
67 '

Cz
:

NO. 13510

DESIGN OF A MICRO-CONTROLLER

FOR

ABSORBED POWER ANALYSIS

October 1990

Alexander A. Reid
Gregory R. Hudas
U.S. Army Tank-Automotive Command
ATTN: AMSTA-RYA

By Warren, MI 48397-5000

APPROVED FOR PUBLIC RELEASE: 7
DISTRIBUTION IS UNLIMITED-1010 t:4

U.S. ARMY TANK-AUTOMOTIVE COMMAND
RESEARCH, DEVELOPMENT & ENGINEERING CENTER
Warren, Michigan 48397-5000

NOTICES

This report is not to be construed as an official Department of the Army
position.

Mention of any trade names or manufacturers in this report shall not be
construed as an official endorsement or approval of such products or companies
by the U.S. Government.

Destroy this report when it is no longer needed. Do not return it to the
originator.

-RORT 00CUMENTATION O2 R.elenosa Acess",. No.
PAGE-

4L Tub an" sume 6" Deft
Design of a Micro-Controller for Absorbed Power Analysis October 1990

IL

7. Aulbsa & Pefomin• Organiation ROeM Ne.
Gregory R. Hudas and Alexander A. Reid 13510
. Plqxemlt O eftle NamaW4 ad Addr IL oPlocUsitfwat Unit No.
U.S. Army Tank-Automotive Command '
System Simualtion and Technology Division (AMSTA-RY) IL c em or .ntm MNe.
Warren, MI 48397-5000

-L 12. SwkW OrpabsatMt Name aOW Address I&. Type of 0096"t & 119004 Covered
U.S. Army Tank-Automotive Command
System Simulation and Technology Division (AMSTA-RY) 1/90-4/90

I& supomna Notes

14L Abavoet UJM* 200 -eed)
The U.S. Army uses "absorbed power" to measure the level of discomfort of an occupant riding
in a vehicle. Average absorbed power can be calculated if the time history of acceleration
at a given point (for example) the driver's seat is known. The smaller the absorbed power is
for a given vehicle, running over a specific profile at a certain.speed, the better vehicle
ride is. There is a need for Application Specific Integrated Circuit (ASIC) chips and
microcontrollers in order to construct an absorbed power measuring instrument.

This report describes the basic digital logic design and simulation results of an ASIC
developed to calculate "absorbed power".

117.
Simulation, Absorbed Powerz, Micro-controller, Transfer Function, Bus/Register
External memory, Instruction, Floating point, clock cycle

L dkdflrs/OP•.,d Tma

PC-MATLAB, VAX, AHPL Simulator (HPSIM2)

COSAT U~waldlmip

IL ANmflbft MI&• mauy Cosas CM* ape0 No. of Pagms
Approved for Public Release: Unclassified 40
Distribution is Unlimited. Ch. a.

Unclassified
(See AiS-M.10 See Instructions .njRaefv OPTIONAL FORM 272 (4-771

a

a

2

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION 7

2.0 OBJECTIVE 7

3.0 CONCLUSION 7

4.0 RECOMMENDATIONS 8

5.0 DISCUSSION 8
5.1 Absorbed Power 8
5.2 Bus/Register Description 9
5.3 Instruction Set. ; 14
5.4 Use o-f the Micro-Controller18
5.5 Floating Point 18
5.6 External Memory19
5.7 Simulation 19

LIST OF REFERENCES 23

ADDENDUM HPSIM Description of ASIC 25

DISTRIBUTION LIST DIST-1

e3

a

a

4

I I

LIST OF ILLUSTRATIONS

Figure Title Page

5-1. Side-Side Absorbed Power Bode Plot 9

5-2. Fore-Aft Absorbed Power Bode Plot 10

5-3. Vertical Absorbed Power Bode Plot 10

5-4. Bus Structure of Micro-Controller12

5-5. Inputs/Outputs for Micro-Controller13

5-6. CSR Register 14

5-7. Karnaugh Map of Instruction Set..14

5-8. CMP Instruction 15

5-9. OUT Instruction15

5-10. GO Instruction 16

5-11. LD Instruction 16

5-12. ADD Instruction17

5-13. BRx Instruction 17

5-14. Floating Point Format 18

5-15. Module Layout 20

5

b

*

I

e

6

1.0. INTRODUCTION

Currently, the U.S. Army is engaged in the studies of human
vibration and its impact on the design of combat and tactical
vehicles. Because of this, standards have been developed to
assist researchers in observing the effects of the human body
undergoing vibrating forces under certain conditions. These
standards are important in the development of vehicle subsystems
such as seats, safety restraints, and suspension systems. To
make effective use of these standards comes the need to design
logic for Application Specific Integrated Circuit (ASIC) chips
and micro-controllers in order to calculate and compute data in
a very quick manner.

The analysis used in this report was prepared by the authors at
the U.S. Army Tank-Automotive Command, Analytical and Physical

- Simulation Branch, in conjunction with the requirements for a
final class project in the class "Design of Digital Systems (ECE
666)" taken during the winter 1990 semester at Wayne State
University, Detroit, Michigan.

2.0. OBJECTIVES

The objectives of the following paper are to give the basic
digital logic design and the simulation results of an ASIC
developed to calculate a standard called "absorbed power". The
main topics to be discussed in this report are as follows:

o Introduction to the theory of absorbed power.

* Processor Architecture.

O The HPSIM simulation model and results.

It must be stressed that the purpose of this report is to
present an ASIC logic design developed by the authors using
HPSIM software created by the University of Arizona.

3.0. CONCLUSION

The complicated and tedious task of calculating absorbed power
can be simplified greatly with the construction and use of this
integrated circuit chip. With the addition of analog-to-digital
(A/D) converters onto the chip, the only additional hardware
needed to calculate absorbed power is accelerometers. This is
in respect to the current practice of using accelerometers, a
recording medium to gather data and a computer for the
computation of the absorbed power.

7

4.0. RECOMMENDATIONS

While the layout of the logic for this chip is complete, more
work should be done to verify this before the costly process of
integrated chip manufacturing is carried out. It may be a good
idea to also include the International Standards Organization
(ISO) ride-level standards on this chip.

5.0. DISCUSSION

5.1. Absorbed Power

Absorbed power is described as the power a human body will
absorb when exposed to a vibrational environment. Absorbed
power is a military standard which is used to test vehicle
suspension systems. A person will only tolerate up to six watts
of absorbed power before he/she will slow down the vehicle to
reduce this level.

To calculate absorbed power, the three linear accelerations must
be measured (x,y and z) in ft/sec2 . These are used as inputs to
the absorbed power transfer functions and the outputs are then
squared, averaged and summed together to create total absorbed
power. The transfer functions are listed here in the continuous
time domain:

VERTICAL: 15.453s(s+5.0) (s 2+28.3s+2800.C) (s 2+105.0s+7570.0)(s+6.0) (s'+29.8s+1000.07 (s'+39.3s-3800.0) (s'+125.0s+5180.C)

FORE-AFT: 209.0s(s+110.0)
(s7+17.6s-125.0) (s 4+110.0s-:330.0)

S:DE-SIDE: 478.0s(s+130.0) (s 2
_11.2s-60.0) (s 2+14.2s+260.0)

(s¾+3.33s+17.3) (s'+5.5s+140.0) (s'-44.0s+900.0) (s-+-255.0s-2500.O)

To make optimum use of a digital controller, these transfer
functions have been converted over to the discrete domain using
PC-MATLAB. The digital transfer functions have a sampling
period of 0.005 seconds and are as follows:

VERTICAL: 0.029881z-7-0. 19901z'6+0.59394z-5 -0.9917 Iz- 4+0.96532z3'-0.51607z- 2+0. 11765z-1
-0. 13547z'+1. 1952z-'-4 . 6053z-1-10. 023z"-13. 315z+1i0. 811z-'-4 . 973z'÷i .0

FORE-AFT: 3.0516z' 4-8.9755E-3z' 3 -3.8404E-3z- 2+9.7642E-3z"1

0.27915z-'-1.6606z"+3.4643z'L-3.082z-'+l.0

8

SIDE-SIDE:0.0O022017z-1-0.016133Z-7+0 .035796z-6-0 .010529z-5-0. 07096 Z-4+0 .11392 Z-3_0. 0704 3z-2+0. 016138z-'
0.046037z`-0. 88328z-'+5 .2066z-6-15 .376z-"÷26.49 iz-'27 . 999z-1+17. 975z-1-6 .4596z-'+i1 .0

The user can load the scale-factor registers (vertical scale
factor: VSF; fore-aft scale factor: FSF; and the side-side scale
factor: SSF) with a value (ft/sec2/volt) to convert the input
value to the correct acceleration. Bode plots for these
transfer functions are presented in Figures 5-1, 5-2, and 5-3.

a 5.2 Bus/Register Description
The basic block diagram (Figures 5-4 and 5-5) consist of several
registers and buses. The operating registers in which the user
has access through instructions are the accumulator (AC), index
register (IX), and program counter (PC). Two nono6perating
registers are the instruction register (IR) and the memory data
register (MD) . A block of computational registers- called RAMREG
consists of both operating registers and non4,9perating registers
which will be discussed in the next paragraph. To have access
to memory, the buses ADBUS and DBUS are implemented. Both ABUS
and BBUS provide interconnections between the registers and the
inputs to the Arithmetic Logical Unit (ALU), while OBUS serves
as a connection between the ALU outputs and register inputs.

1 0 -1

S.......
S.. - -- -. -.. -• - -i •

10-..

100 10' Radians 102 103
FIGURE 5-1. Side-Side Absorbed Power Bode Plot

9

.. . --.-

; 100i

1001

.....10...
...

..;.
..

.10......-..........
100....... 1 0'... 10.......................... O..........

FIGUR ..-3.. Vertical:::::::::: .ore Power.. Bode... Plot..
.. 0

The RAMREG block, which plays an important role in the
computations regarding the absorbed power transfer functions,
is made up of the following registers:

TIME[28]: A 28 bit nonoperating register which keeps a
running total of time. It will be used in averaging
the result.

COUNT[28]: A nonoperating register used as a 28 bit
decrementing counter.

TEMP[28]: Nonoperating register which is used for
temporary storage during floating point operations.

VERTICAL<16>[28]: A block of nonoperating registers used
in the time dependent computations of vertical -

absorbed power. These registers contain the time
delay values, running sum values, and total average
values during the course of the calculations.

FORE-AFT<10>[28]: A block *of nonoperating registers used
in the time dependent computations of fore-aft
absorbed power.

SIDE-SIDE<18>[28]: A block on nonoperating registers
used in the time dependent computations of side-side
absorbed power.

SMP[28]: A 28 bit operating register in which the user
inputs the number of acceleration data samples.

CSR[8]: An 8 bit control/status register (Figure 5-6). The
user can observe the floating point error (FLERR),
negative flag (NFF), overflow flag (VFF), carry flag
(CFF), and zero flag (ZFF) by reading bits 0 through
4. Bits 5 through 7 serve as on/off switches (1 = on)
for the three absorbed power calculations.

Referring to Figure 5-5, the system is comprised of four
EXINPUTS and four possible OUTPUTS. The inputs VIN, FIN, and
SIN represent the vertical fore-aft and side-side acceleration
inputs respectively. The two possible output formats are
digital and analog. To obtain analog outputs, FOREOUT, SIDEOUT,
and VERTOUT are sent though 3 separate d/a converters. To
obtain the digital output, the degree of freedom selected is
output onto a 28 bit bus called OUTPUTBUS.

11

I

040

CC

Iwo

FIG 5-4. Bus Structure of Micro-Controller

12

0-

..
V >

I-ii

> C3

• . .
IL z

0
FIGURE 5-5. Inputs/Outputs for Micro-Controller

13

0 1 2 3 4 S 6 7

F - READ ONLY -READ/WRITE

NOTE: V - Vertical (1 is on)
F - Fore-aft
S - Side-Side

a

FIGURE 5-6. (CSR Register)

5.3. Instruction Set

In this system, the instruction cycle consists of both the fetch
operation and the execute operation. Because time is very
crucial in the computation of absorbed power using this ASIC
design, the instruction cycle was optimized by grouping related
instructions together using a Karnaugh map (Figure 5-7). For
instance, notice that the Branch commands contain various common

IR[0:I]

IR[2:3 , 00 01 11 10

00 ADD CMP X BRZ

01 X GO X BRV

11 X X X BRN

10 OUT LID X BRA

FIGURE 5-7. (Karnaugh Map of Instruction Set)

14

features and have been grouped with the same IR[0:1]. In fact,
by using the "don't cares" within the K-map will reveal a
reduced minterm IR[0].

The instruction set is comprised of nine instructions to serve
as an interface between the user and the ASIC. They are
discussed in full in the following paragraphs. In all cases,
IR[0:3] is the opcode of the instruction.

The C instruction (Figure 5-8) compares either a register (IX
or MD) or immediate 2's complement data to the contents of the

0 3 4 5 6 1

0100 fs C SOMPLEMENTODATA1 -REG 1 I- ix
0 =IM0 0-MD

NOTE: N bit 4 1 1 (REG), bit 5 specifies the register to CMP to AC.
f bit 4 u 0 (IMO). bits 5 - 15 are.Zs comp data.

FIGURE 5-8. (CMP Instruction)

accumulator (AC) and sets the status bits of the CSR accordingly
without modifying the contents of AC.

The OUT instruction (Figure 5-9) simply outputs an assigned

0 34 13 14 15

E0010 DOWT CARES J
00 - VERTICAL
01 - FORE-AFT
11 - SHDE-SIDE

NOTE: This instruction is used to assign a given dgital output port if needed.

FIGURE 5-9. (OUT Instruction)

data type to the oi&tput bus (OUTPUTBUS). As shown in the
figure, bits 14 and 15 of the IR will determine which data is
to be sent to OUTPUTBUS..

15

The GO instruction (Figure 5-10) is used to begin the entire

0 34 15

0101 DONT CARES

FRFUTURE EXP'ANSION

FIGURE 5-10. GO Instruction

process. When this instruction is implemented, first, the CSR
is checked to see which input accelerations are to be used for
the computation of absorbed power. Next, all required registers
are initialized. Finally, the time dependent calculations of
absorbed power are made based on the specified input
accelerations.

The LD instruction loads the contents of a specified register
or immediate data into a specified destination register (Figure
5-11). IR[4:5] gives the destination while IR[14:151 gives the
source. IR[13] specifies whether the

0 3 4 6 7 12 13 14 15

0110 DEST 0Q4T CARE SAC SO4.ICE

000 -CSR 1-REG
001 -AC0 M
011 - IX
010 - SMP
100 - VSF O0 - CSR
101 - FSF 01 - AC
110 - SSF 11 - IX

10- SP

NOTE: When SRC -0 (immediate) next word is data.
SMPs a the nuber of sampls.

FIGURE 5-11. LD Instruction

16

source is immediate or register data. If immediate, the next
word (in 2's complement form) is fetched and read. It is with
this command that the scale factors are loaded into VSF, FSF,
and SSF.

The ADD instruction (Figure 5-12) simply adds a 2's complement
number to either AC or IX as specified by IR[4].

0 3 4 5 Is

000 REGIZSCOPEMENT DISPLACEMENT

o-AC
1 - IX

FIGURE 5-12. ADD Instruction

If AC is selected, the result is a standard ADD operation. The
register IX will be specified if indexed addressing is needed.

Finally, the BRM instructions (Figure 5-13) are made up of

0 3 4 5 is

xx T/F S COMPLEMENT DISPLACEMENT

L• I - BRANCH IF CONDITION TRUE /
0- BRANCH IF CONDITION FALSE

FIGURE 5-13. BRx Instructions

three conditional branch instructions (BRZ, BRN, BRV) and one
unconditional branch instruction (BRA) depending on the opcode
selected. The 11 bit displacement (IR[5:15]) allow for 2's
complement number permitting a branch range of 1K backward or
forward.

All nine of these instruction operations will be seen later in
the AHPL model.

17

5.4. Use of the Micro-Controller

Before the 'GO' command can be issued, the user must first set
up the micro-controller for use. The 'SMP' register must be
loaded with an unsigned integer representing the number of
samples to take. Sampling is done at 200 Hz, so the micro-
controller will calculate absorbed power for SMP/200 seconds.
The scaling factors must be loaded into the registers for
vertical scaling (VSF), side-side scaling (SSF) and fore-aft
scaling (FSF). These values are in the floating point form
described in the next section. Once this is done, the micro-
controller is now ready to perform absorbed power analysis.

5.5. FloatinQ Point

To obtain the accuracy and wide range of numerals used in-the
absorbed power computations, floating point n-otation was used
(see Figure 5-14). The only difference between this format
and the IEEE floating point format is the length of the mantissa
is 19 bits instead of 23 bits. All of the computational
registers used for calculation of the absorbed power are
floating point registers. To perform mathematical operations
on these registers, three external modules were created, one
each for multiplication, division and addition (see Figure 5-15
for the layout of the modules used in the this project).

s exp fraction

0 1 8 9 27

FIGURE 5-14. (Floating Point Format)

Floating-point addition is performed by the module 'FLADD'. The
module expects the input numbers on the ABUS and BBUS. It waits
for the line 'FLADDGO' to go high, reads the values off of ABUS
and BBUS and performs the floating point operations. The
exponents are first normalized, then the mantissas are added.
The exponent is then adjusted (if the.-sum was greater than ten),
the result is placed on OBUS, and the ACK bus is set high to let
the main program know the addition is complete.

18

Floating point multiplication is performed by the module
'FLMUL'. This module also expects the inputs on ABUS and BBUS
and begins operation when the 'FLMULGO' line is set high. The
exponents are added and the mantissas are multiplied. The
exponent is then adjusted (if the multiplicand is greater than
ten), the result is placed on OBUS, and the ACK bus is set high
to let the main program know the multiplication is complete.

"Floating point division is similar to the multiplication and is
performed by the external module 'FLDIV'. When the line 'FLDIV'
is set high by the main module, the dividend is read off of the

* ABUS and the divisor is read off the BBUS. If the dividend is
zero, the result is zero and it branches to the end of the
module. If the divisor is zero, the result is infinity, the
'FLERROR' flag is set, and again the module ends. With valid
numbers, the exponents are subtracted, the mantissas divided and

- the exponent adjusted. The result is placed on the OBUS and the
ACK bus is set high to let the main program know the division
is complete.

5.6. External Memory

Reading and writing to external memory is taken care of in the
external module 'EXTMEM'. There are 'READ', 'WRITE', 'ADBUS'
and 'DBUS' buses used as inputs to the memory module and 'ACK'
as an output. To read from memory, set READ high, load ADBUS
with the address location. The module will load DBUS with the
data work and set ACK high signalling that the read operation
is over. To write to the memory, set WRITE high, load ADBUS
with the address and DBUS with the value to be written to
memory. The module will write the value to memory and set ACK
high to signify completion. .

The memory module contains two NULL states. While not
necessary, these were included to simulate slow (and
inexpensive) memory which can and should be used with this chip.
There is no reason to buy expensive fast memory when the
sampling rate is only 200 Hz.

5.7. Simulation

The simulation results are presented in full in Addendum. The
instruction fetch was done in lines 2-3. Decoding is performed
in lines 4-7. Execution is broken down into the following
segments:

19

0 ! _>

U----

z

LID

FIGUR 5-15. •Module Layout

20

COMMAND LINES OF CODE

ADD 8-9
BRANCH's 10-14
GO 15-138
LD 139-141
OUT 142-151
CMP- 152-156

The 'GO' command consists of three parts: computing vertical
absorbed power (steps 18-61); side-side absorbed power (88-138);
and fore-aft absorbed power (steps 62-87). The execution of
each particular computation depends on the setting of the
correct bits in the CSR (control-status register) .The simulation
was performed on a micro-VAX II using HPSIM2. There were no
errors and all commands performed correctly. Referring to the
simulation results (beginning on page A-15), a START command was
issued on clock cycle 4. The first instruction was ADD AC,#F.
This was performed during clock cycles 5-12. Note the value of
'F in AC at clock cycle 13.

The next instruction was LD IX,#5. This was performed during
clock cycles 13-20. Note the value of IX at. clock cycle 21.
The following instruction is LD AC,'FFFF during clock cycles 21-
35. The value of AC is 'FFFF at clock cycle 36. Finally, a.
load from register to register is presented as LD IX,AC during
clock cycles 36-47. At clock cycle 48 both AC and IX have the
value of 'FFFF.

A branch always was performed during clock cycles 48-55. The
branch command was BRA #5. Note that PC is incremented from '06
to 'OB at clock cycle 57. Another add was performed as ADD
AC,'B during clock cycles 57-63. Register AC is properly
increased to '10009. During clock cycles 64-78, the instruction
LD AC,#'OA is performed. Clock cycle 79 shows the new value of
AC to be '0A.

A compare is done during clock cycles 79-87. The CMP AC,#'OA
does set the zero flag (clock cycle 88) as would be expected.
The rest of the simulation begins with the GO command. This is
meaningless as the data into the acceleration input registers
have no value. Nonetheless, the command is properly executing.

To permit accuracy, all computational registers are 28 bits long
(they would normally be 32 bits except for the compilation
limitations of HPSIM). The user is provided with 256 words of
16 bit length.

21

22

LIST OF REFERENCES

1) "Digital Systems Hardware Organization and Design",
Frederick J. Hill, Gerald R. Peterson, John Wiley & Sons, Inc.,
1987.

2) "User Manual for AHPL Simulator (HPSIM2) AHPL Compiler
* (HPCOM)", Z. Navabi, R. Swanson, F.J. Hill, University of

Arizona.

2

23

24

41

ADDENDUM

HPSIM DESCRIPTION OF ASIC

25

26

AN? LMODULE: ABPOWER

EXINPUTS: SELECT[2].

EXBUSES: DATAOUT[28].

BUSES: ABUS[28]; BBUS[28]; OBUS[28]; CIN.

M~EMORY: RAM<65536>[28] ;MA[161 ;IR[28] ;MD[28];AC[28] ;IX[16] ;PC[(16] ;CSR[28;
SMP[28];TEMP[28];COUNT[28];VIN[28];SIN[28];FIN[28];TIME[28];
V17[28] ;V07 [28] ;VI6[28] ;V06[281 ;V15[281 ;V05 [28] ;V14 (28] ;V04 [281 ;
V13[28];V03[28];VI2[28];V02[28];VOUT[28];SI8[28];S08[28];
S17[281 ;S07[28] ;S16[28] ;S06[281 ;SIS[28] ;S05[28] ;S14 [28] ;S04 [281 ;
S13 [28] ;S03[28] ;S12 [28] ;S502 (281; SOUT [28] ;F14 (28] ;F04 (28] ;F13 [28"
F03(28] ;F12[28] ;F02[28] ;FOUT[28] ;VSUM[28] ;VAP(281 ;SSUM[28];
SAP L28];FSUM [28];FAP [281 OUTPUT [28];SELECT [2].

LABELS: ZFF = CSR[25]; CFF = CSR[26]; NFF = CSR[27]; VFF=CSR[28].

CLUNITS: FLADD[28] (ABUS;BBUS) ; FLDIV[28] (ABUS;BBUS);
FMULT[28] (ABUS;BBUS) ; 1NC[28] (ABUS);
DEC[28] (BBUS); BUSFN[28] (M; DCD); DCD[16] (MA);
ADDO[11 (ABUS;BBUS;CIN); ADD)1[2] (ABUS;BBUS;CIN);
ADD28 [29] (ABtJS;BBUS;CIN).

1. OBUS = 28$256; PC <= OBUS; MA <= OBUS.

2. MD <= BUSFN(M;DCD(MA)); PC <= INC(PC).

3. ABUS = MD; OBUS =ABUS; IR <= OBUS.

4. => (IR[O]) (10).

S. NO DELAY
=> (IR[3]) /(15).

6. NO DELAY
=> (IR[2]) /(139)

7. NO DELAY

8. ABUS = (5$0, IR(5:15] ! A5$1, IR[5:15])*
(AIR[5], IR[5]);

OBUS = ABUS; MD <= OBUS.

27

9. ABU$ = MD;
BBUS = (AC ! IX) *(AIR[4] IR[4]);
OBUS = ADD28(ABUS;BBUS;O);
AC * AIR(4] <= OBtJS;
IX * IR[4] <= OBtJS;
ZFF <= A(+/OBUS);
CFF <= ADDO(ABUS;BBUS;O);
NFF <= OBUS[O];
VFF <= (ABUS[O] & BBUS[O] & (ADD1(ABUS;BBUS;O))

(ABUS[O] & BBUS[O] & (ADD1(ABUS;BBUS;O));
=> (2).

:. ((AIR(2] & A IR[3]) !(AIR[2] & IR[31)
(IR[2] & IR[3l) !(IR[2] & A IR[3])

/(14, 11,12, 13).

1:-. => ((IR(4] @ VFF) A A(IR(41 @ VFF)) / (14,2).

12. => ((IR[4) @ NFF) ! (IR[41 @ NFF)) / (14,2).

13. => (^A(I R [4] @ ZFF)) (2).

14. ABUS = (17$9, IR[5:15] A 17$1, IR[5:15])*
(AIR[5 , IR[5])

BBUS = PC;
OBUS = ADD28(ABUS;BBUS;O);
PC <= OBUS;
=> (2).

15. OBUS = 28$0; CSR <= OBUS; TEMP <= OBUS; TIME <= OBUS; V17 <= OBUS;
V07 <= OBUS; VIE <= OBUS; V06 <= OBUS; V15 <= OBUS; V05 <= OBUS;
V14 <=~ OBUS; V04 <= OBUS; V13 <= OBUS; V03 <= OBUS; V12 <= OBUS;
V02 <= OBUS; VOUT <= OBUS; S18 <= OBUS; S08 <= OBUS; S17 <= OBUS;
S07 <= OBUS; S16 <= OBUS; S06 <= OBUS; S15 <= OBUS; SO5 <= OBUS;
S14 <= OBUS; S14 <= OBUS; S04 <= OBUS; S13 <= OBtJS; SO3 <= OBUS;
S12 <= OBUS; S02 <= OBtJS; SOUT <= OBUS; F14 <= OBUS; F04 <= OBUS;
F13 <= OBUS; F03 <= OBUS; F12 <= OBUS; F02 <= OBUS;
FOUT <= OBUS; VSUM <= OBUS; VAP <= OBUS; FSUM <= OBUS;
FAP <= OBUS; SSUM <= OBUS; SAP <= OBUS.

16. BBUS* SMP; OBUS = BBUS; COUNT <= OBUS.

17. START = \1\; COUNT <= DEC(COUNT); ABUS=\O11111000010001111O1O1110000\;
BBUS = TIME; OBUS =FLADD(ABUS;BBUS); TIME <= OBUS;
=> (&/COUNT) / (2)

18. NO DELAY
=.> (A CSR[131)/(62) a

19. ABUS= VSF; BBUS =VIN; OBUS =FMUL(ABUS;BBUS); VIN <= OBUS;
=> (VFF) /(2).

28

20. ABUS = \0111111000001000111111011001\;
BBUS = VIN; OBUS = FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (?)-

21. ABUS = \0000000100111111100010100000\;
BBUS = VOUT; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

22. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

23. ABUS = \1111111100110010111111101101\;
* BBUS = V12; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

24. ABUS = MD; BBUS =.TEMP; OBUS = FLADD(ABUS;BBUS); MZ <= OBUS.

25. ABUS = \1000000111110110110101001111\;
- BBUS = V02; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

26. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

27. ABUS = \0111111111000100011001011110\;
BBUS = V13; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2)

28. ABUS = MD; BBUS TEMP; OBUS = FLADD(ABUS;BBUS); %M <= OBUS.

29. ABUS = \0000001000110001100010110100\;
BBUS = V03; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

30. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); •M <= OBUS.

31. ABUS = \llllllillll00111110110010101\;
BBUS = V14; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

32. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

33. ABUS = \1000001000011001111100011010\;
BBUS = V04; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

4 => (VFF) / (2).

34. ABUS = MD; BBUS TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

35. ABUS = \0111111110011011011110000000\;
BBUS = VI5; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

36. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

29

37. ABUS = \0000000110100000111000010100\;
BBUS = V05; OBUS FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

38. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

39. ABUS = \1111111011100000111100010010\;
BBUS = V16; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

40. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

41. ABUS = \1000000010111011101001111011\;
BBUS = V06; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFFY / (2).

42. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

43. ABUS = \0111110110001001011010111011\;
BBUS = VI7; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

44. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

45. ABUS = \0111111100111100011100100101\;
BBUS = V07; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

46. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS;
VOUT <= OBUS; TEMP <= OBUS.

47 ABUS = MD; BBUS = TEMP; OBUS FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2).

48. ABUS = MD; BBUS = VSUM; OBUS FLADD(ABUS;BBUS); VSUM <= OBUS;

MD <= OBUS.

49. ABUS = MD; BBUS = TIME; OBUS = FLDIV(ABUS;BBUS); VAP <= OBUS.

50. BBUS = V16; OBUS = BBUS; VI7 <= OBUS.

51. BBUS = VI5; OBUS = BBUS; V16 <= OBUS.

52. BBUS = V14; OBUS = BBUS; VI5 <= OBUS.

53. BBUS = V13; OBUS = BBUS; V14 <= OBUS.

54. BBUS = V12; OBUS = BBUS; V13 <= OBUS.

55. BBUS = VIN; OBUS = BBUS; V12 <= OBUS.

56. BBUS = V06; OBUS = BBUS; V07 <= OBUS.

30

57. BBUS = V05; OBUS = BBUS; V06 <= OBUS.

58. BBUS = V04; OBUS = BBUS; V05 <= OBUS.

59. BBUS = V03; OBUS = BBUS; V04 <= OBUS.

60. BBUS = V02; OBUS = BBUS; V03 <= OBUS.

61. BBUS = VOUT; OBUS = BBUS; V02 <= OBUS.

62. => (^CSR[14])/(88)

63. ABUS = FSF; BBUS = FIN; OBUS = FMUL(ABUS;BBUS); FIN <= OBUS;
=> (VFF) / (2).

64. ABUS = \0111101110100101110011100101\;
BBUS = FIN; OBUS = FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2).

65. ABUS = \0000000011011101101111110100\;
BBUS = FOUT; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

66. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

67. ABUS = \1111101101001000100010100100\;
BBUS = F12; OBUS FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

68. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

69. ABUS = \1000000100001110110000111100\;
BBUS = F02; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

70. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

71. ABUS = \1111101110011110001000110110\;
BBUS = F13; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

72. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

73. ABUS = \00000000101000011#00101111111\;
BBUS'= F03; OBUS FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

74. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

75. ABUS = \0111101100111001101110101010\;
BBUS = F14; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

31

76. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

77. ABUS = \1111111110000111001111101010\;
BBUS = F04; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

7E. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS;
TEMP <= OBUS.

79. ABUS = MD; BBUS = TEMP; OBUS = FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2).

80. ABUS = MD; BBUS = VSUM; OBUS = FLADD(ABUS;BBUS); VSUM <= OBUS;

MD <= OBUS.

81. ABUS = MD; BBUS = TIME; OBUS = FLDIV(ABUS;BBUS); VAP <= OBUS.

82. BBUS = F13; OBUS = BBUS; FI4 <= OBUS.

83. BBUS = F12; OBUS = BBUS; F13 <= OBUS.

84. BBUS = FIN; OBUS = BBUS; F12 <= OBUS.

85. BBUS = F03; OBUS = BBUS; F04 <= OBUS.

86. BBUS = F02; OBUS = BBUS; F03 <= OBUS.

87. BBUS = FOUT; OBUS = BBUS; F02 <= OBUS.

88. => (^CSR[15])/(2).

89. ABUS = SSF; BBUS = SIN; OBUS = FMUL(ABUS;BBUS); SIN <= OBUS;
=> (VFF) / (2).

90. ABUS = \0111110000011011010000010011\;
BBUS = SIN; OBUS = FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2).

91. ABUS = \0000000101011111010101001101\;
BBUS = SOUT; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
-> (VFF) / (2).

92. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS. A
93. ABUS = \1111110100110100110011000010\;

BBUS = S12; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

94. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.
if

95. ABUS = \1000001000101000111111011111\;
BBUS = S02; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) I (2).

32

96. ABUS = MD; BBUS TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUtS.

97. ABUS = \0111110110011001001110110011\;
BBUS = S13; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

98. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

99. ABUS = \0000001010010000100101101000\;
BBUS = S03; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

4

100. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

101. ABUS = \1111110100111011100110001100\;
BBUS = S14; OBUS FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

102. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

103. ABUS = \1000001010011000100011110101\;
BBUS = S04; OBUS FMUL(ABUS;BBUS); TEMP <= OBUS;
-> (VFF) / (2).

104. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

105. ABUS = \1111110010001011010000111001\;
BBUS = S15; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

106. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

107. ABUS = \0000001001001010011111101111\;
BBUS = S05; OBUS = FMUL(ABUS;BBUS); TEM <= OBUS;

=> (VFF) / (2).

108. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

109. ABUS = \0111110100011111101111100111\;
BBUS = S16; OBUS FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

110. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

111. ABUS = \1000000110100100001,000001100\;
BBUS = S06; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

112. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

113. ABUS = \1111110010100010101100010110\;
BBUS = S17; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) I (2).

33

114. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

115. ABUS = \0000000010010011001000101101\;
BBUS = S07; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

117. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

118. ABUS = \0111101101100001110101100100\;
BBUS = SI8; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
-> (VFF) / (2).

119. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.

120. ABUS = \1111111011011011101101011001\;
BBUS = S08; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

121. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS;
SOUT <= OBUS; TEMP <= OBUS.

122. ABUS = MD; BBUS = TEMP; OBUS = FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2).

123. ABUS = MD; BBUS = VSUM; OBUS = FLADD(ABUS;BBUS); SSUM <= OBUS;

MD <= OBUS.

124. ABUS-= MD; BBUS = TIME; OBUS = FLDIV(ABUS;BBUS); SAP <= OBUS.

125. BBUS = S17; OBUS BBUS; SI8 <= OBUS.

126. BBUS = S16; OBUS = BBUS; S17 <= OBUS.

127. BBUS = SI5; OBUS BBUS; S16 <= OBUS.

128. BBUS = S14; OBUS = BBUS; SI5 <= OBUS.

129. BBUS = S13; OBUS = BBUS; S14 <= OBUS.

130. BBUS = S12; OBUS BBUS; S13 <= OBUS.

131. BBUS = SIN; OBUS = BBUS; S12 <= OBUS.

132 BBUS = S07; OBUS = BBUS; S08 <= OBUS.

133. BBUS = S06; OBUS = BBUS; S07 <= OBUS.

134. BBUS = S05; OBUS = BBUS; SO6 <= OBUS.

135. BBU& = S04; OBUS = BBUS; S05 <= OBUS.

136. BBUS = S03; OBUS = BBUS; S04 <= OBUS.

34

137. BBUS = S02; OBUS = BBUS; S03 <= OBUS.

138. BBUS = SOUT; OBUS = BBUS; S02 <= OBUS;
=> (17).

139. => (IR[I] & IR[2]) / (142).

.140. MD <= BUSFN(M;DCD(IX)).

141. ABUS = MD;
OBUS = ABUS;

4 OUTPUT <= OBUS;
=> (2).

142. => (IR[13]) / (144).

I-3. MD <= BUSFN(M;DCD(IX));
PC <= INC(PC);
=> (146).

144. => (^IR[15]) / (146).

145. BBUS = (AC ! IX) * (^IR[14], IR[14D);
OBUS = BBUS;
MD <= OBUS.

146. => (IR[4]) / (149).

147. NO DELAY
--> (^IR[6]) /(2).

148. ABUS = MD;
OBUS = ABUS;
AC * ^IR[5] <= OBUS;
IX * IR[51 <= OBUS;
=> (2).

149. ABUS = (22$0, IR[7:12]);
BBUS = 28$32;
OBUS = ADD(ABUS;BBUS;0);
MA <= OBUS.

150. M*DCD(MA) <= MD;
=> (2).

• 151. NO DELAY
=> ((IR(4] & IR(5]) ! (IR[4] & ^IR[5]) / (153,154).

152. ABUS = (6$0, IR[6:15] ! A(6$1), IR[6:15]) *

(AIR[6] ,IR[6]);
BBUS = AC;
=> (155).

35

153. ABUS = MD;
BBUS = AC;
=> (155).

154. BBUS = IX;
OBUS = BBUS;
MD <= OBUS;
=> (153).

155. OBUS = ADD28(ABUS;BBUS;O);
ZFF <= -(+/OBUS);
CFF <= ADDO(ABUS;BBUS;O);
,NFF <= OBUSrO];
VFF <= (ABUS[O] & BBUS[O] & "(ADD1(ABUS;BBtJS;O))+

(ABUS[O] & BBUS[O] & ADD1(ABUS;BBUS:O);
=> (2).

END OF SEQUENCE

DATAOUT =(SOUT ! VOUT ! FOUT)*
^SELECT[O]& ASELECT(1], -SELECTtQ] SELEC7[1], SELECT[O])

END.

CLUNIT: FLADD(X,Y)
INPUTS: X[2811;Y[28].
OUTPUTS: FLADD[28].
BODYI

FLADD = X[281.
END.

CLUNIT: FLMULT(X,Y)
INPUTS: X[28) ;Yt28jl
OUTPUTS: FLMULT[28].
BODY

FLMULT =X(281.

END.

36

CLUNIT: FLDIV(X,Y)
INPUTS: X[28];Y[28].
OUTPUTS: FLDIV[28).
BODY

FLDIV =X[281.

END.

CLUNIT: FULLADD (X;Y;CIN)
INPUTS: X;Y;CIN.
OUTPUTS: FULLADD(2].
CTERMS: A;B;C;SUM;COUT.
BODY
A =X @ Y;
B =X & Y;
SUM = A @ CIN;
C = A & C;
FULLADD(O] = COUT;
FULLADD (1) SUM.

END.

CLUNIT: ADDER(XIN;YIN;CIN) {I}
INPUTS: XIN[I];YINjII];CIN.
OUTPUTS: SUMOUT[I+1].
CLUNITS:.FA[2] <: FULLADD.
CTERMS: CARRYjI];SUM[I].
BODY
CA.RRYrI-1hSUM[I-1] = FA(XIN[I-1];YIN[I-1];CIN);
FOR J = 1-2 TO 0 CONSTRUCT

CARRY[J],SUM!IJ] = F-A(SIN[J];YINjJ];CARRY[J+1])
ROF;
SUMOUT = CARRY(01,SUM.

END.

CLUNIT: INC(X)
INPUTS: X[28].
OUTPUTS:,TERMOUT[28].
CTERMS: TA(28].
BODY
FOR J =27 TO 0 CONSTRUCT

4 IF J =27 THEN
TA[J] = 1

ELSE
TA[JI X[J+13 & TA[J+l]

FI
ROF;
FOR J = 27 TO 0 CONSTRUCT

TERMOUT[J] =X[J] @ TA[J]
ROF.

END.

37

CLUNIT: DECODER(A)
INPUTS: A[16].
OUTPUTS: DCDOUT[65536].
BODY

FOR J = 0 TO 65535 CONSTRUCT
DCDOUT[J] = TERM(J;A)

ROF.
END.

CLUNIT: BUSFN(MEM;F)
INPUTS: MEM<65536>[28];F[28].
OUTPUTS: WORDOUT[L].
CTERMS: N<65536>[28].
BODY

FOR I = 0 TO 65535 CONSTRUCT
N<I> = MEM<I> & F<I>

ROF;
WORDOUT = +1/N.

END.

CLUNIT: DEC(X)
INPUTS: X[28].
OUTPUTS: TERMOUT[28].
CTERMS: TA[I]; CARRY[I]; TEMP[I].
BODY

FOR J=0 TO 27 CONSTRUCT
TA(I] = ^X[I]

ROF;
CARRY[27] 1;
FOR J = 26 TO 0 CONSTRUCT

CARRY[J] = CARRY[J-1] & TA(J-1]
ROF;
FOR J = 0 TO 27 CONSTRUCT

TEMP[J] = TA[J] @ CARRY[J]
ROF;
FOR J = 0 TO 27 CONSTRUCT

TERMOUT[J] = ^TEMP[J]
ROF.

END.

38

4

39

DISTRIBUTION LIST

Copies

Commander 12
Defense Technical Information Center
Bldg. 5, Cameron Station
ATTN: DDAC
Alexandria, VA 22304-9990

Commander 2
U.S. Army Test-Evaluation Command
ATTN: AMSTE-TA-R
Aberdeen Proving Ground, MY 21005-5055

Manager 2
Defense Logistics Studies
Information Exchange
ATTN: AMXMC-D
Fort Lee, VA * 23801-6044

Commander
U.S. Army Tank-Automotive Command
ATTN: ASQNC-TAC-DIT (Technical Library) 2

AMSTA-CF (Dr. Oscar) 1
AMSTA-RYA (Mr. Janosi) 1
AMSTA-RY (Dr. Beck) 1
AMSTA-RYA (Mr. Reid) 15
AMSTA-RYA (Mr. Hudas) 15

Warren, MI 48397-5000

Director
U.S. Material Systems Analysis Activity 1
ATTN: AMXSY-MP (Mr. Cohen)
Aberdeen Proving Ground, MD 21005-5071

Dist-1

