.

One end of each torsional spring was attached to the

appropriate column interface node, while the other end was

fixed in five degrees oT freedom. The remaining degree of

freedom was slaved to maintain identical rotations with the
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mat foundation mass about the axis of torsional spring

alignment. The dependent rotation of this far-field ena

prevented undue "floor moment" from being generated by rigid

body rotations of the frame about the mat foundation.

In frames subjected to soil motions not aligned with an axis of

horizontal symmetry, th- above procedure was repeated for

moments applied about the remaining horizontal axis of column

alignment. Together these calculations produced a pair of

mutually perpendicular torsional springs oriented along global

axes in the plane of each floor of the frame (compare Figures

2.6 and 2.7). As above, the far-field axial rotation of each

torsional spring duplicated the rotation of the mat foundation

about a similarly oriented global axis.

An alternative approximation of the above equivalent

rotational stiffness can be found by treating each line of

column nodes in direction I (x or z) as an independent portal

frame. Here the equivalent rotational stiffness (Kfi), for floor

f and direction I, is found by summing the rotation stiffness of

individual beams at the column nodes J as follows:

ail 3il

K =. 6 L eq. 2.8
:=,O



where Eb, lb, and Lb are the elastic modulus, moment of

inertia, and length of individual beams (b) framing into column

(j) along the normal to direction (I). The coefficient Yj is

found by normalizing portal frame moments applied to the

joint j such that 'Y=1.0 for an end column in a corresponding

frame of equal length and equal number of spans, but of

constant span length. The Y values for the original portal

frame are then found by scaling arbitrarily computed values

for the original frame such that the sum of applied column

joint moments (17i) for both frames are equal. This empirical

normalization of the joint moment factors was found to

provide an excellent prediction of the previous analysis for all

structures examined (see Chapter III). This approximation is

intended to simplify preliminary portal frame calculations for

plans with orthogonal beam lines, in which specific floor

forces are not needed, and floor stiffness is clearly dominated

by moment resisting beams with low torsional stiffness.

Equivalent Torsional Stiffness of an Individual Story

(Vertical Axis)

When maximum torque about the vertical axis was sought *n

frames lacking double symmetry (phase 3), horizontal soil

motion was appiied in a direction normal to the line connecting

the centers of rigidity and mass for the mat founoation. The

torsional resistance of the stick frame columns was found by



approximating the combined stiffness of individual columns of

the space frame as follows. To estimate the story stiffness

between floors, a single full structure static space frame

analysis was conducted with an arbitrary torque about the y-

axis applied at the center of rigidity of the roof. Division of

the applied moment by differential floor rotation about the

vertical axis provided an estimate of overall static torsional

stiffness of each story. The differential rotation was

computed frm displacements of corr-er nodes of the structure.

To compensate for slight in-plane shear of the floor, the

differential rotation along two orthogonal boundaries was

averaged before computing the torsional stiffness of the floor

of columns.

With the above calculation providing an estimate of the overall

static torsional resistance of each floor, the static column

stiffness of the corresponding portal frame was computed as

follows:

K, L
Jeff = K eq. 2.9

where Jeff is the static coiumn polar moment ot inertia, G is

the column shear modulus, and K, is the overall torsional

stiffness of the corresponding floor of the space frame model.



An alternative approximation for the overall torsional

stiffness Of a single floor space frame model is found by

accepting the assumptions of eq. 2.8. Here, the individual

column joint rotation stiffness (Keix) at joint j in direction x

is computed as follows:

all

6Ebjb
KjXII Lb eq. 2.10

b=l

Where Eb, Ib and Lb are the elastic modulus, moment of inertia,

and length of beam b framing into column joint j along the x

direction. Referring to Figure 2.8, the displacement bjx in

direct x of the top joint of any upper half-column j may be

estimated from contributions due to column bending and floor

slab rotation,

P;xL 3  PixL 2  eq. 2.11
lix - 12Elcz' eq.2K2.x

where Ec, Icz, and L are the elastic modulus, moment of inertia

about the z-z axis, and length of the half-column j. Pjx is the

undetermined shear at the point of deflection in direction x.

Since the top plane of joints for this model rotate rigidly

aoout the center of rigidity of the floor plan, as described



-16

y

Zrigid plate 
Il

L/2 
beamn line

-typical floor slab

L/2

translational and y-axis rotational fixity

note: L =story height

Figure 2.8 tlodel for comouting effective
tosional column stiffness of _ tlck model of
moment rasisting frame



above, these deflections are also explicitly defined by the
rotation (¢) of this rigid plane and the projection of the radius

from the center of rigidity to the top joint of column j in the z

direction:

8jx = 0 rjz eq. 2.12

Thus,

, 1 2EcczKeix eq. 2.13Pjx= K, -xL3,6EclczL2  'rzee .21

Noting riz=rjcos(P) and rjx=rjsin(f3), where 03 is the angle

between r (radius to top joint of column j) and the x-axis, and

summing moments due to column shears Pix and P, about the
center of rigidity, the arbitrary rotation e may be eliminated.

In final form Kt may be summarized as:

all

1 2EclczKex '

K j xL36EcIcL r 2 sin 2 ([

1=1

all

K 12EclxKz r s2COS
K,, - -6EI,,L2

ea. 2. i



This approximation is also intended for use in preliminary

estimates of plans with orthogonal beam lines, where specific

floor forces are not needed, and floor stiffness is clearly

dominated by moment resisting beams with low torsional

stiffness.

Clearly, the magnitude of torsional stiffness will vary with

each floor, even if column sizes are constant with elevation.

In the structures examined in this study, the approximate

vaiue ot Kt found from eq. 2.14 provided a reasonable average

value for all stories, and so was applied uniformly with

elevation. For comparison, dynamic response was computed

for each structure based on the equivalent torsional stiffness

distribution of a full static frame calculation, as well as the

uniform distribution of obtained from eq. 2.14.

For frames designea with eccentricity between the static

center of rigidity and the center of mass at each floor, the

stick structure compensated in the following way. Each

column attached to nodes located at the center of rigidity of

the bounding floors. With the lumoed mass of the floor

positioned at a center of mass node, an effectively rigid beam

connected the column ends ana lumped mass. The lumped mass

was assigned approoriate in-plane rotational inertia ana

horizontal translational inertia. Out of plane rotational
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inertia was neglected because floor rotations were very small.

Vertical translational inertia was neglected to prevent

development of vertical modes peculiar to this stick frame

analog (i.e. vertical vibration of the lumped masses on the

short cantilever beams). Lateral torsion "floor" springs

connected to the structure at the centers of rigidity of each

floor (column ends).

Soil Model

Equivalent soil springs resisted independent displacements and

rotations. These springs were appropriate to rigid, massless

foundations as described by Dobry and Gazetas (14). For

frames loaded in a plane of symmetry, the mat foundation node

rigidly resisted vertical displacement at the mat center of

gravity. A horizontal spring acting in the direction of motion

and a torsional spring acting about a horizontai axis

perpendicular to the direction of soil motion, further

restrained this center of gravity node. The magnitude of soil

spring stiffness was adjusted ill each frame as appropriate for

the computed soil-structure system fundamental mode.

Selection of soil springs required no more than two iterations

of the modal anaiysis lor any frame to reduce the difference

between assumed and computed fundamental mode frecuency to

less than five oercent. As described above, initial mode
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estimates were based on standard building code

recommendations.

For eccentrically loaded structures, an additional pair of

horizontal springs provided resistance to horizontal mat

displacement and iuiation along and about the other horizontal

global axis. Additionally, a verticai torsional soil spring was

provided to resist rotation about this axis. The latter spring

was clearly superfluous in doubly symmetric structures, since

only small "numerical" torsion was induced in these

structures.

All soil springs connected to a center of mass node of the mat

foundation. The far-field ends connected to rigid nodes at an

arbitrary Histance alcng appropriate axes of orientation.

These members had stiffness only along or about the member

axis as needed.

Portal Frame Estimates of Individual Member Forces

Column Forces

Column shears and torque in the single column of the portal

frame mod'c may be used to comoute shear in individual

columns of the real structure through suoerposition in the

following way. Horizontal shears for the moment resisting

frames of this study--with constant floor beam details--share



shear approximately equally among parallel lines of columns.

Space frame calculations indicate perimeter lines of columns

carry 10 to 15% less than interior lines of columns. By

assuming uniform distribution among parallel column lines,

perimeter columns are strengthened, providing additional

torsional resistance to the structure. Thus individual column

shears may be assessed as:

7Ii VI
Vii= all eq. 2.15

ij

where Vvu is column (i) shear in principal direction (I)

resulting from the stick frame column shear, 7ij is the

associated normalized distribution shear distribution factor

,described above, and V is the total shear of the portal frame

column in direction (I)

Assuming rigid diaphragm action in the plane of each floor,

:ndividual column shears resulting from torque of the stick

rame column may be derived as follows.

all ail

VIXZ - A - .x eq. 2.16
.=1
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Where Vtix and Vtiz are the column shears in principal

directions (x) and (z), xi and zi are the column ordinates with

the origin located at the center of rigidity of the floor, and T

is the stick frame column torque. Assuming these column

shears to be proportional to the corresponding moment arm to

the center of rigidity and proportional to the portal frame

distribution factor of the column:

Vtlx Vtiz
i Veq. 2.17

Zi Ilix xi iz

These individual shears are further related through simple

geometry by:

Vtix zI
eq. 2.18

Substituting eq. 2.17 and eq. 2.18 into eq. 2.16 and eliminating

one shear results in:

T
VtIX = all ail eq. 2.19

' iz Xi

'x -, X,

d I Ix ' zX



Through superposition the total shear (Vi) in direction (I) for

each column (i) is found to be:

Vil = Vvii +Vtii eq. 2.20

Similar approximations can be developed for floor systems

with varying beam member sizes, torsionally stiff edge beams

or other stiffness features influencing the distribution of

shear in the columns. For each type of floor system, the

distribution of column shears, and the appropriateness of

static portal frame analysis, should be confirmed by

independent static space frame analysis.

Column axial force estimates may be obtain directly from the

results of dynamic portal frame analysis in a manner

consistent the techniques described above. The axial force in

any column results from the accumulation of vertical shear

forces in the floors above the column. Because the quality of

force estimates in the floor system are relatively poor, the

estimate of accumulated shear in the important lower floors

of the structure is unsatisfactory. Acceptable estimates of

ithis force, as well as all other important member forces, may

oe obtained from The method aescribed in the following suo-

section beginning of oage 53.
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Beam (and Other Floor Element) Forces and Displacements

Combining results of stick frame modal analysis and two and

three-dimensional static analysis provided estimates of

member forces and displacements for all floor elements. To

illustrate this process, the simplest case of loading through a

plane of symmetry will be described first. Loading in an

arbitrary direction, including eccentric loading, requires more

extensive post processing of data, but is conceptually similar.

Loading about a plane of symmetry

To implement the stick frame model described above, a two-

dimensional static floor system analysis first assessed the

magnitude of equivalent torsional floor springs. Post

processing of this static calculation retained all member

forces and displacements. The results of the subsequent stick

frame dynamic calculation then allowed scaling of the floor

system response to values consistent with peak space frame

spectral loading response. Floor system response is obtained

by scaling the static response (stress, force or displacement)

of any floor member to the ratio of net computed torsional

spring moment of the dynamic analysis to the sum of applied

moments of the static floor analysis.



Non-eccentric loading of frames in arbitrary directions

For this configuration of frame layout and loading, two static

calculations provided individual column node rotational

stiffness in two horizontal directions. Distributed column end

moments acted along different major horizontal axes of the

frame in each calculation. With member responses recorded

for both calculations, the results of subsequent stick frame

modal analysis can be applied twice to obtain the net member

response of all floor members. Floor system member response

is obtained from two separate scaling processes, rather than

the one described for symmetric frames. These processes

must be algebraically summed to obtain a net estimate of the

space frame member responses. To perform this algebraic

summation, the effective modal frame displacement pattern

must be cautiously examined to evaluate whether positive or

negative floor spring moments are appropriate. This caution is

necessary because modal combination generates only positive

values of force and displacement. Appropriate dispiacement

patterns are not obvious from results of mode combination

procedures. These procedures predict only the peak (positive)

magnitude of each displacement. Appropriate signs for these

magnitudes were found by deducing displacement patterns

consistent with column shear forces and essentially rigia

flcor diapnragm displacements.
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Eccentric loading of frames

For eccentrically loaded frames, two static calculations

provide individual column node rotational stiffness in two

horizontal directions. In addition, a static space frame

analysis of the full structure subjected to pure torsional

loading (described in detail above) provides an effective

torsional column stiffness for stick frame analysis. With

member responses retained for all three of these static

calculations, results of the subsequent stick frame modal

analysis can be applied three times to obtain the net member

response of all floor members.

Algebraic combination of static two-dimensional calculations,

used to determine effective horizontal torsion member

stiffnesses, may be carried out as described above. The

results of the static space frame calculation may be scaled by

the ratio of net effective stick frame column torque acting

above and below the floor of interest and the applied torque of

the static full space frame calculation. Appropriate algebraic

combination of all three floor system responses provides an

estimate of three dimensional dynamic response. Again,

because of the ambiguity of sign in modally combined

parameters, the sign of floor spring and column torque must be

ndeoendently deduced as described above.
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Static Space Frame Estimate of Forces and

Displacements (Equivalent Portal Frame Loading)

An estimate of all superstructure forces and displacements

can be computed by applying an equivalent static load at the

center of rigidity of each floor of space frame model. The

equivalent static shear loads are taken to be the difference

Detween the shear in the portal frame columns above and

below the floor for which differential loading is to be

computed. The equivalent static torque load is taken to be the

difference between the torque in the portal frame columns

above and below the floor for which differential loading is to

be computed. The direction (sign) of the equivalent shears and

torques may be determined from the directions of column

deflection and rotation in the portal frame model.

SUMMARY OF CALCULATIONS PERFORMED

Structures Loaded Parallel to a Single Plane of

Symmetry

A matrix of 52 stick frame and space frame calculations were

performed for doubly symmetric frames loaded in a plane of

symmetry. As detailed in Table 2.1, the parameters studied

included: number of floors, soil shear wave velocity.

earthquake spectral veiocity distribution and intensity, and

floor plan aspect ratio. In addition to this basic matrix,

several calculations evaluated response of simple massless
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Table 2.1 Loading in a plane of symmetry

N floors Aspect Ratio (x:z) Earthquake Vs (fps)
(1:1 1:1.75 1.75:1) (E - C M - C) (500 1000 1500)

3 X x x
5 X x x
10 X x x
15 X x x
20 X X X

3 X X X
5 X X X

10 X X X
15 X x x
20 X X X

3 X X X
5 X X X
10 X X X
15 X X X
20 X X X

3 X X X
5 X X X
10 X x x
15 X x x
20 X X X

3 X X X
5 x x x
10 X X X

3 X X X
5 X X X

10 X X X
3 X X X
5 x x x

10 x X __X

3 X X __X5 x x ix

10 x x x

= - ___________________________ii ii • • •____________________
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mat foundations, with no superstructure, in order to

demonstrate the quantitative similarity of this calculational

procedure compared with analytical examples from the

literature. Also one transitional calculation evaluated the

response of a five story frame with a square floor plan,

overlying soft soil (500 fps). This frame included an

effectively rigid mat supported by two simple soil springs

resisting horizontal and rocking motions.

The design of each doubly symmetric frame proceeded in the

following manner. Each structure was subjected to an

equivalent horizontal static loading, as described in the ANSI

A58.1-1982 (3) building code. Space frame analysis was

performed repetitively with trial beam and column sizes, to

determine members designs consistent with horizontal frame

deflection requirements of ANSI A58.1-1982 and combinea

stress requirements of AISC steel building code of 1978 i40).

A similar check of the beam and column selection process was

performed for gravity loads, and bounding forces for each

member were derived from superposition. Member sizes were

then upgraded as needed to limit combined stresses. The

concrete floors were not detailed, but the floor thickness was

selected to insure compliance with the ACI 318-83 9)

concrete building code reouirements for static slab deflection.

The concrete mat thickness was also selected in accoraing
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with ACI 318-83 consistent with the design philosophy

described below.

Table 2.2 summarizes the structural design details for all

structures of this study. In each point design, floor systems

included moment resisting beams spanning both principal

directions between columns. Column lay out for all doubly

symmetric structures provided for a central beam span of 20

feet, with exterior beam spans of 30 feet. All structural steel

designs assumed a minimum yield strength of fy = 36 ksi.

Floor slabs supported a total of 100 psf (distributed inertia

with no gravity). Floor slab depth was 8.25 inches, sufficient

to prevent excessive static deflections under a distributed

gravity load of 50 psf dead load and 50 psf live load. To

simulate the effects of negative bending on a composite

beam/slab system, the vertical location of the beam center

varied linearly with distance from the column location. At

column nodes, the beam center and slab center coincided,

simulating the reduced section properties of a slab cracked in

negative bending. At distances of ten feet or greater from

column

nodes, the beam center displaced below the slab center, so the

'oo of the beam coincided with the bottom of the slab at node

;ocations.



Table 2.2 Structural details

Total Stories Floor Range Columns Floor Range Beams

3-3 STl 2x1I2x.375" 1 -3W21 x62

5-5 W1 2x72w/.5" 1 -5W21 x62

1 0 W--5 W2xl 36w/.625" I--lO W21 x621
_________ 5_-l0 W1 2x72w/.5" ___________

0______ 1--_5 W1 2x210Owl 1.0" 1-SW21 x681
________ _10-l W12x136w/.625" 6-15S W21x621
________ 1 1_-15 Wl 2x72w/.5"____

20 1 -- 5 W1,2x252w/i.25" 1-_i Y21 xt8
_______6--1 W1 2x2l Ow/1.0" 11-- 20 W21 x62
___________11--15 W1 2x 136w/.625"____

16-20 W1 2x72w/.5" _____ ___

*refers to built-up section W12x72 with .5" plates spanning in
web direction at edges of flanges to effectively form a tubular
section with two compartments.



Mat foundation designs insured concrete alone would be

sufficient to resist punching shear. In designs controlled by

bending forces, steel percentages slightly exceeded Pmin=.005,

based on Grade 40 reinforcement. For the 3, 5, 10, 15 and 20

story structures, mat depths were 22, 25, 36, 45 and 54 inches

respectively. All concrete material Properties derived from an

assumed compression strength of fc'=3 ksi for normal weight

concrete.

Structures Loaded in Arbitrary Directions with Self-

Induced Torsion Possible

A total of six space frame calculations and eleven stick frame

calculations were performed to assess the ability of the portal

frame model to predict the response of frames subject to self-

induced torsion. Three of four structures examined were five

floors in height, one was ten stories in height with the top

five floors set back by one thirty foot span in the x direction.

All structures rested upon soft soil (vs=500 fps) and were

subjected to the El Centro velocity spectrum described above.

The first soace frame and stick frame calculations predicted

response for the square, doubly symmetric floor plan

previously detailed. This structure was loaded along a

horizontal direction oisecting the principal axes of the plan

(see Figure 2.9 for plan views described in this section). The
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Figure 2.9 Doubly symmetric, mono-symmetric, and

asymmetric floor plans with soil loading directions
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purpose of this comparison was to identify any unexpected

interactions which might be produced in extending the portal

frame model to include two orthogonal torsional "floor"

springs per floor location.

A space frame and two stick frame calculations were

performed for a square, mono-symmetric floor plan in which

bay widths were rcarranged In e x airection co produce

eccentricity between the center of rigidity and the center of

mass. This structure was loaded in the z direction to induce

maximum torque. The two stick frame calculations for this

structure differed in their distribution of effective column

torsional stiffnesses. One portal frame calculation used a

uniform vertical distribution of torsional stiffness (obtained

from eq. 2.14). The other portal frame calculation scaled

torsional stiffness at each floor based on the torsional

response of a static space frame calculation, as described

previously. This more elaborate distribution used middle floor

stiffnesses equal to the average of those obtained for the full

structure static analysis described above. Transition floor

stiffnesses were equal to those of the full structure static

stiffness distribution. These portal frame options in torsional

stiffness distribution were exercised for each eccentric load

case to follow.
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These last three calculations were repeated with loads in a

horizontal direction bisecting the principal axes of the floor

plan. Since the structure stiffness varies significantly

between the x and z directions, this loading was taken to be in

a representative arbitrary direction.

A structure with significant setback conditions was created

by extending the mono-symmetric design (described

immediately above) to a height of ten floors, but omitting the

thirty foot end span in the x-direction. This structure was

loaded in the z-direction for maximum torsional response. One

space frame and two portal frame comparisons were made in

the manner detailed above.

A five story L-shaped floor plan was created to assess the

ability of the portal frame model to predict the response of

asymmetric floor plans. One space frame and two portal frame

comparisons were made in the manner detailed above using

COC modal combination, with the first eigenvector of the

portal frame calculations multiplied by -1, to match the shape

of the corresponding space frame eigenvector. These three

calculations were repeated using SRSS modal combination to

overcome problems of reversed mode shapes between moael

types for this structure (see Ciapter III for details).
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For all frame designs described above, the steel and concrete

strengths, mat thicknesses, and member sizes match those

described earlier for doubly-symmetric structures of the same

height.
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CHAPTER III

RESULTS OF PRELIMINARY INVESTIGATION OF

SOIL-STRUCTURE INTERACTION

PRELIMINARY SOIL MODEL VERIFICATION

To ascertain the !imits of accuracy of the proposed method of

soil-structure interaction analysis with flexible mat foundations

supporting frame superstructures, several simpler calculations

were compared to published results. These calculations

simulated analytic investigations for rigid massless mats resting

upon a linear soil half-space, Dobry and Gazetas (14), as well as a

flexible massless mat resting upon a linear soil half-space,

Whittaker and Christiano (56). For both types of calculations,

elements with high axial stiffness in the vertical direction, but

low lateral stiffness, linked adjacent mat and soil nodes. This

arrangement simulated a frictionless soil-mat interface. In all

cases, a pair of vertical concentrated loads of equal magnituce

and opposite direction applied a harmonic couple to the mat. This

force couple acted at middle third points along an ax;s of

symmetry of each mat.

For "-,e ricc mat comparisons. the range cf mat asoect ,atcs

soi shear Wave veicciltes, and narmonic loadirg frecuenc:es

corresoonded c!osely with those selected for the frame buildings

of this research. Equivalent rocking s:rng Stif" nesses anc



dashpot viscosities resulted from summing the products of

individual vertical spring stiffnesses and dashpot viscosities

with corresponding moment arms about the center of each mat.

These rocking spring stiffnesses and dashpot viscosities where

then compared directly with values computed from

recommendations given by Dobry and Gazetas (14). As detailed in

Table 3.1, greatest accuracy in rocking stiffness (relative to

Dobry and Gazetas recommendations) resulted for square mats on

stiff soil (v,=1500 fps). For mat aspect ratios above or below

1:1, and for softer soils, errors increased from a minimum of -.5%

to as much as 35%, compared to stiffness values obtained from

the published recommendations. As will be shown below, errors

of this magnitude influenced response of the structural frames

only slightly. However, the proposed technique grossly

overestimated dashpot viscosities. In a separate series of

calculations (see Figures 3.1 and 3.2), a square rigid mat of

width b) with insignificant mass was supported by soil of

stiffness such that:

V, = 500 fps

and Lis = .333

TnIs mat was subiected to a rance of loacing frequenc:es. As a, =

,,jo,v- increasea, the viscosity approachec acceoted values. E'or-,

and Gazetas (14), only for frecuencies i w) mucn mgner -11an tre
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Table 3.1 Comparison of overall rigid mat rocking stiffness
(computed from proposed soil model) to Dobry and Gazetas (14)

recommendations

Mat/Soil Identifier Ky Proposed Ky Dobry and Gazetas Difference
(see key below)* (kip-in/rad) (kip-in/rad) (% )
3/1:1/0500 4.711E12 3.833E12 22.9
5/1:1/0500 3.960E12
10/1:1/0500 4.130E12
15/1:1/0500 4,170E12
20/1:1/0500 5.080E12 4.174E12 21.7
3/1 :1/1000 1.630E13
5/1:1/1000 1.650E13
10/1:1/1000 1.670E13
15/1 :1/1 000 1.700E13
20/1:1/1000 1.700E13
3/1:1/1500 3.857E13 3.767E13 2.4
5/1:1/1500 3.800E13
10/1 :1/1 500 3.880E13
15/1:1/1500 3.880E13
20/1 :1/1500 3.862E13 3.881E13 -. 5
3/1:1.75/0500 7.826E12 5.832E12 34.2
5/1:1.75/0500 6.030E12
10/1:1.75/0500 8.321 E12 6.352E12 31.0
3/1 :1.75/1500 6.318E13 5.712E13 10.6
5/1 :1.75/1500 5.770E13
10/1 :1.75/1 500 6.310E13 5.832E13 8.2
3/1.75:1/0500 1.659E1 3 1 .260E13 31.7
5/1.75:1/0500 1 .320E!3
110/1.75:1 /0500 1.780E1 3 1.395E13 27.6
3/1.75:1/1500 1 413E!4 I 282E14 10.2
5/1.75:1/1 500 _ 1.310E14
1 0/1.75:1/! 500 1 .398E1, I 1.323E14 5.7

Identifier Key: (Total Floors/Mat Aspect Ratio/Soil vs)

Note: Comparisons were selected to represent the range of story
heights (soil-structure fundamental frequencies) and sonI
stiffnesses (soil shear-wave velocities) for each mat asoect
ratio examined in this study.
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fundamental modes of low-rise frames. Subsequent frame

calculations neglected radiation damping due to rocking for two

reasons. First, these values are typically small (see Vaughan and

lsenberg (50) for one careful estimate of 2.5% of critical damping

for the fundamental mode of a very rigid structure). Second,

radiation damping could not be reliably computed by the proposed

model. However, substantial viscous material damping (10% of

critical) was allocated for the equivalent soil springs. For

cohesionless soils with the structural properties described

above, this level of material damping correlates with maximum

shear-strain levels in soil of about .01 (see Seed, Wong, Idriss,

and Tokimatsu (38)). These moderately non-linear strain levels

were used here to approximate the overall material damping of

the entire affected soil region. Given the rocking action of the

structure, maximum soil strains would be expected to be greatest

near the mat and least near the far-field soil boundary. Given

that linear analysis is implemented in all calculations of this

research, the above assumptions of global viscous damping in the

soil are a first order approximation, which attempts to introduce

a reasonable level of soil damping without requiring higher order

analysis. In fact, the effective damping ratios for the more

important modes of each analysis (greatest mode coefficients--

see Appendix D) were dominated by damping in the steel columns.

The bulk of the soil-structure strain energy was concentrated in

the columns. Consequently, the effective soil-structure damping
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for each calculation was slightly more than 2%, the value

prescribed for the columns. Rigid mat calculations provided an

insight into the sensitivity of overall rocking response in the

frame due to errors in the soil model, but did not assess the local

error in force distribution within the mat foundation.

By comparing published data, a typical error range for mat

deformations and force distributions was found for the proposed

soil-structure interaction mode!. The complex quotient of force

over displacement intensity functions, given by Whittaker and

Christiano (56) for a square flexible mat with insignificant mass,

was used to determine equivalent spring intensities for selected

points along a line of symmetry parallel to the loading plane.

Spring values along this line of symmetry were divided by the

corresponding tributary areas to determine average spring

intensities for the region. Thus, independently derived

distributions of stiffness intensities were compared for three

values of soil stiffness (see Figures 3.3 to 3.6 for distributions

of k and wd). The error in stiffness intensities increased with

decreasing soil stiffness. Peak errors at perimeter nodes

approached 30%. The qualitative distribution of soil stiffness

intensity is iccurately reflected by the proposed method in all

calculations.
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In addition to the model verification tests performed above, a

simple check was made of the relative accuracy provided by a

quarter-space bounded by planes of symmetry and anti-symmetry,

compared to a half-space bounded by a plane of symmetry.

Imposing these constraints as described in Chapter II, a very

simple soil island of low fidelity (few soil elements with

extremely large aspect ratios--see Figure 3.7) grossly over-

estimated overall rocking stiffness. However, relative

comparison of results between models was quite good. Comparing

the quarter-space model to the half-space model for two values

of ao (.29 to 1.15), individual vertical link forces were not more

than 2.2% low for the lowest values of ao, but varied in sign and

magnitude, by as much as 2250%, for the highest values of ao.

Individual vertical displacements of mat nodes were not more

than .3% low for the lowest values of ao, but were more than

90.4% low for the highest values of ao. The break down in fidelity

for the highest values of ao resulted from computation of

extensive negative forces in the links with the quarter-space

model. These negative forces were not representative of actual

contact stresses in a rigid slab, (see Whittaker and Christiano

(56)). They occur much less frequently and are of much lower

magnitude in the half-space model. Consequently, comparisons of

overall rocking stiffness were .3% low for the lowest value of ao,

and 79.7% low for the highest value of a,. A survey of link force

distributions for two intermediate values of ao (.58 and .86)
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Figure 3.7 Simple comparison models
half-space and quarter-space)



disclosed no negative link forces for either the quarter or half-

space models. A gradual divergence of force magnitudes occurred

between the two models, with maximum disparity at nodes near

the rocking axis. Link forces at nodes farthest from the rocking

axis, which contribute most to overall -ocking stiffness, were

not more than 9.6% low for the quarter-space model (for ao = .86).

These observations suggest that both models degrade for high

values of ao, with results for the quarter-slab model being far

worse at these highest frequencies. Soil stiffness is Probably

underestimated for high frequency modes; however, even for the

course model presented here, differences in response between ihe

quarter and half-space models were not great at moderate to low

values of ao. For comparison, the computed fundamental mode

frequencies of the soil structure systems investigated in this

study will be shown not to exceed 1.3 Hz for square mat

structures on soft soil (see Chapter IV). This fundamental

frequency corresponds to a maximum value of .25 for ao. Only

high, and relatively isignificant, modes may be expected to be

greatly affected by errors introduced in assuming anti-symmetry

conditions for the quarter-slab model. Also, Figure 3.8

demonstrates good comparison in the horizontal soil deflection

profile along the negative y-axis nodes of the quarter and half-

space models. The partial boundary conditions imposed by the

assumptions of anti-symmetry appear sufficiently accurate for

the proposed analysis. The resulting model simplification is
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Figure 3.8 Comparison of soil deflection
profile (ux) below mat center for quarter
and half slab calculations (ao=.29)
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justified by significant computer cost savings.

FRAME STRUCTURES WITH FLEXIBLE MAT FOUNDATIONS

EXCITED ALONG A PLANE OF SYMMETRY

Foundation Response and Interaction Effect

Appenidix C contains profiles for equivalent soil springs for a

representative sample of frame structure calculations (13 of 34

flexible mat calculations). In general, these spring distributions

approximated values for rigid slabs, Dobry and Gazetas (14), when

comparing results for taller frames with thick mat foundations

supported bv soft soils. As the mat to soil stiffness decreased,

these spring distributions became more complex in profile.

Negative spring values were often large. One difficu!tv in

assessing physical significance of these springs results from the

fact that the equivalent spring technique forces a finite numbei

of independent vertical soil springs to represent the diverse

interaction of a three-dimensional volume of soil elements. In

the limit, a soft mat may be thought of as a film (with no bending

stiffness) adhering to the surface of a solid half-space. If a

concentrated vertical uplift were appiied to this surface within

the region of the film. Ahlvin and Ulery analysis (see Yoder and

Witczak (60)) demonstrates that the deflected prcfile of the ;iim

and half-space subface would be upward very near the !cad, but

downward due to Poisson eifects (resistance to volume changei

away from the load. The opposite was true for a compressive

ii - ii Ii



80

vertical loading. To produce this deflection reversal away frcm

the load with a distribution of independent vertical springs,

springs in the region of this reversal were required to be of

negative magnitude to simulate the influence of lateral soil

tension tending to resist an excessive increase in soil volume

(see Figure 3.9). Positive equivalent soil spring stiffness tended

to increase toward the mat perimeter and at column nodes.

Negative equivalent soil springs were greatest at or near the mat

perimeter but away from columns. The principal benefit of

identifying and implementing equivalent soil springs by the

proposed technique was to reduce calculation effort for multiple

loadings.

Appendix B contains vertical mat deflections for each of thirty-

four frame structure calculations. Several generalizations

emerge from this data. First, the qualitative distribution of

displacements approached those of a rigid slab for softer soils

and taller structures requiring thicker foundations. Whittaker

and Christiano (56) express the influence of relative soil to mat

stiffness for flexible, massless, square mats in terms of the

stiffness ratio:

Eh3( 1 j s
K=

12(1-.Up2)G5(b)3
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lateral soil tension undeflected surface---I ----- --------- ---..... .... ......... ............ .

* negative surface deflection- -lateral soil tension

component and lateral mat membrane tension
effect exceeds positive vertical soil tension
and positive vertical mat membrane effect

*4 positive surface deflection-- uplift dominated

Membrane on effective vertical springs:
T +

mat membrane tension- I undeflcted surf,, e

. ** * I

* negative surface deflection--large negative springs
produce moderate negative deflection in response to
slight positive vertical membrane force component

** positive surface deflection-- uplift dominated

Figure 3.9 Interpretation of negative equivalent springs
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where E, 4p., b and h are the elastic modulus, Poisson's ratio,

width and thickness of a square mat, and Gs and Ls are the shear

modulus and Poisson's ratio of the soil.

This stiffness factor was also a strong indicator of the response

of mats with appropriate mass supporting flexible frames in the

present study. As values of K decreased, multiple reversals of

mat curvature and direction of deflection resulted. For these

relatively soft mats, maximum upward displacements in the

uplifted half of the mat occurred at columns. Mid-span mat nodes

were relatively small, or even downward, on the uplifted half of

the mat. The modal combination method, square root of sum of

squares (SRSS), used to evaluate all of the flexible mat

calculations, generates only positive values of all parameters.

Regions of negative displacements were inferred from the

deflected mat shape in harmonic loading analyses performed to

assess the appropriate equivalent soil springs for these

structures. In order for the computed soil spring distribution to

be valid, the approximate deflected shape of the mat must be very

similar for both harmonic and earthquake loadings. This

similarity was generally the case, except in areas of negative

deflection in the harmonic load response. In Appendix B. the

dasned line profile in the z-axis view represents the deflected

shape along the mat centerline arising from harmonic loading.

These harmonic deflections arc norma ize sucih that
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displacements along this profile are identical at the mat

boundary (b). At points along this prcfile where the harmonic

defections are negative, the earthquake deflections also are

negative. A profile view of harmonic displacements in the x-axis

direction was also displayed for each calculation represented in

Appendix B. The specific line of nodes graphed for these harmonic

deflections varied with mat aspect ratio so as to present

maximum negative displacements.

In two of the thirty-four calculations presented in tnis context,

the deflected earthquake shape differed radically from that

computed for harmonic loading. In these two instances,

10/1 :1/1500/E-C and 10/1.75:1/1500/E-C, interior mat

deflections were excessively high. The source of error was not

identified for these cases. These particular structures have

identical loading, soil conditions and profiles when viewed from

the z-axis, perpendicular to the direction of loading.

The mat vertical displacement profiles were nearly identical in

shape for comparisons between El Centro and Mexico City

oarthluake loadings. Despite extreme variations in frequency

versus energy distributions betwee,, ihese Icads only the

amplitudes, and not the deflected shapes, were affected

significantly.
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The presence of negative deflections on the uplift side of the mat

for twelve of the thirty-four flexible mats is troublesome, and

may point to a significant limitation of the proposed model in

such cases. ,-or these calculations, continuity was enforced at all

link locations. Tensiie separation of the mat from the soil,

though physically possible, was nct allowed. Within the limits of

linear material response, this enforced continuity accurately

represented the response of mats with significant, but finite,

stiffness subjected to a vertical compression load. Continuity of

the soil-structure interface is less likely in response to uplift.

If mat separation should occur, a significant redistribution of

mat forces and displacements would result. As shown by

Psycharis and Jennings (35), a corresponding decrease in overall

rocking stiffness could occur as a result of such a redistribution.

Also, potentially significant vertical acceleration must be

considered with uplift.

Superstructure Response (Net Column Forces and

Deflections)

Although the distribution and magnitude of forces and

displacements in the mat foundation were greatly affected by

soil stiffness, superstructure response changed by no more than

ten percent as the shear wave velocity increased by a factor of 3

(soil stiffness bv q fqctor 'M ON Ft . us Z .. nd ,3 11 -pseit a

typical comparison of space frame calculations for identical
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structures supported by soils of varying stiffnesses. Increasing

soil stiffness generally produced small increases or decreases in

superstructure response depending upon the specific earthquake

and structure height. The specific design of the superstructure

had less bearing on the direction of change in response than

either specific earthquake character or structure height.

Three calculations were performed in which the doubly

symmetric five-floor frame was given an essentially rigid mat,

but equivalent soil spring distributions were developed in the

manner described above. The soil stiffness was adjusted with

each run (Vs = 500, 1000, and 1500 fps). The differences in

horizontal roof displacement decreased with increasing soil

stiffness. The rigid mat values ranged from 3.6% high to .8% high

compared to baseline flexible mat calculations. Similarly, base

shear differences decreased with increasing soil stiffness. The

rigid mat values ranged from 2.8% high to 2.3% high compared to

baseline flexible mat calculations.

A single rigid mat calculation was performed for this same

doubly symmetric five floor frame using the essentially rigid mat

and substicuting the pair of soft soil (vs = 500 fps) horizontal

translation and rocking soil springs as recommended by Dobry and

Gazetas (14). These springs were attached to the mat foundation

at the center of mass nude. in this calculation, maximum roof
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displacement was .5% higher than the baseline flexible mat

calculation--base shear was 1.4% higher.



CHAPTER IV

RESULTS OF SIMPLIFIED DYNAMIC
PORTAL FRAME MODEL

SUPERSTRUCTURE RESPONSE OF FRAMES LOADED IN THE

DIRECTION OF AN AXIS OF SYMMETRY (PRIMARY FORCES

AND DISPLACEMENTS)

The space frame results of the previous chapter provide a

baseline for measuring the performance of the simplified portal

frame model In Appendix A, superstructure response is

summarized for eleven frame structures with flexible mats

supported on the softest soil type considered (vs=500 fps). These

results include horizontal floor deflection and total column shear

for the full range of floor plans and story heights investigated.

Each graph presents the results for: (a) a space frame calculation

with flexible mat and linear soil volume; (b) a traditional shear

building calculation with floor joints fixed against rotation; (c)

the proposed portal frame model. This proposed model

incorporated soil flexibility (see Wolf (58) for typical

implementation), as well as floor system flexibility (based on

assumptions of portal frame analysis). Figures 4.1 and 4.2

demonstrate the relative accuracy of these two stick models in

approximating the fundamental frequency of the space frame

calculations. While the shear building model error increasec

roughly linearly with height from 9 to 206% in the range of 5 to
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20 floors for a square floor plan, the error in the portal frame

remained relaiveiy constant (3 to 5%). For a bounding

comparison, response of building 5/1:1/0500/E-C was computed

using a conventional canti3ver model, with floor nodes

unrestrained against rotation. The fundamental frequency for

this structure was .159 Hz, roughly 84% below that of the space

frame model. Figures 4.3 and 4.4 provide an expanded comparison

of modal frequency error for the proposed model. The oortal

frame model provided improving accuracy for at least the first

three additional significant modes, with the exception of the

highest frequencies of the three flocr structures. In these very

short structures, Lhe hi,',est mode shown was only marginally

significant and was the not the same mode selected as

significant in the space frame calculation. Thus the apparent

error in frequency calculation was really duE to differences in

computed modal significance between the two calculations.

There was little resemblance between the modal frequencies

computed for the higher modes of the shear frame analysis and

the space frame analysis. All higher mode frequencies of this

traditional stick model analysis were very high compared to the

space frame analysis.

Figure 4.5 compares ANSI A58.1 (3) data on fundamental

frequency responses for a representative steel frame structure to

the computed fundamental frequencies of this investigation.
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Frequencies for these representative frames were determined

from direct field measurements. The computed frequencies for

space frame and portal frame calculations fell in the mid range of

this field data. Frequencies computed by the shear beam model

were clearly too high. Again, errors for the shear beam model

increased dramatically for taller structures. In the one case

examined (5/1:1/0500/E-C), frequencies computed by the

cantilever beam model were grossly low.

Figures 4.6 and 4.7 compared horizontal floor deflection and total

column shear for structure 5/1:1/0500/E-C. For this single

example, the results of space frame, portal frame, shear building,

and cantilever building models are compared. This comparison

clearly demonstrates the beneficial effect of carefully

representing the flexibility of individual floor slabs. For the

selected design, both deflection and shear are broadly bounded by

perfectly rigid floor slab (shear building) and perfectly flexible

floor slab (cantilever beam) assumptions. In Appendix A,

horizontal floor deflection and total column shear are compared

for the space frame, shear building , and the proposed portal

frame analyses. Cantilever building frame analysis is not

presented for these comparisons because the floor systems

selected for this research are relatively flexible. These

comparisons complement the findings of the frequency

comparisons stated above. The traditional shear building model
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was more stiff than the space frame model. Horizontal

deflections with this model were too low, and column shear

forces were too high with the EI-Centro loading (which, as

demonstrated in Chapter I, has a code-like spectral distribution

of pseudo-velocities). For very low frames, this error would be

acceptable for many design applications, but the differences grew

to less acceptable levels for structures of ten floors or more. An

important exception to this trend occurred in structures

subjected to the Mexico City earthquake. For this loading, the

largest pseudo-velocities were restricted to a relatively narrow

band of frequencies (loading band). In the shorter frames (3 to 5

floors), the shear building and space frame calculations

responded to similar pseudo-velocities for the fundamental mode.

Here, the shear forces in the shear building model were

significantly larger, as described for the El Centro loading. For

the taller structures, differences in shear building and space

frame fundamental frequencies were of the same order magnitude

as the width of the loading band. Consequently, while the space

frame calculations were responding to peak pseudo-velocities in

the middle of the band, the shear building model responded to

much lower pseudo-velocities at frequencies above the loading

band (see Figures A.15 to A.18, ten and fifteen floor structures,

square floor plan). For these structures, the shear building model

grossly under-predicted the column shear forces. In the twenty

floor structure, the space frame calculation was responding to
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pseudo-velocities near the low frequency edge of the loading

band. In this case the shear building model was responding to

roughly similar pseudo-velocities at the high frequency edge of

the loading band. Here, shear forces were again greater in the

shear beam model.

The portal frame calculations provided good approximations of

superstructure response for all soil types, loading, floor plans,

and frame heights examined. Although maximum variations from

the space frame horizontal roof deflection and total base column

shear ranged from -15.5% to 21.6%, it was just as common for

these comparisons to overlie each other. For horizontal roof

deflection and total base column shear, average errors were -3.5

to 4.0% respectively. The modal frequency accuracy of this model

prevented complications with the narrow loading pulse of the

Mexico City earthquake. Horizontal deflections and column shears

from this portal frame model were greater or less than those of

the space frame model with roughly equal frequency. The amount

and distribution of error found in these dynamic comparisons

were consistent with typical comparisons of exact and

traditional portal frame analyses for two-dimensional static

analysis.



SUPERSTRUCTURE RESPONSE OF FRAMES LOADED IN THE

DIRECTION OF AN AXIS OF SYMMETRY (INDIVIDUAL MEMBER

FORCES)

A technique for combining results of the portal frame analysis

and extended member output from static space frame floor

analysis (refer to Chapter II) was carried out for sixteen

structures supported on soft soil (v,=500 fps) to obtain ,ocatt.0 ..

and magnitude of maximum member forces of interest. These

forces included total column moment and shear, as well as

maximum beam moment, shear, and torque for each member size

used in a given frame. Mean error with standard deviation for

these forces, relative to corresponding space frame forces, are

summarized in Table 4.1, along with comparisons of maximum

base shear and horizontal roof deflection. Table 4.2 provides a

summary of this data. Errors for individual member forces

typically were larger than for total base shears and roof

deflections. However sufficient accuracy remained for many

design applications. Greatest individual errors were positive,

tending to overestimate member forces. The largest errors,

exceeding +30%, occurred most frequently for smaller member

sizes in the upper floors of a structure. Standard deviations for

all errors of a given member selection and force type did not

exceed 15%. Mean errors for all parameters surveyed range from

-3.5 to 11.1%. Similarly, mean standard deviations ranged from

7.2 to 16.2%.
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Table 4.2 Summary comparison of important response values
from space frame and portal frame analysis

Response Type Identifier Mean Standard Deviation
N°_) N%)

Roof Deflection -3.5 7.7
Base Shear 4.0 8.4

Maximum Column Shear 5.4 11.2
Maximum Column Moment 9.6 10.2

Maximum Beam Shear -2.4 16.2
Maximum Beam Moment 7.1 12.5
Maximum Beam Torque 11.1 10.5
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In addition to the maximum beam forces, maximum individual

column shear was determined by use of equation 2.15 for each

comparison of Table 4.1. Maximum individual column shear

estimates from portal frame analysis were on average 5.3%

higher than corresponding space frame values. The standard

deviation for this error was 7.9%.

Figures 4.8 to 4.10 summarize errors in locating the position of

the maximum member forces relative to those obtained from

space frame calculations. Columns with maximum shear and

moment were located correctly for all calculations. Maximum

shear occurred at the first floor (and at the first transition floor)

for columns. Maximum column moment occurred in one of the

first three floors, with higher locations in taller structures.

Beam shears were often highest, and nearly equal, at two

locations in each floor plan. The combined analysis method

incorrectly identified peak shear at the secondary maximum

position in about 15% of the cases (maximums for each beam

size). Similar errors occurred more frequently in selecting

maximum beam moment locations (54%) and maximum beam

torque (62%).
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ECCENTRIC FRAME STRUCTURES WITH RIGID MAT

FOUNDATIONS EXCITED IN HORIZONTAL DIRECTIONS

INSURING SELF-INDUCED TORSION

Preliminary Non-Symmetric Horizontal Loading of a

Doubly Symmetric Frame

Prior to extending the portal frame model to include torsion

effects, the technique of approximating floor stiffness effects

with a single torsional spring was extended for loads applied in

an arbitrary direction. Aligned along the principal axes of the

columns, a pair of torsional springs proved sufficient to provide

this enhancement (see Chapter III). Given the very limited effect

of mat flexibility upon superstructure response for

symmetrically loaded structures described above, rigid mat

approximations were considered adequate for all subsequent

space frame calculations. Portal frame and space frame

calculations of the response of a single five-floor doubly-

symmetric frame of square floor plan confirmed earlier

observations. Responses of this structure and subsequent

eccentric structures are summarized in Table 4.3. Appendix A

provides graphic profiles of deflected shapes , as well as shear

and torque. The first three pairs of portal frame modal

frequencies ranged from 3.6 to 4.1% higher than those obtained

from space frame calculations. In the principal directions, base

shears averaged 10.4% high and horizontal roof deflections

averaged 4.7% high in the portal frame model. No signficant
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torsion developed in either model. This comparison suggests no

additional complications result from arbitrary loading directions,

so long as torsion is slight.

Non-Symmetric Horizontal Loading of Mono-Symmetric

Frames

To assess the response of a relatively simple frame to self-

induced torsion with the extended portal frame technique

described in Chapter III, a mono-symmetric frame of square floor

plan was selected. This frame was loaded in two horizontal

directions (at 900 and 450 to the axis of symmetry) in separate

calculations. For this comparison, and all comparisons of this

section, two portal frame calculations were performed (one with

a vertical distribution of torsional stiffness proportioned to

results of a full space frame analysis, and one with a uniform

stiffness distribution determined from eq. 2.14). These portal

frame results were so similar for the mono-symmetric

structures of this section that only the simplified analysis is

reported in detail here (see Appeidix A for comparisons of

different portal frame analyses).

The 900 loading (referred to as 5/1:1E/0500/E-C{O,1} in

Appendix A) generated maximum lateral-torsional response.

Comparing portal frame and space frame responses for this

loading, portal frame frequencies were 2.9 to 3.2% high for modes
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1, 3 and 7 (dominated by combined lateral and torsional response).

Similarly, frequencies were 6.1% and 1.3% high for modes 3 and 6

(dominated by torsional response). In the direction of !cading,

horizontal roof deflection was 3.4% high, base shear was 8.5%

high, and base torque (at the st,?,tk.i center of rigidity) was 3.7%

high for the portal frame calculation.

For the 900 loading only, forces and displacements were also

determined by the method of equivalent static portal frame

loading applied to a space frame model of the structure (refer to

Chapter II). The equivalent portal frame forces for this

calculation were obtained from a portal frame model based on the

simple stiffness estimates of equations 2.8 and 2.14. Horizontal

roof displacement in the direction of loading, determined by this

method, was 6.0% greater than in the corresponding portal frame

analysis, and 10.5% greater than- in the corresponding dynamic

space frame ana ,'sis. Primary structure forces correlated

exactly with those of the dynamic portal frame model (from

which the equivalent static space frame loads are derived).

Maximum member forces were compared between the static and

dynamic space frame analyses. Maximum shear and moment (in

both principal directions), axial force, and torque for columns and

beams averaged 19% higher in the static space frame with a

standard deviation of 11.2%. The higher maximum forces in the

static space frame are partially explained by differences in
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modal combination between the dynamic portal frame model and

dynamic space frame model. As explained in Chapter II, portal

frame column torque was determined for each significant mode

prior to CQC modal combination. The resulting dynamic portal

frame base torque, for instance, is 14.2% greater than the base

torque determined directly from COC column shears and torques

of the dynamic space frame analysis.

Very similar frequency errors were noted for the 450 loading

(referred to as 5/1:1E/0500/E-C{1,1} in Appendix A). Independent

lateral modes were added for motion parallel to the plane of

symmetry (in the x-direction). Portal frame roof deflections

were 4.1% high in the x-direction (3.5% high in the z-direction).

Portal frame base shears were 4.1% high in the x-direction (7.0%

high in the z-direction). Base torque error was 5.2% low in the

portal frame model.

Finally, a ten floor mono-symmetric frame with the top five

stories set back thirty feet (referred to as 10/1:1ESB/0500/E-

C{0,1} in Appendix A) was loaded perpendicular to the axis of

symmetry. Comparing portal frame and space frame responses

for this loading, portal frame frequencies were 3.7 to 5.1% high

for modes 1, 4 and 7 (dominated by combined lateral and torsional

response). Similarly, frequencies were 9.0% and 4.7% high for

modes 3 and 6 (dominated by torsional response). In the direction



of loading, horizontal roof deflection was 10.1% low, base shear

was 2.2% aid base torque was 9.9% high for the portal frame

calculation.

Horizontal Loading of an Asymmetric Frame

An asymmetric frame of L-shaped floor plan (referred to as

5/3:2L/0500/E-C in Appendix A) was investigated by direct

application of the portal frame model, with the axes of column

moments of inertia and floor/soil springs not aligned with the

line connecting the centers of mass and rigidity of the structure.

The magnitudes of horizontal displacement and column shears in

the x and z directions were found to be qualitatively reversed

compared to space frame values. Torque was too low, and all

three parameters differed from the space frimrj vaiues by not

less than 25%. Subsequent investigation revealed the tendency

for small changes in lateral or torsional stiffness to cause a

discrete fluctuation between the two sets of results described

above. This fluctuation was generated in both the space frame

and portal frame models. This problem was traced to the

sensitivity of the COC modal combination to sign reversal in

combined eigenvectors. The first three mode shapes were

examined for this structure. The sign of the eigenvector of the

first mode, as computed by the Householder technique, was found

to be very sensitive to small fluctuations in structure stiffness.

The COC generated comparisons of this section and Figures A.50



through A.52 were made by artificially reversing the sign of the

first eigenvecior of the portal frame model. To further insure

that the problem described above was not the result of other

factors as well, the space frame and portal frame calculations of

this section were repeated using SRSS modal combination, which

is not sensitive to the sign of the eigenvector.

Comparing responses of the space frame and portal frame with

torsional stiffness varying with elevation, portal frame

frequencies were 8.2 to 6.4% high for modes 1, 2, 4 and 5

(dominated by combined lateral and torsional response).

Similarly, frequencies were 6.5% and 9.5% low for modes 3 and 6

(dominated by torsional response). For COC modal combination,

horizontal roof deflection was 18.6% low in the x-direction and

4.5% low in the z-direction. Base shear was 10.8% low in the x-

direction and 8.7% low in the z-direction. Base torque was 8.5%

hinh for the portal frame calculation. For SRSS modal

combination, horizontal roof deflection was 5.5% low in the x-

direction and 13.7% low in the z-direction. Base shear was 4.0%

high in the x-direction and 1.7% low in the z-direction. Base

torque was 3.3% low for the portal frame calculation.

Comparing responses of the space frame and portal frame with

uniform torsional stiffness determined by the approximate

method of eq. 2.14, portal frame frequencies were 8.7 to 9.8%



high for modes 1, 2, 4 and 5 (dominatec by combined lateral and

torsionI response). Similarly, frequencies were 2.7% high and

.5% low for modes 3 and 6 (dominated by torsional response). For

CQC modal combination, horizontal roof deflection was 17.5% low

in the x-direction and .7% high in the z-direction. Base shear was

8.8% low in the x-direction and 20.6% high in the z-direction.

Base torque was 8.0% low for the portal frame calculation. For

SRSS modal combination, horizontal roof deflection was 13.5%

low in the x-direction and 6.5% high in the z-direction. Base

shear was 2.3% low in the x-direction and 25.6% high in the z-

direction. Base torque was 18.0% low for the portal frame

calculation.
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CHAPTER V

CONCLUSIONS

PHASE 1 - PRELIMINARY STUDY OF SOIL-STRUCTURE

INTERACTION

Comparison to Published Data

In most respects the space frame model satisfied the preliminary

objectives of this research. This model provided good qualitative

representation of response features of the mat foundation.

Although overall soil rocking stiffness was high by as much as

one third for certain soil-structure combinations, these errors

did not prevent consistent and quantitatively justified details of

the response of the superstructure.

Compared to published analytical results of Dobry and Gazetas

(14), error in overall rocking stiffness resulting from soil and

mat interaction ranged from less than 1% error to as much as 35%

error. The error increased as soil stiffness decreased and mat

aspect ratios varied from 1.0 (square plan). Rocking stiffness

was assessed for approximately rigid massless mats excited by

harmonic couples aoplied at the fundamental frequencies of the

proposed structures. For a given mat, the amount of error in

rocking stiffness was a function of rocking frequency. For values

of ao corresponding to frequencies in the range of the fundamental



frequencies of the structures investigated, results of three-

dimensional mat analysis were generally stiffer than analytic

results. Radiation damping, computed using the three-

dimensional mat model, did not approach the values of Dobry and

Gazetas (14), except at frequencies far higher than the

fundamental mode frequencies of typical low-rise structures

supported by moment resisting frames. Radiation damping was

not directly modeled for earthquake loading. Instead, viscous

damping of 10% was applied to the equivalent soil springs. Even

this relatively large amount of rocking viscosity had little

influence on the overall response of the superstructure.

Structural damping was dominated by the amount of viscous

damping assigned to the frame columns (2%), since the bulk of

strain energy stored in the soil-structure system was

concentrated in the columns.

The three-dimensional mat model also compared acceptably with

analytical data published for flexible mat foundations, see

Whittaker and Christiano (56). Results were compared for mats

which were nearly rigid as well as quite flexible (soil stiffness

ratios of K=3.3 and .004). The distribution of soil spring

intensity was computed along the axis of symmetry in the

direction of loading for a square mat. Three-dimensional mat

model results compared better with analytic solutions as K

increased. Maximum error in spring intensity for the softer mat
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was about 30% at the mat perimeter. As with overall rocking

damping, the distribution of soil damping intensity did not agree

well with analytical results. The damping distributions of the

three-dimensional mat model were typically low in magnitude,

and qualitatively different in distribution, compared to analytical

solutions. Somewhat better qualitative agreement of overall

rocking damping resulted for higher frequency comparisons (ao =

2.5).

The application of anti-symmetry conditions--to reduce ihe

model size to a quarter of the full frame and soil volume--had

little effect on structure response. Comparison of quarter and

half-space calculations demonstrated differences of less than 1%

in overall rocking stiffness for low frequency harmonic

excitations, near the fundamental soil-structure frequencies

studied (ao=.21). Gradual divergence between these models

occurred as ao was increased to about .85, with more rapid

deterioration of this comparison at higher frequencies.

Limitations

Soil plasticity was not modeled explicitly. The application of

"0% viscous soil damping was assumed consistent with moderate

:evels of non-linear soil strain 1.001) for cohesive soils. The

three-dimensional mat model, and subsequent space frame model,

does not account for soil tension cut-off--vertical accelerations



including gravity were neglected and linear analysis was

performed. Negative springs generate soil tension forces on the

compression side of the rocking axis, and compression forces on

the tension side. Future study may suggest whether this effect

changes the net tendency of a flexible mat to uplift.

Equivalent soil springs were determined for a particular

distribution of harmonic loads acting in phase (see Chapter II).

These spring distributions are only applicable to earthquake

loadings provided mat displacement profiles from earthquake

analysis are similar to those obtained under harmonic loading.

From data presented in Appendix B, best correlation of mat

displacement profiles occurred for thick mats (tall frames) with

square floor plans supported on stiff soil (vs = 1500 fps).

Moderate deterioration of profile comparisons occurred for thin

mats and rectangular floor plans supported by softer soils.

Severe exceptions to these trends occurred for two calculations:

(10/1:1/1500/E-C) and (10/1.75:1/1500/E-C). For these two

calculations, profile comparisons are much worse than for five

floor structures with the same mat aspect ratios and soil

stiffnesses, and for ten floor structures with the same mat

aspect ratios but softer soil (v, = 500 fps). Space frame mat

displacements and forces for these two calculations are mgny

suspect. As will be discussed below, frame response was

insensitive to mat response and only moderately sensitive to



overall soil rocking stiffness. Consequently, results of frame

response in these two calculations were retained for comparison

with other structures.

Findings for Space Frame with Flexible Mat

Mat flexibility is very important to mat response, but is of little

consequence to superstructure response. Mat designs were based

on the assumption that, for low to medium-rise structures, best

economy and serviceability are obtained from concrete mats

featuring minimal steel percentages. Such designs provide

maximum rigidity from relatively thick concrete sections, good

ductility resulting from under-reinforcement, and extensive

redundancy insured by biaxial reinforcement at all mat locations.

Considering factors such as these, a greater concern in design

becomes tha response of the superstructure. For this study, mat

vertical deflections were reported to assess the imoortance of

these deflections upon response of the superstructure. Clearly,

as mat flexioility increased, the deflectior patterns of the mat

became more intricate, with multiple reversals of curvatUre.

These deflection patterns and corresponding extreme variations

in equivalent soil spring intensity had very little effect on the

major response features of the superstructure. For all structures

in which mat flexibility was assessed, 300% variations in soil

shear-wave velocity produced no more than 7.1% and 6.6%

variation in horizontal roof deflection and total oase shear.



Typical variations were about half of these extreme values for

horizontal roof deflection and total base shear. This soil shear-

wave velocity variation corresponded to a soil stiffness

variations of 900% (with a constant Poisson's ratio of .333).

Given that the qualitative distribuiion of equivalent soil springs

corrpared well with published data, even the maximum errors of

35% in overall rocking stiffness in the foundation wire of little

consequence to the response of the frame. These low maximum

superstructure response variations resulted in part fr,_,m apolying

uniform spectral loading to the far-field nodes of the soil

springs. Sivakumaran and Balendra (39) found larger variations in

deflection and shear distributions in stick frame models not

accounting for mat flexibility (up to about 30% variation over

similar ranges of soil stiffness). These larger VLfiatlons result

from applying a spectral rocking moment to ridge (single node)

founda-'ons (see Veletsos and Verbic (53)). The amount and

variation in mat deflection and soil-spring intensities computed

in this investigation suggest much greater variation in frame

response should be expected, if mat flexibility were in fact

importa.t. Additionally, limited comparisons were made of

flexible mat space frames supported by equivalent soil soring

distributions ' (a) rigid mat snace frames supported by

equivalent soil spring distributions and (b) rigid mat space

frames supported by simple two spring soil models. "lifferences

in roof deflection and base shear did not exceed 4%. All of the
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above comparisons suggest that neither soil nor mat flexibility is

of great significance to the superstructure response.

PHASE 2 - PORTAL FRAME MODEL WITH LOADING IN THE

DIRECTION OF AN AXIS OF SYMMETRY

Comparison to Space Frame Model Results

Fundamental mode frequencies of the portal frame model were

slightly higher (3 to 5%) than fundamental mode frequencies

computed for the same structure design analyzed by the space

frame model. Higher modes of the portal frame model were also

stiffer than corresponding modes of the space frame model. It is

particularly interesting that frequency differences between the

models decrease for higher modes, up to the point that direct

correlation between the modes is possible. The two models

differ as to the level of significance of the corresponding modes.

Above modes four or five, these differences were sufficient to

cause the retention of different modes for modal combination in

each model. In such cases, the low level of significance of higher

modes, and differences in relative significance levels between

higher modes for a given model, resulted in different modes being

retained for modal combination. In both models the fundamental

mode dominated the response of the frame. The accuracy of a

given model in computing the fundamental mode and mode-shape

was extremely important in computing realistic response in



structures subjected to loads with strongest shaking limited to a

narrow band of frequencies, as for the Mexico City earthauake.

Variation in error of the portal frame model for important

response features approximated a normal distribution. Maximum

horizontal roof deflection and base shear error averaged 3.5% low

to 4.0% high for the portal frame model, with standard deviations

of 7.7 and 8.4% respectively. Similarly, maximum column shear

and moment error averaged 5.4% high and 9.6% high with standard

deviations of 11.2% and 10.2%. Also, maximum beam shear,

moment and torque error averaged 2.4% low, and 7.1% and 11.1%

high, with standard deviations of 16.2%, 12.5%, and 10.5%. Axial

column forces could not be accurately approximated from portal

frame analysis; however, equivalent static loading of a space

frame model provided good estimates of all important frame

member forces (see page 122).

While floors experiencing maximum net column shears and

moments were correctly located in all frames, maximum beam

forces in each beam size were mis-located in 15 to 62% of cases

examined, depending upon the type of beam force. These errors

can occur because the static two-dimensional floor analysis,

performed to derive the equivalent torsional floor spring

stiffness of the portal frame models, can only locate one unique

maximum for each response item. This location is constant
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regardless of the number of floors of that particular design.

However, for the space frame calculations the location of a

maximum response can vary between frames with different

numbers of floors. These location errors were not so serious

considering that the alternate maximum locations found in

dynamic space frame analysis always occurred at a point of near

maximum response for the two-dimensional static floor analysis.

Comparison to Other Stick Model Results

As expected, the cantilever beam model was not appropriate to

typical moment resisting frame designs. The response of this

model was too soft--producing extremely low fundamental

frequencies, low shear forces, and hign horizontal floor

displacements compared to the portal frame model and the space

frame model. This model was briefly explored in this research to

demonstrate the effect of no floor joint restraint in a stick

model.

The shear building model provided a fair representation of

response for very low-rise frames (not more than five floors).

Compared to space frame calculations, the fundamental frequency

was too high in all cases, with error increasing linearly with

frame height, from 20 to 200% over a range of 3 to 20 floor

frames. Higher mode frequencies for this model were far too

high, reducing the fidelity of the approximation. Due to this
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predictably stiff response, the computed column shear forces

were generally too high and the horizontal floor deflections too

low. However, for the Mexico City earthquake (dominated by a

narrow frequency band of strong soil motions), this trend was

dramatically altered. With this earthquake, frames of 3, 5 or 20

floors experienced column shear forces and horizontal deflections

as described above. For frames with 10 and 15 floors, column

shear forces in the shear building model were lower and

horizontal floor deflections were very much lower tha,; computed

for the space frame model.

The Blume (8) model was not directly compared to the

calculations of this study. However, conclusions of previous

studies allow some casual comparisons. The Blume model is not

reported to be effective in modeling the influence of more than

the first three or four modes. Artificial rigidity of the floor

nodes against rotation does not promote realistic column

response. Because the model uses fewer degrees of freedom than

the portal frame model, it should be easier to implement. This

model does not predict floor member forces and is not applicable

to torsion analysis without further modification.

PHASE 3 - PORTAL FRAME MODEL WITH TORSION ALLOWED

A preliminary calculation, with double symmetry in the floor plan

(and therefore no self-induced torsion), did not demonstrate any
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compounding of errors in the portal frame method, when loaded in

an arbitrary horizontal direction. Practically the same relative

errors between portal frame and space frame analyses were found

for this frame as were previously reported for single floor spring

models loaded along an axis of symmetry.

In mono-symmetric frames eccentrically loaded, horizontal floor

defection and net column shear errors relative to space frame

analysis did not vary significantly from results summarized

above. For all mono-symmetric frames, base torque errors

averaged 1.3% with a standard deviation of 5.2%. These statistics

are cumulative for both variations of portal frame analysis

described in Chapter II and Appendix A. About three times the

effort is needed to obtain floor member forces and deflections

from the portal frame model with significant torsion. The effort

required to determine maximum force locations with torsion

generated is much greater than described above for loading in the

direction of an axis of symmetry, and the tendency to mis-locate

maximums is at least as great.

The asymmetric L-shaped frame was modeled directly by the

portal frame technique. Response of this structure was not

dominated by a single mode to the extent of previous structures

with significant torsional response. For this structure, the first

lateral-torsional mode participation ranged from M.C. 1 = .97 to
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1.0 depending upon the particular distribution of torsional

stiffness in the portal frame model (see Appendix D). The second

lateral-torsional mode participation ranged from M.C. 2 = .54 to

1.0. The first torsional mode participation ranged from by M.C. 3 =

.21 to .28. In mono-symmetric torsion examples, only one lateral

torsion mode was generated. Participation of this mode was M.C.1

=1.0 in all cases. For the first torsional mode participation was

M.C.i = .06 and .24 for 5/11E/0500/E-C{0,1 & 1,1} and

10/11E/0500/E-C{0,11. The greater participation of the second

and third modes in the L-shaped plan may have contributed to

greater sensitivity to error in lateral and torsional stiffness

estimates. The results from calculations based on a variable

distribution of torsional stiffness in the columns with elevation

gave somewhat closer comparisons to the space frame response.

This is particularly true for SRSS modal combination. Although

some degeneration of accuracy was seen for this rather extreme

geometry, the basic fidelity of the stick model appears to remain

intact. Closer estimates of space frame response can reasonably

be expected with the development of better approximations for

the structural stiffness parameters of the model (i.e. the floor

springs and distribution of column torsional stiffness).
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APPLICATION OF THE PORTAL FRAME MODEL TO DESIGN

Overview

The basic forces and displacements of the dynamic portal frame

model provide a good estimate of net floor displacement, shear,

and torque. These parameters have intrinsic value in that they

summarizes the overall distribution of forces in the structure.

However, for the designer, interested in forces of individual

members, further post-processing of this data is required. Most,

but not all, member forces may be extracted with good

approximation directly from the response of the dynamic portal

frame model. This type of analysis makes use of static analyses

performed in assessing the various stiffness estimates require in

the dynamic portal frame model, well as other simple static

analyses based upon traditional portal frame assumptions. For

many tasks the simple estimates thus obtained may be entirely

sufficient. To develop a comprehensive design, the basic forces

of the dynamic portal frame model may be used as equivalent

static shear and torsion loads which may be applied

simultaneously with gravity to a space frame model. In this way,

forces and deflections of all members so modeled may be

assessed.

Portal Frame Based Estimates

For preliminary design estimates, where distributions of

horizontal deflection, horizontal shears, and torque about a



vertical axis may be of most interest, the portal frame method

may be conveniently applied, provided sufficiently conservative

designs are selected. Although the total number of calculations

and variety of architectures examined in this study were not

sufficient to provide a comprehensive statistical basis for code

recommendations, certain conclusions are strongly supported.

Applying portal frame analysis to the typical moment resisting

frame designs of this study, a reasonable safety margin of two

standard deviations beyond the mean is obtained for average story

forces and displacements, provided the performance of the

selected design is at least 20% conservative. For instance, if

five inches of horizontal roof deflection were considered

acceptable in the design of a given ten story structure, the portal

frame analysis should produce not more than four inches of

deflection to insure a roughly 95% probability of meeting this

performance criteria. Greater conservatism is indicated for

extreme geometries with multiple lateral-torsional and torsional

modes as strong participants.

Most element force estimates provide similar safety levels in the

moment resisting frames of this study, if the values predicted by

the portal frame method are at least 30% conservative. For

instance, if a 100 kip-inches bending moment is considered the

maximum acceptable for a given beam of the selected design, the

portal frame moment for this beam should not exceed 70 kip-
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inches to insure a roughly 95% probability of meeting this

performance criteria. In general, determination of specific floor

member forces by the portal frame method is recommended only

for the simplest loading case (soil motion parallel to an axis of

symmetry). Even in this case, the designer must considered the

strong probability of maximum forces being mis-located. In all

cases considered in this study, the location of maximum beam

force by the portal frame method was also a location of

maximum, or near maximum, force in the corresponding space

frame analysis. Although procedures are described in Chapter II

for obtaining floor member force estimates where torsion is

present, determining maximum forces is much more difficult.

Limitations and Simplifications

The portal frame model developed for this study clearly

demonstrates the influence of floor system flexibility upon the

lateral and torsional stiffness of a moment resisting frame. This

stick model has no provision for assessing the effects of axial

column flexibility in taller structure. Because of this limitation,

the portal frame model is not recommended for analysis of

structures exceeding 20 floors (the traditional limit of static

planar portal frame analysis).

Calculation of torsional moments in space frame calculations of

this study were made by first determining the overall torque at



the center of rigidity of each floor for each mode. The combined

modal estimate of torsion for the space frame calculation was

then determined with torque identified as a typical parameter for

modal combination. This process occurs automatically for the

portal frame model since torque is a basic column "force" of the

model. If torque in the space frame is assessed after modal

combination has occurred, most torsion comparisons between

portal frame and space frame analyses are dramatically degraded.

The author suggests that the method of determining overall flbor

torque in this study is consistent with the assumptions of 'iodal

combination theory and provides estimates of floor torque and

rotation which are consistent with the estimates of floor shear,

deflection and other basic design parameters.

Static planar finite element analysis was introduced in Chapter

II, as a means of assessing the overall floor stiffness of a

general floor system. By this technique the designer is free to

model a floor system with any required level of detail. For

typical moment-resisting frames with orthogonal beam lines, the

equivalent floor system stiffness may be estimated by summing

the beam rotational stiffness at column faces. The summation is

performed for all beams aligned in the horizontal direction for

which the equivalent stiffness is sought. Bending stiffness of

the concrete floor slab and torsional resistance of beams are

neglected. This approximation is summarized in the development
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of eq. 2.8. Comparing this approximation to the more detailed

procedure, on average, the equivalent floor system stiffness by

the approximate method was 2.8% low with a standard deviation

of 5.3% (for all mat aspect ratios and beam selections).

Static three-dimensional finite element analysis of the full

structure was introduced in Chapter II, as a means of assessing

the torsional stiffness of each floor. By this technique the

designer is free to model floor systems and columns with any

required level of detail. Portal frame analysis by this technique

provided good estimates of torque and can be recommended for

general architectures.

For typical moment-resisting frames with orthogonal beam lines,

the equivalent combined torsional stiffness of columns may be

estimated by summing moments resulting from column shears

about the center of rigidity of the floor plan for a typical single

floor substructure of the space frame. As above, bending

stiffness of the concrete floor slab and torsional resistance of

beams are neglected. The development of eq. 2.14 summarizes

this approximation. Comparing this approximation to the more

detailed full structure static analysis, the equivalent column

torsional stiffness was typically 15 to 25% higher than the

lowest torsional stiffness of any corresponding floor as

computed from the full structure static loading. When this



approximate stiffness was applied uniformly over portions of the

structure for which the estimate was valid (same column and

floor design), a good average estimate of space frame response

was obtained for most structures. The asymmetric frame was an

exception to this trend with error of as much as 25% (in base

torque).

General Method of Element Force Estimation

The simple methods of element force estimation described above

provide a partial set of needed design parameters. They may be

applied to obtain acceptable preliminary estimates, particularly

in very low rise frames for which column axial forces may be

dominated by gravity. In general, all element forces may be

obtained by applying static loads to the center of rigidity of each

floor of a space frame. As described in Chapter II, these

equivalent static loads are derived in a very simple way from the

primary forces obtained from dynamic portal frame analysis.

This static space frame analysis is directly analogous to

conventional static design procedures, except that the equivalent

loading includes torsional loading, as well as shear loading, and

is derived specifically for the earthquake spectra and structure

under investigation. These equivalent static shear and torsion

loads may be applied simultaneously with gravity as desired.
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APPENDIX A

NET FLOOR DISPLACEMENTS AND FORCES

This appendix summaries net displacements and forces of
interest for all calculations on soft soil (vs = 500 fps). For
frames loaded along an axis of symmetry, total horizontal floor
deflection at the center of rigidity and column shears are
displayed at five floor intervals or less. For other load cases,
these comparisons are supplemented by similar displays of total
column torques about the static center of rigidity of the floor.
Displacements correspond directly with floor levels specified
along the vertical axis. For Figure A.45, two displacements are
identified at floor five due to relative displacement of the
centers of rigidity for columns above and below that floor (due to
floor rotation). Shears and torques correspond with columns
immediately below floor levels specified along the vertical axis.

Legend notes:

3-D implies space frame analysis on flexible mat foundation for
Figures A.1 to A.32. 3-D implies space frame analysis on rigid
mat foundation for Figures A.33 to A.53. Portal frame and
Shear building implies stick models detailed in Chapter I1. For
mono-symmetric floor plans, Portal frame (1) corresponds to

Jeff based on the one-story space frame calculation oeoicted in
Figure 2.8, but varying with elevation in proportion to a full
structure static analysis, see Chapter II. Portal frame (2)
corresponds to Jeff based on uniform vertical distribution of the
eq. 2.15 estimate.

Series nomenclature: (N/X:Z/kkkk/E-Q{x,z})

N equals number of floors

X:Z equals floor plan ratio of dimensions in x and Z
directions



kkkk equals soil shear wave velocity in feet/sec

E-Q implies earthquake (E-C for El Centro and M-C
for Mexico City)

{x,z} vector identifying the horizontal direction of
earthquake loading
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APPENDIX B

MAT VERTICAL DEFLECTION PROFILES

This appendix summaries mat vertical deflection profiles for all
calculations on the softest and hardest soils studied (v, = 500 fps
and 1500 fps). All frames are doubly symmetric, and deflecioz,.,
are displayed in two views for one quadrant of the uplifted half
of the mat. These space frames were ioaded in the x-direction anc
therefore rock about the z-axis with the coordinate oa,-gin iccatec
at the mat center.

Legend notes:

b and c are the mat dimensions in the x and z directions. Solid
line graphs display results of earthquake loadings. Dashed line
graphs display results of harmonic loadings apr'lied to a structure
suppo.,ed by a soil volume. The harmonic load, ere applied as a
preliminary calculations require to evaluated equiva .nt soii
springs (see Chapter !1). Profiles for harmonic icads are give for
centerline nodes in the x-direction and for the nodal line in te z
direction tending to generate maximum negaiive ceflectons or
the given mat aspect ratio.

Series nomenclature: (N/X:Z.'kkkk/E-QOx,z})

N ecuals number of frame flor.s

X:Z eauals floor plan ratio of dimensions in x and Z
directions (Ioaa apniiea !n x cirectio.

kkkk ecuals scil shear wave veiocitv in feetsec

EQ moires earthquake E-,7 -or E entro anc M-C
.or Mexico City)

{x.z} vecor ;centifyvin, We orizont;i mrec:cn o
earthquake loading
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APPENDIX C

EQUIVALENT SOIL SPRING STIFFNESS

This appendix summaries equivalent soil spring stiffness profiles
for selected calculations on the softest and hardest soils studied
(vs = 500 fps and 1500 fps). All frames are doubly symmetric,
and soil springs are displayed in two views for one quadrant of
the uplifted half of the mat. These space frames were loaded in
the x-direction and therefore rock about the z-axis with the
coordinate origin located at the mat center.

Legend notes:

The mat dimensions in the x and z directions are designated b and
c. Solid line graphs display results of earthquake loadings. No
springs are computed at the axis of rocking.

Series nomenclature:

(N/X:Z/kkkk/E-Q{x,zl)

N equals number of frame floors

X:Z equals floor plan ratio of dimensions in x and z
directions (load applied in x direction)

kkkk equals soil shear wave velocity in feet/sec

E-Q implies earthquake (E-C for El Centro and M-C
for Mexico City)

{x,z} vector identifying the horizontal direction of
earthquake loading
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APPENDIX D

SUMMARY OF ANSYS ANALYSIS PROCEDURES

This appendix summarizes important features the ANSYS finite
element code and the manner in which these features were
applied to this study. For a thorough explanation of all practical
and theoretical aspects of these features refer to the ANSYS
Engineering Analysis System User's Manual (24), from which the
following information is extracted.



REDUCED MODAL ANALYSIS

Natural frequencies and mode shapes derive from the following

equation:

([K] - o0j 2 [M]) {j}, = 0 eq. D.1

where [K] is the reduced stiffness matrix of the structure, [M] is

the reduced mass matrix of the structure, (oi=27tfi is the natural

frequency of mode i, and {x}i is the reduced mode shape vector of

mode i. {i}i is normalized such that {x}iT[M]{f1 }i = [I], where [I] is

the identity matrix. The Guyan reduction technique, described

below, reduces mass, stiffness and damping matrices to master

degrees of freedom prescribed by the user. The ANSYS default

procedure (Householder mode extraction) extracts the first n

eigenvectors and eigenvalues. Here n is equal to the number of

master degrees of freedom selected for matrix reduction.

DIRECT HARMONIC RESPONSE ANALYSIS

The present study used this modal analysis form to obtain

equivalent soil springs. Hamonic horizontal forcing functions,

applied at each story level, developed a rocking response an

explicitly modeled soil-structure system (see Chapter II). With

this analysis the entire structure must be linear. All loads must

vary sinusoidally at a specified frequency. For the purposes oT

this study, all loads acted in phase with one another to promote



fundamental mode response. Thus, simplified equations of motion

for this problem are as follows:

[M] {u"} + [K] {u} = {F(t)} eq. D.2

These calculations contain no damping terms. The displacement

vector {u} is of the form:

{U} = {Umax ei~t} eiQt = { Ul + i U2 } e ic t eq. D.3

where umax is the displacement vector amplitude, 0 is the

displacement vector phase shift, i is the specified natural

frequency of the force vector (radians/sec), {Ul }={urax coso} and

{U2}={Umax sino}, and t is time. Similarly, the force vector {F(t)}

is of the form:

{F(t)} = {Fmax} ei't eq. D.4

where Fmax is the force vector amplitude. With no damping, force

and displacement vectors act with the same vector phase

components, ¢.

Making the appropriate substitutions and factoring out the time

deoendent term, ei~t. a simDlified matrix equation follows:



(([K] - 0 2 [M) {Ul + i U2} = {Fmax} eq. D.5

Solution of this equation in the displacement pass yields the

vector {ul + i u 2}. Similarly, typical finite stress calculations

yield complex member forces and stresses.

PUESDO-VELOCITY SPECTRUM RESPONSE

The present study applied this modal analysis to obtain response

of frames supported by equivalent soil springs subjected to

earthquake velocity spectrums. Here also, the structure must be

'inear. ANSYS allows no more than twenty frequencies in the user

definition of the loading spectrum. Logarithmic interpolation

provides estimates for intermediate frequency spectrum values.

This study defined velocity spectrums over a range of .1 to 10 Hz.

A truncated solution of equation D1 provided significant classical

mode shapes for frequencies as high as 10 or 25 Hz, depending

upon the fundamental frequency and relative stiffness of the

structure in question. Participation factor Xi for mode i is as

follows:

Xi = {}i [M] {D} eq. D.6

where {D} is a unit direction vector for the spectral excitation.

T,-,e reduced displacement vector {u}, for mode i is computes as

follows:



Svi xi
{u} l eq. D.7

where Svi is the interpolated spectral velocity of mode i, which

has natural frequency Coi = 2M1f.

Modal combination su,utions inc!uded modes of frequencies as

high as 10 Hz, provides the following significance criterion was

met:

svi xi
M.C. - > .001

(0i

where M.C. is the mode coefficient ratio, or significance level, of

the ith mode.

Modal Combination

Depending upon the relative spacing of significant mode

frequencies, this study selected one of two modal combination

options. In problems not inducing coupled torsion, the square root

of the sum of squares (SRSS) method determined approximate

structure response. With torsional coupling, significant

frequencies were generally more closely spaced. In these cases

complete quadratic combination method (COC) determined

approximate structure response.
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-- SRSS Combination

For this method the total modal response for a given

displacement, force or stress, Ra, is as follows:

Ra= (mi)2 (Ri)2 eq. D.8
N

where Ri is the maximum modal response of the ith mode.

The spectral multiplier for the ith mode, m s , is as follows:

s Svi
mi = eq. D.9

where Svi is the interpolated spectral velocity at mode frequency

and damping value di. Sov is the spectral velocity at mode

frequency i evaluated at the lowest damping value specified.

--CQC Combination

For this method the total modal response, Ra, is as follows:

Ram RR eq. D.10



where k=I for i=j and k=2 for i~j.

The coupling coefficient _,j is as follows:

8 (jIj) 1/2 (4+r j) r 3 /2

=(1-r 2 )2 + 4 ij~jr(1+r 2 ) + 4(4i+4j 2 )r 2  eq. 0.11

where r = cojic and r.k is the effective damping ratio for mode k =

i or j. The coupling coefficient approaches zero for independent

modes and approaches one with increasing dependency.

Guyan Reduction to Specified Master Degrees of Freedom

and Superelement Formation

To insure feasible runtimes, all three-dimensional frame

calculations required this method of limiting degrees of freedom.

With this procedure the user selects certain degrees of freedom

to be active (master degrees of freedom). The remaining degrP.P.s

of freedom become dependent (slaved) to these selected master

degrees of freedom. Where a collection of elements can act as a

single element (superelement) in multiple calculations, Guyan

reduction can also limit the number of master degrees of

freedom. The resulting mass, stiffness, and damping matrices of

the superelement are stored for future applications. In this way,

significant savings in element formation costs accrue.
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Total mass, stiffness, and damping matrices partition as follows:

[= [r  sm ]  
eq. D.12L[rmsi [rss]

where m represents master degrees of freedom and s represents

slaved degrees of freedom.

With Guyan reduction. the general form of the equations of

motions:

[M]{u"} + [C]{u'} + [K]{u} = {F}, eq. D.13

simplifies to a reduced system of the form:

A A A A A A A

[M {u"} + fC]{u} + [I{u} {F}, eq. D.14

A

where u is the reduced displacement vector of master degrees of
A

freedom. The ANSYS program specifies the reduced stiffness [K],
A A

force [F], mass [M], and damping [C] matrices as follows:

A

(K] = Kmm] - Kmz[Kss]>'[Ksm] eq. D.15

A

(F] = [Fm] - [Kms3[Kss]q{Fs) eq. D.,6



A

[M] = [Mmm] - [Kms][Kss] 1l[Msm] - [Mms][Kss]' 1 [Ksm]

+ [Kms][KssJ- l [Mss][Kss]'l[Ksm] eq. D.1 7

A

[C] = [Cmm] - [Kmsj[Kss]-[Csm] - [Cms][Kss]'l[Ksm]

+ [Kms][Kss]1 [Css][Kss]-l[Ksm] eq. C. 18

The reduced stiffness and force matrices are exact; however, the

mass and damping matrices are approximate.
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APPENDIX E

EXAMPLE PORTAL FRAME ANALYSIS

This appendix presents an example problem demonstrating the
portal frame analysis technique for a mono-symmetric frame
loa-4,.d for maximum self-induced torque. The simplified analysis
technique, employing equations 2.8 and 2.14, is used to determine
gross structure response--horizontal floor deflections, net
column shears, and net column torques. Comparison is made to
results of a ccrresponding space frame analysis.



Example dynamic stick frame analysis using portal frame

approximations:

Problem statement:

Determine the maximum dynamic roof deflection, base shear, and
base torque using portal frame analysis for the structure and
loading previously identified as 5/1:1E/0500/E-C{0,1}.

Detailed description:

A description of the features of the structure and load alluded to
by the previous nomenclature is:

5 floors (12 ft in height)
1:1 square floor plan
E eccentric arrangement of columns
0500 soil shear wave velocity in ft/sec
E-C EI-Centro north-south earthquake

component
{0,1} soil pseudo-velocity spectral loading

oriented along z axis

Based on the physical descriptions of Chapter II, member
properties are as follows:

Columns Beams

Izz= 750 in4 Izz =1330 in4

x= 677 in4  lx = 58 in4

A = 33.4 in2  A = 18.3 in2

Mat Floo

t= 25 in t= 8.25in
p = .000225 lb-sec 2/in4  p = .000219 Ib-sec2!in 4

(150lb/in 3 ) (100 lb/ft2  -- DL+50%LL)
m = 5184 lb-sec 2/in m 1654.4 1b-sec 2 /in
Jyy = 7.963E8 lb-sec 2 -in Jyy = 2.544E8 lb-sec2-in
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Steel properties Concrete oroperties

E - 30E6 lbs/in2  E = 3.12 lbs/in2

v .3 G = 1.20 lbs/in2

v = .2

Sroil proerties

vs= 500 ft/sec
G = 6469 lb/in 2

v .333
p = .000180 lb-sec 2/in 4

(1 201b/in 3 )

Here 16 columns are located at the intersection of beam lines
shown in the plan view (Figure E.1). Full continuity of all beam
and column joints is assumed.

Computing stiffness of equivalent springs of the portal frame:

To build the portal frame stick model (Figure 2.3), the following
parameters must first be computed: five soil springs, two
horizontally oriented torsional springs to represent the effects
of floor stiffness at each column joint, and the torsional
stiffness of each floor of columns. The last two components
(torsional floor springs and equivalent column torsional
stiffness) are computed once, since all floors of this structure
are identical. Note that the axial rotations of far-field nodes of
the torsional floor springs must be coupled to the corresponding
rotations of the mat foundation if a soil model with rocking
springs is provided. Otherwise, the axial rotations of far-field
nodes of the torsional floor springs should be completely fixed.

The soil springs of this example are computed from the
recommendations of Dobry and Gazetas (14) as follows (using the
symbols defined in reference (14)):
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plan view

00

,E-C

30' 30' 20'

* cent*er of mass
0 center of rigidity

Figure E.1 Plan view of structure and
loading (5/1:1E/0500/E-C{Oj
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Horizontal translation-

2x= xLG 45(2)(480)(6469)=1 .E bi2-v (2-.333) =1.E bi

Sx= 4.5 ( = )7 4.5 (1).75 = 4.5

From Figure 10 of reference (14), -Kx is found graphically after
computing the ordinate a0 at the approximate mode one frequency
of the structure:

Kx= (.96)KX = 16.2E6 lbin = R

o L _(8.33)(480) 66
-S (500) (12) =.6

w= 2nr {CT(hn). 75}-1 = 27c {.035(6Oft).75}-l = 8.33 rad/sec

where co is derived from eq. 9B of ANSI A58.1-1982.

Rocking about horizontal axes--

G (X.5 (6469) ((960)4 75
K rx Srx 1-V ) = 3.2 (1-.333)( 12)

-4.26E12 in-lb/in

From Figure 7a of reference (14), krx is found graphically for
ordinate a0 as above:

krx = (.93) Krx = 3.96E12 in-ib/in = r

Torsion about vertical axis--



235

Kt= StG(J)'75= 3.8(6469) 2(960)4)75=  5.67E12 in-lb/in

From Figure 8 of reference (14), Kt is found graphically for
ordinate ao as above:

K1= (.94) K, = 5.33E12 in-lb/in

Effective torsional floor springs are computed as described for
eq. 2.8 above. Arbitrary column shears are applied to hinged mid-
column locations according to the tributary span of beams
framing into each column (refer to Figure E.2 for typical floor
frame in x-direction). Normalizing stiffness factors 7i (for
column i) are found by scaling arbitrary column shears to the
ratio of the sum of column moments at the floor joints and the
sum of column moments at the floor joints for a corresponding
frame of equal spans. The corresponding frame has the same
length and number of spans, but each end span carries a unit
shear, thus each interior span carries a shear of 2.0 (force units).

Thus for the frame of Figure E.2 the 7' values are computed as
follows:

Sum of the moments of the frame are--

2 /h (15 + 30 + 25 + 10) = 80h

Sum of the moments of the corresponding equal span frame
are--

2i (1 -T,- 2 + 2 + 1) = 6h

Thus the normalizing factors 7i are--
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X X direction

p 15 '-30 -25 '-10

h /2

h /2

-- 15 30 -25 - 10

30 30 20'

typical floor - portal frame
arbitrary shears

11 X direction

h -1 '-2 -- 2 '--

h /2

h /2

S-2 -2 -

26'-S" 26*-8' 26*-8"

corresponding equal span portal frame
unit end shears

Figure E.2 Portal frame analysis of
typical floor frame (x-direction)
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73 = .075(25) = 1.875

^(4 = .075(10) = .75

In Figure E.3, 7i values are given for frames oriented in both the x
and z direction. From eq. 2.8, the sum of beam rotational
stiffnesses at all column faces are computed as follows:

beams in x-direction--

KT= (4) (1.1 25) (6) (30 E6)(13 30)
(30)(12)

(8) (2.2 5) (6)(3 0 E6)(13 30)
+ (30)(12)

+(4) (1. .875) (6) (3 0 E6)(13 30)
+ (30)(12)

+(4)_(1 .8 75) (6)(3 0 E6)(13 330)
+ (20)(12)

(4) (, 75) (6) (3 0 E 6) (13 30)
+ (20)(12)

=3.04E10 in-lb/in

beams in z-direction--

_T (8)(1 .1 25)(6)(30E6)(1 330)
KT-. (30)(12)

(8)(1 .8715)(6)(30E6)(1330)
(30)(12)

(8)(1 .875)(6)(30E6)(1 330)

+ 2 0)(12)

=3.09E10 in-lb/in



Ji beams in z-direction
1 .1 25 1 2 3 4

1 .875
5 6 7 8

1 .875
9 10 11 12

1 .125
13 14 15 16

1.125 2.25 1.875 .75

'i beams in x-direction

n - column reference number
used in TK!Solver calculation
of Jeff

Figure E.3 Normalizing factors used
computing effective floor stiffness and
effective polar moment of inertia
of columns
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The effective column torsional stiffness is computed from eq.
2.14. The stiffness of individual column joints (required in eq.
2.10) are computed from eq. 2.10 as follows:

Kgx (1 .1 25)(6)(30E6)(1 330) =_.8 8i-bi
Ko1~ = (30)(12) -7418i-bi

(where j = 1, 5, 9, and 13)

(2) (2.25) (6) (30E6)(1 330)
Kejx = (30)(12) =29.925E8 in-lb/in

(where j = 2, 6, 10, and 14)

Kox=(1 .875)(6)(30E6)(l 330)
1301(12)

+(1 .875)(6)(30H6)(1 330) 3.7 8i-bi
+ (20)(12)=311E8i-bn

(where j= 3, 7, 11, and 15)

(.75)(6)(30H6)(1 330)
Kejx = (20)(12) = 7.481 E8 in-lb/in

(where j = 4, 8, 12, and 16)

(1 .125)(6)(30E6)(1330)_
Koez (30)(12) = 7.481 E8 in-lb/in

(where j = 1. 2, 3, 4, 13, 14, 15. and 16)

(1l 375) (6)(3 0 E6)(1 330)
=( (30) (12)

(1 .375)(6)(30E6)(1 330)
+(2 0) (12) -31 171 E8 in-ib/in

(where j=5, 6, 7, 8, 9, 10, 11, and 12)
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Additionally, the effective stiffness and area of the column is
found by summing the inertias (in each direction) and the areas of
all columns of a single floor, thus:

Ikx = (16)(677) = 10832 in4

Ikz = (16)(750) = 12000 in4

Ak = (16)(33.4) = 534 in2

The calculation of Kt (eq. 2.14) is easily implemented on
microcomputer spread sheet programs or general math programs
capable of utilizing columns of numbers. In this instance the
program TK!Solver was used to obtain Jeff = 2.697E6 in4 (as
demonstrated in Tables E.1 through E.3 and Figure E.4).

Also, individual column shears were estimated by eq. 2.20. This
analysis, as implemented with TK!Solver is demonstrated in
Tables E.4 and E.5 and Figure E.5.

Comparison of results:

The roof node of the portal frame model at the center of rigidity
(top column node) is 25, while the corresponding mat node is 20.
The first floor column of this model is element 8, v,'+h end nodes
20 and 21. Comparing important forces and dispi.,,ements for
this model to results of the corresponding space frame moael:

arameter" ortal frame aerm difference

roof deflection* 7.69 in 7.37 +4.%

base shear 1648 kips 1519 kips +8.5%
base torque 1270E6 ki'osin 1339 kio/in -5.1%
max. column V 14.767 kio 17.3 kip - 14.30x

max. column V 143.8 kip 118.0 ki, 21.3%
z

"rltieto mat *"also see Figures A.37 through A.39
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Table E.1 Summary of column deflection stiffness (kx and kz) and
torsion stiffness (K) contributions (TK!Solver solution)

column kx kz K

1 748100000 748100000 1.926E10
2 2992500000 748100000 1. 556E 10
3 3117100000 748100000 1.656E10
4 748100000 748100000 i.695E10
5 748100C0 3117100000 1.863E10
6 2992500000 3117100000 2.4803E9
7 3117100000 3117100000 3.9E9
8 748100000 3117100000 1.463E10
9 748100000 3117100000 1.863E10
10 2992500000 3117100000 2.4803E9
11 3117100000 3117100000 3.99E9
12 748100000 3117100000 1.463E10
13 748100000 748100000 I.926EI0
14 2992500000 748100000 1. 556E 10
15 3117100000 748100000 1.656E10

16 748100000 748100000 1.695E10

Table E.2 Summary of column coordinates (Cartesian and polar)
(TK!Solver solution)

column 4i Mi Oi ri

1 -480 -480 -136.736 700.3571

2 -120 -480 -107. 354 502.8916

3 240 -480 -66. 3706 523. 9275

4 480 -480 -46.8476 657.9514

5 -480 -120 -166.759 523.9275

6 -120 -120 -141.34 192.0937
7 240 -120 -29.7449 241.8677

9 480 -120 -14.9314 465.7252
9 -480 120 166. 7595 523.9275
10 -120 120 141.3402 192.0937

11 240 120 29.74488 241.8677

12 480 120 14.93142 465 7252

13 -480 480 136.7357 700. 3571
14 -120 480 107. 354 502. 8916

15 240 480 66.37062 523 9275
16 480 480 4b 84761 657.9514



Table E.3 Summary of TK!Solver variable sheet for
calculation of Jeff (J in this table)

St Irp i.p NMA OuJtPUt Lini t Caafmient
Oi l7e.O2507 de igI l--x-axi3 to Irodiu3 ri

L 1 kx in-lb/in floor rotational stiffness
at column i (x-rotation)

L 1 kz in-lb/in floor rotational stiffness
at column i (z-rotation)

L K .08121142 in-lb/in column i torsional stiffness
30000000 E lb/in^? column elastic modulus
11533500 G lb/in^2 column shear modulus
677 Ix in'4 column moment of inertia (x)
750 lz in"4 column moment of inertia (z)
144 L in column length

f 3. 1071236 rod
J 2697327.3 in'4 effective column polar

moment of inertia

L ri 29.017236 in radius-origin to column i
L I xi in x-coordinate of column i

30 xc in x-coordinate of center of rigidity
L 1 zi in z-coordinate of column i

0 zc in z-coordinate of center of rigidity
KI .00009645
K2 .08111497

* f - 2*pi()/360*ai
* K = KI + K2
* KI = (12*E*tx* kx)*r'i2*(in(f))'2/(kx*L^3+6*E*lx*L'2)
* K2 = (12*E*lz* kz Y*ri2*(cos(f)?)"2 /(kz*L'3+6*E*Iz*LV2)
* ri^2 = (xi-xc)'2+(zi-zc)^2
* f atan2(zi-zc,xi-xc)
* j = SUM(V.:*L/G

Figure E.4 Summary of TKISolver rule sheet for calculation
of Jeff (J in this figure)
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Table E.4 Summary of TK!Solver input portal frame load factors
and output individual column shears

crI umr, gx z

1 1 125 1. 125 11219.0813 89170.2739
2 2.25 1.125 14767.4419 81864.8256
3 1. 875 1.125 13888.8889 71173.6111
4 75 1. 125 9045.58405 68769.765
5 1 .125 1 .875 3540. 36574 143796. 554

S.25 1.875 5081 62612 135102.033
7 1.875 1. 875 4674.61"'72 120569.42
8 .75 1.875 2716.46133 118563.27
9 1.125 1.875 -3540.3657 143796.-'
10 2.25 1. 875 -5081.6261 135102. 033
11 1. 875 1 875 -4674.6172 120569.42
12 .75 1.875 -2716.4613 118563 27
13 1 125 1.125 -11219.081 89170.2739
14 2.25 1.125 -14767.442 81864.8256
15 1.875 1.125 -13888.889 71173.6111
16 .75 1.125 -9045.584 68769.765
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Table E.5 Summary of TK!solver variable sheet for
calculation of individual column shears

St Input Name output Lini t Comment
L Xs -9045.584 total column x-3h1ur
L -s -18499.74 total column v-shear
L Xt column x-shea" component of T
L Zt column z-shear component of T
L Xv column x-shear component of Ux
L Zv column z-shear component of Vz
L I Gx 2nd moment of gamma x
L 1 Gz 2nd moment of gamma z
L 1 x column x coordinate
L z column coordinate
L 1 gx gamma x
L I gz gamma z

-l.27E8 T net torque
0 Ux net shear (x)
1648000 Uz net shear (z)
2937600 Gsx sum Gx
3175200 Osz sum Oz
30 xc center of rigidity (x)
0 zc center of rigidity (z)

L 1 n floor number

S Rula
"Ox -gx*<y-yc)"2

"Gy = gy*(x-xc)^2
"Gsx = s;um('Gx)
"Osy = sum(',y)

* Xt = T/( Gsx/(gx*(z-zc)) + (x-xc)/(z-zc)*risz/(gz*(x-xc)))
" Zt = (x-xc)/(z-zc)*Xt
* Xv = Qx/sum(gx)*I)y
* Zv gz,"Sum('gz)*Uz
"5 - t t v

Figure E.5 Summary of TK;Solver rule sheet for calculation
of individual column shears



The input file for the ANSYS dynamic portal frame analysis is as
follows:

/PREP7
/TITLE, 5/1:1 E/0500/E-C{0,1)
KAN,2
KAY,2, -1
KSE, 1
DMPRAT, 0. 02

C** SOIL DAMPERS
ET,20,14 *HORIZONTAL
ET,19,14 *ROCKING
DAMP,20,0.1 0
R.20,16.2E6 HORIZONTAL TRANSLATION
R,19.3.96E12 *ROCKING
R,18,5.33E12 *TORSION
C-m FLOOR STIFFNESS
C** X-AXIS ROTATION
R, 61,3.09E 10
R,62,3.09E1 0
R, 63,3.09 E 10
C- Y-AXIS ROTATION
R,64,3.04E1 0
R, 65,3.04E 10
R,66,3.04E1 0

KEYOPT,20,3,0 3-D LONGITUDINAL
KEYOPT. 19.3,1 3-0 TORSIONAL

C- MASSES
ETA ,21
C- FLOORS
R,81 ,1 656.4,0,1 656.4,O,2.544E8.0 *NO VE'TICAL INERTIA
R,82,1656.4,O,1656.4,O,2.544E8,0 'NO VERTICAL INERTIA
R,83,1 656.4,0,1 656.4,0,2.544ES.0 NO VERTICAL INERTIA

C** MAT
R.5,5184,0,51 84,0,7.963E8,0 NO VERTICAL INERTIAL CONTRIBUTIONS
KEYOPT,1,3.0 3-D ROTARY INERTIA

0- COLUMNS
ET.2.4
E X.2. 30 ES
NUXY.2..30
DENS.21 E-8
RS IZE, 10
R.41,534,1 2000,10832,6.1i3,6.27,
RMO RE, 0,2. 697E6
R,42, 534,1 2000. 10832,6. 13,6.27.



R MORE, 0,2.69 7E6
R,43,534,1 12000,10832,6.13,6.27,
RMORE, 0,2. 697E6
R,45,1 1000,1 E8, 1 E8,1 0,10,
RMORE,0,1 El 0
R,46,1 000,1 E8, IES, 10,I10,
RMORE.0,1 EIO
R,47,1 1000.1 ES, 1 ES, 10, 10.
RMORE,0,1El 0

C** NODE DEFINITION
CSYs,0
N, 1, -100, 0
N,2,0,0,- 100

N3,-100o
Nbl
N. 15,0,720
FILL
N,20,30,0
N, 25,30 ,720

FILL
N.41,-100,144
N,45,-100,720
FILL
N, 61,30,144, -100
N. 65,30,720, -100
FILL

C** ELEMENT GENERATION
C** FOUNDATION
TYPE,20
REAL,20
MAT .20
E. 1, .10
E,2,10
TYPE, 19
REAL, 19
MAT.20

E,110
E.2, 10
REAL, 18

-. 310

C- SUPERSTRUCTURE
TYPE, 1
REAL.5

I 10
TYPE. 2

MAT.2
REAL.45
E,' 10.20



REAL,41
E,20,21
REAL,45
E,21,1 1
TYPE, 19
MAT,1 9
REAL,6i
E,21,.41
REAL,64
E, 21, 61
TYPE, 1
REAL,81
E,1 1
EGEN,2,1,-5 .....
EGEN,3,1,-5
EGEN,2,1,-5 ..... 1

C** CREAT MASTER DEGREES OF FREEDOM
M, 1 0.ALL. 15
M.20,ALL,25

WSORT,Y
C** CONSTRAIN SOIL FAR-FIELD
D,1,ALL ...3
C** CONSTRAIN MAT VERTICAL DISPLACEMENT
D, 10,UY
C** LINK FLOOR SPRING AND MAT ROTATIONS (RIGID BODY MOTION)
CPSIZE,30
CP, 1.ROTZ. 10
CPNGEN, 1,ROTZ.61 .65.1
CP,2.ROTX. 10
CPNGEN,2,ROTX,41,45,1

C-** SPECTRAL LOADING
EXTMOD .0.10
EX MOD E, 0, 1 0_.001
SED.0.0,0.0, 1.0 LOADING DIRECTION VECTOR
SVTYP.0
MCOMB.4 COC MODAL COMBINATION

FREQ,.1., 26,.158,.2,.251..316..398,.501..631
FREC..7' 31.259,'.585.1 .995,2.5, 2,3.162.3.981.5.01 2
FREO,6.310. 10.O
SV,.02,10.74404,10.41552,16.27039,10.78914,12.25910.23.09483,3 .6868.27 l 9666
8,23.2336SV,.02.26.4339,41 .5602.31 .12429.34.13453,31.32267.2 1 09132,20.8061:3
18.58266,1 1.10242

S V. .02, 6. 8755, 4. 99404
SV,.05,9.30424,8.14082,1i 1.09237,9.22775,1 1.26828.19.68481,27.04603,21 .-7637->
18.98671
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SV,.05,21 .44260.31 .64747,26.92249,30.27422.25.40870,1 5.25333,13.7001 7,14.247

82,7.9174
S V,. 05, 5. 088 03, 3. 49641
SV,. 10,7.48453,5.92197,7.31063,7.5869,9.83444.16.30909,21.4464,18.1 221 9,15.59
801
SV..-1 0, 16.46297,21.52373,21.41171,25.44367,21.37437,11.51369,10.1 3662,10.108
05,6.5517
S V,. 10, 4. 98344, 2. 94805

LWRITE

AFWRIT
FINISH
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The output file for the ANSYS dynamic portal frame analysis
(with modal frequency data, nodal displacements and element
nodal forces) is as follows:

RESPONSE SPECTRUM CALCULATION SUMMARY

CUMULATIVE
MODE FREQUENCY SV PARTIC.FACTOR MODE COEF. MC. RATIO

EFFECTIVE MASS MASS FRACTION

1 0.9577 38.1780 84.92 538.8 1.000000
7211.06 0.535503

2 0.9903 40.7708 -0.6169E-03 -0.4042E-02 0.000008
0.380515E-06 0.535503

3 1.315 31.6693 -7.415 -28.43 0.052763
54.9871 0.539586

4 2.938 20.8966 -31.49 -35.65 0.066159
991.560 0.613221

5 3.040 20.8543 0.1116E-03 0.1218E-03 0.000000
0.124532E-07 0.613221

6 3.841 18.9126 -3.396 -2.662 0.004940
11.5354 0.614077

7 4.938 11.3813 22.83 8.376 0.015545
521.227 0.652784

8 5.142 10.4401 0.2751E-04 0.8889E-05 0.000000
0.756735E-09 0.652784

9 6.067 7.4495 3.843 0.7510 0.001394
14.7678 0.653881

10 6.798 6.5292 21.16 3.235 0.006004
447.836 0.687138

2 7.134 6.3141 -0.7289E-05 -0.1027E-05 0.000000
0.531341 E- I0 0.687138

12 7.827 5.9201 7.792 0.9380 0.001741
60.7115 0.691646

13 8.179 5.7423 18.27 2.042 0.003789
333.824 0.716437

14 8.656 5.5206 0.8378E-04 0.8504E-05 0.000000
0.701884E-08 0.716437

15 8.983 5.3800 20.84 1.986 0.003687
434.345 0.748692

16 9.412 5.2085 -58.17 -5.123 0.009509
3384.11 1.00000

17 9.505 5.1733 0.1203E-02 0.1042E-03 0.000000
0. 1 44746E-05 1.00000

SUM OF EFFECTIVE MASSES= 13466.0

SIGNIFICANCE FACTOR FOR EXPANDED MODES= 0.10000E.02
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MODAL MULTIPLIERS INCLUDING DAMPING

DAMPING SPECTRUM SPECTRAL
MODE FREQUENCY ASSUMED ACTUAL ASSUMED REQUIRED MULTIPLIER

1 0.958 0.0200 0.0233 38.1780 37.2026 0.974453
3 1.315 0.0200 0.0215 31.6693 31.4613 0.993431
4 2.938 0.0200 0.0222 20.8966 20.4050 0.976476
6 3.841 0.0200 0.0215 18.9126 18.6826 0.987838
7 4.938 0.0200 0.0232 11.3813 10.9514 0.962222
9 6.067 0.0200 0.0214 7.4495 7.3537 0.987130

10 6.798 0.0200 0.0251 6.5292 6.2350 0.954939
12 7.827 0.0200 0.0218 5.9201 5.8227 0.983548
13 8.179 0.0200 0.0255 5.7423 5.4457 0.948357
15 8.983 0.0200 0.0288 5.3800 4.9222 0.914907
16 9.412 0.0200 0.0932 5.2085 3.2290 0.619958

POSTI NODAL DISPLACEMENT LISTING .....

LOAD STEP 1 ITERATION= 1 SECTION= 1

FREQ= -1.0000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 O.OOOOE+00
2 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.OOOOE+00 0.OOOOE+00
3 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.0000E-00

10 0.1479E-05 0.OOOOE+00 0.1086 0.2087E-03 0.1744E-04 0.1569E-08
11 0.1404E-04 0.1591E-05 1.894 0.6980E-02 0.6050E-03 0.5462E-07
12 0.2979E-04 0.1455E-05 4.018 0.6554E-02 0.1127E-02 0.5006E-07
13 0.4223E-04 0.1091E-05 5.810 0.5321E-02 0.1556E-02 0.3793E-07
14 0.5116E-04 0.7049E-06 7.122 0.3677E-02 0.1867E-02 0.2505E-07
15 0.5604E-04 0.2816E-06 7.852 0.1647E-02 0.2035E-02 0.1093E-07
20 0.1489E-05 0.4724E-07 0.1082 0.2087E-03 0.1849E-04 O. 580E-08
21 0.1404E-04 0.4718E-07 1.879 0.6980E-02 0.6048E-03 0.5462E-07
22 0.2979E-04 0.4717E-07 3.989 0.6554E-02 0.1127E-02 0.5003E-07
23 0.4223E-04 0.4717E-07 5.770 0.5321 E-02 0.1555 E-02 0.3793E-07
24 0.5116E-04 0.4717E-07 7.074 0.3677E-02 0.1866E-02 0.2505E-07
25 0.5604E-04 0.4717E-07 7.800 0.1647E-02 0.2035E-02 0.1093E-07

41 0.2087E-03
.42 0.2087E-03

43 0.2087E 03
44 0.2087E-03
45 0.2087E-03
61 0.1569E-08
62 0.1569E-08
63 0.1569E-08
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64 0.1 569E-08
65 0.1569E-08

MAXIMUMS
NODE 15 11 15 11 15 11
VALUE 0.5604E-04 0.1591 E-05 7.952 0 A980E-02 0.2C?5E-02 0.5462E-07

iPOST1 ELEMENT NODE FORCE LISTING...

LOAD STEP 1 ITERATION= 1 SECTION= 1

FREQ= -1.0000 LOAD CASE= 1

THE FOLLOWING X,Y,Z FORCES ARE IN NODAL COORDINATES

ELEM= 1 FX FY FZ
1 23.96 0.0000E+00 0.OOOOE+00

1 0 23.96 0.0000E+00 0.0000E+00

ELEM= 2 FX FY FZ
2 0.OOOOE+00 0.OOOOE+00 0.1 759E+07

10 0.OOOOE+00 0.OOOOE+00 0.1 759E+07

ELEM= 3 MX. MY mz
1 0.8265E+09 0.OOOOE+00 0.OOOOE+00

10 0.8265E+09 0.OOOOE+00 0.OOOOE+00

ELEM= 4 MX MY MZ
2 0.OOOOE+00 0.OOOOE+00 6215.

10 0.OOOOE+00 0.OOOOE+00 6215.

ELEM= 5 MX MY MZ
3 0.OOOOE+00 0.9298E+08 0.OOOOE+oo

10 0.OOOOEi-00 0.9298E+08 0.0000E+0O

ELEM= 6 FX FY FZ MX MY MZ
10 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00

ELEM= 7 FX FY FZ MX MY MZ
10 12.68 0.2209E-01 0.1648E+07 0.1338E+09 0.8950E+08 1045.
20 12.68 0.2209E-01 0.1648E+07 0.1338E+09 0.1270E+09 1044.

ELEM= 8 FX FY FZ MIX MY MZ
20 12.68 0.6209E-02 0.1648E+.07 0.1338E+09 0,1270E+09 1045.
21 1 o. b 0.6209E-02 0.1648E+07 0.1035E+09 0.1270E+09 781.7

"LEM= 9 FX FY FZ MX MY MZ
21 3.236 0.2348E-01 0.3688E+06 14.22 0.4791E+08 0.5901
11 3.236 0.2348E-01 0.3688E+06 14.22 0.4743E+08 0.1227
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ELEM= 10 MX MY MZ
21 0.2093E+09 0.OOOOE±O0 0.OOOOE+00
41 0,2093E+09 O.OOOOE+00 0.OOOOE+00

ELEM= 11 MX MY MZ
21 0.OOOOE+O0 0.OOOOE+00 1618.
61 0.OOOOE+00 O.OOOOE+OO 1618.

ELEM= 12 FX FY FZ MX MY MZ
11 0.OooOE+O0 0.OOoOE+o0 O.OOOOE+0o 0.0000E+00 0.OOOOE+00 0.OOOOE+00

ELEM= 13 FX FY FZ MX MY MZ
21 11.99 0.1009E-02 0.1507E+07 0.1075E+09 0.1176E+09 852.4
22 11.99 0.1 009E-02 0. 1507E+07 0.1.95E+09 0.1176E+09 874.5

ELEM= 14 FX FY FZ MX MY MZ
22 3.982 0.5586E-02 0.4408E+06 15.32 0.6710E+08 0.1671
12 3.982 0.5586E-02 0.4408E+06 15.32 0.6660E+08 0.1183

ELEM= 15 MX MY MZ
22 0. 1961 E+09 0.OOOOE+00 0.OOOOE+0C
42 0. 1961 E+09 0.OOOOE+00 0.OOOOE+00

ELEM= 16 MX MY MZ
22 0.OOOOE+O0 0.OOOOE+00 1479.
62 0.OOOOE+00 0.OOOOE+00 1479.

ELEM= 17 FX FY FZ MX MY MZ
12 0.0000E+00 0.OOOOE+00 0.0000E+00 0.OOOOE+00 0.0000E+00 0.0000E+00

ELEM= 18 FX FY FZ MX MY MZ
22 8.987 0.5901E-04 0.1274E+07 1.8905E+08 0.1022E+09 617.6
23 8.987 0.5901E-04 0.1274E+07 0.9448E+08 0.1022E+09 876.7

ELEM= 19 FX FY FZ MX MY MZ
23 3.027 0.1555E-02 0.4577E+06 16.61 0.7029E+08 0.3296
13 3.027 0.1555E-02 0.4577E+06 16.61 0.6812E+08 0.3593

ELEM= 20 MX MY MZ
23 0.1581E+09 O.0000E+00 0,0000E+00
43 0.1581 E+09 0.OOOOE+00 0.0000E+00

..IEM= 21 MX MY mz
23 0.OOOOE+Ofl 0.OOOOE4-00 1109.
63 Q.OOCOE+00 0.COOOE+00 1109.

ELEM= 22 FX FY FZ MX MY MZ
'13 0.OOOOE+oo 0.0000E4.00 3).GOOOE+00 3.0000E+00 O.OOOOE+00 0.OOOOE-00
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ELEM= 23 FX FY FZ MX MY MZ
23 6.564 0.5763E-04 0.9680E+06 0.6618E+08 0.8080E+08 441.2
24 6.564 0.5763E-04 0.9680E+06 0.7329E+08 0.8080E+08 504.2

ELEM= 24 FX FY FZ MX MY MZ
24 3.233 0.2998E-02 0.4797E+06 18.27 0.6382E+08 0.7944E-01
14 3.233 0.2998E-02 0.4797E+06 18.27 0.5878E+08 0.3672E-01

ELEM= 25 MX MY MZ
24 0.1076E+09 0.O000E+00 0.OOOOE+O0
44 0.1076E+09 O.O000E+00 .O000E+00

ELEM= 26 MX MY MZ
24 O.OOOOE+00 0.0000E+00 716.7
64 O.O000E+00 .O000E+00 716.7

ELEM= 27 FX FY FZ MX MY MZ
14 O.O000E+00 O.OoooE+oO0.O000E+00 o.O000E+00 .O000E+00 0.OOOOE+00

ELEM= 28 FX FY FZ MX MY MZ
24 3.494 0.1536E-04 0.5660E+06 0.3645E+08 0.5051E+08 216.9
25 3.494 0.1536E-04 0.5660E+06 0.4512E+08 0.5051E+08 286.4

ELEM= 29 FX FY FZ MX MY MZ
25 3.493 0.1759E-02 0.5660E+06 16.09 0.5051E+08 0.7375E-01
15 3.493 0.1759E-02 0.5660E+06 16.09 0.3925E+08 0.2843E-01

ELEM= 30 MX MY MZ
25 0.4512E+08 O.O000E+00 .O000E+00
45 0.4512E+08 O.O000E+00 .O000E+00

ELEM= 31 MX MY MZ
25 O.O000E+00 0.OOOOE+00 286.4
65 O.O000E+00 .O000E+00 286.4

ELEM= 32 FX FY FZ MX MY MZ
15 O.O000E+00 0.OOOOE+00 0.OOOOE+00 .O000E+00 0.0000E+00 0.OOOOE+00
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