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/ Abstract

The optical transform of the transmission function of a serrated circular

aperture is discussed, with particular emphasis on the relationship between the features

in the transform and the parameters that describe the aperture serration. The transform

is produced in a canonical optical processing system, where the scalar field distribution in

the back focal plane of the lens is proportional to the two-dimensional spatial Fourier

transform of the aperture transmission function. In the statistical diffraction theory, the

quantity of interest is the two-point moment of the intensity, which is a fourth-order

moment of this scalar field component.

A careful calculation of the diffracted field is performed. The two-point

intensity moment is expanded in terms of second-order moments of the field. Due to the

polar symmetry of the field, circularity does not hold and the two significant terms in the

expansion are identical but for a n rotation. From the detailed expression for the

remaining second-order moment, interesting features of the optical transform are

extracted. These features are ring fragmentation, the number of transform spikes, and

spike appearance, which correspond to serration roughness, correlation angle, and

correlation function, respectively. The results of computer simulations and optical

experiments support the predicted relationships between the aperture parameters and

transform features. Detailed study and modeling of the errors introduced during

fabrication of apertures for use in the experiments show that very small errors (-2 Pm) are

easily seen in the optical Fourier transform,

The effects of the variations in the parameters of the serration on the fractal

dimension of the aperture is also discussed. Geometric techniques are used to measure

the fractal dimension of computer-designed apertures. The fractal dimension depends
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on the roughness o and correlation length L of a serrated aperture or edge by way of the

ratio o /L for a given correlation function shape. Changing the correlation function alters

this dependence: the fractal dimension increases when the function is sharpened.
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Chapter 1

Introduction

1.1. Statement of the Problem and Objectives

Since the very beginnings of geometry, people have been using regular

shapes to approximate real objects. As children, we draw circular suns and five-pointed

stars shining on triangular and spherical trees, under which stand square-bodied people

smiling semi-circular smiles. When we grow older, these representations are too simple

for us. Some of us leave it to the professional artist to create more realistic, more pleasing

depictions of the world around us. Others turn to scientific pursuits, hoping to find the

reason behind the irregular shapes in some underlying regularity in the universe1 . In the

meantime, we move from our crude first approximations to more sophisticated models,

always searching for the truest, the most pleasing explanation.

The realm of optical diffraction is far from untouched by the desire to

unoerstand the irregularities we encounter day by day. Kravstov, Rytov, and Tatarskii 2

have classified four types of statistical problems in diffraction theory, each of which deals

with irregularity somewhere in the optical system: random sources, partial coherence,

randomly shaped or positioned objects, and inhomogeneous media. The study of

serrated circular apertures3, the subject of this dissertation, stands firmly in the third of

these categories. Scattering by rough reflective surfaces and transmission through a

rough diffuser, two fairly standard speckle problems that are still of interest today4 ' , are

also in the category of randomly shaped objects.

We mention these other types of statistical diffraction and speckle problems

in order to place our study in context for the reader. The basic differences can be seen in
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the following integral expression for the diffracted field:

v(, , ,z) = I A Vo(x,y,O) K(xy;,q; z) dxdy, (1.1)

where v0 ( x, y, 0 ) is the original field in plane (x, y, 0) and v ( , , z) is the diffracted field

in plane (k, q, z), parallel to (x, y) and a distance z away. The k and rq axes are parallel to

the x and y axes, respectively. K (x, y; k, q; z) is the propagation kernel between these

two planes, and A is the aperture in plane (x, y, 0) over which we integrate. In the case of

a rough surface or diffuser, the statistical nature of the diffracted field enters the problem

by way of the field v0 ( x, y, 0), which is taken to be the field immediately after interacting

with the object. The object has imparted a random phase to this field. If we consider an

inhomogeneous medium, we include the statistical nature of the problem in propagation

kernel K (x, y; k, r; z). The effects of random sources would be incorporated in the field

v0 ( x, y, 0). For our case, that of the serrated aperture, the shape of the limiting aperture

A introduces randomness to the problem. Mathematically, we can see that this is a much

different problem, since the statistics are incorporated in the integration limits rather

than in the integrand.

Despite this basic mathematical difference, our approach to determining the

statistics of the diffracted field is basically the same as in other speckle problems. We are

interested in the moments of the field. In particular, since the intensity is the measurable

quantity, we calculate < 1112 >, the two-point moment of .he intensity. 1 and 12 are the

intensities at two points in the transform, and the angle brackets (< >) denote an

ensemble average. This two-point correlation is a fourth-order moment of the field. The

essential second-order statistics of the field intensity can be determined from this

correlation function.

T
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We have two basic objectives in this research. The first is to determine the

relationship between the statistical parameters of the aperture and the features of the

field diffracted by the aperture, in particular, of the optical transform. This is

accomplished through careful analysis of the dependence of the two-point moment of

the intensity on the roughness, correlation angle, and correlation function of the

aperture serration. In this way, we have a solid theoretical connection between aperture

parameters and transform features.

Our second objective is to study the relationship between these same

aperture parameters and the fractal dimension of the serration. Since fractal geometry

was introduced by Benoit Mandelbrot 6, it has been applied in numerous fields of study.

Too often, though, those eager to apply this new technique have substituted fractal

geometry for statistical analysis without first analyzing the relationship between the two

methods. The results, then, can be difficult to compare with earlier results in a

meaningful way. In demonstrating the interdependence of the fractal dimension and

statistical parameters of the aperture serration, we show that both fractal geometry and

statistical analysis contribute to our understanding of the apertures, each in a different,

but nonindependent, manner.

1.2. Literature Review

Diffraction by a serrated circular aperture is a speckle-like problem. As is

discussed in several early speckle papers7,8,9 and in overview literature10 , 11. speckle arises

in an imaging or diffracting configuration with coherent illumination. A simple

description of the physical mechanism at work is as follows. From an object which is

rough on the scale of a wavelength, light scattered by individual sections of the object

surface (called scattering cells) interferes at an observation point. If this interference is
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more constructive than destructive, we have a bright spot; destructive interference

produces a dark spot. Speckle is thus due to the combined effects of the coherence of the

light over relatively long distances, which allows interference, and the optical roughness

of the object, which yields a haphazard arrangement of the regions of constructive and

destructive interference. Although these studies, as discussed earlier, are quite different

from the case of the serrated aperture, the methods and concepts presented are certainly

applicable to our study.

Several articles'2 , books'" 4 " s , conferences' 6 1 7 , and journal special

issues18' 19 have been dedicated to reviews of the field of speckle. Such a review is beyond

the scope of this dissertation, and so the reader is directed to these compilations for a

more complete sketch of the speckle literature. A few papers which are particularly

relevant to our research are discussed in this review; others will be cited where

appropriate.

The precursory work to the study presented here is that of George and

Morris on diffraction by serrated edges and gaps20 '2 '. Parts of the work presented in this

dissertation echo that of this earlier study. We follow much the same mathematical

approach, to expressing the moments of the scalar field component in terms of the

characteristic functions of the probability density of the serration. Because of the circular

nature of the aperture and our subsequent use of the cylindrical coordinate system, our

moment expressions are unlike those in earlier work and we therefore take a different

approach to the analysis of the diffraction pattern.

The complement of the serrated circular aperture is the roughened disk,

which can be used to model a particle22 or a biological cell. The diffraction problems for

apertures and disks are essentially the same. Thus, studies of diffraction from individual
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particles or cells are relevant here. We note a recent study of the optical Fourier

transforms of high-contrast images of planktonic animals which emphasizes the effects of

edge variations on the Fourier spectra 23. We present the results of our study of the

serrated circular aperture in general terms so that they can be applied to particulate and

biological studies.

In the field of optics, an important area of investigation is the study of

diffraction of light by fractal surfaces and objects24. Although there has been some

interest in the study of diffraction by regular fractal structures25 , the usefulness of fractal

geometry in describing naturally occurring objects has led to its application in numerous

statistical optics problems. Reflection from fractal surfaces has been studied by Berry and

BlackweU126. The contrast of the intensity pattern behind a fractal diffuser has been

investigated by Jakeman and Jefferson27, who report numerical results, and by Jordan,

Hollins, and Jakeman2 8 , who present experimental data for the scattered field from

roughened germanium. A technique for making fractal surfaces of specified surface

height power spectrum is proposed by Berry 29. Her method involves exposing photoresist

to multiple speckle patterns of controlled second-order statistics. A specific fractal

function, the Weierstrass function, is used to describe the surfaces of the fractal phase

screens studied by Jaggard and Kim 3° ' 3 1. They have reported results for the field behind a

single fractal phase screen and have used cascaded phase screens to model a volume

fractal medium. These authors have also used the Weierstrass function to model

atmospheric refractive index fluctuations32. Since the self-similarity property of fractals is

useful in describing arbitrarily small structure, it has been applied in the study of X-ray

and neutron scattering from rocks33 34 .
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Of particular interest in our study are fractal models of particle contours, the

geometric complement of serrated circular apertures. Kaye discusses methods for

determining the fractal dimension of a particle 3s . Results for the fractal characterization

of small aluminum particles as they are eroded in an acid bath are reported by Kaye.

Leblanc, and Abbot 36 . The optical properties of a gas-evaporated coating have been

derived by Niklasson from the fractal description of the metal fineparticle clusters that

comprise the coatings37. For pattern recognition applications, Caimi and Schmalz have

compared fractal and spatial harmonic analyses of particle contours38. A fractal particle

surface model has been used by Bourrely, Torresani, and Chiappetta in their investigation

of scattering of electromagnetic radiation by a rough object 39 .

Our study of the relationship between fractal geometry and random

processes connects the two in a new way and is an important contribution to the

literature in both areas. We anticipate the application and extension of this work to

problems in the field of statistical optics and beyond.

1.3 Overview of this Dissertation

The preliminary mathematical groundwork for the study of the serrated

circular aperture is laid out in Chapter 2, where we begin by placing the aperture in our

optical system and calculating the scalar field amplitude in the Fourier transform plane.

We then discuss the important aperture parameters and demonstrate, with several sets of

computer-designed apertures, the effects each parameter has on the aperture

appearance. Computer simulations based on the result of our scalar field calculations

show the effects of variations in the roughness, correlation angle, and correlation

function of the aperture serration on the Fourier transform.
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Chapter 3, which contains the study of the fractal nature of serrated

apertures, begins with a comparison of fractals and random processes. We then present

two methods for determining an unknown fractal dimension and test these methods on a

standard fractal object. When applied to our serrated circular aperture, these methods

demonstrate the interdependence of the fractal and statistical descriptions. We also

determine the fractal dimension of the fractal Weierstrass function 0 , which has been

used in other studies to model surfaces30 , index fluctuations32, and apertures41 . We end

this chapter with a discussion of the quantitative dependence of the fractal dimension on

the roughness and correlation angle of the aperture serration for a variety of correlation

functions.

We return to our discussion of the optical transform in Chapter 4 with the

presentation of the statistical diffraction theory. Using a Gaussian moment theorem, we

expand the two-point moment of the intensity as a sum of second-order moments of the

scalar field and note the significant terms in this expansion. We show that two of the four

terms contrioute significantly to the two-point properties of the moment and that the

usual assumption of circularity is not valid for the optical Fourier transforms of real-valued

objects such as our apertures. We then calculate the two significant second-order

moments and demonstrate that they are identical but for a n rotation. From the resulting

expression, we extract optical transform features which depend on the parameters of the

aperture serration. An analysis of the transform based on the Fresnel zones of the

aperture supports our choice for the roughness-related feature. Computer calculations of

the two-point intensity moment for several aperture ensembles and of the transform

intensity for representative members of these ensembles demonstrate the relationships



proposed between the parameters of the aperture serration and the features in the

transform pattern.

Our objective in the fifth chapter is to demonstrate the accuracy needed in

reproducing our aperture designs in chrome for use in optical experiments. To this end,

we present a set of twelve designs from a single ensemble and investigate the proper-ties

of the individual apertures and transforms. These properties, such as the angular mean

radius of the aperture and the number of spikes in the transform, are seen to vary among

the apertures in the ensemble. Any fabrication error in our chrome apertures that

produces variations smaller than those expected in an ensemble is deemed acceptable for

our study of the transform features. We investigate two methods of fabricating apertures

with this accuracy limit in mind. Comparison of the results of optical experiments using

apertures made by each method with the results of our computer simulation confirm the

usefulness of each technique. In addition to this study of the error tolerance, we

investigate our ability to detect errors in the apertures using a set of precisely fabricated

apertures designed to model the noise introduced in the making of chrome apertures.

To complete our work, we present three sets of apertures and the

corresponding Fourier transforms from both optical experiments and computer

calculations in Chapter 6. For each of these three sets, one parameter of the serration is

varied. Thus, in the transforms, we can see the effects of the roughness, correlation

angle, and correlation function. Comparison of the transforms of the different apertures

in each set supports the results of our statistical diffraction theory, and comparison of the

optical and computed Fourier transforms demonstrates the accuracy of our theory and

our computer model in the regime of interest for a large range of serration parameters.
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Chapter 2

Computer Simulation of the Serrated Aperture and Fourier Transform

2.1. Introduction

The two-dimensional Fourier transform of the transmission function of a

serrated circular aperture is the quantity of interest in this study. In this chapter, we

derive the basic mathematical expression for the Fourier transform of the aperture in

cylindrical coordinates and present computer-designed apertures and calculated

transforms. This computer-aided investigation is the first step toward understanding the

relationships between the aperture serration and the features of the Fourier transform.

We derive the expression for the Fourier transform of the transmission

function of the aperture in Section 2.2, using the Fresnel impulse response for the optical

Fourier transform system discussed therein. We define the mean radius, the root-mean-

square (rms) roughness, and the correlation function of the serration for the aperture in

Section 2.3. This section also contains the presentation of several apertures used to

demonstrate the effects of changing each of these parameters. Computer simulations of

the field intenity in the optical Fourier transform plane are presented for representative

apertures. For these examples, discussed in Section 2.4, apertures with well-defined

parameters are used to demonstrate qualitatively the corresponding transform features.

For a thorough analysis of the Fourier transform based on statistical optics, the reader is

referred to Chapter 4.

13
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2.2. Calculation of the Field Amplitude in the Fourier Transform Plane

The optical configuration used to investigate a scalar component of the

diffracted electric field amplitude from a serrated circular aperture is shown in Fig. 2.1. In

Plane 1, described by Cartesian coordinates (x, y, z=O) or cylindrical coordinates

(r,a,z=O), we have an aperture described by the curve defining the edge:

r = rc = a+s (a), where ( re, a) is a point on the edge of the aperture, a is the average

radius of the aperture, and s(a) is a zero-mean random variable which describes the

aperture serration. We define the transmission function of the aperture by:

t(ro) , forrr : a+s(a) ,
0, forr > a+s(a) . (2.1)

Y

r rc =a+s(a)
r x

Plane I Plane 1

Vo(Z)( r, a) v ( z)( p' )

Fig. 2.1. Serrated aperture in Pline I ( r, a, 0) and optical Fourier transform in

Plane II (p, $, zo ).

I
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Plane II, located a distance z0 from Plane I, has Cartesian coordinates (,, rj, z=z 0 ) or

cylindrical coordinates (p, i, z=z 0 ), aligned as shown.

In the followng derivations we make use of the results of Fourier optics

using diffraction integrals that are directly traceable to Maxwell's equations.1 However,

in the actual solutions, we will use Kirchhoff's assertion as to the input electric field

component, i.e., the transmission function notion, as well as the paraxial form of the

kernel K ( r, a; p, 4; v) in the equations below.

When the aperture in Plane I is illuminated by a plane-polarized, mono-

chromatic wave described by the scalar component v0 (Z)(r,a;v), the scalar distribution in

Plane I is given by:

(Z) f n~ vo

v (p,P;v) = (Z)v(r,a;v) t(ra) K(r,a;p, d;v) rdrda . (2.2)
-- 1 00

For the paraxial case, the following well-known Fresnel impulse response for

K ( r, a; p, ; v) in Eq. (2.2) is appropriate2:

i exp(-ikzo) 2 Z ( i 2 )
K(r,a;p,,P;v) = - exp( .ik [r 2 +p -2 rpos(a -)) , (2.3)

in which v is the temporal frequency of the illumination and k is equal to 2nv/c = 2n/A,

where I is the wavelength. This Fresnel approximation is valid when the system satisfies

the condition z0
3 > > {n [ r1

2 + p1
2 - 2 r, P1 cos (a1 - 1 

) 2/4 Imaz' where (rl, o ) is

any point within the aperture and (pji t ,) is any observation point in Plane II. For our

calculations, we have chosen to use the analytic signal representation of the field. In the

Fourier transform domain, we denote this by the superscript (z). Hence, in illustration, an

exp (+ i 2n v1 t) time dependence in the space-time domain transforms into a & (v-v 1 )

dependence in the space-temporal frequency domain. This dependence is suppressed in

our analytic signal representation.
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If we choose v0 (z)(ra;v) to be a convergent spherical wave with curvature

I/z 0 in Plane I (i.e., in the aperture), we establish the well-known Fourier transform

pattern in Plane II at (p,4;v). The Fresnel approximation to the convergent wavefront

vo(Z)(r,a;v) given by

v(Z) (r,a;v) = exp( i r2  (2.4)

is substituted into Eq. (2.2) and using Eq. (2.3), we find the following form for the scalar

diffracted field v(Z)(p, ;v) in Plane II:

v (p,;v) =
Azu

X O t(r, a)exp(k rps(o-.) rdrda . (2.5)

U 0 Z0

The result in Eq. (2.5) is recognized as the two-dimensional Fourier transform of an

arbitrary transmission function t(r,a) expressed in cylindrical coordinates. This can

readily be converted to the more familiar Cartesian form.

For the serrated circular aperture, the limits in Eq. (2.1) are incorporated into

Eq. (2.5), giving us the following result for the diffraction pattern of the aperture:

i expjik ( z0 + )
v (Z)p, 4i;v) =

x0

+ha+8(a) ( ik
X eexxp rp s(a- 0) rdrda , (2.6)

ann E0q (2.6)

in which a is the average radius and s ( a) is the fluctuation term. In Eq. (2.6), integration
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over the radial coordinate r yields a single-integral form for v(Z)(p, 4 ;v):

v Z)(p,4;v) = B n expix(a+s(a))] ISKa + 9(a) - do, (2.7)
-I K2  K

where the a-dependent, spatial-frequency-like variable K is defined

kp

K = -- s(a -) 
(2.8)

and coefficient B is defined

B = - Oexp -ik ( o+ (2.9)
p2

The expression given by Eq. (2.7) with Eqs. (2.8) and (2.9) for the Fourier transform of a

serrated aperture in terms of the aperture function s (a) is the basic building block for the

statistical diffraction theory presented in Chapter 4. We also use this expression in the

computer calculations presented in Section 2.4.

In statistical calculations, we will find it convenient to contain the

dependence of v (z)( p, 4t; v) on the random variable s (a) in the exponential. Thus, using

the relation

s(a)explixs(a)] = -i(a/ax)exp[ixs(a)J , (2.10)

we rewrite Eq. (2.7) as follows:

vz) (p,J; v) =

L+n[ ep0 ( - ixa 1 dexp[iKs(a)]---- jda . (2.11)B-n epI~ a X2 ; a-K)K

The forms in Eqs. (2.7) and (2.11) are general and can be used to determine the scalar field

in the Fourier transform plane of any aperture described by a single-valued function s (a).
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For the case of a speckle pattern from a monochromatic source at v = v1, we

can find the time-varying analytic signal V (z)( p, ); t) corresponding to v (z)(p, 4; v) by

simply inverting the transform with b ( v-v 1 ) explicit, as follows:

V (Z(p,O;t) = I Go (_ (p,4;v) (v - v )exp(i2nvt)dv . (2.12)

We integrate Eq. (2.12) to find the time-dependent analytic signal:

V(Z) (p,4(;t) = v(Z)(p,4);v 1 ) exp(i2nvIt) . (2.13)

With the intensity I at point (p, i) given by the equation

,( ,1_I 1*1 ,,
I (p, 4) =V (Z) (p, 4p; 0 ~V (Z) (p4; t) (2.14)

where the asterisk (*) denotes the complex conjugate, and with Eqs. (2.7) and (2.13), we

have the desired expression for the intensity distribution in Plane 11.

2.3. Generation of Serrated Circular Apertures

In this study we describe roughened circular apertures in terms of the mean

radius, rms roughness, correlation angle, and correlation function. Although in Chapter 3

we will use fractal geometry to describe the apertures, these parameters provide an

adequate description and are used to design apertures for digital and experimental

studies.
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The mean radius describes the circular shape of an aperture. We define an

aperture by the curve describing the edge in plane ( r, a):

r= r -a+s(a) , (2.15)
C

where s (a) is a zero-mean random variable with variance denoted by

I + a

varts(a)J = n s2(a) da (2.16)

For a particular aperture, the width and shape of the autocorrelation of s (a) are the

correlation properties of interest.

Early work in the speckle field involved modeling rough surfaces by digital

methods. Fujii, Uozumi, and Asakura3 used a convolution technique to generate

correlated data for use as a model for rough surfaces. Their method involved convolving

uncorrelated, random data with a window function to produce correlated data with the

desired roughness and correlation properties. George and Morris4 used serrated edges

and gaps in their diffraction study, and the thesis by Morriss includes a detailed derivation

of the relationship of the original, uncorrelated data and the window function to the

correlated data, We reproduce this derivation in Appendix A for the reader's convenience

and summarize the results below. Since the derivation involves the use of ensemble

statistics, this summary describes the relationship between the original and correlated

data in terms of ensemble parameters. We refer the interested reader to Appendix A,

where the distinction between these ensemble parameters and the spatial parameters of

the serration used heretofore is made.

Given a set of uncorrelated, Gaussian-distributed data q (a) with ensemble

variance oq2 and a window function w (a), we produce correlated data s (a) by convolving
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q (a) with w (a):

s(a) = q(E )w(a-)d, . (2.17)

Then, under appropriate conditions, the ensemble variance 02 of s (a) is approximately

equal to the variance of q (a):

2 2 (2.18)
q

and the normalized correlation function r (Aa) of the ensemble of functions s (a) is

approximated by the auto-convolution of the window function:

r (Ac) - w(a)* w(a) , (2.19)

where * denotes a convolution. Thus, by choosing the uncorrelated data and the

window function carefully, we can generate correlated data with specified roughness and

correlation properties for use as the serration function of an aperture.

In this section, we present several apertures generated by computer

implementation of this convolution method. A copy of the program "stat.fft.c', used to

design the apertures, is included in Appendix A. These apertures demonstrate the effects

of varying in turn the mean radius, roughness, serration correlation angle, and serration

correlation function of an aperture. Each aperture shown is a representative member of

an ensemble of apertures, and the parameter values quoted are those of the ensemble.

We do not intend with these limited examples to fully represent any ensemble of

apertures;our purpose is to show typical serrated apertures and to demonstrate the

effects of varying the aperture parameters.
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2.3.1. Mean Radius

The first parameter we investigate is the average radius. Three sets of

apertures were generated, each with design values of 250 - prm rms roughness, n / 8- rad

correlation angle, and triangular correlation function. This function is given by the

equation:

(aa) 1- -- for Aa !5 A;
A~o 1 A~ , o' ~ (2.20)

0 , otherwise

where Aa is the angular separation of two points on the aperture edge and A is the

correlation angle. These nine apertures are shown in Fig. 2.2. Each of the apertures in a

given column were generated from the same starter set of 512 Gaussian-distributed,

uncorrelated random numbers6; different starter sets are used for each column of

apertures. Each row of apertures has a different mean radius. The apertures in row (a)

have a 2.5-mm mean radius; those in row (b), 5.0 mm; and those in row (c), 10.0 mm. As

this mean radius increases, the apertures appear to be smoother, since the ratio of the

roughness to the mean radius decreases. In addition, the correlation length along the

edge increases as the mean radius increases, although the correlation angle remains

constant. We see from these apertures the importance of specifying the mean radius

when describing an aperture statistically. In our aperture designs, we will use a 5.0 mm

mean radius. The apertures in Fig. 2.2 are the only exceptions to this.

2.3.2. Root-mean-square Roughness

Three sets of apertures are used to investigate the effect of roughness

variations and are shown in Fig. 2.3. The apertures in row (a) have a 125 Prn rms

roughness. Those in rows (b) and (c) have 250 and 500 pam rms roughnesses, respectively.
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(a) 2.5 mm radius

(b) 5.0 mm radius

00
(c) 10.0 mm radius

Fig. 2.2. Apertures of varied average radius. Each aperture has a design rms roughness of 250
pm. The correlation function is the triangle function, given by Eq. (2.20), with correlation angle
A - x / 8 rad. The mean radii for the aperture designs are (a) 2.5, (b) 5.0, and (c) 10.0 mm.
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(a) 125 nim rms roughness

(b) 250 im rms roughness

00
(c) 500 gim rms roughness

000
Fig. 2.3. Serrated apertures of varied roughness. All nine aperture designs have an average
radius of 5.0 mm and the triangular correlation function of Eq. (2.20), with A - x / 8 rad. The
ensembles represented in rows (a), (b), and (c) have 125, 250, and 500 pm roughnesses,
respectively.
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All nine apertures are designed with a 5.0 mm mean radius, a n / 8 correlation angle, and a

triangular correlation function, given by Eq. (2.20). The same starter set of 512

uncorrelated random numbers was used to generate each aperture in a column; a

different starter set was used for each column. Specific aperture details, such as the bump

located at 7 o'clock on the apertures in the left-hand column, are seen to scale with the

roughness.

2.3.3. Serration Correlation Angle

When we fix the mean radius, roughness, and correlation function in an

aperture design and vary the width of the correlation function, we produce apertures

such as those shown in Fig. 2.4. Again, each column of apertures forms a set which has

been generated from a separate starter set of random numbers; each row consists of

apertures with a particular correlation angle. Each aperture design has a 5.0 - mm mean

radius, a 250 - pm rms roughness, and a triangular correlation function, given by Eq.

(2.20). The apertures in row (a) are designed with a correlation angle of n/ 16 rad; in row

(b), n/8 rad; and in row (c), n/4 rad.

We can see from these apertures that increasing the correlation angle results

in a smoothing of the details of the aperture. This 'smoothness' differs from that of the

apertures shown in Fig. 2.3; with changes in roughness, the aperture details remain but

are scaled accordingly. Qualitatively, the apertures shown in Fig. 2.4 seem to become

smoother as the correlation angle increases because specific features are broadened;

quantitatively, we know that the rms roughness is constant.
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(a) x /16 rad correlation angle

00
(b) x / 8 rad correlation angle

000
(c) n /4 rad correlation angle

0 0 0
Fig. 2.4. Serrated apertures of varied correlation angle: A equal to (a) x /16, (b) x / 8, and (c)
x / 4 rad. The average radius of all aperture designs is 5.0 mm; the rms roughness, 250 prm; the
correlation function, triangular, as given by Eq. (2.20).
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2.3.4. Serration Correlation Function

Our fourth aperture parameter, the shape of the correlation function,

controls the edge detail of the aperture. The apertures used to demonstrate this effect

are shown in Fig. 2.5. Each of these apertures is designed with a mean radius of 5.0 mm,

an rms roughness of 250 pm, and a correlation angle of n/8 rad. For each column of

apertures, we use a separate starter set of uncorrelated random numbers. A different

correlation function is associated with each row of apertures; these functions are shown

in the right column of Fig. 2.5. For immediate purposes, the correlation angle for each

function is defined as A in the following equations. We designed the apertures in row (a)

with a triangular correlation function, given by Eq. (2.20):

) Afor A •
A- , A ' r" [(2.20)]

0 , otherwise

The correlation function used in designing the apertures in row (b) is the negative

exponential function, described by

(°°)l
nexp ( - exp ( A (2.21)

A Gaussian function, given by

G( )( 21, (2.22)

is used in the design of the apertures in row (c). We choose this form of the Gaussian so

that, for both the negative exponential and Gaussian functions, A is the half-width of the

function at the e- point.
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(a) Triangular correlation function

0 

1.0

0.0

(b) Negative exponential correlation function -A A

0 

1.0

0.0
-A A

(c) Gaussian correlation function -A A

1.0

0.0

-A A
Fig. 2.5. (Left) apertures and (right) correlation functions: (a) triangular correlation, Eq. (2.20);(b) negative exponential correlation, Eq. (2.21); (c) Gaussian correlation, Eq. (2.22). Each ofthe aperture designs has a 5.0 mm mean radius, an rms roughness of 250 ;un, and a correlation
angle A of x /8 rad.
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A striking feature of the apertures in a given column is the similarity of the general

non-circular shape. This shape is fixed by the starter set and by the roughness and

correlation angle of the serration. The shape of the correlation function affects the

behavior of the edge of each aperture. Those shown in Fig. 2.5 (a) and (b) have jagged

edges on top of their non-circular shapes. A common feature of these apertures is the

sharp peak on the correlation function. If we use a smooth-peaked correlation function,

the edge of each aperture we produce is significantly smoother. This is demonstrated by

the Gaussian-correlated apertures in Fig. 2.5 (c). The shape of the correlation function of

an aperture, and in particular the shape of the peak, is thus shown to affect the edge

detail of the apertures.

2.3.5. Aperture Smoothness

In the preceding paragraphs, we discussed changes in the appearance of an

aperture as we varied the mean radius, roughness, and correlation properties of that

aperture. Smoothness, as a qualitative descriptor, has been mentioned multiple times.

We noted that increasing the mean radius produced a smoother aperture, as did

increasing the correlation angle. A smooth-peaked correlation function was shown to

produce smooth-edged apertures. Certainly, we would be likely to describe apertures

with small rms roughness as smooth. Hence, one can see that smoothness depends on all

of these parameters. We must be careful to use these quantitative measures in order to

describe our apertures accurately.

In Chapter 3, we will see that the fractal dimension can be used to describe

the aperture smoothness, and that this fractal dimension depends in definite ways on

these aperture parameters.
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2.4. Computer Simulation of the Fourier Transform

At this early stage in our study, computer simulations of the Fourier

transforms serve to develop our quali- e. _/e sense of the behavior of the transform as the

aperture parameters are varied. This tool also provides quantitative information that will

be useful in designing apertures for optical experiments. We use Eqs. (2.7) and (2.14) as

the basis for our computer calculations. In this section, we take representative apertures

from Figs. 2.3, 2.4, and 2.5 and show the calculated transforms as two-dimensional

images. First, since film typically records intensity values logarithmically over two to three

orders of magnitude, we choose to display this same range of values by selecting upper

and lower cutoffs that are three orders of magnitude apart. Intensity values above or

below this range are mapped to the upper or lower limit, respectively. The cutoff values

are chosen so that the features of interest are clearly visible; here, with an input field of

unity, the cutoff values chosen are 0.02 and 20.

To reproduce the computer screen images for this document, we used a

camera system manufactured by Matrix Instruments7 and coriecied with an i2S image

processing system8 . Using Polaroid 57 film9, we photographed the computer-generated

images; these photographs were then enlarged to show the features clearly. In Chapters

5 and 6, we will compare calculated transforms with those obtained optically. We find

that scaling our computed data logarithmically before using the complicated display-

photograph-enlarge process described above produces images that compare well with

the photographs taken in the optical system.

To summarize, then, the procedure used to produce the images shown in

Figs. 2.6, 2.7, and 2.8 is as follows. Empirically-chosen cutoff values of 0.02 and 20 were

applied to the calculated data. The data were then scaled logarithmically, and the new
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the left-hand column of Fig. 2.3.
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values were assigned linearly to values between 0, mapping intensity values of 0.02 and

lower to black, and 255, mapping values of 20 and higher to white. (There are 256 grey

levels available in the 8-bit-per-pixel display of the Matrix camera.) The resulting image

data files were transferred to the 12 S-Matrix system and the images were photographed

with Polaroid 57 film. These photographs were enlarged and printed for use in this

dissertation.

2.4.1. Aperture Roughness

The diffraction patterns shown in Fig. 2.6 correspond to the apertures in the

left-hand column of Fig. 2.3; these apertures differ in roughness and are shown inset in

Fig. 2.6 for convenience. Since the Fourier transforms are polar-symmetric, we calculate

and display only half of the diffraction pattern, the region 0 . i< n. The largest value of p

used in the calculation, 0.50 mm, is chosen so that several diffraction rings can be

observed. The wavelength X is set at 0.5 pm; focal length z0, at 500 mm.

The upper diffraction pattern in Fig. 2.6 is that of the aperture with 125-pm

roughness. Even with just this small serration, we see that the rings at larger radial

coordinates become uneven. The middle diffraction pattern corresponds to a 0.25-mm

aperture roughness. In this case, some of the outer rings are broken and more of the

inner rings are uneven. In the lower Fourier transform, corresponding to 500 Pm rms

roughness, we see that only the first few rings are intact. At large radii, the ring structure

has degraded to a speckle pattern.

We see from these three diffraction patterns that aperture roughness first

degrades the outermost rings. These rings become uneven in width and eventually, with
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o_ •

Fig. 2.7. Calculated diffraction patterns for apertures with different serration correlation angles:

A equal to (upper) 7r/16, (middle) n/8, and (lower) x/4 rad. Inset are the corresponding aper-

tures, from the left-hand column of Fig. 2.4.
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increased roughness, break into ring fragments. As the roughness increases these

degradation effects are seen at smaller radii in the transform.

2.4.2. Serration Correlation Angle

The Fourier transforms shown in Fig. 2.7 demonstrate the effect produced by

changing the correlation angle. The apertures used in calculating these transforms are

those shown in the left-hand column of Fig. 2.4 and inset in Fig. 2.7. We recall that as the

serration correlation angle increases the bumps on the apertures broaden, producing

smoother apertures even though the rms roughness remains constant. The upper,

middle, and lower transforms in Fig. 2.7 correspond to correlation angles of n /16, n /8,

and n /4 rad, respectively. They show how the change in the transform progresses as the

correlation angle of the serration increases: the spikes broaden and their number

decreases. (The counting of spikes in this type of display is somewhat subjective; the

author counts 10 spikes in the upper transform, 8 in the middle transform, and 7 in the

lower transform.) The decrease in the number of spikes indicates that the correlation

angle of the intensity distribution has also increased. This result is intuitively pleasing,

and the theory and computer simulations to be presented in Chapter 4 will support these

observations.

2.4.3. Serration Correlation Function

The last set of calculated Fourier transforms, shown in Fig. 2.8, are those of

the apertures with different correlation functions. The apertures chosen for these

calculations are those shown in the left-hand column of Fig 2.5 and are inset in this figure.

From top to bottom, we show the transforms of the apertures with triangular, negative

exponential, and Gaussian correlations, respectively. The appearance of each diffraction
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2'I

Fig. 2.8. Calculated diffraction patterns corresponding to apertures of varied correlation

design: (upper) triangular, Eq. (2.20): (middle) negative exponential, Eq. (2.21); (lower) Gauss-

ian, Eq. (2.22). Inset are the corresponding apertures, from the left-hand column of Fig. 2.5.

A _ _ __ _ _
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pattern depends on the shape of the peak of the corresponding correlation function. This

striking variation has not been described in the literature, heretofore. We see that when

the peak is sharp (here, the triangular and negative exponential cases), the bright radial

spikes contain substructure which can make identification more difficult; when the peak

is smooth (the Gaussian correlation function), the spikes are easier to see because the

intensity varies smoothly in the angular direction, across the spikes.

The spike appearance coordinates with that of the apertures for the

different correlation functions. As we saw in Fig. 2.5, the character of the edge of the

non-circular apertures depends on the shape of the correlation function of the serration.

When the peak is smooth, the edges are smooth; when the peak is sharp, the edges are

rough. Similarly, in the calculated diffraction patterns we see that the smooth-peaked

correlation function yields smooth spikes in the transform; the sharp-peaked function,

uneven spikes. From these observations, we expect the following relationships to hold:

the shape of the correlation function of the serration on the aperture influences the

shape of the angular correlation of the transform; the smoother the aperture correlation

is, the smoother the transform correlation will be; and a smooth angular correlation for

the transform corresponds to uniform spikes in that transform. The theory presented in

Chapter 4 and the experiments described in Chapter 6 will prove these points. First, we

continue with our analysis of the apertures by considering the fractal nature of the

serrated aperture.
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Chapter 3

Comparison of the Statistical and Fractal Descriptions

3.1. Introduction

The study of an irregular object has in the past implied the virtually exclusive

application of statistical techniques. In the case of serrated apertures, George and Morris1

gave a thorough description in terms of the rms roughness, the correlation angle, and the

shape of the correlation function. We used these statistical parameters and the mean

radius to describe serrated circular apertures in Chapter 2, and we will continue to use

them throughout this study. However, the introduction of fractal mathematics2 and the

application of fractal geometry to physical systems offers a new approach for use in

studies such as ours. In current literature, one can find both statistical and fractal

descriptions of irregular objects. Although the studies in which a statistical approach is

taken are far more numerous, interest in and applications of fractal geometry have

increased enough to merit a study of the complementarity of these twc. methods3. Our

objective in this portion of our study is to understand, in the case of the serrated aperture,

the relationship between the fractal dimension of an object and the roughness,

correlation angle, and correlation function.

In much of the work done with fractals, the approach has been to examine a

fractal function or model in which the fractal dimension is explicitly expressed, to note the

similarity to a physical object, and to manipulate the function to exploit those similarities.

Our approach, however, will be to generate representative members of ensembles (in

particular, of apertures with specific roughnesses, correlation angles, and correlation

functions) and to determine the fractal dimensions. In this introduction, we first discuss

37
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briefly an example of a fractal function, the Weierstrass function, and then look at the

fractal properties of several functions generated by the convolution method described in

Appendix A. Then, in Section 3.2, we describe two methods for determining an unknown

fractal dimension and test these methods on a curve with a well-defined fractal

dimension. We use these methods to determine the fractal dimensions of serrated

apertures and report our results in Section 3.3. In Section 3.4, with a qualitative

understanding of the relationships between aperture parameters and the fractal

dimension, we look again at the Weierstrass function and investigate a disagreement

between our results and the definition of the dimension of this fractal function. Finally,

we investigate the quantitative dependence of the fractal dimension on the roughness,

correlation length, and correlation function of a serration.

3.1.1. Fractal Functions

As a mathematical entity, a fractal curve is self-similar under scaling and non-

differentiable2. This self-similarity is dilation symmetry; when scaled appropriately, the

structure at every level of scrutiny is the same. Continuing this dilation to infinitessimal

.cales, we can see that this self-similarity prohibits us from drawing a tangent to the curve

at any point; there is always sub-structure which disallows the definition of the tangent.

Therefore, the curve is not differentiable at any point.

An example of a fractal function is the Weierstrass function, named for the

nineteenth-century mathematician who developed it out of his interest in continuous, yet

non-differentiable, functions. The fractal properties of the Weierstrass function were first

studied by Mandelbrot 2 and were further investigated by Berry and Lewis4, whose
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publication includes several plots of the function for different values of the principal
parameters.

The complex-valued Weierstrass function can be written as:

Wo(X) 21 D -2)) b(DW  - 2n

n = - b

X I-ep bn )Iexp 1i4') (3.1)

where b> 1 is the real-valued fundamental spatial frequency and the phases 4 , are
arbitrary; they can be either deterministic or random. If the value of Dw lies between one
and two, then W0 ( x) is non-differentiable despite continuity. The frequency spectrum is
discrete, with frequencies f0 forming a geometric progression:

f =b .
(3.2)

Since for each frequency fa the next higher frequency is f b and the next lower f / b,
W0 ( x) is a self-similar function under scaling, as required of a true fractal function. The
parameter DW in Eq. (3. 1) is assumed2,4 to be the fractal dimension of W0 ( X).

The real-valued Weierstrass cosine function,

W ( X I b 1 W - 2 ) ( W 2 ) o s ( 2 n b x + 4 1 ) ( 3 .3 )
n -o

has been used by Kim 5 to model diffusers. The autocorrelation Rw ( Ax ) of W ( x),

Rw(x+-xx) 
s(I lb

24 ) a bW )n x B( bnAx) (3.4)

2.. = ..
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is used to determine the variance ar 2 and normalized correlation function rw( Ax) of the

Weierstrass cosine function, as follows:

2 V 2 Dw_-2) G o 2(Dw- 2)n

4 = R =(O) - b  b (35)

O 2(D W - 2)nb c~s(bAx)

Rw(Ax) n-- -®
rw (Ax) - 2 O (3.6)°W Y- b 2(Dw - 2 ) n

For the derivation of Eq. (3.4), we have assumed that the phases {fn} are uniformly

distributed on the interval (0, 2n |. We see from Eqs. (3.5) and (3.6) that, given the

parameters Dw and b for a particular set of functions W (x), one can determine the

quantities ow and rW( Ax).

Our approach to the application of fractal geometry differs from that

described above. We wish to define the fractal dimension of a function, rather than

define a function with a specific fractal dimension. To this end, we further clarify the

concept of fractal dimension, look at the fractal attributes of our serrated apertures, and

describe methods by which we can determine the fractal dimensions. When we have

discussed techniques used to determine an unknown fractal dimension, we will return to

our consideration of the Weierstrass function and the validity of equating Dw with the

fractal dimension.
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3.1.2. Fractal Attributes of Random Processes

Consider a function hi(x described by the mean r1, variance var ( hi (x)),

correlation length L, and correlation function rb (Ax). This function could describe the

edge of a serrated circular aperture, in which case x would be the angular coordinate,

h1 (x) would be the radius of the aperture at angle x, q would be the mean radius, and

correlation angle would be used rather than correlation length. Four such functions, each

a realization of a different random process, are shown in Fig. 3.1. We used the

convolution method described in Appendix A to generate these functions; the different

roughnesses and correlation functions used are given in Appendix B.

To understand our motivation for describing an aperture radius function in

terms of the fractal dimension, consider the following description of these four functions.

Function hi (x) is a straight line, h, (x) = 5. This function is certainly one-dimensional. In

Euclidean geometry, functions h2 (x), h3 (x), and h4 (x) are also one-dimensional; each

describes a line in the ( x, hi (x)) plane. However, successive functions in our series seem to

take on a second dimension; function h4 (x) approaches the limit of filling an area in the

plane, thus prompting us to call it nearly two-dimensional. Fractal geometry helps us to

overcome the troublesome interpretation of a one-dimensional function filling two-

dimensional space. We assign a fractal dimension with a value between one and two

based on the space-filling ability of these curves. Following Mandelbrot's convention, we

use D to denote the fractal dimension and E for the Euclidean dimension. Smooth lines

and curves such ash1 (x) are assigned a fractal dimension of 1.00, while curve h4 (x), which

nearly fills an area, has a fractal dimension D = 1.95, close to two. Curves such as h2 (X),

with D = 1.24, and h3 (x), D = 1.67, have fractal dimensions between these two extremes.

Each of the functions in Fig. 3.1 has a Euclidean dimension E equal to one, while
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Fig. 3.1. Four functions, each represented by a (Euclidean) one-dimensional line, but
with different fractal dimensions: (a) D a 1.00, (b) D - 1.24. Details of the generation
of these functions are included in Appendix B.
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Fig. 3. 1. (Continued) (c) D - 1.67, (d) D - 1.95.
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each has a different fractal dimension, 1 :DS2. We can extend this concept to objects

with other Euclidean dimensions. A fractal dimension between zero and one can be

assigned to a collection of points which tends to form a line; a surface which tends to fill

a volume can be described by a fractal dimension between two and three.

In Appendix B, we describe the differences between these functions by the

differences in the rms deviation and the correlation function. Changes in the fractal

dimension also describe the differences between the curves. Herein, we will explore the

relationship between the fractal dimension and the variance, correlation angle, and

correlation function of a curve.

3.1.3. Determining the Fractal Dimension

The existence of sub-structure at progressively smaller scales suggests many

physical realities. We can view an irregular object with a wide range of magnifications

and discover at large magnifications details unseen at lesser ones. Often the details at all

levels possess similar structure. This self-similarity can be described fractally. An example

is pointed out by Mandelbrot6 who, prompted by the work of RichardsOn 7, applies fractal

geometry to the coast of Britain. In particular, he considers the task of measuring the

coastline of Britain. With successively smaller measuring sticks, we must include the

perimeters of successively smaller bays and peninsulas, eventually (in theory) measuring

boulders, rocks, pebbles, etc. Each decrease in the length of our measuring stick allows

and requires us to measure finer details of the coastline, and to add these measurements

to our perimeter. Thus, more accurate measurements yield longer coastline approxi-

mations.
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In a given physical system, there are constraints that limit our accuracy and

therefore place an upper bound on our length measurement. Physical objects have

smallest and/or largest scales. Fractals, however, have no such limits. This distinction is

made by Jaggard and Kim 8 , who use the terminology band-limited fractal to describe a

function with a bounded range of component frequencies. Such a function would

describe a physical object with limited fractal properties. In this section, we show how

Richardson's method is used to determine the fractal dimension of a serrated circular

aperture, which is an example of a bandlimited fractal.

Following Mandelbrot, we use the following method to define the fractal

dimension of a serrated circular aperture. Let w be the length of our hypothetical

measuring stick and P(w) the aperture perimeter approximation made with it. The

functional relationship between wand P(w) is defined:

P(w) = P(O)w I - (3.7)

where D is the fractal dimension of the measured curve. A plot of log[P(w)] against log(w)

is a curve with negative slope, since P(w) increases as w decreases. For the sake of this

discussion, we call such plots Richardson curves9 . Since from Eq. (3.7) we have

logfP(w)] = log[P(I )I + (0- D)log(w) , (3.8)

the slope m of a Richardson curve is given by:

m = I - D; (3.9)

D takes values between one and two. Thus, as D increases, the slope of the plot becomes

steeper.

We implement this method on a computer, estimating the perimeter of an

aperture with successively smaller steps, plotting the associated Richardson curve, and
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using the slope of this curve to determine D. In this way we are able to determine quickly

the fractal dimension of several apertures through a series of user-interactive programs.

This approach is particularly well suited to our computer-designed apertures. The

program 'frac.c' used to perform the perimeter estimation is included in Appendix C.

With this program we find the intersections of the continuous aperture with steps of a

given length, using linear interpolation between the discrete data points to define the

aperture. If there are multiple intersections, the intersection point chosen is the one

farthest away along the aperture edge from the other endpoint of the step. In this way,

we get the coarsest approximation of the perimeter at each step size.

A second method, also used by Kaye1 ° , is the grid interrogation method. The

basis of this method is the relationship between the fractal dimension of an aperture and

the frequency with which it intersects a regular square grid of a given spacing. If a grid

with spacing w intersects a curve N (w) times, then a doubly logarithmic plot of w-N(w)

versus w can be used to determine the fractal dimension of that curve in a manner similar

to the Richardson method. Here we present a detailed description of the grid

interrogation method as implemented for this study.

The actual coordinates of any point of intersection between the grid and the

aperture are unimportant, since the quantity of interest is the number of intersections.

Therefore, in our implementation, we determine whether each grid point lies inside the

aperture, outside the aperture, or on the perimeter. Then for the number of intersections

we use the number of adjacent point pairs of either type (in, out) or type (out, in). To this

number we add one half the number of grid points which lie on the perimeter. The

resulting number is an estimate of the number of intersections. One possible source of

error is the use of half the number of boundary points; we are assuming that half of these
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points are intersection points, and the other half are points where the grid grazes the

aperture. This estimate is suggested by Kaye. We note that the error introduced is

negligible, since so few grid points fall on the edge of the aperture. A more serious error

occurs when, for example, two points adjacent on the grid lie within the aperture, but an

even number of intersections lie between them. In this case, the intersections would not

be counted, and a low estimate would result. This error is a consistent one because of the

self-similarity of fractals. Since the fractal dimension is calculated from the slope of the

plotted data, this counting error should not significantly affect the resulting value for the

fractal dimension.

Program "grid.c', used to calculate the number of aperture-grid inter-

sections for a range of grid sizes, is included in Appendix C. As in the program "frac.c'

used to calculate the Richardson curve data, we use linear interpolation between the

aperture points. The data calculated with "grid.c" are used to plot the grid interrogation

curve for each aperture. We then determine the slope of the curve in order to find the

fractal dimension.

Although in implementation the grid interrogation and Richardson methods

are quite different, the quantity being measured at the different step or grid sizes is a

perimeter estimate in each case. The quantity NW.w is the length of a path along the

grid that lies close to the aperture edge. As w decreases, this path comes closer to

coincidence with the aperture edge and our perimeter approximation increases. This

estimate will be consistently higher than the corresponding Richardson length estimate

because the steps are constrained to the grid directions. However, a plot of log ( Nw.w)

against log (w) has a negative slope m from which we determine the fractal dimension by

the relationship
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D =1-rn. (3.10)

We see that this part of the analysis is identical to that of the Richardson method and note

that the interrogation curve will have zero slope when the aperture is Euclidean. In our

study, we use both techniques in order to corroborate the results of each.

In order to test the accuracy of these two methods as realized in our

computer calculations, we used a regular fractal structure of known fractal dimension as

input to our series of programs. The generation of the triadic Koch curve is outlined in

Fig. 3.2. Starting with equilateral triangle (a), we replace each side with the scaled

generator (b) to yield the Star of David shape (c). Next, each of the twelve sides of this

new shape is replaced by the generator; this procedure is repeated (in theory, ad

infinitum) to generate the triadic Koch curve, shown in (d) after five iterations. This curve

has fractal dimension log 4 / log 3 = 1.2619 11

The Koch curve is an appropriate input object for oui program series, since it

resembles an aperture. From the Richardson method, we calculate a fractal dimension of

1.264; from the grid method, 1.262. Standard practice12 is to use four digits beyond the

decimal place for a theoretically defined fractal dimension and two digits beyond the

decimal place for experimentally determined dimensions. By this standard, our results

from both methods are excellent for the Koch curve.

3.2. Fractal Dimension Calculations for Serrated Apertures

We now apply our two techniques to representative serrated apertures in

order to determine the fractal dimensions. The apertures are chosen from those

presented in Section 2.3 and are used to investigate the effects of the roughness,
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Fig. 3.2. Generating a triadic Koch curve. (a) initial triangle, (b) generator, (c)

first generation, (d) fifth generation.
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correlation angle, and correlation function of the aperture serration on the shapes of the

Richardson and grid interrogation curves and thus on the fractal dimension.

3.2.1. Aperture Roughness

The Richardson and grid interrogation curves shown in Fig. 3.3 are those of

the apertures in the left column of Fig. 2.3. These apertures, which vary only in

roughness, comprise aperture set 1. Each has a triangular correlation function and a n/8

rad correlation angle; the roughnesses are listed in the figure key and in Table 3.1. Also

included in Fig. 3.3 are the Richardson and interrogation curves for a circle. With the

Richardson method, measuring the circle with the same step sizes as the apertures, we

rapidly approach an upper limit to P(w) as w decreases. The circle is a Euclidean object,

with no sub-structure to add to our perimeter measurement as we use successively smaller

measuring steps. The slope of the corresponding Richardson curve is equal to zero. The

same is true of the interrogation curve. If we were to continue measuring any physical

object beyond the scale of the smallest detail, we would find this result. At scales smaller

than this, a physical object is Euclidean. Thus for the circle we see that the Richardson and

interrogation curves are straight lines with zero slope, indicating a fractal dimension of

unity. As the roughness increases, the curves of both types grow steeper; the absolute

value of the slope increases, indicating an increase in the fractal dimension.

The Richardson curve for a particular aperture is noticeably smoother than

the interrogation curve, particularly at larger step sizes. By studying an individual

Richardson curve, we can learn more about the fractal qualities of the apertures. The

slope of each curve takes on different values for different ranges of w. For small step

sizes, the slope approaches zero. This corresponds to a fractal dimension of unity or a

Euclidean object, reflecting the lower limit placed on our resolution in the design process;
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determined from the slope of the corresponding Richardson or interrogation

curve and is listed in Table 3. 1.
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Aperture # Roughness Fractal dimension D, Fractal dimension D.

(Pm) Richardson method grid method

la 125 1.03 1.03

lb 250 1.09 1.08

Ic 500 1.17 1.16

Table 3.1. Roughnesses and fractal dimensions determined by each method

for aperture set 1.

a finite number of points was used to define the aperture. For step sizes greater than our

resolution but significantly less than the correlation length of the aperture

(approximately 2 mm in this case), the curve has a relatively steep slope, especially for

larger roughnesses. This section of the plot corresponds to the high-frequency detail on

the edge of each aperture. When the step size is on the order of the correlation length,

we have a gentler slope which reflects the overall non-circular shape of the aperture.

Thus, we see three distinct fractal dimensions for our apertures: one which describes the

general shape of the aperture, one which corresponds to the fine-scale roughness, and a

value of unity which indicates the Euclidean nature of the aperture below our design

resolution. The three distinct sections of the Richardson curves show that these aperture

functions are not completely self-similar under scaling, as true fractal functions would be.

This effect is also noted by Mandelbrot, Passoja, and Paullay in their study of fracture

surfaces of metals13 . At different scales an aperture has different features which will be

seen to depend significantly on the correlation function of the ,perture.

In Fig. 3.3, we have indicated with a line segment superimposed on each

curve the range of w used to calculate the fractal dimension of each aperture by each
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method. The steep-sloped section of the Richardson curves (0.05 < w < 1.0, approxi-

mately ) was used since it corresponds to the smooth range of the interrogation curve,

thus allowing a comparison of the results from the two methods. The values of D for the

apertures, as determined by each of the two methods, are listed in Table 3.1. As is obvious

from the curves, D increases as the roughness increases. We also note excellent

agreement between the results from the Richardson and grid interrogation methods.

3.2.2. Correlation Angle of the Aperture Serration

Richardson and interrogation curves for aperture set 2 are shown in the plot

in Fig. 3.4. This set consists of the apertures shown in the first column of Fig. 2.4. Each of

the apertures in this set has the same rms roughness, 250 pm, and a triangular correlation

function; the variable is the correlation angle. The aperture with the broadest correlation

angle, with A equal to n / 4 rad in Eq. (2.20), has the shallowest slope and thus the smallest

fractal dimension. (These fractal dimensions are measured over the fine-scale roughness

range of w, as shown by the line segment superimposed on each curve.) As the

correlation angle decreases the slope of the Richardson curve grows steeper, indicating an

increase in the fractal dimension. The correlation angles and fractal dimensions for this

set are listed in Table 3.2. Here, as in Table 3.1 for aperture set 1, the two methods show

close agreement. We also note that the increase in D with decreasing A agrees

qualitatively with our expectations. Apertures with short correlation angles have more

jagged edges which better fill two-dimensional space; they should have larger fractal

dimensions. As the correlation angle increases, the aperture becomes less jagged and

more like the smooth aperture; the fractal dimension D should be closer to the Euclidean

dimension, E = 1. The curves in Fig. 3.4 and the data in Table 3.2 support this inverse

relationship between correlation angle and fractal dimension.

. .... ..
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70. aperture A symbol

2a n/ 16
2b ri/8

Length ________2c_ n/

P~W

(mm) &OWN:::

25.

0.01 0.1 1.0 10.0

Step size w (mm)

70.

(mm) NO

25. 1

0.01 0.1 1.0 10.0

Grid size w (mm)

Fig. 3.4. (Upper) Richardson and (lower) interrogation curves for aperture set

2. The key at the upper right applies to both plots; fractal dimensions are listed

in Table 3.2.
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Aperture # Correlation angle Fractal dimension D, Fractal dimension D.

A (rad) Richardson method grid method

2a n1 16 1.12 1.12

2b ni8 1.09 1.08

2c n/4 1.06 1.06

Table 3.2. Correlation angles and fractal dimensions determined by each

method for aperture set 2.

For the Richardson curves for this set, we again note the three different

sections, corresponding to three different fractal dimensions. We note, however, that the

value of w which separates the steep-sloped section of the curve from the more gently-

sloped section decreases somewhat with the correlation angle. This supports the idea

that the gentler slope is a measure of the overall shape of the curve, for which the range

of w cnanges with the correlation angle. As the correlation angle increases, the larger-

scale bumps on the aperture broaden. When the step size is on the order of or greater

than the correlation angle, the three curves have nearly the same slope; the significant

difference between the three curves is in the edge detail portion of the curve. This is the

range on which we calculate the fractal dimension. As the correlation angle increases, the

peak of the correlation function broadens. The shape of the peak controls the edge detail

of the aperture, with sharper peaks giving more high-frequency roughness. We expect,

then, that apertures with shorter correlation angles will have higher fractal dimensions in

this region of the curve; the plots in Fig. 3.4 and our calculations show that this is true.
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3.2.3. Correlation Function of the Aperture Serration

The relationship between the shape of the correlation function of the

serration and the shapes of the associated Richardson and interrogation curves is

demonstrated most dramatically by Fig. 3.5, which shows these curves for apertures

varying in correlation function. The apertures represented are those shown in the first

column of Fig. 2.5 and constitute aperture set 3. As in our statistical analysis, we note a

distinct difference between sharp- and smooth-peaked correlation functions. For step

sizes on the order of or greater than the correlation length of the aperture, the curves for

the three apertures are quite similar for each method, showing the similarity in the

general shape of the three apertures. However, as we take smaller step sizes, the curves

corresponding to the triangular and negative exponential correlation functions continue

to have a non-zero slope, while the curve levels off in the Gaussian-correlated case. Here,

we see the difference in edge detail produced by the smooth- and sharp-peaked

correlation functions. Recalling the appearance of these apertures (see Fig. 2.5), we note

that the Gaussian correlation produces an aperture with no small-scale roughness,

although it has the same basic non-circular shape as the apertures with triangular and

negative exponential functions for the correlation of the serration. Thus, we expect the

Gaussian-correlated case to approach the Euclidean limit more quickly as the step size

decreases, as is demonstrated by the curves in Fig. 3.5.

3.3. Fractal Dimension of the Weierstrass Function

With this new understanding of the relationship between the fractal

dimension and statistical parameters of serrated apertures, we now turn to variations of

the fractal function described in Section 3.1.1, the Weierstrass cosine function:

_______________---..-.I
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70 correlation
aperture function symbol

3a Triangular 0

3b Neg. exp. 3

50 3c Gaussian T
Length on

P(w)

(mm)

25 1

0.01 0.1 1.0 10.0

Step size w (mm)

70 -

w.N(w) 5 ; A

(mm) SEA

25 I I I

0.01 0.1 1.0 10.0

Grid size w (mm)

Fig. 3.5. (Upper) Richardson and (lower) interrogation curves for aperture set

3. The key at the upper right applies to both plots.
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2(Dw-2) 1 / 2  b (Dw-2)nW(x ) = I - b" Y

X Ico(n) -cos(b n x + -) (3.11)

with variance

0 = 2(Dw-2) )-I 2(DW -2)naw  RW I- b b (-2

and normalized correlation function

I b 2(DW - 2)ns( bAx)

rw(x RW(Ax n -(313)
) 2 2(D -2)noW b W

nt = -

As stated earlier, b> 1 is the fundamental spatial frequency of W ( x) and { in} is a set of

arbitrary phases; here we have assumed that these phases are uniformly distributed on

the interval (0, 2n]. In proposing the real-valued, bandlimited fractal functions

2(W- 2) 12N (Dw - 2)n

Wb(x) = q( -)b Y b os(2npb x + it), (3.14)

Jaggard and Kim postulated that the variable Dw in Eq. (3.14) is the fractal dimension of

the function. In Eq. (3.14), q and p are magnitude and frequency scaling factors,

respectively. The variance of Wb ( x ) is given by

2 2(D W  2) N2

0b  2 -- b I b
n=N

I
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the normalized correlation function, by

N2  
2 0  )

b oos(2np b Ax)

n = N1  (3.16)rb(Ax) --=

b (N 2  . 2(DW- 2)n

n =N

Our study of serrated apertures has revealed an increase in the fractal dimension with an

increase in the rms deviation, and we trust that this applies to other random processes, as

well. We note in Eq. (3.15) that the value of ob can be changed easily by varying the

scaling parameter q while holding the other parameters, including DW, constant. In

addition, a change in the frequency scale factor p affects the width of the correlation

function rb(&x) of Eq. (3.16), thus changing the correlation length of the data. We

expet the fractal dimension to change under such conditions. These observations are in

opposition to the results achieved for serrated apertures if Dw is truly the fractal

dimension. To investigate this disagreement, we apply the Richardson and grid

interrogation methods to edges defined by the Weierstrass cosine function W ( x ) of

Eq. (3.11) as well as edges defined by the scaled, bandlimited Weierstrass cosine function

Wb( x ) of Eq. (3.14).

3.3.1. Original Function

In their paper on the Weierstrass function as a fractal function, Berry and

Lewis2 present an argument for the use of Dw as the fractal dim.nsion. We investigated

this claim by using the Richardson method to determine D for several realizations of

W (z). For these calculations, we used Eq. (3.11) and followed the example of Berry and

Lewis in using enough terms in the summation to ensure that additional terms would not
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produce a visually noticeable change in the function. For each realization, we calculated

W ( x) for 512 values of x, evenly spaced between 0.0 and 4.0; Dw and b were varied. For

the phases 4 , we chose random numbers uniformly distributed on the interval (0,2nJ. The

values of D calculated for these functions are shown versus the fundamental spatial

frequency b in the plot of Fig. 3.6. We note that, for a given value of Dw , the measured

fractal dimension D varies little as the fundamental frequency b changes, and that it is

close in value to Dw. (We note a discrepancy between D and Dw for larger values; our

measurement technique is less accurate for large fractal dimensions.)

2.0 = 1.2 0
Dw = 1.5 a

1.8 AW =18Ij

1.6

D U U

1.4

1.2

1.0 I I I

0 1 2 3 4 5

Fundamental frequency b

Fig. 3.6. Calculated fractal dimension D for the original Weierstrass cosine

function, Eq. (3.11), versus fundamental spatial frequency b. Three values of

parameter Dw are represented, as shown in the key.
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One might conclude from a quick inspection of Eq. (3.12) that since an

increase in b would decrease the period of each cos (bn Ax) term, n> 1, the correlation

length of W (x) would decrease and the fractal dimension would increase. However, we

note that each cosine term is multiplied by b2 (DW -2 )n< 1 , which decreases as b

increases. Apparently, this decrease in the magnitude of these coefficients reduces the

contribution of the higher-frequency cosine terms in the summation so that the

correlation length and the fractal dimension remain fairly constant. The evidence

presented in Fig. 3.6 thus supports the claim that, as used by Berry and Lewis and by

Mandelbrot, DW is a good estimate of the true fractal dimension of the function.

3.3.2. Scaled Function

We now consider the amplitude- and frequency-scaled Weierstrass cosine

function, which is given by Eq. (3.14) with N1 and N2 equal to 0 and -, respectively. (We

begin our summation at n equal to zero to avoid large coefficients b(DW- 2)n.) This

function is a non-bandlimited version of the function used by Jaggard and Kim; we will

discuss the effect of bandlimiting shortly. The arbitrary scaling factor q incorporates the

case of normalization to a selected variance as well as the elimination of the

coefficient ( I- b 2(Dw - 2)) -1/2 of the sum. This scaled Weierstrass function and the

claim that Dw is the fractal dimension contradict our findings on the relationship

between roughness and fractal dimension.

We again choose 512 equispaced values of x ranging from 0.0 to 4.0. For the

first three sets of functions generated, fundamental frequency b is fixed at 1.1 and

frequency scale factor p is assigned a value of 0.15. This value of p is chosen so that the

quantity 2nip is approximately equal to unity; in this case, the cosine argument is

equivalent to that from Eq. (3.11). DW values of 1.2, 1.5, and 1.8 are used as indicated.
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Then q for each function is chosen to produce a specified spatial rms deviation

{w (X) 2}I/2, where w (x) is equal to W (x) - {W) x and thus has zero mean. The calculated

fractal dimensions of these functions are shown plotted against {w (x) 21.112 in Fig. 3.7.

We note that, for large enough values of {w (x) 2}.I/2, DW is a good approximation of D.

However, as {w (x) 2} Z /2 decreases, D becomes significantly less than Dw. We note also

that this result is valid for differing values of the fundamental spatial frequency b, as

shown by the functions which have Dw values of 1.5 and b-values of 1.1, 1.2 and 1.5. This

2.0 Dw = 1.2
b= 1.1 "

1.8 A 1.8
£ b1.1 A

1.6 DW = 1.5 o
b= 1.1

D D 1.5
1.4 1.2 o

W 1.5
1.2 a b= 1.5

1.0 I I I

0 1 2 3 4

spatial rms deviation (w (x) 2} 1/2

Fig. 3.7. Calculated fractal dimension D for the amplitude-scaled Weierstrass

cosine function, Eq. (3.14), 0!5 n < w. The function was scaled to produce specific

values of the spatial rms deviation {w (x) 2}L 12 as denoted by the abscissa.

Frequency scale factor p is fixed at 0.15 for each realization of the function.

Fundamental spatial frequency b and parameter Dw vary as indicated in the key.
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corroborates our results for serrated apertures and cautions against the use of Dw as the

fractal dimension of an amplitude-scaled Weierstrass function.

The choice of frequency scale factor p in the previous example results in the

convenient upper limit of Dw on D. This, however, is not true for other values of p, as can

be seen in Fig. 3.8. Here, we have plotted fractal dimension D versus spatial rms

roughness {w (X)2 }2 1 for three different values of p. For p equal to 0.05, the upper limit

on D is noticeably smaller than Dw; for p equal to 1.00, the upper limit on D increases.

2.0 -p = 0.05 1
p= 0.15 M

1.8 - A

A

1.6 -

D a U

1.4 -

1.2 -

1.0 l I I I

0 1 2 3 4

spatial rms deviation {w (x) 2 ).1/2

Fig. 3.8. Calculated fractal dimension D for the frequency-scaled Weierstrass

cosine function Eq. (3.14). versus spatial rms deviation {w (1) 2 11/2. D is plotted

here for three values of the frequency scaling parameter p as indicated in the

key. For each realization of the function, parameter Dw and fundamental

spatial frequency b are equal to 1.5.
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Thus, we must also avoid frequency scaling in order to use Dw as the fractal dimension of

the generated Weierstrass function.

The increase in D with an increase in frequency scale p can be more

thoroughly understood from the following perspective. From Eq. (3.16), we see that the

normalized correlation function rb (Ax) of the scaled and bandlimited Weierstrass

function Wb () is expressed as a sum of weighted cosines with frequencies 2n p b. If we

increase p , we increase each of these frequencies proportionately and thus narrow the

correlation function. This effectively decreases the correlation length of Wb (x), since the

weighting factor b2 (DW- 2 1n does not change. We have seen earlier that a decrease in

the correlation length (or correlation angle, as appropriate) results in an increase in the

fractal dimension. Thus, we expect that increasing frequency scale p will have the same

effect.

3.3.3. Bandlimited Function

Finally, we investigate the effect of bandlimiting on the validity of Dw as the

fractal dimension. For this example, we choose Dw equal to 1.5 and b equal to 1.1; the

same range of values is used here for x as in the previous examples. Amplitude scale

factor q is chosen to yield {w (X)2 ) 12 equal to 1.0, and p is set at 0.15. To perform the

bandlimiting, we fix N, at zero and set N2 at successively lower values. The fractal

dimension is calculated for each function, and the results are plotted versus N2 and shown

in Fig. 3.9. We can see that by placing an upper limit on N2, and thus on the highest

component frequency, we can significantly affect the fractal dimension. As N2 decreases

D decreases, gradually at first and then more rapidly as N2 approaches zero. This is

expected when we consider the Euclidean nature of a function consisting of just the first

few terms in Eq. (3.14). In addition, we are again affecting the width of the correlation
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function, increasing it as we cut out higher frequencies and thus decrease the fractal

dimension. We conclude that, although the bandlimited Weierstrass model is useful

when considering physical fractals, we must be careful in assigning the fractal dimension,

just as we must use caution when scaling the function in frequency and/or amplitude.

3.4. Quantitative Analysis of the Statistical - Fractal Relationship

We turn now to an empirical analysis of the quantitative relationship

between the aperture parameters and the fractal dimension. We have already noted for

the apertures discussed that D increases with an increase in the rms roughness and also

with a decrease in the correlation angle. These two relationships suggest that D may be a

function of the ratio between the roughness and the correlation angle, increasing with

2.0 -

1.8

1.6
D

1.4 -

1.2 -

1.0 * I I I I I

0 50 100 150 200 250 300

Summation index N2

Fig. 3.9. Calculated fractal dimension D for the bandlimited Weierstrass

cosine function, Eq. (3.14), versus summation index N2. For each realization of

the function, Dw = 1.5, b = 1.1, 1 w2 ,,'/2).1 1.0, and p = 0.15.



this quantity. In our investigation of this dependence, we use serrated edges rather than

serrated apertures in order to simplify the analysis and to allow a larger range for the rms

roughness; in our aperture design method, a large roughness value can result in the self-

intersection of the aperture edge. We first show, however, that the Richardson curves for

these two cases are similar enough to permit this change in the basic object of study.

3.4.1. Similarities of Serrated Apertures and Edges

Richardson curves for a serrated aperture and for a serrated edge are shown

in Fig. 3.10. We generated both the aperture and the edge from the same set of

uncorrelated random numbers; they also have identical rms roughnesses, correlation

lengths, and correlation functions. The difference between the two is the rule by which

the correlated data are assigned to generate the aperture or edge. If the function S -)

describes the correlated data, then the rule used to generate the serrated aperture is

rc (o = S(oi) (3.17)

in which rc (o i ) is the radius of the aperture at angle ai. For the serrated edge, we use

the rule

h(x i ) = S(xi), (3.18)

where h(z i ) is the height of the edge at abscissa value zi . The sample spacings are

chosen so that the correlation lengths of both the aperture and the edge will be the same.

The requirement for this condition is:

Xi+1 - Xi =IS) (oi+ ! -a) (3.19)

where { Sa is the spatial average of S ( oi ). In discussing apertures, we have referred to

correlation angle A; in our discussion of edges, we will use correlation length L. Since L
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is equal to { S ),.A, the fractal dimension will have the same functional dependence on

both L and A, but for the scale factor { S }*

The two Richardson curves shown in Fig. 3.10 are nearly coincident in the

range of interest, indicating that there is no significant difference between the fractal

dimension of the aperture and that of the edge. There is a notable deviation between

the curves for large step sizes, but this is expected. When we use a large step size to

45 -
aperture

sees 8il edge

40 -
a'

62

Length

L(w) 35 - 2

(mm) ha

6 6 0 6 6 6 'a

30 -

I I I

0.01 0.1 1.0 10.0

Steo size w (mm)

Fig. 3.10. Richardson curves for serrated aperture and serrated edge. The edge

and the aperture have the same rms roughness and correlation function.
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estimate the perimeter of the aperture, the polygon we generate is scribed mostly within

the aperture and has a perimeter much less than that of the aperture and that of the

circle with equivalent mean radius. The value of the estimated perimeter is bounded

below by twice the diameter of the aperture. When we estimate the length of the

serrated edge, however, we use a series of line segments stretched out almost parallel to

the x-axis. For large step sizes the sum of the lengths of these segments is approximately

equal to the length of the edge projected onto the x-axis and is bounded below by this

value. Thus, for large step sizes, we expect the estimated edge length to be greater than

the estimated aperture perimeter.

For a serrated edge, equal scaling in both the x and h(x) directions will not

affect the fractal dimension. For example, the function h2(x) shown in Fig. 3.1(b) would

have the same fractal dimension if both axes were labeled in microns, inches, or

kilometers rather than millimeters. Scaling an edge equally in the x and h directions

would scale the correlation length and rms roughness, respectively, by the same factor.

Thus the ratio of roughness to correlation length would remain unchanged. We are

therefore assured that the fractal dimension will depend on the rms roughness and the

correlation length as this ratio. With this view, we investigate the dependence

empirically.

3.4.2. Dependence of the Fractal Dimension on the Roughness-to-Correlation-

Length Ratio: Triangular Correlation

For this study, we generated digital models of several serrated edges, each

with the ratio of roughness to correlation length approximately equal to one of the

following values: 0.255, 0.509, 0.764, 1.02, 1.16, 2.04, 3.?6, or 4.06. (These values are

approximate because the spatial rms roughness of a given edge deviates from the design
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value; see Appendix A.) For notational simplicity, we use the symbol oh to represent the

rms deviation of the edge, { [ h (x)- { h (x) } 12 }1 /2. Throughout this study, the sampling

step size along the x direction is equal to 10 n1 1024 mm:

xi+l-x i = 1On/1024mm -0.03mm (3.20)

In this first stage, all edges have a triangular correlation function; the correlation angle is

defined as A in Eq. (2.20). Using the procedure that was described in Section 3.2.1 for our

serrated apertures, we calculated the fractal dimension of each edge by the Richardson

method. The results of this process are shown in Fig. 3.11, where the fractal dimension D

1.5 Design roughness

o 0.125 0
A a A

1.4 o X g 0.250 0
xx

£ 0.500 £

Fractal 1.3 - A 0.750 x

dimension • 1.00 0

D 1.2 1.50 a

2.00 A

1.1 3.00 x

4.00

1.0 , I I , I , I

0 1 2 3 4 5

Roughness oI Correlation length L

Fig. 3.11 Fractal dimension D versus ratio oh/ L for serratee edges. Each edge has a

triangular correlation function, given by Eq. (3.27); each point represents the average

dimension for four edges with the same design roughness. D is determined by the

Richardson method.
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is plotted against the ratio o. /L for each edge. As specified in the figure key, each

symbol used corresponds to a different value of the design roughness, i.e., the value used

as input to the design program. For small values of the ratio oh/ L, there is some

dependence of the fractal dimension on the roughness value, but as the ratio increases

this dependence becomes less significant. Overall, the plot shows that the fractal

dimension increases with the ratio of the roughness to the correlation length, as we

expect.

3.4.3. Definition of the Correlation Length

The second stage of this investigation involves variations in the correlation

function. Essential to this is the use of correlation functions with different peak shapes.

In Section 2.3.4, we saw the effects of the use of Gaussian and triangular correlation

functions on the appearance of our apertures. We expect similar results for serrated

edges. However, because of the wide range of peak shapes to be used here, we redefine

the correlation length uniformly so that correlation functions of equal area will have

equal correlation lengths. The basis for this definition is as follows.

Consider a large set of normally-distributed, correlated, random numbers

from which we select m consecutive numbers to represent edge h, (x). (The edge

functions h (x) used here are generally not those from Section 3.2.1.) The mean edge

height of h, (x) is given by the spatial average

I M
hh(x.) •. = i Ax (3.21)hlx-m . i ' i "

i--1

We can then choose another m points in the same way to represent edge h2 (x), and

continue in this same manner to generate a set of N edges. (This procedure is a simple
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way to represent the effect of holding all input parameters, except the seed in the

random number generator, constant in designing several apertures.) Once we have this

set of edges, we can calculate the mean edge height {h} 1 of each edge. We can also

calculate the variance of the mean edge height for the set; i.e.,

var({h-.) = I~ ~ ({h.} j- I {b}) . (3.22)
= I j1

Since the data from which the hi were selected are normally distributed, we can apply the

following theorem from the theory of statistics14:

Let { h,. denote the sample mean of a random sample of size M from a

normal distribution with mean a and variance var (h (x)). Then { jyJ has

a normal distribution with mean a and variance

var( h(x)) (3.23)
var~th} = M.

When we apply this theorem, the key phrase in the above statement is random sample,

which implies that the sample points are independent. When we sample the large set of

normally-distributed, correlated, random numbers to define a serrated edge by taking a

subset that consists of consecutive points, the m points we choose are not independent.

However, we can apply the theorem as stated if we let M be the number of independent

samples in the subset of points chosen. The number M, then, is less than m, and we use M

to define the correlation length of the edge:

P
L. = I- (3.24)

...............
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where P is the projected length of the edge onto the x-axis,

P = mAx, (3.25)

and L is the correlation length of the edge. The correlation length and the variance of

the mean edge heights, then, are mutually dependent terms.

From the theory presented in Appendix A, we can write an edge function

h (x) as a convolution:

P

hj(x) = 10 qj(0,w (z-)d, (3.26)

where q (k) represents a set of uncorrelated random numbers and w (x) is the convolving

window function. The edge height is assumed to be zero outside the range [ 0, P 1. The

mean edge height is then given by

{h.(x) = 1P 0h.(x)dx = fP I q O i(x-)dd , (3.27)
J 0J P0 0

which, interchanging the x and E integrations, we rewrite as

(h.(x)) = 1 q.(Q) w(x - k)dx d4 . (3.28)
J 0 0 J

Since the x integration is now simply over the shifted window function, we can eliminate

the shift and express the mean edge height as the product

P

{h.(X)} {q)(x)= } I w(x)dx = {q.(x)} A , (3.29)

where A. is the area under the window function. We use Eq. (3.29) in Eq. (3.22) to write

the following expression for the variance of the mean edge height:
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'N N WvarA{hj}) = ({qx(X)) A I- {qj(x)}xA)

j= "=N

A2  j ( .~~ I j!

{qN 1 , x N {q.(x)})

=j=1

var({hj}.) = A var({q(x)}) (3.30)

Thus, the variance of the mean edge heights is equal to the product of the square of the

area of the window function with the variance of the mean value of the original

uncorrelated data set.

For convenience, we prefer to express the area of the window function in

terms of the correlation function. From Appendix A. we have

rh(x) = w(x) * w(x) , [(A.25)I

where * denotes a convolution. Using Rb (f,) and W (f 1 ) to denote the Fourier

transforms of rb (z) and w (x), respectively, we write the transform of Eq. I(A.25)] as

R (f ) = w 2 (f ) .(3.31)

With a square root and an inverse transform, we express the window function in terms of

Rb(f.):

w(X) = F- I IRb(fx)I 1/2 (3.32)

where we use F - I to denote the inverse Fourier transform. The area under the window

function can now also be written in terms of (f.):
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A = w(x)dx = J -i h(fx )w 0 0

A = I Rb(f)1 exp(-2nfxx)dfi dx (3.33)w 0 _oo xx

Since the window function is identically equal to zero outside the range [0, P], we have:

A=R h  ) exp(-i2nf x)df dx 3.34)

and, interchanging the order of the fs and x integrations,

A= I R1(f )I exp(-i2nf x)dx df (3.35)
W M x x

A = ) Rb ~f)1(fz df- Rh(O)j , (3.36)

where 8 ( f, ) is the Dirac delta function. We note that

Rh(0) = )rh(x)exp(i2nf x)dx 0= + r (x)dx (3.37)_=O i f =O h o

and thus

A2 = O r (x)dx. (3.38)

The squared area of the window function is equal to the area under the correlation

function. Using Eq. (3.38) in Eq. (3.30). we write the variance of the mean edge height in

terms of the correlation function:
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var({h.}) = var({qj(x)}) 1J0 rhxcx (3.39)

Finally, using Eqs. (3.23) and (3.39) in Eq. (3.24) and recalling that with the normalization

chosen in Appendix A var ( hi) is equal to var (q,), we have an expression for the

correlation angle in terms of the original, uncorrelated data function q and the

correlation function of the edge data:

L_ var({h.(x)}) var({q (x)+})

L v=P r-(h(X)) va(q() J rh(x)dx (3.40)

We conclude from this expression for the correlation length that if two edges are

generated from the same set of uncorrelated data, the correlation length of each will be

the same if the areas under the correlation functions are equal. We now apply this

condition in defining correlation functions for serrated edges.

3.4.4. Dependence of D on the Ratio oh/L and on the Correlation Function

Recall the definition of the Gaussian correlation function,

G( )= exp , , (3.41)

where X is the half-width-at-e 1 of the function, and the triangular function,

A( )= -X ' l', , (3.42)

0 , otherwise

where X is the full-width-at-half-maxirmum of this function. We will use these two

correlation functions, shown in Fig. 3.12 (a) and (b), in generating serrated edges. In
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addition, we expand our collection of correlation functions with two functions that have

sharper peaks than the triangular function. We expect these correlation functions to

produce even more jagged edges than those already seen. The new functions are of the

form:

Ax I for j A x 1 < X (3.43)
Eif= '

0 , otherwise

where the exponent 0 is a number in the range (0, 1]. As P decreases, the peak becomes

sharper. We choose P equal to 0.5 and 0.25 for our correlation functions; they are shown

in Fig. 3.12 (c) and (d). Because of the shape of this function, we call it the Eiffel

function' 5. We note that when Pi is equal to I this function is the triangular function. For

each function shown in Fig. 3.12, X was chosen to satisfy the equal areas condition

discussed in the previous section. A typical edge for each of these four correlation

functions is shown in Fig. 3.13.

We generated several serrated edges with each correlation function for a

range of values of the ratio % / L; the data for these sets are listed in Table 3.3. For each

edge, we determined the fractal dimension by the Richardson method. Then, for each

combination of correlation function and ratio value, we calculated the average fractal

dimension. The results of these calculations are shown in the plot in Fig. 3.14 as large

points with shapes corresponding to the correlation function. Each point in this plot

represents edges with three different values for the design roughness, as listed in Table

3.3. The value of L used to calculate the ratio in plotting each point is the effective

correlation length, determined from the area of the correlation function. The resulting

variations in the ratio are indicated by small points to the left and right of the large

plotted point, indicating the rms deviation in the ratio value. Also shown, above and
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(a) (b)

1.0 1.0
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rh(Ax) 0.4 rbA)0.4

0.2 0.2

0.0 0.0

-x o x *x 0 X
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(c) (d)

Fig. 3.12. Correlation functions r,(Ax) for serrated edges versus separation Ax: (a)

Gaussian, Eq. (3.41); (b) triangular, Eq. (3.42); (c) Eiffe, Eq. (3.43). P-0.5; and (d) Eiffel,

0-0.25. For each function, width X is chosen so that all four functions have the same

area.
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Fig. 3.13. Typical edges produced with the correlation functions shown in Fig. 3.12: (a)
Gaussian, Eq. (3.41); (b) triangular, Eq. (3.42).
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Fig. 3.13. (Continued) Eliffel, Eq. (3.43), (C) ftwO.5 and (d) AwO.25
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below each large point, are small points marking the rms deviation in the fractal

dimension.

In Fig. 3.14, as in Fig. 3.11, we see that the fractal dimension increases when

the ratio of roughness to correlation length, a/L, increases. Figure 3.14 also shows the

dependence of the fractal dimension on the shape of the correlation function. For a

given value of the ratio oh/L, the fractal dimension is largest for the edges with the

sharpest correlation function (namely, the Eiffel function, Eq. (3.43), with P equal to 0.25).

As the peak of the correlation function broadens, the fractal dimension decreases; the

smooth-peaked Gaussian function corresponds to the smallest fractal dimension for a

given ratio value. We also note that for each correlation function the fractal dimension

approaches an upper limit. These limits range from slightly more than 1.0 for the

oh/IL 0.255 0509 0764 1.02 1.16 204 326 4.08

% 0.125 0.125 0.750 0.500 0.750 1.00 1.00 200

L 0.491 0.245 0.982 0.491 0.675 0.491 0.307 0.491

ob  0.250 0.250 1.00 0.750 1.00 1.50 1.50 3.00

L 0.982 0.491 1.32 0.736 0.859 0.736 0.491 0.736

Oh 0.500 0.500 1.50 1.00 1.50 2.00 2.00 4.00

L 1.96 0.982 1.97 0.982 1.29 0.982 0.614 0.982

Table 3.3. Roughness o and correlation length L for the design of the sets of

edges represented in Fig. 3.14. Four edges were used from each set and the

fractal dimension was averaged for each ratio value and correlation function.
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Gaussian correlation to nearly 2.0 for the Eiffel function, ( = 0.25. These results thus

indicate that a given correlation function shape can be used to produce an edge with a

fractal dimension up to some limit. The sharper the correlation function peak, the higher

this limit will be.

Gaussian

Triangular

Eiffel, =0.50 W

2.2 Eiffel, ) = 0.25 x

2.0 -. , X N • N

xm

Fractal 1.6 - .

dimension 1. ::: : : :
D 1.2 - ""

1.20 ,

~~~~~~~0.8 i I a I a . I . i .

01 2 3 4 5

Roughness / Correlation length L

Fig. 3.14. Fractal dimension D versus ratio 05 1L for serrated edges of varying

correlation function. Each point represents the average of the fractal

dimensions of edges with a particular correlation function shape and ratio

value. Roughness and correlation length data for the edges are listed in

Table 3.3.
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The results presented here suggest the concept of a fractal set of edges

which would incorporate several statistical sets. A fractal set would include all edges that

have a particular fractal dimension and would include several statistical sets with varied

roughness and correlation length values, just as a horizontal line drawn on Fig. 3.14

would intersect several curves. Smoothness of an aperture, as discussed in Section 2.3.5,

could then be associated with a fractal set rather than with a particular statistical

parameter.

3.5 Summary

In this chapter, we investigate the fractal nature of the serrated circular

aperture. Our objective is to study the relationship between the fractal dimension and

the parameters of the aperture. An important step in this study is to determine the fractal

dimensions of random processes. To this end two techniques, namely the Richardson and

grid interrogation methods, are used. To test these methods and the programs we use to

carry them out, we applied them to the triadic Koch curve, shown in Fig. 3.2, which has a

well-defined fractal dimension. We next applied these methods to serrated circular

apertures. In examining the Richardson and interrogation curves shown in Figs. 3.3, 3.4,

and 3.5, we noted that, as expected, fractal dimension increases with increasing rms

roughness and with decreasing correlation angle. The Richardson curves in particular

show that a serrated aperture can have different fractal dimensions at different levels of

scrutiny. Below the resolution of the aperture design process, a fractal dimension of unity

indicates a Euclidean aperture. At scales greater than the correlation length, the

apertures have a fractal dimension between one and two that corresponds to the general,

non-circular shape of the aperture. Between these two scales, the fractal
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dimension of the edge roughness is measured; the fractal dimension measured in this

range has a strong dependence on the shape of the correlation function of the serration.

With these results in mind, we returned to the fractal function described in

Section 3.1.1. the Weierstrass cosine function. We applied the Richardson method to

several realizations of the Weierstrass cosine function, Eq. (3.11), and found that for this

function Dw is close in value to the fractal dimension. These results are shown in Fig. 3.6.

However, scaling and/or bandlimiting the function changes the fractal dimension. For the

amplitude-scaled Weierstrass cosine function we found that the fractal dimension

decreases as the roughness decreases, as expected from our results for serrated apertures.

This is valid for different values of the fundamental spatial frequency b, as shown in Fig.

3.7. The data presented in Fig. 3.8 show that the fractal dimension also depends on the

frequency scaling parameter p. Since increasing this parameter decreases the correlation

length, the fractal dimension increases as p increases. The effect of bandlimiting the

Weierstrass function is demonstrated in Fig. 3.9. The fractal dimension decreases as fewer

terms are used in the summation. When only a few terms are used, the function produced

is essentially Euclidean, as it has only a handful of component frequencies. The results of

this investigation caution us to use fractal functions with care and to develop a sense of

the relationships between the fractal dimension and the parameters that describe a

random process.

The final step in this fractal study is to develop a more quantitative

relationship between the parameters of the serration and the fractal dimension. In Fig.

3.11 we see the relationship between D and the ratio of the spatial rms roughness to the

correlation length, o%/L, for a serration with a triangular correlation function. The

fractal dimension increases with Oh/L, i.e., as the roughness increases and/or the
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correlation length decreases. This increase is for the most part independent of a. and L

except in the ratio. When we repeat this analysis for other correlation functions, we find

similar behavior; thi; is demonstrated by the data presented in Fig. 3.14. We note a major

difference, though, between the results for different correlation functions: the sharper

the correlation peak, the larger the fractal dimension at a given value of the ratio.

Our investigation of the relationship between the edge parameters and the

fractal dimension has led to the concept of a fractal set of edges. Statistical sets with a

specific fractal dimension D would form subsets of the fractal set with that dimension. As

our understanding of the mathematics of fractals grows, we will find further use for

fractal sets. For now, we use statistical concepts to study the serrated aperture and leave

the continuation of the fractal analysis for future pursuit.

I iam



85

Chapter 3 Notes and References

1. N. George and G.M. Morris, "Diffraction by serrated apertures,' 1. Opt. Soc.

Am. 70, 6-17(1980).

2. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York,

1983). p. 388.

3. A literature search of the Inspec database of scientific publications (covering

engineering, physics, and computer science) of the term statisticS, where $

denotes a wild card, finds 30,170 citations published in the years 1980 through

1984 and 33,254 from 1985 to 1989. In contrast, 458 publications on fractals are

found from the first time period and 2602 from the second.

4. M.V. Berry and Z.V. Lewis, "On the Weierstrass-Mandelbrot fractal function,"

Proc. Roy. Soc. Lond. A 370,459-484 (1980).

5. Y. Kim, Wave Propagation in Bandlimited Fractal Media (Ph.D. Thesis,

University of Pennsylvania, 1987).

6. B.B. Mandelbrot, "How long is the coast of Britain? Statistical self-similarity

and fractional dimension,' Science 156, 636-638 (1967).

7. L.F. Richardson, "The problem of contiguity: an appendix to Statistics of Deadly

Quarrels,' General Systems Yearbook 6, 139-187 (1961).

8. D.L. Jaggard and Y. Kim, "Diffraction by band-limited fractal screens,* J. Opt.

Soc. Am. A 4, 1055-1062 (1987).

9. B.H. Kaye, J.E. Leblanc, and P. Abbot, "Fractal description of the structure of

fresh and eroded aluminum shot fineparticles," Part. Charact. 2, 56-61 (1985).

10. B.H. Kaye, "Specification of the ruggedness and/or texture of a fine particle

profile by its fractal dimension,' Powder Technology 21, 1-16 (1978).

11. Ref. 1, p. 36.



86

12. ibid., p. 24.

13. B.B. Mandelbrot, D.E. Passoja, and A.J. Paullay, "Fractal character of fracture

surfaces of metals,', Nature 308, 712-722 (1984).

14. A.M. Mood, F.A. Graybill, and D.C. Boes, Introduction to the Theory of

Statistics, 3rd ed., McGraw-Hill, New York (1963), p. 241.

15. The centennial of the Parisian tower is here noted and honored. The value of f3

for the tower is approximately 0.34.



Chapter 4

Statistical Diffraction Theory for Serrated Circular Apertures

4.1. Introduction

The diffraction of light by a serrated circular aperture can be understood

through the application of statistical techniques. If apertures in a set are realizations of

the same random process, the Fourier transforms of the transmission functions of those

apertures will be similar to each other in a statistical sense. In this chapter, we combine

the diffraction theory of Chapter 2 with methods of statistical optics in order to derive

quantitative results for the angular correlation of intensity.

The basic quantity of interest in this chapter is the two-point intensity

moment, defined in Section 4.2. Since the intensity is equal to the squared modulus of the

scalar component of the field, this second-order intensity moment is a fourth-order

moment of this scalar field. By using a general moment expansion for Gaussian fields and

applying symmetry conditions, we determine that two terms in the expansion of the

fourth-order moment are significant. As shown in Section 4.2.2, these terms are second-

order moments of the field. We proceed with the details of the calculation of these

second-order moments in Section 4.3, expressing them in terms of the characteristic

functions of the aperture serration. An illustrative example is used to verify the symmetry

conditions derived for the second-order moments of the Fourier transform of a real-

valued object.

To extract from this theory the relationship between features in the Fourier

transform and statistical parameters of the aperture serration, we examine our expression

for the significant second-order moment in Section 4.4. We identify important terms in

87



as

the integrand for the second-order moment and discuss the effects of variations in the

serration parameters on these terms. In Section 4.4.2, Fresnel zone analysis is used to gain

some physical intuition about the relationship between the aperture roughness and the

transform ring fragmentation. In Sects. 4.4.3 and 4.4.4, the correlation angle and

correlation function of the aperture serration are shown to alter the number and

appearance, respectively, of the spikes in the transform. We support these predictions

with calculated examples of <I (PI, 01 ) I (P2, 2 )> for selected aperture ensembles and

with calculated intensity distributions for individual members of these ensembles. These

theoretical findings presage the experimental work to be presented in Chapter 6.

4.2. The Two-Point Moment of Intensity

Since in experimental studies we are able to measure the intensity, given by

Eq. (2.14), of the Fourier transform, the function of interest is the two-point intensity

moment. This fourth-order moment of the field is written:

< (P2, ] "Np,) > = < V (z)(PiAy t ) V * ( z ) ( p , 4 ; t )

X V(Z)(p 2 ,0 2 ;t)V*( 2 )(p2,42;t)> , (4.1)

where subscripts 1 and 2 denote two points in the transform plane, each with a

corresponding optical frequency, and the angle brackets (<>) denote the expected

value over an ensemble of apertures. This ensemble averaging is mathematically and

physically distinct from the spatial averaging used in previoas chapters. Details of the

differences are included in Appendix A.

The ensemble average <i ( P1 , 11 (p2 , .2 )> would be measured

experimentally as follows for a single optical frequency, Yj = v2 . Two single detectors are
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placed in the transform plane of an optical system, one at point 1: (pl, 4P ), the other at

point 2: (p 2,42). With one serrated aperture from the ensemble of interest in the

aperture plane of the system, the intensities at points 1 and 2 are measured with the

detectors. The product I (pl 4' ) I (p 2, 2 ) is calculated and stored. The serrated

aperture is replaced by another from the ensemble, and the same measurement,

calculation, and storage procedure is followed. After all the apertures have been used in

this way, the average value of (p, 1 )1 (P2, 02) is determined for the ensemble; this

quantity is the ensemble average <I (pl, i 1 
) I (p 2 ,012 ) > . In theory, the number of

apertures in an ensemble is infinite; thus, in practice, some large but finite number of

apertures would be used to approximate <I(p 1,0 1 )I(p 2 ,0 2 )> by this method. We

note that, unlike this ensemble average, a spatial average would depend on the particular

ensemble member chosen.

The reader is cautioned against confusing the two-point intensity moment

<1 (P1, 01 ) 1 (P 2 , 12)> with the usual two-dimensional correlation function in Cartesian

coordinates. One can readily show that the two-point moment in a cylindrical coordinate

system is an entirely different function. We will see later that this two-point moment of

intensity is particularly interesting in a reduced form for the study of features in the

transform. We will fix the p coordinate (i.e., set p, equal to p2) and study the two-point

intensity moment as a one-dimensional angular correlation function. For present

considerations, we keep the full two-dimensional representation.

With this understanding, we continue with our investigation of the fourth-

order moment of the field. Equations (2.13) and (4.1) are combined to yield the basic

result:
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I(PI, n) 1(P2, 2) > = < V(Z) (P1 ,tl;vlI * Z (PI, (P; V I

Xv (Z) l P2, 4P2; V2)lv* ( Z) ( p2,'4)2; V 2 )> (4.2)

This expression for the two-point intensity moment is applicable to the study of the

wavelength dependence of the moment as well as the spatial dependence. It should be

clear from the derivation of Eq. (4.2) that we are not treating optical mixing of the two

frequencies.

4.2.1. Moment Expansion for Gaussian Fields

In this section, we use a moment expansion in order to simplify the fourth-

order moment in Eq. (4.2) to a sum of second-order moments. When calculating

correlations of scalar fields, one often encounters high-order moments of complex

Gaussian processes. Reed1 has presented a moment theorem which has been used

extensively2 7 in statistical optics to simplify the higher-order moments. We will show

that, for the Fourier transform calculation at hand, the usual assumption that the scalar

field obeys circular complex Gaussian statistics is not valid. Hence, we proceed with a

general moment expansion, following Shirley and George 9 in applying Reed's theorem

to the two-point moment of intensity of a scalar field.

The scalar field v(z) is defined as an integral in Eq. (2.7). This integral can be

interpreted as a sum of functions of random variables s (a); by the central limit theorem,

v(z) is thus Gaussian-distributed. Assuming neither circular statistics nor zero mean we

can write the fourth-order moment as8 '9 :
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<I(p1 ,41 ) I(p2,+2)> -

<V(Z) (PI, 4'Vd) Vs{Z) (PI' +)I;v I)> <V (Z)(P2' 4)2;V2) v* ( P2' +)2;V2) >

+J < v (Z) ( PI , 4,1 ; VI ) v* (Z) ( P2' 4)2; V2 ) > < v- (Z) ( Pl' +)1; 'VI) v (Z) ( P2' 4)2 ; v2 ) >

+i v (Z) (PI, +)l;Vl) , (Z) (P2, 42; v2) > <v
* (Z) (PI, 4), ;V,) v* (Z) (P2' +)2; v2) >

-2<v(Z)(P 41;Vl)> <v(Z) (P2')2; V2)>

X <v*(Z(pl;Vt)> <v*(Z)(p2,+2;V2). (4.3)

We note that < v(Z)(p, ,, 1 ) v*(Z)(p 1,Ol,V1) > < v(Z)(p 2,42;v2)v*(Z)(p 2 ,4)2;v 2) > is the

product of the ensemble averages of the intensities at points 1 and 2 and that the fourth

term is a four-fold product of field ensemble averages. Thus, the two-point properties are

contained in the second and third terms, for which we use the notation

I' 121 < vIZI(P I, 4)t ;vl) v* (Z) (P 't; V2)>1

= < v(Z (pl,4YV) v *2 (), (2 4Y V2)> < V * (z) (p l Y VI) v(Z)(p2' )2;V2)> (4.4)

and

u I1 < v(Z)(Pl' 4 v) v(Z)(P2' 42;v2) > 12

:< V(Z) (pl, 4;vl) V(2) (P2,+2; V2) > < v (z)(pl , 4 ; v l ) v* Z(2, 4)2; V2) > . (4.S)
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These two terms are spatial cross-terms. Since we have chosen to discuss monochromatic

fields, the ensemble averages u12 and u12* are not spectral intensities. A fairly standard

technique1 0 used in speckle problems to simplify the moment expansion of Eq. (4.3) is to

assume that v(z) possesses circular complex Gaussian statistics; i.e., that

< v(Z)(p(, tl;v) v(Z) (p 2 , P2 ;v 2 )>

= <V (Z)(Pl'P1; "I ) > < v (Z ) (P2' 't2 2 ; V2) >  (4.6)

We can see that with this assumption Eq. (4.3) reduces to

<I(PI,") I(P 2,4 2 )> =

< v(Z) (I 4 1'V ) )> < V(Z)(P2' (2; 2)v* (Z (p2' 'N;)2)>

+ <v (p 1 *)l;V) V*(Z)(P2' 42;v2 )><v*(Z) (PI' ;V) v(Z)(P2' 2 ;V2 )>

- (Z)(Pl p V ) >  <VZ)(P2 "2; V2)>

X <v* (Z) (pI ,0l; VI )> <V*(Z)(p2,t2;V2)> (4.7)

and thus that the two-point properties of < I ( P1 , 'N ) 1 ( P2, 12 ) > are essentially

contained in the second term in Eq. (4.3), I u,212. Many authors also assume a zero mean

for the field, in which case the last term in this expansion is equal to zero. However,

neither the assumption of circularity nor that of zero mean is valid everywhere in the

Fourier transform of a real-valued object, as is discussed below. Certainly on-axis we

expect a non-zero mean, since the optical Fourier transform has a large on-axis value due
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to the light that remains undiffracted as it passes through the real-valued object,

although far enough off-axis the mean field is usually small enough to be negligible.

As we will see from the calculation presented below, the circularity

assumption, Eq. (4.6), does not hold, and furthermore u12 $ has significant properties

which contribute to < I (PI, 4) ) ' (P2,4 2)> and cannot be neglected. The reason for this

lies in the symmetry properties of a Fourier transform at polar-symmetric points. Here, we

demonstrate the symmetry relationship between I u 12 12 and 1 U12 $ 12 for arbitrary real-

valued objects; later in this chapter, we examine the specific case of the serrated circular

aperture in greater detail.

4.2.2. Symmetry Considerations

To study the symmetry properties of the Fourier transform, we rewrite

Eq. (2.11) as

v(p, ;v) = B T(p, ) , (4.8)

where B is defined as in Eq. (2.9):

B= ex .kz (4.9)

We have chosen B such that T ( p, 4) is exactly the two-dimensional Fourier transform of

aperture function t ( r, a), expressed in cylindrical coordinates:

+n a + s(o) /ik
T(p,*) = JJ exp( -rpos(a-4)) rdrda. (4.10)

Since in our calculation l ( r, a) is real-valued, the Fourier transform T ( p, ,) has the well-

known symmetry property11 :
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T(p,, ) = T*(p, ,+n) . (4.11)

For convenience of notation, let a subscript 3 denote the point that is polar symmetric to

point 2, ( P2, 2 ) ; i.e., point 3 has cylindrical coordinates given by:

P3 = P2  
(4.12)

and

4t =  42 + • (4.13)

We also let the scalar field at points 2 and 3 have the same optical frequency. From Eq.

(4.9), it is evident that B3 satisfies the equation

13 = B 2  (4.14)

and, with Eq. (4.11), that the scalar field values at points 2 and 3 are related by the

equation:

B3 T(P 3 , 3 )= B 2 T* (P 2 ' 2 (4.15)

This symmetry property results in the following important relationships:

v (Z(p 1 , *l; v ,(Z) (p 2 , 4)2;v 2) = BIB 2 , T(pI, ) T,(p 2,2 ) , (4.16)

and

v (p,4) 1 ;v1 )v (p 3 , 3 ;v 3 ) = BIB 2 T(pl, 4)T*(P2 ,4 2 ) (4.17)

We take the ensemble average of these quantities to determine U12 and u13t:

u12 =BI B 2* <T(p1 , 1 )T(p 2 , 2 )> (4.18)

and

u = B B2 <T(pI,4oI)T*(p 2 ,* 2 )> . (4.19)
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To calculate the fourth-order moment as expressed in Eq. (4.3), we need the squared

moduli of these quantities. These are given by

u1212 2= IB B2 * <T(p ,tI 1T*(p2,t2)> 12

-- BIB B2"*121 <TI,,P) T*(P2,02) > 12 . (4.20)

and

jut 12 - B1 B2 <T(pI.- 1 )T*(p 2 ,t 2 )>l 2

= B 1 B2 12 1 < T(pl,.l) T*(P 2,)2) > 12  (4.21)

Noting that I B1 B2 12 is equal to I B1 B2* 12, we have:

1u3 1 = lu1212  (4.22)

Since points 2 and 3 are polar symmetric, we infer from Eq. (4.22) that the function

I u 12t 12 is simply Iu,2 12, rotated by n. The contribution of I u124 2 to the transform

intensity moment <I (p1 ,'I ) 1 (p2,42)> is as important as that of Iu 12. This result is

valid for objects with arbitrary real-valued transmission functions.

4.3. Second - Order Moment for Gaussian Roughness

We now proceed to show in some detail the calculation of u12 for serrated

circular apertures. We will then determine the functional form of u12
$ in a similar manner

and compare it to u12. The results of this calculation will verify the aforementioned

symmetry property for the case at hand, and a computed example will demonstrate it

graphically.
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4.3.1. Second - Order MomentU2

In the calculation of the second-order moments, we greatly simplify the

algebra necessary by using the zero-mean field, denoted by the italicized function

V(') (p, 4t; v) and defined by

v (Z) (p,4);v) = v ()(p,4;V) - < V(Z (pt;v)> .(4.23)

This zero-mean field is then used to calculate the second-order central moment, P,2:

I'12 =< v(Z) (PI 4 1 ; V,) V* (Z) (P 2 P4 2 ;v 2 )> . (4.24)

We can easily rewrite u,2 in terms of P,12 and expected values of the field:

u 12 =" p 2 +< V(Z (PI, 4 1 ;v 1) > < v* (P2' 42; V2) > (4.25)

Thus, the two-point dependency of u,2 is contained in P2

Using Eq. (2.11) and (4.23) in Eq. (4.24), we can write out the second-order

central moment:

":2 B B; Jn i dQ'da* exp(i (Ki' - K;) a

X ( - Ia ____ I+ K

1f I itK V 2  2; a21

X<fezp(iK1'S') 8 (K1 )Jfexp( ( I-iK;Bs) W( -K;) J> .(4.26)

in this expression, the subscripted 1 and 2 denote two points in the observation plane.

while the single and double primes correspond to the integration variables Q' and a'.

Thus, o' and s* are equivalent to s (a') and s ( o), respectively, and v. , and K.' are
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defined as in Eq. (2.8), with the appropriate subscripts and primes added.

qs,(Y) = < exp I i Y s(a) I > is the first-order characteristic function of s(a). Expanding the

terms within the angle brackets in Eq. (4.26), we find:

< [ exp 0 itl s' W - s(K IF) lexp ( - iK x S" )-s ( -K;)] >

= Os (4',- K;r (qs 1 s(-K2" , (4.27)

where 4) (xj' ,x2";r) = <exp[i(K1's(a')- "s(a))]> is the second-order characteristic

function of s(a) and

< (s(a') - <s(a) >)(s(a) - < s(a) >) >
s < (s(a) - < s(o) >) >

< s(a')s(a') > ( .8< 2(4.28)

is the normalized correlation function of the aperture serration, which takes on values in

the interval 10,11. The dependence of 4b on the correlation function r6 (a',a") arises when

we take the ensemble average of the product exp(iKits' ) exp ( -ia2s"), which is

essentially the product of exp ( i K s) evaluated at two points. We continue to limit our

discussion to statistically stationary correlation functions, i.e., to those functions which

depend on a' and a" only as the difference between them: r. (a',a') = r. (o - a').

4.3.2. Gaussian Characteristic Function Notation

We now assume that the random variable s(a) is Gaussian-distributed. The

first- and second-order characteristic functions are

A- - -nm -mi m m mm mm sm
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W( K) = exp K - 2) (4.29)

and

q(K I, -x2*;r ) = exp -_02( (K 02 _- 2r rsit'K2 " + K; 2 )  (4.30)
/2

where o2 = < S () )2 > is the variance of s(a). Equation (4.30) is rewritten to emphasize

temporal frequency dependence7 , as follows:

) s(Kl', -K 2 ;r.) = exp -- (KI' - K2 ' )2 exp[_o2KIK 2w(1 -r)]. (4.31)

The first exponential in Eq. (4.31) contains the essential temporal frequency dependence

in (K 1 - K2') = 2n [ v, p, cos ('-4 1 ) - v2 P2cos (a'-4t2 ) ]I / z0 c, while the dependence

on the correlation function r. is contained in the second exponential term. Evaluating

Eq. (4.26) for the Gaussian case, we find:

l+n + n
, 2 K2)

12= B B2* -n -n da'da" exp[i (Kl K2')a Iexp (- --2 (& I -

l ~ 2 , ~ 2 ,

x\exP[- a 2 ,f - r)-expL-o K'.-'r"a

a2 22 r
K1  K2

2

o r" 00z1'  z " --K' K2r)]. 4.JK1,K 2 x'- )a o( +
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Equation (4.32) is the basic result of this section and our working expression for P12 .

Although we now continue our analysis by considering the remaining term in the

expression for u12 given in Eq. (4.25), we will return to Eq. (4.32) because it contains the

essential two-point dependency of u, 2 , and therefore that of <I ( P1 , 4€ ) I ( P2 , 4)2)>, in

a relatively concise form.

Using the same Gaussian distribution assumption, we express the second

term in Eq. (4.25) as:

< v(Z)(p ,  v)>< v* (P2, 2;v2)>

B da ezp(iK 1 a)exp(- K I , 2 )-

In21 +1 w

Equion ( an K 2) si f .2 3
2 r -n02a)eP(-2 2 1+K2a 2 ) K; 2 4

Equations (4.32) and (4.33), along with Eq. (4.25), yield the desired expression for u12.

4.3.3. Second -Order Moment u12t

We now use the same steps to determine u, 2 4. First, we define the central

moment, p 2is:

<[v1(2) < v(Z)(PI, 4l;Vj)>

Xp1  (p , 2 1 ;v2) - < v(Z)(P2, *12;v2)>]> (4.34)

we can now express u12
$ in terms of P12 $:
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u12 -P + < v(Z)(p, ( vI) > < v.(P 2 P2;V2) > (4.35)

As before, we evaluate the central moment first. We use Eq. (2.11) in

Eq. (4.34):

t = B3B da 'da' expi (K' + K; ) aP 2-1 7 21 -[I K

X C - iK 'a \/ -iK2 a
1 - i 2a 1 1

Kl12 Kle aK I -XI I --

X < [exp I S') _ [s( ) [exp ( iK"S") W tS (Ks) ]> (4.36)

Equation (4.36) for p 12S is analogous to Eq. (4.26) for 1112. Next, we assume that s (a) is
Gaussian-distributed. Again expressing the second-order characteristic function to
emphasize temporal frequency dependence [Eq. (4.3 1)), we find:
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/n 2

PA$ BIB -nda'da" expfi (xl' I+ K2")a I exp(- -0- (K'- )

X{(exp[--o2Kj 'K2#(I+r) ] -exp[ -o2 ' 2 I)

22
K I  K;

-exp[-o KIK 2 (1 + r )H

Sr
x 1 [2 - ilOl' + K*)a +a21K12+ K 2 - K,,K;rS) (437)

K 1' K2 m

We can also express the second term in Eq. (4.35) under the same Gaussian distribution

assumption:

< v(Z) (pI, IP;Vd)> < v(Z)(P2, -'2; V2) >

r+n f l 02 1*2 IK 1 B 2
=B! daIexp[iKl'aIexp -2 X2 O 2

-2 2)(-iKa 1

B2  ndaexpfi 2,aIexp  " ;w(.
-n - 2 ,_+ -__, (4.38)

From Eqs. (4.35), (4.37). and (4.38), we have an expression for u12
$ analogous to our

expression for u12 .
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4.3.4. Symmetry of the Fourier Transform

We now will verify the symmetry condition of Eq. (4.22), i.e., that I uis 12 is

equal to u 2 12, where points 2 (p2,4 2) and 3 (p3 ,4)) are polar symmetric. Using Eqs. (4.12)

and (4.13) and holding the frequency constant so that k3 = k2, we have from Eq. (2.8):

Sk2 P2  k 2 P2
K3 " = COs(a* - ( 2 - n) - -- s( - 2 ) = -K 2  (4.39)

Using Eqs. (4.14) and (4.39) in Eq. (4.37), we express P13 t as:

1$13= BiB 2  d'da"exp[i(K!' - K2)aIexp (- (KI +K;)2

X{(eXP[o2 K1 K i +r. exp [, o2K'- j)

(1 xiK a .02 ( 11 K2 I a 2
X,22 K1I 2 2

- exp[ o 2 
KIK 2 (] + r)]

o 2r

K 1 (K1 +K 2X --- 12 - (Ki1 -K; ) a +o 2 (IF2 +;2 -Kit K2 r . (4.40)

The equalities

exp( '( '+K 2 )2 )expo2 Kitx
2 ( l +r)I

= ezp( a (2-22) explo I'K; (I -rl] (4.41)

TIX 2' x
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and

ex1 K)IxpoK'K

exp E (t' + 2/ 1exp[ a 2 

2 ( 4.4
exp(--(I'- 2 )2)expfo2 KK 2; (4.42)

are easily verified. The integral in our expression for p,, t is therefore identical to that for

P12 given by Eq. (4.32); only the coefficients of the integrals differ. We also use Eqs. (4.14)

and (4.39) in Eq. (4.38) to write < v(Z)(p ,4 1 ;vI ) > < v(Z)(P3 ,4 3 ;v3 ) > as:

< v(Z)(p I , 4 );v )> < v(Z)(p3 43; )>

Be2 1- iK'a +K2) 1a.xI

I' .o1 1' 1K'2' .. o ) -
XB 2 -B exp [ x2"aIexp d-0 2 2 2 + 2.- • (4.43)

Comparing Eq. (4.43) to Eq. (4.33), we see that these expressions also differ only in the

coefficients. Thus, the only difference between u, 2 and u134 is a coefficient: the integrals

in u13
3 are multiplied by B1 B2 ; those in u12 by B1 B2*. However, when we calculate

I U 12 12 and I U 13 $ 12, these coefficients contribute the same value:

IBI B2 * 2 =-IB ,3212 . (4.44)

We have thus verified Eq. (4.22) for the specific case of a serrated circular aperture:

Iu 1 2 12 = lU 1 11 2  (4.45)123
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4.3.5. Illustrative Example

An example of the relationship between these two functions is shown in the

plot in Fig. 4.1. Here we have plotted p 12 and p 12 S versus output angle *2, using the

mathematical forms in Eqs. (4.32) and (4.37). For these calculations, we have simplified B

to I/ X zk to produce a real-valued function with the correct scaling. The fixed output

coordinates are p, = p2 = 0.498mm and 4! = n/4 rad. For s(a), we have chosen a

triangular correlation function, a correlation angle of n/8 rad, and an rms roughness of

75pm. The mean radius a is 5.0 mm. In this calculation the wavelength is set at

A, = A2 = 0.6328 pm and the focal length at z0 = 500 mm. With this choice of system and

aperture parameters, the value of p corresponds to the fifteenth ring in the transform.

We have chosen points 1 and 2 at the same radius so that the angular properties are

demonstrated. In this case, the two-point moment <I (p, 4 1 ) I (p, 42 ) > is a one-

dimensional angular correlation function of the intensity. Thus, in Fig. 4.1, we expect to

see the correlation peaks contributed by U12 and u12
t to the angular correlation. We also

note that the output radius chosen lies in the degraded region of the transform pattern;

here, the Airy rings are fragmented. At this radius we expect to see narrow correlation

peaks, since the transform has little angular uniformity.

From the plot in Fig. 4.1 we can see that each function has a significant peak

and that these two peaks are separated by n rad. Examination of the detail of the plots

confirms that I P 12 1 2 is a rotated version of I p 1212. Because of the polar symmetry of

the transform, we expect the maxima of the intensity moment < I (pl, 4! ) I (p 2 , 42 ) > to

occur when points 1 and 2 coincide and also when they are polar symmetric. The term

S12 contributes one peak, while P 12 1 provides the other. Hence p 12 t contributes

significantly to the behavior of < i ( p, *1 ) 1 ( P2, 2 ) > . The circularity assumption

-- Imcl ui
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expressed by Eq. (4.6) clearly does not hold, and we must keep both these terms in the

expansion of < I (pl, 4q ) I (p2, )2) > in Eq. (4.3).

For completeness, we also show a plot of I u1 2 12 and J u12 
$ 12 under the same

system conditions; see Fig. 4.2. The term <v(z)(p 1,A1 ;v1)> <v*(Z)(p 2 ,4 2 ;v2)> in Eq. (4.25)

and the term <v(Z)(p 1, 1;vl)> <v(Z)(p 2, 2 ;v2 )> in Eq. (4.35) contribute constant

background levels to u,2 and u, 2 , respectively; this is evident when the plots in Figs. 4.1

and 4.2 are compared. The ratio of the peak heights to this background is significant in

determining the angular correlation properties of the transform intensity. As we

continue our examination of < 1 (pI, 4 1 ) I ( P2, 02 ) > , we will use further computer

calculations to demonstrate this and similar effects.

4.4. Features in the Fourier Transform

In considering the two-point dependency of the intensity moment

<I(p1 ,4t)(p 2,4>2 )>, the two terms of interest are J u 12 1
2 and Iu1 2 I2 . Sincethey

are identical except for the aforementioned rotation, we need only examine our

mathematical expression for u 2 and in particular for P,2, to identify features in the

Fourier transform which will yield information about the aperture statistics. To start,

rather than integrating over a' and a' in Eq. (4.32), we identify the significant terms in the

integrand and evaluate the behavior of these terms. With this discussion, we present

computer calculations of < 1 ( P1 , 1 ) 1 (P 2. )2) > to demonstrate the features of the

transforms of a few representative ensembles.

We repeat Eq. (4.32) here for convenience,
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0.30

I

0.20 1 -

0.10

I I

1112

-0.10

-0.20 \ .

0 z/2 37c/2 2n
Output angular coordinate *2 (rad)

Fig. 4.1. Sample plot of glp and g,. versus output angle *2. The fixed output coordinates
are set as follows: p, = p2= 0.498 mm. *, =x4 rad. The serration correlation is triangular,
given by Eq. (2.20) with correlation angle A equal to x/8 rad; o is equal to 75 in. For the
optical system, we have chosen a 500-mm focal length and a wavelength of 0.6328 pin.

1.20

1.00

0.80 lu2IF------
IIU 1 0 .8 0

luF W,

0.20

0.00

0 x/2 x 3/2 2m

Output angular coordinate *D (rad)

Fig. 4.2. Sample plot of lu1,P and lul,'P versus output angle 4.. The system and aperture
parameters are chosen as in Fig. 4.1.
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P2 = BIB 2*- -n da'da exp[i ('- K;a I exp -(K1' -- 2"))

-- exp[-o 2 K;( I - r )1' K'
(K - i a 2) ( 1 E a 2)

× [2 2(
K K;

-exp[ - a 2 (l -r 8 )

2

and identify the terms of interest as the exponential terms that have real arguments:

T2 exp -- (K 2) (4.46)

T 2 -= exp[-o I x 2 r 1 )-exp[-o K I K;1,(4.47)

T3= exp[- a 2 K 12 (1 r a )] . (4.48)

Because of the peaked nature of these exponentials, T,, T2, and T3 largely determine the

functional form of P12 We note that term T, multiplies the rest of the integrand, while

terms T2 and T. are multiplied by secondary terms and added. The shape of the peak of

each of these exponentials and thus the degree of influence it has on the magnitude and

functional form of P1 2 depend on the choice of system and aperture parameters. For
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example, T, is maximized when K,' and v2' are equal. The magnitude of T, drops to e- I

when (K' - K"2 is equal to 2/o2. For example, if we choose the same radial coordinate

and wavelength for points 1 and 2, then for typical system parameters' 2 T, decreases to

approximately e-1 when I cos ('- ,) - cos (W-)t2)l is equal to 0.1mm/o. Foroequal to

500 pm and for a'-4, equal to n/2, C"-4)2 must change by about 110 to reduce T, to

e-1 .As o increases, this angular distance and the width of T, decrease. Term T1 controls,

in a delta-function-like way, the contributions to P,2 from the other terms in the

integrand. Terms T2 and T3, as a sum, work together to control the shape of the term in

braces. Although the remaining terms in braces affect the relative contributions of T2

and T3, we are more concerned with the mutual contribution of T2 and T3 to the form of

P12, As we examine the effect of three aperture parameters, namely the aperture

roughness, the correlation angle, and the correlation function of the serration, r. in Eq.

(4.28), we will see how these terms interplay. In the following sections, we will show how

these parameters affect the radial and angular dependence of the Fourier transform.

Although many of the important properties of < 1 ( P, 4PI ) 1 ( P21 ( 2) > are

incorporated in P12 and we will base predictions of the behavior of the intensity pattern

on P1 2, we must consider the full moment expansion, Eq. (4.3), of < (P1. 4 ) ! ( P2 , 4)2)>

in order to fully understand the two-point intensity moment and the related properties of

the intensity distribution. Herein, we use a computer to calculate the terms that

contribute to <I ( P11 01 ) 1 (P2, 02)> " In particular, we choose to fix the radial

coordinate p and the optical frequency v; the quantity then calculated is

< l(PP 4 ) I(p2 ,4)2 )>  = < l p-lv l ~ ,) ; ) (4.49)

We note that in this specific case, the only variables that change as points 1 and 2 are

moved are the angular coordinates 401 and 4 2 Thus, we can consider the moment
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<1 ( P, ) I (P, 42)> to be a correlation function; it is the angular correlation function of

the intensity at a fixed radius p in the Fourier transform plane of the optical system. In

practice, we fix 4p and vary 42 to calculate < I ( p, 401 ) I ( P, 1h) > as a function of angle.

This angular correlation, calculated at different radial positions, contains

information about the changes in the ring structure as p changes. We can also study the

relationship between the width and shape of the peak of the angular intensity

correlation function and the spike structure in the transform. We proceed, then, to

calculate <I (p, 4 ) I ( p, b2 )> for variations in the radial output coordinate p and the

aperture ensemble rms roughness, correlation angle, and correlation function.

We begin with an aperture ensemble design with an rms roughness equal to

75 pm on a mean radius of 5.0 mm and a triangular correlation function with correlation

angle n/8 rad. Our first set of calculations will be for this ensemble; we will vary the

output radial coordinate p and examine the behavior of <1 ( p, 1 ) I (p, 2)> and of

I ( p, 4 ) over the angular range [0, 2nJ as we move away from the center of the transform.

The fixed angular output coordinate of the optical system is equal to n/4 rad, the focal

length is 500 mm, and the wavelength Ai = c/v is set at 0.6328 pm. For convenience and

clarity, we will use the following shorthand notation in writing the terms in the expansion

of <l(p,4 1 )I(p, 2)>: <v(z) ( PI,)v * (z) ( PI )> <v(Z)(P, 2 )v*( z )( P,4 2)> =

<v I V1 > <v 2 v2 >, I u12 12  < v(Z)(P, 1 ) v *(Z)(P, 2 )> <v*(z)( PI ) v (z) (P,2)> =

< v 1 v2 "> <v 1 v 2 >, I u 12 12  < V(Z) (P0 1') 
V(Z) ( P12 ) > < v*(z) ( P41 ) v

*(Z) ( P4 2) > =

<v1 V2 > <v* 1v2 * >, and 2 <v (z) (P, ) > < v*(Z) ( P,401 ) > < v(z) ( P, 2 ) > < V*(Z) ( P,02 ) >

- 2<v><v,*><v2 ><v20>. We will also use <1112> for <l(p,i 1 )](p,o 2 )> in

the figures, where the correlation properties of the two-point intensity moment are

particularly clear. This notation will only be used when we discuss <1 ( p, 4i ) I ( P, 02 )>,
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that is, the specific case in which the two-point moment reduces to the angular intensity

correlation.

The four terms in the expansion of <1 (p, ' 1 ) 1 (p, )2 )> calculated at the

following six values of p: 0.085 mm, 0. 182 mm, 0.340 mm, 0.498 mm, 0.657 mm, and 0.815

mm, correspond to rings 2, 5, 10, 15, 20, and 25 in the optical Fourier transform. They are

shown plotted against angular coordinate 4P2 in Fig. 4.3 for each of these values of p. In

each of these six sets of curves, we note the following details. First, as expected from the

transform symmetry and as seen in Fig. 4.2, term 1 u12 412 is a rotated version of I u,2 12 ;

the peaks in these two terms are separated by n rad. We also note that the first term,

<v I v* >< v2 v2 * >, is constant and equal to the peak value of I u12 12; this is easily seen

to be the case when we set V2 equal to op and write I u12 1 as

IU1112 = < VIVI* >< v1*v I > = I< v1 v* > 12  (4.50)

Clearly, when points 1 and 2 coincide, the first and second terms are equal. The fourth

term, 2<v> <v 1 > < v2 ><v2*>, is also constant. From our study of Ju12 12 we know

that the constant background in I u12 1 is equal to <v,> <v 2 *> 1 2 or

<v><vl*> <v2><v2*>; see Eq. (4.25). Thus, we expect that this fourth term will

have twice the magnitude of the background of I u12 
2. The plots shown in Fig. 4.3

support this fact. We note that when the fourth term is subtracted from the sum of the

first three in Eq. (4.3), the result will be the exact cancellation of the contribution from the

background of I u, 2 12 + I u12t 12. We will consider the results of this cancellation more

closely when we look at the plots of < I ( p, it ) I ( p, 42 ) > . First, we consider the effects

of changing the output radius on the four contributing terms.
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1.5105 (a) Ring 2
(p - 0.085 mm)

1.0.105

t e r m s _ _ _.__ _ . . .. .... . . . . ..... . ... .. . . .

5.0"104 1: 3: lu 12 32=

<VV*><vv2*> <V 1V2><V*V2*> --------

2: lu22P= 4:
<V v *>< *V ?> 2<v I>Vx v x v ><v,*> - -- --- -

0.0 .100

0 ,/2 3/2 2n

Output angular coordinate $2 (rad)

1500 (b) Ring 5
(p = 0.182 mm)

1000

<' >
terms .. .

500

0 I I I I

0 x/2 3 12 2n

Output angular coordinate #, (rad)

Fig. 4.3. Terms in the expansion ofI, 1?, calculated for varied radius values as indicated.
The output angular coordinate *, is set to x/4 rad; the focal length is 500 mm, and the
wavelength is 0.6328 trm. For the aperture ensemble represented, the rms roughness is 75
±m on a 5.0 mm mean radius, the correlation angle is ?/8 rad, and the correlation function

is triangular. The curve legend included on Fig. 4.3(a) is for all the plots.
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20

(c) Ring 10
16 (p - 0340 mm)

12

< >

terms 8

4

0

0 x/2 3:1 2 27E

Output angular coordinate 02(rad)

1.2 -

1.0 :1 (d) Rinig15
I (p0.498 mm)

< 0.6

terms
0.4

0.2

0 x /2 x3x/2 2

Output angular coordinate *(rad)
Fig. 4.3. (Continued) See legend on Fig. 4.3 (a).
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,~(e) Ring 20
(p-0.657 mm)

terms

0.05

0.00

0 x /2 3n /2 2xr

Output angular coordinate ~2(rad)

0.040 (f) Ring 25
(p - 0.815 mm)

0.030 I

0.020
terms

0.010 - - -- ----------------

0,000

0 x /2 x3x /2 2n

Output angular coordinate 02(rad)

Fig. 4.3. (Continued) See legend on Fig. 4.3 (a).
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We know that the peak intensity of the rings in the Airy diffraction pattern

decreases rapidly as we move away from the center of the pattern, and we have seen the

same behavior n the Fourier transform of the serrated circular aperture. Likewise, the

magnitude of the two-point intensity moment will decrease as p increases; this is seen

clearly in Fig. 4.3 (a) - (f), where we have not normalized these correlation functions. (We

have carefully chosen our values of p to lie at ring maxima, avoiding the nulls in the

pattern.)

As we look at these six plots, the most striking feature is the change in J u12 12

and I u,2 $ 12. Close to the center of the transform, maxima are barely discernible at 42 =

41 in I u,212 and at 42 = + a in u12t 2. Figure 4.3 (a) alone shows no convincing

evidence of the peaks seen in the subsequent plots. As we move away from the center of

the transform, the ratio of the peak height to the background level increases. A second

feature of interest is the dip in each term at the peak of the other. As p increases, the

magnitude of this dip also increases (with respect to the background level), but not as

quickly as the peak height. Thus this feature will only slightly reduce the peak height

when the two terms are added.

As noted earlier, the term < vi 1 . > <v 2 v2 * > follows the peaks of I u,2 12

and I u12 12, while 2<v,><vl*><v2 > <v 2 *> drops off as the background level of

I u12 12 and I u12 j 2 decreases. This last term is approximately twice as large as the others

at the second ring [Fig. 4.3 (a) ], but decreases to be nearly equal to < v, v,> <v 2 v20> at

ring 15 Fig. 4.3 (d) ]. Out at ring 25, 2 < vl > < v1 > < v2 > < v2*> is still twice as great as

the background on 1 u12 1 2 and I u12
$ 12, but lies well below the maxima of these terms, as

seen in Fig. 4.3 (f).
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When these four terms are combined as described by Eq. (4.3) to form

<I(p,4) 1 (p,,0 2 )>, the resultwill be a function with peaksat(P2 = 4l and 402 = cj) +

n. The background of u1 2 
12 and I u12t 2 will be removed by the subtraction of

2<v, > <vI*> <v 2 > <v 2*>; the peaks of <I(p, 4 )1 (p, '42)> will sit on a background

level equal to < v, I 1 > < v2 v2 *>. Although this background is equal to the peak value

of 1 u12 2 and I u1 2t 12, we note that the peak-to-background ratio of

<I (p, 4, ) I (p, 4)2)> is not unity for the following reasons. The background ofI u12 12 +

I u12 1 2 has been subtracted, and the dips in I u 2 12 and I u,2112 decrease the peak of the

sum.

The two-point moment <I ( p, 4)1 I (P, 4)2) > is shown plotted in Fig. 4.4 for

each of the cases included in Fig. 4.3. In these plots, we see the result of combining the

four terms in Eq. (4.3): the peak-to-background ratio of <1 ( p, 4)1 ) I ( P, 'b2 ) > increases as

p increases. At the second diffraction ring, < I (p, 4) ) I (p, 4 )2 
) > is nearly flat, as seen in

Fig. 4.4 (a). We thus expect relatively small variations in the angular intensity distribution

of this ring. As we look at subsequent plots, we are able to see the peak more clearly

against the background; each plot is labeled with the peak-to-background ratio for

reference. In these ratio calculations, we used our calculated value of

<v I v10> <v2 v2*> for the background. As this ratio increases, we expect to see more

variations in the angular intensity distribution, leading first to fragmentation of the rings

and eventually to a complete degradation of the ring structure. To examine these effects,

we have taken a representative member of the ensemble and calculated the intensity

against angle 4) at each of these radius values. The results of these calculations are shown

in Fig. 4.5.
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Fig 4.4. Two-point intensity moment <1 12>, calculated for varied radius values as indi-
cated. The output angular coordinate *, is set to x/4 rad; the focal length is 500 mm, and the
wavelength is 0.6328 pin. For the aperture ensemble represented, the rms roughness is 75

n on a 5.0 mm mean radius, the correlation angle is S/ rad, and the correlation function
is triangular. The peak-to-background ratio is included on each plot.
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In studying the plots of intensity versus angle shown in Fig. 4.5, we note two

effects as the output radius increases. First, the number of local maxima that occur in 2n

radians increases. In the diffraction pattern of this aperture, we therefore expect to see

broad spikes that break into thinner spikes as the distance from the center of the pattern

increases. This feature is associated with sharp-peaked correlation functions, as seen in

Fig. 2.8. For comparison, we will present the results of similar intensity calculations for a

Gaussian-correlated aperture in Fig. 4.6.

At this point, we also demonstrate a method for determining the number of

spikes in an optical Fourier transform. First, we choose a value of the radius p at which to

count the spikes; we choose p equal to 0.498 mm, which is ring 15 in our example. We

then draw a horizontal line on the 1 ()) versus 4 plot at the mean value of the intensity

and count the number of times the intensity curve crosses this line. Half of this number is

the spike count. As can be seen in Fig. 4.5 (d), there are 16 spikes at the fifteenth ring of

this transform. The results of this objective analysis agree with the number counted

subjectively in the center diffraction pattern of Fig. 2.7, which is for an aperture with the

same correlation angle, A = n/8 rad.

The second effect we note in the plots of Fig. 4.5 is an increase in the heights

of the intensity variations. At ring 2, the intensity has a minimum value that is approx-

imately 2/3 of the maximum value. As p increases, this ratio decreases, and minima of

nearly zero are seen beyond ring 20. This effect is what we call ring fragmentation: when

the rings are no longer intact, the minimum intensity approaches zero (as for a null in the

pattern) while the maximum intensity remains relatively large (as for a bright ring in the

pattern).
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Fig. 4.5. Angular intensity distrbution I (p, #), calculated for a single aperture at different
radius values as indicated. The focal length is 500 mm, and the wavelength is 0.6328 Pm.
The aperture is taken from an ensemble with rms roughness 75 .n, mean radius 5.0 mm,
correlation angle x/8 rad, and a triangular correlation function. Each plot is labeled with the
contrast value.
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Fig. 4.5. (Continued) The dashed, horizontal line on (d) marks the mean* intensity value
and is used in counting the number of spikes.
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The above discussion of spikes prompts us to look closely at the Fourier

transform of a Gaussian-correlated aperture. We therefore calculate the angular

intensity distribution I (p, 4) for an aperture with a Gaussian correlation function at the

same six radius values and under the same system conditions. The mean radius, rms

roughness, and correlation angle are also the same as for the calculations presented in

Fig. 4.5. The plots of I (p, 4) versus 4 are shown in Fig. 4.6. At the inner rings (2 and 5,

here), there is only a slight difference between the transforms of the triangular- and

Gaussian-correlated apertures. As the radius p increases, we note that the triangular

aperture correlation has produced an intensity distribution with more local maxima.

Although there is still a close correspondence between the spikes in the two transforms at

the fifteenth ring, as shown in Fig. 4.5 (d) and Fig. 4.6 (d), the transform of the triangular-

correlated aperture is beginning to show further division in the spikes. We note that the

spike count for the Gaussian-correlated aperture is 12 at this ring, compared to 16

counted for the case of triangular correlation. Out at ring 25, the difference between the

two transforms is quite pronounced; the transform of the Gaussian-correlated aperture,

Fig. 4.6 (f), has broader (and many fewer) spikes than that of the triangular-correlated

aperture, Fig. 4.5 (f). These observations show in greater detail the difference in the

character of the transform spikes under different aperture correlation function

conditions, as was demonstrated by the two-dimensional Fourier transforms shown in Fig.

2.8.

4.4.1. Aperture Roughness

We now consider the effects of variations in aperture roughness on the

behavior of I12 We note that in terms T1, T2 , and T3 [Eqs. (4.46) - (4.48) the standard

deviation of the roughness, o, only occurs in the products oi and oK2*. Recalling the
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Fig. 4.6. Angular intensity distribution j (p,) calculated for a single, Gaussian-correlated
aperture at different radius values as indicated. The system focal length is 500 mm, and the
wavelength is 0.6328 pm. The aperture is taken from an ensemble with rms roughness 75
lin, mean radius 5.0 mm, and correlation angle xr/8 rad.
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Fig. 4.6. (Continued) The mean value is marked with a dashed, horizontal line on (d) for
use in determining the number of spikes.
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definitions of K ' and K2'

I ktP1  k2 P2-, - os(a' -2), 2 COs(a' -4 2 ) , (4.51)

we see that for fixed values of k1 , k2, and z0 (i.e., for fixed wavelengths and focal length),

holding the quantities op, and op2 constant will yield basically the same functional form

for P12 , since the significant terms would not change except over integration and

observation angles.

When we take a pattern recognition approach to the analysis of the Fourier

transform, we look for transform features that can be related to the degree of aperture

serration. In this study, we have chosen ring fragmentation as the roughness-related

feature, since the radius of the first broken transform ring decreases as the aperture

roughness increases (see Fig. 2.6). From the discussion of terms T1 , '2, and T3 in the

preceding paragraph, we would expect the radius pf of the first fragmented ring to be

such that opf is constant over the set of apertures. This is apparent from our expression for

I, but we would also like to understand this through a more physically intuitive

method. Thus, we consider Fresnel zones1 3.

4.4.2. Fresnel Zones of the Aperture

in the next few paragraphs for the discussion of Fresnel zones of the

aperture, it is simpler algebraically to use a Cartesian coordinate system. In Fig. 2.1, we

have shown overlaid both the Cartesian and cylindrical coordinates for the optical system.

Now, in Fig 4.7 consider two points in the aperture, P1 (xj, yl, 0) and P2 (x2. Y2, 0). and

an observation point on the , axis, P.( pf, 0, z0), all described in Cartesian coordinates.

(Choosing P. on the (, axis simplifies the algebra without loss of generality.) We define R,
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and R2 as the distances from points P1 and P2 to the observation point P., respectively. In

the aperture, we have a wavefront converging to the on-axis point in the observation

plane. The phase of the light arriving from point P1 at P. is the phase in the aperture plus

the phase change due to propagation and is given by:

Z .( X 2 + Y w (4 .52)

an analogous expression defines phase 02, corresponding to point P2. We are interested

in the phase difference at P0 between light from points P1 and P2. In the paraxial regime,

i.e., when the condition (xi-pf) 2 + (yi)2 4 Z0
2 , i = 1, 2, is met, we can approximate

distances R, and R2:

(zo + ( p) 2 + Y2
R = z0 + - 2 z0  

4. 3

aperture plane 
observation plane

Fig. 4.7. Coordinate system for Fresnel zone analysis.
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and similarly for R2. The phase difference 02 - 0 is then given approximately by:

n02 -0 1 - 2 2pf tl -x, (4.54)

A Fresnel zone in the aperture is defined by the boundaries of the zone,

which are equiphase lines with respect to point P0. The phases on the two boundaries

differ by n. If our aperture points Pi and P2 are chosen to lie on opposite boundaries of a

single zone, we can use Eq. (4.54) to determine the zone width, d.:

Xz
dZ = -x 2 1 = 0p- (4.55)

The zone boundaries are perpendicular to the direction of displacement of point Po; in

the case described, the boundaries are parallel to the y-axis.

For this investigation, we ask the following question. How many standard

deviations of the aperture roughness should fit into one Fresnel zone at the aperture

edge in order to produce ring fragmentation? We assume this number of standard

deviations, denoted by n, to be constant As roughness increases, pf, the value of radial

output coordinate p which corresponds to the first fragmented ring, will decrease

because the aperture deviates more from the smooth, circular aperture; this is consistent

with our hypothesis that the quantity opt will be constant for a series of apertures with

varied roughness. Eq. (4.55) shows that a decrease in p, corresponds to an increase in the

associated Fresnel zone width. By speculating that n is constant, we are assuming that

this increase in the zone width corresponding to Pf is proportional to the increase in the

roughness. Thus, in Eq. (4.55) we set d. equal to no and find the following expression for

n:
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n A= (4.56)
2 0 pf

If we can verify that n is constant for apertures with varying roughness, we

will have shown that opf is constant, as expected from examination of p12 as expressed in

Eq. (4.32). Thus, the prediction based in our integral expression would be substantiated.

This is one of our basic objectives in the experiments to be described in Chapter 6.

To further study the effects of changing the aperture roughness, we now

repeat our earlier calculations of <I (p, 4I1 ) I (p, 4)2)> for aperture ensembles of varied

rms roughness. We choose one output radius value (p = 0.498 mm, the fifteenth ring)

and calculate <1(p,41 )I(p,4k2 )> as 42 varies for ensembles with a large range of

roughness values. We keep the remaining aperture parameters at the same values as in

Figs. 4.3 through 4.5: each aperture ensemble has a mean radius a of 5.0 mm, a triangular

correlation function, and a correlation angle A equal to n/8 rad. For the optical system,

the focal length z0 is equal to 500 mm, the wavelength A is 0.6328 jm, and the fixed

output angle $I is n4 rad. We calculated < I ( p, 4$1 ) I ( p, 4 2 ) > for 2 in the range 10, 2n],

using five aperture ensembles with rms roughnesses of 25, 50, 75, 100, and 125 pm. The

results of these calculations are presented in the plot in Fig. 4.8. Two effects are seen

here. First, as the roughness increases, the background decreases. We recall that the

output radius is constant for this set of curves and that the background of

< 1( At 1)(P,42 ) > is < vIv* ><v12v2* >,. or < I( p.,) > < I(p, o2) >. We conclude

that, at a fixed radius in the transform plane, the mean intensity decreases when the

roughness increases. At the same time, the correlation peak grows taller, indicating a

decrease in the uniformity of the ring intensity. From these two observations, we

conclude that the ring we are observing is becoming fragmented, and plots of the

calculated intensity I (p, #) versus angle # confirm this conclusion. These plots are shown
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in Fig. 4.9. An interesting feature of these plots is the consistency in the shape of the

angular intensity curve as the aperture roughness changes, similar to the effect seen on

the apertures shown in Fig. 2.3. We also point out that each curve is drawn on the same

scale. As the aperture roughness increases, the minimum value of the intensity decreases.

As stated earlier in connection with the plot series in which p increases, this decrease in

the intensity minimum while significant maxima are still observed is ring fragmentation.

4.4.3. Correlation Angle of the Aperture Serration

The second aperture parameter we investigate is the correlation angle in the

function r(a'-a') of Eq. (4.28). Returning to Eq. (4.32), we note first that the

integrand is identically zero when r,(c*'-) is zero. Furthermore, two of the

significant terms in the integrand, namely 12 and T3, depend on the correlation function

r5 ( -a ' ). These two terms are defined in Eqs. (4.47) and (4.48). The maximum values

of these terms occur when r,(a'-a') is equal to one and generally decrease as the

correlation function decreases. We note that the cosine dependence of K 1 ' and K2' may

prevent these terms from displaying simple decreasing behavior as r, (a'-a') decreases;

however, these terms will broaden with an increase in the correlation angle. Thus the

correlation angle, which determines the width of r( o-a'), also determines the width

of these significant exponential terms and the non-zero range of the integrand.

The remaining exponential term, T, of Eq. (4.46), peaks when K1' and i(2W are

equal; the location of these peaks is a function of both the output coordinates and the

integration variables. Since this exponential is independent of r,( ao-a'), changing the

correlation angle will not affect it. However, increasing the correlation angle will result in

greater overlap of the r.-dependent and ri-independent terms in the integrand, resulting

in a larger range of output point pairs which show a significant correlation. Essentially,
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Fig. 4.8. Two-pointitensity moment versus output angle 0, for aperture ensembles of
varied rms roughness: (top to bottom) 25, 50,75, 100, and 125 aim. For each ensemble,
the mean radius is 5.0 mm, the correlation function is triangular, and the correlation angle
is xr/8 rad. The fixed output coordinates are p, = p2 = 0.498 mm and 0, = xr/4 rad. The
wavelength is 0 .6328 gJm; the focal length, 500 mm.
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Fig. 4.9. Calculated intensity for Individual apertures from ensembles of varied rms rough-
ness, as indicated. The remaining aperture and system parameters are as described for Fig.
4.7. The contrast value is Included on each plot for reference.
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Fig. 4.9. (Continued)
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increasing the correlation angle of the serration will increase the correlation angle of the

diffracted field. With the following illustrative calculations, we will show that an increase

in the transform correlation angle will decrease the number of spikes in the transform.

This is also demonstrated by the computer simulation in two dimensions, as shown in Fig.

2.7.

For these calculations of the two-point intensity moment

<1 (p, 41 ) ] ( p, ,2 ) > , we have chosen aperture ensembles with three different values of

the aperture correlation angle: n/16, n/8, and n/4 rad. The rms roughness of each

aperture ensemble is 75 pm, and the remaining aperture and system parameters are

chosen as in the calculations for Figs. 4.8 and 4.9. In Fig. 4.10, we can clearly see that, as

predicted, the width of the peak in <I ( p, 01 ) I (p, 42)> increases as the correlation

angle of the aperture serration increases. We expect this increase in the peak width to

correspond to a decrease in the number of transform spikes; this is the effect seen in the

calculated transform patterns shown in Fig. 2.7. To investigate this relationship in greater

detail, we plot the transform intensity I (p, 4) against the output angular coordinate ( at

a fixed output radius for one representative aperture from each ensemble; these plots are

shown in Fig. 4.11. Each of these intensity curves is plotted on the same scale.

The number of spikes at this radius in each of these transforms is determined

as described for Fig. 4.5(d). The count yields the following values: for A equal to n/16 rad,

18 spikes; for n/8 rad, 16 spikes; for n/4 rad, 16 spikes. One could argue that 18 spikes can

be counted in Fig. 4.11 (b), since in addition to the 16 spikes noted the curve touches the

dashed line twice. One could even push the point and claim that these "touches' should

each count as half a spike, giving a count of 17 that lies neatly between the 18 and 16
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Fig. 4.10. Calculated two-point intensity moment < 1,> for aperture ensembles of varied
correlation angle A. Each aperture ensemble has 75 lim rms roughness, 5.0 mm mean
radius, and the triangular correlation function. The system focal length is 500 mm, the
wavelength, 0.6328 an. The fixed output angle is 0, - x /4 rad and the fixed output radius
is 0.498 mm, corresponding to ring 15 in the transform.
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Fig. 4.11. Calculated intensity for individual apertures from ensembles with different corre-
lation angles A. as indicated. The remaining aperture and system parameters are as
described for Fig. 4.10. The dashed, horizontal lines on each plot mark the mean intensity
values and are used in finding the number of transform spikes.
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Fig. 4.11. (Continued)
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spikes in (a) and (c). We prefer, however, to note that this is only one aperture and

caution against expecting (and forcing) complete agreement between an individual set of

apertures and the conclusions drawn from our ensemble expected value

<1 (p,4 1 ) I(p, 42 )>. A more significant point to be made is that the number of spikes

increases as the aperture correlation angle increases, but does not do so proportionately;

doubling the aperture correlation angle does not double the number of spikes. In

Chapter 6, we will discuss experiments designed to investigate and support these

observations further.

4.4.4. Correlation Function of the Aperture Serration

The third aperture parameter of interest is the shape of the correlation

function, r,(a' - a') in Eq. (4.28). We recall that the significant correlation-function-

dependent terms in Eq. (4.32) are T2 and T3 ; the functional form of rs(a'-a') will

largely determine the shapes of these terms. If r(a'-a') has a smooth peak, these

exponentials will have smoother peaks than if r8 (a'-a') were a sharp-peaked function.

The shape of terms T2 and T3 will significantly affect the shape of P12; we expect a

smooth-peaked serration correlation function to produce a smooth-peaked field

correlation function. Visually, the shape of the correlation function will affect the

appearance of the transform spikes, as was seen in the results of our computer simulation

of the transform, shown in Fig. 2.8. Experimental results described in Chapter 6 will also

support this relationship between the correlation functions of the serration and of the

transform. We look now at the results of computer simulations of

<I ( P, O ) I ( p2, 2) > and of I (p, 0) that demonstrate this feature.

In this final set of computer calculations of < 1 ( P1 , -0 ) 1 ( P2, 4)2 ) > . we

again use this two-point moment as an angular correlation. We have calculated
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< ( P' ), ( P,'0 2)> versus 42 for three correlation functions of the serration: Gaussian,

Eq. (3.41); triangular, Eq. (3.42); and Eiffel, Eq. (3.43), with P equal to 0.5. The resulting

plots are shown in Fig. 4.12. In this figure, we include a detail plot of the peak region,

where we note that the three aperture correlation functions produce different intensity

correlations with slightly different peak heights and widths. (The correlation angle of

each aperture ensemble is defined in accord with the equal-area condition described in

Section 3.4.3.) The peak shape of <1 (p, 1 )1 (p .2 ) > varies as the shape of the

correlation function changes. Although none of the peaks are as sharp as the triangular

and Eiffel functions, shown in Fig. 3.12, the shape of <I(p, P! )] (p,4)2)> changes in

accord with the aperture correlation, becoming sharper as the aperture correlation does

so. For the Gaussian- and triangular-correlated apertures, the peaks of

<1 (p, (P4) 1 (p,4)2)> have approximately the same area, but the peak area is less in the

case of the Eiffel correlation function. The equal-area-equal-correlation-angle condition

used in defining the aperture ensemble does not translate into equal-area intensity

correlation peaks.

Our earlier comparison of the Fourier transform of the triangular- and

Gaussian-correlated apertures in Figs. 4.5 and 4.6 is repeated in Fig. 4.13 for the fifteenth

ring (p = 0.498 mm). With these two curves we now include the Fourier transform

intensity of an aperture from an ensemble with the Eiffel correlation function, P equal to

0.5. With all three intensity patterns drawn to the same scale, we note the increase in

intensity variation for the sharper correlation functions. The nearly one-to-one

correspondence between the spikes shown in Fig. 4.13 (a) and (b) is not seen in Fig.

4.13(c). The number of spikes, as defined for Fig. 4.5 (d), has increased at this output

radius. We conclude that the shape of the correlation function affects the number of

spikes in the transform, but we recall that the spike number depends on the value of p
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Fig.4.12. Calculated two-point intensity moment < IIk> for aperture ensembles of varied
correlation function. Each aperture ensemble has 75 Am rms roughness, 5.0 mm mean
radius, and x /8 area-normalized correlation angle. The system focal length is 500 mm,
the wavelength, 0.6328 ;n. The fixed output angle is 0, - x /4 rad, and the fixed output
radius is 0.498 mm, corresponding to ring 15 in the transform.
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Fig. 4.13. Calculated intensity for individual apertures from ensembles of varied correlation
function, as indicated. The remaining aperture and system parameters are as described for
Fig. 4.12.
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and also that the correlation angle of <1 (p, i,) I(p,4 2 )> is apparently less for the

Eiffel aperture correlation, as shown in Fig. 4.12. In Fig. 4.13 (c), we see an extreme case of

the spike appearance; when the aperture correlation function is very sharp, the spikes

break quickly into smaller spikes as the output radius increases. By the time we reach ring

15, the spike count is dramatically greater for this correlation function.

Our closing comment for this chapter arises from the results of this

computer-aided study of the two-point intensity moment as a one-dimensional angular

correlation. We were able to predict successfully the behavior of <I ( p, 4 1 ) I ( p, 42 ) > as

a function of the various aperture parameters from an examination of the integrand of

P,2- However, the dependence of the features of the optical Fourier transform on the

changes in <1 (p, 4 ) 1 (p,(02 )> is less predictable. An individual transform feature is

typically affected by more than one aperture or system parameter. The number of spikes,

as an example, was seen to be influenced by the width and shape of the correlation

function of the aperture, as well as by the output radius at which the spikes are identified.

We must be careful, too, not to draw quick conclusions from the behavior of one aperture

in an ensemble. Although we expect the properties of most, if not all, apertures to be

indicative of the ensemble properties, assuming that a look at one aperture comprises a

complete study of the ensemble would be unwise. Our experimental work, then, will

begin with an investigation of the properties of the transforms of an ensemble of

apertures. Then when we study single apertures in our experimental work, we will have

some understanding of what behavior to expect from the ensemble.
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Chapter S

Fabrication and Evaluation of Serrated Circular Apertures

5.1. Introduction

From the statistical diffraction theory presented in Chapter 4, we obtained

an expression for the two-point moment of the intensity of the Fourier transform of a

serrated circular aperture. From this expression, we predicted the changes in the Fourier

transform features that would result when certain aperture parameters were varied. Our

goal in this chapter is to examine the transforms of apertures from different ensembles to

verify our predictions. We will also investigate the features in the transform of a

particular aperture and those in the transforms of an ensemble of apertures; through this

study, we will understand how well the transform of a particular aperture represents the

ensemble to which it belongs.

Two methods are available for producing the transforms of interest:

computer simulations such as those presented in Chapter 2 and optical experiments using

apertures with controlled statistics. In this chapter we will examine these two methods,

keeping in mind the level of detail that is of interest to us. Finding complete agreement

between the experimental and simulated Fourier transforms of a particular aperture is an

unreasonable objective because of inevitable experimental noise. However, we are

interested in the ring and spike structure of the transform, which are larger features, and

we anticipate agreement between the computer simulation and the experimental

transforms at this feature level.

Ideally, the differences between the simulated and experimental transforms

will be well within the range of variations seen in the transforms of an ensemble of

145
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apertures. Thus, in preparation for the comparison of simulation and experiment, we

start in Section 5.2 with an examination of several apertures from one ensemble and of

the transforms of those apertures. For this portion of the study, computer-simulated

transforms are used. In Section 5.3, we discuss experimental optical Fourier transforms,

describing the optical system to be used and two methods, photolithography and

electron-beam lithography, for making experimental apertures from our computer-

calculated designs. We recognize the possible errors in producing an experimental

aperture and therefore study the impact of these aperture errors on the Fourier transform

of the aperture by designing and producing "noisy' apertures for use in our optical

system. The results of this error investigation are presented in Section 5.4.

The results presented in this chapter show that very small deviations in the

apertures are visible in the transforms, but that at the feature level the simulations and

experiments show excellent agreement. From these observations, we conclude that

photolithography is an adequate aperture production method for our purposes.

5.2. Computer Simulation of the Fourier Transforms of Apertures from an Ensemble

Our method for generating aperture designs, described in Appendix A, is

well-suited to generating a set of apertures from one ensemble. Changing the seed given

to the random number generator while keeping all other input parameters constant

produces in effect a new realization of the same random process. In this case, each

realization is a member of the ensemble of apertures.

Using an ensemble mean radius of 5.0 mm, an rms roughness of 75 pm, a

correlation angle of n /8 rad, and a triangular correlation function, we varied the random

number generator seed to produce twelve apertures from one ensemble. For each of
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these apertures, we then calculate the Fourier transform for the output coordinates in the

range 0<ps0.75 mm and 0S <n rad. With the wavelength and focal length fixed at

0.6328 lm and 500 mm, respectively, this range shows more than 20 rings for half the

diffraction pattern; since the Fourier transform of an aperture is polar-symmetric, the

second half of each transform (ns5s2n rad) is identical to the part calculated. Each

aperture is shown with the corresponding Fourier transform in Fig. 5.1.

We note again that representative apertures from the ensemble are

different from each other. We see differences in the apertures but expect that these

differences will fall within a reasonable range. For a detailed discussion of the ensemble

statistics of quantities such as the spatial mean and spatial rms deviation, the reader is

referred to the section on sampling from the normal distribution in the book by Mood,

Graybill and Boes' and to Section 3.4.3 is this dissertation. Herein, we consider the

properties of individual apertures from the ensemble at hand. For example, we

calculated the angular spatial average radius {S(a)} 0 = {a+s (a) }o and the angular rms

roughness [ {s2 (a) }a1/2 for each of these twelve apertures; the values are listed in Table

5.1. For this set, the angular average radius values lie between 4.98 and 5.04 mm; the

angular rms roughness, between 59 and 100 pm. For reference, we note that the

ensemble mean radius is 5.0 mm and the ensemble rms roughness is 75 pm. Likewise, the

Fourier transforms of these apertures are distinct from each other. The intensity

distributions shown in Fig. 5.1 display different spike patterns and, at the higher spatial

frequencies, different speckle patterns. One of the features that identify these

transforms as those of apertures from a single ensemble is the number of spikes. Using

the method described in Section 4.4 in connection with Fig. 4.5(d), we determined the

number of spikes in each transform in Fig. 5.1 at p = 0.498 mm (the fifteenth ring); these

counts are included in Table 5.1. (We use only half the transform in this count because of

the polar symmetry of the transform.) Clearly, the
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(a)

(b)

(c)

Fig. 5.1. Twelve apertures from a single ensemble and the calculated Fourier transform of each.
For the ensemble, the mean radius is 5.0 mm; the rms roughness, 75 in; the corelation angle,
7c /8 rad; and the correlation function, triangular. The system focal length is 500 mm; the
wavelength is 0.6328 lam. The transforms are calculated for<p<0.75 mm and O<#<p.
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(d)

(e)

Fig. 5.1. (Continued)
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(g)

Fig. 5.1. (Continued)
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Fig. 5.1. (Continued)
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number of spikes is fairly constant, varying only ± 2* spikes about the mean in the half

transform.

Angular average Angular rms Number of spikes

Aperture radius roughness in half

{S(o)}a (mm) [{S2 (a))a 1 1 2 (sam) transform

a 5.00 65 8

b 4.98 88 9

c 5.01 59 10

d 4.99 93 9

e 5.03 96 6

f 4.98 62 9

g 5.01 68 7

h 5.04 65 7

i 4.99 71 7

j 5.00 86 9

k 5.02 77 9

5.00 100 11

mean1  5.00 78 8.4

Table 5.1. Selected angular statistical quantities for individual apertures from

the ensemble represented in Fig. 5.1. The correlation angle for the ensemble is

aW rad.
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These variations in the ensemble and the resulting potential for overlap of

two ensembles may present difficulties for one who wishes to sort apertures by ensemble.

However, these same variations determine the accuracy needed in producing

experimental apertures.

We complement our observations of these apertures and transforms with

computer calculations of the two-point intensity moment and related angular

correlations. Using the ensemble and system parameters given with Fig. 5.1 and setting p,

and P2 equal to 0.498 mm in the output plane, we calculate <I (p1 , 4>d I (P2 ,42)> for 4!

equal to n/4 rad and 42 varying from 0 to 2n rad, as in Chapter 4. (See, for example, Fig.

4.4 and the accompanying discussion.) This ensemble average can be approximated with

the following sum:

M<l(pI,4dIl(P2,42)> -, M l(,4li(P2,42)(.)

i=1

in which index i corresponds to the i t1h member of the ensemble; I i (p, 4)) is the intensity of

the optical Fourier transform of aperture i at point (p, 4)). As M approaches infinity, this

sum becomes <1 (P1 , 41) I (P2 ,42)>, but for small values of M there is little resemblance

between the two quantities.

To approximate < 1 (PI, 4) 1 (P2 ,42) > under the ensemble and system

conditions described in the preceding paragraph, we generated 5000 apertures from the

ensemble, calculated I (p, 4) at p equal to 0.498 mm for each aperture, and determined

the sum in Eq. (5.1) with 4), fixed at n/4 rad and 4)2 in the rar.ge [0,2n]. The resulting

curve is shown plotted with <i (PI ,4)1 (P2 ,4 2 )> in Fig. 5.2, where we note excellent



154

agreement between theory-based <l (p1  ) I (P2, 42) > and the calculation-intensive

sum.

In an experimental situation, 5000 members of an ensemble are rarely

available; often one has only a single aperture. In this typical case, some other method of

estimating <I ( 1P, I) I (P2,4 )2)> is needed. The angular autocorrelation of the

intensity,

I (p, 1 )I(p,,t + 4 )dA , (5.2)

approximates the two-point moment when only a single aperture is used. We note that

each member of the ensemble will have a different intensity autocorrelation, since this

autocorrelation is a property not of the ensemble but of the individual aperture. If we

keep in mind that each of these spatial autocorrelations only approximates the ensemble

average <1 (p1 , 41 ) I (P2 , 42)>, we are in little danger of confusing the two quantities.

The intensity autocorrelations of three apertures from the ensemble under

discussion, with the system conditions described for Fig. 5.2, are shown plotted in Fig. 5.3.

In the region of interest, namely, near the correlation peaks at P equal to n14 and 5n/4,

the curves are quite similar to each other and to <I (PI, 1 I (P2 , 42)>, shown in Fig. 5.2.

Farther from these peaks, in the region where <I (P1 , 1 ) I (P2 , 42)> is relatively flat, the

spatial autocorrelation curves show very different structures. Therefore, estimating

<1 (PI ) (12 ,42)> with the intensity autocorrelation of a single aperture is valid only

near the two correlation peaks. Fortunately, we are often interested, primarily in these

short-range correlation properties, within a correlation length of a given point.
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We see from Figs. 5.1 and 5.3 that, despite the variations in the transforms of

an ensemble of apertures, some useful information can be obtained from a single

member of the ensemble. However, the variations are also important in our study. If

errors introduced in the experimental process result in changes in the diffraction pattern

details, we will not be surprised. If these errors do not produce variations in the

fragmentation and spike structures of the transform greater than those expected within

the ensemble, we will accept the errors as reasonable for our purposes.

5.3. Experimental Optical Fourier Transforms

5.3.1. The Optical Fourier Transform System

In order to produce experimentally the optical transform of a serrated

aperture, we use the optical system shown schematically in Fig. 5.4. A Spectra-Physics

Model 145-02 helium-neon laser, which has 4 mW maximum power output, is the source

of coherent illumination. The beam is expanded with 20X microscope objective M.

Pinhole P has a 15 pm diameter; placed at the focal point of the objective, it spatially

filters the beam. Lens L, with focal length F equal to 500 mm and measuring 3 inches in

diameter, is located slightly downstream from the collimating position, i.e., at a distance

F+A from the pinhole. The beam thus converges to a point in the transform plane, which

is at a distance (z O)m from the lens. Distance A determines the system focal length

(z 0 )ma and is varied to suit the particular application. Generally, A is between 30 and 50

mm, yielding a system focal length between 8.8 m and 5.5 m, as described later in this

section. Two-inch diameter relay mirrors are used to confine the beam to an area which

measures approximately I meter by 4 meters.
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The maximum value of z0 attainable is the distance from the lens to the

camera located in the transform plane and is determined by F and A, where A is the

displacement of the lens from the collimating position. Lens L effectively images the

pinhole onto the camera; from the lens law, we thus have:

I + 1 ](5.3)
F+ A (ZO)ma x  F

Solving for ( zO) ma we find:

F(F + A) (5.4)(Zo)m = A

As an example, consider a 500-mm focal length lens which is displaced by 50 mm. In this

case, the maximum value of zo is 5.5 meters. Smaller values of z0 can be achieved in a fixed

Serrated
Aperture

M P L ICamera

He-NeI-;

1F+AI Iz 0 i

Aperture Transform
plane plane

Fig. 5.4. Schematic representation of the experimental apparatus for the

study of the optical transform: HeNe, helium-neon laser; M, microscope

objective; P, pinhole; L, transform lens, focal length F = 500 mm; I, object

(aperture) plane; 11, optical transform plane.
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system by moving the aperture away from the lens and toward the camera. Since the

beam is converging, there is a smallest value of zo beyond which the aperture will not be

fully and uniformly illuminated. In our experiments, this has not been a limiting factor,

since we are interested in longer focal lengths which allow us to see the detail of the

optical transforms of our relatively large (5 mm mean radius) apertures.

The serrated aperture is located between the lens and the transform plane in

a position where it is, for practical purposes, uniformly illuminated by the beam. In this

configuration, as described in the theory presented in Section 2.2, the field in the optical

transform plane is proportional to the two-dimensional spatial Fourier transform of the

serrated aperture.

The apertures used in these experiments are designed using the convolution

method described in Appendix A. Briefly, the convolution of a set of Gaussian-distributed

random numbers with a window function imposes a specific correlation function on the

data. Careful choice of the height, width, and shape of this window function controls the

rms deviation, correlation angle, and correlation function of the resulting data. We use

these zero-mean data to form the function that describes the deviation of the serrated

aperture from a circle, i.e., s(a) in Eq. (2.1), where a is the angular coordinate in the

aperture plane. Thus, when the mean radius a is added to each data point in this

correlated set, the new set describes the radius of the aperture as a function of angle at

discrete points. Linear interpolation is used to define the continuous aperture edge.

Two lithographic methods were readily available for use in converting our

computer-generated designs to chrome apertures. The application of photolithography
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and of electron-beam lithography in fabrication of serrated apertures are described in the

next two sections.

To record the optical Fourier transform for careful analysis, we place a

lensless camera in the system so that the film plane of the camera coincides with the

optical transform plane and is centered on the optical axis. With the camera, we

photograph the two-dimensional intensity pattern on Kodak Panatomic-X film2, which

offers a slow speed and low contrast. The total and average intensities in the transform

plane are not measured because of the typically high intensity on the optical axis: such a

measurement would likely damage the detector used to make it.

5.3.2. Aperture Production by Photolithography

To fabricate chrome apertures by a photolithographic method, we first plot

the aperture function, denoted by r = a + s (a) in cylindrical coordir ate plane (r, Qi) as

shown in Fig. 2.1, in ink on vellum in loX enlargement. This aperture outline is filled

completely to produce the artwork from which the apertures are made. The artwork is

then sent to Applied Image3, where a 1OX reduction negative of the artwork is made in

emulsion on film or on glass4. This tooling is then used to make our experimental chrome

apertures by contact photolithography. When a negative photoresist is used, the resist-

coated glass plate is placed in contact with the tooling and exposed to light. The resist in

the exposed region (i.e., inside our aperture) becomes less soluble than that in the

unexposeo regions. The resist is then developed and, in the unexposed region, washed

away. The plate and remaining resist are coated with chrome. Finally, the exposed resist

and the chrome in that region are removed with a solvent, leaving chrome only in the
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area where the original resist had not been exposed. The resulting mask is our

experimental aperture in chrome on glass.

The chrome masks made by this photolithographic method are accurate

reproductions of the original artwork to 2 prm on the scale of the aperture, a value

reported in the literature5 '6 and by manufacturing firms3 .7. As reported herein, the

results of an examination of the masks used in these experiments supports accuracy of 5

pm or better in the chrome photolithographic process. Morris8 reported that the

photolithographic process introduced the greatest error in the production of serrated

edges and gaps in chrome on glass. Therefore, we choose our smallest non-zero

roughness and our smallest correlation length to be several times this limit so that our

design will be adequately reproduced in the chrome-on-glass masks. We prefer to study

a series of apertures with a significant range of values for the ratio of the roughness to

the mean radius. We also require that there be at least a few correlation lengths along

the aperture perimeter. These constraints force us to use fairly large apertures; each

experimental aperture has a mean radius of 5 mm. A long-focal-length (-6m) optical

transform system produces aperture transforms that are large enough for easy viewing

and measuring. As described in Section 5.3.1, such a system is easy to achieve, and

therefore the necessarily large aperture size does not present significant experimental

difficulties.

To check the accuracy of the chrome lithography, we compared the chrome

masks to the tooling from which they were made; an example of this comparison follows.

The tooling in this case is a IOX reduction negative of the original artwork in emulsion on

glass. The aperture is a one-to-one positive copy of the tooling and is made by contact

exposure. When both are viewed under a microscope with a loX objective, faithful
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reproduction of all visible details is noted; see Fig. 5.5(a). The upper photo is of the

emulsion-on-glass tooling, while the center photograph is of the chrome aperture. (The

lower photograph in Fig. 5.5(a) is of the aperture produced by electron-beam

lithography, to be described in the next section.) The scale shown below the photographs

is marked in 10 pm and 100 pm increments. Measuring the details, we find them to be on

the order of 5 to 10 pm. When a 50X objective is used to view the same aperture and

tooling, we see that the grain of the film now influences our ability to resolve the edge of

the tooling, as shown in Fig. 5.5(b). Again, the upper photograph is of the tooling, the

center photograph is of the chrome aperture, and the lower photograph is of the

electron-beam lithographic aperture. (Due to imaging difficulties associated with which

side of the glass is coated with emulsion or chrome, the tooling and aperture images are

oriented as mirror images.) The details we are able to see in these photographs are

reproduced crisply in the chrome. The scale included in Fig. 5.5(b) gives 10 Pm increments,

and we can see details half this width reproduced in the chrome. Thus, we claim that the

chrome lithographic process is, in our case, accurate to 5 pm or better.

The remaining question, then, is on the accuracy of the tooling. Is the

tooling what we designed it to be? As outlined above, several steps are needed to

convert the computer design to the tooling from which the chrome apertures are made.

We also observe that the 512 points used to define an aperture with a 5-mm mean radius

would be spaced approximately 60 pm apart on the edge; the details visible in the

microscope images of Fig. 5.5 are below this design resolution. (The photographs in Fig.

5.5(a) show about 900 pm of the edge.) Therefore, at some stage prior to the tooling,

errors are introduced. The problem is most likely at the artwork stage, where a 0.5 mm

pen is used to draw the 1OX enlargement of the aperture in ink on vellum. Although this

pen size corresponds to 50 pm on the reduced scale, pen jitter and ink bleeding may add
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Fig 5.5 Microscope photographs of (upper) the tooling used to make (center)

the photolithographic chrome aperture, and (lower) the electron-beam

lithographic aperture: (a) with IOX objective.
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Fig 5 5 (Continued) (b) with 5OX objective
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to the imprecision in reproducing the design. Since the photolithographic process is

reportedly accurate to 2 lm, the limiting factor in our ability to make chrome apertures to

our design specifications is our ability to generate the artwork. The rms errors introduced

at different stages in making the chrome apertures are summarized in Table 5.2. To

calculate the total rms error from these independent sources, we take the square root of

the sum of the squares of the individual errors; the total rms error from these four sources

is 7.3 pm.

To determine the effect of this total error on the angular rms roughness, we

model the deviation from the design by adding an error term t (a ) to each radius value

RMS Error
Step Source(s) (final aperture scale)

Computer design Byte limit 10 -12 pm

(double precision) (calculated)

Ink plot pen jitter, 5pm

ink bleeding (measured)

Intermediate defocus, magnification 5 pm

emulsion error, film grain noise (estimated)

Chrome exposing and 2 pm

lithography etching process (reported)

Table 5.2. Error budget for photolithographic aperture production. The total

rms error is 7.3 pm.



s ( os). The set of error terms c (ai) is uncorrelated and has a zero angular mean and an

rms deviation of 7.3 pm. The new aperture function is then given by

s'(a) = s(ai )+ t(a . (5.5)

The angular variance of this new aperture is found in the usual manner. Neglecting the

small deviation of the angular mean of s (a) from zero, we calculate

{[s'(a)12 t} _-_ (.).+c(c.11
0 m I +

= 1

82(O+ s(a.) e(a.) + C !(.1 1 ID1_ _ oMo.

2 (()} + 2(s(a) re(a)} + ( 2(a)} . (5.6)

If we assume that the error is independent of the original aperture function, we can

separate the middle term:

ifS'(a)) 2} = {(a)}a + 2{s(a)} I c(a) a + j c2(a ) )a . (5.7)

We see that the first term in Eq. (5.7) is the variance of the original aperture function and

that the last term is the variance of the error. Since c ( a) has a zero angular mean, the

middle term is identically zero. Thus, the variance of the new aperture is equal to the sum

of the variances of the original aperture and the added error. Adding 7.3 pm angular rms

error to an aperture with 75 pm angular rms roughness results in a new rms roughness of

[(75 pm) 2  ( 7.3 pm) 2 ]' 12or 75.4 pm. The angular mean radius will not be affected by

the added error since {e (a)) a is equal to zero. Thus, referring to the ensemble values

listed in Table 5.1, we see that even with the errors introduced in the photolithographic
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aperture fabrication the aperture is well within the limits of the ensemble in terms of the

angular mean and angular rms roughness.

5.3.3. Aperture Production by Electron-Beam Lithography

The error introduced to our aperture fabrication process by photo-

lithography does not put our aperture in a new ensemble. However, we can expect to see

some change in the Fourier transform of the aperture. In order to study these changes

experimentally, we need an improved method of aperture fabrication. With a more

precise production method, we will be able to model in chrome apertures the error

described in the previous section. The improved aperture fabrication method we choose

is electron-beam lithography. Although this technique is very similar to photolithography

in concept, the application is quite different and is summarized below.

For electron-beam lithography, the desired pattern is drawn by a computer-

controlled electron gun directly onto the substrate. Therefore, instead of sending

artwork to the manufacturer, we send our aperture data in a format that meets the

manufacturer's standards. In our case, Photo Sciences9 requested AutoCAD10 format.

Since this software allows specification of filled polygons, conversion of our aperture

design to the required format was a straightforward task. Photo Sciences used these

supplied data to control the electron-beam plotter used to 'write' the apertures on

quartz-based photoresist. Since a negative resist was used, only the aperture interior was

written.

When writing the aperture, the beam travels in only one direction relative to

the substrate. Thus, rather than drawing the aperture edge and then filling this outline as

was done for the photolithographic method, the beam is scanned across the substrate in
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one direction and turned on when the beam coordinates lie within the aperture. The

negative resist responds as described in the preceding section to the developing, coating,

and etching process, and we are left with an aperture in chrome on a quartz substrate.

The accuracy of this method is superior to that of photolithography for

several reasons. First, referring back to Table 5.2, we note that the two production steps

that introduced the greatest error, the ink plot and the intermediate emulsion, have been

eliminated. Second, the accuracy of the lithographic step is improved by using a beam

with a 1 pm spot size and 0.25 pm positioning accuracy. The results of this overall

increased accuracy is easily seen in Fig. 5.5, where the lower photos in (a) and (b) are of an

aperture produced from the same design as the photolithographic aperture shown, but

by electron-beam lithography. With the 1 OX objective, we can clearly see the shape of the

designed aperture edge, with straight sides between the discrete points used to define

the edge. In the photolithographic case, this crisp shape is hidden in both the tooling and

the aperture by the errors introduced in the ink plot. With the SOX objective, we can see

t.he signature of the electron beam in the scalloping along the edge. These details

measure less than 1 pm (the beam spot size); the resulting accuracy of the design

reproduction is thus on the order of 1 pm.

5.3.4. Comparison of Computer Simulation and Optical Experiments

Although we have seen clearly the differences between the computer-

generated design, the photolithographic aperture, and the electron-beam lithographic

aperture, examination of the corresponding Fourier transforms is necessary to evaluation

of the appropriateness and applicability of each method. In this section, we will compare

for a single aperture the computer simulation of the Fourier transform of the aperture

design, the optical Fourier transform of the photolithographically-produced chrome
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aperture, and the optical Fourier transform of the aperture fabricated by electron-beam

lithography. These three transforms are shown together in Fig. 5.6 for an aperture taken

from the ensemble represented in Fig. 5.1, which has a 75 pm rms roughness on a 5.0 mm

mean radius, a correlation angle of n /8 rad, and the triangular correlation function. The

upper transform is a photograph of the optical Fourier transform of the photo-

lithographic aperture, while the center transform photograph corresponds to the

electron-beam lithographic aperture. The lower transform is a photograph of the

computer simulation display, shown as before as a half transform.

The optical Fourier transforms of the two chrome apertures were recorded

on Panatomic-X film2. First, we compare these photographs. Looking at the spike

structure shown in each, we note excellent agreement between the two optical Fourier

transforms. Even the substructure on individual spikes is very similar. The differences

between the two transforms are seen in the higher spatial frequencies (i.e., at larger

radius values). The 7.3 pm error introduced in the photolithographic method is

detectable in these photographs. Thus in the optical Fourier transform we can see small

aperture differences that are well within the limits of the ensemble. At the same time,

these aperture differences do not affect significantly the transform features that we

associate with the ensemble, namely, the ring fragmentation and spike structure.

Therefore, despite the 7.3 pm error in photolithographic apertures, we are confident that

such apertures are appropriate for use as members of the ensembles they represent.

For completeness, we now compare our computer simulation to the two

optical Fourier transforms. Again, we note excellent agreement for the transform

features of interest. The spikes in all three transforms correspond not just in position but
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Fig 5 6 Three realizations of the transform of a single aperture design: the

optical Fourier transforms of the (upper) photolithographic and (center) elec-

tron-beam lithographic apertures, and (lower) the calculated Fourier transform
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in shape and substructure as well. We are confident that our computer calculation of the

Fourier transforms of serrated circular apertures is correct. Consequently, the transforms

of large sets of apertures, such as those shown in Fig. 5.1, can be produced quickly (and

relatively inexpensively) using computer methods.

5.4. Eletron-Beam Generated Masks with Controlled Deviations

5.4.1. Model of Noise in the Fabrication Process

In this last study in this chapter, we investigate more closely our ability to

detect small aperture deviations in the optical Fourier transform. We design a set of

apertures based on a typical serrated aperture, that of Fig. 5.6, but with noise added as

follows. To each of the 512 radius values s (a) used to define the aperture edge, we add

a noise term e(a). This noise is uncorrelated and has zero angular mean. For each

aperture in the set, we choose a different value for the angular rms deviation of the

additive noise; these values are 0, 2, 5, 10, and 20 pm. This noise model, designed to

approximate the error that noise in the aperture fabrication process might produce, is

demonstrated visually in Fig. 5.7. On the left, we show a section of the original aperture;

straight line segments join the discrete points used to define the aperture edge. When

we add the noise term, each of the discrete points is moved a distance c (oai ) along the

aperture radius. On the right, then, the dashed line shows the edge of the original

aperture, and the solid line traces the edge of the new, noisy aperture.

With the electron-beam technology described in Section 5.3.3, direct digital

plotting is used to etch each of these noisy aperture designs in chrome on quartz. To

check the reliability of the electron-beam lithography process, we include two apertures

with 0 pam rms noise, i.e., two copies of the original serrated aperture design. These two
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apertures, as well as those to which noise was added, were placed individually in the

optical Fourier transform system shown in Fig. 5.4. On Panatomic-X film2, we

photographed the resulting transforms; these photographs are reproduced in Fig. 5.8.

For reference, the rms roughnesses that result from adding rms noise of each of these four

magnitudes to an aperture with 75 pm angular rms roughness are listed in Table 5.3.

5.4.2. Fourier Transforms of Noisy Apertures

We begin by comparing the first two photographs, which show the optical

Fourier transforms of the two apertures with no added noise. These two apertures, and

thus the transforms, should be identical within the limits of the fabrication process.

Beyond slight variations attributable to fluctuations in laser power and small differences

in the framing of each photograph, this author is hard-pressed to find any disagreement

Original serrated aperture Noise added point-by-point

75 pm rms roughness 0, 2, 5, 10, or 20 pm rms

Fig. 5.7. Model used to simulate the noise introduced in fabricating serrated

circular apertures for optical experiments.

I
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between these two transforms. Thus, we continue with our examination of the

transforms of this set of apertures confident that the differences we see are due to our

designed noise rather than other noise sources.

From the next photograph in the series, we see that 2 pm rms noise on the

aperture has a visible effect on the transforms. In particular, changes are seen in the

speckle pattern at large radius values and in some of the darker regions of the transform,

between the spikes. Although these differences are slight, they are visible in these

photographs. As we continue through the series of transforms in Fig. 5.8, we see an

increase in the number and severity of the deviations in the transforms as the added noise

increases. We also find deviations closer to the center of the transform; this effect is akin

to increasing the roughness on a circular aperture and seeing the effects in rings closer to

the center of the transform.

In comparing these transform photographs, we can detect rms noise as small

as 2 pm on the aperture, but even when the rms noise is as high as 20 pm the spike

structure remains intact. There are slight changes in the spike sub-structure at higher

Angular rms deviatio., Resulting angular rms
of added noise aperture roughness

(pm) (pm)

2 75.0
5 75.2
10 75.7
20 77.6

Table 5.3. Added rms noise and resulting rms roughness for an original aperture

design with 75 pm angular rms roughness.



174

Fig 5 8 Optical Fourier transforms of serrated circular apertures with added

noise (a) 0 pm rms noise
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Fig 5 8 (Continued) (b) 0 pm rms noise
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Fig, 5.8. (Continued) (c) 2 pm rms noise
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Fig 5 8 (Continued) (d) 5 pm rms noise
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Fig. 5.8 (Continued) (e) 10 pm rms noise.
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Fig 5 8 (Continued) (f) 20 prn rms noise
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radius values, but if we look at the region that has been of interest to us in earlier

sections, that is, near the fifteenth ring, we see no significant differences in the spike

structure, even in this extreme case of 20 pim rms noise added to an aperture with 75 Jim

rms roughness.

5.5. Conclusions

In this chapter, we have presented four major points. First, from the

examination in Section 5.2 of twelve members of an aperture ensemble and the

corresponding Fourier transforms, we learned that variations within the ensemble

produce noticeable differences in the spatial statistics of the individual apertures and in

the Fourier transforms. The ensemble, however, is still identifiable by the grosser features

of the transforms, the ring and spike structures, with some variations in these structures a

natural result of variations within the ensemble of apertures. Second, we noted in

Section 5.3 that some error is introduced in the fabrication of chrome apertures from our

designs; the rms error was as high as 7.3 pim for the photolithographic apertures.

However, the changes in the angular rms roughness of the aperture and the changes in

the Fourier transform that result from this error are shown to be well within the limits of

the ensemble variations. In addition, the computer simulation of the Fourier transform

produces results that are comparable to those of the experiments in the regime of

interest. Finally, using precise, electron-beam-lithographic apertures, we demonstrated

our ability to see very small (2 im rms) deviations in a serrated aperture by examining the

optical Fourier transform. This result is encouraging for those who wish to use optical

Fourier transform techniques in the analysis of precision-fabricated structures.
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Chapter 6

Comparison of Features in the Experimental and Calculated Transforms

6.1. Introduction

Experiments in which the Fourier transform of the transmission function of a

serrated aperture is obtained optically are essential to the verification of the diffraction

theory presented in Chapters 2 and 4. In addition, comparing these optical Fourier

transforms with computer simulations tests the limits of the computer model and of the

theory. In Chapter 5, we demonstrated for one aperture the excellent agreement

between the optical and calculated Fourier transforms; this preliminary result was

presented in Fig. 5.6. The comparison continues in this chapter in conjunction with the

investigation of the features in the transform.

The optical Fourier transform system used in these experiments is described

in Section 5.3.1. We designed three sets of serrated apertures for use in studying three

aperture parameters. The first set, described in Section 6.2, has varied rms roughnesses.

Experiments with these apertures yield information about the dependence of ring

fragmentation in the Fourier transform on the roughness of the aperture. In Section 6.3,

we present apertures of varied correlation angle and the transforms of these apertures,

paying particular attention to the relationship between the correlation angle of the

aperture and the number of spikes in the transform. The apertures in the third set have

different correlation functions. Section 6.4 contains a discussion of the appearance of the

spikes in the optical Fourier transforms of these apertures and of the dependence of this

appearance on the shape of the correlation function of the aperture. In each of these

three cases, we compare the results of these experiments and the corresponding

182
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computer simulation with the predictions we made in Chapter 4 about the features in the

transform.

6.2. Aperture Roughness and Ring Fragmentation

The apertures in experimental set 1, which vary only in roughness, are shown

in Fig. 6.1. These apertures represent four ensembles, each of which has a 5-mm mean

radius, a correlation angle A of n/8 rad, and a triangular correlation function, given by

I -1 for Ia' - a'I !5 A;
si (6.1)

0 , otherwise .

We used the same set of random numbers in generating each aperture design; only the

roughness scaling factors differ. Table 6.1 includes the angular mean radius, the angular

rms roughness, and the fractal dimension of each aperture in this set. From these designs,

we fabricated photolithographic apertures for use in our optical Fourier transform

Aperture Angular Mean Angular RMS Fractal

Radius (mm) Roughness (pm) Dimension

a 4.98 44 1.01

b 4.97 88 1.02

c 4.93 177 1.06

d 4.87 353 1.24

Table 6.1. Statistical and fractal parameters for experimental set 1.
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system. The resulting transforms, each photographed on Panatomic-X film1 , can be seen

along with the apertures and computer simulations in Fig. 6.1.

When viewing these diffraction patterns, one is immediately aware of the

tendency of the bright, circular Airy rings first to become uneven and then, with increased

roughness, to fragment, particularly at large radius values. As discussed in earlier

chapters, by fragmentation we mean that at some angular values the intensity drops

essentially to zero across the annulus. The transform simulations shown in Fig. 2.6 and the

intensity calculations presented in Fiq. 4.9 also demonstrate this effect. In Chapter 4, we

discussed the behavior of the intensity correlation function at a fixed radius as the

roughness on the aperture increased, noting that the ratio of the height of the

correlation peak to the background level increased under these conditions. Since the

continuity of a diffraction ring depends on the behavior of the angular correlation

function of the intensity at that radius, ring fragmentation is a feature related to the

correlation of the transform. Therefore, it is a useful measure of the effects of aperture

roughness on the correlation in the Fourier transform.

With the two-dimensional diffraction patterns shown in Fig. 6.1, There are

two easy ways to see the correlation effects described above. First, we can choose a

particular ring and watch what happens to it as the roughness on the aperture changes.

This is what we did with the plots of intensity versus angle at a fixed radius for varied

aperture roughness, shown in Fig. 4.9. The other choice is to pick a level of degradation,

e.g., the first ring in a diffraction pattern to become fragmented, and find the location of

that feature in each transform.

Performing this task for the optical Fourier transforms shown in Fig. 6.1, we

find that the following rings are the first to break in each transform: for 44 pm rms
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Fig. 6.1 (a) (Upper) Apertures from experimental set 1, with (center) optical and (lower) calcu-
lated transforms. For each aperture in this figure, the correlation function is triangular, defined
in Eq. (6 1), with A equal to it/8 rad. Each ensemble mean radius is equal to 5.0 mm; the angular
mean radius and rms roughness of each aperture is listed in Table 6.1. The rms roughness for
this aperture is 44 lam.
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Fig. 6. 1. (b) The rms roughness of the aperture is 88 g~m.
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Fig. 6.1. (c) The rms roughness of the aperture is 177 pm.
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Fig. 6.1. (d) The rms roughness of the aperture is 353 p±m.
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roughness, ring 15; for 88 pm, ring 11; for 177 pm, ring 8; and for 353 Pm, ring 3. This

measure is subjective and depends on the photographic exposure chosen for each

diffraction pattern. However, with this technique we can quickly and easily determine

the effects of aperture roughness on the Fourier transform.

The computer simulations displayed in Fig. 6.1 compare well with the

photographs from the optical experiments. At the feature level, the patterns show

excellent agreement. The spikes in both cases fall in the same position and have similar

sub-structure. Dark regions in the two transforms also correspond well. The order of the

first fragmented ring in each of the computer simulations agrees closely with the

corresponding experimental result. As discussed in Chapter 4, complete agreement in the

details of two corresponding transforms is neither found nor expected. In particular, in

the experimental patterns we note asymmetries that are due to defects in the glass

substrate which introduce phase errors to the wavefront in the aperture plane. However,

the excellent comparison of the symmetric features over the wide range of roughness

values shows that our theory and computer model accurately represent the optical

Fourier transform at our level of interest.

6.3. Correlation Angle of the Aperture Serration and the Number of Transform Spikes

In Section 4.4.3, we found that an increase in the correlation angle of the

aperture corresponds to an increase in the correlation angle of the diffracted field. The

apertures in experimental set 2, designed to address this point, have all parameters fixed

except the correlation angle. These apertures, shown with the corresponding optical and

calculated transforms in Fig. 6.2, represent ensembles that have correlation angles of

n/16, n/8, and n/4 rad. Each of the ensembles from which these apertures are taken has a

triangular correlation function, given by Eq. (6.1), an rms roughness of 75 pm, and a mean
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Fig. 6.2. (a) (Upper) Apertures from experimental set 2, with (center) optical and (lower) calcu-
lated transforms. The three apertures in this figure represent three ensembles; for each
ensemble, the correlation function is triangular, given by Eq. (6.1); the mean radius is equal to
5.0 mm; and the rms roughness is 75 pm. Here, the correlation angle on the aperture is n /16 rad.
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Fig. 6.2.(b) A equal tox 8 rad.
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Fig. 6.2.(c) A equal to n 4 rad.
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radius of 5.0 mm. in generating each of the three apertures in experimental set 2, we

used the same starter set of uncorrelated random numbers.

In the corresponding series of Fourier transforms, we note a decrease in the

number of spikes in the transform with the increase in the correlation angle of the

aperture. We noted with Fig. 4.6 that the spikes must be counted at a fixed radius from

transform to transform for consistency. In Fig. 6.2, we see some spikes that split as the

radius increases. The reader who is unsure how to count such a spike, as one or as two or

more, will recognize the importance of fixing the output radius before counting. We

choose to count spikes at the fifteenth ring, as we did in Chapter 4, so that we might

establish the level of agreement between counting spikes in a photograph and counting

from a plot.

In the photographs of the optical Fourier transforms, then, we count 18

spikes in the full transform (0 to 2n) when A is equal to n/16 rad, 16 for A equal to r/8

rad, and 14 for A equal to n/4 rad. These values are close to the spike counts made in Fig.

4.1, where 18, 16, and 16 spikes were found at the fifteenth ring of the Fourier transform

for these same aperture designs. The subjectivity of counting spikes in a photograph is

most likely responsible for this discrepancy. To check this, we count the spikes in the

calculated Fourier transforms shown in Fig. 6.2; at the fifteenth ring, the calculated values

here are the same as those in the plots in Fig. 4.11. Doubling the number of spikes seen in

each half transform displayed, we find 18 spikes for A equal to n /16 rad, 16 for A equal to

n /8 rad, and 14 for A equal to n 4 rad, the same as the numbers found for the optical

Fourier transforms. In the two-dimensional display of the calculated transform, we lose

some of the objectivity of the analysis, but gain an understanding of the discrepancies

between the photographs from the optical experiments and the curves of intensity versus

angle shown in Chapter 4.
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The calculated and optical Fourier transforms in Fig. 6.2 show excellent

agreement in the remainder of the transform as well. If we look closely at the series of

photographs in Fig. 6.2, we note that the spikes in each case have similar positions. The

change from one pattern to the next is the broadening and overlap of some spikes as the

correlation angle of the aperture increases. A similar effect takes place for the apertures.

With increased correlation angle, the very jagged edge on the aperture with n/16 rad

correlation angle becomes smoother through a broadening of the features on the edge,

while the ensemble roughness remains constant.

6.4. Correlation Function of the Aperture Serration and Spike Appearance

With this last set of apertures, we study the relationship between the shape

of the correlation function of the aperture and the appearance of the spikes in the

Fourier transform. The plots shown in Fig. 4.12 demonstrate changes in the two-point

intensity moment that correspond to changes in the correlation function of the serration.

At a fixed radius, the sharper aperture correlation produced a sharper transform

correlation. The Fourier transforms of aperture set 3 will show the effect this correlation

shape has on the diffracted intensity.

The three apertures in this set, shown in Fig. 6.3, represent three ensembles

with different correlation functions. Each ensemble has 75 Pm roughness on a 5 mm

mean radius and a correlation angle (A in the equations below) of n /8 rad. The

correlation functions are triangular, given by Eq. (6.1),

A(a * - a ') - ( = A ' o '

0 , otherwise;

negative exponential,
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r (a-a') = nexp [(a'-a')/AI = exp (-a'-a'I/A) (6.2)

and Gaussian,

r (a*- a') = G[(a'-oa')/AI = exp[-((a'-a')/A) 2 1 (6.3)

Two of these, the triangular and negative exponential functions, have moderately sharp

peaks, with slopes of ± 1/A in the limit as a'-o' approaches zero. The Gaussian function

has a smooth peak, with a slope of zero when a*-a' is equal to zero.

There are pronounced likenesses in all three apertures, as seen in Fig. 6.3.

Each aperture has the same basic non-circular shape; this arises from the use of the same

starter set of random numbers, correlation functions of comparable width, and equal rms

roughnesses in the design. The first two apertures, however, show jagged edges; the

irregularities are similar for the two because of the equality of the slopes of the

correlation functions in the limit as a'-a' approaches zero. The Gaussian-correlated

aperture, however, has a smooth edge, corresponding to the zero slope of the correlation

angle at o-a' equal to zero.

The optical Fourier transforms, shown with each aperture in Fig. 6.3, fall into

the same grouping. The spikes in the transforms of the first two apertures are similar to

each other in appearance; beyond the fifteenth ring, they break into narrower spikes.

The spikes in the transform of the aperture with the Gaussian correlation function remain

single spikes as far out in the transform plane as is shown in these photographs. The

number of spikes in a given transform at different radius values gives us information

about the shape of the correlation function of the aperture. In the apertures shown, an
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Fig. 6.3. (a) (Upper) Apertures from experimental set 3, with (center) optical and (lower) calcu-
lated transforms. Each ensemble represented has a 5.0 mm mean radius, a 75 gm roughness,
and a n /8 correlation angle. Shown here is the aperture with the triangular correlation function,
given by Eq. (6.1).
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Fn

Fig. 6.3. (b) The aperture has a negative exponential correlation function, given by Eq. (6.2).
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Fig. 6.3. (c) The aperture has a Gaussian correlation function, given by Eq. (6.3).

I
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increase from ring 12 to ring 18 indicates a sharp-peaked correlation function, while a

constant number of spikes corresponds to the Gaussian correlation function.

Once again, there is excellent agreement between the features in the optical

and calculated transforms. Since all the transforms shown in Fig. 6.3 have the same spike

positions, the comparison of the calculation and the experiment show the ability of the

computer model to match the finer substructure in the spikes. In the computer

simulations, the difference in the appearance of the spikes for different aperture

correlations is more pronounced than in the optical Fourier transforms. We attribute this

effect to the lack of significant noise in the computer model. Since the edge of the

Gaussian-correlated aperture is smooth, the 7.3 pim rms error2 on the apertures produced

by the photolithographic method is more noticeable in this optical Fourier transform. The

limitation of this computer simulation is the inability to reproduce the effects of

fabrication errors. For some applications this limitation is an advantage.

6.5. Conclusions

The results of both the optical experiments and the computer simulations

presented in this chapter support our theory-based predictions, given in Chapter 4, for the

features of the Fourier transform of the serrated circular aperture. The following

statements summarize the main points of this chapter.

As a circular aperture is roughened, the familiar rings of the Airy diffraction

pattern show unevenness and fragmentation, especially at larger radius values. As the

roughness increases, the serration affects the rings with smaller radii. We predicted that

the radial location of the first fragmented ring would be inversely proportional to the rms
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roughness. This relationship is supported by a set of apertures of varied roughness and

the related transforms, shown in Fig. 6.1.

Changes in the serration correlation angle of an aperture alter the

correlation angle and spike structure of the optical transform. As the serration

correlation angle decreases, the intensity correlation angle also decreases, resulting in

more rapid angular variations in intensity and thus an increase in the number of spikes in

the transform. We see these effects in the Fourier transforms shown in Fig. 6.2. Increases

in the width of the spikes and the resulting overlap reduce the number of spikes as the

correlation angle of the aperture increases.

The shape of the peak of the serration correlation function affects the shape

of the angular correlation function of the intensity in the transform. As seen in Fig. 6.3,

this shape influences the appearance of the transform spikes. Smooth-peaked correlation

functions correspond to angularly smooth spikes in the transform. Another method used

to identify this feature is counting the number of spikes at different radial positions in a

given diffraction pattern. If this number increases significantly, the correlation function is

likely to have a sharp peak.

These results are valid for both the optical experiments and the computer

simulations. In addition, we note excellent agreement between the features seen in the

two transforms, optical and calculated, over the wide range of aperture parameters

investigated. We conclude that our theory and computer model are accurate in the

regime of interest.
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Summary

As stated in the Introduction, we have had two primary objectives in this

study of serrated circular apertures. The first was to determine the relationship between

the parameters of the aperture and the features of the optical Fourier transform. Our

second objective was to understand the relationship between the statistical and fractal

descriptions of the aperture. Understanding both the optical Fourier transform and the

fractal attributes of the serrated aperture has yielded new insights into the interplay of

the statistical parameters of the aperture. In this summary, we present the major

conclusions of this research.

We began our discussion in Chapter 2 by defining a serrated circular

aperture by means of the radius function in cylindrical coordinates, rc = a + s (Q), where

(r., a) is a point on the aperture edge, a is the average aperture radius, and s (a) is the

zero-mean function that describes the aperture serration as a function of the angular

coordinate. The formulation of the Fourier transform of the serrated circular aperture in

terms of s (a) is presented here. We used the analytic signal representation of the

diffracted field and kept the wavelength dependence explicit.

The important parameters of the serration, namely, the rms roughness.

correlation angle, and correlation function, are determined from s (a). After describing a

computer technique used to generate apertures with specific statistical parameters, we

showed examples of aperture sets in which each aperture parameter was varied in turn.

In order to see quickly the effects of variations in the roughness, correlation angle, and

correlation function of the serration on the transform, we performed a computer

simulation of the optical transform intensity for several apertures. These images

demonsttate the degradation of the familiar Airy ring pattern with increased aperture
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roughness. The number and structure of the spikes in the transform change with

variations in the width and shape of the correlation function of the serration are varied.

In Chapter 3, we presented our study of the relationship between the

statistical and fractal descriptions of the aperture. Two methods, namely, Richardson

curves and grid interrogation, are used to determine the fractal dimensions of serrated

apertures. The fractal dimension of the aperture increases as the rms roughness increases

and decreases as the correlation angle of the serration increases. In the Richardson curves

in particular, there is evidence of structural differences in the apertures at different levels

of scrutiny. When measured with a scale finer than the design resolution, a serrated

aperture is a Euclidean object with a fractal dimension of 1. For a range of measurement

scales bounded approximately by the design resolution below and by the correlation

angle above, the Richardson curve describes the fractal structure of the edge roughness.

At lower resolutions, the Richardson curve shows the fractal nature of the overall

noncircular shape of the aperture.

When we applied these methods to apertures with varied correlation

functions, the evidence of structural differences at different resolutions was supported

further. The Richardson curve for the Gaussian-correlated aperture, which is noncircular

but smooth-edged, reached the Euclidean limit quickly as the resolution increased,

whereas the other apertures continued to demonstrate a fractal structure.

For completeness, we included in our investigation a study of the Weierstrass

function, a mathematically-defined function which possesses fractal characteristics, and

several variations of this function that have been used to model physical objects. The

definition of the Weierstrass function includes a parameter Dw that has been promoted

by some authors as the fractal dimension of the function. Our results show that
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this claim is valid for the original function but not necessarily valid for scaled and

bandlimited versions. Scaling and/or bandlimiting the function affects the statistical

properties of the function and also the fractal dimension, as is expected from our results

for serrated apertures.

The last aspect of this investigation of the statistical-fractal relationship that

we discussed was the dependence of the fractal dimension on the ratio of the rms

roughness a to the correlation length d. For serrated edges, we have shown graphically

that the fractal dimension increases as the ratio of the spatial rms roughness oh to the

correlation length L increases, but that this relationship depends strongly on the

correlation function of the serration. Sharp-peaked correlation functions result in a more

rapid increase in the fractal dimension of the aperture as the ratio oh/ L increases than

that produced by apertures with smooth-peaked correlation functions. This evidence

corresponds well with our uninformed expectations. If the fractal dimension is a measure

of the smoothness of an aperture, then we expect the fractal dimension of the serration

to increase when the roughness increases, when the correlation angle decreases, and

when the correlation function is sharpened. Overall, the results of this study of the fractal

dimension of a serrated aperture have shown that apertures with very different statistical

parameters can have the same fractal dimension, and that one must therefore be cautious

in defining and describing apertures fractally.

In Chapter 4, we presented our calculations for the two-point intensity

moment <i (P1, 4)I (P2,12)> of the Fourier transform, which contains essential

information about the correlation properties of the diffracted field and the dependence

of these properties on the parameters of the aperture. To simplify the calculations, the

two-point intensity moment, which is a fourth-order moment of the scalar field, was
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expanded into a sum of second-order moments through use of a Gaussian moment

theorem. Due to the polar symmetry of the Fourier transform, two of the four terms in

the moment expansion contain the two-point attributes of the fourth-order moment.

This is in contrast to the case of circular complex Gaussian statistics, in which only one

term contributes to the correlation properties. The two terms of interest are identical but

for a n rotation. Thus, detailed study of only one of these second-order moments, Pi2,

leads to an understanding of the transform properties.

In Pl2, which is expressed in integral form, we identified parts of the

integrand which contribute significantly to the magnitude and shape of the field

correlation. These terms depend on the roughness, correlation angle, and correlation

function of the aperture serration; therefore, features in the Fourier transform which

correspond to each of the three statistical parameters of the aperture can be extracted

from the theory. The features identified were the ring fragmentation, the number of

spikes, and the spike appearance. From our expression for P12' we predicted that as

roughness increased there would be a decrease in the smallest radius at which the rings in

the transform pattern would become fragmented due to the serration. We also predicted

an increase in the correlation angle of the transform with an increase in the correlation

function of the aperture, and that the shape of the transform correlation function would

be smoother for smoother serration correlation functions. These changes in the width

and shape of the transform correlation function would be seen in the number and

appearance, respectively, of the spikes in the transform. Plots of the two-point intensity

moment for several ensembles with varied aperture parameters and of the intensity for

representative members of these ensembles support this feature identification.

I
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Chapter 5 contains a discussion of the processes used in fabricating serrated

circular apertures. Apertures made with photolithography and electron-beam

lithography, and the corresponding optical Fourier transforms, are studied and

compared; the following conclusions are drawn. The photolithographic process

introduces 7.3 pm rms error, but the resulting apertures are still well within the limits of

the design ensemble and the apertures are therefore suitable for our experiments.

Electron-beam lithography produces much more accurate apertures, mostly because of

the elimination of intermediate steps between the design and the final apertures.

Computer simulation of the Fourier transform of a particular aperture compares well in

the regime of interest with the two transforms obtained experimentally; the ring and

spike structures that are characteristic of the transforms of an ensemble of apertures are

not affected by the differences in these three methods. However, the details of the

transforms are affected by rms errors as small as 2 jam on the aperture; the ability to see

the effects of these errors indicates the potential of optical Fourier transform techniques

in the analysis of precisely fabricated structures.

The results of optical experiments using apertures from ensembles of varied

roughness, correlation angle, and correlation function are reported in Chapter 6. The

computer simulations of the transforms of these apertures show excellent agreement

with the optical Fourier transforms from the experiments over the wide range of serration

parameters covered by these apertures. Both types of transforms support the theory-

based predictions concerning the features of the transform and -w.e parameters of the

serration on the aperture. The rings in the transforms are seen to fragment at smaller

radii as the roughness increases. The number of spikes increases as the correlation angle

of the serration decreases, demonstrating a decrease in the correlation angle of the

Fourier transform. When the correlation function if the serration has a smooth peak, the
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spikes in the transform do not break into smaller spikes as the distance from the center of

the transform increases, at least not in the region in which we are interested. The

resulting spikes appear to be smooth compared to those corresponding to a sharp-peaked

aperture correlation. In the latter case, the number of spikes increases as the output

radius increases.
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Appendix A

Aperture Generation Process

A.1. Theoretical Analysis

The serrated apertures used in the computer simulation, the fractal analysis,

and the experiments described in this dissertation were computer-designed, with

controlled diameter, roughness, correlation angle, and correlation function. This process

was begun by generating a set of uncorrelated, Gaussian-distributed random numbers

with zero mean. (For the apertures discussed, sets of 512 random numbers were used.)

The uncorrelated data were then convolved with an appropriate window function to

impose the desired correlation function, and the mean radius was added to each data

point. These data are used as values of the aperture radius at equiangular increments,

and the continuous aperture edge is determined from these discrete data by linear

interpolation. In relation to speckle studies and modeling of rough surfaces, the first use

of this data generation scheme appears in the literature by Fujii, Uozumi, and Asakura1 .

Later this technique was used to generate the rough edges studied by George and

Morris , as described in the thesis by Morris3.

This convolution technique, to be described here in detail, is used to

generate members of aperture ensembles. We define the ensemble as follows. For each

member of the ensemble, a different set of uncorrelated, Gaussian-distributed, random

numbers is used. All of these starter sets belong to the same ensemble of starter sets and

thus have the same ensemble variance; one can think of each set as a 512-element section

of a much larger data set. The apertures are then generated by convolving the same

window function with each starter set. In this appendix, we show the derivation of
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expressions for the variance and correlation function of the aperture ensemble. Thus,

ensemble expectations are used to define the statistical parameters of the uncorrelated

data and of the apertures. For clarity, we define the important ensemble expectations

here and compare them to the corresponding angular averages.

Consider an ensemble of apertures described by a collection of functions

Si (a) = a + si (a), where the subscript i denotes the it h member of the ensemble. For a

given aperture, we define the angular mean radius by the following spatial average:

I (a)) ns(a) da (A.)

where the subscripted braces, { }, are used to indicate the spatial average over angular

coordinate a. Again using spatial averages, we define the angular variance as follows:

(IS. (a) -S (a)) 12) = IS.(a)-S.(a)} ]2 do (A.2)

I 1 a a 2n na

We define also the normalized angular correlation function:

{[S. (a) - fsi(a)) s (a.+,&) -{S. (0+,&) ))1

{ISi(a)-{Si(a)}a 12) a

+n [S(a) -f{S()) li[S(a+Aa)-{S.(a+&a)) Ida
-n1 1 a 

f{IS i(a )-{S i(a) )a I2 a

We note that these spatially-averaged quantities will vary for different members of the

ensemble.
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In contrast, we define corresponding quantities for the ensemble with

ensemble expectations or averages. The ensemble mean radius is given by the following

expectation:

M
a = <S.(a)> = lim Y S(a) (A.4)

I - ii= 1

where, following the usual notation in the literature, we denote by angular brackets,

< >, the expectation taken over an ensemble. Similarly, we use ensemble expectations to

define the notation for the ensemble variance by

2 = <[S.(a)- <S.(a)>] 2 > = iM [S.(a)- S.(a)>]2 (A.5)
M --* oD I= I [S i C S()>

and for the normalized ensemble correlation by

<[Si(o )- all Si(a )- al >

rs(aI a2 2

M

2- m Y [Si(a )-al[Si(a )-a] (A.6)
2 M- I i= I2

We have simplified the notation for these ensemble expectations by using a to denote the

ensemble mean radius; 02 , the ensemble variance; and rs(Au), the ensemble correlation

function. These quantities, which are constant due to the wide-sense stationarity of the

apertures, are of particular interest in our study. The assumption of wide-sense

stationarity is valid because of the arbitrary orientation of the aperture. Since no

preference is given to any orientation, the statistical parameteres must be independent of

angular position. Due to the importance of these statistical parameters and that of the

convolution method of generating correlated data in studying ensembles of surfaces'.

edges2 , and apertures, we will review3 and describe the foundations of the method in
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the following paragraphs, with the goal of obtaining expressions for the variance and

correlation function appropriate to this generation scheme.

We begin with a function q (a), from an ensemble of functions, as input to a

linear system which convolves q (Q) with window function w (a) to yield output function

s (a). This output function would then be described by

s(a) = Cf q (k)w(a - )d , (A.7)

where C is a scaling factor. This output function describes the aperture serration, as in Eq.

(2.15). For the input, we choose a Gaussian-distributed, wide-sense-stationary random

process with mean value zero, variance oq2 , and normalized correlation function rq ( a2-

a1 ):

<q(a)> = 0 (A.8)

<q 2 (a)> = 2 , (A.9)
q

<q(a)q(a 2 ) >

0 2 = q (Q2 - ) . (A .10)

q

From this foundation, we wish to determine the variance 02 and the normalized

correlation function r (. a2 ) of the ensemble of functions which contains s ( a ). Both

of thse quantities can be determined from the autocorrelation function of s (a), which is

defined

RI 2 (al,a 2 ) = <S(al)S(a 2 )> . (A.ll)
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The variance o2 is found by setting a, equal to a2 in R12 (al, 2 ), and r. (a,, a 2 ) is

R12 (o,02) normalized by o2. Thus, we proceed to evaluate and simplify RI 2 (al, a2 ).

Using Eq. (A.7) in Eq. (A.11) and switching the order of integration and

averaging, we have the following expression for the autocorrelation:

R1 2 (al, a2 ) C2 <q (k ')q (,') > w(aI - ,')w(a 2 - V,) dk'dq'. (A.12)

We recognize <q ( ,')q (E,") > as the autocorrelation of input function q and use

Eq. (A. 10) to write:

R 2(ala) = C 2 o 2  (I + r q )w(a - k')w(a 2- 1) dF, d ,. (A13)

The 4' integration in Eq. (A. 13),

B = J')w(a2 - q) d9 " (A.14)

is seen, with the variable change q = V- k', to be a convolution integral:

B J r(q)w[(a2 - ,')-rldq . (A.15)

We note that Bnv is the convolution of the correlation function of q (a) with window

function w (a). With Eq. (A. 15), we rewrite Eq. (A. 13):

R 2 (alo 2 ) Ca(2_ w(a ,)B(a_,)d , " (A.16)

Now, with the variable change =al- ', we see that R,2 can also be written in

convolution form:
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R 12 (a 2  a I C 2 a2Jw(4) B [(a 2 -a I)+ (A. 17)

where we note that R 2 depends on a2 and o! as the difference a2 - at . Equation (A. 17)

is the general form for autocorrelation R12 (02-al). From it, we can determine the two

quantities of interest: the variance of s (a),

2= R 2(0) = C2o2+ w(E)B (4)d, (A.18)q rw '

and the normalized correlation function,

R12 (a 2 _a) w(a)-B r(a)
-- (a a (A. 19)r(2 1t 2 + O

s o 0 w (k)B rw (k) d

We can further simplify these expressions for our special case, in which the

correlation function of q (a) is narrow compared to the window function. If Aa is the

correlation angle of input function q (a) and L is the width of window function w (a), then

when Aa 4 L the convolution representing Brw in Eq. (A.15) causes only a slight

spreading in the shape of the window function:

B rw (a 2 - IV') ,, Aa W (a a2 - ,') (A.20)

Using Eq. (A.20), we rewrite Eqs. (A. 18) and (A. 19) for this case of interest:

/+0
a02 , C a2 oJ w 2 (a) da ; (A.21)

q -0

w(u) *w(a)
r8 2 , 1 +02 (A.22)
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For our calculations, oq' is the variance of the original (uncorrelated) data and Aa is the

sample spacing. Scaling constant C can be chosen to produce the desired variance 02 for

the correlated data, and * denotes a convolution. We note that the variance and the

correlation function are computed using the deterministic window function w (a). For

simplicity in our calculations, we choose to normalize the window function so that

w2(Q) da = (A.23)

Then, since Aa = 1 point, we preserve the variance by choosing C = 1,

2 2
a I2 02 (A.24)

q

and the normalized correlation function r,,(%-al) is simply the autoconvolution of

window function w (a),

ra(a 2 - a) w(a) *w(a) (A.25)

The relationships given in Eqs. (A.24) and (A.25) are approximate because they are based

on the assumption that Aa is much smaller than the window width, a valid approximation

in the discrete data scheme when the original data are uncorrelated and the convolving

window is more than a few points wide.

In Eq. (A.25), we see that by choosing the appropriate window we can

impose any desired correlation function on our uncorrelated data. The window

function can be determined by taking a Fourier transform of Eq. (A.25),

R (f)= IW(fa )I (A.26)

and then solving for w(a):
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)F-i R() ,2A.271

where R, (f,) and W ( f%) are the Fourier transforms of r. ( a) and w ( a), respectively, and

F -1 denotes an inverse Fourier transform.

As an example, consider the triangular correlation function of base width

2A. From Eqs. (2.4) and (A.27),we have

2 1/2
i (nA( )2

The square root of sin2(Af.) is not unique; we use sinc(Af') so that the inverse

transform yields the simple window function:

w (a)= A - 1/2 rect ( a ) . (A.29)

Thus, convolving the uncorrelated data q (a) with the rectangular w (a) given by

Eq. (A.29). we generate a function s (a) with a triangular correlation, Eq. (2.4).

To implement this aperture generation scheme, we employ a computer and

fast Fourier transform (FFT) algorithms; the computational details that follow are

incorporated in program "stat.fft.c° , which is included later in this appendix. We start by

generating uniformly distributed, uncorrelated data and convert it to normally

distributed, uncorrelated data by use of a transformation routine. We next define the

desired correlation function. The FFT is used to Fourier-transform both the uncorrelated

data and the correlation function. Taking the square root of the transform of the

correlation function gives us the transform of the window function; see Eq. (A.27). This

square root and the transformed data are multiplied together and then inverse-Fourier-
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transformed, yielding the correlated, zero-ensemble-mean aperture function. Adding

the desired ensemble mean radius value to each data point is the final step in preparing

the aperture function. This function is Gaussian-distributed and has the desired ensemble

mean, variance, correlation angle and correlation function.

When using a sequence of correlated random numbers to model a serrated,

circular aperture, an important consideration is the correlation of the last few numbers in

the sequence with the first few. The starting and ending points of the circle should not be

uncorrelated. The FFT method of convolution we use assures a cyclic convolution4 , so that

the ends of the sequence are properly correlated.

The computer output format of the design program is compatible with the

program used to calculate the Fourier transform of the serrated aperture and also with

the software used to calculate the fractal dimension of the aperture. The aperture

designs were also used in the optical experiments. In the photolithographic case, the data

were plotted angularly for use as the outline of a serrated, circular aperture. This OX

enlargement was filled and used as artwork from which chrome-on-glass masks were

made photolithographically by Applied Image s , as described in Section 5.3.2. For

apertures made by electron-beam lithography, the data were formatted for input to the

computer drafting program AutoCAD 6. which was used to generate instructions for

drawing the apertures. The AutoCAD files were sent to Photo Sciences7 , where the

drawing instructions wore converted to instructions for the electron-beam plotter. This

plotter was used to produce apertures in chrome on glass, as described in Section 5.3.3.
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in this section, we provide a copy of the code for the program "stat.fft.c"

used to generate the serrated apertures. This program is based on the method discussed

above and is written in the C programming language for use on the Masscomp 6700

computer, a UNIX system.

stat.fft.c

To generate serrated apertures of specified statistics

#include <stdioh>
#include <math.h>
extern mt ifto, ibitro, ifftO, swapdatao;

maino (

mnt M,mp,nphi,ms,kkij,ij 1 ,ij2,ij3,i~m,nrho,wflag,sflag,rflag;
float mean, rlamda,zO~delta,ravg,sigmad,sigmac;
float phimax,phirnin,pstep~rhomax,rhomin~angmean,angsigma;
float rstep,smallC,arc~rk,wI .sj,Ig,sum,a;
double *sr,*si,*rr,*ri, *wr, *wi;
double *dsr*dsi,*drr,*dri,*dwr,*dwi;
double x,y,z~vrr~vri~vsr,vsi,vwr,vwi,arg,arg2,ctr,pi;
mnt Mpow, itest;
float gamma,var,sumsq,M2,ftest;
unsigned seed;
double *buf;
char *callocO;
FILE *fout,*fplot,*fwin,*fty,fopenO;

/' * read i nput constants ~

fscanf (stdin,
"%Aln% fn%d~n% f\n% d\n% M% ln% An% A% f\n%f\n
% f~r%ni% f~n%d\n%d~n% d",

&rlamdla, W,0 &m, &delta, &mp, &ravg, &sigmad,
&phimax, &phimin, &pstep, &rhomax, &rhomin,
Irstep, &small, &wflag, &sflag, &rflag);

/I * defi ne constants * 1*

fplot = fopen("stat.plot","w");
fty a fopon ("Idev/tty*"r");
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Mwin = fopen("wind.plot,"w");

pi =acos(O.)*2.;

ms =delta'rnl(2*ravg'pi);

ms =2*(int)(ms/2));

fprintf(stderr. "ins %dfn"ms);
if (ms =) =Oms = 1;

M2 = (float)(m +. ins);
M = 1;

whi le(M2 >1)
M2 = M2/2.;
M = M*2;
+ + Mpow;

buf =(double *)calloc(M,8);
drr = (double *)calloc(MB);
dri = (double *)calloc(M,8);
dwr =(double *)calloc(M,8);
dwi =(double *)calloc(M,8);
dsr = (double *)calloc(M.8);
dsi = (double *)calloc(M,8);

sr = dsr;
si = dsi;
rr = drr;
ri = dri;
wr = dwr;
wi =dwi;

/I** write constants to file I

Ig = pow(2.,31.)-l.;
seed = rfiag;

fprintf (stdout,
"%~~~~~~~~~~~~~~~nfninA~~~~~~~k~~
%d~n-,

rlamda, zO, m, delta, mp, ravg. sigmad, phimax,
phimin, pstep, rhomax, rhomin, rstep, small,
wflag, sflag. seed);

/,generate Gaussian distribution *

srandom( 1);
srandom(seed);
for (i = 0; i<= am; + + i) buffiJ = (double)((float)randomo);
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for(i=o;i<m; +
x = buf~ii/lg;
z = (double)((float)randomo) I g;
if (z = = 0.0) Z = 0.0000001;
Y = 109(z)*.-2.0;
z = sqrt(y);
x = cos(2*pi*x);
y = Z *X
buff il = y * sigmac;
*rr = buffi];

* ri = 0.;
if (i+ M<M)f

*(rr +m) =bufli];
*(ri + m) =0.;

rr +;
ri + +

rr =drr;

ri =dri;

I"'* define correlation function '

/***triangular correlation '

if (wflag = =1) f
for (i= 0; i<M; + + i)f

if (i < M12ms) *wr = 0.;
else if (i<M/2,.ins) 'wr 1-fabs((float)(i-M/2))/(float)ms;
else *wr = 0.;
'wi = 0.;
wr+ +;
WI + +;

I'negative exp correlation '

else if (wflag == 3) (
for (i= 0; i<M; + + i

arg = (float)(i-M12)Ims;
arg2 =-fabs(arg);
wr =exp(arg2);
'wi =0.;

wr+ +
WI +,+
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/*~ Gaussian correlation ~'

else if (wflag = = 4) f
for (i =0; i<M; + +i)f

erg = (float)(i-MW/2)ms;
arg2 =-arg'arg;
*wr =exp(arg2);

*wi =0.;

wi + +;

I'Eiffel correlation (0.25) ''

else if (wflao = = 5) f
for (i =0; i<M; +. +o i)f

if (i<M2-ms) *wr 0.;
else if (i < M/2 +, mns) *wr =1. - pow(fabs((float)(i-M/2))/(float)ms, 0.25);
else *wr = 0.;
*wi = 0.;
wr+ .;
wi + +

I'Eiffel correlation (0.5)"'

else if (wflag = = 6) f
for(i=0;i<M; + +~

if (i <M2-ms) *wr = 0.;
else if V <MW2 + ins) *wr =1. - pow(fabs((float)(i-M/2))/(float)ms. 0.5);
else *wr = 0.;
*wi = 0.;
wr o +;
Wi + +

else(
fprintf(stderr,"%d not a valid window function nunmberM",

wflag);

wr = dwr;
wi = dwi;
rr = drr;
ri = dri;
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for(i=O;i<M; + +)
fprintf (fwin, **%f~n", *wr);

wr = dwr;

I*** fft correlation function & random numbers -I

fft(drr~dri,M,Mpow);
fft(dwr~dwi,M,Mpow);

I"'* take square root of transformed correlation function

for(i=O;i<M; + +)
if (*wr<O) *wr = (w)
'wr = sqrt(*wr);

wr = dwr;

/** multiply & inverse fft

for i=O0; i<M; + +i)(
vrr = *rr+ +;
vri = *ri +,;
vwr = w+;
vwi = *wi ++;
*sr = vrr'vwr- vri' vwi;

*si = vrr* vwi + vri' vwr;
sr + +;
si+ +;

sr = dsr;
si = dlsi;
rr = drr;
ri = dri;
wr = dwr;
wi = dwi;

ifft(sr,si,M,Mpow);

I*** calculate angular mean and standard deviation I

sum = 0.;
sumsq = 0.;
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for (i O;i <m;+ + i)
SUM = SUM + *si;
sumsq = sumsq + *sr' * sr;
sr+ +.;

angmean = sum/rn;
var = sumsq/m - mean'mean;
angsigma = sqrt((double)var);
sr = dsr;

Is"* add bias and write radius values to file

for(ij=O;ij<m; + if
*Sr -" *Sr + ravg;
fprintf(stdout "%d %lf~n- ij *sr);fprintf(fplot,"w%f "'*sr);
sr+ +;

fprintf (stderr'"mean %~f sigma %f~n--, mean, sigmaa);fpri ntf (stdout, " f % ftn *, mean, sigmaa);
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Appendix B

Generation of the Curves Shown in Fig. 3.1.

Plots of four functions, each a single realization of a different random

process, are shown in Fig. 3.1. To generate each of these functions, we used the

convolution method described in Appendix A. Herein, the reader will find details on the

rms roughness, correlation length, and correlation function used in the design of each of

these curves.

Actually, that's a lie. The convolution method was not used to generate the

function shown in Fig. 3.1(a), since this function is just a straight line. However, by setting

the rms roughness equal to zero in the generation process, we could have easily produced

this curve. More interesting are the details involved in generating the functions from Fig.

3.1(b)-(d). For Fig. 3.1(b), we choose the triangular correlation function, given by Eq.

(3.42) and shown in Fig. B.l(a). The rms roughness used in the design is 0.50 mm; the

correlation length, 0.436 mm. The fractal dimension of this realization is 1.24. For the

next function, shown in Fig. 3.2(c). the correlation function is sharper, as seen in Fig.

B.l(b). This isthe Eiffel function,

Ei - L,&-) =I ) forlAxl<X' , = (3.43)

0 , otherwise

which is described more thoroughly in Section 3.4.4. For present purposes, we simply note

the shape of this correlation function, in particular the sharpening of the peak. The curve

in Fig. 3.1(c) also has an increased roughness, 0.75 mm, and a decreased correlation

length, 0.316 mm, in the design. The resulting fractal dimension is 1.67 for this particular

curve. Finally, for the function shown plotted in Fig. 3.1(d), we pull out most of the stops
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Fig. B.1 .Correlation functions used in designing the curves shown in Fig. 3. 1: (a) for Fig.
3.1(b), the triangular function, Eq. (Bi1); (b) for Fig. 3.1(c), theElifel function, Eq. (8.2),
P-0.5, and (c) for Fig. 3.1(d), the Eiffel function, P-0.25. Width X is chosen for each
function to give the desired correlation angle.
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and use the Eiffel function with P equal to 0.25, shown in Fig. B.11(c), for the correlation

function and choose an rms roughness equal to 0.70 mm and a correlation length of 0.249

mm for the design. With these values for the edge parameters, we have produced a

function with a fractal dimension of 1.95.

The choice of parameters for each of the cases discussed is not done blindly;

we used Fig. 3.14 as a guide. In this figure, we have plotted the fractal dimension versus

the ratio of the roughness of the edge to the correlation length for several correlation

functions. Although the detailed description of this plot is left until the end of Chapter 3,

the reader can see now that, with this plot, we are able to find a suitable set of edge

parameters for use in generating an edge with a fractal dimension near a particular value.



Appendix C

programs for Computing the Fractal Dimension

In Section 3.1.3, two procedures were outlined for determining the fractal

dimension of a serrated, circular aperture. in this appendix, we include the two major

computer programs used in these procedures. The first, "frac.c*, calculates the perimeter

estimates needed to plot the Richardson curve of the aperture. Program "grid.c' is used

to count the aperture-grid intersections in the grid interrogation method. Both programs

are written in the C programming language for use on a Masscomp 6700 UNIX-based

computer.

/*" frac.c
To calculate data for an aperture's Richardson curve.
In stepping, the farthest intersection is used.

#include 'cmath.h>
#include <stdio.h>

maino{(

mnt iaJ61i, j, k, 1, M, m, *flag, fi1, f2, window, Max, intflag, K;
floatfl1]
double *s, *x, *y, 'sI, *b, D, xp, yp, xp2, yp2, *P, dsq, dlsq, drsq:
double A, B, C, 'eps, epgs, *epsq, dx, dy, arc, pi, div, divsq, xx;
double ravg, rmin, dummy, *alph, ri, r2, d I, d2, min, max, delta, sigma, arg;
double yl, y2, angi, ang2;
char 'callocO;
FILE *fty, 'fopenO, 'fout;

fty = fopen ("/dev/tty,"r*);
fout = fopen ("frac.out',"w");

I"' read header"I

fscanf (stdin,

W1f 11. 01j, Wal 11, Wf131, WIi2, Mf14), Wf151,

W1161, Wf171, MI181, Wf191, Sf1101,

233
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&f[ 1 1], f121, &iaf31, &ia(41, &iaf 5));

fprintf (fout,

"%'n%f~%d%n%\n%f%l\nfu,%f\n%\n%ln%f\n%f\n%f\n%f~n%d\n%d\nOd
'Wl,

ff1), f[2], iaf 11, ff3], ia[21, ff4], f[5J,
ff61, f[7], f[81, f19], ff 10),
ff1 11], ff 121, iaf 31, ia[4), iaf 51);

/*** define variables; set up arrays I

m = iafi); / # pts in aperture/
ravg = f[41; /* average radius '
rmin = ravg; I' minimum radius '
pi = acos(O.)*2.;
arc = 2*pi/m;
delta =ff3]; /* correl. angle '
sigma =ff51; P' rms roughness '
window = iaf3j; I' correl. fn. i.d. '
div = 1.2; P' division factor for subsequent step sizes '
divsq = div'div;

s =(double )calloc (m +. 1, sizeof(double)); P' aperture radii '
x =(double) calloc (m + 1, sizeof(double)); P cartesian coordinates/
y =(double )calloc (m + 1, sizeof(double)); I' of aperture '
si (double I calloc (mo+ 1, sizeof(double)); I slope, intercept of */
b =(double *) calloc (mn. 1, sizeof(double)); I' line segs. '
alph =(double I) calloc (mn + 1, sizeof(double)); I' angular coordinate '
flag = (mt *) calloc (mn + 1, sizeof(int)); I' for infinite slope *

/**' read radius data '"

for (i =0; i<m; +e.+oi)(
fscanf (stdin, "%'d%lf", &sfl)
fprintf (fout, "%d %ftuV, i, s(il);
if (sfij<rmin) rmin = sfij;

Simi = SO0L

1*** determine # of step sizes to reach resolution limit I

M = (log I 0(2*pi'ravg/4.) - log I 0(arc'ravg))/log I 0(div),
fprintf (stderr, "M = %d~nMax value: ",M);
f~af (fty, %~ d"&ax);
fprintf (stdorr,"in %d Max %d\n", M, Max);
fprintf (fout. "%d~r,, Max);

P a (double'*) calloc (Max + 1, sizoof(double)); P' perimeter
estimates */
eps a (double*) calloc (Max + 10, sizeof(double)); /P step sizes... '
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*psqI (double *) calloc (Max 4 1, sizeof(double)); /*Squard1
ePs[OJ = pi'ravg/2.5;
ePsq[OJ =epsIOJepsjO];

SCalculate x, Y, m, b arrays '

X101 = sI0J;
Yf0J = 0.;
alph(0J 0.;
for (i =Ii<z = m; + + i)f

alphli = iac
4.1 = sb]l*cos(alphlij);
A]i = si1'sin(alphjiD);

SIDi-11J (yiJ - y[i-lj)ID;
bli-1) (y~i-I~1)YiJ j*xfi-lj)/D;

sffiagli-tj =0;

flag[i-iJ 1;

*Walk around aperture; find endpoints of increments and add to P '
for(i~; i<=Max; + *~
fprntf (stclerr, '%d *, i);

i= 0; /*starting point,
Pfij =0,;
xP 401fo; 1P endpoint of ~yp = Y[Oj; P' step */
arg I -.- ePsqlij/(2*rmin*rmifl);
K =acogarg),arc + 1; P' K is the estimated # ofpoints 'Ik =K; P per step along the

aperture. */dx =xp - x4k]; / eps = 2*rrnin-rmin*

dy =yp -y(kJ; (-o(~r)

OMl J~g dx*dx + dy'dy;

intfiag a 0;

/~Search for intersections ~

while (intflag a 0) (
dsq = ((xp-xfk + )'*(yfkj-ylk + 1J)-(yp.yik + J(lk~~dsq a dsq'dsaj((xtkj-xfk + lJ)*(x4k1.xfk + 11) + (ytkj-yfk o 1I)(yfkj-yfk + 11));if (dsq < a epsqfi)) (

dlsq . (xp-xik))*(xp-xlkJ) + (ypyikJ)*(yp-yjl));
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drsq = (xp-xfk + 1I1)*(xp-x~k + 11) + (yp-y(k + 1 1)*(ypylk + 11);
if (dlsq > = epsqfil 11 drsq > = epsql(ij){

/**Solve for roots:
(r-Kp)*(r-Kp) + (Si*r + b-yp)*(Sl'r + b-yp) = epsq '

A = 1 + sljkI*sljkl;
8 = 2(sljk*(bkj-yp) -xp);

C = xpxp + (b(kj-yp)*(bfkl-yp) -epsq(i);

rl = (sqrt(B*B-4*A*C)- B)(2*A);
r2 = (0-sqrt(B*B-4*A*C) - B)/(2*A);

min = x~k];
max = fk.+ 11;

else

Max =x[kj;

if r1 > = min && r < = max)f I = 1;
elsef 1 0;
if 2 > min &&r2 < =max) f2 = 1;
else f2 =0;

i'Calculate corresponding y-value
1"Only one root in interval *".1

if(fl = = I W&2 = )f
xp2 = i
yp2 = sljkl*xp2 + bikI;
intftag =1;

elseif(fl OW&&2 2

xP2 = r2;
yp2 = sifkJxp2 + bik);
intflag 1

I~'Both roots in interval (choose the closer) ~~

else if (f = = I && f2 = a1
yl = sljkj'rl + blk);

Y2= sl(kJ'r2 + b~kI;
angi = tan2(yl,rI);
if (angi 0) angi a angi + 2*pi;
angZ = atan,2(y2, r2);
if (ang2 < 0) ang2 a ang2 + 2*pi;
if (angi >ang2)(
xp2 a ri;
YP2 - y';
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elsef
xp2 = r2;
yp2 = y2;

intflag =1

if fintflag ==0) /*I No root found: reduce k ~
-k

else break; I' step complete; next step ~

/"Increment P[i]; reinitialize i

P[iJ Plij + epsi;
xp =xp2;

yp =yp2;

j k;
k K + k
if (k> = m-1){(

dx = xp -xm];
dy = yp- y~m];
epgs = dx'dx + dy*dy;
if (epgs< -epsqjij) (

Plil = Pfij + sqrt(epgs);
break;

else k = mn-1;

epsli. + I = epsfiJ/div;
epsqfi + I1I1 epsqlil/divsq;

I"'* Write data to file t**/

fprintf (fout, "%f %f; %f %f~n",
epulil, Pli., logi O("psiJ), log i (PliJ));

fprintf (stdrr, "\n");
fprintf (stdout, "%d\n", Max + 1);
for(i a Max; i > = 0; -i) (
fprintf(stdorr, "%d ", i);

fprintf (stdout, n", log I 0(p~i I));
fprintf (stdoat, M%~", logliO(eps(ij));
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1" grid.c

To calculate data for the grid interrogation
curve of a serrated aperture (after Kaye).

Anld <* *1h

#include <mth.h>

main 0 (

mntm, window, seed, i, M, Max, ix, iy, nx, fly, xl, xr, nxmax, nymax;
int ycount, xcount, upcount, j, k, iaI61, nypi, oldval;
float ff13];
double delta, mean, sigma, Ds, ymin, ymax, xmax, xmin, *g, gmin, *sum, div;
double *s, *x, 'y, 'px, 'py, *sI, 'b, newmean, sigmaa, 'val, *Y *X pi, arc;
double alpha, 'd;
char 'calloc0;
FILE *fopeno, 'fty, *fout;

fout = fopen ("grid.out", "w");
fty = fopen ("/devtty", "r");

fscanf (stdin,

"%k~~~~~~~~~~~~~x~fnA~~~~~~~~~~~~~

WD 1, Mff21, &ia[ 11, &f([31, &ia[21, Wf(41, Wf151,
&f[61, &f[7), &f[81, &f[91, &fj 1O1,
&f[1l1I, &f[ 121, &ia(3J, &ia[41, &ia[5D);

I'Define variables; set up arrays"I

m = iafll; P'# pts in aperture/
mean =f[4]; I' avg. radius 'I
xmin =xmax = ymin = ymax = 0.;
delta =ff31; P' correl. angle 'I
sigma =f[51; P' rms roughness '
window = ia[31; P' correl. fn. i.d. '
pi = acos(O.)'2.;
arc = 2'pilm;

s z (double ')calloc (in. 1, sizeof (double)); P' aperture radii '
x = (double' calloc (mn + 1, sazeof (double)); P' cartesian '
y a (double ')calloc (m + 1, sizeof (double)); P' coordinates '
d z (double I) calloc (m + 1, sizeof (double); P' difference in x-coords. '
sI = (double ' calloc (in + 1, sizeof (double)); P' slope, intercept of *I
b - (double ')calloc (in + 1. sizeof (dlouble)); I'line segment '

"'Read aperture radii, calculate Cartesian data"'



for(i=o;i<m; 
++i) ( 

3

fscanf (stdin, " % *d% If", &sfij)
alpha = j*arc;
x~i) = sjilcos(alpha);
if (xmin>x~ifl xmin = x[i];
else if (xmax<x~iI) xmax = '(ii;
yfiJ = slij'sin(alpha);
if (ymin >ylill ymin = y~iJ;
else if (ymax< yiJ) ymax = y~ij;

x~mJ = X[OJ;
y~mJ = y1O1;

div =1.2; /* division factor for subsequent grid sizes ~
Ds =2*pi*mearklm; /* estimated segment length *1

P"Determine # of grid sizes to reach resolution limit '

if (ymax-ymin >xmax-xmin)
M = (log I O((ymax-ymin)/2.) - log I O(Ds))/loglO0(div);

else
M = (log 1 O((xmax-xmin)/2.) -log 1 O(Ds))/Iog 1 O(div);

fprintf (stderr, "M = %d; Max = " )
fscanf (fty, "%d", &Max);
fprintf (stdlerr, "M = %d, Max =%d\n", M, Max);
fprintf (fout. "%d\n", Max);

g = (double *) calloc (Max + 2, sizeof(double)); /* grid size ~
sum = (double *) calloc (Max + 2, sizeof(double)); I' # of intersections *1

g[OJ = pimearV2.5; I' largest (I1st) grid size '
gmin = g(Oj/pow(div, (double)Max + 1.); I' smallest grid size ~
nxmax = (xmax-xmin)/gmin +4 1;
nyrnax = (ymax-ymin)/gmin + 1;

val = (double *) calloc ((nxmax + 1)*(nymax + 1), sizeof(double)); /* flag for
intersection type *I
px = (double *)calloc (nxmax +. 1, sizeof~double)); I* Cartesian
values for */
py = (double Icalloc (nymax.+ 1, sizeof(double)); 1' grid
points *1
X = (double I calloc (m + 1, sizeof(double)); /* Cartesian values for 0

Y = (double ) calloc (m + 1, siteof(double)); I'intersections

/"'* Calculate slopes and intercepts for aperture line segments I

fora-JOj<m; + *)
doi) = xli +4 1) -xl);
if (do]~ Ia0.) (

sliji = (yU + I1I -yjdlj;
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bj y~j -sl~jl'xlj;
I

for(i=O; i< =Max; + +)
fprintf (stderr, "%d *, i);
sumfiJ = 0.;
nx = (xmax-xmin)/gfij + 1;
fly = (ymax-ymin)/gfij + 1;
flypI = ny + 1;

I's' Assign Cartesian values to grid points ~

for (ix =0; ix< =nx; ++ix
pxlix] = xmin + ix*gli);

I
for (iy=O0; iy< =ny; + +iy)(

pyfiyj = ymin + iy'gfiJ;

val[0J = 0;

/**Find intersections

for (ix=O0; ix< =nx; ++ix
ycount = 0;
for U= 0; j<m; + *j

if ((xfjj< =px[ixl&&Xii + I]>=px[ixj) 11 (x61 > =pxixJ&&xOj I]< =pxfixl){
if (dU]i 1 0.) {

Yfycount) = sIW'pxlix] + biji;
+ + ycount;

elsef
Y[ycount) = yU);
+ + ycount;

for (iy =0; iy< =ny; ++ y
valfix'nypl + iyj = -2.;
upcount = 0;
for (k=O0; k <ycount; + *k
if (py(iyj - - Y(k]) (

vallix*nypl + iyJ = -1; P aperture point on grid/
break;

else if (py(iyj<YlkJ) + + upcount; P' upcount: # intersections above */
) this grid point '

if (vallix'nypl + iyII z -1) (
if ((float)(upCount/2) = (float)upcountl2.)

vallixnypl + iyj a 0; P oven # above/
else
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val~ix*nypi + iyl = 1; I' odd # above '

/**Add up intersections in both directions '

for fix =0; ix< =nx; + +ix){
oldval = 0;
for (iy=O0; iy< =ny; + + iy){

if (val[ix'nypl + iyj = = -1) sumfiJ = sumfi] + 0.5;
else if (oldvall =-1 && val~ix*nypl + iyl =oldval) sumld = sumli) + I;
oldval = val(ix*nypl + iyJ;

for (iy =0;iy < =ny; + +e'iy)f
if (pyiy < yJ) oldval = 1;
else if (pyfiyj >y[0J) cldval =0;
else oldval = -1;
for (ix =0; ix< =nx; ++ix

if (valjix'nypl +e iyj = = -1) sumfi] = sum[iJ + 0.5;
else if (oldval I = -1 && vallix'nypl +. iyjl = oldval) sum(iJ sumfi] 1.
oldval = val~ix'nypl + iyj;

SOutput **

fprintf (stderr, "%d %f %f\ri. i, gliJ, sumfil);
gli + 11 = g[illdiv;

fprintf (stderr, "\n");
for (i = Max; i > = 0; -i)

fprintf (stdout, "%f, %f; %f, %f\ri", glij, g[i]'sumf il, loglO(g[iI).
logI O(g[iJ'sumjiJ));

fprintf (fout, "%f %An", loglO(gliJ), logI 0(gji]*sumjij));


