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1. Introduction

Maximum likelihood estimates of the parameters in Gaussian time series maximize
the likelihood function

(1.1) L(8) = (2n)" 72| 2| exp {—%y'z-ly},

where y is the vector of observations, £y =0, fyy’' = ¥ = X(8). Exact maximum likeli-
hood estimation is complicated because even for standard models the needed determinants
and inverses are either not known in closed forms or, if they are known, they involve com-
plicated parametric functions. Thus only for the first-order autoregressive model are the
explicitly forms of the maximum likelihood estimators of its two parameters known (Hasza,
1980).

One procedure that is often used is to operate mathematically with the likelihood
function, so that it can be evaluated numerically at any point of the parameter space,
and then to optimize the function by varying values of the parameters, using an efficient
computer program. For example, the IMSL Library (1979) package of Fortran subroutines
uses a “modified steepest descent algorithm” to compute estimates of the parameters of
ARIMA models; the statistical package BMDP (1985) uses “Gauss-Marquardt methods”
to perform linear and nonlinear estimations. One idea in this area by Box and Jenkins
(1976) was the “backcasting” procedure to evaluate the approximate likelihood function
in some time series models. Useful suggestions have been the Cholesky decomposition of
the covariance matrix and “Woodbury’s formula,” as in Phadke and Kedem (1978), for
example. Ansley (1979) studied several approaches and proposed a new algorithm; he
reviewed earlier work by Newbold (1974), Dent (1977), Ali (1977), Osborn (1977), and
Hillmer and Tiao (1979). He showed the equivalence of the proposals by Newbold (1974)
and Dent (1977), and related this approach to Ali (1977). See also Nicholls and Hall
(1979).

Another approach is to derive an iterative procedure. Some iterative procedures use
the likelihood equations deduced by setting the derivatives of the likelihood function equal
to 0 to obtain a procedure of the form 9, = g(oﬂ_l) for some function g depending on ¥y,
where 5;, i = 1,2, ... are successive numerical values of the estimates, with 8o as a starting
value. Anderson (1975, 1977) considered several procedures for exact maximum likelihood
estimation, and some approximations. Godolphin and de Gooijer (1982) presented a pro-
cedure for the first-ordu. .aoving average model. In general, deriving iterative procedures
tends to involve more mathematical elaborations of, and more knowledge about the like-

lihood function, than the approaches mentioned in the previous paragraph. A general
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iterative procedure for estimation purposes is the so-called “EM-algorithm” (Dempster, et
al., 1977), proposed initially for some missing value statistical problems; in our context
the initial values can be thought of as missing values, and when applicable the EM algo-
rithm will suggest a sequence of conditional expectation-optimization steps for the iterative
computation of the maximum likelihood estimates. Another approach involves Kalman fil-
tering technignes; see for example, Harvey (1981). The connection of the present work
with the EM-algorithm and with Kalman filtering will be considered Lriefly in Section 8.
The purpose of this paper is to consider in detail iterative procedures for exact max--
imum likelihood estimation in the first-order Gaussian moving average model. Section 2
introduces the model; Section 3 deals in general with iterative procedures, and the spe-
cific procedures are derived in Section 4. Sections 5, 6, and 7 contain the evaluations of
quadratic forms and traces in the time and frequency domains. Section 8 contains various
comments on the procedures. Section 9 contains evaluations of the numbers of operations
needed to compute certain traces and quadratic forms. Finally Section 10 considers the

approach of Box and Jenkins (1976) to the estimation problem.

2. The First-Order Moving Average Model

The Gaussian moving average process of order 1 with mean 0, denoted here by MA(1),
is defined by

(2.1) yr =us+aug_y, t=...,—-1,0,1,...,

where the y; are observable, the u; are unobservable independent normal random variables
with €uy = 0, Eu? = 0%, 0 < 0? < 00, and a and o? are parameters. The Gaussian moving
average is a stationary stochastic process for any value of a.

The autocovariance (or covariance) sequence of the process is

0, = 0%(1+ a?), s=0,
(2.2) = oo, Is| =1,
=0, ls| > 1.

The autocorrelation (or correlation) sequence of the process is

Ps = 1a s = 01
(2.3) =18y, =1,
=0, |s] > 1.




For convenience, we write p for p;. The covariance sequence satisties the Fourier inversion

formula

(2.4) oy = /ﬂ e F(A)dA,

-7

where f(A) is the spectral density of the process, given by
o i 2 o’ 2

(2.5) f(A) = —'let +a| = —(14+a" +2acosA), —r< A<
27 27

If y1,...,yr is a sample from (2.1), ¥y = (y1,..-,y7) has a multivariate normal
distribution with expectation £y = 0 and covariance matrix fyy’ = ¥ = (0)i=j1)-

Let us introduce the T x T matrices P and R (the correlation matrix) defined by
(2.6) Y =0*P=d*(1+*)R =0ooR.

We note that ¥, P, and R can be written as linear combinations of the identity matrix I
and the matrix G that is symumetric, has 1’s along the diagonals immediately above and

below the main diagonal, and 0’s elsewhere. In this notation

(2.7) X =00l +0,G=7*1+a))I +0%aG,
(2.8) P =(1+4e>I+aG,
a
2. =1 = .
(2.9) R +1+a'~’G I+ oG

For any a and T, ¥, P, and R are positive definite, the first because we also assume
that 2 > 0. As a function of p, R is positive definite for —a < p < a, where a =
1/{2cos[n /(T + 1)]}; see Anderson and Takemura (1986).

The likelihood function can be written as a function of a and o2 as

1
(2.10) L*(a,0%) = (27)"T/2| B /2 exp {'av'z-‘v}
1
(2.11) = (27)" T/ (o?)"T/2|P|7 2 exp {-—202 y'P-ly} :

Instead of operating with (2.11) for purposes of maximum likelihood estimation, we

can separate the analysis into two parts: we maximize (2.11) with respect to o2 at

~ 1 -
(2.12) 7' = Zy'P7ly,

3




and then substitute #2 = &2 in (2.11) to derive the “concentrated likelihood function,”

which is a constant times the square root of

1

2.13 n*(a) = .
(213) )= PPy

Since p = a/(1+a?) = (1/a)/[1 +(1/a)?], the likelihood function attains all possible
values on the set for which |a| < 1, 0 < 02 < co. Hence, without loss of generality we
restrict attentjon to this set. Note that |a| < 1 is the condition for invertibility, that is, to
express (2.1) as an infinite autoregression.

In terms of oy and p the likelihood function can be written as
1
(2.14) L(oo,p) = (27)"T/2(00)"T/2|R|7 2 exp {‘:,—y'R-ly} '
209

If the analysis is separated into two parts, we maximize (2.14) with respect to gy at

~ 1 _
(2.15) Go=zy' Ry,

and then maximize with respect to p the function

1
|R|(yR'y)T

(2.16) n(p)

Note that n*(a) = n[p(a)], where p(a) = a/(1 + a?).
For |a] < 1 and |p| < ; the following three pairs provide alternative equivalent

parametrizations for (2.1): a and o2, 09 and 0,, p and 0¢. For example,

_1—-/1—4(01/00)? _ 1—-+/1—4p2

(2.17) a= 2(01700) r

Hence, for purposes of maximum likelihood estimation we can operate with (2.10) as a
function of 0o and oy, with (2.11) as a function of a and 02, or with (2.14) as a function
of p and 0y. Similarly, in (2.13) we operate with a function of a, and in (2.16) with a
function of p. The relationship between the two parametrizations will be studied in more
detail in Section 3.

For further details about the moving average model see, for example, Anderson (1971)
or Anderson and Mentz (1980).




3. Some Approaches to the Iterative Estimation by Maximum Likelihood

The method of maximum likelihood proposes to estimate the parameters by maxi-
mizing (2.10), (2.11) or (2.14); alternatively, we can use (2.12) and (2.13). or (2.13) and
(2.16). A basic difficulty comes from the complicated nature of the parametric functions

that are involved. Let Ar = |P|; then as functions of a and p we have for |a| < 1.

1 — o2(T+1)
3.1 Ar= —m————
(3.1) T T3
(T/2)
1 T+1 .
9 = _ ] —
(3.2) = o7 | (2j+1>(1 4p?y. T=01.....

respectively. These results can be verified by showing that At satisfies the homogeneous

difference equation

Ar—(1+e®)Ar_ +a?Ar_p =0, T=2.3,...,
with Ag =1, A; = (1 — a*)/(1 — 0?). See Anderson (1971), Section 6.7, for example. If
p' denotes the 7, j-th component of P!, then

A1 AT—; . .
21875 )

(3.3) Pl = (may Tz,

so that as a function of a,

(1 _ 02‘)(1 _ a2(T—j+1))

(3.4 P = T )

See Shaman (1969).

3.1. Four aspects of maximum likelihood estimation
I. Likelihood vs. concentrated likelihood functions

As indicated in Section 2, operating with (2.10) cr (2.11) in terms of o and o? is
mathematically equivalent to operating with (2.12) and with the concentrated likelihood
function or with (2.13); similarly, operating with (2.14) in terms of 0o and p is mathemat-
ically equivalent to operating with (2.15) and (2.16), in the sense that the solutions are
the same. However, for the same set of parameters, the estimating equations are not the

same for the likelihood and concentrated likelihood functions.
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I1. @ and 0% vs. p and oy

We have a choice of par~meters to consider. As indicated in Section 2, the three pairs
that we discussed provide equivalent alternative parametrizations for the model (2.1). Since
the maximum likelihood estimation procedure is invariant under such t;ype of transforma-
tions of the parameters. it follows that from a mathematical point of view it is immaterial
with which set we choose to operate. However, different sets of parameters may lead to

different estimating equations.

III. Time vs. frequency domains

We presented our resvits so far (except for (2.4) and (2.5)) in the time domain. We
can consider the effect of a Fourier transforma.ion. Let K be the orthogonal T x T matrix

with components

2 . mk i
3.5 k=1,....T,
(3.5) \/T+1smT+1’ s

and let D be the diagonal matrix with diagonal elements

(3.6) dj=2cosT+1, j=1,...,T
Then
(3.7) K'K=KK' =1, K'GK = D.

We have 2 way to diagonalize the matrix G appearing in (2.7), (2.8). and (2.9). If y = Kz,
then z = K'y, that is,

7 7jk
' = in = —, ) =1,...,T;
(3.8) 2 \/T+1§k=jlyksxn1,+1 j

then z i1s multivariate normal with £z = 0 and
(3.9) £zz' = ool + 01D = oo(I + pD).

This then provides an alternative approach that we may call a “frequency domain
approach”: any expression in terms of G can be translated into an expression in terms
of D, and any method formally presented in terms of y can be translated into a method

presented in terms of z.




IV. Scoring vs. N :wton-Raphson

To maximize tlie L or n functions (or the L* or n* functions) we have available two

procedures based on a Taylor’s expansion. We illustrate this with
(3.10) logn(p) = —log |R| — T'log(y' R 'y)

coming from (2.16). The expansion of its derivative with respuct to p around a value pg ic

N d d & |
(3.11) d—logn(p)= a—loxn(p) +(p—po)d—510gn(p) = R(p. po).
P P p=po p p=pc
where R(p. po) is a remainder. The estimating equation is obtained by setting this deriva-
tive equal to C.
The Newton-Raphson procedure consists in replacing the remainder by 0 and sett'ng

p =pY and py = p\*~1). The iterative procedure is then

(3.12) {—5;; logn(m} § = Zlegnlo) + {_j‘%k,gn(p)} 51,
where all derivatives are evaluated at p = pU~b,

In the method of scoring the second derivative is replaced by its expectation, where
the random vector y is taken with distribution having parameter p = po.

About these alternative approaches we note that the dichotomies likelihood vs. con-
centrated likelihood functions and scoring vs. Newton-Raphson procedures, arise from
theoretical considerations. The other dichotomics, o and 0% vs. p and o, and time vs.
frequency domains, are motivated on computational grounds.

From this analysis it follows that to estimate the parameters of the model (2.1) by
maximum likelihood under normality, we have sixteen alternative aprproaches, which may
lead to different iterative procedures. Some of these have already been presented in the
literature, as will be noted in Section 4.

Anderson (1977) emphasized these dichotomies, while operating with the likelihood

function.

3.2. Relztions between two parametrizations
Since oo = (1 + a?)o? = o¢(a,0?), say, and p = a/(1 + a?®) = p(a), say,

(3.13) L*(a,0?) = Llsg(a,0?), p'a)).
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In L(op,p) the range of p is —a < p < a, where a = 1/{2cos [ﬂ’/(T + 1)J } A maximum
of L(oy, p) occurs at 5o > 0 and —a < p < a (with probability 1). These values satisfy the

likelihood equations

8 log L(oo,p) _

3.
(3.14) Boq

0,

0 log L(ao,p) _

(3.15) 5

0.

For T = 2 the solution to (3.14), (3.15) is unique, but for T > 2 there may be multiple
solutions to (3.14), (3.15). The maximum likelihood estimates &g, p are the solution that
makes L{0g, p) largest within the range 09 >0, —a<p<a.

In L*(a.0?) the range of o is —1 < a < 1, and (with probability 1) the maximum

occurs at —1 < & < 1 and 5% > 0. These values satisfy the derivative equations

9 log L*(a,0?) _ 0 log L(a0, p) Bog + 0 log L(oo, p) ﬁ;_)

3.16
( ) da dog Ja dp da
8 log L(oo, p) , Olog L(gq,p) 1-a?
= - =0,
9oy 2a0” + dp (14+c¢ )? ’
(3.17) dlog L*(a,0?) 9 log L(ay, p) doy
) 902 - 8oy 9o?
_ Olog L(oo, p) 2\ _
= Bo 1+a®)=0.

If (3.14) is solved for oo = Go(p) as given in (2.15) and substituted back into (3.15),

we obtain % times

=0.

' p-1 -1
(3.18) Eﬂ‘Lg_’L(f’_)z_trR-xG+TyR, (Zfi v
dp YRy

If (3.17) is solved for 02 = %(a) and substituted back into (3.16), we obtain 3 times

(3.19) 11_%_1_) _ (_trn—m 7Y
a

'R'GR 'y 1-0?

le-—ly (1+a2)2 -
where R = I + p(a)G. Note that (3.19) has the solutions a = 1 and —1. Any other
solution a* to (3.19) yields a solution p* = p(a*) to (3.18). However, a solution p* to
(3.18) vields a solution to (3.19) only if —% < p* < ,1—, because then p* = p(a) can be

. 1—=4+/1-4p*2

= ’

2p

solved for the real root




which lies in the interval [—1,1].

Consider

(3.20) n(p) = !

IRy R y)T 15,1+ pdy) (z;‘;l %)T
C[mhasea)
[Z;le z} Hs#l(l + Pds)]T

As p — —1/dp = 1/d; = a, the numerator approaches 0 and the denominator approaches

3,

z2T; thus n(p) — 0 as p — +a. The derivative of log n(p) is

d log n(p) ~  df
3.21
( ) Zl-*—pdt Z (14 pd)?

Zt 1 1+pd, t=
Setting (3.21) to 0 yxelds
dtzt d, z
3.22 - =0

Multiplication by |R|? = H (1 + pd,)* gives

t=1

T T
(3.23) TY 20d [](1+pdr)? =D ds [J(1+ pdy) Zz, H(1 + pd,) = 0.

t=1 rit s=1  g#s t=1
Note |R|? is of degree 2T — 2 if T is odd and 27T if T is even (because dir+1y/2 =0for T
odd).

If T is even, the first polynomial in (3.23) is

T
(3.24) T z2d, [[(1 + pd.)?
r#£t

t=1

[y

p o
2
[22(1 = pde)? = 2hpr(1 + pde)?)d: T (1 - p22)?

1 r=)
rytt

[

=T

Ll
U

T

2
[zf - z%’+1—t ~ 2pdy(z] + z%’+l—t) +(z - 2%‘+1-:)P2d3] d, H(1 - p*d2)?
1 r=1
rytt

I
~
[

~
]

T
2 2 2 2
2~ 2T41-t felk p2(T—1) _:H—vz:2 2y + 27414 IGI? pzT-a +...

I
~
[

t=1 di t=1 d?-
T T
=T{Zi§- p?T-2 —22-2—?— p27'3+...}
d, — d}

t=1




since d; £ 0, t = 1,...,T. For T even, |G| = (—1)7/2. If T is odd, the first polynomial is

T-1
5 5
(3.25) TY [zzz(l — pdi)? — 2y (1 + Pdt)z]dt [T - e
t=1 r;t
=T Y (e = #hpa) = 20di(3E + )
t=1
= '
+p2di (2] - 3%‘+1-z)} dy H (1= p*d7)?
:::
Tp* T2 Z(z — Zrp1o)d H di +
St
2T 4T Z H d2 +
=£—%— i
2T 4T Z (T+ 1) +
If T is even, the first factor in the second term is
(3.26) Zd T11 + edy) Z (4,1~ pdy) - d,(1 + pd,)] [[a-ed)
s=1 q#s a=1 q=1
q¥%s

—23 s T
=1 g=1
gt

= T|G|pT ™! + coefficient x pT 34 ...

= (—I)J%TpT'1 + coefficient x pT =3 4+ ... .

If T is odd, the first factor in the second term is

(3.27) —i[d (1 — pd,) ~ dy(1 + pd, )] H(1— p*d2)
—zz pd? H(1 - p*d%)
10




T2
=(T-1) ]:[(—dg)pT'2 + coefficient x pT ™% +...
s=1
= (- 1)_"(T—1)T+1 T-2 4 coefficient x pT % + ...

1 T2 -1 . -
= (—1)22_l 5 pT=2 4 coefficient x p? ~* + ..

We use the fact that HWEZ‘F d; is the coefficient of pT~Vin |R|.

If T is even, the second factor is

E‘,,H (14 pd,) =

t=1 r#t

]

[ 21— pdy) + Fra—(1+ pd)| [T = pdD)

r=1
ryt

NG M ol

2

(2 + #hnce = pdi(eF = haa-a)] [L - AdD)
r=1
r#e

-
I
ot

T

(Zt ”‘zT+1 t)dtH( d2)PT !

r#t
z

(28 + 2hpa =) [J(=dDp™ 7 +

H
MNH

-
Il

+
M

=1 -
T
2 2 _ 22
=§:‘ T+1t|G|pT1
d;
t=1

£ 22+ 25y, T
— 2o Pt iG =24
E 7 Gl p" ™"+

t=1

oS

T 2 T
F4 - T z _a
=('—1) E —dt:pTI—(—l)g E zng‘+....
t=1

If T is odd, the second factor is

T-a -1

=z 2
(3.29) (22 + hy1ce = pdu(a? — as0)] TIA - 22D

=1 it

T 1 T 1

+2hp H(l—p2d2>—H( d})ehp o7

T+1 -

4. =(-1)F + z?_;lp 1y

11




For T even, the left-hand side of (3.23) is

T
(3.30) Z

For T odd, the left~hand side of (3.23) is

2T3

-El‘:l“w

T —1)(T + 1)? _
_( )i )% P2 T34

(3.31) y hy

With probability 1 the derivative equation is of degree 27 — 3 for every T.

The coefficients of the polynomial in p in (3.23) are linear functions of 27....,2%,
which are independent x? variables, hence the set of variables has a density. The roots
being simple is the complement to some roots being multiple. The latter event is described
by some algebraic relations among the coefficients and hence among 2, ..., z%4. The event
has Lebesgue measure zero and hence probability zero. Hence, with probability 1 the
degree of the polynomial equation (3.23) is odd, the number of real roots is odd, and they
are distinct.

At each root the derivative is 0; hence, a local maximum or minimum occurs at the
point; further, n(p) > 0 and n(p) — 0 as p — *xa. Thus the number of maxima is one
more than the number of minima.

The relative maxima of n(p) occur for p € (—a,a). The relative maxima of

(3.32) n*(a) =n (1 :02)

occur for a € [-1,1]. Let p; < ... < pk be the values of p for which maxima occur. The
probability that one of these values is :i:-;— is 0 (by the above argument); those events can
be ignored. If —% <pj< 3

C1-y/1-4
(3.33) f i

2pJ

is real and yields a relative maximum of n*(a). If |p;| > 3, the solution to (3.33) is not
real and hence does not correspond to a maximum of n*(a). Hence, the number of maxima
with respect to a can be smaller than with respect to p. Anderson and Takemura (1986)
showed that the root @ = 1 yields a relative maximum of n*(«a) if dlog n(p)/dp > 0 at
p = -;— (Altematively, the root @ = —1 yields a relative maximum if the derivative is

negative at p = -—-2-
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Let n; < -+ < nK—1 be the values of p for which minima of n(p) occur. Then
(3.34) pr<m<--<nr-1 < pK-

-y < % < pi for some k(k =2,...,K), thendn/dp>0at p = % and there is a relative
maximum of n*(a) at o = 1. If pr_y < 5 < nx then dn/dp <0 at p = 7 and o = 1 gives
a minimurm.

Let a; < -+- < aj be the values of a giving relative maxima of n*(a). Each satisfies
(3.33) except possibly a; = —1 and/or ay = 1. The last may occur only if px > % Thus
J < K. The maximum likelihood estimate of o is that one of a1,...,a  for which n*(a;)
1s greatest.

The maximum likelihood estimate of p is that one of py,...,px for which n(p;) is
greatest. If that p; is in (—3,3), then the maximum likelihood estimate of  is given
by (3.33) for that p,. If the maximizing p; is outside -%, 3) (and hence p; < —1or
PK > %), the maximizing a may be a solution to (3.33) for another p; or it may be —1 or
1. If n(}) > n(p;) for every p; € (—%,%) and n(1) > n(—%) the maximizing o is a = 1; if
n(—1) > n(p;) for every p; € (—%,3) and n(—3) > n(3), the maximizing a is & = —1. If
n(1) < n(p;) and n(—3) < n(p;) for some j, then the maximizing o is (3.33) for some j.

Anderson and Takemura (1986) evaluated the probability that a = 1 and alternatively
a = —1 yield relative maxima. The probability that @ = 1 or & = —1 is, of course, less

than the probability that a relative maximum occurs at & = 1 or a = —1, respectively.

4. Iterative Procedures Derived from Newton-Raphson and Scoring Methods

In this section we derive several iterative procedures to estimate the parameters of
model (2.1), with emphasis on the estimation of p. After some preliminaries and the

introduction of some notation, we operate successively in the time and frequency domains.

4.1. Notation and general rules

To estimate by maximum likelihood the covariances of the moving average part and the
coefficients of the autoregressive part of an ARMA(p,q) model, Anderson (1977), Section
4.1, derived the equations that in general correspond to the iterative procedures in the

Gaussian case. In the case of a MA(q) mod<] these equations are
(4.1) Aic1(8i — 8icy) = Bimy,
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where &; = Ggi),ﬁii), e ,Ef,i))’ is the vector of estimated covariances at step 1, A isan

estimate of the information matrix for the covariances, and §;_; is composed of estimates

of 8logL/doj, j =0,1,...,q. From (4.1) we deduce the iterative procedure
(4.2) Ai10; =81+ Ai1Fi_1 =Ti,
that for the MA(1) mocel is written in terms of components as follows:
" (50 ) () ()
xi s ) e ) T\

Solving for Ggi) and Eli) and using p\V = '&gi) / 3((,‘), we obtain the iterative procedure
I B TS B s

The needed A;; and r; can be evaluated by using the scoring or Newton-Raphson
procedures, as will be shown next.

The derivation of these procedures will lead to certain quadratic forms and traces that
we now consider. We use the fact that if A and B are square matrices with B nonsingular,

then AB = BA implies that AB™! = B! A. We use this result with A = G and B = R,
for example. From (2.9) we use R = I + pG, and hence,

(4.5) RG = (I 4+ pG)G =G + pG*? = G(I + pG) = GR.
We now define a set of quadratic forms by
(4.6) gix =y R-UVGry, j=-1,0,1,...; k=0,1,2,...,
and a set of traces by
(4.7) tig =tr RIGF, j,k=0,1,2,... .
We note that ¢;i is a random variable, a function of y, and that

(4.8) Egir = EY R™UTVGH y = £ tr y R-UTVGry = tr R-UTV G Eyy/'
=tr RUWG' T = tr UG oyR= 0o tr RG*
= ootjk,
where we used (2.6) and the fact that G and R commute.
In our operations we shall find quadratic forms like ' R™’ GR 'y, v R"'GR™' Gy,

etc., and traces like tr R™2G, tr R"'GR™, etc., so that frequent use of this commutative
property will be made.
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4.2. Time domain considerations

4.2.1, Procedures based on the likelihood function

Iterative Procedure 1 (Time, Likelihood Function, Scoring)

In Anderson (1977) Section 4.2, it is shown that (4.1) above leads to a system that in
the case of a MA(1) model is
tr £7250 +tr 7265 =y’ Sy,
(4.9)
tr TTLGEEY + e B7LGEN G = ' 2L GE .

These equations can also be written with R instead of X7, using the fact that ¥ = oy R,

and o5 2 cancelled throughout. We can then write the resulting linear system as

Hqi-1) Hi-1) ~(4) ~i~1)

t 4 o 910
(#10) (»(20 1) f:'l 1)) ( ?)) N (»{ 1))

| ond ) 1=

t2 t22 ! 911
Solving this system for & a ") and a(') and using the definition of (¥, we obtain the following
iterative procedure:

(411) {E(' 1)6(' -1) ,t‘(' 1)6(1‘1 1)}5(:) 2’( 1)6(1—1) 2‘(: 1)6(1'0 1)-

Iterative Procedure 2 (Time, Likelihood Function, Newton-Raphson)
Equations (4.2) in Anderson (1975) become, in the case of a MA(1) model,
( '3y - l tr £ )"(')
(4.12) (y 22GY Ly~ 5 tr 2,_1G) 80 =Sy Ty —tr 71,
(y’gi—-—llGE;_-?ly - -;—tr 2";’—11(;'2:—]1)3(()‘)
- (y'!?‘:_‘l GELGE Ly~ %tr TAGED G) 57"
= -—y Z‘,‘_IIGE. WY —tr IlG.

Since G commuies with X (X = oo R), it also commutes with X ~!. Introducing the

notation
(4'13) q;k — ylz—(j+1)ka, t;k — tr E—J'Gk’
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so that £g}, = t};, we write (4.12) in matrix form as

3k>
%;gi—l) ‘/i;(li—l) _ %’t‘;gi—l)> <agx)> ~ (
i—1)  ~(i-1 (i—1 ~G) |
gg' ) 422 '~ %tzg' ) 01‘)

;j*(i—l) _
20 10
(4.14) (
Since X! appears in the coeflicients of the system (4.12) raised to different powers,

~x(1—1)
92 -

0| 1
2
|
e
faw
|
A
) v
{
)
-
S———"

substitution of X' = o9 R will not produce the cancellation of all powers of o, !. Hence, we
do not write an expression for p as we did in Iterative Procedure 1, but leave the iterations

to be carried out for g¢ and o, as indicated by (4.14).
4.2.2. Procedures based on the concentrated likelihood function

Iterative Procedure 3 (Time, Concentrated Likelihood Function, Scoring)

We operate with (3.10), that is,

(4.15) log n(p) = —log I + pG| — Tlog {y'(I + pG) 'y}.
We have
d : le—l GR—ly
4.1 — = - '
(4.16) o log n(p) tr R G+T VR 'y

__(tr R'G)y'R'y)-Ty'R'GR™ 'y
¥Ry

= 0.
To apply the scoring method we use the fact that
(4.17) I=R'R=R'I+pG)=R"+pR'G,
so that
(418) trR'G=tr RTIG(R'+pR'G)=tr RT'GR™ ' +ptr RT'GR™'G.
Substitution in the numerator of (4.16) gives the estimating equation

Gﬁr—l) ny'ﬁfjly)ﬁ‘)
=Ty'R;\GR )y -tr R,GR'(v'R\y),

(4.19)  tr B!

t—1
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or, in the notation introduced in (4.6) and (4.7),

t—1 —1 ] i —1 1—1) {1—1
(4.20) fr oo A =Tan " — T Vg -

Iterative Procedure 4 (Time, Concentrated Likelihood Function, Scoring)

To derive Iterative Procedure 3 we used (4.17). Another approach is to go back tg
the general structure given by (3.12). The first derivative of log n(p) with respect to p is
given by (4.16), and the second derivative is

(4.21) di;_ log n(p)
—2y'RT'GRT'GR'y(y'R"'y) + (y' R'GR 'y)*
(¥'R7'y)’
_tr R I!'GR'G(¥'R'y)? -2TyRT'GR'GR™ 'y(y R"'y) + T(¥ R"'GR'y)®
(v'R™y) '

=tr RR'GR™'G+T

The method of scoring consists in replacing (4.21) by its expected value; instead, we
can replace each quadratic form in (4.21) by its expected value, using (4.8). In the notation
of (4.6) and (4.17) this is
—20’0t2200T + (Gotu )2 t%l

= —tg + 5.
(00T)? T

(4.22) t22 +T
Finally, Iterative Procedure 4 to estimate p is given by

. i 1 [~ io12) i PN
429) 75 T - 2 [fae] 0 = 1) -V

T
~i-1) [26i-1) _ 1 [26-01%] -
+ doo 123} "T[tn ] P .

Iterative Procedure 5 (Time, Concentrated Likelihood Function, Newton-Raphson)

The iterative procedure is (3.12). From (4.16)

d e _ _ _
(4.24) (y’R“‘y)zd—p-IOg n(p) = T(y R'GR'y)(y'R™'y) - tr R'G(y'R'y)’
= T'q11900 — t11950-
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From (4.21)

- d?
(4.25) -(y'R ly)2 log n(p) = 2T¢22900 — t22g00 — Tdi:-
It follows that the iterative procedure for p can be written as
: 2 12 .
wae)  {orde ) - ] -7 [a7] o

. 2
-1 -1 1 -1
=Tq gk - BTV (o)

i-1 1 1) [~i-1)]2 i—1)]2 i
#{omar s -t ] - [a) e

4.3. Frequency domain considerations

In this section we write all quadratic forms and traces appearing in the iterative
procedures presented in Section 4.2., in terms of the elements introduced in paragraph III
of Section 3.

From (3.7) we have I = KK' and G = KDK', where D is diagonal with diagonal
elements d; = 2 cos[rj /(T +1)},7 =1,2,...,T. Then

(4.27) R=1+pG=KK' +pKDK' = K(I + pD)K',

so that R is also diagonalized by the orthogonal matrix K, and I + pD has diagonal
elements 1 + 2p cos[rj /(T + 1)]. It then follows that

(4.28) R~ =K +pD)*K’, G*=KD°K', s=0,1,... .

Putting these results together we find that the quadratic forms introduced in (4.6)
can be written in terms of the z; defined in (3.8) as

(4.29) gix =y R UGy =y K(I + pD)"U*VK'KD*K'y
= (K'y)(I + pD)"*VD*(K'y) = 2'(I + pD) UV D*z

d* 2 :
=Zlmﬁzu Jj=-10,1,...; k=0,1,...,
=

while the traces introduced in (4.7) become

(4.30) tix =tt R7G* = tr K(I + pD)'G*K'
=tr(I+pD)'D*K'K = tr (I + pD)™’ D*
T dk

= -—-;——. ] =0,1,....
§(1+pd))’ J’k Y
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For an interesting connection of these results with the analysis of variance see the
paper by Speed (1987) and the comments by Anderson (1987).

5. Evaluation of Quadratic Forms in the Time Domain

5.1. Introduction

In this section, we develop some algebraic procedures for the evaluation of quadratic
forms. In Section 9 we compare some of these from the point of view of efficient computa-
tion.

We first show that all quadratic forms g;x used in Section 4. where j > k. can be
expressed as functions of ¢jo = ¥’ R~ 'y, In effect, since R = I + pG, we can substitute
G = p~'(R —I) in gj&, provided p # 0, to obtain

(51) gjk = yIR—(j+l)ka — p—kle—(j+l)(R _ I)ky
k
: k
_ =k p~(j+1) _1\k—as s
=p ¥R {éo( 1) <5>R }y

k
k .
- —k __1Yk—a rpp—(3—-8+1)
p s§=0( 1) <s>yR Yy
k k
=p7") (—1)“’<s)qj-,,o, izk

8=0

For example,

1 1 1
(5.2) q11 = ;(‘100 - q10), g21 = ;(‘ho - q20), Q22 = ;5(400 — 2q10 + 920)-

These relations can be used to express the iterative procedures of Section 4 as functions

of the various traces and of the gjo. For example, in Iterative Procedure 1, (4.11) becomes

(53) {[p R + BTV BT

~;(2- 1)21-?0 1) _ [4. 1)”(« 1)+"(- 1)}641:0 H

while in Iterative Procedure 3, (4.20) becomes

G AR = [ - T
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Let us now define

(5.5) z =Ry, v=R 'z
Then
(5.6) g0=yR'y=9y'z, qo=y'R’y=2x'z, g0=y'R°y=1y'v.

and we see that it suffices to solve for & in the linear system
(5.7) y = Rz,

and having done that to solve for v the linear system

(5.8) z = Rv.

Once y, ., and v are available, all quadratic forms appearing in the iterative pro-
cedures defined in Section 4 can be easily expressed in terms of the components of these

vectors. In effect,

T T T
(5.9) oo =Y wizi, Qo= 2, g0 =) Tivi,
=1 1=1

1=1

while
T-1
(5.10) am =y R’Gy=y'R'GR'y=2'Gz =2} zizi1,
=1
T-1
(5.11) g1 =Y R Gy =2'R'Gz =v'Gz = Z(x.’-nv.’ + Tivig1),
i=1
T-1 T2

(5.12) g2 = y'R’sty =v'G%*x = 2101 + zTUT + 2 Z Tiv; + Z(I‘l"+2 4 Tiy20,).
=2 =1
Hence, it folows that the calculation of the quadratic forms can be reduced to the
calculation of the g;o for j = 0,1 and 2; this in turn corresponds to solving explicitly for
z the systems (5.7) and solving for v the system (5.8). This will be considered in the

remaining parts of this section.
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Useful references for the treatmen. of linear systems in the indicated context cre
Anderson (1984), in particular Appendix A, Golub and Van Loan (1983)., and Graybill
(1969).

5.2. Cholesky decomposition

The Cholesky de~nmposition of a matrix s a useful and efficient device, that in our

case can help to compute the needed quadratic forms. We consider the deccmposition of

R

5.2.1. Derivations

Since R is symmetric and positive definite for —a < p < a, where 1/2 < a < 1, in this

range its unique Cholesky decomposition exists. It can be written as
(5.13) R=TT',

where T = (¢,,) is bidiagonal (because R is tridiagonal), lower triangular, ¢;; > 0, ¢;; =0

for 7 < j and ¢ > j + 1. The decomposition can also be written as
(5."4) R=UVU',

where U = (u;;) is bidiagonal, lower triangular, ;i = 1, ujs =0 for: < jand ¢ > j + 1,
and V = (v;;) is diagonal with v;; > 0 (T = UV%.)

Exprassion (5.13) is often called the Cholesky decomposition of R, and T is called the
Cholesky triangle. The procedure to obtain T is sometimes called the square root method.
Setting VU’ = S, say, we see that S is bidiagonal, upper triangular and that R =US,

which is a case of the so-called LR decomposistion.

Proposition 1. The components of U and V in (5.14) satisfy

A,
5.15 = -, =1,...,T,
(5.13) Vos = X s
and
pP Ayt
(516) Ugt1,8 = v—’: =p As, y s = 1, .,T - 1,

where the A, are given in (3.2).
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Proof. Let R = (r,;). In terms of components (5.14) is

T T
(5.17) Ty = E E Ui UgtUjr = E UigVssUjs = UiiViiUji + Ui i—1Vi1,i—1Uji—1-
s=1 t=1 s=1
For j =1 we have
5 . — 2, 2 . — 2 . .
(018) l=r;= Uy iU + Uy i Vi-1,1—-1 = Vi + Uj j—1Vi—1,i-15
for j =7 —1 we have
= | — - J— L av..ay - . o . R . . — . .
(0'*9) P = Tia—1l = UiliiUioy g P Uy i~1Vi—1,i~1Ui=1,i~1 = U;i—1Vi-1,i—1-

From this last expression we deduce that

(5.20) Uiy = —2—  i=2...T

Vi-1,i~1

Using this expression in (5.18) we have

2 2
(5.21) . v =1- 2 I T Wl .
Vi~1,i—-1 Vi—1,i—1
Direct evaluation provides the values
1—2p? 1—-3p2 4+ p*
5.22 vip =1, v =1—p% v = —, = —75
( ) 11 22 P 33 = T e V4q T— 2,7

in agreement with (3.2) and (5.15). We then complete the proof by induction:

Bicr 2 2

(5.23) b Bis TP A= pBia O
-erial _a

| = Aini A

because the determinants of the R matrices of various order satisfy
(5.24) Ay =Dy — pPA,_a;
see Shaman (1969). Since further U and V are unique, the proof is completed. |

Note that (5.15) holds for the Cholesky decomposistion of any positive definite matrix
R. As defined in (2.8), P is symmetric and positive definite for any value of a. Hence,
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its unique Cholesky decomposition exists and can be written in ways similar to (5.13) and

{5.14), namely,

~ ! ~ o~ o~}
.

(5.25) P=TT =U

where the T, U, and V matrices have the same structure as for R. An argument similar
to that in Proposition 2, together with the fact that in terms of a the determinants of the

P matrices satisfy the relation A, = (1+ az)[&,_l — a?A,_y, lead to the expressions .

As 1— a2(s+l)

(5.26) Vg = X 1= T s=1,....T,
8~
a 1-— a?®
= o -~ _— s — —_— —
(3.27) Ugtl,s = = —a—-————l_a2(s+l). s=1,....T-1.

These are simpler expressions in a compared to those involving the polynomials in p given
in (3.2).

Proposition 2. The components of T in (5.13) satisfy

A

(5.28) tes = A,jl’ s=1,...,T,
N

(5.29) tyoe1=py| =2, s=2,...,T
Aa—l

Proof. Comparing (5.13) and (5.14) we see that T = UV?'/?, from which (5.28) and
(5.29) follow. ‘ |

5.2.2. Using the Cholesky decomposition to compute quadratic forms

We now use the results of the previous section to derive expressions for gjo, 7 = 0,1.2.

(5.30) g0 =¥ Ry =y (UVU) 'y =U"y)V (U y)
T w2 T A .
= ’V—l = 2 = - 2
w w ; o ; A
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where w = U™ }y. It suffices to find w in the linear system y = Uw. This system is

& 1 0 ... 0 0 wi
Y2 up; 1 ... 0 0 )

(5.31) ) = . . . . . )
yr 0 0o ... UT 7-1 1 wr

and hence it follows that w; = y1,

As—2
As—l

(5.32) Wy =Yg — Us,s—1Ws—1 = Ys — P Werq, s=2,...,T.

Let us now define w* = V™ lw = (w;/v11,...,wr/vrr)’. Then,
(5.33) qu=v'RIy=y'UVU ) (UVU)ly=w'VIUTU'V ' w

T
— qu—l(Ur)—l,wt —2'x = ZIE’

=1

where
(5.3¢) (UHY 'w*' =UNY 'V 3 w=U) 'V U ly=UVU') 'y=R 'y ==,

as defined in (5.5). Hence, it suffices to find « in the linear system w* = U'z. This system

is

wy /v 1 w3y 0 ... O 0 Ty
’wz/vzz 0 1 us2 0 0 T2
(5.35) : = : : 1
‘U)T_l/vT_l’T_l 0 0 0 AU | ur,T-1 TT-1
wr/vrT 0 0 o ... 0 1 IT

and it provides the recursive relations

w -
(5.36) zT = ;)—7-3 = AATTI wT;
R WT—s = PTT—a+1 _ AT—s-1 (WT_s — PTT—s11), s=1,...T—-1.
UT—5,T—s Ar_,
Finally,
(5.37) g0 =y R 3y =2'UVU') 'z = (U 'z)) V(U 'z)
_ T w2 Toa,,
=h'V ‘h=2;‘-’:= —’—‘—h?,,

=1 =1
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where h = U™ !z. It suffices to solve for h the linear system Uh = z. This system is

similar to (5.31) and hence it follows that hy = z,,

A,
(5.38) hs = Ty ~ Uy gm1hy1 = Ty — p— zh,_l, s=2,...,T.
As—l
We summarize these results as follows: With observations y;,y2,...,yr we compute
T
As—l As—Z
(5.39) oo = wl wi=y, we=y,—p we—y, s=2,....71;
SZ::I As s s s As—l s—1
(5.40)
T Ar Ar
2 -1 T—s-1
qi0 = Zl‘s, I = WT, Tr—y = ———(WT—s — PTT—u41), s =1,.... T —1;
pert Ar Ar_,
A A
(5.41) g20 = Z Aa—l R2, hy=1zy, hy=zx,— szhs—l, s =2, T
) -1

s=1

5.3. Successive elimination

From the preceding discussion it follows that we have to solve certain linear systems.
Let us consider (5.7) in detail, namely, Rx = y: we have to solve it for = for a given
vector of observations ¥, and a given matrix R evaluated during an iterative procedure.
The method of successive elimination corresponds to multiplying the system on the left
by the matrix F' that is lower triangular with diagonal elements 1 so that in the resulting
system

(5.42) FRz = Fy

FR is upper triangular. This upper triangular linear systsem is called the “forward solu-
tion” of the method of successive (or Gaussian) elimination, or pivotal condensation.
Anderson (1971) gave this procedure in detail for the case of (5.42); see also Anderson
(1984), Appendix A, Theorem A.1.2. Using this approach, y'R *y and Y R"'GR™ 'y
were evaluated and, for example, the final expression for the former coincides with (5.40).
This is so because the Cholesky decomposition is equivalent to the forward part of the
method of successive elimination. We summarize these details here for the sake of com-
pleteness, and because they provide a practical way to calculate the elements introduced

in Section 5.2.
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The product F'R corresponds to successive left products by elementary matrices F;
so that

(5.43) FR=Fr_,---F,FRR

F; adds to row 7 + 1 of the preduct Fi_y --- Fo Fy R a multiple of its row j so that the
product F;F;_, --- F, F; R has elements equal to 0 in column j below the j,j-th element.

Let F, = (f ")) s=1,....,T -1, F = (f;), Fy = w = (w,....wr)". Let r\) be
the 7, 7-th element of the product F;F;_,--- F;F1R. Then,

(1) (5) (111)1'92
- 1 .
(5.44) e =1, ) = -!——(J’—U——— j=2,....T,
rj—laj_l
p .
(5.45) 2 == -5 i=L....T-1
.

The elements rgf:f])_,_l and f(i)l j»J=1...,T ~ 1, can be computed in sequence. Then

compute w as follows:

f(J 1)

(5.46) wy =y1, wj=y;+f;5 wi-1, ij=2,...,T.

Thus, the elements of w can also be calculated in sequence. Finally calculate

wr :
(5.47) °T = Ty &= (J) + P 2, i=T-1,...,L
Trr 33

Having calculated £ we compute ggo and gjo using (5.9).
Comparing (5.21) with (5.44) we deduce that

e) Aj
5.48 ,
( ) JJ =V = Aj—l

and in fact we are calculating the diagonal elements of V' in (5.14) in an (ascending)

sequence. Comparing (5.16) with (5.45) we deduce that

(5.49) f,(i’l,, —Uj+1,5-

The vector x as given in (5.47) is the “backward solution” of the method of successive

elimination or pivotal condensation. In effect, (5.47) can be written as

o f¥ o ...0 0

o o fP ... 0 o
(5.50) z=V3iw+ | : : . x,

o 0 9 ... 0 f}'TT“_”

0 0 0 ..0 0
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where w depends on y;,...,yr, and this is the form of the backward solution.

5.4. Another recursive procedure

The linear system y = Rz can also be solved by repeated substitution, as follows.

Using K = 1 + pG we huve

T1 )1 pI2
) Y2 pT1 + pT3
(5.51) : = : ~ :
IT-1 YyT-1 prT—2 + pTT
rT yr PIT-1

By repeated substitution we have
Ty =y — pT2 = cuyr + hizo,
T2 = y2 — pT1 — pT3 = Y2 + (—p)y1 + (—p)zs + (=)’ 22
=1 =) H{(=p)y1 + y2 + (~p)z3} = ca1y1 + c22y2 + boz3.

In general we have

T
(552) Tt =thjyj+btxt+lv t=1,,T—1
=1

Then

Te41 = Y141 — PTt — PTe42 = Y41 — PTe42 + (—P) Z Y5 + bexeq1
i=1

t
= (1+ pby)™* Z(_P)Ctjyj + ye+1 + (=p)Tes2 ¢
=1

and the recursion for the coefficients is

C¢+1'j=—ﬁ%b—'ctj, j=1,...,t,
(5.53) = Tam Jj=t+1,
bi = _]+pb¢’

where these expressions hold for #+ = 1,...,T — 1, and we either define by = 0 or take

r14+1 = 0. The resulting system is

I C11 0 PN 0 0
ey} C21 C22 ves 0 0
(5.54) ol=1 : : S
TT-1 ¢r-11 ¢r-12 -.- ¢r-1,7-1 0
xr €T1 CT2 cee CT, T-1 cTT
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where ¢1; = 1, b = —p. Denoting C = (¢;j), (5.54) can be written as

0 b O 0
0 0 by ... 0
(5.55) z=Cy+|:. : : z,
0 0 0 by
0 0 O 0
which compares with (5.50). In fact,
- = P AV} (1)
(5.56) bt=—-;t—t=—p A = fii10 = — U1t t=1,...,.T -1,
while
- (=p)'? t—j Bj~1 :
_ R 2 A =izt =1,...,t.
(O Ol) ctj v]] ( p) AJ J ’

The ci; can be obtained from V ~!w in (5.50) by repeated substitutions.

6. Evaluation of Traces in the Time Domain

6.1. Introduction

In Section 6.2 we will evaluate t;9 and t29 by means of series expansions; we now show
how all traces t;i used in Section 4, where j > k, can be expressed in terms of the ¢jo. In
effect, using again that G = p~!(R — I) we have

6.1) tix=trR’G*=p7*tr RTI(R-I)*

=p % tr R i(-l)k" (i)R’ =pk Ek:(—l)k" (I:) tr R0/
\ =0 s=0
=o' (-1 (’:)t:‘—a,o, j2k

=0

For example
1 1 1
(6.2) tn = ;(T —t1), tn = ;(tlo —t30), t22 = ;(T — 2ty0 + t20),
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These relations can be used to express the iterative procedures of Section 4 as functions
of the various quadratic forms and of the tjo. For example, in Iterative Procedure 1, (4.11)

becomes in terms of g;o and tjo only,

(6.3) {[{(*—'l)aglo 1) "(' 1)»(: 1)]+T»(: -1) ?(: 1)6(: 1)},&

1 1) 1—1) 1 i —
= [BeVae ) - T aT .

and in Iterative Procedure 3, equation {(4.20) becomes

o0 {r-n - e

- {[T-fsz-”—?g;-“]ag;-” T3},

In Section 6.3 we shall develop a procedure to evaluate t;; and ¢2; in the form of some
rational expressions; we now show how to express all other needed traces as functions of
these two.

From (6.2) we deduce that

(6.5) tio =T — pt11, tao =T — 2pt1y + p*taa,
and hence that
(6.6) ty1 = t11 — ptaz.

These relations can be used to express the iterative procedures of Section 4. For

example, expression (5.3) for Iterative Procedure 1 becomes

o [ - A [ -] R V)
{T 2p "I)A(' 1)+["(' 1)] -—1)}[4:-1) é}‘,h‘”] 5(.‘-1)[2‘(13-1)_'50—1)2‘(2}—1)}6(1:)—1),

while expression (5.4) for Iterative Procedure 3 becomes

i—)(i=1) ~(i=1) GG : im1)7(i- i-1)] 2=(i- i-1 i-1
08)  FVREIG0 {1 g0Re ¢ [0 ol Tl

6.2. Series expressions

For |p| < 1/2 we have

(6.9) to=tr R =tr(I+pG)" ! =tr Z(-p)jGj = Z p** tr G**,
k=0

J=0
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since tr G’ = 0 for j odd. Note that (6.9) converges because the characteristic roots of G

are less than 2 in absolute value and |p| < % Similarly,

oo oo
(6.10) tro=tr R =t:(I+p@) 2 =tr Y j(-p) "G/~ =Y (2k +1)p** tr G?*.
=1 k=0

It is shown in Section 7.3 that

. T+1 1 - > 2k 2k
(6.11) tlo_m—l_4p2+2(T+1)Z Z (k~g(T+1)>p.

9=1 k=g(T+1)

6.3. Rational expressions

To compute t1; and ty2 we consider an expression for |R| and use that

d
(6.12) % log|R| =tr R7!G =ty,,
d?
(6.13) a—;-i- log 'Rf =—tr RFIGR™'G = —~122.

Anderson (1971), Lemma 6.7.9, shows that

(6.14) T - 0G| = (1 - 467)~} (g)“ (e vima)™ - (- vimae) ™).

Hence, we identify § = —p and use this result directly. Let us denote a = (1 — 4p2)‘5, SO
that da/dp = —4p/a. Then

1 /1\TH
(6.15) IRl = I+ 0G| =~ (5) {1+ —(1-a)T*},
(6.16) log |R| = —loga — (T 4+ 1)log 2 + log {(1 + a)T'"1 -(1- a)T’H} ,

4p (T+12{-(1+a)T-(1-a)T}

d
6.17)  ZleelRl= G+ — i cq oot

_4p 4T+))p (1+a)T+(1-a)7
T a2 a (14 a)T+ — (1 — a)T+1’
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4a® +320° 4T+1)(a*+4p*) (1+a)" +(1-a)T

(6.18) ﬁimpr=

dp? at a’ (14 a)T+ — (1 - a)TH
16(T+ 1) [T{(1+a)T ' -1 -a)T {1+ a)TH - (1 - a)TH}
+ a? {(1 +a)TH _(1_a)T+1}2

(T+){+a)7+(1- a)T}2}
{1+ a)T+1 — (1 ~a)TH1}2 |
Simplifying slightly this last expression we have
4+16p2 4T+ D{1+a"+(1-a)7}
at a3{(1+a)T+1 —(1-—a)T+1}

(aw)%%mth=

_16(T +1)p% (1+a)*T + (1 - a)®T + (4T + 8p%)(4p*)T"
a? {1+a)T+H — (1 - )T+ )2 :

6.4. Using the solutions of linear systems

The calculations in Section 5.3 were presented as part of the computations needed for
quadratic forms, but can also be used for traces.

From (5.14) we have that R = UVU', so that the “forward solution” (5.42) FRz =
Fy = wis VU'z = U 'y = w, and simultaneously U'z = V!U 'y = V~'w. Note
that F = U

To compute t1o = tr R~ we set RX = I, where X and I are of orders T x T. In
successive elimination the forward solution is FRX = F or VU'X = U™'. We get U™!
and (diagonal) V' by recording the steps of the forward solution of Rz = y. Then

(6.20) to=tr R =tr X =tc(U")'V~IU™!

=tr FV'F =tr V''FF'

____1+§T21+ a+ 32;):"'+f3,a-1,
where F' = (fij). From Section 5.3 we have
(6.21) F=Fr_Fr_,---FF,
and that the F, matrices, for s = 1,...,T — 1, are lower triangular, bidiagonal, and have
elements

£ =1, i=j,

(6.22) = —pr) = —p/vs,, i=s+1j=s5,

=0, otherwise.
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Using these results we obtain
-1) p(i~2 . L
(6.23) f,-_,--—f,(',_ )f(f_l ,)_2 f_:i)],), j=1....T-1;,:=3+1,...,T.

In more detail, the elements of F' below its main diagonal are

1 2
far = fé f2(1)» f:)sz = ( ) .
(3) (2) (1 3
fa = )f( )f2(1 , Jaz = f:,(-z , faz = 43 ,
) T—1) (T-2 1 T-1) (T-2 2 T—
fro= FEE s 1Y fre = g e A T = fe )
We next compute t50.
(6.25) tro=tr R 2 =tr(FVIFYFVIF)=tr FF’V"’FF'V’I

=tr(V iFF'V iV i:FFV~:) =tr HH' = Z Z K%,

1=1 j=1

where H = V™ 3FF'V™7 is symmetric, and we have used the circular property of the
trace. The components of FF' are

min(i,j)
(6'26) wafjs - Z f!SfJ-!, 27.7 = 11"'aT’
s=1 s=1
so that the components of H are
mm(t,J) min(i,7) . .
(6.27) h,-,~=§: fiofio _ 3 Jio fio i1 T
\/ 4 /v_, v/ Vit ,/‘Ujj
and hence
T T |min(i,j) fia Fi 2
6.28) tao = g
T [ i 272 T I fuu fi 2
= Jis +22 [ 18 b ]
:Z=; [a:l ‘U,','] =1 r—'zl a=1 VVii VVjj
1<
T 1 [ 2 T T i 2
= o2z [Z ?s] +2zzv.v. [ fufjs]
i=1 ¥ Ls=1 i=1 j=1 77 [e=1
1<y




These computations for a given value of p can be added to those presented in Section
5.3 to compute goo and q19. We now present the computations needed for goo, g10, g20- t10.

and t,0, followed by some comments to facilitate the interpretation. Define ¢ = F'F "

Starting values (s = 1)

(6.29) r =,
(6.30) fi;=1,  i=1,....,T.
(6.31) ) =1,
(6.32) thy =1,
(6.33) wy = vy

Steps,s=2.....T

(s—1) 2
() _ Ta—1,0-1 ~ P
(6.34) r,‘; =5
rs—l,a—l
(s-1) p
(635) fs,’a—l = —Wv
TS—l,a—l
(6'36) f ] iag—_l)fa ],J, j= 1,-..,3—1,
J
(6.37) oi = fafikr  J=1...,8,
k=1
(9) (s—1) Des
(6.38) tio =t  + (’),
2 2 2
(s-1) ¢33 s,8—1 sl
(6.39) t30 =1ty + +2 +---+
E N e e rid iy
(6.40) W, =Y, + f(’ ll)wa 1.
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After completing these computations we have

T
(6.41) tro=t0  ty= tf,o’,
_ur ;) .
(6.42) =T 4 m 4 (D iz, i=T~1...1L
Trr r)]
T T
(6.43) goo = E YiZy, qio = ZI?
1=1 1=1
Finally, to compute g29 we have
(6.44) wy = 77, Wy = T4+ fiss ]; 1 s=2,..., T,
w) wj 1)
T .
(6‘45) Uy = —(_7:—)'1 1-‘j (J) + fil JUJ+17 J = _1 ..... 1~
TTT "33
T
(6.46) g20 = Tl

Note the following points.

1.

Formulas (6.34), (6.35), (6.40), and (6.42) were already given in Section 5.3 to
compute goo and g in (6.43).

. Similar computations in (6.44) and (6.45) produce gz in (6.46). This was dis-

cussed in (5.5) - (5.9).

. Hence, the superscripts in r(’) and f(’, 11), and the indices in w, correspond to

the calculations being done in sequence.

To calculate ;¢ and ¢3¢ we need to compute the components of F and & = FF'.
One row of F is computed at each step, nainely, for rew s, the elements f,; for
7 =1,...,s—1. Further f,, =1 and f,; = 0 for s < j. The calculations in (6.36)
correspond to the structure of f;; given in (6.23) or (6.24).

The components of @ = FF’ ere scalar products of the rows of F, and are
calculated in (6.37), where the sums can also reach k = T in each case, because
for k > j (j < s) at least one of the factors f;x is 0.

In t(") and t(’) the superscripts denote partial sums, so that tgg) = t)o and
(T) = t99, which is (6.41).
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7. Evaluation of Quadratic Forms and Traces in

the Frequency Domain

7.1. Calculation of IP'ourier coefficients

The Fourier transformation of the operations (3.8) is different from the usual trans-

formation

2 & o ik
(7.1) -fz_:lykcos

[2 2n3k T—ll
- . J .

= E =1,... .
(7.2) T ]yk sin T 7 1, ,[

Since the transformation (3.8) diagonalizes G and the transformaticn (7.1) and (7.2) does

not diagonalize G, the former yields simpler results, as indicated in Section $.3.
For large T, the fast Fourier transform can be used for efficient computation of (3.8).
We write for j =1,...,T

2 <~ . =jk

(7.3) zj = T—;—IZyk51nT+1
T+

\/T+12:y"Sln

for arbitrary yr4, since sin [wjk/(T + 1)] = 0 for k = T + 1. Further we have

2(T+1) ik
(7.4) zi:\’ T+1) z yksxnz(T+1)

where yx = —yyr41)-k, K =T +2,...,2T + 1, and y27+2 is arbitrary. Then (7.4) has the

usual form of the sine-transform for 2(T + 1) observations and the usual computations for

tL.e fast Fourier transform are available.

7.2. Evaluation of quadratic forms

We want to calculate

.2

(7.5) YR Uy =g = j=0,1,2,

Z(1+pd VJ+1?
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which can be done in a straightforward manner. That d, = —dr41-, can be exploited.

For example, if T is even

(7.6)

-2 »2
“8 "T+1—8
[ 1+ pd, 1 — pd,

— p2d?

2 .2
T+l —s pd!(zs - "~T+1._3)
3
- p*d?

T
2
Z
Z (1~ pds )‘- +(1+Pd )~T+1 —s
T/2
-y

while if T is odd, since then di141)/2 = 0,

(T-1)/2
(7.7) .2 + 25 + 2%y — pdy(22 — 2121'+1—s)
. 900 = Z(T41)/2 1— pzdg :

s=1

Using this procedure we have for T even

2'2

79 > m
T/2 z%"-;-l—
‘Z [ 5 pdo)? T - pd, P
_ gf (1= pdy)?2; + (1 + pds)?2hy,_,
B (1= p*d2)?
L+ PBYEE + 2Ry ,) — 20dy(2E — Ry ,)
=3 T ,

while if T is odd,

T~
- Iy T2 (14 p2d2) (22 + 2y, _,) — 2pdy(22 — 22y, _,)
(7.9) Q10 = 2(r41)2 t (1 - p2d2)? .

=1

Similarly, for T even

T 2

Z
(7.10) g0 = —_—
; (1+ pd,)?
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T/2
— Z/ [ 23 + z%’+l-—-s
(1+pds)® (11— pds)?

s=1
T/2
3 (e (L pd) b
2 (1= 22
LB +32B) (2 + 22, ) — Body + P2 d3)(22 — 2By, L)
=2 1= -
while if T is odd,
S ISR (L4 30282+ hany) = (Bpds 4 0P )(E — 2 )
(l. ) Q20—Z(T_H)/2+ Z (1-—-p2d§)3 .

s=1

The series form can be used to obtain

- N~ TU+E+Y)
(7.12) gjo ;} FTG + 1) (=p) Zd

7.3. Evaluation of traces

Since the characteristic roots of G are

"‘Il _' ot ]
= e T+1 4 e T¥1

s
(7.13) d, = 2cos TT1 ,

the characteristic roots of G?* are

(7.14) d** = (e'TH +e-"ﬁ—l)”‘
2k
s (Zk) o Tt T =i ity (2K =)
— J
1=0
— Z (Zk) ,%1-_(1;_,)
=0
and
2k T
2k 2w (k—j
7.15 tr G** = ( . > e T 2,
(729 )L

37




Since
T S 2% (k-3
(7.16) Ze'+4+x *=T4+1 if(k—j7)=0,HT+1), 2T +1),... ,
=0
=0 otherwise,
we have
T 2x(k—;
(7.17) Ze*-%—ﬁ ‘=T Hj=kk:(T+1)kx2T+1),...,
s=1
= -1 otherwise.
Then
2k 2k 2%
7.18 tr G2 = ( ) DN +(T+1 ( )
(7.18) ; i JED+H(T+Y Z ;

J=k k(T +1),...

The first term in tr G** is —1 times

2k
2k
(7.19 ( . ) = 2%k,
) > ;
The second term is T + 1 times

2k
(k), k=0,1,....T,

(7.20) 2k 2k -
t )t e ren) k=T+1,...,2T +1,

Then
— 2k 2k | 2k
(121)  tio=) . ) (T+1)~2% )
k=0

+2(T + 1) Z (k_(zflic+l))P2k+2(T+1) Z (k—Z?;+1))p2k+"

k=T+1 k=2(T+1)
The first term in the first sum in (7.21) is T + 1 times

2k)! I'(2k + 1)
(7.22) ng'))z * Zk'l‘(k-}-l) ot

Tk + Pk +1)22% )
- ::1) K'T(k + 1)/7

=3 S = -2

=3
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We have used n! = I'(n + 1) and the duplication formula for the gamma function

T(8 + 3)I(B + 1)2?8

: 2 =
(7.23) T'(28 + 1) =
The first sum in t14 1s
(7.24) T+1 __1
V1-—4p? 1-—4p?

which is a2 good approximation to ¢;o because the neglected terms are O(p?(T+1). Thus

we obtain

T 2
(7.25) tm:\ﬁj_iﬁ—l +2(T+1)Z Z (k_g?§+1))p2k.

g=1 k=g(T+1)

The sum on k in (7.25) can be related to the hypergeometric function as follows: for
each fixed g =1,2,---,

720) 3 (k g(T+1)> i

k=g(T+1)

_ 3 (2k)!
N k};‘m Ry

=~ [2(h+g(T +1
Z 'Eh :gg(T - R]]'pzh-ng(z"ﬂ)

BTk + 20T + 1) +1)°

p29(T+1)929(T+1) {::: Tlh+g(T+1)+1/2]T[h+g(T + 1) + 1]

2h
I 2s RTTh + 2¢(T + 1) + 1] (20)

_(2p)?9 T T[g(T + 1)+ 1/2)T[g(T +1) + 1]
- N I[2¢(T +1)+1]

Flg(T +1)+1/2,9(T +1) + 1;29(T + 1) + 1;4p%],

where we used the definition of the hypergeometric function

(7.27) Flabieiz) = 3 L@+ DI04 _Te) o

2 "T(@ TI() Te+j)i
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We conclude that

T+1 1 (209741
i 1o 42*2(“1); N
Plg(T+1)+1/2]I0[g(T + 1) + 1]
T[2¢(T + 1) + 1]

Flg(T+1)+1/2,9(T+ 1)+ 1;29(T + 1) + 1;4p%).

(7.28) t10 =

The argument in Section 7.2 can also be used for traces. In effect,

T T/2
1 1
7.29 tio = =2 ————, for T even,
( ) 10 ;1+pds él—,ﬂdg or T even,
=142 ————, for T odd
_ 2 23 9
s=1 1-p d"
T/2 2
1+ p?d?
(7.30) Z (17 pd 72 = Z (1 — ARy for T even,

(T-1)/2 2
3 1+ p?d?
=1+2 Z (—]._-W ,fOI‘ T odd.

The expression in (7.24) is an approximation to t;o. This value can be obtained by
approximating the sum defining ¢,o by a corresponding integral, as was done in Anderson
(1971). Besides (7.24) this procedure provides the following approximations:

1—1p2 4p? }

(7.31) tiy ~ —-— {(T+ 1) \/1_:4—p§ T 1 4p2

(T + 1)4/1 — 4p? —(1+4p)

(1-4p?)?

(7.32) tao ~

—4(T +1)py/1 -4 8
(7.33) 121 ~ T+ e Pt p
(1—4p%)2

T+1{ 1 - 8p? 4+ 16p°
(

(7.34) t22 ~ Pg 1— 4p2)3/2 - (- 4p2)2 :
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These five approximations also satisfy relations similar to those derived in Section 6.1

among the needed traces, and in particular they satisfy equations similar to (6.2) and
(6.5).

8. Other Exact Maximum Likelihood Procedures

In this section we collect some approaches related to the procedures developed in

previous sections.

8.1. Calculation of quadratic forms containing the matrix P.

We consider an approach that permits the calculation of quadratic forms of the type
y' P~ 7y. We illustrate the ideas with the cases j = 1 and 2. These quadratic forms can
be used to implement iterative procedures in terms of a or to compute quadratic forms in

an iterative procedure for p by using (2.17).

Let
0 0 ... 00O a
1 0 ... 0 O 0
(8.1) L=]01 ... 0 0| =10} B=I+aL Q=BB'
0 0 ... 10 0

We see that B is nonsingular,

(8.2) P =Q+ad,
~1 __ n-1 _ 1 -1 '1~-1
(8.3) P =Q T7aQa Q aa' Q™.

This is a simple case of a general formula called Woodbury’s formula by some authors; see,
for example, Phadke and Kedem (1978) and Press (1982).

Calculation of y' P~ 'y.

1
8.4 /P—] - ! -1 - ! —laa' -1
(84) vy y=yQ 'y ———-———-1+a,Q_,ayQ Q 'y
1 11—
=y'B !B ly - 1+a,B,_lB_lay'B'-IB“laa'B' 'Bly
, z'kk'z i, (Z'R)?

il

— ——— z s
EETITEE OGP TIxEE
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where

(8.5) B ly =1z, y = Bz,
and
(8.6) B la =k, a = Bk.
We have to find z and k in these two linear systems for given B, y, and a. To solve (8.5)
we have
1 z}
"2 20+ azny
(8.7) . J=T+al)z=z+aLlz= . )
yr 2T + azT1
and hence,
(8.8) 21 =1, 2j=1Y;— Qzj-i, 1=2,...,T.

These equations can be solved by repeated substitution, giving

(8.9) zj = (—a) "y, i=1,...,T.

M-

1

»
I

To solve (8.6) we have

a ki

0 kg + akl
(8.10) | = : :

0 kr + akr_1
and hence,
(811) kl = «, kj.= —akj_l, ] =2,...,T.
This is solved explicitly as
(8.12) ki = a(—a) ™! = —(-a), i=1,...,T.
To use in (8.4) we need

T T ] 1 — 2T+2
(8.13) 1+k'k=1+2k§=1+2a2’=1+02+---+a2T=——1—:—01-7
=1 y=1
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We then proceed as follows: Start with
(8.14) 1=y, Su= zf, Sa1 = azy;
then compute in succession
(8.15) zj =y; —azj—1, S1j=251,;-1+ z?, Soj = S3,5-1 — (—a)sz-, 7=2,...,T.

Then

2
l-«o 2

(8.16) yPly=S1~ 1 aeTiz T

Calculation of y' P~ %y.

- 1, o 1 -1 o - _
(8.17) P1y=B'%Blw—T:?iyluamXBlamBlw
B — L Bkkz—m—
=Bz 1+k'kB kk'z=m 1+k’kn’

and it suffices to find m and n in the linear systems

(8.18) m=B"!z, z = B'm,

(8.19) n=B"%  k=B'n

These systems can be analyzed in the same way as (8.7) and (8.10) to provide the

following recursive procedures:

(8.20) mr = 2T, m; = zj — am;4, 13=T-1,...,1,

(8.21) nt = kr, nj=kj—anj+1, j=T-1,...,1.

The n; are given explicitly by

i1- a2(T—i+1) ‘
(8.22) n; = —(—a) T ol , j=1,...,T.
We proceed as follows: We have z,, ..., zr available from the calculation of y' P 'y,
and also S, from (8.15). We then start with
(8.23) mr = zp, np = —(~a)T, Sar = 2%, Sar = a*T, Ssr = —(—a) 21,
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We then compute in succession

(8.24) mj = z; — amjy1, nj = —(—a) —anj, j=T-1,...,1,
and
(8.25) S3j = 53,1'_1 + m?, 54]' = 540'_1 + n?, 55]' = 55,]'__1 + mjn;,

j=T-1,...,1.

Then

_ 1—a? \?
(8.26) y' Py =S5+ (ﬁ;ﬁ?ﬁ) S37S41 — 2m52'f551 )

8.2. Estimation using the EM algorithm.

The analysis in the preceding section can be related to the EM algorithm for computing
maximum likelihood estimates, as described for example in Dempster, Laird and Rubin
(1977).

The generating equations for y,...,yr coming from the MA(1) model (1.1) can be

written as
Y1 Uy + augp 1 0 O 0 0 Uy o
Y2 uz + auy a 1 0 ... 0O ug 0
(8.27) | = : =1: : : Do . | tw
yT ur + aur-1 0 00 ... a1 ur 0
In terms of the notation used in (8.1) we write this as
(8.28) v = I+ al)u+ upa = Bu + upa,

which in turn can be written as the transformation

o (v)=(a 3)(%)

We take (ug,u')’ as N(0,02IT41). The transformation (8.29) has Jacobian equal to 1, and

hence (ug,y')’ is normal with expectation 0 and covariance matrix

21 ON/[1 a'\_ ,f1 a _ 21 a
(8-30) o (a B 0 BI) =0 a aal+BBl =0 a P/
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The determinant of this covariance matrix is 1.

To use the EM algorithm we augment the observations y,...,yr by the unobserved
ug and consider it as a “missing observation.” The EM algorithm is an iterative procedure.
Given preliminary values of the parameters a and 0 we obtain an estimate of ug say u(()”
as the conditional expectation of up given y and preliminary values of a and o?. Next
we obtain maximum likelihood estimates of a and o2 on the basis of (ugl), y'). Because a
appears only in the exponent of the normal distribution of (ug,y'). this step amounts to
minimizing the quadratic form in the exponent of the normal distribution of (ug,¥’) and
then maximizing the resulting concentrated likelihood with respect to o?. However. since
the value of o2 is irrelevant to maximizing the likelihood with respect to a, one can carry
out the iteration with respect to o and after its completion find the estimate of o2.

To study the joint density f(uo,y) we use

(8.31) fuo,y) = g(uoly)h(y).

From the covariance matrix (8.30) we find

(8 3‘7) S( I ) IP—l [ Q-—l 1 Q—l IQ—-]) a"Q_ly
s 4 u =a = a —_— — aa - 7 .
oly v 1+a'Q 'a ¥=3 +a'Q'a’
(8.33)
- - 1 - - 1
Vs ualy) =1 - Pl =12 (@7 - i @7le0' @™ o= e

while £y =0, Var(y) = P.

Hence, the exponent in the joint density of (uo,y') is —3 times

- 'y 1 2\
(834) y’P l'y+(1+aQ ]a) (UQ—ma,Q ly)

, o o 1+a'Q 'a —a'Q™! U
=(uo,y){(0 P"1> + ( -Q'a (1+dQ@'a)'Q 'ad'@”! v/
We now apply the EM algorithm.

E-step. For a given value of a calculate

alQ-ly

(8.35) o = E(uoly) = 170 'a
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M-step. Minimize with respect to a the quadratic form

-1
.o f1 0\ /1 a ig
) 14 alQ~1a _alQ—l i
=(u07y’)< -1 -1 0)
— a Q Yy

=451+ a'Q 'a)—240d'Q 'y +y'Q7y.

With the minimizing value of a repeat the E and M steps.
Since Q = BB', z = B 'y, k = B~ 'a as used in Section 8.1, we Lave that in this

notation (8.33) is
a' BBy 2'k

8.37 o = = .
( ) uo 1+a'B" !B 'a 1+4k'k

and (8.36) is
(8.38) to(l + k'k) — 2492’k + 2'2.

If in (8.38) we substitute for 4o expression (8.37), we obtain

(z'k)?
14+ k'k

(z'k)?
1+ k'k

' (z,k)2 ot

(8.39) -2 +z'z=zz—1+k,k—yP"1y

in view of (8.4). Hence, we are minimizing y' P~ 'y with respect to «, but doing the
iterations via the EM algorithm.

8.3. Use of the explicit components of the inverse covariance matrix.

As indicated at the beginning of Section 3, the likelihood function can be written as a
function of & and o2 in terms of the determinant (3.1) and the components (3.4) of P,
In effect,

T
— 1 . s
(8.40)  ¥PTy= (1 — a?)(1 — a2(T+1)) { Doyl —a®)(1 - T

8=1
T—-1T~s
123 3 avee(—a) (1 - a?*)(1 - am“—s-'*”)}.
s=1 t=1
Godolphin and de Gooijer (1982) derived from the likelihood function, expressed in

these terms, an iterative procedure for a.
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8.4. Relation to optimal prediction.

The likelihood function, for example (2.11), can be written in another equivalent form
by using (5.25), (5.26), and (5.27). In effect,

T
(8.41) |P|=|UVU | = V=[] #s.

T -2
~o1 -1~ ~ -1 .
(8.42) yPly=0 9V U y)=a'V o=) -=
vss
s=1
where in analogy to (5.32) we define
- - N 1 -
(843) Wg =Yg — Us,9-1Ws—1 = Yy — T Wsg_1.
Ve—1,8~1

Hence, (2.11) becomes

v
s=1 s=1 %%

T _1/2 T ~
. . - N R CH
(8.44) L (a,02)___(27{) T/2(02) T/2 (H v,,) exp{—r‘i }7

with 04, = As/A,_l defined in (5.26) [A, = (1 - a2(**D) /(1 — a?) from (3.1)], and ¥,
defined in (8.43).

This expression can be related to minimum mean square prediction (and hence to
Kalman filtering), as several writers have recently emphasized. In effect, we can prove

that in our case.

(8.45) 1b,=y,—£(y,|y,_1,...,y1), s=2,...,T,

with w; = 0, is the error of the optimal prediction of y, based on y,-1,...,y;, and
- . 2

(8.46) 025,y = Var(d,) = £ { [Ys = E@olyais- - 91)] |y,_1,...,y1} :

Harvey (1981), while considering the Kalman filtering approach to the problem of
estimation in the MA(1) model, gave (8.44), (8.45), and (8.46), and wrote the recursions

(in our notation) as

(12' 1 — a2(a+l)

(847) 580=1+ 1+02+...+a2("’1) = 1-qa? ’
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- We—1 l-a
(8.48) u’a=ys"‘a%;::=ys+("'a) 1_ a2

2(s—1,

Weg—1-

Brockwell and Davies (1987), Section 8.6, gave what corresponds to our analysis in (8.41)
- (8.46) of this section, based on a different approach.

We complete the details by using a standard argument in the operation with mul-
tivariate normal densities. The likelihood function is obtained by considering the joint

normal density of y;..... yT as func-ion of its parameters. A joint density f(y;..... yT)

can be written as

(8.49) flva, .. yr) = flyrlyr=1, -y flyr—1lyr—2, .. o) - w2l fly)s

that 1s, a product of conditional (and one marginal) densities. In the multivariate normal
case that we consider. all these densities are normal. Tue expected values can be written

as functions of the (¢t — 1)-dimensional vectors of covariances
(8.50) [Cov(y,, yi—1), Cov(ye, yt-2), - .., Cov(ye, yl)] = o? [a,O, e ,0] . t=2,...,T,

where we used (2.2), and of the (t — 1) x (t — 1) matrix X, that contains the covariances

corresponding to the set y;,...,y¢~1. Hence,

Ye—1
( 2 ty—1 Yi-2
(8.51) E(yelye-1,-+.y11) = 0°(,0,...,0)' 2., i
n
Ye-1
r ey | Y2
- (a,o,... ,0) Pt-—l
n
t—l t"l 2(‘— )
. . l1-—a J
1 -
=a) playe-j=a) (¥ v
Jj=1 J=1

t—1 x

Z gty
= — — = —5y
j=1( ) Ao Yi—;

while for t = 1 we take this expected value to be equal to y;.
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Similarly,
(8.52)
!
2 1 -1 0
Var(yi|ye-1,-..,41) = Var(y) — 0%(,0,...,0)' 2,5 | .
\0
=031+ a?) —o?a®pll, = 0%(1 +a%) — 0%a?(1 - 02“'”)/(1 —a®!
1 — o2(t+1) A
= 02——Q— =g?—L = 021’)“.
1— a2t Aoy

Substitution in (8.49) gives

T ~1/2
(8.53) L'(Q.O'Z) = (277)—T/2 <H ‘72{733)
1 <& 2
exp{ -~ 2——; +Z(——a)1 et Jk Y ] }

Comparing with (8.44) we see that it suffices to show that the expression in brackets equals

w,. From (8.43), by repecrted substitutions, we obtain

- a - 1 1
(8.54) 1y =yo— Wy =Yg — ————Ys—1 + &° Wy—2
Veg—1,8—1 Vg—1,8—1 Vg1 ,a— 1U3—2.s 2
1 % 1
=Yy +(—0)————Yo1 + -+ (—a)" = ———Vs—k
Vs—1,8-1 Ve—-1,8—1 """ Ve—k,1—k
1 .
4 (—a)t1 - — We—k—1,

Vs—1,8—1"""VUsg—k—1,8—k-1

and the result frllows because

(855) 63—1.3—1 s 6s-k,s--k = = > = Tt = =

9. Numbers of Operations Needed to Do the Calculations

Quadratic forms and traces were given (in the frequency domain) in Sections 7.2 and
7.3, respectively, for T even and for T odd. To simplify the analysis in this section we
consider the case of T even, since we are interested in orders of magnitude of the numbers
of operations.

The traces ;o and t29 are given in (7.29) and (7.30). Assuming that d, = 2cos rs/(T+

1) is available in the computer, we calculate d2 for s = 1,...,T/2 once and for all, and use
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that dy = —dr41-s for s = (T/2) + 1,...,T; we also calculate p? once for each iteration.
Then (7.29) requires T/2 multiplications p?d2, T/2 subtractions 1 — p2d?, T/2 inversions
and T/2 additions. Formula (7.30) involves additionally T/2 additions 1 + p?d?, T/2
multiplications to obtain the square in the denominatcr, T/2 divisions, and T'/2 additions.
For t,0 and t39 we have altogether 2T additions or subtractions, T multiplications, and T
divisions. See summary table below.

We next consider the calculation of the quadratic forms given in equations (7.6) to
(7.11). The calculation of the z; in (7.4) is about T log, T multiplications and additions.
but that is done once and for all. For T even, gqo is given in (7.6). The sums 27 + 2% _,
and differences 22 — zZ +1_s are calculated only once. The additional computations for
one iteration is T" multiplications to obtain pd, and then pd,(z2 — 23, | _ ), T/2 additions,
T /2 divisions. and T /2 additions. For T even, ¢ is given by (7.8). This is additionally T
multiplications, T/2 subtractions, T/2 divisions, and T /2 additions. Thus for gop and ¢
we have 2T additions or subtractions, 2T multiplications, and T divisions. For T even, g2
is given by (7.10). This is additionally 2T additions or subtractions, 5T /2 multiplications,
and T'/2 divisions. Finally, for goo, g10, and gz we have 47 additions or subtractions, 97 /2
multiplications, and 37T /2 divisions.

The calculations in the time domain were summarized in equations (6.29) to (6.46).
To compute goo and g0 in (6.43), we use formulas (6.34), (6.35), (6.40), and (6.42), which
were also given in Section 5.3. Considering as if we had T steps instead of the T — 1
actually considered there, they involve 5T additions or subtractions, 4T multiplications,
and 37T divisions. To compute gz¢ in (6.46) we use formulas (6.44) and (6.45), that involve
additionally 3T additions, 3T multiplications, and T divisions.

The traces t1o and ty¢ are calculated in (6.36), (6.37), (6.38), and (6.39). In (6.36)

there are

T T-1 1
9.1 -1)= ==T(T -1
(9.1) §=j( ) g s=3T(T~1)
multiplications. Then (6.37) involves
T s T , T 1 T2
<o ol — = — = 2

(9.2) Z ]—228(3+1)—2Z(S+1)(3+2)—2 (s? +3s +2)

=2 3=1 =2 =1 s=1

- %{(T - I)Z(ZT I 3T(T2— D o7 - 1)} = %(T — 1)(T? + 4T + 6)

multiplications and additions. To obtain t;o = t\7) in (6.38) we need additionally T — 1

divisions and T — 1 additions, and to obtain typ = t(zp in (6.39) we need additionally
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Zf__:? s = 3(T + 2)(T — 1) additions, the same number of multiplications, and sT(T —1)
divisions. Thus ¢;0 and ¢5¢ require altogether (T — 1)}(T? + 7T + 18)/6 additions and
subtractions, (T — 1)(7? + 10T + 12)/6 multiplications, and (T — 1)(T + 2)/2 divisions.

The number of operations can be summarized as follows:

Quantity Time Domain Freq. Domain
Computed +/- X + +/—- =
goo 4T 3T 3T T I
q10 T T - T _g
qo00, 4910 5T 4T 3T 2T 2T T
gz0 3T 3T T 27 % I
400,910, 920 8T T 4T 47 L i

(T-1)(T?+4T+12) (T-1)(T?+7T+6) T T

tio 6 6 T-1 z F)

4 (T-1)(T+2) (T-1)(T+2) (T-1) T T

20 2 2 2 2 2
(T—1T?*+7T+18) (T—1}{T?*+10T+12) (T-1)(T+2)

t10, 20 5 : > 2r T T

We can compare the different procedures by comparing the number of computations
per iteration. The scoring procedures 1 and 3 require the computation of é(():)), ‘ii:))’ {g'o)»
tg’g, while the Newton-Raphson procedures require in addition the computation of q,f,;,). It

will be seen in the table above that except for the computation of the Fourier coeflicients

21,..., 27 the number of computations carried out in the frequency domain is substantially
less than in the time domain. In particular, the number of operations for t"(l'o) and t”g:,) is of

the order T3 /3 in the time domain, but of the order 4T in the frequency domain. Since the
advantage of the frequency domain is in the calculation of the traces, which do not require
the Fourier transform of the data, the efficient calculation by any of the procedures is to
compute the quadratic forms in the time domain and the traces in the frequency domain.

Of course, counting the number of operations is only one aspect of the evaluation of
these methods. Also relevant are the speed of convergence and the behavior in medium-

sized samples.
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10. Box-Jenkins Procedures

In this section we consider the approach of Box and Jenkins (1976) for computing the
quadratic form Joo(a) = y' P~ 'y and its derivative dggpo(a)/da for any given value of a.
Box and Jenkins (1976) proposed to estimate a by minimizing goo(a); operating with this
objective function is different from maximizing the likelihood function or minimizing the
concentrated likelihood (2.13) with respect to a because the determinant |P] is ignored.
See Box and Jenkins (1976) Chapter 7. v

Asin Section 8.2, let us consider the transformation from (ug,u')’ whichis N(0,0%I14,)

to (up,y')', defined now by

u u
(10.1) (:) = B! <;>, B = B4, = IT41 +al1,,

where, as in (8.1), L4, has 1’s along the diagonal immediately below its main diagonal
and 0’s elsewhere. Let

(10.2) M= (BB != (m"" ol )

Mig M11

where ™o = my;. Then the quadratic form in the exponent of the normal density of
(uo,u') is —1/(20?) times

Ug Mmoo M1 Up
10.3 ,u! = Y
(103) (v )(U) (o) (mw Mn) (y)
1 2 1
= myo (Uo + ——mmy) +9' (Mn - —‘mlomm) y.
mog Moo

Since the Jacobian of the transformation (10.1) is 1, in the normal density of (ug,u’)" we
can substitute B~ (up, ') directly to get the normal density of (uo,%')’, and this in turn
can be expressed as the product of the marginal density of ¥ times the conditional density
of ug given y. The quadratic form in the exponent of the marginal normal density of ¥ is
—1/(20?) times

1
(10.4) Goola) =9 (Mu - —mmmm) v,
Moo

and the quadratic form in the exponent of the conditional normal density of uo given y is
2
~mao (uo + —-l—mmy) /(20%). Thus

Moo

1 Yo _(—m=ma
(10.5) E(uoly) = “m—oommy, £ [(y) ly] = ( I )y
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because y = £(y|y), and hence
(10.6) ,
(e[} {= () 1o} =v (-mgmnr) oy 2 (75

1
v (Mu - -—‘-mlomm) Y = Joo(a).
mag

In conclusion, we have shown that

T
- _ - 1 2
(10.7) doo(a) = y'P ly =y (Mn - %mlomm) Y= Z[S(utly)] .
t=0
To compute E(uqly) for t = 0,1,...,T we use the process u; introduced in (2.1) and

a process of independent normal (0,0?) random variables for which
(108) Yt = U + QU¢4q,

that is, has the “time” reversed. Box and Jenkins (1976), Chapter 6, call this the “back-
ward” form of the process.

From model (2.1) we have for a given value of a the recursive relations
(109) S(utIy) = Yt — aS(ut_l I'y), t= 1, ey T,

which would provide all needed conditional expectations if £(up|y) were known. It turns

out that we can obtain £(ug|y) from a recursive relation derived from (10.8), namely
(10.10) E(vely) =yt — af(veqaly), t=T,...,1,

if we make the additional assumption that for some sufficiently large T*, 1 < T* < T,
E(vpely) = 0. We note that £(us|y) =0fort=0,-1,-2,...andfort =T +1,T+2,..;
similarly, £(v¢|y) =0fort =0,~1,-2,...and for t =T + 2,T + 3,....

Starting with £(vr+|y) = 0 and using (10.10), we obtain E(vr-_1ly),...,E(v1ly).
For t = 0 (10.10) yields 0 = E(yoly) = a&(v1]y). Then use of (10.9) for t = 0 yields
E(uo|y) = E(yoly) = a&(v1ly), which is the desired starting value.

If more accuracy is needed, one can obtain £(yr+1ly) = af(ur|y) and E(vr4i1ly) =
E(yr+1|y) to begin another round of recursions.

Finally we are in a position to compute Joo(a) = EZ__O [E(u, |y)]2 for any given value
of a. The analysis of goo(e) is illustrated in Box and Jenkins (1976), Section 7.1, where it
is denoted by S(@) in general.

53




Suppose that o is an initial value of a, and let £(u¢|y, o) denote the value of the
conditional expectation of u, given y calculated for this value ag. For any a we can

approximate £(u:|y,a) as

d€ ,

(1011) E(udly,0) ~ E(udy, a) + LA o)
and goo(a) as

. de(uily, @) 2
(10.12) Joo() ~Z{8(u,‘y,ao)+—w (a~ao)} .

t=0 da a=ap
Minimization of (10.12) with respect to a occurs at

T dg(u |y7 a)
2 i=0 E(utly,ag)———i—— e

(10.13) a— =

r [dE(uy,a) 2
Zt:o[ da la:ao

From (10.9) and (10.10) we obtain

d€ d€{(uq-
(10.14) _(dgat‘i) = —£(u,_1|y)—a—6—1?ga;wl, t=1,...,T,
d€ d
(1015) '—-(;;—atJy—)- =-—S(vt+1|y)—a—&i—;;—lly—), t= 1,...,T,
since ys, t =1,...,T does not depend on a. Further, we need
d€(uoly) _ d€(yoly)
10.16 =
( ) da da
since E(u_1ly) = E(u-2|y) = --- = 0. To calculate (10.16) we use an approximation

obtained by calculating (10.15) recursively from some T* replacing d€(vr- |y)/da by 0.
This leads to
_ €(wiy) _ df(wly) _ dé(uly)

(10.17) 0 o T do Tu ~ E(uly),

which is solved for d€(yol|y)/da. Thus we obtain the constituents of (10.13).
The Taylor-series expansion is considered by Box and Jenkins (1976) in Section 7.2.
As in Section 9 we can now count the number of operations needed to do the calcu-

lations. These can be summarized as follows
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Quantity

Computed +/- X

E(vely) T+1 T+1

E(uely) T+1 T+1

doo(a) T T+1

d€(vly) T+1 T+1
da

£

dE(uily) T+1 T+1
do

da

4900(=) T+1 T+1
da

Total 6T +5 6T +6

It should be emphasized that the minimization of goo(a) is not the same as the maxi-
mization of the loglikelihood because of the factor log |P| = log(1 —a?T*2)/(1 - a?). Even
for T so large that a?T+2 is negligible the term log(1 - a?) ~ —a? may not be small enough
to ignore. Each procedure studied in detail in this paper is exactly maximum likelihood
in the sense that the iteration is meant to converge to a local maximum. Therefore, these
iterative maximum likelihood procedures are not directly comparable to the Box-Jenkins

procedures.
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