
con rv

M.o o

.X .4 .4

'iIt

P.

~ E~AI~FORCa

AIN EM IIA I-A VA IN F C

ANA IN IA M.AsI PAALJ

AFIT/GCS/ENG/90-D-02

AN EMPIRICAL EVALUATION OF
ANALYTICAL MODELS FOR PARALLEL

RE LATIONAL DATABASE QUERIES

N THESIS

Mark C. Denhamn
Captain, USAF

AFIT/GCS/ENG/90-D-02

D rIc:41
SELECTE *

JAN23 1991

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90-D-02

AN EMPIRICAL EVALUATION OF

ANALYTICAL MODELS FOR PARALLEL

RELATIONAL DATABASE QUERIES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University DTIC

In Partial Fulfillment of the INSP Pr

Requirements for the Degree of

Master of Science (Computer Systems) _____________

Aooession For
NTT$ GA&I
DTIC TAB
Uhimaounced 0

Mark C. Denham, B.S :Ustlf icatiok- -

Captain, USAF___________
Distibution/

-AValability Codes
kvail and/or

December, 1990 D~t SpecialZJL
Approved for public release; distribution unlimited

Acknowledgments

I would like to sincerely thank my advisor, Dr. Thomas Hartrum, for the guidance

provided over the course of this thesis effort. I would also like to thank my committee

members, Maj Mark Roth and Maj Paul Bailor. Their inputs on the first draft were very

helpful as they provided many long hours of "head banging" during my final weeks at

AFIT. On the serious side, they added greatly to the quality of the final paper.

I would also like to thank my fellow "parallel" students whom I have spent many

hours with in room 240 over the last nine months. We have laughed together and we have

been frustrated together, but most of all we have become good friends. I would like to

thank my brothers and sistL,"i in Christ for the Friday bible studies. It was a great time

to get away from school work and spend some time growing spiritually.

Finally, I would like to thank my ,lamily for supporting me through the this whole

ordeal. Thanks to my parents foi all of ite trips they made to Dayton when I was too busy

to drive home for the weekend. Thanks to my sons, Christopher, Jared, and Daniel, for

the hugs and smiling faces even when I was too busy to smile back. Most of all, I thank my

wife, Leslie, for her love and understanding during all of those times when school interfered

with our lives.

Mark C. Denham

ii

Table of Contents

Page

Acknowledgments

Table of Contents....

List of Figures. vii

List of Tables ix

Abstract x

I. Introduction. 1-1

1.1 Problem Statement.- 2

1.2 Assumptions and Scope 1-2

1.3 Approach 1-2

1.4 Background 1-3

1.4.1 Conventional-B ack- End Systems 1-4

1.4.2 Intelligent Controllers. 1A

1.4.3 Multiprocessor Systems- 7

1.4.4 Special Hardware Designs.. 1-10

1.4.5 Conclusion 1-10

1.5 Organization. 1-11

II. Parallel Database Machine Design Methodology. 2-1

2.1 The Feasibility of Relational Operators with Partitioned Rela-

tions. 2-I.

2.1.1 Data Fragmentation 2-2

2.1.2 Conclusions 2-2

2.2 Single Step Query Models. 2;3

Page

2.2.1 Model Structure. 2-4

2.2.2 Model Results 2-5

2.3 Multiple Step Queries2-9

2.3.1 Combined Operators. 2-10

2.3.2 Process Allocation. 2-10

2.3.3 Data Distribution. 2-11

2.3.4 Conclusions. 2-11

2.4 Database Machine Architecture 2-12

2.4.1 Retrieval Layer. 2-12

2.4.2 Processing Layer 2-14

2.4.3 Physical Mapping. 2-14

2.5 Summary. 2-17

III. Single Step Query Model Design and Implementation. 3-1

3.1 Introduction 3-1

3.2 iPSC/1 Hypercube Architecture 3-1

3.3 Physical Mapping 3-3

3.3.1 Processor Nodes. 3-4

3.3.2 Disk Nodes 3-5

3.3.3 Disk Node Response Time 3-7

3.4 Join Algorithms. 3-7

3.4.1 Parallel Nested-Loop Join Implementation. 3-8

3.4.2 Parallel Bucket Join Implementation 3-10

IV. Single Step -Implementation Analysis. 4-1

4_1 Parallel Performance Measures. 4-1

4.2 Nested Loop Join Analysis 4-2

4.2.1 Nested Loop Model Analysis. 4-2

iv

Page

4.2.2 Nested-Loop Runtime Analysis 4-4

4.3 Bucket Join Analysis 4-13

4.3.1 Bucket Join Model Analysis 4-13

4.3.2 Bucket Join Runtime Analysis 4-15

4.3.3 Bucket Join Sensitivity Analysis 4-22

4.4 Summary 4-23

V. Multiple Step Query Model Design, Implementation, and Analysis . . . 5-1

5.1 Physical Mapping 5-1

5.2 Multiple Step Bucket Join Implementation 5-3

5.2.1 Select Partition 5-5

5.2.2 Hash Partition 5-5

5.2.3 Join Partition 5-7

5.3 Multiple Step Bucket Join Model Analysis 5-7

5.4 Multiple Step Bucket Join Runtime Analysis 5-8

VI. Conclusions and Recommendations 6-1

6.1 Conclusions 6-1

6.2 Recommendations 6-2

Appendix A. Single Step Models A-1

A.1 Model Performance Parameters A-i

A.2 Nested-Loop Join A-3

A.3 Bucket Join A-4

Appendix B. Multiple Step Low Level Models B-1

Appendix C. Test Data C-1

C.1 Test N-1 C-1

C.2 Test N-2 C-3

V

Page

0.3 Test B-1i..- 5

0.4 Test B-2 C-6

0.5 Test B-3- 8

0.6 Test M-1i..- 9

Appendix D. User's Guide. D-1

D.1 Functional Overview. D-i

D.2 File Summary D-1

D.3 Setting the Parameters D-2

D.3.1 Runtime Inputs. D-2

D.3.2 Pre-Compile Parameters. D-2

DA4 Compilation Instructions. D-3

Appendix 1. Date Gp"ieration E-i

Bibliography. BIB-i

Vita VITA-i1

vi

List of Figures

Figure Page

1. 1. Processor-per- track Architecture (12:10) 1-5

1.2. Processor-per-head Architecture (12:11) 1-6

1.3. P rocessor- per- disk Architecture 1-7

1.4. Query Tree 1-9

2.1. Relational Table 2-1

2.2. Horizontal Fragmentation 2-2

2.3. Vertical Fragmentation 2-3

2.4. Query Tree 2-9

2.5. K(earns' Logical Architecture (12:282). 2-13

2.6. Kearns' Physical Architecture (12:284) 2-15

3.1. Single Step Query Architecture 3-2

3.2. Dimension 3 Hypercube. 3-3

3.3. Ring and Tree Topologies 3-4

3.4. Nested-Loop Communication Structures. 3-11

4.1. Nested-Loop 48 Blocks x 48 Blocks. 4-5

4.2. Nested-Loop 96 Blocks x 96 Blocks. 4-6

4.3. Nested-Loop 144 Blocks x 144 Blocks 4-7

4.4. Graph Of tComm and tcalc 4-8

4.5. Nested-Loop Speedup 418 Blocks x 48 Blocks. 4-9

4.6. Nested-Loop Speedup 96 Blocks x 96 Blocks 4-10

4.7. Nested-Loop Speedup 144 Blocks x 144 Blocks. 4-11

4.8. Theoretical Speed for Very Large N 4-12

4.9. Broadcast Modcl. Speedup Versus Ring Model Speedup. 4-13

vii

Figure Page

4.10. Ring Model Speedup Versus Observed Speedup (48 blocks x 48 blocks) 4-14

4.11. Bucket Join 144 Blocks x 144 Blocks 4-16

4.12. Bucket Join 192 Blocks x 192 Blocks 4-17

4.13. Bucket Join 240 Blocks x 240 Blocks 4-18

4.14. Bucket Join Speedup 144 Blocks x 144 Blocks 4-19

4.15. Bucket Join Speedup 192 Blocks x 192 Blocks 4-20

4.16. Bucket Join Speedup 240 Blocks x 240 Blocks 4-21

4.17. Theoretical Performance Impact of Increased Disk Response Time . . . 4-23

4.18. Observed Performance Impact of Increased Disk Response Time 4-24

4.19. Theoretical Performance Impact of Increased Join Selectivity Factor . . 4-25

4.20. Observed Performance Impact of Increased Join Selectivity Factor . . . 4-25

5.1. Multiple Step Query Architecture (12:282) 5-2

5.2. Architecture Data Flow for Multiple Step Query 5-4

5.3. Overlapping of Multiple Step Query 5-6

5.4. Multiple Step Query Results 5-9

viii

List of Tables

Ta)Ile Page

2.1. Feasiblity of Relational Operators with Fragments. 2-3

2.2. Summary of Kearns' Results (12:222) 2-8

4.1. Model Performance Parameters 4-3

C.1. Test N-i, Trial 1 Data- 1

0.2. Test N-i, Trial 2 Data- i

0.3. Test N-i, Trial 3 Data- 2

CA4 Trest N-2, Trial 1 Data- 3

0.5. Test N-2, Trial 2 Data- 3

0.6 Test N-2, Trial 3 Data- 4

C.7. Test N-2, Trial 4 Data.-

0.8. Test B-i, Trial I Data- 5

0.9. Test B-i, Trial 2 Data- 5

C.iO.Test B-i, Trial 3 Data- 5

C.Il.Test B-2, Trial 1 Data- 6

C.i2.Test B-i, Trial 2 Data- 6

C.13.Test B-2, Trial 3 Data- 7

C.14.Test B-2, Trial 4 Data- 7

C.i5.Test B-3, Trial I Data- 8

C.16.Test B-3, Trial 2 Data- 8

C.17.Test M-1, Trial 1 Data.- 9

E.1. Result Relation Sizes (jsf = .001)- i

ix

AFIT/GCS/ENG/90-D-02

T Abstract

This #apeT documents the design and implementation of three parallel join algorithms

to be used in the verification of analytical models developed by Kearns. Kearns developed

a set of analytical models for a variety of relational database queries. These models serve

as tools for the design of parallel relational database systems. Each of Kearns' models

is classified as either single step or multiple step. The single step models reflect queries

that require only one operation while the multiple step models reflect queries that require

multiple operations. Three parallel join algorithms were implemented based upon Kearns'

models. Two are based upon single step join models and one is based upon a multiple step

join model. They are implemented on an Intel iPSC/1 parallel computer. The single step

join algorithms include the parallel nested-loop join and the bucket (or hash) join. The

multiple step algorithm that was implemented is a pipelined version of the bucket join.

The results show that within the constraints of the test cases run, the three models are

all at least accurate to within about 8.5 % and they should prove useful in the design of

parallel relational database systems.

x

AN EMPIRICAL EVALUATION OF

ANALYTICAL MODELS FOR PARALLEL

RELATIONAL DATABASE QUERIES

L Introduction

As people depend more on computers to store and manage information, the need for

larger databases increases. Due to the large amounts of data that must be accessed in

these large databases, future database management systems must provide faster means for

accessing the data to insure that system users enjoy sustained performance levels. This

is especially critical for database applications that are dependent on fast access to meet

user requirements. In the late 1960s it was recognized that the conventional von Neumann

architectures were not able to meet the growing non-numeric processing requirements. The

conventional architectures are sequential in nature, their arithmetic logic units are designed

for numeric computation, and their memory hierarchies have a "passive role in the orga-

nization (10:1)." The set related operations involved in relational database processing, on

the other hand, lend themselves naturally to parallel implementations. Database systems

also require frequent access to secondary storage, resulting in bottlenecks in the storage

systems.

Researchers in the early 1970s began to develop specially designed architectures that

would directly implement database functions in hardware and software. These implemen-

tations became known as database machines (10:1). A database machine is a dedicated

backend processor whose function is to perform database queries requested by the host

processor. Some of the advantages of this approach are that the database operations do

not have to compete with other system functions for machine resources, specialized hard-

ware can be used for performing the database queries, and a degree of parallelism will be

inherent in the design (12:1-2).

1-1

In his PHD disseration, Kearns (12) developed a methodology for the design of

parallel database machines. A set of analytical models for a variety of operations serve as

the tools used with this methodology.

1.1 Problem Statement

This thesis documents the design, implementation, and evaluation of a set of parallel

relational database operations in a manner similar to that proposed by Kearns (12). The

objective is to show that database query performance can be improved on a commercially

available parallel computer using this approach. Kearns examined the relational operators

theoretically and determined the optimal methods for implementing them on a multipro-

cessor system. He then analytically modeled the relational operators, as well as various

retrieval and update algorithms, over a range of data structures. The results of his efforts

were a multiprocessor database machine architecture and a methodology to be used to

design a parallel relational query processor. Kearns' work is addressed in more depth in

Chapter 2.

1.2 Assumptions and Scope

Operational database management systems require a number of features in addition

to the basic database operations. They require concurrency control features to control

concurrent user access to data values. They also require data backup and system recovery

methods to avoid loss of data in case of system failure. As the goal of this research is to

measure the performance of the actual database retrieval operations, these other features

will be ignored. In an operational system they would have to be considered as they will

impact performance.

1.3 Approach

This research was done in four iterative phases; problem analysis, design, implemen-

tation, and evaluation. Kearns' models range from simple single step retrieval operations to

complex multiple step queries in which the outputs from the retrieval operations are further

1-2

processed. The work began with the design, implementation, and evaluation of selected

single step functions and then progressed to the more complex multiple step functions.

The initial problem analysis phase involved the anaiysis of Kearns' models, the al-

gorithms used in them, and his proposed architecture. It resulted in the selection of two

single step join operations to be implemented and evaluated.

The initial design phase involved the mapping of Kearns' single step model architec-

ture to the Intel iPSC/1. As Kearns' architecture required a disk drive for each processor

in the configuration, a disk simulator program was designed to-run on specific processors

on the hypercube. This phase also included the design of the initial join operations to be

implemented.

From this point, the implementation, evaluation, and subsequent design phases oc-

curred in an iterative fashion. The initial join operations and the disk simulator were first

implemented on the iPSC/1 computer in the C programming language. The evaluation of

these functions involved a performance analysis, based on test data, and the comparison of

the results of that analysis with the performance projected by Kearns' models. The results

of this analysis served as input into the design of one multiple step join operation.

The design of the multiple step join included mapping the multiple step model ar-

chitecture to the iPSC/1. The selected multiple step join operation was then implemented

on the iPSC/1 and was evaluated against Kearns' multiple step model for that operation.

1.4 Background

Researchers have applied a number of different approaches to the development of

database machines. There have also been many different schemes developed for classifying

the different implementations of database machines. For this discussion the classification

scheme used by Kearns (12:6) will be used. The classification areas include conventional

back-end systems, intelligent controllers, multiprocessor systems, and specialized hardware

systems.

1-3

1.4.1 Conventional Back-End Systems The coiventional back-end system is the

simplest type of database machine to implement. It consists of a general purpose computer

system running as a back-end to a host general purpose system. The host system runs

the application program and passes a message to the back-end -essr when a database

operation must be performed. The back-end p, o,,,, - running % .-. "S package,

executes the operation and returns the result to ,. t processor.

According to Kearns this configuration should provide increased performa,,ce because

the DBMS has a dedicated system and does not have to compete for system resources.

The expected performance gain will be realized if the time saved by running the database

operation in a dedicated environment is greater than the communication overhead incurred

due to the message passing between the two processors (12:7-8).

1.4.2 Intelligent Controllers According to Kearns the goal of intelligent controller

architectures is to improve database performance by improving the performance of data

retrieval from secondary storage. By moving the data retrieval functions onto some type of

intelligent controller, we can decrease the amount of data that is actually brought into the

DBMS and therefore improve its performance. There are three basic types of intelligent

controller architectures; processor-per-track, processor-per-head, and filters (12:9).

The processor-per-track architecti-re was one of the first database machine architec-

tures proposed. It was originally proposed by Slotnick in 1970 (3:12). This design creates

an associative disk by associating a processor with each head on a disk as shown in Figure

1.1. This approach allows certain sealch operations, such as a select, to be processed "on

the fly," hence limiting the amount of data that is actually brought in from the disk (3:12).

With the ability to search the entire database in one revolution of the disk, the need for

structures such as indices was eliminated as a means for improving performance. RAP.2

is an example of a processor-per-track architecture (16).

This approach showed promise initially; however, it had some problems. This ar-

chitecture depended on the ability to search an entire database in one revolution of the

disk; however, this limited the size of the databases that could be implemented using this

approach. In 1970 a single track on a disk was limited to about 15,000 bytes. With this

1-4

Host

ProcssorTrack
Processors

Data
Tracks

System

Files I

Database

Figure 1.1. Processor-per-track Architecture (12:10)

storage limit it would have taken approximately 10,000 tracks and processors to support

a medium-sized database. Because of these limits imposed by the use of disk devices,

researchers also looked at the use of bubble memories and charge coupled devices (3:12).

However, these technologies were never commercially viable on a large scale (3:17).

Another type of intelligent controller architecture that has been explored is the

processor-per-head architecture. In this architecture a microprocessor is associated with

each head of a movable head device as shown in Figure 1.2. The processor-per-head func-

tions in much the same manner as the processor-per-track in that it reduces the amount

of data that is actually passed to the DBMS. The difference is that the processor-per-head

must read the data into a buffer and the processor must then perform the selection opera-

tion (12:10). In this configuration an entire cylinder of a disk can be read in one revolution.

An example of a processor-per-head architecture is the DBC (1).

Performance testing performed by Dewitt has shown that the processor-per-head

architecture yields very good performance for the data retrieval operations for which it was

designed. lie showed that with the use of a suitable index, this design performed almost as

well as the processor-per-track architecture, even with significantly fewer processors (3:15).

When processing complex queries such as joins, however, the processor-per track and

the processor-per-head architectures both result in worse performance than conventional

1-5

Host
Processor C n t r ll e r

Database
System

Files

Cell
Processors

Figure 1.2. Processor-per-head Architecture (12:11)

architectures (3:15). Another drawback to this design is the need for readout disk drives.

The parallel readout is required in order to read an entire cylinder at a time. With

the current changes in disk technology, however, the feasibility of developing dependable

parallel readout drives at a reasonable price is questionable (3:19).

The final type of intelligent controller architecture is the filter, or processor-per-disk.

This architecture associates a processor with each of a number of standard disk drives as

shown in Figure 1.3. All of the data from the disk is read into the processor memory and

the processor performs tl, selection operation on the data (12:10). The selected data is

then passed to the DBMS for further processing. SABRE is an example of a system that

utilizes filtering (7).

Data filters, like the other intelligent controller designs, provide good performance

for the basic selection type functions. They do not improve the performance of other

functions such as join processing. Other techniques must be combined with the data filters

to provide performance improvements over the entire spectrum of database functions.

1-6

Interconnection
'Network

Controller ...

Interconnection
Network

Figure 1.3. Processor-per-disk Architecture

1.4.3 Multiprocessor Systems Multiprocessor systems implement parallel process-

ing techniques to improve database performance. There are many different approaches that

can be taken to provide parallel database processing. Possible approaches range from im-

plementing the multiple processors as data filters in a SIMD type environment, to providing

a number of asynchronous processors that perform database operations in a true MIMD

fashion (12:11-12). The later approach provides the possibility of implementing dataflow

database architectures. In addition to the multiple processors, the multiprocessor systems

also provide the capability for the processors to communicate with each other. This inter-

processor communication can be provided through a bus architecture or through some type

of network structure. Different interconnection schemes provide different opportunities for

partitioning the data across the various processors (12:12). The remainder of this section

addresses these various approaches to implementing parallel database processing.

As described in the previous section, a data filter is a type of intelligent controller

1-7

that associates a processor with each disk in a database system. All of the data is read in

from the disk and a selection criteria is applied to it by the associated processor. A data

filter would be implemented on a multiprocessor system by connecting each of the disks

to one of the processors. The selection ilgorithms would then be implemented in software

and synchronously run on each of the multiple processors. The "filter" processors would

then send the results to other processors or to another system for further processing. In

this architecture, one of the processors not being used as a filter would concrol the other

processors. The Multibackend Database System (MDBS) is an example of a multiprocessor

system that utilizes this approach (9)(19). MDBS consists of a number of query processors,

each connected to a string of disk devices. The select operations are performed in these

query processors. The query processors are connected, via a broadcast bus, to each other

and to a backend controller (9:302-303).

The data filter approach utilized multiple processors in a synchronous SIMD manner.

MIMD machines, on the other hand, consist of multiple processors that are utilized asyn-

chronously. DIRECT is an example of a MIMD database architecture (5). The DIRECT

system architecture consists of a host general purpose processor, a backend controller, a

set of query processors, a set of charge coupled devices that act as a cache, a set of mass

storage devices, and an interconnection matrix (crossbar switch) which ties the query pro-

cessors, the cache memory, and the mass storage devices together (5:123). User queries are

sent from the host computer to the DIRECT backend controller. The backend controller

determines the number of query processors that are required and then is responsible for

paging needed non-resident relation pages in from the mass storage devices to the cache

memory (15:266-268). Multiple queries can be processed simultaneously as the different

queries can be assigned to different processors at any one time. The backend controller uses

two different methods for allocating the queries to the query processors. One approach

calculates the optimal number of processors needed to process the query and the other

uses a dataflow approach (5:128-129).

MIMD architectures, such as DIRECT, provide the opportunity to implement dataflow

control in database systems. In conventional program control flow, the programmer speci-

fies the order in which operations will occur. However, in dataflow computation the order

1-8

in which operations are executed is determined by the availability and interdependency of

resources. The order of execution can be driven either by the availability of data or the de-

mand for output (10:366). To understand the concept of data driven control in a database

system, consider the idea of a query tree. In Figure 1.4, a complex relational query is

X S T

Figure 1.4. Query Tree

represented as a ql,,ry tree. A query tree is composed of leaf nodes which represent the

initial input relatk is, and inner nodes which represent operations to be perfomed on the

relations. The arcs linking the nodes represent the passing of intermediate relations from

the lower nodes to the higher nodes. In this example, the project operation on relation

R and the select operation on relation S must both be executed before the join on the

intermediate relations produced can be executed. As soon as the project and select are

finished and have passed their data to the higher level node, it can be executed.

In a multiprocessor architecture, the operations in a particular node of the tree

can be processed by one or more processors. On a conventional sequential computer the

operations in this query would be executed serially. The project and select operations on

the I, S and T relations would occur first. The join of the R and S relations would occur

next. Then the final join and select would be executed. On a parallel machine, however,

1-9

the project and select operations on the R, S, and T relations would occur in parallel.

Then the join and select operations on the . and S relations would be executed. Finally,

the last join and select would also be performed. The performance gain would result from

the various operations being run in parallel, and also from the individual operations being

implemented with parallel algorithms.

Performance testing performed by Boral and Dewitt with DIRECT has shown that

one of the major problems that exists with data driven computation is the overhead as-

sociated with interprocessor communication. They also state that other researchers have

documented the same problem (2:373). Communication overhead is a common problem

with many multiprocessor systems.

1.4 Special Hardware Designs Many of the database machines that have been

developed by researchers have included specialized hardware to speed up database pro-

cessing. According to Kearns the two main approaches that have been used include asso-

ciative memories and specialized processors (12:15). Associative memory is addressed by

content rather than by location. It has been applied to the retrieval of data to speed up

search type operations. Specially designed processors have been implemented to perform

sorting functions, join functions, and aggregate functions (12:15). Boral and Dewitt state,

however, that with the gains that have been realized in processor performance, there is

no need to use specialized hardware (3:21). The real bottleneck that exists in database

processing is input/output bandwidth. Data can currently be processed as fast or faster

than it can be read from disk.

1.4.5 Conclusion This section has documented many of the different approaches

that have been taken in the development of database machines. Most of the recent research

has centered on the use of multiprocessors to improve database processing performance.

Two of the main problems that still exist are the lack of secondary storage input/output

bandwidth and excessive interprocessor communication overhead.

1-10

1.5 Organization

The organization of this thesis follows the approach taken in accomplishing the work.

Chapter II provides an overview of Kearns' work (12). It discusses the theoretical feasibility

of implementing relational database operations on parallel computers, provides a summary

of the model structures and model results for both the single step and multiple step models,

and presents a database machine architecture proposed by Kearns. Chapter III documents

the design and implementation of the single step models. Chapter IV provides a discussion

of the single step implementation analysis. Chapter V presents the design, implementation,

and analysis of one multiple step query.

1-11

If. Parallel Database Machine Design Methodology

In his PhD dissertation (12), Kearns documents a methodology and tools to be

used to design a multiprocessor database machine that will improve the performance of

database queries (12:4). HIe first examines theoretically the feasibility of implementing

relational operators on partitioned relations. He then develops analytical models of the

select, project, join, and update operations over a range of data structures and logical

machine architectures. After evaluating the initial model results, he combines them to

form models for evaluating multi-step query performanc,. He addresses the combination

of multiple operators and their performance in various multi-step query approaches as well

as methods for controlling resources and task allocation. Utilizing the output of these

models, Kearns proposes a parallel database machine architecture. This chapter addresses

each of the areas of Kearns' research.

2.1 The Feasibility of Relational Operators with Partitioned Relations

Since its introduction by Codd in 1970, the relational data model has become the

most popular model to be used in the development of database systems. This is because

of its logical interface and its strong mathematical foundation (10:39). In this model, data

is represented in tables as shown in Figure 2.1. Eacia row in a table shows a relationship

Emp
name addr phone
Bell 4123 Lake St 539-8741

Johnson 1345 Oak St 345-3281
Jones 345 Poplar St 421-8976
Smith 2367 Main St 549-7610

Figure 2.1. Relational Table

between the values in the row. These tables in the relational data "iodel correspond very

closely to the concept of a relation in mathematics. Because of this close correspondence,

tables are referred to as relations, and rows are referred to as tuples (13:45).

2-1

When implementing a problem on a parallel computer, the problem must be parti-

tioned across the multiple processors. This can be accomplished by either assigning differ-

ent functions to the available processors, or by distributing the data across the available

processors. Since most database machines have experienced bottlenecks in retrieving data

from secondary storage, Kearns investigates the partitioning of relations across multiple

data stores to allow the parallel retrieval and processing of the relations. He proves, using

the mathematical principles of relations, that relational operators are capable of executing

with partitioned data (12:21).

2.1.1 Data Fragmentation There are three ways that relations can be distributed

for processing. The first is storing them as complete relations, i.e not distributing them at

all (12:21). The other two methods are horizontal fragmentation and vertical fragmenta-

tion. Horizontally fragmented relations are split into fragments, each of which contains a

subset of complete tuples from the original relation. Horizontal fragmentation is ilh..strated

in Figure 2.2 (12:22). The sets of tuples produced by a horizontal split should be disjoint.

If they are not, duplicate tuples will have been introduced into the relation.

Empi Emp2
name addr phone name addr phone
Bell 4123 Lake St 539-8741 Jones 345 Poplar St 421-8976

Johnson 1345 Oak St 345-3281 Smith 2367 Main St 549-7610

Figure 2.2. Horizontal Fragmentation

Vertical fragmentation, on the other hand, splits the relation between attributes.

'Vertical fragmentation is illustrated in Figure 2.3 (12:23).

2.1.2 Conclusions Kearns' results show that most relational operators are capable

of processing fragmented data. The feasibility for each of the considered operations to

process horizontally and vertically fragmented relations are shown in Table 2.1 (12:48).

As stated above, one of the primary motivations for considering fragmented relations

is to allow the data to be distributed across multiple storage devices to be retrieved and

processed concurrently. As illustrated in Table 2.1, only half of the considered operators

2-2

Emp Addr Emp Phone
name addr name phone
Bell 4123 Lake St Bell 539-8741

Johnson 1345 Oak St Smith 549-7610
Jones 345 Poplar St Johnson 345-3281
Smith 2367 Main St Jones 421-8976

Figure 2.3. Vertical Fragmentation

Table 2.1. Feasiblity of Relational Operators with Fragments
Operator I1-orizontal Vertical
Select Yes Yes
Project Yes No
Join Yes Yes
Product Yes Yes
Union Yes No
Difference No No

can process vertically fragmented data and produce the desired result. The horizontal frag-

meut ,tion of data, on the other hand, shows much more potential. All of the considered

operators, except for difference, can produce the desired results from horizontally frag-

mented data. As an example, we can examine the select operator and see that if a relation

is distributed across n disks which are connected to n different processors, a speedup of

n can theoretically be obtained by concurrently reading the fragments from the (isks and

then performing the select operations on the n fragmncnts in parallel.

Kearns concludes that lorizontal partitioning of the relations shows greater promie

for improving the performance of the relational operators. le therefore selects horizontal

partitioning as the method for the remainder of his work (12:49).

2.2 Single Step Query Models

When comparing database systems, there are mamy criteria, that ca.n be used. These

criteria may include the number of features or the type of user interface provided. lowever,

the most used, and possibly most important comparison, is the performance provided by

2-3

the systems (12:50). The performance time to process a relational database query is

composed of the time to compile the query, the time to retrieve the desired data through

the implementation of the relational operators, and the time to send the data to the desired

location. Assuming that the result will be sent to a local user and not transferred over

a slow LAN, retrieval time contributes the largest percentage to the overall performance

time (12:50).

Data retrieval is performed by reading data from some secondary storage device,

such as a disk, and evaluating it using the relational operators to determine if it meets the

retrieval criteria. The performance of a retrieval operation depends on the structure used

to store the data on the storage device, the algorithm used to read the data, the amount

bf data that must be retrieved, the number of storage devices used to store the data, the

number of processors used to retrieve and process the data, the performance characteristics

of the hardware devices, and the number of users on the system (12:50).

2.2.1 Model Structure Kearns develops analytical models to address data retrieval

performance and also to address database update performance. The purpose of these mod-

els is "to determine the effects and performance of various algorithms with different storage

structures (12:51)." The models consist of performance time equations expressed in terms

of hardware performance parameters. These hardware parameters can then be changed

to account for different hardware devices. The relational operators that Kearns actually

models are the select, project, and join. For each of these he models the performance time

for various architectures, data storage structures, and algorithms.

2.2.1.1 Machine Architectures Kearns' models evaluate the various relational

operators over four different machine architectures. They are single processor-single

disk, single processor-multiple disk, multiple processor-single disk, and multiple processor-

multiple disk (12:51). For the multiple processor cases he varies the number of processors

to evaluate the effect on runtime. ie makes the assumptions that there is no disk con-

tention-in the single disk environments and that the multiple processors can communicate

directly in the multiple processor environments. Therefore the models do not includ- any

time delay for disk contention or processor communication (12:51).

2-4

2.2.1.2 Data Storage Structures The relations in a relational database system

are stored in the form of tables. These tables can then be stored on disk in a variety of

manners. They can be sorted and stored in some logical order, or they can be stored at

random. Therefore a relation can be referred to as ordered or unordered. A relation can

also have one or more associated indices with entries that point to particular locations in a

relation. For a data storage structure to be considered indexed for a particular operation,

it must contain an index on the attribute of the relation that is being evaluated for that

operation.

For the single disk cases, Kearns examines four data storage structures. They are un-

ordered, unindexed; unordered, indexed; ordered, unindexed; and ordered, indexed (12:52).

For the multiple disk cases, there are other aspects of the data storage structure that must

be addressed. The first is fragmentation method. As stated earlier Kearns assumes hor-

izontal fragmentation based on his analysis of the feasibilty of relational operators with

fragmented relations. The fragmented relations can also be ordered or unordered. Another

aspect of fragmented relations is the distribution method used to partition the relation

across the multiple disks. The three primary methods are round robin, ordered distribu-

tion, and hashing. The round robin method evenly distributes the tuples in an unordered

manner. The ordered distribution method evenly distributes the tuples in an ordered

manner. This method may require extra reads and writes from the disks to maintain the

sorted order. The hashing method involves hashing the tuples to particular disks based on

Gatic boundries. This method will result in an ordered relation; however, it may not be

uniformly distributed across the disks (12:53). The final aspect that can be considered for

the multiple disk cases is indexing. With fragmented relations, local indices can exist for

each disk or a global index may be maintained for the entire relation (12:54).

2.2.2 Model Results Kearns concludes that the model results cannot be used to

prove definitively the algorithm and storage structure that is "best" for a given application.

They can, however, point to the expected results with certain workload parameters(12:199).

As it would require the implementation and evaluation of more than 200 models to prove

them correct, Kearns opted instead to compare his results with those of Hawthorn and

2-5

DeWitt (8). Their results have been validated through benchmarking. The following

sections summarize the model results for the select, project, join, and update operations.

2.2.2.1 Select The basic function of the select operator is to retrieve tuples

that meet a specific selection criteria from a relatiolL. There are two basic categories of

selection function that Kearns modeled. The first occurs when only a few tuples meet

the selection criteria (12:200). An example of this type of select operation is a selection

based on a specific social security number from a company's personnel database. Because

social security number is a unique key, only one tuple will be selected. The other category

of the select operation is the many tuple selection (12:200). An example is the selection

of employees, from the same personnel database, based on the department in which they

work. Assuming that many people work in each department, a large number of tuples will

be selected. Kearns classifies his select models on these two categories. His model results

show that the performance of the select operation, for both the few tuple and many tuple

cases, is highly dependent upon the data structure used. He concludes that the best data

structure to be used for the select must be determined by the designer based upon the

specific workload and the impact of the data structures on the other database operations

(12:202).

2.2.2.2 Project The project operator creates a result relation that is com-

posed of a subset of the attributes in the original relation. Since the result relation will

contain a portion of each of the tuples from the input relation, each tuple in the input

relation must be accessed. Therefore, the projection operation is independent of the input

relation data structure (12:203). The model results show that the main performance im-

pact is the removal of duplicate tuples that may be produced from the projection operation

when the key attribute is eliminated. When this occurs, some method for comparing the

tuples to identify and eliminate the duplicates is required. This may require a sort merge

operation in a multiprocessor environment (12:100). The performance is greatly decreased

when duplicate removal is introduced.

2-6

2.2.2.3 Join The join operation requires that tuples from two input relations

be compared and joined to produce a new result relation tuple if the join criteria are

met. Kearns' models addressed only the equi-join operation. The most straight forward

approach is to compare each tuple of one relation with each tuple of the other relation.

This is known as the nested-loop join algorithm and requires n * m compare operations.

The number of compares can be significantly reduced through the use of algorithms which

group the tuples of each relation based upon the join attribute. The join operation can

then be performed by comparing fewer tuples. Two algorithms of this type that Kearns

modeled are the sort-merge join and the bucket join (12:205,208).

The model results show that parallel processing can be used to improve the perfor-

mance of all of the join algorithms. It is especially effective for the grouping algorithms

as each processor can perform the join operation on a specific group of tuples in parallel

with the other processors. The bucket join is potentially the fastest algorithm. It achieves

its best performance when the relation fragment sizes are constant across all processors

(12:206,207).

Kearns concludes that the join operation is sensitive to the data structure used

(12:205). To implement the grouping algorithms, the relations must be sorted on the join

attribute and must be spread evenly among the processors. This implies that the relations

must either be stored in sorted order and spread uniformly across the disks, or they must be

sorted and redistributed across the processors before the join operation is performed. The

results show that the most efficient approach in a parallel environment is to redistribute

,he relations and then perform a bucket join algorithm. When implemented in this manner

the join operation performance is not dependent upon the actual data storage structure

used on disk (12:220). Relation indices were found to actually decrease the performance

of these algorithms (12:205).

2.2.2.4 Update The update operations modeled were insertion, modification,

and deletion. These are the only operations Kearns modeled that do not actually retrieve

data from the database and send it to the user. They instead retrieve data from the

database, alter it, and rewrite it to the database (12:215). The assumption was made that

2-7

Table 2.2. Summary of Kearns' Results (12:222)
OPERATION BEST CASE GENERAL CASE

Select (few tuples) Indexed-Unordered Unindexed-Unordered
Select (many tuples) Indexed-Ordered Unindexed-Unordered

Project N/A N/A
Insert Indexed-Unordered Unindexed-Unordered
Delete Indexed-Unordered Unindexed-Unordered
Modify Indexed-Unordered Unindexed-Unordered

Join Bucket-Join Undetermined
Product Nested-Loop Nested-Loop

all updates are required to be done immediately. The alternative to immediate updates

is that the multiple updates could be collected and performed at one time in a batch

operation. If the updates are performed in a batch operation, the reqlirements are similar

to those of the select operation. Otherwise the best data structure is the unordered,

unindexed which provides tcceptable performance for a mixed environment. The size of

this type of data structure can also be increased by adding more disks without requiring

any reorganization of the existing data (12:220).

2.2.2.5 Conclusions The model results show that the use of multiple disks

to allow parallel data retrieval is definitely desirable for all operations. In many cases the

specific data storage structure to be used is dependent upon the specific user requirements.

Through the use of this methodology, a designer should be able to identify the desired data

storage structures and algorithms to best suit his specific requirements. Table 2.2 shows

the data storage structure or algorithm that produces the best case and general case

performance based on Kearns' particular model inputs. The best case algorithm or data

storage structure refers to the algorithm or data storage structure that provides the best

performance for a particular best case operation scenario. The general case algorithm or

data storage structure is the algorithm or data storage structure that provides the best

performance over a range of operation scenarios.

2-8

2.3 Multiple Step Queries

The models described to this point have dealt with single operation or single step

queries. Mjost queries performed in an operational relational database system, however,

require multiple relational operations to be performed to produce the desired result. Figure

2.4 represents one such query in the form of a binary tree. The leaves of the tree represent

R S T

Figure 2.4. Query Tree

the initial input relations and the inner nodes represent the operations to be performed

on the data. Progressing up the tree, each arc represents the passing of an intermediate

relation from a lower level operation to the next level operation. The final result of the

query is produced by the root node of the tree.

The primary multiple step query issues that Kearns addresses are process allocation,

data distribution, and processor interconnection (12:239). Ile assumes a fully connected

system which simplifies the processor interconnection issue. The actual queries that he

models include select, project, and join operations. For the join operations he utilizes the

bucket join algorithm as it proved to be the most efficient in the initial models.

2-9

2.3.1 Combined Operators A large percentage of the time required to perform mul-

tiple step queries is spent storing and retrieving intermediate relations to and from disk

(12:228). To reduce the size of these intermediate relations and to reduce the number

of operation nodes in the query tree, Kearns investigates the combining of the relational

operators. These combined functions would perform multiple operations on the same data

while it is in memory. An example is the combination of the select and the project op-

erations. If the operations are not combined, a relation would have to first be read into

memory, the select operation performed on it, and the result written to disk. The result

of the selection would then be read back into memory for the project operation to be per-

formed. If the operations were combined, the initial relation could be read in just once.

In one pass over the data, the tuples that meet the selection criteria could be selected and

any attributes not specified for the project operation discarded before the tuple is inserted

into the result relation. If duplicate removal is required for the project operation, a second

pass over the result tuples may also be required.

Kearns' model results show that the select and project operation performance can

be improved significantly through the implementation of a combined sel-proj operation

(12:228). The sel-proj combined operation requires just one pass over the input relation

to perform both the select and the project operations. He also concluded that the sel-proj

operation can also be combined with any binary operation, such as the join operation

(12:230).

The result of combining operations is a normal form query tree that contains two

types of nodes. The bottom level nodes are the retrieval nodes. They retrieve relations

from disks and perform only sel-proj operations. The higher level nodes are the processing

nodes (12:231). They perform join operations on two input relations. In the case of the

bucket join algorithm processing, which is the algorithm that was modeled, the processing

nodes perform hash and join functions.

2.3.2 Process Allocation Process allocation can be either static or dynamic. Static

allocation entails assigning the available processors to specific tasks when a query is com-

piled. This approach allows for data-flow control of the query. Data-flow processing is

2-10

where the order of execution is determined by the availability of data (12:270). In the case

of a join operation that recieves its input relations from two select operations, the join

operation will be performed when the processors assigned to it receive the input relations

from the select processors.

Dynamic allocation, on the other hand, dynamically allocates fasks to the processors

as the query is executed. The purpose of the dynamic method is to balance the work

across the available resources throughout to entire execution of the query. The dynamic

allocation process may be controlled by a central controller, which may tend to become a

bottleneck, or through some form of distributed control function.

In addition to pure static or dynamic allocation, Kearns also addresses a hybrid con-

trol scheme in which the available processors are partitioned into groups which perform

specific operations; however, the work is balanced across the processors within a partic-

ular partition (12:270-271). This scheme is able to balance the work across the available

resources to some extent, without the bottleneck of one centralized controller.

2.3.3 Data Distribution In his models Kearns evaluates two schemes for storing

the input relations on the disks. The first scheme spreads both input relations across all

available disks. The second spreads each relation across half of the available disks. He

found that if the sizes of the input relations are about the same, the schemes will result in

similar performance. However, if one of the relations is significantly larger than the other,

the first scheme will outperform the second (12:265).

2.3.4 Conclusions The model results show that performance is improved by imple-

menting combined operators to reduce the size of the intermediate relations. They also

showed that assigning groups of processors to perform specific operations and then spread-

ing the processing load among the processors in the group provides some of the benefits

from dynamically spreading the work among processors but avoids the bo tleneck of a cen-

tralized controller. Kearns concludes that the existence of two types of ical operations

to be performed, initial retrieval and binary operations, results in a lo mapping to a

two stage query processor architecture (12:271).

2-11

2.4 Database Machine Architecture

Kearns' final chapter presents a logical database machine architecture, based upon

the analytical model analysis documented previously. This architecture is not presented

as the perfect machine, but is presented and discussed to illustrate the use of the models

in the systematic design of a database machine architecture.

The architecture that Kearns proposes is a backend processor that recieves optimized

queries from a host processor, performs the query proceszing, and either returns the result

to the host processor, or stores the result on disk. As discussed in the previous chapter, the

processor nodes in the multiple step model can be divided into two types, retrieval nodes

which read and write relations from disk and perform sel-proj operations and processing

nodes which perform binary operations such as joins (12:274). Therefore, each node in the

database machine architecture is either a part of the retrieval layer or the processing layer

as shown in Figure 2.5. The following sections summarize the retrieval and the processing

node layers. The final section discusses considerations for mapping the architecture to a

physical machine.

2.4.1 Retrieval Layer The function of the retrieval layer is to perform data retrieval

and update operations on the data residing on disk. The retrieval function involves reading

data from the disk, filtering it, and passing it to the binary layer nodes for further processing

(12:278). The filtering process entails performing the combined sel-proj operation to reduce

the volume of data passed to the binary layer. The update functions simply involve writing

the updated relations back to the disk. The functionality of the retrieval layer nodes is

intentionally limited to aid in reducing the I/O bottleneck to the disks. By not utilizing

these nodes in performing the binary operations, they are free to perform I/O operations

while the processing nodes are performing more complex operations (12:278). The decision

was also made to let the processing layer nodes handle their own intermediate relation

storage rather than passing the data to the retrieval layer. This avoids the reverse flow of

data from the binary layer to the initial layer and also aids in I/O bottleneck reduction

(12:279).

2-12

Processing Layer

Controller Interconnection
Network

.......
Retrieval

Layer

Interconnection
Network

Figure 2.5. Kearns' Logical Architecture (12:282)

2-13

2.4.2 Processing Layer The function of the processing layer is to perform the binary

operations required to perform a database query. The binary operations are those such

as join, that require more than the sel-proj processing at the retrieval layer (12:280).

Th, processors at this layer perform either bucket or nested loop operations. The bucket

operations are performed by grouping the input tuples into disjoint sets, or buckets, and

then distributing the buckets among the available processors. The processors then sort

the buckets and perform the required binary operation. If the buckets are larger than

the available memory of the processors, some type of secondary storage is required to

store portions of the buckets (12:280). The result of the retrieval is then passed to the

appropriate location.

2.4.3 Physical Mapping The final step of the database machine design process is

the mapping of the higi level logical design to an actual physical architecture (12:283). As

the various functions t.) be performed by the database machine will probably not perform

optimally in the same processing environment, design decisions must be made that may

result in optimal performance for some functions, and less that optimal performance for

others. Thy user requirements should drive the performance priorities given to the various

functions. This is the point, t which Kearns incorporates the use of his models. The models

provide a means to vary the performance of system parameters in order to determine the

impact on the performance of the different functions.

Figure 2.6 shows a possible physical architecture proposed by Kearns. It consists of

the processing layer processors, the retrieval layer processors, and a back-end controller.

Disks are located at both the retrieval layer and the processing layer. The disks at the

retrieval layer are used to store the database relations and the disks at the processing

stage are used to store intermediate reittions during binary query operation processing.

He also shows an interface memory to facilitate communication between the retrieval and

processing layers.

The function of the retrieval layer processors is to read input relations from disk and

perform the sel-proj combined operation. Kearns used the model results to conclude that

at the retrieval layer,

2-14

Processing Layer
r,-----T------- i-----------------

r -4- - -- ---.

Backend

Processoremor

T ---------- I------------------

2-15

* all relations should be evenly distributed -across all disks.

a single processor should be associated with each disk.

* certain data structures could provide optimized retrievals for certain operations.

* optimized retrieval performance could also be obtained utilizing an unordered-unindexed

data structure with additional hardware (12:285).

After performing the sel-proj operation, the retrieval layer processors may pass their

results to the processing layer for further processing. It is obvious that a fully connected

communication interface between the layers would provide the 'Oest performance. Kearns

includes a shared memory as the interface between the-layers. Because this memory can

be read by all processors, it is logically a fully connected interface. It also provides the ca-

pability for broadcast communication as all processors can read the same memory location

(12:287).

The processing layer consists of the processors that are to perform the binary opera-

tions and disks that are used to store intermediate relations. In Kearns' architecture a disk

is associated with each processor. Another configuration considered associates a disk with

a group, or partition, of processors. This would, however, degrade performance as there

would be contention for the disk between the multiple processors in a partition (12:290).

The final two components of the architecture are the co;-.troller and the output pro-

cessor. The controller is a processor that serves as the input interface between the host

computer and the database machine. The controller is responsible for receiving queries

from the host and then assigning the tasks to the database machine processors (12:291).

The output processor, on the other hand, serves as the output interface to the host proces-

sor. When there is a requirement to provide query result relations to the host processor,

this is the responsibility of the output processor. This may include the merging of frag-

ments of the result relation as they are received from the processing or retrieval layer

processors.

2-16

2.5 Summary

This chapter has discussed Kearns' methodology for the design of a parallel database

machine. The initial section discussed the feasibility of performing relational database

operations on distributed data. This capability is essential if the relational query processing

is to be parallelized. Next, a summary of Kearns' single step and multiple step query

models was provided. These models comprise the tools to be used in the design of the

database machine. The final section presented Kearns' proposed parallel database machine

architecture. This architecture was proposed to demonstrate some of the aspects of the

system that can be addressed with the models.

In his analysis, Kearns spent the most time discussing the different join processing

methods. This is because join processing is the most resource intensive operation performed

by a-relational database system and hence provides the greatest potential for performance

improvement. Based on these facts, the implementation portion of this thesis will also

concentrate primarily on join processing.

2-17

III. Single Step Query Model Design and Implementation

3.1 Introduction

As stated in Chapter 1, the purpose of this thesis is to design, implement, and

evaluate parallel relational database oper-tions based on the analytical models developed

by Kearns (12). His models are divided into single step models and the more complex

multiple step models. This chapter describes the overall design and the implementation of

the single step query models. As stated in Chapter 2 this implementation concentrates on

equi-join processing.

Kearns' single step query models are based upon a hardware architecture in which

each of th, nrocessors, in a multiple processor system, is associated with a secondary

storage device such as a disk. The database relations are then assumed to be horizontally

partitioned and spread uniformly across the available disks. This allows for the relation

fragments to be read in parallel, reducing the I/O bottleneck. The processors are assumed

to be able to communicate either directly, or indirectly, with any other processor. The

system also has a controller that receives an optimized query from the host processor and

broadcasts the required operation to the processors. The query result relation may either

be stored to disk or merged and returned to the host processor. Such an architecture is

shown in Figure 3.1.

3.2 iPSC/1 Hypercube Architecture

The machine selected to host this implementation was the Intel iPSC/1 Hypercube.

The iPSC/1 is a multiple instruction, multiple data (MIMD) computer. It is composed of

the cube and the cube manager. The cube used for this project consists of 32 identical cube

nodes which are connected via high speed channels to form a parallel computer. Each node

consists of an Intel 80286 microprocessor and associated memory. The nodes communicate

with each other by sending messages over the high speed channels. There is no shared

memory between the cubes. The cube manager is also an Intel 80286 microprocessor. It

serves as the user interface to the nodes in the cube. The cube manager is the only processor

3-1

Backend

Controller

Interconnection Network

Figure 3.1. Single Step Query Architecture

in the iPSC/1 that has associated secondary storage. The cube manager communicates

with the cube nodes via a standard Eithernet connection (11:2-1).

The nodes in the iPSC/1 cube are arranged in a "hypercube" interconnection topol-

ogy. A 32 node hypercube is said to have 5 dimensions as it has 25 nodes. The hypercube

nodes are not fully connected as each node cannot communicate directly with every other

node in the cube. However, the nodes can all communicate with each other indirectly by

passing messages through intermediate nodes. Nodes that are directly connected are said

to be nearest neighbors. Each node in a dimension d cube has d nearest neighbors (11:2.3).

Figure 3.2 illustrates a dimension 3 hypercube. It has 2 , or eight, nodes, and each node

has three nearest neighbors. We can use this cube to illustrate how other communication

topologies are implemented on a cube connected computer. Figure 3.3 (a) shows the cube

configured into a. ring structure and Figure 3.3 (b) shows it configured into a tree topology.

3-2

Figure 3.2. Dimension 3 Hypercube

3.3 Physical Mapping

For the most part, the architecture assumed by Kearns in his single query step models

maps nicely onto the iPSC/1 architecture. The cube manager serves as the database

machine controller and hence is responsible for initializing the operations on the processor

nodes and merging the query results as they are received from the nodes. The cube

nodes are not fully connected physically through shared memory. However, they can

all communicate indirectly through intermediate nodes. The only inconsistency with the

iPSC/l architecture is that the nodes in the cube do not have direct access to secondary

storage devices. Kearns' models assumed that each processor was connected to a unique

disk to avoid disk contention and to allow concurrent disk access by all of the processors.

This problem is solved by designating 16 of the cube nodes as disk nodes and 16 as processor

nodes. Each of the disk nodes runs a disk simulation process and is associated with one of

the processor nodes. The processor nodes read from and write to the disk nodes by passing

messages. One of the advantages of the simulated disks is that they allow the disk access

times to be varied to investigate the impact on the entire query performance.

3-3

(a) Ring

(b) Tree

Figure 3.3. Ring and Tree Topologies

3.3.1 Processor Nodes The function of the processor nodes is to read in blo o-

the input relations from the disk nodes and perform a specified parallel relational query.

Each of the processor nodes is associated with one disk node which is one of its nearest

neighbors. Several system attributes can be varied in order to investigate their effect on

query performance. The variable processor node attributes are the number of processors

and the processor memory size. The number of processors can vary from 4 to 16. Although

the physical memory resident on the nodes of the iPSC/1 is large enough to hold both input

relations of the test database, the actual amount of memory used will be limited to allow

investigation of the performance impact of varying memory sizes. The memory size can

3-4

be specified as a multiple of the input blocksize. The hypercube topology of the iPSC/1

allows the nodes to communicate in various ways, depending on the particular parallel

algorithm being implemented. A different process is loaded onto the processor nodes to

perform each operation. The specific algorithms implemented on the processor nodes are

discussed later.

3.3.2 Disk Nodes The functlon of the disk nodes is to generate input data for the

operations to be performed and to provide a simulated secondary storage capability to the

processor nodes. They provide the processor nodes the capability to read fixed blocks of

tuples from the generated relations and also to store and retrieve intermediate relations as

needed during query execution. The response time for disk node operation, can be varied

based upon specified disk performance characteristics. The number of disk nodes may vary

from 4 to 16 and is always equal to the number of processor nodes.

3.3.2.1 Data Generation When initialized, the disk nodes automatically gen-

erate data for two input relations which are horizontally partitioned and spread uniformly

over the specified number of disk nodes in an unordered fashion. This simulates a round

robin method of placing the tuples into the relations. The number of blocks in the rela-

tions and the blocksize can be varied, but each "disk" contains the same number of blocks.

Possible ranges are from a 16 block relation (1 per disk) to a max of 1536 (96 per disk).

The tuples in each of the relations have a simple schema consisting of two integer

fields, with one specified as the join field for equi-join processing and the other being

a random integer. While this simple schema serves the purposes of this research, more

elaborate general purpose test database schemas have been developed as demonstrated by

Strawser (17). It may be noted that the relations do not have a unique key field. A unique

key is required for relations in operational relational database systems, however, this is not

an operational system. The tests run for this work do not require a unique key field. If a

unique key field is required, the random integer field can be assigned a unique integer for

each tuple.

The domain of the join field is the set of positive integers from 0 to some specified

3-5

range value. The assignment of join field values to the tuples in the relations is a three

step process. The first step is to established the size of the desired result relation produced

when the two input relations are joined. This size is calculated using the desired join

selectivity factor (jsf). The jsf specifies the size of the result relation as a fraction of the

size of the cross product of the input relations (12:119). So, given two input relations with

10 tuples each and a jsf of .1, the cross product will contain 100 tuples and the join result

will contain 10 tuples. Once the desired size of the result relation is established, the next

step is to determine the the number of common join values that will satisfy the equi-join

criteria and place them in the relations. Eight common join field values are identified that

are uniformly Jistributed across the join field domain. These eight common join values

are repeatedly assigned across the relations at uniform intervals until the desired number

of common join values have been assigned to each relation. This results in an unordered,

uniform distribution of the join values across each relation. The final step is to assign join

field values to the tuples that have not been assigned the common join values. These tuples

receive a uniform distribution of the rest of the values from the finite integer domain in

an unordered fashion. To avoid inadvertent joins, all of the non-common join values for

one of the relations are even, and for the other relation they are odd. The actual number

of result tuples produced from this data may only be an approximation of the specified

jsf. Appendix E contains further discussion of the actual result relation sizes produced

different values of the jsf.

The disk nodes allow the processor nodes to read the generated relations in multiples

of the generated blocksize. A processor node requests a read operation by sending a read

message to a disk node. The read message specifies the relation to be read from, if the

read is to begin from the current location of the read pointer or from the beginning of the

relation, and the number of blocks to be read. The processor node then waits for a return

message from the disk node. The disk node returns one message containing the specified

number of blocks to the processor node.

3.3.2.2 Temporary Relation Storage In addition to generating the initial in-

put relations, the disk nodes also provide the processor nodes with the capability to tern-

3-6

porarily store intermediate relations during query processing. For the single step models,

the schema of the intermediate relations will be the same as for the initial relations. The

processor nodes write to the disk nodes by sending write messages which may contain

either one or multiple blocks of tuples to be stored on the disk nodes. The write message

type specifies the particular relation the tuples are to be stored in. The receiving disk

node then blocks the written tuples into as many complete blocks as possible and places

remaining tuples into an incomplete block. When stored, an incomplete block requires

the same amount of space as a complete block. It contains an end of block pointer after

the last tuple. The intermediate relations may be read from the disk nodes in the same

manner that the initial relations are read. The read message will specify the particular

intermediate relation rather than an initial relation to read from. The data blocks returned

for an intermediate relation may or may not be complete, depending on how they were

written to the disk nodes.

3.3.3 Disk Node Response Time Kearns' models include three disk performance

parameters that can be varied to evaluate query performance with different types of disks.

These are the average disk access time (seek and rotational delay), the track-to-track seek

time for one track on the disk, and the time to transfer one block of data to or from the

disk. The disk nodes provide the capability to vary these performance characteristics in

order to simulate the response times for various types of disks. To change the performance

characteristics of a disk node the disk simulation code must be recompiled. When a read

or write operation is requested, the disk node calculates the proper delay time based upon

the performance characteristics, the number of blocks of data that are being transferred,

and the required transfer time between the disk node and the processor node. It then

invokes a delay routine which provides the required delay.

3.4 Join Algorithms

A number of different sequential algorithms have been developed for performing

relational joins. Three of the most common are the nested-loop, the sort/merge, and

the hashed, or bucket, join (14). These approaches either use brute force and compare

3-7

all tuples of both relations, or use some method to group the tuples in a manner which

reduces the total number of compares.

The nested-loop algorithm is the simplest and least efficient method as it involves

the comparison of all tuples of one input relation to all tuples of the other input relation.

As the title-indicates, it is implemented in a nested-loop control structure that is of order

O(nm), where n is the size of one input relation and m is the size of the other. Although

the nested-loop is a very inefficient algorithm for equi-join processing, it is the only join

algorithm that is insured to work for all possible join criteria (12:117).

The sort/merge algorithm uses one of the grouping methods to decrease the number

of compares that are required to perform the join operation. The sort/merge first sorts

both of the input relations on the join field. It then uses a merge operation to compare

the tuples of the relations. If the input relations are already ordered on a field other than

the join field, the relations must still be sorted as unordered relations. The sort/merge is

the most efficient sequential method for performing equi-join operations (12:121).

The bucket join algorithm also groups the tuples from the input relations to decrease

the number of compares that must be performed. It accomplishes the grouping by per-

forming a common hash function on the join field of the input relations. The result of the

hashing process is a number of corresponding buckets from each of the relations that can

then be joined to produce the result relation. The same hash function must be applied

to each of the tuples in each of the relations to insure that joining of the corresponding

buckets will result in the entire result relation. (12:208).

Kearns' models include many variations of the parallel versions of each of these

algorithms, as well as other algorithms. For this thesis one variation of the parallel nested-

loop join algorithm and one variation of the parallel bucket join algorithm were welected

for implementation and analysis.

8.11.1 Parallel Nested-Loop Join Implementation The implementation of any paral-

lel algorithm involves the composition of a set of sequential algorithms on the nodes and a

communication structure that allows the nodes to communicate. The parallel nested-loop

join algorithm consists of a sequential nested-loop algorithm running on the nodes which

3-8

performs the required comparisons on multiple fragments of the input relations concur-

rently. This approach is referred to as data parallelism as the same operation is applied to

different sets of data on the various processors. This implementation employs a ring com-

munication structure to allow the relation fragments to be passed among the processors.

3.4.1.1 Node Processing The algorithm applied on each of the nodes is a

simple sequential nested-loop join which compares all of the tuples from a fragment of

one relation to all of the tuples from a fragment of the other relation. Ullman shows in

(18) that the most efficient way to perform the nested-loop join is to first fill the available

memory with blocks of the smaller relation. Then read blocks of the larger relation one

at a time, joining each with the memory resident blocks from the smaller relation. Each

of the blocks of t] e smaller relation will only be read once, however, if the entire relation

will not fit into memory, multiple memory fills will be required. Each of the blocks of the

larger relation, on the other hand, will be read every time memory is filled with blocks of

the smaller relation.

This approach is easily implemented in the parallel environment. Each processor first

fills its memory with local blocks of the smaller relation. Local blocks are those resident on

a processor node's associated disk node. Each processor then reads one local block from

the larger relation and joins it with the blocks resident in memory. When each processor

finishes the join operation, it passes the current larger relation block to the next node in

an embedded ring structure. Here the block is joined with the memory resident smaller

relation blocks and then passed on to the next ring node. This process continues until the

larger relation blocks have been processed by all of the nodes in the ring. At this point,

each processor refills its memory with local blocks from the smaller relation. This continues

until all of the blocks from the smaller relation have been loaded into memory and joined

with all of the blocks from the larger relation. Another block of the node memory is also

used to collect the result relation tuples as they are generated. When the result buffer fills

up, its contents are sent to the host processor to be merged into the final result.

3.4.1.2 Communication Structure Different communication structures can be

implemented to allow the processor nodes to exchange blocks of the larger relation. Cloud

3-9

(4) presents a discussion and comparison of the ring structure and the broadcast struc-

ture structure for the MARK III hypercube. In his models, Kearns assumed a broadcast

communication structure for the nested-loop algorithm. The iPSC/1, however, does not

provide an efficient broadcast capability between the nodes in the cube. It is possible to

simulate a broadcast through the use of a spanning tree however. When implemented using

broadcast communication, the nested-loop join algorithm is slightly different than when the

ring communication structure is used. For the broadcast algorithm, each processor node

fills its memory with local blocks from the smaller relation in a manner similar to the ring

algorithm. To disseminate the blocks of the larger relation, however, the processor nodes

must broadcast one at a time. Therefore, a-join operation performed on n processor nodes

with m larger relation blocks will require m * n * logn communications. The nested-loop

utilizing the ring structure, on the other hand, will only require m* (n- 1) communications.

Therefore the ring structure was selected for this implementation. The ring structure is

implemented for different numbers of nodes as shown in Figure 3.4. Each of the neighbors

of a particular node in this configuration passes data only to nearest neighbor nodes and

hence avoids multiple hop communications.

3.4.2 Parallel Bucket Join Implementation Unlike the parallel nested-loop algo-

rithm which uses the brute force method to join the input relations, the implemented

parallel bucket join algorithm first groups the data in order to decrease the actual number

of compares that must be performed. The bucket join is actually performed in two sepa-

rate steps. The first step performs a hash function v, each of the input relations and the

second step performs the join processing. All of the specified number of nodes are used to

perform both the hash step and the join step. Both of these functions are performed using

data parallelism.

3.4.2.1 Hash Step The purpose of the hash step is to group the tuples from

each of the input relations into a number of buckets equal to the number of pr.ocessors

available to perform the join operation. This will allow each processor to peifort one se-

quential join operation on corresponding buckets from each of the relations. To "accomplish

this grouping, the same hash function must be applied to the join attribute of both input

3-10

a) 4 Node Ring

b) 8 Node Ring

0 1 3 2

c) 12 Node Ring

d) 16 Node Ring

Figure 3.4. Nested-Loop Communication Structures

relations. The best performance in the join step will be achieved when the hash function

uniformly distributes the tuples across the available buckets. Kearns' models make the

assumption that this uniform distribution is always achieved by the hash step. The hash

function chosen for this implementation simply divides the value of the join field by the

number of processors to be used for the join operation. Assuming that input data is equally

distributed across a given range and that the number of processors will divide evenly into

that range, this function will result in a uniform distribution.

The hash program that runs on each node sets aside a memory buffer for each of the

buckets. It then loads the remainder of memory with blocks of tuples from the relation

3-11

being hashed. It then processes the tuples sequentially, performing thle hash function on

the join attribute of each tuple and then writing it to the proper bucket buffer. When a

bucket buffer fills up, it is immediately sent to the proter processor node and stored to

the associated disk node. This process logically assur . a fully connected communication

structure which allows direct communication between all processors. Iowever, the cube

structure will actually require some of the hash messages to pass through intermediate

nodes to reach the desired destination.

34..2.2 Join Step In the join step of the bucket join algorithm, each processor

simply performs a sequential join operation on the intermediate telations that were previ-

ously stored on the corresponding disk node during the hashstep. Any of the sequential

methods can be applied to accomplish this step. Kearns' bucket join models included using

the nested loop algorithm and also the sort/merge algorithm during this step. The imple-

mented version of the bucket join contains only the nested loop join. It is implemented in

much the same manner as it was for the parallel nested loop algorithm. However, there is

no communication between the nodes during the join step.

3-12

IV. Single Step Implementation Analysis

The analytical models developed by Kearns provide a means for predicting the per-

formance of parallel relational database queries for a variety of machine architectures and

data storage structures. To attempt to validate these models, they must be implemented

and tested, with the results being compared with the model projections. The approach

chosen to evaluate the nested-loop and bucket join models was to develop a series of test

cases to be run on both the models and the actual implementations on the iPSC/1. The

following sections-first present in detail Kearns' models for the algorithms. They then doc-

ument the application of standard parallel analysis techniques to both the modeled and

the measured runtime data, giving insight into possible inconsistencies between the two.

Based upon the results of the runtime analysis, the models are then examined further in

an attempt to identify the reasons for the inconsistencies. A brief description of all of the

test cases and the associated data is documented in Appendix B.

4.1 Parallel Performance Measures

When analyzing the performance of programs on concurrent computers, there are

some basic measures that provide insight into the performance improvement achieved

through parallelization of the process. The first of these is speedup (S). Speedup is defined

as the ratio of the time required to perform a given function on a single processor to the

time requited to perform the same function on multiple processors (6:55). Given a time

T(N), where N is equal to the number of processors, speedup is expressed as

S= T(1)
T(N)

Another performance measure that is closely related to speedup is concurrent effi-

ciency (e) (6:55). Concurrent efficiency is a measure of how well the concurrent implemen-

tation is utilizing the total processing capability of the parallel architecture. Concurrent

efficiency is expressed as

S

4-1

where N is equal to the number of processors. A parallel implementation that yields a

speedup of N has a concurrent efficiency equal to 1.

Ideally, the speedup realized when a process is spread over N processors should be N.

In reality, hc",:ver, a speedup of N is difficult to achieve unlcss some hueristic is applied

to actually reduce the amount of processing that must be performed. This reduction must

be realized in both the serial portion of the code as well as the additional code required to

parallelize the process. There are overhead costs that are associated with the parallelization

of a process. Overhead (f) can be expressed as

1
f= -

According to Fox (6:55-56) there are four factors that limit the ability to achieve _ speedup

of N. They are algorithmic overhead, software overhead, load balancing, and communica-

tion overhead. Algorithmic overhead results when it is impossible to find a parallel algo-

rithm that can solve a problem as efficiently as the sequential algorithm. Software overhead

may result when an equivalent parallel algorithm is found, but it requires additional pro-

cessing when it is split among multiple processors. Load balancing involves spreading the

amount of processing evenly among the concurrent processors. The process can only run

as fast as the slowest node. If the processing cannot be spread perfectly across all proces-

sors, overhead time results. Communication overhead is the time spent in communication

between processors. Any time during the execution of the concurrent version of a program

that a process.,r must stop to communicate with another processor, overhead time results.

4.2 Nested Loop Join Analysis

4.2.1 Nested Loop Model Analysis The nested loop-join algorithm is examined first.

The performance parameters for the models are listed in Table 4.1. Fol this model Kearns

assumes that the input relations, R and S, are both spread uniformly across the available

disks and that each disk can broadcast a block of data to all processor nodes in a constant

time 7,o. This broadcast capability provides the means for each node to send each block

of the smaller input relation, S, to all other nodes. Each processor is then able to join its

4-2

Table 4.1. Model Performance Parameters
Te query compile time (0 ms)
Tm time to send a message between backend and host (0 ms)
Td average disk access time (variable)

Pb memory blocks per processor (variable)
p number of processors (variable)
d number of disks (variable)
b blocks per track on disk (10)
T, seek time of one track on disk (10 ms)
Ti, transfer time from disk for one block of data (variable)
R number of blocks in ft relation (variable)
S number of blocks in S relation (variable)
JB number of blocks in join result relation (variable)
Tbt time to send one block of data between backend and a node (16 ms)
T., time to scan one block of data (7.5 ms)
Tb time to process a block with a join operation (145 ms)
jsf join selectivity factor (variable)

local fragment of the 1R relation with the entire S relation. This second assumption is not

consistent with the implementation on the iPSC/1. The iPSC/i implementation organizes

the processor nodes into a logical ring structure that is used to pass the blocks of the larger

relation to all of the processor nodes. This inconsistency provides the opportunity to ex-

amine the accuracy of the general model for a case where the hardware implementation

does not exactly match the assumptions made for the model. Based upon Kearns' assump-

tions of the uniform distribution of ft and S across the available disks and the capability

to broadcast the S relation from the disks to the processing nodes, the performance model

for the nested-loop join algorithm is (12:160):

'c + Tm + [Td + (((Pb * p)1 d)/b) * T- + (((Pb * p)/d) * TPio)] * (RI(pb * P))

+((R/p)* S *Tb) - [(S * (RI(pb * p))) * 1o] + [(jB/d) *Tb] (4.1)

Based upon the assumption that the number of disks is always equal to the number of

processors, this equation can be simplified to:

4-3

Tc +Tm + [Td + (Pb!b) * TS + pb * Tio] * (R (pb * p))

+((Rl/p) * S * Tb) + [(S * (?/(pb * p))) * Tio] + [(jBid) * Tbt] (4.2)

A more indepth discussion of the model parameters and the single step models is provided

in Appendix A.

4.2.2 Nested-Loop Runtime Analysis The first step in the comparison of Kearns'

nested-loop join model to the implementation on the iPSC/i is to consider the overall

runtime of the two. Tests were run for three different problem sizes in order to expose any

sensitivities that may exist with respect to problem size. For these initial runtime mea-

surements, all other performance parameters were held constant while the input relation

sizes were set at 48, 96, and 144 blocks. Figures 4.1, 4.2, and 4.3 show graphically the

theoretical runtimes versus the observed runtimes. Each of the figures illustrates that the

difference between the theoretical and observed runtimes is smaller for smaller numbers of

nodes than for larger numbers of nodes. Comparing the figures shows that the difference

botween the theoretical and observed runtimes is also smaller for larger problem sizes than

for smaller problem sizes. The lines representing the theoretical and observed runtimes

get closer together as the problem size increases from Figure 4.1 to Figure 4.2 to Figure

4.3. The average difference between the theoretical and observed runtimes for the 48 block

input relation case was about 8.5 %. The average difference for the 144 block input relation

case was 1%.

4-4

90

Theoretical -

Observed -

80

70

60

Total
Query
Time
(sec) 50 Pb = 14

Td = 35

40 -T, = 20

T= 10

30 jsf = .00001

20

0 5 10 15 20
Number of Nodes

Figure 4.1. Nested-Loop 48 Blocks x 48 Blocks

4-5

Theoretical-
Observed-

300

250

Total
Query
Time
(sec) 200 -pb = 14

Td = 35

Ti, 20
150

Ts=10

jSf =.00001

100

0 5 10 15 20
Number of Node~s

Figure 4.2. Nested-Loop 96 Blocks x 96 Blocks

4-6

Theoretical -
Observed -

700

600

Total 500 - Pb = 14
Query
Time Td = 35
(sec)

Ti, = 20
400

T= 10

jsf = .00001

300

200 F

0 5 10 15 20
Number of Nodes

Figure 4.3. Nested-Loop 144 Blocks x 144 Blocks

4-7

Further insight can be gained through examination of the speedup (S) achieved as

the number of processor nodes is increased for each problem size. Figures 4.5, 4.6, and 4.7

graphically show S for each problem size. The speedup graphs show that the model predicts

virtually linear speedup for each of the three problem sizes. The observed runtimes, on

the other hand, reflect close to linear speedup up to a point at which time the measured

curve begins to level off. It has been documented that when the number of concurrent

processors applied to solve a fixed size problem is continuously increased, a point will be

reached when the amount of overhead begins to dominate speedup (6:59). When this

occurs, the speedup realized with each additional node actually decreases. This point is

often specified in terms of the ratio of communication time to calculation time (tcomm/tcalc).

Figure 4.4 illustrates this point. The graph shows that as the number of processors, N, is

increased, t calc decreases. At the same time, t comm is increasing at some rate. As the two

curves begin to converge, the speedup curve will begin to flatten and then the speedup will

eventually begin to decrease.

t calc

Time

tcomm

N

Figure 4.4. Graph of tcoinn and tcalc

4-8

20

Theoretical-
Observed-

15

S 10

Ab = 14

Td = 35

5~Tio = 20

T,= 10

jsf = .00001

0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1

0 5 10 15 20
Number of Nodes

Figure 4.5. Nested-Loop Speedup 48 Blocks x 48 Blocks

4-9

20

Theoretical
Observed

15-

S 10-

A = 14

Td =35

5 Tio = 20

T,= 10

jsf = .00001

01
0 5 10 15 20

Number of Nodes

Figure 4.6. Nested-Loop Speedup 96 Blocks x 96 Blocks

4-10

20

Theoretical-
Observed-

S 10

Pb = 14

Td =35

5 T,, = 20

jsf = .00001

01
0 5 10 15 20

Number of Nodes

Figure 4.7. Nested-Loop Speedup 144 Blocks x 144 Blocks

Further investigation of the nested-loop nodel reveals that it does not actually predict

linear speedup for all values of N. There is-a point at which the modeled speedup curve

begins to flatten. The value of N at which this occurs, however, is significantly greater

than 16. This is illustrated in Figure 4.8. This graph shows the modeled speedup with the

3000
|Linear Speedup mJ

2500 Broadcast Model

2000

S 1500

1000

500

0
0 500 1000 1500 2000 2500 3000

Number of Nodes

Figure 4.8. Theoretical Speed for Very Large N

value of N increasing to 3000 -nodes. Even with N equal to 3000, the speedup curve has

not flattened significantly. However, it does show that the curve is beginning to flatten.

The difference in the speedup curves of Kearns' model and the iPSC/1 implementa-

tion suggests that as N is increased, the communication overhead is actually growing at

a faster rate than the model predicts. As stated earlier, Kearns assumed that the blocks

of the smaller relation could be disseminated to the processor nodes through a series of

broadcasts from the disks. The broadcast could not be done efficiently on the iPSC/1,

however, and so the ring communication structure was implemented instead. The time

to perform the ring communication during the nested-loop algorithm can be expiessed

analytically as

[(P - 1) * rR/(Pb * P)] * (SIP) * T40 +1 [([R,/(p * P)] * (Sip)) * (d + Ti)J (,1.3)

4-12

600 -

Broadcast Model -

500 Ring Model -

400

S 300

200

100

0
0 100 200 300 400 500 600

Number of Nodes

Figure 4.9. Broadcast Model Speedup Versus Ring Model Speedup

Figure 4.9 illustrates the speedup curve of the nested-loop model with the ring communi-

cation expression as opposed to Kearns' original model containing the broadcast commu-

nication expression. The speedup curve of the ring model flattens out with N well under

100. However, it does not flatten quite as soon as the measured speedup from the iPSC/1

implementation, as shown in Figure 4.10. This is because there are additional nondeter-

ministic overheads that are not accounted for in the model. The average difference between

the theoretical and observed runtimes using the ring communication model is about 6 %

for the 48 block input relation case and about 1 % for the 144 block input relation case.

4.3 Bucket Join Analysis

4.3.1 Bucket Join Model Analysis The bucket join implementation on the iPSC/1 is

very similar to the algorithm modeled by Kearns. Kearns assumes that the input relations

are both uniformly spread across the available disks. The bucket join is then performed in

two distinct steps. The first step is the hash step. During the hash step, each node applies

a common hashing function to all tuples of each local relation fragment. Based upon the

the results of the hash function, the tuples are grouped into buckets and each bucket is

sent to the proper node. As the bucket blocks are recieved by the nodes they are saved

4-13

I I I i I i

25
Ring M

20 Observed -

15
S

10 14

535 i 0

jsf = .00001
0

0 5 10 15 20 25
Number of Nodes

Figure 4.10. Ring Model Speedup Versus Observed Speedup (48 blocks x 48 blocks)

to disk. When the hash step is completed, each node performs a local nested-loop join on

the buckets that it has written to disk. The results of the join operation are then sent

to the backend processor where they are merged into the complete result relation. The

performance model for the bucket join algorithm with the nested-loop is (12:170):

(T. * (RIp))

+2* [((R/p) + 1) *(p- 1)] *Tbt

T. + Tm + Td + Tio + max or

2 * ((R d) * Tio) + (((Rid)ib) * Ts)

+((RIp) + 1) * (Td + T)

(T,. * (Sip))

+(2* [((SIp) + 1) * (p - 1)] * Tbt)

+I'd + Tio + max or

2 * ((Sld) * Tio) + (((Sld)/b) * T,)

+((SIp)+ 1)* (Td + Tio)

+[(Td + (pb, Ti.)) (((Rip) + 1)lpb)] + (((Rip) + 1) * ((Sip) + 1), Tb)

(((SIp) + 1) * (((RIP) + 1)lpb)) * ,]+ JB Tbt (4.4)

4-14

4.3.2 Bucket Join Runtime Analysis As with the nested-loop runtime analysis,

the first step in the comparison of Kearns' bucket join model with the iPSC/1 bucket join

implementation is to consider the overall runtmes. With all other performance parameters

held constant, tests were run for three different problem sizes with the number of processors

varying from 4 to 16. The input relation sizes for the tests were 144, 192, and 240 blocks.

The theoretical versus observed runtimes are represented graphically in Figures 4.11, 4.12,

and 4.13. The graphs show that the measured runtimes and the runtimes predicted by

the model are very close for all cases. The average difference between the theoretical and

the observed runtimes for the 144 block input relation case is about 3 %, and the average

difference for the 240 block input relation is about 2 %. These results are consistent with

the fact that the methods used to implement the bucket join on the iPSC/I match closely

with those modeled by Kearns.

The speedup curves for the bucket join implementation vesus the model for the

different problem sizes are shown in Figures 4.14, 4.15, and 4.16. The graphs show that in-

creasing the number of processors for this algorithm results in greater than linear speedup,

where increasing the number of processors for the nested-loop algorithm resulted in less

than linear speedup. This is because the bucket join uses 'a grouping method to reduce the

actual number of compares that must be performed. As the number of processors increases,

the size of the buckets decreases and the number of compares decreases. The nested loop,

on the other hand, always compares all of the tuples from one input relation with all of

the tuples from the other input relation. As expected, the modeled speedup curves and

the measured speedup curves match much more closely for the bucket join algorithm than

those of the nested-loop algorithm.

4-15

200 -Theoretical -

Observed -

150

Total
Query
Time 10 -pb = 25
(sec)

Td = 35

Ti,, =20

50

T,= 10

jsf = .00001

0
0 5 10 15 20

Number of Nodes

Figure 4.11. Bucket Join 144 Blocks x 144 Blocks

4-16

350 -Theoretical-
Observed-

300 -

250

Total
Query 200 PbA = 25
Time
(sec) Td = 35

150 T, = 20

T,= 10

100 -jaf = .00001

50 L_______________________
0 5 10 15 20

Numnber of Nodes

Figure 4.12. Bucket Join 192 Blocks x 192 Blocks

4-17

Theoretical -

Observed -

500

400

Total
Query 300 -p6 = 25
Time
(sec) Td = 35

22o 20
200

T,=10

jSf =.00001

100

0 5 10 15 20
Number of Nodes

Figure 4.13. Bucket Join 240 Blocks x 240 Blocks

4-18

50

45- Theoretical
Observed-

40

35

30

S 25
Ab = 25

20 -Td =35

15 -Tio = 20

10 - T,= 10

jsf =.00001

5

0 f
0 5 10 15 20

Number of Nodes

Figure 4.14. Bucket Join Speedup 144 Blocks x 144 Blocks

4-19

50 Observed -

460

30
S

pb =25

20-1'
3

Ti, = 35

10 -,= 10

jsf = .00001

0 1
0 5 10 15 20

Number of Nodes

Figure 4.15. Bucket Join Speedup 192 Blocks x 192 Blocks

4-20

60

Theoretical-
Observed-

50

40

S 30
Pb =25

Td =35

20 -Ti
0 = 20

T,= 10

10 - sf = .00001

0
0 5 10 15 20

Number of Nodes

Figure 4.16. Bucket Join Speedup 240 Blocks x 240 Blocks

4-21

4.3.3 Bucket Join Sensitivity Analysis The analysis to this point has concentrated

on the comparison of the total query time predicted by the models versus the measured

total query time over a range of problem sizes and node configurations. An area that has

not been addressed is the ability of the models to predict the impact of varying system

performance parameters. Tests were first run to evaluate the impact of changing the disk

performance parameters. The next set of tests were run to evaluate the impact of changing

the join selectivity factor. Both sets of tests were run for relatively small problem sizes

and then for relatively large problem sizes with the number of nodes fixed at eight.

For the base performance case, the disk access time, Td, was set at 35, the block

transfer time to disk, Ti, was set at 20, and the join selectivity factor was set at .00001.

These disk performance parameters are hypothetical and do not reflect any particular disk

system. The first parameters to be varied were Td and Ti. Td was set to 70 and Ti, was

set to 40. This simulates a change in the actual disk device and also the communication

between the disk and the processor. The result in an increase in average disk I/O response

time. Figure 4.17 illustrates the theoretical runtimes and Figure 4.17 illustrates the ob-

served runtimes for the two disk performance levels when measured for relatively small

input relations. The theoretical data predicts a virtually constant increase in total query

time of about 9 % over this range of problem sizes. The observed data reflects this con-

stant change, although the observed amount of increase in the query runtime is about 13

%. This is slightly greater increase than the model predicted. The analysis of the results

of the tests run with relatively large relation sizes yield similar results.

Next the jsf was changed from .00001 to .001. This significantly increased the

number of result tuples produced and also increased the time required to process the

result blocks. The join of two relations with 104 blocks each, and jsf equal to .00001 will

produce about 1180 results. When the jsf is changed to .001 for the same join operation,

about 108160 results will be produced. Figure 4.19 illustrates the theoretical runtimes

and Figure 4.20 illustrates the observed runtimes for the small problem set sizes. The

theoretical data shows that the total query time is increasing at a slightly greater than

constant rate as the the size of relation 2 is increased. Examination of the observed data

reveals that the trend in the difference between the curves is the same, however, the curve

4-22

40 I i I 1

Td = 35, Ti = 20 -

35 Td = 70, Ti, = 40-

Total 30
Query
Time
(see) 25 Bok

(sec) 25 Relation 1 = 104.Bok

Pb = 25

20 T, = 10
jsf = .00001

15 I I I I

60 65 70 75 80 85 90 95 100 105 110
Relation 2 Blocks

Figure 4.17. Theoretical Performance Impact of Increased Disk Response Time

produced with the jsf equal to .001 has a number of spikes. This is because the data

generator produces data which approximates the desired jsf. For some relation sizes it is

slightly greater than the desired value and for some sizes it is less. See Appendix E for

more information on the actual jsf produced. The spikes do not occur for the .0001 curve

because the result relation processing is insignificant due to the small result relation sizes

produced. For the test runs in which the actual jsf produced closely approximates the

desired jsf, the model predicts about a 13 % average increase in runtime over the range

of problem sizes. For these cases, the observed averagc increase in runtime was about 15
%. The results for the larger relation sizes were similar to these.

4.4 Summary

The single step query models that were analyzed were the nested-loop join and the

bucket join using the nested-loop algorithm for the join step. The nested-loop join analysis

showed that the runtimes predicted by the model were closer to the observed runtimes for

smaller numbers of nodes than for larger numbers of nodes and for larger problem sizes

than smaller problem sizes. It was also demonstrated that in cases when the model does

4-23

40

Td = 35, Ti, = 20

35 Td = 70, Ti = 40-

Total 30 B
Query
Time
(sec) 25 Relation 1 104 Blocks

Pb = 25
20 T, = 10

jsf = .00001

15 I I I I I I I
60 65 70 75 80 85 90 95 100 105 110

Relation 2 Blocks

Figure 4.18. Observed Performance Impact of Increased Disk Response Time

not exactly match the implementation, the model can be changed to more accurately reflect

the performance of the implemenation. For all test cases, Kearns' nested-loop model with

broadcast communication was at least accurate to within about 8.5 %, and the derived

nested-loop model with ring communication was at least accurate to within about 6 %.

Both models were even more accurate when the input relation sizes were increased.

The results of the bucket join analysis show that the runtimes predicted by the bucket

join model matched the observed runtimes closely. For all cases, the bucket join model was

at least accurate to within about 3 %. The bucket join sensitivity analysis showed that the

model did a pretty good job of predicting the sensitivity of the iPSC/1 implementation to

changes in disk response time and jsf. For the disk response time sensitivity test cases, the

model predicted an average runtime increase of about 9 % when the disk response time was

increased. The observed average runtime increase was about 13 %. For the jsf sensitivity

test cases, the model predicted an average runtime increase of about 13 % when the jsf

was changed from .00001 to .001. The obbelved tefdge i untime increase was about 15%.

4-24

40

j.f = .00001 -

Total 30 B
Query
Time
(see) 25 Relation 1 104 Blocks

Pb = 25

20 Td =10
Ti, 20
T= 10

15 1 1 1 I I I

60 65 70 75 80 85 90 95 100 105 110
Relation 2 Blocks

Figure 4.19. Theoretical Performance Impact of Increased Join Selectivity Factor

40 1 1 1 1 1 1 1 1 1

jsf = .00001 -
35 - jsf = .001 -

Total 30 B
Query
Time
(sec) 25 Relation 1= 104 Blocks

Pb = 25

20 Td 10
Ti, =20
T= 10

15 1 1 1 1 I I I

60 65 70 75 80 85 90 95 100 105 110
Relation 2 Blocks

Figure 4.20. Observed Performance Impact of Increased Join Selectivity Factor

4-25

V. Multiple Step Query Model Design, Implementation, and Analysis

The previous two chapters have dealt with Kearns" single step models in which only

one relational database operation is required to perform the entire query. In reality, most

database queries require that more than on e operi. sor. be executed to complete a query.

Kearns' multiple step models address these complex queries (12:223). For example, con-

sider the following query:

RN (5.1)

To satisfy this query, select operations must first be performed on the t and S relations.

The results of these operations must then be joined to produce the desired result relation.

The logical architecture assumed by Kearns in his multiple step models is shown in

Figure 5.1. This architecture is v.ry similar to that proposed by Kearns and presented

in Section 2.4. It consists of the retrieval-layer, ,which retrieves the input relations from

disk and performs any required select-project operations, and the processing layer which

performs the more complex binary operations. -For the query in equation 5.1, the select

operations on R and S would be performed by the retrieval layer nodes and the join

operation would be performed by the processing layer nodes. The architecture also contains

a backend controller that receives the query from the host processor and initializes the

required operations on the retrieval layer and pxocessiig layer nodes. The results are then

consolidated by the backend controller to be sent back to the host processor if required.

The results may also be stored to disk by the retrieval layer nodes.

5.1 Physical Ma'pping

Like the single step model architecture, this architecture also maps nicely to the

IPSC/1 ilypercube. The iPSC/! cube manager serves as both the backend controller and

die output processor. The nodes in the cube are then divided into the retrieval layer and

the processing 'laye-r. Shwie each of .he ret.rieval layer nodes requires access to a unique

disk,a number of the nodes, equal to the number of retrieval layer nodes, are designated

5-1

Backend
Processor

Interconnection Network

Processing
Layer.

-Interconnection Network

Retrci val
Layer

Figure 5.1. Multiple Step Query Architecture (12:282)

5-2

as disk nodes. They run the disk simulator program developed for the single step models.

The model architecture is also assumed to have secondary storage capability directly con-

nected- to the processing layer. However, all of the test cases run on this implementation

assume that the entire relations passed from the retrieval layer to the processing layer fit

into the memory available on the processing layer nodes. Thelefore, disk nodes are not

required at the processing layer.

5.2 Multiple Step Bucket Join Implementation

There are two different ways that multiple step queries can be implemented on a

concurrent computer. The first is to implement each step utilizing all of the processors

that are available in a fashion similar to the single step models (12:239). For this approach,

the intermediate relations would have to be stored to disk to be read in by the next step.

The other method is to utilize a form of parallelism known as pipelining. To implement

pipelining, the resources must be divided into partitions and each partition assigned a single

function. The results of each partition can then be passed directly into the next partition

for further processing (12:239). Process speedup can be realized through pipelining when

stages of the pipeline can be overlapped so that the various stages are being executed in

parallel.

The implemented model uses a pipelined approach to perform a query of the form

aR N aS.

as shown in Figure 5.2. First, select operations are performed on the ft and S input

relations in the retrieval layer processors. The results of these select operations serve as

input to an equi-join operation utilizing the bucket join algorithm. It assumes that both

input relations are spread uniformly across the available disks and that there is one retrieval

layer processor dedicated to each disk. The processing layer nodes are divided into two

partitions with one dedicated to the hash processing step and the other dedicated to the

5-3

Join Partition
titio

Processing Interconnection
Network

Hash Partition

........Y

L -

r -

Rerea Lae
- -

Fiur 5..Acietr aaFo o utpeSe ur

I5-4

join processing step using the local nested-loop algorithm. Utilizing this approach, all of

the stages could be overlapped to some extent. However, this particular model assumes

that only the select stage and the hash stage are overlapped. Figure 5.3 illustrates the

stage overlapping that occurs for this implementation. Each of the arrows represents a

particular operation in the query. The numbers on the arrows partition the operations

into stages that may be overlapped. The extent to which the operations are overlapped is

illustrated by the vertical dotted lines. The following sections provide a brief summary of

the processing that occurs within each partition.

5.2.1 Select Partition All of the nodes in the select partition are part of the retrieval

layer of the logical architecture. Each is connected to a unique disk node that contains a

fragment of each of the input relations. Each node, therefore, performs a select operation

on a fragment of each of the input relations. The select operations are performed in a

consecutive manner such that the entire fragment of one relation is processed before the

first block of the second relation fragment is read. The operation is performed by filling the

memory of the processor with blocks of tuples from the input relation. Each block is then

scanned with the select criteria being applied to each tuple. If a tuple meets the selection

criteria, it is written into the result buffer which can hold one block of data. When the

result buffer is filled, the block of data is immediately sent to the hash partition. This

allows the hash processing to begin while the select operation is still being performed. This

process continues until all of the blocks of the relation have been processed.

5.2.2 IIash Partition The nodes in the hash partition are part of the processing

layer. Each of the hash nodes receives select result blocks from one particular retrieval layer

node. Upon receiving a block of tuples, the hash process immediately begins applying the

hash function to the tuples in the block. There is an output buffer, or bucket, associated

with each processor assigned to the join partition. As each tuple is processed it is written

to one of the output buffers. When an output buffer is filled, it is sent to the associated join

node. As each finishes processing the second relation, it sends a hash complete message to

all join nodes.

5-5

I.21.2. -Select of Relation 1
a

Hash of Relation 1

5 }6
Select of Relation 2

7.

8 916 1: Hash of Relation 2

11
Join of Buckets

12 12 Total Query Time

1 - Time to first block of output (T,P)

2 - Time to complete select (TIP - Tl.P)

3 - Time to complete entire select (TsP)

4 - Time to complete hash (Th)

5 - Time to first block of output (T.,)

6 - Time to complete select (Tsp - TlP)

7 - Time to complete entire s,.iect (TsP)

8 - Time of huh until last block received (Th2)

9 - Time of hash after last block received (T, - Th2)

10 - Time to complete hash (Th)

11 - Time to join buckets (Tj)

12 - Time to perform entire query

Figure 5.3. Overlapping of Multiple Step Query

5-6

5.2.3 Join Partition The nodes in the join partition are part of the processing layer.

As stated earlier, it is assumed for this implementation that all of the blocks for both of

the relations to be joined will fit into the memory of the join processors. This eliminates

the need for intermediate relation storage at this level. Each node receives blocks until it

has received a hash complete message from each hash node. It then performs a nested-loop

equi-join operation on the input relations. The result relation blocks produced by the join

operation on each node are then sent to the cube manager to be merged into the final

result relation.

5.3 Multiple Step Bucket Join Model Analysis

In order to model the multiple step query operations proposed by Kearns, two levels

of interaction must be considered. First, the time required to perform each step of the

oj.eration must be represented in terms of the various system performance parameters.

This level is modeled in a fashion similar to that of the single step models presented in

Chapter IV. The second level of the model must consider the amount of function overlap

that occurs when the operations are pipelined and the effect on total query time. The

second level requires analyzing the problem from a higher level of abstraction. This section

presents Kearns' models from the high level view. The low level models for each function

are included in Appendix C.

A further examination of Figure 5.3 provides a description of the functions required

to perform this query and the overlapping of the functions that occur. The first operation,

the select on relation 1, can be broken into two parts. These are the :inn required to

produce the first result block and the time to complete the rest of the select operation.

This division is important because when the first result block is produced and sent to the

hash node, the hash operation on the relation can begin. The time to produce the first

result block is represented by T1,p. The time to perform the entire select operation is

represented by Tp. The time to perform the hash function and send the produced buckets

to the join no(les is rel.resented by T,. The third operation to be performed, the select

operation on the relation 2, can begin as soon as the select operation on relation 1 is

complete. The two parts of this second select operation can also be represented as TJ.p

5.7

and Tp. The same overlap between the select operation and the hash operation can occur

for relation 2 as for relation 1. For relation 2, however, the hash time must also be divided

into two parts. They are the hash time until the point of receiving the last block to be

hashed, Th2, and the time required to complete the hash operation after the last block has

been received, Th-Th,. This- division is required because second part of the hash operation

will not be overlapped with any other operations and the join step cannot begin until the

hash of relation 2 is complete. The time to perform the join operation is represented as

Tj. Given input relations of size Rt and S, where R1 and S, represent the size of the select

operation results and R2 and S2 represent the bucket sizes at each join node, total query

time can then be expressed as:

(Tp(R) .- T +3,(R)) + TIp(S)

TI8p(R) + max or

Th(RI)

(TIP(S) - T1 ,P(S))

+max or + (Th(SI) - Th2(SI)) + Tj(R 2, S2).

Ths(S1)

5.4 Multiple Step Bucket Join Runtime Analysis

One limited test was run for the multiple step bucket join implementation. The

purpose was to gain insight into the accuracy of this model for projecting total query

time. For this test the select partition, the hash partition, and the join partition were each

assigned 8 nodes. Each of -the select nodes was assigned one unique disk node. The size

of relation 1 was fixed at 240 blocks and the size of relation 2 was varied between 72 and

240 blocks. For all of the tests, both of the input relations were spread uniformly over the

available disks. Figure 5.4 compares the predicted runtimes and the observed runtimes.

The graph shows that the model predictions were very close to the observed runtimes over

the entire test range. Over the test range, the average difference between the predicted

and observed runtimes was about 3.5 %.

5-8

50

45 - Theoretical-
Observed-

40

35

Total
Query 3
Time 3
(sec)

25

20 -Relation 1 =240 Blocks

Select Nodes =8

15 - hash Nodes =8

Join Nodes =8

10 1 1- 1 1

60 80 100 120 140 160 180 200 220 240
Relation 2 Size

Figure 5.4. Multiple Step Query Results

5.9

V. Conclusions and Recommendations

6.1 Conclusions

The purpose of this research was to show that relational database query performance

can be improved utilizing Kearns' approach in the design and implemention of parallel

database operations on a commercially available concurrent computer. Kearns developed

over 200 analytical models to be used in the design of parallel implementations of a wide

range of relational database operations. The models are categorized into the single step

models, which model single operation queries, and multiple step models which model com-

plex multiple operation queries. Due to the lack of time and resources, only a small subset

of the models could actually be implemented. The single step implementation included the

nested-loop join operation and the bucket join operation. A multiple step model was also

implemented which consisted of two select operations feeding their results into a bucket join

operation. The evaluation of the implementations involved a comparison of the theoretical

performance predictions produced by Kearns' models with the observed performance on

the iPSC/I.

The nested-loop join provided an example of a-case in whici the target architecture

prohibited the implementation from matchiiig exactly the associated model. The model as-

sumed that the disks could efficiently broadcast a block of data to all of the join processors

in some constant time. The iPSC/I did not provide this capability. The communica-

tion between the disks and the join nodes was implemented in a ring structure instead.

The implementation of the ring communication structure produced greater communication

overhead than was predicted -for the broadcast communication structure. As long as the

itmber of join nodes used-to implement the join operation was relatively small, the model

was still fairly accurate. towevr, as th(e iumber of nodes was increased, the observed run-

times were 111ic01- greater than the theoretical runtimes prcdicted by the model. Koarns'

neste'd-loop model with broadcast communication was- at least accarate to withen about

8.5-% for all test cases run.

At this point, the mc 'el was altereid to take into account the ring communication

structure. The ring communication inodel was wore acciirate tmn the broadcast c(, iu.

li-1

nication model. For all cases run, the ring communication model was at least accurate to

within about 6 %. The evaluation of the nested-loop model shows that even when there

are discrepancies between the model and the implementation, the model may be accurate

under certain constrained conditions. However, if the limits of the model are not known by

the user, inaccurate conclusions may be drawn. The successful alteration of the model to

account for the ring- communication structure also demonstrated that the model is flexible

enough to be changed to account for major discrepancies between the model assumptions

and the target architecture.

The-single step bucket join model; on the other hand, was more accurate than the

nested-loop -model. For all of ;he test cases-run, the bucket join model was at least accurate

to within about 3 %. And for the cases-with the larger input relation sizes, it was even more

accurate. The analysis of the bucket join sensitivity tests showed-that the model did a good

job of predicting the impact of changing-certain performance parameters. The parameters

that were altered for the sensitiviy tests were the disk response time and thejoin selectivity

factor. For the disk response time-sensitivity test cases, the model predicted an average

runtime increase of about 9 % when the response time was increased. The observed runtime

increase was about 13 %. For the join selectivity factor sensitivity test cases, the model

predi:ted an average runtiine of about 13 % whent the join selectivity -factor was increased.

The observed runtirme increase was about 15 %. The evalnation of the -bucket join model

has demonstrated the aCiiracy of the model, and has also has demonstrated the usefulnes

-of the model for projecting the effect of altering various system performance parameters.

The tests rnm against the multiple step-query implementation were ,cry limited due

to time-constraiats. T!,e results th;.t were produced, however, werc promisiag. For tile test

cases that were run, the average differe~tce between the theoretical and observed ruatimes

was-about 3.5 %.

6.2 lcornmende;ions

The results of this research show hw.t-for the cases denonstrated, Kearns' models are

at least accurate to witlihi about S,5 %, wit h some being even more accurate under certain

conditions. These results sutggest thatt thc models ,hculd prove useful in the design of par-

6-2

allel ralational database systems. Further work, however, is needed to further demonstrate

the join models implemented in this thesis as well the other operations Kearns modeled.

Some suggested areas of future research include the validation of the single step models

when implemented for greater numbers of nodes, the evaluation of the models for cases in

which the input relations are not uniformly distributed across all disks, the implementa-

tion and evaluation of the models on a different conicurrent computer system, an indepth

implementation and analysis of the multiple step models.

Tile number of nodes used to implement the single step models was limited to 16.

The analysis of the nested-loop algorithm, however, showed that it is possible for the model

performance predictions and the associated implementation's observed performance to be

fairly consistent for small numbers of nodes but very inconsistent for larger numbers of

nodes. It-is essential, therefore, to implement and evaluate a modeled operation for larger

numbers of nodes in order to make any statement about the the accuracy of the model as

the number of nodes is increased.

One of Kearns' basic assumptions that carried over to this effort was that the input

relations are always uniformly distributed across the available disks. In a real system, how-

ever, this will probably never be the case. Future efforts should investigate the possibility

of modifying the models to handle cases in which this basic assumption is false. This may

include-the application of load balancing algorithms between the nodes to be run prior to

the execution of the specified query.

The concept behind the development of a set of gerneral models to use in the design

of parallel database systems is- to be able to vary the hardware perfomance parameters to

make the models match a range of physical machines. This thesis has only addressed the

validity of the approach when applied to one type of the machine, the iPSC/1 Iypercube.

Future efforts should include implementations on other types of architecture.

The final area proposed for future research is an indepth investigation of the multiple

step query models. The multiple step implementation for this thesis was very limited. It

included one query with fixed partition sizes. A more indepth effort should investigate

the impact of varying partition sizes on the total query time. For this implementation,

6-3

the partitions for all of the steps were all the same size. If the partition size for the join

operation, which requires the greatest amount of processing, were made larger, it should

drastically reduce the total query time.

6-4

Appendix A. Single Step Models

A.1 Model Performance Parameters

Kearns' single step query performance models are composed of a number of perfor-

mance parameters that characterize the hardware the query is implemented on and the

size and organization of the input data. This section defines each of these parameters and

discusses their possible values.

Ta - T is the time required to compile a query. The implementation on the iPSC/1

does not compile queries from a generl query language. It offers the iser ,.pecific pre-canned

operations. Therefore for the tests run for this thesis, T was always equal to 0.

T, - Tm is the time required to send a message between the backend and the host

processor in milliseconds. Since the iPSC/1 implementation is not connected as a backend

to a host processor, this number is always 0.

Td - Td is one of the disk performance parameters. It is the average disk access time

in milliseciids. This includes the rotational latency and the. initial seek to the desired

track. This value is variable in the iPSC/1 implementation It can be set in the disk

simulator routine that runs on the disk nodes.

Pb - Pb is the amount of processor memory in terms of input block size. This number

can be specified in each node routine in the iPSC/1 implementation. When run, each node

will limit itself to the amount of memory specified by this parameter.

p - p is number of processors used to perform the requested operation. This is a user

input to the iPSC/1 implemenation and can be set to 4, 8, 12, or 16.

d - d is the number of disks that the input relations are spread across. For this thesis,

the number of disks is always equal to the number of processors.

b - b is the rnumber of blocks stored on one track on disk. This number can be

specified in the disk simulator routine. For all of the tests run, this number was set at 10.

T., - T, is another one of the disk performance parameters. It is the time required for

a track-to-track seek in milliseconds. This number can be specified in the disk simulator

routine. For all of the tests run, this number was set to 10.

A-1

T0 - Tio is the final disk performance parameter. it is the amount of time required

to transfer one block of data between a processor and a disk in milliseconds. It can also

be set in the disk simulator Toutine.

R - R is the number of blocks of tuples in one of the input relations. This number is

variable. However, to achieve a uniform distribution of blocks across the available disks,

it should be a multiple of the number of disks.

S - S is the number of blocks of tuples in the second input relation. The same value

guidelines apply to S as R.

Tb - Tbt is the time to send one block of data between the backend processor and a

node.

& - T is the time required to send one block of data to the backend processor.

This translates as the time to send a block of data between the iPSC/I host and a node

in the cube. It- was measured to be approximately 16 milliseconds.

&- T3 is the time required to scan one block of tuples from an input relation. This

time was measured on the iPSC/1 for a blocksize of 100 tuples to be 7.5 milliseconds.

Tb - Tb, is the time required to perform a join operation on one block of data from

each relation. Utilizing the nested-loop join algorithm, this time was measured on the

iPSC/1 to be 145 milliseconds.

jsf - jsf is the join selectivity factor. This is the size of the result relation expressed

as a percentage of the cross product of the two input relations.

JB - JB is the number of blocks in the join result relation. It is calculated by the

expression

[(jsf * ((2 * (BIr)) * (S * (B s))))/(B/(r + s)))]

where B is the number of bytes per block, r is the R relation tuple size, and s is the S

relation tuple size.

A-2

A.2 Nested-Loop Join

The performance model for the parallel nested-loop join algorithm is expressed as

follows:

T. + T + [Td + (b) * T + pb * Tio]* (RI(Pb *p))

+((RIp) * S * Tb) + [(S * (RI(pb * p))) * Tio] + [(JB/p) * Tbt]

This expression can be broken into five parts. The first part is the time required to compile

the query and send the query from the host to the backend processor. It is expressed by

TC+T

The next part is the total time that will be spent loading memory with blocks from

the I. relation. During the execution of the query, each block of the R, or smaller, relation

will be read in to memory one time. This time is expressed as

[Td + (pb/p) * Ts + Pb * Tio] * (R/(pb * p))

First the amount of time required to fill the memory one time is calculated by [Td+ (pb/p)*

T, +pb *Ti,]. This expression is then multiplied by the number of times that each processor

will have to fill its memory with blocks from the R relation, (RI(pb * p)). Theoretically,

the blocks will always perform this operation in parallel, therefore, the model only has to

account for the memory fill time for one processor.

The next part of the expression is the time required to join a fragment from relation

R of size I/p with all of the blocks from relation S. This time is expressed as

(RIp) * S * JB

This calculates the number of blocks that must be joined from each relation and multiplies

it by the time required to perform a join with one block of each relation. This join operation

is where a majority of the run time for the nested-loop join operation is spent.

A-3

The next part of the expression is the communication time for the broadcast model.

It is expressed as

[(S * (R/(Pb) * p))) * Ti0]

First, the number of S relation blocks that must be transmitted is calculated by (S *

(R/(pb) * p))). This is the size of the S relation multiplied by the number of 1R relation

fragments that will be read in by each processor. Since the processors will broadcast their

blocks of S in serial, and the model assumes that the time required to send a block of data

to any other node is constant, this number is multiplied by the time required to send a

block of data from one node to another.

The final part of the expression is the time required for the join processors to return

the result tuples to the host processor. This time is expressed as

[(JBIP) *Tbt

That is the number of results produced on each processor, (JB/p), times the time requir.

to send a block from a cube node to the host. Again, it is assumed that the processors will

perform this communication in parallel.

A.3 Bucket Join

The performance model for the bucket join algorithm with the nested-loop is ex-

pressed as follows:

(Tc * (R/p))

+2 * [((R/p) + 1) * (p - 1)] * Tbt

T, + Im + Td + Ti, + max or

• ((R/d) * Tio) + (((Rld)lb) * T)

+((J/P) + +) (7~i + ',o)

A-4

(T'o * (S/p))

+(2 * [((SIp) + 1) * (p - 1)] * Tbt)

+Td + Tio + max or

2 * ((S/ld) * Tio) + (((S/d)/b) * Ts)

+((SIp)+ 1)*(Td+ Tio)
+[(Td + (pb • Tio)) * (((RIp) + 1)ipb)] + (((RIp) + 1) ((SIp) + 1) Tb)

(((Sip) + 1) * (((RIp) + 1)iPb)) * Tio] + jBTbt (A.1)

This exprdssion can be broken into seven parts. As with the nested-loop model, the

first part is the time required to compile the query and send the query from the host to

the backend processor. It is expressed by

Tc + Tm

The next part is the time required to perform the hash function on the R relation.

It is expressed as

T, * (R/p))

+(2* [((RIp) + 1) * (p - 1)] * Tbh

Td + To + max or

2 * ((Rid) * Tio) + (((Rid)ib) * T,)
+((RIp) + 1) * (Td + Ti,)

Td+Ti, is the time required to find the proper track on disk to begin reading the R relation

and the time required to transfer the first block to the processor. The max function then

compares the time required to perform the actual scan of the data and send the bucket

fragments to the proper nodes versus the time required to read the data from disk and

then store the bucket fragments as they are received. This time is only calculated for one

processor as the hash occurs in parallel across all of the processors.

A-5

The next part of the expression calculates the time required to perform the hash

function on the S relation. it is expressed as

T". * (S/p))

+(2 * [((S/p) + 1) *(p- 1)] *Tbt

+Td + Tio + max or

2 * ((S/d) * Tio) + (((S/d)/b) * T)

+((SIp)+ 1) * (Td + To)

The S relation hash time is calculated in the same manner as the ft relation hash time.

The parts of the model expression discussed to this point express the hash step of the

algorithm. The rest of the model expresses the time required to perform the join step.

The first part of the join step, expresses the time required-to fill the processor memory

with one fragment of blocks of the 1R relation. This time is expressed as

[[Td + (Pb * Ti)] * (((Rip) + 1)/pb)]

Td - (Pb * Ti,) expresses the time to fill the processor's memory one time. This time is

multiplied by the number of times that the processor's memory will have to be filled which

is expressed as (((R/p) + 1)/pb).

The next part of the nested-loop step is the time required to perform the actual join

processing. It is expressed as

(((R/p) + 1) * ((SIp) + 1) * 2)

((Rip) + 1) is the size of one It relation fragment, it is multiplied by ((SIp) + 1) which

is the size of one S relation fragment. This multiplication results in the total number of

block joins that must be performed. This number is then multiplied by Tb which the time

required to pcrform one block join.

A-6

The next part of the expression,

" 1 (R/p) + 1)/Pb)) * Ti0]

represents tVie time required to read the bloc.ks of the S -relation fraginent one at a time to

be compared with the R relation blocl-'5 that have been loaded into memory.

The final parI of the expressioni,

[(iB N' Tbtj

is the time required to send the result relation fragments to -the backend processor.

A-7

Appendix B. Multiple Step Low Level Models

This appendix documents the low level multiple step query models. Two additional

performance parameters are included in these models that were not listed in chapter IV.

The first is zelectivity factor, f, which is the percentage of the input relations that meet

the criteria of a select operation. For the test cases run with these models, f is equal to .5.

The second parameter is number of hash processors, Ph.

Tlp - Time to produce and send first select result block to the appropriate hash

processor.

(r/(v* f))*T,

or
Tlp= T + Td + Tjo + max + Tbt(((r/(v,* f))/b) - 1),* T8

+((v* f)) To

Tp - Total time for a select retreival operation.

(((Rip)- 1)* Tno)

*+(((v ((Rip) * f) * (BIR) * (1/B)) - 1), TbtT = Tm1 + Td + Ti0 + max

(((R /p)/b) - 1) * T, + (R/p) * Ti,

+T.c + Tb I

Th - Time to complete the hash function.

Th = Tm + (R 1 * (Tbt + Tsc)) + (((Ph - 1) * R 2) * Tbt)

T 2 - Time of the hash function to the point of receiving the last block of data to be

hashed.

Th2 =Tm + ((Ri 1)*(Tbt + Ts.)) + (((Ph 1)*(R2) - 1) * Tbt

B-1

Ti - Time to perform the nested-loop join.

Tj =Tm + (R 2 * S2 * Tb) + JB * Tbt

R, - Number of result blocks produced by the select operation on relation R.

Ri = ((v * (R * f) * (B/r) * (11B)

S - Number of result blocks produced by the select operation on relation S.

S, = ((v * (S * f) * (B/s) * (1IB)

R 2. - Number of blocks in each fragment of t to be joined.

R2 = (RI(ph - 1)) + 1

S2 - Number of blocks in each fragment of S to be joined.

S2 = (SI/(Ph - 1))+ 1

B-2

Appendix C. Test Data

C.1 Test N-I

Test Description

The number of nodes used to perform the nested-loop join function was varied for

fixed input relation sizes. The data tables contain entries for model 1, which is Kearns'

original model, model 2, which is the version of the model which takes into to consideration

the ring communication structure, and the observed runtimes from the iPSC/1.

Performance Parameters

jsf = .00001, Pb = 14, Td = 35, Ti, = 20, T, =0

Trial 1 (R = 48, S = 48)

Table C.1. Test N-i, Trial 1 Data
Nodes Model 1 (sec) Model 2 (sec) Observed (sec)

4 84.655 85.212 84.704
8 42.334 43.092 44.256
12 28.226 29.052 31.688
16 21.173 22.032 24.844

Trial 2 (1? = 96, S = 96)

Table C.2. Test N-1, Trial 2 Data
Nodes Model 1 (sec) Model 2 (sec) Observed (sec)

4 338.021 3,0.250 337.725
8 169.017 169.711 169.915
12 112.682 113.785 114.000
16 84.514 85.821 90.620

C-1

Trial 3 (1? 144, S =144)

______ Table C.3. Te~st N-1, rhial 3 Data
SNodes Model 1 (sec) Model 2 (sec) Observed (sec)

4 760.110 765.124 751.207 f
8 380,061 383.378 378.460 fII12 253.378 254.209 252.460 f
16 1 190.036 1 191.380 193.440 J

C-2

C.2 Test N-2

Test Description

For the nested-loop join, the disk response time parameters, Td and Ti,, were varied

while the number of processors was held constant at 8.

Trial 1

Performance Parameters

P 8, jSf -00001, pb = 14, 1? = 96, T, = 10, Tdj = 100, Ti, 20

Table 0.4. Test N-2, Trial 1 Data
S Model (sec) Obse~'ved (sec)

40 70.650 73.104
48 84.711 87.425
56 98.711 100.810
64 112.831 114.436
72 126.892 128.124
80 140.952 140.895
88 155.012 154.205

196 1169.072 1 168.615

Trial 2

Performanice, Parameters

p 8, jsf =.00001, pb = 14, It = 96, 'I' = 10, Id = 150, Ti, 40

ITable 0.5. Test N-2, Trial 2 Data
S Model (sec) Observed (sec)

40 -71.619 75.047
48 85.817 88.660
56 100.014 101.940
64 114.211 115.825
72 128.401 129.550
88 112604 1513725
88 156.804i 157.955
96 171.001 1 172,060

C-3

Tn al 3

Performance Parameters

P = 8, jsf = .00001, Pb = 14, R =192, T,~ = 10, Tdj = 100, Tio 20

Table 0.6. Test N-2, Trial 3 Data
S Model (sec) Observed (sec)

160 563.096 561.395
168 591.216 586.265
176 619.337 614.120
184 647.457 646.575
192 675.578 670.115 j

Trial 4

Performance Parameters

P= 8, jSf = 00001, A~ = 14, R1 = 192, T,~ = 10, Tj = 150, TO0 1 0

Table C.7. Test N-2, Trial 4 Data
S Model (sac) Observed (sec)

160 569.147 565.160
168 597.542 594.335
176 625.937 619.700
184 654.332 647.975

12 682.726 674.620

0C4

C.3? Test B-i

Test Description

The number of nodes used to perform the bucket join function was varicd for fixed

inut relation sizes.

Performance Parameters

jsf =.00001, pb = 25, Td = 35, Ti, = 20, T, = 10

Trial 1 (R =144, S = 144)

Table C.8. Test 13-1, Trial 1 Data

Nodes Model (sec) Observed (sec)

4 207.702 201.155

12 27,510 26.265

116 1 16.795 1 16.555 j

Trial 2 (ft 192, S =192)

Ta-ble C.9. Test B-1, Trial 2 Data,fNodes IModel (scc) -Observed (sec)
4 360.857 - 355.180
8 96.647 93.750

12 45.902 46.613
16__ 27.520 26.847

Trial 3 (R =240, S =240)

Table C.10. Test B-1, Trrial 3 D~ata,
Nodes IModel (see IObsered_(see

4i 556.0,10 548.153

12 68.973 67.485

1_16_1 40.894l 38.960

C-5

C.4 Test B-2

'Test Description

For the bucket join, the disk response time parameters, Td and Ti, were varied N. nile

the number of processors was held constant at 8.

Trrial 1

Performance Parameters

p = S, jsf = .00001, pj = 25,1R = 104, T, = 10,'d~ = 35, Ti0 = 20

Table 0.11 Test B-2, Trial 1 Data,
S Model (sec) Observed (sec)
72 22.805 21.147
s0 24.935 23.100
88 27.064 25.200

96 29.194 27.113
10 31.324 j 29.007

Trial 2

Performance Parameters

P= 8, jsf = 00001, A~ = 25, 11 = 104, T., = 10, Td = 70, Ti,, = 0

Tfable C.12. Trest 13-1, Trial 2 Data,
S Model (sec) Observed (sec)
72 25.047 24.447
80 27.236 26.473
88 29.478 28.567

96 31.694 30.533
104 33.910 32.487

C-6

Trial 3

Performance Parameters

p - 8, jsf - .00001, pb = 25, .R = 240, T, = 10, Td = 35, Ti, = 20

Table C.13. Test B-2, Trial 3 Data
S Model (sec) Observed (sec)

208 127.924 124.400
216 132.536 129.046
224 137.149 133.587
232 141.762 138.053

240 146.374 1142.475

Trial 4

Performance Parameters

p = 8, jsf = .00001, Pb = 25, R = 240, Ts = 10, 'd = 70, Ti, = 40

Table C.14. Test 13-2, Trial 4 Data,
S Model (sec) Observed (sec)

208 133.707 133.227
216 138.419 137.867

224 143.132 142.327
232 147.844 147.007
240 152.556 151.353

C-7

C.5 Test B-3

Test Description

For the bucket join, the~ join selectivity factor (jsfj was varied while the number of

p~rocessors was hield constant at 8. Tests were run with the jsf equal to .001 and the lata

was compared with the data from trials 1 and 3 from test B-2 where the jsf wvas set at

.00001.

Trial I

Performance Parameters

1= 8, jsf = .001, Pb = 25, 1R = 104, T, :- 10, I'd = 35, Ti0 , 20

Table 0.15. Test B-3, Trial 1 Data.
S Model (sec) Observed (sec)
72 25.770 24.093
80 28.230 26.960
88 30.689 28.727

96 33.148 32.513
104 1 35.607 1 33.980 1

Trial 2

Performance Parameters

P = 8- jSf = .001, Pb = 25, It = 240, 2,~ = 10, Tdj = 35, Ti,= 20

Table 0.16. Test 13-3, Trial 2 Data,
S Model (sec) Observed (see)

208 147.692 143.633
216 153,065 155.400-
224 158,438 163.860
232 163.811 165.910

240 169.183 164.880

C.6 Test A-I

Test Description

For the multiple step join operation, the size of one of the relations was varied while

the processor partition size were fixed (join nodes = hash nodes = select nodes = 8).

Performance Parameters

jsf = .00001, Pb = 25, R = 240, T, = 10, Td = 35, Tio = 20

Table C.17. Test M-1, Trial 1 Data
S Model (sec) Observed (sec)
72 14.669 15.153
96 19.070 20.187
120 23.470 23.813
144 27.870 29.053
168 32.270 33.153
192 36.670 37.440
216 41.070 42.867
240 45.471 46.500

C-9

Appendix D. User's Guide

D.1 Functional Overview

This software was developed to run specific parallel relational queries on generated

input relations. It is not an operational relational database system. The functions that

are currently implemented are the single step nested-loop join, the single step bucket join

and one multiple step query which performs a select operation on two input relations and

then perfonms a bucket join on the select result relations.

When the host program is run, it prompts the user for the function to be run, the

numberof nodes to be used and the size of the input relations. The host program then

loads the cube nodes with the proper programs to perform the requested operation and

waits for the operation to complete. The total runtime for the function is then written to

the screen.

D.2 File Summary

Following is a summary of the files required to run this software.

* host.c - When exectuted, host.c prompts the user for the desired query, the number

of nodes to run the query on, and the sizes of the input relations. It then loads the

cube nodes with the appropriate programs and initializes the query. It then receives

the query results from the join nodes. Finally, it writes the total query time to the

screen.

* disk.c - Disk.c is the program that is loaded and run on the disk nodes for all of the

queries. It generates the input relations and then waits for I/O requests from the

other nodes.

* nest.c - Nest.c is the program that is loaded and run on the join nodes for the

single step nested-loop .join query. It performs the nested-loop join utilizing the ring

communication structure and passes the result relation blocks to the host.

* buck.c - Buck.c is the program that is loaded and run on the join nodes for the

single step bucket join query. It performs both the hash processing step and the

D-1

join processing step for the bucket join algorithm and then passes the result relation

blocks to the host.

e sel.c - Sel.c is the program that is loaded and run on the select nodes for the multiple

step algorithm. It reads the input relations from the associated disk node, performs

the select processing, and passes the result to the associated hash node.

e hash.c - Hash.c is the program that is loaded and run on the hash nodes for the

multiple step algorithm. It receives the select result relation from the associated

select node and performs the hash function on each tuple. It then passes the join

buckets blocks to the appropriate join node.

e join.c - Join.c is the program that is loaded and run on the join nodes for the multiple

step query. It receives blocks of tuples from for each relation from the hash nodes

and performs a nested-loop join on the blocks. It passes the results to the host.

D.3 Setting the Parameters

There are a number of parameters that can be set by the user. Some of them are in

the form of user input to system prompts at runtime, while others must be set in the code

before compilation. The following sections discuss the parameters and how they are set.

They also provide some guidance on the selection of the specific values.

D.3.1 Runtime Inputs

• hum-nodes - This parameter specifies the number of nodes to be used to perform the

single step queries. It can be set to 4, 8, 12, or 16. The number of nodes for the

partitions of the multiple step query are hard coded.

* rela.size, relb-size - These parameters specify the number of blocks that are to be

generated for time input relations. The blocks will be spread evenly across all of the

available disk nodes. This parameter, therefore, MUST BE A MULTIPLE OF THE

NUMBER OF DISK NODES!!

D-2

D.3.2 Pre-Compile Parameters

* BLOCK-SIZE - This parameter specifies the number of tuples contained in one input

block. It is set in a define statement at the beginning of each of the files.

* ACCESS-TIME - This parameter specifies the time required to access the first block

on disk for an I/O operation. It is set in a define statement at the beginning of the

disk.c file.

* SEEK-TIME - This parameter specifies the time required to seek one track on disk.

It is set in a define statement at the beginning of the disk.c file

e IOTIME - This parameter specifies the time required to send one block of data from

a disk node to a join node. It is set in a define statment at the beginning of the disk.c

file.

e Join Selectivity Factor (jsf) - Join selectivity specifies the size of the join result rela-

tion as a percentage of the cross product of the two input relations. The jsf is set in

the following statement found near the beginning of the main program of the disk.c

file.

num-joins = (((long)relasize * BLOCKSIZE)) * ((long)relb.size * BLOCKSIZE))

/100000;

The jsf for this statemnt is .00001. It is changed by altering the value of the denoin-

inator of the final division. (i.e. 10000 => .0001)

* MEM-SIZE - This parameter specifies the local memory size for the node where a

file is running. It is set in a define statment at the beginning of each file.

D.4 Compilation Instructions

The following makefile can be used to compile the files needed to run the nested-loop

join, the bucket join, and the multiple step query on the iPSC/1.

D-3

Makefile Parallel Relational Queries on iPSOI I.

CFLAGS= -Alhu -K

app : host nest buck sel disk hash join

host: host.c
cc -Alfu -o host host.c -lx /usr/ipsc/lib/chost.a

nest: nest.o
ld -Ml -o nest /usr/ipsc/lib/LcrtnO.o \

nest.o \
/usr/ipsc/lib/Llibcnode a

buck: buck.o
ld -Ml -o buck /usr/ipsc/lib/LcrtnO.o \

buck.o \
/usr/ipsc/lib/Llibcnode .a

sel: sel.o
ld -Mh -o sek /usr/ipsc/lib/LcrtnO.o\
sel.o \
/usr/ipsc/lib/Libcnode a

disk: disk.o
ld -Nh -o disk /usr/ipsc/lib/LcrtnO.o \

disk.o \
/usr/ipsc/lib/Llibcnode. a

hash: hash.o
ld -Ml -o hash /l'tsr/ipsc/lib/LcrtnO.o \

hash.o \
/usr/ipsc/lib/Llibcnode. a

join: join.o
ld -Nh -o join /usr/ipsc/lib/LcrtnO.o \

join.o \
/usr/ipsc/lib/Llibcnode. a

clean:
rm *.o

D-4

Appendix E. Data Generation

The data generaticn routine produces the join field values for the input relations

based upon a specified join selectivity factor (jsf). The jsf is the size of the join result

relation expressed as a percentage of the cross product of the two input relations. For

example, if the specified jsf equals .00001, and the input relations each contain 100 blocks

with 1 " tuples in each, the cross product relation will have 10000 * 10000 tuples. The joil

result relation, therefore, should have (10000 * 10000) * .00001, or 1000, tuples.

The jsf for the result relation produced by the join of two input relations generated

by the data generation routine, will be approximately equal to that specified by the user.

This is illustrated in Table E.1. This table shows the true selectivity factors that resulted

from the join of input relations of varying sizes with the specified jsf equal to .001. The

table lists the input relation sizes, the theoretical size of the result relation (in tuples), the

observed result relation size, and the actual jsf.

Table E.1. Result Relation Sizes (jsf = .001)
Relation Sizes Theoretical Result Tuples Actual Result Tuples Actual jsf

56 x 104 58240 60552 .00104
64 x 104 66560 74108 .00111
72 x 104 74880 79801 .00111
80 x 104 83200 96126 .00116
88 x 104 91520 95152 .00104
96 :,. 104 99840 113282 .00113
104 x 104 108160 111629 .00103

E- 1

Bibliography

1. Banerjee, Jayanta, et al. "DBC-A Database Computer for Very Large Databases." In
Hurson, A. L, et al., editors, Tutorial: Parallel Architectures for Database Systems,
Washington D. C.: IEEE Computer Society Press, 1989.

2. Boral, Haran and David J. Dewitt. "Applying Data Flow Techniques to Data Base
Machines." In Ilurson, A. R., et al., editors, Tutorial: Parallel Architectures for
Database Systems, Washington D. C.: IEEE Computer Society Press, 1989.

3. Boral, Haran and David J. Dewitt. "Database Machines: An Idea Whose Time has
Passed? A Critique of the Future of Database Machines." In]Iurson, A. R., et al.,
editors, Tutorial: Parallel Architectures for Database Systems, Washington D. C.:
IEEE Computer Society Press, 1989.

4. Cloud, K., et al. Parallel Joins on the Mark III Ilypercube. Technical Report,
Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology, 1989.

5. Dewitt, David J. "DIRECT - A Multiprocessor Organization for Supporting Rela-
tional Database Management Systems." In Iturson, A. R., et al., editors, Tutorial:
Parallel Architectures for Database Systems, Washington D. C.: IEEE Computer So-
ciety Press, 1989.

6. Fox, Geoffrey C., et al. Solving Problems On Concurrent Processors, Volume I. En-
glewood Cliffs, New Jersey 07632: Prentice Hall, 1988.

7. Gardarin, Georges, et al. "SABRE: A Relational Database System for a Multimicro-
processor Machine." In Ilsiao, David K., editor, Advanced Database Machine Archi-
tecture, Englewood Cliffs, New Jersey: Prentice-Ifall Inc., 1983.

8. Hawthorn, Paula B. and David J. DeWitt. "Performance Analysis of Alternative
Database Machine Architectures," IEEE Transactions of Software Engineering, SE-
8(1):61--75 (January 1982).

9. Ilsiao, David K., et al. "The Implementation of a Multibackend Database System
(MDBS): Part I-An Exercise in Database Software Engineering." In Ilsiao, David K.,
editor, Advanced Database Machine Architecture, Englewood Cliffs, New Jersey:
Prentice-Hall Inc., 1983.

10. Ilurson, A.R., et al., editors. Tutorial: Parallel Architectures for Database Systems.
Washington D. C.: IEEE Computer Society Press, 1989.

11. Intel Corporation. iPSC System Overview Manual, Nov 1986.

12. Kearns, Timothy G. A Methodology, Based on Analytical Modeling, For the Design of
Parallel and Distributed Architectures for Relational Database Query Processors. PhD
dissertation, School of Engineering, Air Force Institute of Technology (AU), Wright
Patterson AFB, 011, 1987 (AD-A189 844).

13. Korth, Ifenry F. and Abraham Silberschatz. Database System Concepts. McGraw-Hill
Book Company, 1986.

J3IB-1

14. Lakshmi, Seetha M. and Philip S. Yu. "Limiting Factors of Join Performance on
Parallel Processors." In Proceedings of the IEEE Fifth International Conference on
Data Engineering, Washington D. C.: IEEE Computer Society Press, 1989. ESBN
0-8186-1915-5.

15. Ozkarahan, Esen. Database Machines and Database Management. Englewood Cliffs,
New Jersey: Prentice-Hall, inc., 1986.

16. Schuster, Stewart A., et al. "RAP.2-An Associative Processor for Databases and Its
Applications." In Hurson, A. R., et al., editors, Tutorial: Parallel Architectures for
Database Systems, Washington D. C.: IEEE Computer Society Press, 1989,

17. Strawser, Paula t. A Methodology for Benchmarking Relational Database Machines.

PhD dissertation, Naval Post Graduate School, Monterey, CA, 1984.

18. Ullman, Jeffrey D. Principles of Database Systems (2 Edition). Computer Science
Press, 1982.

19. Xin-Gui, He, et al. "The Implementation of a Multibackend Database System
(MDBS): Part II-The Design of a Prototype MDBS." In Hsiao, David K., editor,
Advanced Database Machine Architecture, Englewood Cliffs, New Jersey: Prentice-
Hall Inc., 1983.

BIB-2

I Form Approved
REPORT DO UMENTATION PAGE OMB No. 0704-0188

Spublibc rport oo Ourdnfor tht colletion, of infrmzton is estimated to ae q i hour per r~tsporise. inldinq teim fo iimrin tructns vorchmq eoting datat surce,

Davisil, h.vA, ' tc 1204. Ari11gt~fl. %' 2O.32..rdt h Of- f MdmnqMy ent .mrd Eludlet, 0i QhA ~mn rj~t(~ 115), Ara~t pgt.f. OC 205O3

1. AGENCY USE ONLY (Leave blak, 2.AE1.RPOTTP N DATES COVERED1 I Decmber 1990 I Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN EMPIRICAL EVALUATION OF ANALYTICAL MODELS FOR PAR-I
ALLEL AtELATIONAL DATABASE QUERIES

6. AUTHOR(S)

Mark C. Denham, Capt, USAF

Air Force Institute of Technology, WPAFB OH 45433-6583 REP~ORT NUMBER

VZ:7 I 2, -AFIT/GCs/ENG/90D-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT Wa.ximum 200 words)
This paper documents the design and implemnwitation of three parallel join algorithms to be used in the verifi-
cation of analytical models developed by Kearns. Kearns developed a set of analytical models for a variety of
relational database queries. These models serve as tools for the design of parallel relational database systems.
Each of Kearns' models is classified as either single step or multiple step. The single step models reflect queries
that require only one operation while the multiple step models reflect queries that require multiple operations.

Treparallel join algorithms were implemented based upon Kearns' models. Two are based upon single step
join models and one is based upon a multiple step join model. They are implemented on an Intel iPSC/1 parallel
computer. The single step join algorithms include the parallel nested-loop join and the bucket (or hash) join.
The multiple step algorithm that was implemented is a pipelined version of the bucket join. The results show
that within the constraints of the test case run, the three models are all at least accurate to within about 8.5
% and they should prove useful in the design of parallel relational database systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Parallel Processing, Data Bases, Distributed Data Processing, Hypercube15
16. PRICE CODE

17. SECURITh CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATICN OF ABSTRACT
OF REPORT oF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 st~ndard Form 298 (Rev 2-89)

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Reprt Date Fu i publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Reort and Dates Covered. DOD See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If Statements on Technical
applicable, enter inclusive report dates (e.g. 10 Documents."
Jun 87 -30 Jun 88). DOE See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - bee Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more thin one volume, Block 12b. Distribution Code,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified document,; enter the title classification DOE - Enter DOE distribution categories
in parentheses, from the Standard Distribution for

Block 5. Fundina Numbers, To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit ntumber(s) Use the NTIS - Leave blank.

following labels:

C Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G Grant TA Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the resear.h, or credited with the content of the
report. If editor or compiler, this sliould follow
the name(s) Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s)-and
Addres~(es). Self-explanatory. Bloc 16. Price Code Enter appropriate price

Block 8. Pei forming Orcanizalion Report code (NTIS only)
Number. Enter the unique alphanumeric report
number(s)assined bytheorgaizaton Blocks 17.-19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring!Monitorirg gen(v Names) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

Block 10. Spgnsori__q/MonitorinqcAgency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of. ; To be abstract. Enter either UL (unlimited) or SAR (same
published in.. . When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standa.d Form 298 Back (Rev 2-89)

*US pO l9U('73271

