]

| APPROVED FOR PUBLIC RELEASE: |
DISTRIBUTION IS UNLIMITED

w1666

Abkwojéz

=X D) ([ =

-

DESIGN OF A MICRO-CONTROLLER

FOR

ABSORBED POWER ANALYSIS

October 1990

Alexander A. Reid
Gregory R. Hudas
U.S. Army Tank-Automotive Command
ATTN: AMSTA-RYA
By _warren, mr 48397-5000

o

P
mwm

—g

U.S. ARMY TANK-AUTOMOTIVE COMMAND
RESEARCH, DEVELOPMENT & ENGINEERING CENTER
Warren, Michigan 48397-5000

{"}‘i




NOTICES

This report is not to be construed as an official Department of the Army
position.

Mention of any trade names or manufacturers in this report shall not be
construed as an official endorsement or approval of such products or companies
by the U.S. Government.

Destroy this report when it is no longer needed. Do not return it to the
originator.

R



m‘ RT DOCUMENTATION |1 REPORT MO, % & Recipiant’s Accossion Ne.
PAGE
& Thie and Subtitie . & Repert Dots
Deésign of a Micro-Controller for Absorbed Power Analysis October 1990
. [ 3
7. Author(s) & Porforming Organization Rept. Ne.
Gregory R. Hudas and Alexander A. Reid 13510
9. Perferming Organtzstion Name snd Address ) 1. Project/Task/Werk Unit Ne.
U.S. Army Tank-Automotive Command '
System Simualtion and Technology Division (AMSTA-RY) 111, Contreet(C) or Grant(®) Ne.
Warren, MI 48397-5000 ©
. -«
.12, Sponsering Organization Name snd Address 13 Type of Report & Period Covered
U.S. Army Tank-Automotive Command
System Simulation and Technology Division (AMSTA-RY) 1/90-4/90
14

1S, Supplementary Notes

16, Abstract (Limit: 200 wordn)
The U.S. Army uses "absorbed power" to measure the level of discomfort of an occupant riding

in a vehicle. Average absorbed power can be calculated if the time history of acceleration
‘at a given point (for example) the driver's seat is known. The smaller the absorbed power is
for a given vehicle, running over a specific profile at a certain speed, the better vehicle
ride is. There is a need for Application Specific Integrated Circuit (ASIC) chips and
microcontrollers in order to construct an absorbed power measuring instrument.

This report describes the basic digital logic design and simulation results of an ASIC
developed to calculate "absorbed power".

17. Documant Anatysis s. Descripters

Simulation, Absorbed Power, Micro-controller, Transfer Function, Bus/Register
External memory, Instruction, Floating point, clock cycle

5 identifiers/Open-Ended Terms
PC-MATLAB, VAX, AHPL Simulator {(HPSIM2)

- ¢ COSATY Mel¢/Greup

18. Avelisbility Statement: 19, Security Class (This Repert) 21, Ne. of Pages
Approved for Public Release: Unclassified 40
Distribution is Unlimited. . Security Class (This Page) 22. Price

Unclassified

 (See ANSI-239.18) See Instructions enfReverse OPTIONAL FORM 272 (4=77)




y 23




TABLE OF CONTENTS

Section

1.

>

w N

(GEGRONS, NS, RSN XS
SNoaodk WNR O o o o

0

INTRODUCTION
OBJECTIVE.
CONCLUSION
RECOMMENDATIONS .

DISCUSSION
Absorbed Power

Bus/Register Descrlptlon
Instruction Set. .
Use of the Micro- Controller

Floating Point

External Memory.

Simulation

LIST OF REFERENCES.

ADDENDUM

DISTRIBUTION LIST..

HPSIM Description of ASIC.

Page

O 00

. .14
.18
.18
.19
.19

.23
.25

.DIST-1







5-10.
5-11.
5-12.
5-13.
5-14.
5-15.

LIST OF ILLUSTRATIONS

Title
Side-Side Absorbed Power Bode Plot
Fore-Aft Absorbed Power Bode Plot.
Vertical Absorbed Power Bode Plot.

Bus Structure of Micro-Controller.

Inputs/Outputs for Micro-Controller.

CSR Register

Karnaugh Map of Instruction Set.
CMP Instruction.

ouT Instrﬁction

GO Instruc;ion

LD Instruction

ADD Instruction.

BRx Instruction

Floating Point Format.

Module Layout

Page

.10
.10
.12
.13
.14
.14
.15
.15
.16
.16
.17
.17
.18
.20




w




1.0. INTRODUCTION

Currently, the U.S. Army is engaged in the studies of human
vibration and its impact on the design of combat and tactical
vehicles. Because of this, standards have been developed to
assist researchers in observing the effects of the human body
undergoing vibrating forces under certain conditions. These -
standards are important in the development of vehicle subsystems
such as seats, safety restraints, and suspension systems. To
make effective use of these standards comes the need to design
logic for Application Specific Integrated Circuit (ASIC) chips
and micro—-controllers in order to calculate and compute data in
a very quick manner.

The analysis used in this report was prepared by the authors at
the U.S. Army Tank-Automotive Command, Analytical and Physical
Simulation Branch, in conjunction with the requirements for a
final class project in the class "Design of Digital Systems (ECE
666)" taken during the winter 1990 semester at Wayne State
University, Detroit, Michigan.

2.0. OBJECTIVES

The objectives of the following paper are to give the basic
digital logic design and the simulation results of an ASIC
developed to calculate a standard.called "absorbed power". The
main topics to be discussed in this report are as follows:

¢ Introduction to the theory of absorbed power.
° Processor Architecture.
° The HPSIM simulation model and results.

It must be stressed that the purpose of this report is to
present an ASIC logic design developed by the authors using
- HPSIM software created by the University of Arizona.

3.0. CONCLUSION

The complicated and tedious task of calculating absorbed power
can be simplified greatly with the construction and use of this
integrated circuit chip. With the addition of analog-to-digital
(A/D) converters onto the chip, the only additional hardware
needed to calculate absorbed power is accelerometers. This is
in respect to the current practice of using accelerometers, a
recording medium to gather data and a computer for the
computation of the absorbed power. .




4.0. RECOMMENDATIONS

While the layout of the logic for this chip is complete, more
work should be done to verify this before the costly process of
integrated chip manufacturing is carried out. It may be a good
idea to also include the International Standards Organlzatloq
(ISO) ride-level standards on this chlp

5.0. DISCUSSION
5.1. Absorbed Power

Absorbed power is described as the power a human body will
absorb when exposed to a vibrational environment. Absorbed
power is a military standard which is used to test vehicle
suspension systems. A person will only tolerate up to six watts
of absorbed power before he/she will slow down the vehicle to
reduce this level.

To calculate absorbed power, the three linear accelerations must
be measured (x,y and z) in ft/sec?. These are used as inputs to
the absorbed power transfer functions and the outputs are then
squared, averaged and summed together to create total absorbed
power. The transfer functlons are listed here in the continuous
time domain:

VERTICAL: 15.453s (s+5.0) (s2+28.3s+2800.C) (s?+105,05+7570.0)
(s+6.0) (s*+29.8s5+1000.0) (s*+39,1s+3800.0) (s°+125.0s+518C.0

FORE-AFT: 209.0s(s+110.0)}
(s+17.65-125.0) (s*+110.0s5+2330.0)

SIDE-SIDE: 478.3s5(s+130.0) (s?r11.25+60,0) (s?+14.25+260.0)
(s+3.33s+17.3) (s“+5.5s+140.0) (s“-44.05+900.0) (s+255.0s-2500.0)

To make optimum use of a digital controller, these transfer
functions have been converted over to the discrete domain using
PC-MATLAB. The digital transfer functions have a sampling
period of 0.005 seconds and are as follows:

VERTICAL: 0. 0298812"—0 199012"4-0 593942°%-0. 991712 440, 965322"-0 516072”+0 117652'l

FORE-AFT: 3.05162"-8.97555-32"-3.84041§-~3z"+9.76421-:-32'1
z27-1. Z277+3, 27%=-3. 27°+1.,




Magnitude

SIDE-SIDE:
0.00220172°-0.0161332""+0.0357962°¢~-0.010529273-0.0709627'+0.1139227>-0.07043272+0.0161382"}

0.04603727°-0.,88328z2 '+5.20662"~15.37627°+26.4912'-27.9992°°+17.97527°-6.45962 +1.0

The user can load the scale-factor registers (vertical scale
factor: VSF; fore—aft scale factor: FSF; and the side-side scale
factor: SSF) with a value (ft/sec?/volt) to convert the input
value to the correct acceleration. Bode plots for these
transfer functions are presented in Figures 5-1, 5-2, and 5-3.

5.2 Bus/Register Description

The basic block diagram (Figures 5-4 and 5-5) consists of several
registers and buses. The operating registers in which the user
has access through instructions are the accumulator (AC), index
register (IX), and program counter (PC). Two non;6perating
registers are the instruction register (IR) and the memory data
register (MD). A block of computational registers called RAMREG
consists of both operating registers and noqféperating registers
which will be discussed in the next paragraph. To have access
to memory, the buses ADBUS and DBUS are implemented. Both ABUS
and BBUS provide interconnections between the registers and the
inputs to the Arithmetic Logical Unit (ALU), while OBUS serves
as a connection between the ALU outputs and register inputs.

100 . R Ly 1 T E .]' T I LIS O § T T T . As 3
10° R 3
. o -
02 oo caimiaws o 3
e ettt e b BTt s e s 3w =
;_
103k ..
104 I R I S S I
100 10t Radians - 102 103

FIGURE 5-1. Side-Side Absorbed Power Bode Plot

9




magnitude

magnitude

100

10!

H

102

Ty

T

103

T

4

T T DL RN S SN ggy ==
- - - - .
- s . =
e . - . -
- e~ - v g

-
.......... -

.
- - -

-

-

. - + v ot
. - o
- - -y
. - . -
. B - -

- - - -

- - - - e
- - - - -
oo

CEbadid

.....................................

104
100

FIGURE 5-2.

Fore-Aft Absorbed Power Bode Plot

100 -

LA L LA

101

Y

r—rrrrry T T T rrrrrr T Y LA S s S aun

-
- . e - - - o
-
-

P N U N W A i A2 3 a3 it i A A4 1 A L4

102 :
100

| 10! . 102 ‘ 103
FIGURE 5-3. Vertical Absorbed Power Bode Plot

10




The RAMREG block, which plays an important role 1in the
computations regarding the absorbed power transfer functions,

is made up of the following registers:

TIME[28]: A 28 bit nonoperating register which keeps a
running total of time. It will be used in averaging
the résult. -

COUNT[28]: A nonoperating register used as a 28 bit
decrementing counter. :

TEMP [28] : Nonoperating register which is used for
temporary storage during floating point operations.

VERTICAL<16>[28]: A block of nonoperating registers used
in the time dependent computations of vertical
absorbed power. These registers contain the time
delay values, running sum values, and total average
values during the course of the calculations.

FORE~AFT<10>[28]: A block of nonoperating registers used
‘ in the time dependent computations of fore-aft

absorbed power.

SIDE-SIDE<18>[28]: A Dblock on nonoperating 'registeré
used in the time dependent computations of side-side

absorbed power.

SMP[28]: A 28 bit operating register in which the user
inputs the number of acceleration data samples.

CSR[8]: An 8 bit control/status register (Figure 5-6). The
user can observe the floating point error (FLERR),
negative flag (NFF), overflow flag (VFF), carry flag
(CFF), and zero flag (2ZFF) by reading bits 0 through
4. Bits 5 through 7 serve as on/off switches (1 = on)
for the three absorbed power calculations.

Referring to Figure 5-5, the system 1is comprised of four
EXINPUTS and four possible OUTPUTS. The inputs VIN, FIN, and
SIN represent the vertical fore-aft and side-side acceleration
inputs respectively. The two possible output formats are
digital and analog. To obtain analog outputs, FOREOUT, SIDEOUT,
and VERTOUT are sent though 3 separate d/a convertems. To
obtain the digital output, the degree of freedom selected is
output onto a 28 bit bus called OUTPUTRBUS.

11




10

16
" PC

28

IX

10

MBMORY e I
16
28
Cc

Z
o g S
o) 1
d
<
S g
-
@ @
o~ <
7
o
®

o
-

g

FIGURE 5-4. Bus Structure of Micro-Controller

T
g

<
|§

10

12

28




1Nd1LNO
VLA

SiNd1NO

DOTVNVY

1Nd1NO

SNa1Ndino

INOLY3IA

1NO3AIS

1NO340d

1HvlS

+—

< L NISS
éz

4+—F NId
82 -
/

<< 7 NIA

—® v/q |—»

— v/ —>»

||¢lll|'. v/a />

-SLNdNIX3

Inputs/Outputs for Micro-Controller

DO VNV

FIGURE 5-5.

:S1NdLNO

13




0 1 2 3 ‘ 5 s ?
FLERR | NFF vFF | cFF ¥ | v F s
l@———— READ ONLY. e READWRITE —

- »
NOTE: V - Vertical (1 is on)
' F - Fore-aft
S - Side-Side

_ FIGURE 5-6. (CSR Register)

5.3. Instruction Set

In this system, the instruction cycle consists of both the fetch
operation and the execute operation. Because time is very
crucial in the computation of absorbed power using this ASIC
design, the instruction cycle was optimized by grouping related
instructions together using a Karnaugh map (Figure 5-7). For
instance, notice that the Branch commands contain various common

IR[0: 1]

00 01 11 10

IR[2:3]
oo| Ao0 | ecmMP| X |BRZ

01 X GO X BRV 3

11| X X X l#m

1ojour | b | X | BRA o

FIGURE 5-7. (Karnaugh Map of Instruction Set)

14



features and have been grouped with the same IR([0:1]. 1In fact,
by using the "don’t cares" within the K-map will reveal a

reduced minterm IR[O0].

The instruction set is comprised of nine instructions to serve
as an interface between the user and the ASIC. They are
discussed in full in the following paragraphs. 1In all cases,
IR[{0:3] is the opcode of the instruction.

The CMP instruction (Figure 5-8) compares either a register (IX
or MD) or immediate 2’s complement data to the contents of the

0 3 4 5 6 15
0100 Zs COMPLEMENT DATA

1=REG __| [ — 11X
0=IMQ 0-MD

NOTE: if bit 4 = 1 (REG), bit 5 specifies the register to CMP to AC.
if bit 4 = 0 (IMQ), bits 5 - 15 are 2's comp data.
FIGURE 5-8. (CMP Instruction)

accumulator (AC) and sets the status bits of the CSR accordingly
without modifying the contents of AC.

The OUT instruction (Figure 5-9) simply outputs an assigned

0 34 13 14 18
0010 DONT CARES s
00 - VERTICAL
01 - FORE-AFT ~——I
11 - SIDE-SIDE

NOTE: This instruction is used to assign a given digital output port if needed.

FIGURE 5-9. (OUT Instruction)
data type to the owutput bus (OQUTPUTBUS). As shown in the

" figure, bits 14 and 15 of the IR will determine which data is
to be sent to OUTPUTRUS.. .

15




The GO instruction (Figure 5-10) is used to begin the entire

0101 DONT CARES

L_ FOR FUTURE EXPANSION

FIGURE 5-10. GO Instruction

process. When this instruction is implemented, first, the CSR
is checked to see which input accelerations are to be used for
the computation of absorbed power. Next, all required registers
are initialized. Finally, the time dependent calculations of
absorbed power are made based on the specified input
accelerations.

The LD instruction loads the contents of a specified register
or immediate data into a specified destination register (Figure
5-11). IR[4:5] gives the destination while IR[14:15] gives the
source. IR[13] specifies whether the

o 34 87 12 13 14 15

0110 DEST DONTCARE | SAC SOURCE
000 - CSR 1-REG
011 - IX 0 - MM
010 - SMP
100 - VSF 00 - CSR
101 - FSF 01 - AC
110 - SSF 11 - IX

10 - SMP

NOTE: When SRC = 0 (immediate) next word is data.

SMP is the number of samples.

FIGURE 5-11. LD Instruction

16

([ ]

»




- source is immediate or register data. If immediate, the next
word (in 2’'s complement form) is fetched and read. It is with
this command that the scale factors are loaded into VSF, FSF,

and SSF.

The ADD instruction (Figure 5-12) simply adds a 2's complement
number to either AC or IX as specified by IR[4].

0 3 4 5 15
0000 REG 2s COMPLEMENT DISPLACEMENT
0-AC
1-1X

FIGURE 5-12. ADD Instruction

If AC is selected, the result is a standard ADD operation. The
register IX will be specified if indexed addressing is needed.

Finally, the BRx instructions (Figure 5-13) are made up of

10xx | 1w s COMPLEMENT DISPLACEMENT

1 - BRANCH IF CONDITION TRUE /
0 - BRANCH IF CONDITION FALSE

FIGURE 5-13. BRx Instructions

three conditional branch instructions (BRZ, BRN, BRV) and one
unconditional branch instruction (BRA) depending on the opcode
selected. The 11 bit displacement (IR[5:15]) allow for 2’s
complement number permitting a branch range of 1K backward or
forward.

All nine of these instruction operations will be seen later in
the AHPL model.

17




T Nt I A G0 T gy v - ———" i e = w

5.4. Use of the Micro-Controller

Before the GO’ command can be issued, the user must first set
up the micro-controller for use. The ’SMP’ register must be
loaded with an unsigned integer representing the number of
samples to take. Sampling is done at 200 Hz, so the micro-
controller will calculate absorbed power for SMP/200 seconds.
The scaling factors must be loaded into the registers for
vertical scaling (VSF), side-side scaling (SSF) and fore-aft .
scaling (FSF). These values are in the floating point form
described in the next section. Once this is done, the micro-
controller is now ready to perform absorbed power analysis.

L4

5.5. Floating Point

To obtain the accuracy and wide range of numerals used in-.the
absorbed power computations, floating point neotation was used
(see Figure 5-14). The only difference between this format
and the IEEE floating point format is the length of the mantissa
is 19 bits instead of 23 bits. All of the computational
registers used for calculation of the absorbed power are
floating point registers. To perform mathematical operations
on these registers, three external modules were created, one
each for multiplication, division and addition (see Figure 5-15
for the layout of the modules used in the this project).

s exp fraction

FIGURE 5-14. (Floating Point Format)

Floating-point addition is performed by the module 'FLADD’. The
module expects the input numbers on the ABUS and BBUS. It waits
for the line ’'FLADDGO’ to go high, reads the values off of ABUS
and BBUS and performs the floating point operations. The Py
exponents are first normalized, then the mantissas are added.

The exponent is then adjusted (if theasum was greater than ten),

the result is placed on OBUS, and the ACK bus is set high to let

the main program know the addition is complete.

18



Floating point multiplication 1is performed by the module
'FLMUL’. This module also expects the inputs on ABUS and BBUS
and begins operation when the ‘FLMULGO’ line is set high. The
exponents are added and the mantissas are multiplied. The
exponent is then adjusted (if the multiplicand is greater than
ten), the result is placed on OBUS, and the ACK bus is set high
to let the main program know the multiplication is complete.

Floating point division is similar to the multiplication and is
performed by the external module ‘FLDIV’. When the line ’'FLDIV’
is set high by the main module, the dividend is read off of the
ABUS and the divisor is read off the BBUS. If the dividend is
zero, the result is zero and it branches to the end of the
module. If the divisor is zero, the result is infinity, the
"FLERROR’ flag is set, and again the module ends. With valid
numbers, the exponents are subtracted, the mantissas divided and
the exponent adjusted. The result is placed on the OBUS and the
ACK bus is set high to let the main program know the division
is complete. .

5.6. External Memory

Reading and writing to external memory is taken care of in the
external module ’EXTMEM’. There are ’'READ’, ’'WRITE’, ’ADBUS’
and ’'DBUS’ buses used as inputs to the memory module and ’ACK’
as an output. To read from memory, set READ high, load ADBUS
with the address location. The module will load DBUS with the
data work and set ACK high signalling that the read operation
is over. To write to the memory, set WRITE high, load ADBUS
with the address and DBUS with the value to be written to
memory. The module will write the value to memory and set ACK
high to signify completion.

The memory module contains two NULL states. While not
necessary, bthese were included to simulate slow (and
inexpensive) memory which can and should be used with this chip.
There is no reason to buy expensive fast memory when the
sampling rate is only 200 Hz.

5.7. Simulation
The simulation results are presented in full in Addendum. The

instruction fetch was done in lines 2-3. Decoding is performed
in lines 4-7. Execution is broken down into the following

segments:

19




DN ¢ o980
& A 4 .
_ WNan
AlQ4 INWA aavid
_ 9l X 9G2
A $r . A., Lr sr
, "
2 ool 090avH @ |
O9AI0TS | ) ™ a3
NIV SNaqav 4
14 MOV %)

- Module Layout

FIGURE 5-15.

20




COMMAND LINES OF CODE
ADD 8-9
BRANCH’ s 10-14

GO 15-138
LD , 139-141
ouT 142-151
CMP - 152-156

The ‘GO’ command consists of three parts: computing vertical
absorbed power (steps 18-61); side-side absorbed power (88-138);
and fore-aft absorbed power (steps 62-87). The execution of
each particular computation depends on the setting of the
correct bits in the CSR (control-status register).The simulation
was performed on a micro-VAX II using HPSIM2. There were no
errors and all commands performed correctly. Referring to the
simulation results (beginning on page A-15), a START command was
issued on clock cycle 4. The first instruction was ADD AC, #F.
This was performed during clock cycles 5-12. Note the value of
'F in AC at clock cycle 13. .

The next instruction was 1D IX,#5. This was performed during
clock cycles 13-20. Note the value of IX at, clock cycle 21.

The following instruction is LD AC,’FFFF during clock cycles 21-
35. The value of AC is ’'FFFF at clock cycle 36. Finally, a.
load from register to register is presented as LD IX,AC during
clock cycles 36-47. At clock cycle 48 both AC and IX have the

value of ’FFFF.

A branch always was performed during clock cycles 48-55. The
branch command was BRA #5. Note that PC is incremented from ’06
to ‘0B at clock cycle 57. Another add was performed as ADD
AC,’'B during clock cycles 57-863. Register AC is properly
increased to Y10009. During clock cycles 64-78, the instruction
LD AC, #’0A is performed. Clock cycle 79 shows the new value of

AC to be ’0A.

A compare is done during clock cycles 79-87. The CMP AC, #’0A
does set the zero flag (clock cycle 88) as would be expected.
The rest of the simulation begins with the GO command. This is
meaningless as the data into the acceleration input registers
have no value. Nonetheless, the command is properly executing.

To permit accuracy, all computational registers are 28 bits long
(they would normally be 32 bits except for the compilation
limitations of HPSIM). The user is provided with 256 words of
16 bit length.

21




22

»




LIST OF REFERENCES

1) "Digital Systems Hardware Organization and Design",
Frederick J. Hill, Gerald R. Peterson, John Wiley & Sons, Inc.,

1987.

2) "User Manual for AHPL Simulator (HPSIM2) AHPL Compiler
(HPCOM) ", 2. Navabi, R. Swanson, F.J. Hill, University of

Arizona.

23




24

L

»




ADDENDUM

HPSIM DESCRIPTION OF ASIC

25




26




AHPLMODULE: ABPOWER
EXINPUTS: SELECT[2].
EXBUSES: DATAOQUT[28].
BUSES: ABUS([28]; BBUS[28]; OBUS[28]; CIN.

MEMORY: RAM<65536>[28];MA[16];IR([28],;MD[28];AC(28];IX[16];PC[16];:CSR[28 ;
SMP[28];TEMP[28]) ;COUNT (28] ;VIN[{28];SIN[28];FIN[28];TIME[28];
VI7[28];V07(28];VI6[28]);V06[28];VI5[28],;V05([28];VI4(28];V04[28];
VI3[28];v03([28];VI2([28],v02{28];VOUT([28];5S18([28],;508([28];
SI7{28]1;507(28],516(28];806[28];8I5(28];805([28],;35I14(28]1,3804(28];
SI3[28],;503(28),5I2([28]),;502([28];S0UT([28];FI4({28];F04(28];FI13(28;;
FO3([28];FI2[28];F02({28];FOUT[28];VSUM{28];VAP[28];SSUM[28];
SAP([28],;FSUM([28];FAP (28] ;0UTPUT([28];SELECT[2].

LABELS: ZFF = CSR[25]; CFF = CSR[26]; NFF = CSR([27]; VFF=CSR[28].
CLUNITS: FLADD([28] (ABUS;BBUS) ; FLDIV[28] (ABUS;BBUS) ;
FMULT [28] (ABUS;BBUS) ; INC[28] (ABUS);
DEC([28] (BBUS); BUSFN[28] (M; DCD); DCD[16] (MA) ;
ADDO[1] (ABUS;BBUS;CIN); ADD1[2] (ABUS;BBUS;CIN);
ADD28[29] (ABUS;BBUS;CIN) .
1. OBUS = 28$%256; PC <= OBUS; MA <= OQRUS.

MD <= BUSFN(M;DCD(MA)); PC <= INC(PC)."-

w N

ABUS = MD; OBUS = ABUS; IR <= OBUS.
4. => (IR[0]) / (10).

5. NO DELAY
=> (IR[3]) / (15).

6. NO DELAY
=> (IR[2]) / (139).

7. NO DELAY
=> (IR[1]) / (151).

8. ABUS = (5$0, IR[5:15] ! 7581, IR[5:15]) *
(*IR[3], IR[S]); ~
OBUS = ABUS; MD <= OBUS.

.1

27




o
L

16.

17.

18.

19.

. => ((IR[4] @ VEF) ! ~(IR{4] @ VFF)) / (14,2).

. => (~(IR[4] @ ZFF)) / (2).

ABUS = MD; }
BBUS = (AC ! IX) * (~IR[4] ! IR[4]);
OBUS = ADD28 (ABUS;BBUS;0);

AC * ~IR[4] <= OBUS;

IX * IR[4] <= OBUS;

ZFF <= "~ (+/0BUS);

CFF <= ADDO (ABUS;BBUS;0):;

NFF <= OBUS(0];

VFF <= (ABUS[0] & BBUS[0] & ~(ADD1 (ABUS;BBUS;0)) + .
(ABUS[0] & BBUS([0] & (ADD1 (ABUS;BBUS;0)):

=> (2).

12 ]

(("IR[2] & ~IR(3]) ! (‘IR[Zi & IR[3]) !
(IR[2] & IR([3]) ! (IR[2] & “IR([3]) )
/ (14,11,12,13).

=> ((IR[4] @ NFF) ! ~(IR[4] @ NFF)) / (14,2).

. ABUS = (1789, IR(S5:15] ! ~1781, IR[5:15]) *
("IR{3],IR[3]);
BBUS = PC;
OBUS = ADD28 (ABUS;BBUS;0);
PC <= OBUS;
=> (2).

. OBUS = 28%0; CSR <= OBUS; TEMP <= OBUS; TIME <= OBUS; VI7 <= OBUS;
VO7 <= OBUS; VI6 <= OBUS; VO6 <= OBUS; VIS5 <= OBUS; VOS5 <= OBUS;
VI4 <= OBUS; V04 <= OBUS; VI3 <= OBUS; VO3 <= QOBUS; VI2 <= OBUS;
V02 <= OBUS; VOUT <= OBUS; SI8 <= OBUS; S08 <= QBUS; SI7 <= OBUS;
S07 <= OBUS; SI6 <= OBUS; S06 = OBUS; SIS <= OBUS; S05 <= OBUS;
SI4 <= OBUS; SI4 <= OBUS; S04 <= OBUS; SI3 <= OBUS; SO3 <= OBUS;
SI2 <= OBUS; S02 <= OBUS; SOUT <= OBUS; FI4 <= OBUS; FO4 <= OBUS;
FI3 <= OBUS; FO3 <= OBUS; FI2 <= OBUS; F02 <= OBUS;

FOUT <= OBUS; VSUM <= OBUS; VAP <= OBUS; FSUM <= OBTUS;
FAP <= OBUS; SSUM <= OBUS; SAP <= OBUS.

BBUS '= SMP; OBUS = BBUS; COUNT <= OBUS.

START = \1\; COUNT <= DEC(COUNT); ABUS=\0111110000100011110101110000\;

BBUS = TIME; OBUS = FLADD (ABUS;BBUS); TIME <= OBUS; &
=> (&/COUNT) / (2).

NO DELAY .
=> (~“CSR[13])/(62). =

ABUS“= VSF; BBUS = VIN; OBUS = FMUL(ABUS;BBUS); VIN <= OBUS;
=> (VFF) / (2).

28



20.

21.

22.
23.

24.
26.
27.

28.
29.

30.
31.

32.
33.

34.
35.

36.

ABUS
BBUS

\0111111000001000111111011001\;
VIN; OBUS = FMUL (ABUS;BBUS); MD <= OBUS;

=> (VFF) / (2).

ABUS
BBUS

\0000000100111111100010100000\;
VOouUT; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD

ABUS
BBUS

\1111111100110010111111101101\;
VI2; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS

. ABUS

BBUS

MD; BBUS =, TEMP; OBUS = FLADD (ABUS;BBUS); MD

\1000000111110110110101001111\;
VO2; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS

ABUS
BBUS

MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD

\0111111111000100011001011110\;
VI3; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS

ABUS
BBUS

MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD

\0000001000110001100010110100\;
VO3; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS

ABUS
BBUS

MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD

\1111111111100111110110010101\; )
VI4; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS

ABUS
BBUS

MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD

\1000001000011001111100011010\;
VO4; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFEF) / (2).

ABUS

ABUS
BBUS

MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD

\0111111110011011011110000000\;
VIS; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD

29

<=

OBUS.

OBUS.

OBUS.

OBUS.

OBUS.

OBUS.

OBUS.

OBUS.




37.

38.

39.

40.

41.

42,
43.

44,
45,

46.

47

48.

49.
50.
51.
52.
53.
54.
55.
S6.

ARUS \0000000110100000111000010100\;
BBUS VO5; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

ABUS

MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.

ABUS \1111111011100000111100010010\;
BBUS = VI6; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.
ABUS = \1000000010111011101001111011\;
BBUS = VO6; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VEFY / (2).

1

ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.
ABUS \0111110110001001011010111011\;

BBUS = VI7; OBUS = FMUL (ABUS;RBBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADﬁ(ABUS;BBUS); MD <= OBRUS.
ABUS = \0111111100111100011100100101\;
BBUS = VO7; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS;
VOUT <= OBUS; TEMP <= OBUS.

ABUS = MD; BBUS = TEMP; OBUS = FMUL (ABUS;BBUS); MD <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = VSUM; OBUS = FLADB(ABUS;BBUS); VSUM <= OBUS;
MD <= OBUS.
ABUS = MD; BBUS = TIME; OBUS = FLDIV(ABUS;BBUS); VAP <= OBUS.

BBUS VI6; OBUS = BBUS; VI7 <= OBUS.

BBUS = VI5; OBUS

BBUS; VI6 <= OBUS.
BBUS = VI4; OBUS = BBUS; VIS5 <= OBUS.
BBUS = VI3; OBUS = BBUS; VI4 <= OBUS.

BBUS

VI2; OBUS = BBUS; VI3 <= OBUS.
BBUS = VIN; OBUS = BBUS; VI2 <= OBUS.

BBUS = VO6; OBUS = BBUS; VO7 <= OBUS.

30

»




57.
58.
59.
60.
61.
62.
63.

64.

65.

66.
67.

68.
69.

70.
71.

72.
73,

74.
75.

BBUS; VO6 <= OBUS.

BBUS = VO5; OBUS =

BBUS = VO4; OBUS = BBUS; VOS5 <= OBUS.

BBUS = VO3; OBUS = BBUS; V04 <='OBUS.

BBUS = V0O2; OBUS = BBUS; VO3 <= OBUS.

BBUS = VOUT; OBUS = BBUS; V02 <= OBUS.

=> (~CSR[14])/(88).

ABUS = FSF; BBUS = FIN; OBUS = FMUL(ABUS;BBUS); FIN <= OBUS;

=> (VEF) / (2).

ABUS = \0111101110100101110011100101\;

BBUS = FIN; ORUS = FMUL (ABUS,;BBUS); MD <= OBUS;

=> (VFF) / (2).

ABUS = \0000000011011101101111110100\;

BBUS = FOUT; OBRUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= QOBUS.
ABUS = \1111101101001000100010100100\;

BBUS = FI2; OBUS = FMUL (ABUS;BBUS); TEMP <= ORUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.
ABUS = \1000000100001110110000111100\;

BBUS = FO02; OBUS = FMUL (ABUS;BBUS); TEMP <= ORUS;

=> (VEF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.
ABUS = \1111101110011110001000110110\;

BBUS = FI3; OBUS = FMUL (ARUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2). '

ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.
ABUS = \00000000101000011,00101111111\;

BBUS = FO3; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VFF) / (2).

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.
ABUS = \0111101100111001101110101010\; -
BBUS = FI4; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;

=> (VEF) / (2).

°

31




. ABUS

. ABUS

~J

[¢ 4]

MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.

\1111111110000111001111101010\;
BBUS FO4; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

. ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS;
TEMP <= OBUS. -

. ABUS = MD; BBUS = TEMP; OBUS = FMUL(ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2). ' ,

. ABUS = MD; BBUS = VSUM; OBUS = FLADD (ABUS;BBUS); VSUM <= OBUS;
MD <= OBUS.

. ABUS = MD; BBUS = TIME; OBUS = FLDIV(ABUS;BBUS); VAP <= OBUS.
BBUS = FI3; OBUS = BBUS; FI4 <= OBUS. -
BBUS = FI2; OBUS = BBUS; FI3 <= OBUS.
BBUS = FIN; OBUS = BBUS; FI2 <= OBUS.

. BBUS = F03; OBUS = BBUS; FO4 <= OBUS.
BBUS = F0O2; OBUS = BBUS; FO3 <= OBUS.
BBUS =

FOUT; OBUS = BBUS; F02 <= OBUS.

. => (*CSR[15]))/(2).

. ABUS = SSF; BBUS = SIN; OBUS = FMUL (ABUS;BBUS); SIN <= OBUS;

. ABUS

. ABUS

=> (VEF) / (2).

\0111110000011011010000010011\;
BBUS SIN; OBUS = FMUL (ABUS;BBUS); MD <= OBUS;
=> (VFF) / (2). '

\0000000101011111010101001101\;
BBUS SOUT; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).

. ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.

. ABUS

\1111110100110100110011000010\;
BBUS SI2; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2). .

. ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.
. ABUS = \1000001000101000111111011111\;
BBUS =

S02; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;
=> (VEF) / (2). : .

32

»



96.
97.

98.
99.

100.
101.

102.
103.

104.
105.

106.
107.

108.
109.

110.
111.

112.
113.

ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= QBUS.
ABUS = \0111110110011001001110110011\;
BBUS = SI3; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).
ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MD <= OBUS.
ABUS = \0000001010010000100101101000\;
BBUS = S03; OBUS = FMUL (ABUS;BBUS); TEMP <= OBUS;
=> (VFF) / (2).
ABUS = MD; BBUS = TEMP,; OBUS = FLADD (ABUS;BBUS); M- <= OBUS.
ABUS = \1111110100111011100110001100\;
BBUS = SI4; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VEF) / (2). 3
ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBRUS.
ABUS = \1000001010011000100011110101\;
BBUS = S04; OBUS = FMUL(ABUS;BBUS);'TEMP <= OBUS;
=> (VFF) / (2).
ABUS = MD; BBUS = TEMP; OBUS = FLADD(ABUS;BBUS); MDD <= QRUS.
ABUS = \1111110010001011010000111001\; .
BBUS = SI5; OBUS = FMUL (ABUS;BBUS); TEMP <= QRUS;
=> (VEF) / (2).
ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.
ARUS = \000060100100101001111110111l\; '
BBUS = S05; OBUS = FMUL(ARUS;BBUS); TEMP <= OBUS;
=> (VEF) / (2).
ARUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBRUS.
ABUS = \0111110100011111101111100111\;
BBUS = SI6; OBUS = FMUL(ABUS;BBUS); TEMP <=‘OBUS;
=> (VFF) / (2). .
ABUS = MD; BBUS = TEMP; OBUS = FLADD (ABUS;BBUS); MD <= OBUS.
ABUS = \1000000110100100001000001100\;
BBUS = S06; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;
=> (VEF) / (2). ‘
ABUS = MD; BBUS ='TEMP; OBUS = FLADD (ABUS;RBUS); MD <= OBRUS.
ABUS = \1111110010100010101100010110\;
BBUS = SI7; OBUS = FMUL(ABUS;RBBUS); TEMP <= OBUS;

=> (VEF) / (2).

33




114,
115.

117.

118.

119.
120.

121.

122.
123.

124.
125.
126.
127.
128.
129.
130.
131.
133,
133.
134.
135.
136.

\0000000010010011001000101101\;
FMUL (ABUS; BBUS); TEMP <= OBUS;

\0111101101100001110101100100\;
FMUL (ABUS; BBUS) ;

\1111111011011011101102011001\;
S08; OBUS = FMUL(ABUS;BBUS); TEMP <= OBUS;

=

TEMP; OBUS

TEMP;

TEMP;

OBUS

OBUS

ABUS = MD; BBUS = TEMP; OBUS
<= OBUS.

ABUS = MD; BBUS
ABUS =
BBUS = SO7; OBUS
=> (VFF) / (2).
ABUS = MD; BBUS
ABUS =
BBUS = SI8; OBUS
=> (VFF) / (2).
ABUS = MD; BBUS
ABUS =
BBUS =
=> (VFF) / (2)._
SOUT <= OBUS; TEM
ABUS = MD; BBUS
=> (VFF) / (2).
ABUS = MD; BBUS
MD <= OBUS.
ABUS = MD; BBUS
BBUS = SI7; OBUS
BBUS = SI6; OBUS
BBUS = SI5; OBUS
BBUS = SI4; OBUS
BBUS = SI3; OBUS
BBUS = SI2; OBUS
BBUS = SIN; OBUS
BBUS = SO7; OBUS
BBUS = SO6; OBUS
BBUS = SO5; OBUS
BBUS" = SO4; OBUS
BBUS = S03; OBUS

P

[}

]

]

TEMP;

VSUM;.

TIME;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;
BBUS;

BBUS;

OBUS

OBUS

OBUS
SI8
SI7
SI6
SIS
SI4
SI3
SIZ2
so8
S07
S06
S05
S04

= FLADD (ABUS;BBUS) ;

<=

FLADD (ABUS; BBUS) ;

FLADD (ABUS; BBUS) ;

TEMP <= QBUS;

FLADD (ABUS; BBUS); MD <= OBUS;

FMUL (ABUS;BBUS); MD <= OBUS;

FLADD (ABUS; BBUS) ;

FLDIV (ABUS;BBUS); SAP <= OBUS.

OBUS.
OBUS.
OBUS.
OBUS.
OBUS.
OBUS.
OBUS.
OBUS.
OBUS.
OBUS.
OBUS.

OBUS.

34

MD <= OBUS.
MD <= OBUS.
4
]
MD <= OBUS.
SSUM <= OBUS;
[ ¢

B




i_‘

137.
138.

139.
. 140.
141,

142,
133.

144.

145.

146.
147.

148.

149.

150.
151.

152.

BBUS = S02; OBUS = BBUS; S03 <= OBUS.
BBUS = SOUT; OBUS = BBUS; S02 <= O0OBUS;
=> (17).

=> (IR[1] & IR[2]) / (142).
MD <= BUSFN(M;DCD(IX)).

ABUS = MD;
OBUS = ABUS;
OUTPUT <= OBUS;
=> (2).

=> (IR[13]) / (144).

MD <= BUSFEFN(M;DCD (IX));
PC <= INC(PC):
=> (146).

=> (~“IR[15]) / (146).

BBUS = (AC ! IX) * (~IR[14], IR[14});
OBUS = BBUS;
MD <= OBUS.

=> (IR[4]) / (149).

NO DELAY -
=> (“IR[6]) / (2).

ABUS =
OBUS = ABUS;

AC * ~IR[5] <= OBUS;
IX * 1IR[5] <= OBUS;
=> (2).

(2280, IR[7:121):
BBUS 28832; ..
OBUS ADD (ABUS; BBUS;0);
MA <= OBUS. :

ABUS

tnon

M*DCD (MA) <= MD;
=> (2).

NO DELAY
=> ((IR[4] & IR[S]) ! (IR[4] & "~IR[5]) / (153,154).

ABUS = (6$0, IR[6:15] ! ~(6$1), IR([6:15]) *
(~IR[6],IR[6]);

BBUS = AC;

=> (155).

35




153. ABUS = MD;

BBUS = AC;
=> (155).

154, BBUS = IX;
OBUS = BBUS;
MD <= OBUS;
=> (153).

155. OBUS = ADD28 (ABUS;BBUS;0);
ZFF <= ~ (+/0OBUS);
CFF <= ADDO(ABUS;BBUS;0);
NFF <= OBUS[0];
VFF <= (ABUS[(0] & BBUS[0O] & ~(ADDI (ABUS;BBUS;Q)) +
(ABUS([0]) & BBUS[0] & ADD1 (ABUS;BBUS:0);
= (2).

END OF SEQUENCE

DATAQUT = ( SOUT ! vOUT ! FOUT ) *
( "SELECT[0]& ~SELECT(1), ~SELECT[O] & SELECT{1l), SELECT[O] ).

END.

CLUNIT: FLADD(X,Y)
INPUTS: X([28];Y([28].
OUTPUTS: FLADD[28].
BODY

FLADD = X[28].
END.

CLUNIT: FLMULT(X,Y)
INPUTS: X[28];Y([28].
OUTPUTS: FLMULT[28].
BODY

FLMULT = X[28].
END.

36

in

'1



CLUNIT: FLDIV(X,Y)
INPUTS: X[28];Y[28].
OUTPUTS: FLDIV([28].
BODY

FLDIV = X[28].
END.

CLUNIT: FULLADD (X;Y;CIN)
INPUTS: X;Y,;CIN.
QUTPUTS: FULLADD([2].
CTERMS: A;B;C;SUM;COUT.
BODY

e Y;

& Y;

A @ CIN;

& C;
FULLADD (0]
FULLADD([1}

END.

Ownwr

l%ll i
R | -

COouT;
SUM.

CLUNIT: ADDER{XIN;YIN;CIN) {I}
~ INPUTS: XIN[I];YIN[I];CIN.
OUTPUTS: SUMOUT[I+1].
CLUNITS:.FA[2] <: FULLADD.
CTERMS: CARRY({I];SUM[I].
BODY
CARRY[I-1],SUM[I-1] = FA(XIN([I-1];YIN{I-1];CIN);
FOR J = I-2 TO 0 CONSTRUCT
CARRY [J],SUM[J] = FA(SIN[J]),;YIN[J];CARRY[J+1])
ROF;
SUMOUT = CARRY[0],SUM.
END.

CLUNIT: INC(X)
INPUTS: X[28].
OUTPUTS: TERMOUT[28].
CTERMS: TA[28].
BODY
FOR J = 27 TO 0 CONSTRUCT
IF J = 27 THEN

TA[J] =1
ELSE

TA[J} = X[J+1] & TA{J+1]
FI

ROF;

FOR J = 27 TO 0 CONSTRUCT
TERMOUT[J] = X[J] @ TA[J]

ROF . :

END.

37

'I
]




CLUNIT: DECODER (A)
INPUTS: A[l6].
OUTPUTS: DCDOUT[65536].
BODY
FOR J = 0 TO 65535 CONSTRUCT
DCDOUT[J] = TERM(J;A)
ROF.
END.

CLUNIT: BUSFEN (MEM;F)
INPUTS: MEM<65536>([28];F([28].
QUTPUTS: WORDOUT(L].
CTERMS: N<65536>[28].
BODY
FOR I = 0 TO 65535 CONSTRUCT
N<I> = MEM<I> & F<I>
ROF;
WORDOUT = +//N.
END.

CLUNIT: DEC(X)
INPUTS: X[28].
OUTPUTS: TERMOUT([28].
CTERMS: TA([I]; CARRY([I); TEMP([I].
BODY
FOR J=0 TO 27 CONSTRUCT
TA[I]) = ~X[I]
ROF;
CARRY [27] = 1;
FOR J = 26 TO 0 CONSTRUCT
CARRY[J] = CARRY[J-1] & TA[J-1]
ROF;
FOR J = 0 TO 27 CONSTRUCT
TEMP[J] = TA(J] @ CARRY[J]
ROF;
FOR J = 0 TO 27 CONSTRUCT
TERMOUT [J] = ~TEMP[J]
ROF.
END.

38




39




DISTRIBUTION LIST

Commander

Defense Technical Information Center
Bldg. 5, Cameron Station

ATTN: DDAC

Alexandria, VA 22304-9990

Commander .

U.S. Army Test-Evaluation Command

ATTN: AMSTE-TA-R

Aberdeen Proving Ground, MY 21005-5055

Manager

Defense Logistics Studies
Information Exchange
ATTN: AMXMC-D

Fort Lee, VA '~ 23801-6044

Commander
U.S. Army Tank—-Automotive Command
ATTN: ASQNC-TAC-DIT (Technical Library)
AMSTA-CF (Dr. Oscar)
AMSTA-RYA (Mr. Janosi)
AMSTA-RY (Dr. Beck)
AMSTA-RYA (Mr. Reid)
AMSTA-RYA (Mr. Hudas)
Warren, MI 48397-5000

Director

U.S. Material Systems Analysis Activity
ATTN: AMXSY-MP (Mr. Cohen)

Aberdeen Proving Ground, MD 21005-5071

Dist-1

Copies

12

-
3R, W NSRS V)




