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U PrefaceI
My original objective in performing this thesis was to learn about

I this strange fractional calculus by applying its principles to unsteady

aerodynaics. The original goal was to analytically integrate the

pressure-downwash integral equation (a feat which had never been

accomplished before) by simplifying the nathematics through the use of

the fractional calculus. As the research progressed, the usteady

I aerodynaumc problem proved to be more challenging than originally

anticipated and the analytic integration was not achieved. However,

this treatment is the first recorded atterpt to nodel three-dinmnsicnal

umsteady aerodynamic forces n wings with fractional calculus. By

being the first, there was a great deal of ground to cover and a fair

uai ,nt of dead ends discovered. However, I was able to simplify the

unsteady three-dinensional aerodynamic problem by the developmnt of the

equivalent Theodorsen function. This development will permit the

unsteady aerodynamic loads on a finite airfoil to be written in a

compact mathamtical form and easily evaluated and applied to control

system design. The thesis is written in such a way to allow an

individual unfamliar with the naterial to read and understand the

I concepts and to continue the work if desired.

I wish to give a special thanks to Lt Col Ron Bagley for his

tolerant listening abilities and strong guidance. I would also like to

thank Captain Greg Warhola for providing no with an appreciation of

mathematics and for his encourageuent and understanding during a

I
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difficult personal crisis. Finally, I would like to express my

I heartfelt appreciation to my wife, Suzie, and daughter, Alex, for their

understanding and strong support in helping me achieve one of my goals.

I would like to dedicate this thesis to two special people.

First, to my mother whose strength and determination through a recent

divorce inspired me to continue under difficult circumstances. And to

I Alex, on the anniversary of her first birthday, whose accomplishmets

will someday outshine my own.
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AFIT/GcE/ENY/ 90D-25I
Abstract

A fractional calculus uvdel is developed for the kernel function under

incompressible subsonic flow conditions for rectangular planform

I airfoils with snall aspect ratio. A model valid for restricted regions

of the kernel function for compressible subsonic flow conditions is also

developed. Additionally, a method for numerically solving the pressure-

dc-nwash integral equation for rectangular planform wings of aspect

ratio two through ten in incompressible flow is developed. An

equivalent Theodorsen fumction for three-dineisional unsteady flow is

developed, enabling the use of the simpler two-dimensional aeroelastic

equations of motion to fully capture the more complicated three-

dimensional effects. . ..

Ii
i
I
I
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)DELLING AND ANALYSIS OF KERNEL FUNCTION AND DEVELOPMET OF EIVALETI
THEODORSEN FUNCTION FOR 3-D AEROELASTIC ANALYSISI

I. Introduction

This thesis presents the development and results of two

alternative approaches to the prediction of aerodynamic loads produced

by time dependent motions of thin wings in rectilinear subsonic flight.

The first approach taken is an attenpt to directly integrate the

pressure-downwash integral equation. The second approach taken is the

3 development of the equivalent Theodorsen function for three-dimensional

unsteady aerodynamics.

I The first of the two approaches was motivated by Bagley (4:16) who

demonstrated the ability of fractional calculus to model the three-

dimensional kernel function at the conditions given in (31:718). The

three-dimensional kernel function is the transfer function relating the

airloads to the downwash (vertical velocity) for a wing. This first

I approach is an attempt to model the transcendental nature of the kernel

function with a mathematically simpler function. The kernel function is

defined throughout the ccmplex s-plane, but because of the complicated

mathematics, analysis is usually restricted to the imaginary axis. This

restricts the use of the kernel function to stability analyses such as

flutter and has little benefit to the control system designer. A sinple

model which captures fully the behavior of the kernel function

throughout the enti.re s-plane could be of valuable use in active control

-1



i

algorithms. The model of the kernel function (the transfer function)

could be applied directly to control system design to increase the

i capabilities of active control of unsteady aerodynamic loads.

The second of the two approaches develops the equivalent

Theodorsen function. The equivalent Theodorsen function is constructed

by relating two- and three-dimensional lift coefficients in unsteady,

incompressible flow. The three-dimensional lift coefficients were

I evaluated nuerically by a method developed in this thesis which is a

more general form of a method developed by Ueda and Dowell (27:350). A

fractional calculus model is used to capture the behavior of the

equivalent Theodorsen function. The modelling was motivated by Swinney

(24:5) who successfully modelled the two-dimensional Theodorsen function

I using fractional calculus. The relatively simple form of the equivalent

Theodorsen function permits the inclusion of the three-dimensional

effects in the two-dimensional equations of motion. Three-dimensional

1 theory produces more accurate results than those of two-dimensional

theory. Therefore, the equivalent Theodorsen function in fractional

calculus form should prove to increase the accuracy in the two-

dimensional equations of motion without greatly increasing the effort

required to generate a solution.

This thesis is divided into eight chapters and five appendices.

The first chapter is the introduction. Chapter two discusses the

background of the kernel function, presents a cmaputational form for the

kernel function, and describes the general solution methodology of the

three-dimensional aeroelastic problem. The next chapter presents a

U 2I
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I
brief surTary of fractional calculus and discusses information necessary

to understand the application in this work. References for further

i study will be given. Chapter four develops the fractional calculus

modelling of the modified kernel function for both caipressible and

incompressible flow conditions. An approximate solution methodology for

the pressure-downwash integral equation is developed in Chapter five.

The equivalent Theodorsen function is derived in Chapter six along with

acccnpanying fractional calculus models. chapter seven shows the

utility of the equivalent Theodorsen function in fractional calculus

form by presenting capact time-domain representations to typical

aeroelastic responses. The thesis concludes with Chapter eight.

Six appendices have been included to present additional

information without detracting from the flow of the thesis. Appendices

A and B supply additional fractional calculus models of the modified

kernel function. The parameter variations of the fractional calculus

3 models for the modified kernel function are shown in Appendix C.

Fractional calculus models of the coefficient of lift for wings of

aspect ratios between two and ten is contained in Appendix D. The

variation of the paraxreters of the equivalent Theodorsen function will

I be shown in Appendix E. Finally, a presentation of the original

developict of the pressure-downwash integral equation is included in

Appendix F.

I
I
I3
I
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II. Background and Definition of Kernel Function

i Kissner is generally credited with the development of the

pressure-downwash integral equation and the three-dimensional kernel

function. A presentation of his development in English is given in

3 (16:1-28) and a sunmary of the development is shown in Appendix F. His

integral equation relating pressure to downwash is the solution to the

I wave equation written in cartesian coordinates. The dependent variable

is chosen to be Prandtl's acceleration potential that is directly

related to the perturbation pressure field (16:2). The wing is treated

as a nearly plane impenetrable surface S' lying in the x-y plane as

shown in Figure 1. It should be mentioned that the convention of the z-

i axis positive downward was adopted subsequent to the original

development to cast the equations into a form which produced results

canpatible with those of analytical flutter analyses. The x-y-z

3 coordinate system and the surface S' are assumed to move with uniform

velocity in the negative x direction. The solution is forced to be

unique by satisfying three conditions. First, disturbances nust vanish

far away from the wing and its wake. Second, the perturbation pressure

can only be discontinuous within the region of the surface S'. Finally,

the perturbation pressure nust vanish along the trailing edge of the

surface S' to satisfy the Kutta condition. Assuning a harmaric downwash

i and satisfying the three conditions just mentioned produces the unique

solution written in equation (1). The differential equation can be

rewritten as an integral equation relating the downwash w(x,y,t) at any

i4
i
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I
I ty,

,
I b.x, b.

!z

Figure 1: Definition of Coordinate System

point (x,y) on the wing to the perturbation pressure coefficient

Ap((,q,t) at a point ( ,T) on the wing.

I w(xy, t) = bolf+1

ION)("',&P((,vj, t) K [M.k, x-. s(y-- ) ] d d
I

The variables in equation (1) are defined as follows

i seispan of wing
lie' (te coordinates of leading and trailingedges
14 Mach number
V velocity
K[M,k,x-(,s(y-)] kernel fmction

I
I



I

x-t dimensionless chordwise variables
referred to root senichord,

y-1 dimensionless spanwise variables
referred to semispan, Is ratio of semispan to root sernichord

broot semichord

Equation (i) is referred to as the pressure-downwash integral equation

in three-dimensional unsteady aerodynamics. The perturbation pressure

U coefficient Ap in equation (1) is defined as

AP((,rI't0 = P_-.(2)
2pV2

The downwash and pressure coefficient distributions in equation (1) are

both assumed positive downward. When the analysis is restricted to

3 wings of rectangular planform, then (Ie(,) and (te(,) are replaced with -1

and +1 respectively.

The pressure-integral equation (1) is used in the direct sense to

solve for the unknown pressure coefficient distribution for a given

I planform, a known or assumed made of oscillation, and a prescribed set

of stream conditions. A pressure coefficient distribution nust be

determined which satisfies the edge conditions appropriate to the

planform and flow regirme under consideration and which, when multiplied

by the kernel function and integrated over the planform yields the

I downwash distribution corresponding to the mode of oscillation (32:5).

The pressure-integral equation (1) is used in the direct sense to solve

for the downwash distribution for a given planform, an assumed or given

3 pressure coefficient distribution, and given stream conditions.

Numerical procedures are usually eaployed to solve the pressure-downwash

I6
I
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integral equation as analytic solutions have not yet been determined for

most realistic planforms.

It should be noted that the integration of the spanwise variable

will require the use of the finite part of an infinite integral in the

Mangler sense (32:13) to handle the double-pole singularity in y-1 which

is evident in equation (5). The generalization to transient motion is

accomplished by forming the Laplace transformed version of equation (1).

This is accomplished by replacing ik with complex s (2:5)

3 = bo0 +1
V stJ-1

I f("A (, I; ) k [M, s,x-t, s(y-TI) I dd(

Here the circumflex indicates a Laplace transform and s=ibo/V is the

I dimensionless Laplace parameter.

The majority of references addressing the kernel function have

i been primarily concerned with numerical computation of the kernel

function and numerical integration of the pressure-downwash integral

equation. Analytic, closed form solutions of the pressure-downwash

equation (1) have been found only a small number of special planforms

and flow conditions (32:2). One of the first and most often cited works

treating the kernel function is (31:703-718). This pioneering work cast

the kernel function into a form more aeurnable to numerical computation

and provided explicit relations for handling limiting cases such as

incompressible, sonic, and steady flow conditions. The paper also

addressed the nature of the singularities present and provided series

7



representations of the kernel function within regions of its dcmain.

Two of these authors later added another author and produced (32:1-21)

which presented a systematic procedure for solving the integral

equation. This method involved assuming a plausible pressure mode shape

which added =ore singularities and difficulties to the problem but the

method does produces satisfactory results. Next a series of at least

twenty different attempts to solve the integral equation reached the

I literature. One of the more popular is that of Reissner who developed a

method based on a lifting surface approach to the solution of the

integral equation (21:1-39,22:1-97) that was exact in the limit as the

span approached infinity and resembled lifting line theory at steady

flow. The next series of attempts to solve the integral equation

I involved approximate solutions based upon discrete element methods and

was coincident with the development of faster carputers. Among these

methods are the vortex lattice (20:1-492), doublet lattice (1:279-285),

doublet point (27:348-355), finite element techniques (12:626-633) and

variational techniques (29:492-498) just to name a few. Landahl and

Stark (13:2049-2060) wrote a ccumplete synopsis of the progress made in

the solution of this problem. Each of these methods produces

satisfactory results, same more easily than others. Coincident with

3 this development was the development for solutions to the larger class

of problem, namely the non-planar wing (14:1045-1046). The number of

different methods and procedures attempted to obtain the best solution

are a testament to the difficulty of obtaining solutions to the

I pressure-downwash integral equation.

8
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Ccrputational Form of Kernel Function

Accurate camputation of the kernel function is essential if the

kernel function is to be modeled with any degree of accuracy. The

kernel function poses same numerical inpediments that must be carefully

avoided for accurate results. The numerical difficulties arise

primarily fron the presence of both discontinuities and singularities.

The kernel function can be written as (32:7)

K[mk.,XoS(y-T - K[fkx 0 ,s(y-n)] (4)

bM s 2 (y-q])2

where Ie is denoted the modified kernel function and the shorthand

notation xv=x-t is adopted for brevity. This form of the modified

kernel function is particularly helpful because it shows the second

order singularity at y--q that exists in the kernel function and admits a

less difficult calculation of the modified kernel function, K. The

modified kernel function is defined in equation (5) (32:7) where K and

I, are modified Bessel functions of the first order and first and second

kinds respectively, I is the modified Struve function of the first

order (8:374-379,495-502) and 3=(1-M2 )1/ 2 . The modified kernel function,

le does not contain any singularities but it does contain one

discontinuity at xg=x-(=0 and y0=y-n=0 which can be shown to have the

3 limiting form shown in equation (6) (32:7).

I 9



K" [ M,k, xs(y- ) ] - k {-ksI y-,lI + ksIy-,IK K(ksI-y-I)

Xoe' ,.  - M/x.l'a2(y-,.q)

+ i--cksly-tjjjII(ksjy-ijl) -L (kSly-nj) +

- iksly-lIfo 'Sl -/ eika-.Id4

(5)

lim K [M,k, xoa(y-ij)] - (6)
y-1 -0 0 x0<0

This form of the modified kernel function as shown in equation (5)

exists for steady motion (k=O) as well and can be shown to have the

following limiting form (32:7,31:710)

K'MO,X0,S(y-r)] = 1. XO (7)V/xd + s2 (y-11)2

Although the calculation of the modified kernel function may seem

trivial, there are two numerical problens hidden within the equation.

The first problem is the quantity If-L1 and the second is the definite

integral term in equation (5). The quantity II-L within the modified

kernel function is difficult to accurately canpute for large argument

because both individual functions grow unbounded for large arguments.

This problem can be eliminated by using the definition (33:425)

10



IJ(ksly-i) - I(ksly-9I) - 2ksIY-11 vid (8)

This definite integral could be handled by numerical integration but

there would be an unknown amount of uncertainty associated with the

result depending upon such factors as step size associated with the

integration routine. An alternate approach is to approximate the

integrand with a function which is integrable in closed form and

evaluate the result. This approxiration approach is used in this case

because the error of the approximation is smll. In some instances,

accurate approximations to the integrand nmy not be available and

numerical integration would be the only recourse. The result is the

following expression (32:8)

11 (ksly-tII) - L1(ksly-qi) x

2ksIy-qI J alksly-qI
i Ia 2 + a 3 k2s 2 (y-i)2  (9)

I + - a lksjy-fl + a6Ik' )y--] eIy11I

where

al=1.0085
a2 1. 3410
a3 1. 0050

=a4 0.8675
a =0.4648
a6=0.9159

I 11



This approximation introduces an error of approximately 0.4 percent in

the vicinity of ksly-ql= 4 and is less throughout the dcmain of the

function (32:8).

The second numerical difficulty is in the evaluation of the

integral term of the modified kernel function, equation (5). This

integral has not been solved in closed form to date. Numerical

integration once again is possible; instead, an approximation to the

I integrand, integrable in closed form, exists (32:8) and will be used to

minimize the uncertainty in the result. The following approximation can

be used to replace the integrand in the integral of the modified kernel

function

I1 e- T - a2e-rv - a 3 e-r sinr (10)

where

a 1=0.101
a2 =0.899
a3 =0.09480933
ri=0.329
r21. 4069

r3=2.90

The maximun error of this approximation is about 0.24% near T=1.5 and

this function possesses the same limiting value as the integrand at the

Itwo limits of integration (32:8). However, this expression is only

valid for positive values of T so the integral must be broken up into

two regions and a change of variables made on one of the two parts to

write the ccmrlete integral in terms of positive limits of integration

where the limits of integration are defined as follows.

12
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fd-Q* t1 e Ike lY-41d r X0 <M yI (12)
V1 + 2

3 sj -iI x<SIY-ll (12)

I a =  x° (13)

Id- M 1 /+2 S2 (y-q) 1 (14)
0,s IY-q I

The modified kernel function is now in a form which can be readily and

accurately evaluated throughout the domain of any wing planform.

i The solution of the integral equation (1) involves the integration

of the kernel function. Although the q~cuti-, is not specifically

addressed in this section, it is appropriate to discuss the special

3 integrat:.on required in th sp1!t;-ise intearation. The chordwise I

integration does contain a finite jump discontinuity which can be easily

3 handled by separating the integral into two regions, solving each

individually by appropriate means. The spanwise integration contains a

double-pole singt..arity at y-j=O which necessitates the use of the

Mangler finite part of an infinite integral (32:13) as shown in equation

(15). The integration of a function F(j) other than F(y)=l is more

difficult in general and can only be performed provided the function F

is not singular at ,=0. In most instances, the integration is

I sufficiently difficult to warrant analysis by numerical means. Van

I13
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I Airn{1]y- + -+ -M
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Nierkerk (30:1196) and Ueda and Dowell (27:350) have both developed

approximate numerical methods capable of accurately evaluating such an

integral. Thz first method by Van Nierkerk (30:1196) uses a special

Gauss quadrature rule which is generally accurate with as few as four

abscissa points for most functions. The second method by Ueda and

Dowell (27:350) develops an equivalent expression for the integrand

under the singular integral which can be used in discrete element

solutions to the pressure-downwash integral equation.

General Solution Methodology

This section outlines the modification of the general aerodynamic

problem into a form suitable for solution by the approximate methods

described earlier. The pressure-downwash integral equation is used in

the direct sense of lifting surface theory to solve for the ununown

pressure coefficient distribution given a known or assumed downwash

distribution. As there are only a very limited number of special cases

for which closed form solutions are exist, the general problem must be

solved by approximate numerical procedures as discussed in the previous

section. The wing is assumed to be undergoing a displacement H(x,y,t)

which is represented as the superposition of rigid body and elastic

modes of vibration

14



H(x,y,t) - h 1 (xy) q1 (t) + h 2 (x,y) q 2 (t) +
(16)

+ h,(x,y) qj(t) +

Linear superposition is possible because the boundary conditions used by

Kssner were linear, preserving the linearity of the wave equation

operator and hence the solution, the integral equation (1), is itself a

linear operator. For sinusoidal oscillations we have the following

q (t) - ie IC (17)

where the tilde indicates the mfagnitude of the displacement in the j-th

mocde, 0 is the frequency of oscillation, hj(x,y) describes the shape of

the j-th mode and i=(-1)1 12. The downwash w(x,y,t) for a given

displacement H(x,y,t) is given by the following (32:5)

w(x, y, t) = + .H(x, y, t) (18)

This can be rewritten using the above relations in equations (16) and

(17) for the j-th mode of vibration.

w, (x, y, t) a + ik~h ''~y qD(t) (9
-V axb 0

Seeking the downwash as the product of a shape function and an unknown

tine dependent nagnitude reduces the expression above to the following

j (x,Y) + i h, (xy) (20)

where the downwash has been assumed as

15
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Sw(x,y, t) = O(x,y) ei'e (21)

The pressure coefficient distribution on the wing can also be put into a

similar form

AP(gq, t) = A13(&,n;k) eita  (22)

The shape function in equation (22) is shown with k, the reduced

frequency, as parameter. By choosing the downwash mode shape, the

pressure coefficient is forced to behave as specified by the kernel

3 function. The pressure coefficient is a function of reduced frequency

to counter the frequency-dependence in the kernel function. The type of

notation in equation (22) allows for easy transition to the Laplace

domain formulation in equation (3). The use of these equations produces

I the following relationship between the shape of the downwash and the

shape of the pressure distribution throughout the spatial dumain of the

airfoil

-- (x,y) _ bot

Sf"'AP ( 4, v ; k) K M,k,x-4, a (y-q) (23)

For a general problem, the general displaceiment shape is decomposed into

3 a finite number of modes (either rigid body or elastic modes). Each

mode shape is handled separately, solving the integral equation by an

3 appropriate means for the pressure coefficient distribution responsible

for the asumed downwash distribution. The sumrmtion of the individual

l modal pressure coefficient distributions produce the total resultant

i 16
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i
l pressure coefficient distributionl for the general condition. The

pressure coefficient distribution can in turn be used to compute
i generalized aerodynamic forces acting on the wing.

i
i
I
i
I
U
i
U
i
i
I
I
i
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III. Fractional Calculus

The mathematics of fractional calculus is nearly as old as that of

classical calculus. The fractional calculus treats derivatives and

integrals of fractional order and is not solely restricted to integer

3 order as is the classical calculus (23:115). An interesting discussion

of the historical development of fractional calculus has been written by

U Ross (23:115-122). The early engineering applications of fractional

calculus were precipitated by the observation that the stress relaxation

phenomenon of viscoelastic rmterials appeared to proportional to time

raised to the fractional power. This observation in turn suggested a

fractional order time derivative rather than an integer order tine

derivative in the equations of motion for a system comprised of the

naterial. This discovery spawned a renewed interest in the fractional

calculus in the twentieth century. The fractional derivative can be

defined as the inverse operation of fractional integration attributed to

Rein-am and Liouville (3:203)I d_____ __x(_)

r F a T -t0 a(24)

0<6<1, mEN

U One especially convenient feature of the fractional derivative is

3 {D'* [x( t) 1} = s, 5(x(t)) (25)

which shows differentiation in the Laplace doarin is equivalent to

multiplication by the quantity 904 (3:203), A being the general Laplace

18
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variable. A similar relation holds in the Fourier domain when s is

replaced by iv and Fourier transform are used instead of Laplace

U transform in equation (25). For exairple, the Laplace dunain

representation of the fractional derivative of order one half of the

function f(t)=eat is s'12/(s+a). These mathematical features, coupled

with the apparent correct description of viscoelastic phenaenon, have

generated the renewed interest in fractional calculus and its

U applications to engineering problem. The fractional derivative

operator +'[ ] is a linear operator so all the matheratical

conveniences associated with linearized problem can still be utilized

3 when the fractional calculus is included in the problem.

i
i
I
i
U
I
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I
IV. Model of the Modified Kernel Function

I The primary emphasis of this portion of research is to develop a

3 model which accurately describes the frequency dependent and chordwise

and spanwise spatially dependent behavior of the kernel function. It

should be emphasized that the modelling will be performed on computed

values of the kernel function in an attempt to simplify the mathematics

I involved in its analysis and is not performed to actual test data. One

major goal is to substitute relatively simple functions for

transcendental ones, reducing the effort presently required to calculate

3 the kernel function along the imaginary axis and throughout the ccmplex

s-plane. Additionally, if a suitable model could be found which was

I more amenable to analytic integration than the kernel function itself,

equations of motion for the finite airfoil could be written directly as

functions of this integration and evaluated directly in closed form.

3 Finally, given the first two goals, if the model is of a form which has

a closed form inverse Laplace transform, then this transform can be used

as the transfer function in control system analyses. The kernel

function can be thought of as a transfer function spatially convolved

with the pressure coefficient distribution to produce the downwash

3 •distribution. A model which describes the behavior of the kernel

function along the imaginary axis, integrable in closed form, and

i available for analytic continuation into the couplex plane is the target

of the project. Given this descriptive model can be developed, a

I tractable, analytically integrable transfer function that can be

3 20
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spatially convolved to produce the response of the system to general

input will be obtained.

Model Development

The candidate model must be capable of capturing the variation of

the kernel function over a wide range of reduced frequencies along the

inaginary axis with the ability to be analytically continued into the

entire ccplex plane without difficulty. The range of reduced frequency

has to be sufficiently large to insure that both the small and large

argument asynptotic behavior of the kernel function was captured. As

shown earlier, the kernel function has the second order singularity

which could cause problem in developing an accurate model, especially

in the vicinity of the singularity. Therefore, the modified kernel

function shown in equation (5) earlier will be modelled as it is more

well behaved mathematically. It should be noted, however, that the

singular nature of the kernel function shown in equation (4) can be

I included before the integration is performed.

The modified kernel function will be modelled with the functional

form shown in eqaution (26). Nt is given by the steady value coTputed

using equation (7). This equation will be shown later in Chapter VII to

be ccmprised of two functions which are derivatives of two general order

Mittag-Leffler functions (17:102) with step functions as the leading

coefficients. Bagley (5:742) has shown a model similar in form is

appropriate for describing the frequency dependent behavior of the

modulus of a viscoelastic material. In Bagley's model (5:142), a

U 21
I
I



1

K [M,k,xo,y o] " - 0 (Mx0, y) (ik)e2(MXOIYO)
I1 +03 (M, xoY 0 ) (ik)e4(N 'P o (26

(26)

05 (M, xoy o) (ik)e6(M0 YO)

1 +0 (M, xay o) (ik) "( '4 'Yo

I single Mittag-Leffler function was sufficient to capture the behavior of

the modulus. Swinney (25:5) was able to capture fully the frequency

dependent behavior of the Theodorsen function for two-dimensional flow

(25 :418) using a single Mittag-Leffler function. The Theodorsen

function relates the variation of circulatory lift to downwash of a flat

plate undergoing sinple harmonic motion (25:1). Swinney's model was

also extended to include the laplace variable for arbitrary motion. The

success in modeling the two-dimensional aerodynamic function led Bagley

1 (4:16) to suppose the three-dimnsional kernel function could be

modelled with a similar functional form. Early investigation over a

I broad band of reduced frequencies demonstrated Bagley's form of model

(4:16) was incapable of capturing the behavior in the higher subsonic

region of the kernel function (M=0.8+). The model shown in equation

(26) with two terms rather than one was adopted in an attewpt to capture

better the properties of the modified kernel function over a wide range

I of reduced frequencies. The fractional calculus based model is

especially convenient because the analytic continuation is automatic

with the substitution of the general Laplace parameter for the purely

imaginary argument. Additionally, this type of functional relationship

* 22
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is capable of capturing two independent phase lags because of the two

independent derivatives of the Mittag-Leffler functions present.

There is actually same empirical foundation for a model of this

3 form. In two-dimensional flow, the wing is considered infinite in span

and the only wake produced is along the trailing edge. Under steady

3 flow conditions, the wake leaves the trailing edge smoothly. As the

reduced frequency is increased, the wake no longer leaves smoothly but

I instead produces disturbances along the trailing edge which propagate

forward and change the effective angle of attack of the wing. For wings

of finite span, the wing tips nay also create disturbances independent

3 of those along the trailing edge which cause additional disruption in

the motion of the airfoil. This type of phenomenon ay require two

I functions with t.-, eparate phase lags. The functions in equation (26)

are capable of representing two separate phase lags because the 82 and

86 value are independent, one capturing the trailing edge effects and

3 the -ther capturing the wing tip effects.

The model shown in equation (26) is a direct function of reduced

I frequency with the parameters being functions of Mach number and

dimensionless chordwise and spanwise spatial variables. The Mach

numbers of interest ranged from incompressible (M-4O) up to high subsonic

(M=O.8+). The range of the dimernsionless chordwise variable would have

to include values ranging from x0c[-2,2 ] . The range of the

3 dimensionless spanwise variable would depend upon the aspect ratio of

the given airfoil sy0c[-2s,2s] where s is the ratio of seuispan to root

seirchord. A general ccrprehensive model which could describe the

* 23
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entire range of the modified kernel function was not discovered. The

large number of independent variables created additional difficulties in

I determining a suitable functional form for the model parameters, 8;.

However, many regions were adequately modelled and all regions were

fully investigated and analyzed.

As evidenced by the form of the model in equation (26) and the

nature of the modified kernel function discussed in equation (5), this

curve fitting is a highly nonlinear problem and a suitable method of

nonlinear optimization had to be found to solve the problem in a timely

manner. For models with a small number of parameters, it is sometimes

sufficient to perform manual regression. However, in this case with

eight independent parameters, a nonlinear least squares regression

routine using the modified Levenberg-Marquardt algorithm (18:431-441) to

generate a sequence of approximations to the minimun point was used to

expedite the process. This algorithm uses a "trust region" approach

with a bounded step. The Jacobian is needed to optimize the parameters

of the model and is cumputed numerically in this instance by forward

finite differences (10:243). The IMSL routine RNLIN which implettwnts

this algorithm was used (10:239) in the present analysis. There is a

certain amount of insight required to use such a routine in this type of

application.

This routine is designed for regression of real valued functions,

not ccmplex valued functions. In performing a modelling of the modified

kernel function a model must be constructed which adequately predicts

the behavior of both the real and imaginary parts of the function. A

24



simultaneous regression performed on both the real and imaginary parts

is desired. Unfortunately, in this present work, the simultaneous

regression was not readily program-able and was not used.

Two different attempts were mde to trick the routine into

performing a simultaneous regression. The routine requires a real-

valued function which ccziputes the error between the function and the

model at a discrete number of points. This is the only possible input

to the routine which could potentially be modified to achieve a

simultaneous fit. The first attempt was to return to the routine the

magnitude of the camplex error between the points. The real part caused

the routine to diverge in this instance. Another atteimpt was made to

treat the real and imaginary parts as one real-valued curve by

translating the imaginary part to begin at the tail of the real part.

This failed as well because the derivative of the curve was, in general,

discontinuous at the point where the two parts were joined. Without a

quick method of performing simultaneous regression, the regression was

performed solely on the imaginary part. The imaginary part proved to be

more amenable to fitting than the real part. When the real part of the

model (based upon the regression of the imaginary part) was campared to

the real part of the modified kernel function it was generally observed

to produce a satisfactory fit as well. Normally, the real part of a

cciplex function would not be well modelled by specifying the imaginary

I part. However, given a linear transfer function, the inaginary and real

parts can be shown to be related through derivative operators using

Fourier transforus. In this work, a good model for the imaginary

25



produced a good model for the real part as well, evidence of the strong

linear nature of the modified kernel function.

Another obstacle in this IMSL routine is the requirement for a

starting point in the optimization space. A good initial point would

produce good regression results and a bad initial vector would produce

no regression result and unfortunately no informtion regarding how to

improve the initial value. The real difficulty in the procedure is

determining the correct initial vector; because this function has not

been modelled in this manner before, the selection of the initial trial

vector was something gained by experience and practice. One

recammendation for further investigation in this area is the use of a

ccnplex regression algorithm for evaluating models of the modified

kernel function.

There are several advantages associated with this IMSL routine as

well. First, as the routine is available internationally and used

extensively, the routine probably has been extensively tested against

established test cases and has no errors. Creating a routine takes a

large amount of tine to code and test. Another advantage is speed. The

IMSL routines are coded for efficient operation. The routine was one of

Ithe better nonlinear regression routines available in either pre-coded

or algorithm format.

One interesting and helpful result discovered during the modelling

process was the nature of the regression parameters, 8j. Given a good

regression for one particular Mach number, xO and yo' a reasonable

initial value for another xa and y0 value for the sane Mach number could
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be interpolated quite readily This resulted in family of regression

curves for the various parameters of the model. Unfortunately, this

I behavior was not observed fc. all regions of the modified kernel

function using this form of model, possibly suggesting the present form

of model is not quite appropriate in the region. The existence of the

strong relationship between the parameters of the model in many regions

suggests the existence of scme type of fractional derivative model that

Icould adequately represent the ccmplicated and highly intractable
modified kernel function.

The goodness of fits of the fractional calculus models were

minimized using a least squares type of error calculation. The error is

calculated using the following

. Z] 2 1/2 ( 7

e _ 1 E [f (x,) - fc(x (27)

where f(x,) is the value of the modified kernel function at the p-th

point, fckx) is the value of the fractional calculus model at the p-th

point in the interval, ND indicates the total number of points in the

interval, and p is an index locating the point of comparison. The

errors for the models will be given when the model is presented. The

number of points used to conpute the error varies in the thesis. The

Imodels and functions throughout the thesis were ccmpared at intervals of
5 percent of reduced frequency (the independent variable). Hence, for

an interval between zero and one, there would be twenty-one points

ccm ared and for an interval between zero and three, there would be

sixty-one points of ccmparison between the target points and the model.

U 27
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Model Results

The results presented are restricted to thin rectangular planform

airfoils. It should also be pointed out that the modelling of the

modified kernel function was performed to calculated values and not

actual test data.

Ccrressible Flow. The modelling of the modified kernel function

was generally unsuccessful for copressible flow conditions using the

I form of model in equation (26). There were a number of obstacles

encountered in attempting to model the modified kernel function. The

first attempt at modelling was performed at Mach number 0.8. This

proved to be extremly difficult with the form of model shown in

equation (26). The model would predict behavior well in regions of

n between 0.7 and 1.0; in other regions, the overall trends of the

modified kernel function were followed but the actual functional values

were generally not achieved. One possible reason for the difficulty is

the copressibility effects beginning to doninate at the higher Mach

numbers. As the Mach number approaches one, shock waves ,!,ill begin to

I form on the wing. Shock waves are viewed as a non-linear phenomenon and

as such, the kernel function, which is a linear operator, would probably

have difficulty capturing these effects. It can be shown that the

modified kernel function at Mach number 1.0 (sonic) is equal to zero

(4_0, all sy0 ) copared to the subsonic case where the modified kernel

I function was equal to zero for (x00, sy0- 0) equation (6). It is

postulated that possibly a third function would need to be added to the

two function model to help capture the shock formation phenomenon. The
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I investigation at Mach number 0.8 was abandoned for lack of conplex non-

linear regression software to perform the statistical regression on a

increasingly difficult problem. It was evident at this point that the

global modified kernel function model would not be obtained. Another

Mach number in the ccnpressible regime was analyzed in an attempt to

characterize the modified kernel function at least one Mach number.

The Mach nunber was reduced to 0.5 in an attempt to decrease the

dominance of the ccmpressibility effects, but still retain enough

compressibility to attempt to capture the subdcninant effects. The

modelling at this Mach number produced same very good results. The

modified kernel function was best modelled in the regions with small x,

small syc and large xa, large sy0. Acceptable models were obtained in

the vicinity of small xe, large sy0 and poorer fits were found for large

xO, small sy0 . Negative x0 values were not analyzed for this case

because the modelling was determined to be insufficient to capture fully

all of the behavior.

The resulting model for two of the regions will be shown in the

I main body of the text and sarmples from the remaining two regions

contained in Appendix A. A sample cimparison between the real and

irmaginary parts of the model and modified kernel function in the small

i x, small sy region is shown in Figure 2. The model is shown below

'K*0.5,k,0.1,0.05] - 8,(ik) 2 e ,(ik)' (28)
i+03(ik) 1 +8 7 (ik)'

I
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i where

= ,1.917
=-0.027 82=1. 205

83=0.154 84=0.094
95=0.236 86=1.01
87=o.064 98=0.95

The error for the real and imaginary parts is 2.6xi0 3 and 1.3x1O 3

respectively. The steady value is computed using the relationship in

I equation (7). As shown in the figure, there is excellent correspondence

between the model and the modified kernel function for both real and

imaginary parts. In this region, the exponential limiting form of

equation (6) is dominant and this behavior is evidenced in the figures

shown. If the curves were extended to include values of negative

frequency, the beginning of a finite jump discontinuity could be seen,

resembling a travelling wave at this point. As mentioned earlier, other

values of the modified kernel function in the vicinity of this chordwise

and spanwise location can be interpolated with a certain amount of

accuracy. There appear to be a substantial number of local minima in

the nonlinear least squares minimization function created by the model

and the modified kernel function. Therefore, the modelling of one

region of the function does not necessarily produce good results for

another region. The compressibility effects are thought to be

contributing to the large number of local minima present. A true

complex regression algorithm might be more beneficial.

Another region investigated was small xe and large sy0 . The model

had increasing difficulty capturing the behavior of the modified kernel

function for larger sy primarily due to the more oscillatory nature of
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2.4 Model of K
2.4 a 0 K' Real calculated

K' Imag calculated

I
1 1.6

0

40.8

I o o

0.0 0.5 1.0 1.5 2.0 2.5 3.0

REDUCED FREQUENCY

I Figure 2: Model of Ie[0.5,0.1,0.05]

I the kernel fmction for large arguments (26:174). A santle of the mTodel

in the larger syQ domain is shown in Figure 3. The model has the form

sh-wn in equation (29) with the real and imaginary parts having errors

3 of 3.2x10"2 and 7.1xi0 "3 respectively. As the reduced frequency is

increased, the modified kernel function becomes oscillatory which would

3
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Model of K'
1.0 ooo0 K Real calculated

.0 K" Imag calculated

I 0.5 0

00

l 7 -0.0

U -0.5-

I
I -1.0- ' 1 I I , I I 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

REDUCED FREQUENCY

Figure 3: Model of K*[0.5,0.1,1.0]I
K* [0.5,k,0.1,0.05] = U- (ik)1 8s(ik)e'+l( +3(ik) eT - 1 + e7(ik) ° , (9

3 where
Nt=l. 1147

B2=0. 647 2=0. 888
83=0. 549 84=1.04
O0. 263 86=0. 2638=0.109 08=1.37
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I require successively more terms in the model. This may suggest an

infinite series with an argument consisting of a function similar to the

one used in the model. This is an area that could be further developed.

The large k behavior is important because the large asynptotes must be

sufficiently modelled to have an accurate inverse Laplace transform (the

Laplace transform and its inverse are defined over the infinite complex

frequency plane).

The region of large xo and small sy is shown in Figure 17 located

in Appendix A. Once again, in this region the exponential limiting term

is dominant and the modified kernel function is highly oscillatory,

causing difficulty in the modelling. Although the imaginary part is

following the function quite nicely, the real part is losing its ability

to describe the function. A true simultaneous regression of both real

3 and imaginary parts of the model might have overcome this deficiency.

The region comprising both large x and large sy was handled

reasonably well for the particular values investigated but the

perfornmnce of the model will degrade as the reduced frequency is

I increased because of the oscillatory nature of the modified kernel

function mentioned earlier. Figure 18 in Appendix A show the behavior

in this region.

Overall, the modelling of the modified kernel function for Mach

number 0.5 was not campletely satisfactory and did not provide a

I complete modelling over the domain of the wing. Further analysis into

the possibility of analytic integration of the integral equation as

originally planned was not performed because of time constraints.
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I However, the modelling and investigation do give prumise that such a

model could exist, given the correct form could be determined. As

mentioned earlier, a complex non-linear regression routine would greatly

increase the ability to explore other model forms. Lack of total

success in the compressible domain led to the investigation of the

Imodified kernel function for incompressible flow. The supposition that

compressibility of any magnitude greatly increased the complexity of the

problem will be tested in the next section.

Incompressible Flow. The incompressible case would require

another model. The model given in equation (26), when tried in this

Icase, had too many parareters for the regression to be performed with

any degree of consistency. The following model was adopted for the

incompressible flow conditions where, once again, the Nt value is given

K.[k,x,,y 0] = &" - e+( IY0 ) (ik)4(x'Y°) (30)

by the steady limiting form in equation (7) and the Mach number, M, has

been eliminated from the argument for brevity. A more thorough study

was conducted on the inccpressible case than on the other compressible

Icases previously conducted because the incuipressible case provided the
most opportunity for ccmplete modelling of the modified kernel function.

Cne model describing the modified kernel for incompressible flow

conditions throughout its entire domain was not found either. However,

the model in equation (30) shows a very strong potential for modelling

Iwings of small aspect ratios (aspect ratios less than one-half) such as

those found in the late stages in turbumachinery. The modelling of the
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modified kernel function in the incompressible regime discussed in this

section was shown to be very capable of describing the smaller aspect

ratio wings throughout the domain of the airfoil. However, the

asymptotic behavior of the model with respect to the modified kernel

function for small and large asymptotic values of reduced frequency has

3 not established and is currently under investigation. Ueda (26:169-

174,28:346-347) provides asymptotic expansions of the kernel function

for both small and large argumets. These behaviors need to be verified

i before the model can be said to fully describe the modified kernel

function for small aspect ratio wings. Samples of the model in specific

regions are presented here and in Appendix B.

A sample of the model for small sy0 and large xO is shown in

i Figure 4. The model has the following representation

K* [k,-0. 1,0. 5] (), B(ik) 0 (1
+ 8, (ik) 0,

i where

Ka2=1.9987
8 1=1.729 2=0. .81
8 =0. 267 84=1.34

with errors of 9.9x10 2 and 2.4x1O 2 for the real and imaginary parts.

The agreement between the model and the computed modified kernel

i function is much better than the same case for the Mach number 0.5 case,

indirectly supporting the supposition that coupressibility effects cause

difficulty in the modelling of the modified kernel function. This

particular case represents the worst agreement between model and

modified kernel function for the incoipressible case. Although not
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~Model of K°I 00000 K Real calculated

1.5 0, K ° Imog calculated

0 0
0

I 0.5 0 0

0

0 0I_ -0.5 0I 0 0 000

N -1.5

-2.5 i
0.0 0.5 1,0 1.5 2.0 2.5 3.0

REDUCED FREQUENCY

Figure 4: Model of Ke[0,1.0,0.05]

perfect, it is reasonable considering the relative time required to

evaluate equation (30) and Lquation (5). The model also worked

reasonably well for large N and large sy0 . The small and large sy0

behavior was modelled very well using equation (30) as shown in

Figure 5. The model for this particular case is written in equation

(32) with errors of i.ixlO 2 and 4.7x10 3 respectively for the real and
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Model of K
oooK' Real calculated

1.0 K* Imag calculated

* 0.6

0.
0

-0.2

*-0.2 T

0.0 0.5 1,0 1.5 2.0 2.5 3.0

REDUCED FREQUENCY

Figure 5: Model of K'(O,O.1,1.O]

U inaginary parts.

I* (k, -0.1,0. 5J 8= - ik 02 (32)

where

N t =1.099
81=O. 837 82=0.871
(,=0.582 37 8=0. 956



Comparing this figure to the corresponding case at M-0.5 (Figure 3)

shows the higher Mach number case has a nuch sharper curve than the

respective incumpressible case, demnstrating the more complex behavior

due to compressibility effects. In addition to investigating the

positive x0 behavior, negative x behavior was also analyzed. The

behavior for small values of negative xO and small sy0 is given in

Figure 19 which is included in Appendix B. The model clearly captures

the behavior of the modified kernel function in this region. Note that

tihe c.,v-ez will be forced to zero as the syn values are decreased

toward zero in keeping with the limiting form given in equation (6). In

this region, where the dominant behavior is characterized by a step

function of magnitude two, it is inportant to include some negative

reduced frequency values in the regression process to insure that the

step behavior, the small argument asymptotic behavior, is fully

captured. The advantage of the fractional derivative model is that it

is capable of representing a step function type of behavior quite

easily. This particular type of behavior in the modified kernel

function has just been initialhl investigated but is not presented here.

Figure 20 shows an example of the model in this region. The

difficulties associated with the modelling of the modified kernel

function occurred in the regions of the step function and the region

containing negative xO and large values of sy0 . As stated earlier, the

restriction to values of sy0 less than one merely suggests the

suitability of the model for smaller aspect ratio wings. Another form
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of model might be necessary to successfully model rectangular airfoils

of higher aspect ratio.

It is possible to construct curves describing the dependence of

the parameters of the model upon x0 and sy0 . A sample of the variation

of the parameters of the model for the incanpressible case is contained

in Appendix C. These curves can in turn be fit with polynomials of up

to order five quite easily. However, rather than viewing these as

polynomial curves, it is more convenient to view the term of the

polynomial models as the first few term in an infinite power series of

sae unknown function which would fully describe the behavior of the

parameters. If the infinite series can be shown to represent a

mathematically convenient functional expression, it could facilitate the

I direct analytic integration of the integral equation or, at least, allow

for an easier inverse Laplace transformation. These ideas have been

initially studied in this work and continued work in this vein is

planned to determine if this is a viable approach to the solution of the

probl ema.

I The modelling of the modified kernel function with fractional

calculus types of functions has promise. It has been demonstrated that

models can be developed which are sufficient for describing much of the

behavior for moderate Mach number but not totally descriptive over all

the domain of the kernel function. Higher Mach number behavior is more

I c;ifficult to capture but sae behavior was captured with a very simple

1 model suggesting further investigation. The modified kernel function

for incaqpressible flow was found to be modelled quite well for small
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aspect ratio rectangular airfoils by a fractional calculus model with as

few as four parameters. Although the model asymptotes for small and

large values of reduced frequency have not yet been veri:4-4, . result

that the majority of the damain of the modified kernel function could be

captured with a sinple fractional calculus makes an inx±-ctzt thrust

into a new area of application for fractional calculus.

One additional topic which must be addressed before the model can

be deemed ccnplete is the camparison with the modified kernel function

in the ccuplex s-plane. Ashley (2:7-8) provide forms of the modified

kernel function suitable for evaluation throughout the ccaplex plane,

one of which has been used here as equation (5). If this model is shown

to predict the behavior of the modified kernel function in the canplex

s-plane, then the model will be suitable for control analyses, not just

stability analyses.

This particular work was only successful in modelling wings of

very small aspect ratios under one-half. The goal of finding a directly

integrable model of the kernel function does seem unlikely but the

development of a model that can be inverted in the Laplace or Fourier

sense seem very feasible. This type of model would be of extreme

importance as it would permit the incorporation of the model of the

kernel function into the equations of motion of the airfoil. If the

model can be extended analytically into the left half s-plane, then

equations of motion for general motion, not just stability, could be

solved using the simple =odel of the kernel function. There is a great
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I need for more work in this area as this was the first attenpt at

I performing such a mdelling cn this function.

I
I
I
I
I
I

I
I
I
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I V. Approximate Solution of the Pressure-Downwash Integral Equatio

H Although the approximate solution of the integral equation (3) or

(23) was not a direct goal of the thesis, it became necessary after the

lack of success experienced in Section IV discussed earlier. The

approximate method is used to calculate the inverse kernel function K"1

by sampling the integral equation and reducing the problem to a linear

system of equations. The inverse kernel function can then be used to

calculate numerically the generalized aerodynamic forces which will be

used to determine the equivalent Theodorsen function for three-

dimensional aerodynamics.

This chapter outlines the development of a method to evaluate

numerically the integral equation (3) or (23) which will collapse down

to a form similar to the doublet point method developed by Ueda and

Dowell (27:348-355). The doublet point method (27:348-355) is a

variation of the doublet lattice method (1:279-285) which is easier to

apply. Although the doublet point method was not used directly, the

I result of the author's method reduces to a form which is close to that

of the doublet point formulation warranting the reference and credit for

the original work.

The procedure involves dividing the wing into a finite number of

panels and representing the entire pressure coefficient and downwash

I distributions over the small panel by a single concentrated load with a

yet to be determined magnitude. This is mathematically equivalent to

treating the pressure coefficient distribution as a series of

1 42I
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I acceleration doublet points (27:349) represented as Dirac delta

functions. A downwash mode is assumed and a linear system of equations

is formed by the sampling caused by the delta functions. The linear

system is solved to determine the unknown coefficients of the delta

functions which define the pressure coefficient distribution in a

discrete sense.

The integral equation (23) is separated as shown in equation

(33) to permit special treatment of the second order singularity present

in the denominator when sy0=O.

f (x,y) = bo I

(33)

f+* + f 41AP( )K[k -s(y-- T

The singular c integration in equation (33) will have to be performed

by taking the finite part of an infinite integral in the Mangler sense

(32:13) and a in this instance indicates a small distance away from y.

Note that the Mach number dependence has been omitted from the kernel

I function because the flow conditions have been specified to be

incck.pressible. However, the procedure described in this chapter is

applicable to compressible cases as well, provided the proper form of

the kernel function is used. The airfoil surface is divided into q-

integration regions to facilitate the integration process: the region

I containing the singularity will be referred to as Region II, the region

to the left of this Region I, and to the right, Region III as shown in

Figure 6. As mentioned previously, the midified kernel function
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Region II

Region III

It Region I - _ _ _ _ _

0

q--1 y-V y+O q-+l
(,y)

I
I

Figure 6: Integration Regions

possesses a finite juTp discontinuity as x-j- 0 and y-j- 0. Otherwise

I the d( integration poses no extreme challenges. The wing is now divided

into N panels as shown in Figure 7. The number of panels in the x-

direction is denoted by N and in the y-direction by N7 such that N=N X

N . The pressure coefficient information for the entire panel (i,j)

will je concentrated at the point (Q,q) located at the one quarter chord

I and mid-span position on the panel and the downwash information

concentrated at the panel three quarter chord and mid-span point (x,y)

as shown in Figure 8. The convention of utilizing the one-quarter/
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I1,

I I b.x, b. C

Figure 7: Discretizatiom of Airfoil Surface

three-quarter chord rule for doublet and downwash location has been used

successfully for years by both the vortex and doublet lattice mthods

I (20:2) but the rigorous analytical justification for such an assuftption

is lacking to date (20:325-342).

Hence, the pressure coeffi& ent distribution can be written in the

following form shown in equation (34).

AP(t,Tl;k) - Pj1 (k)8(t-t1 1 i-j) Regions I, III
I (34)

AP(4,;k) P(k)8(J-41 ) Region II
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Doublet point (C,vq)
Downwash point (x,y)

1/4 c

I :3/4 c

A

20

Figure 8: Airfoil panel

Using equation (34) for the pressure coefficient distribution and a

ssimilar type of formlation for the downwash distribution produces the

following system of linear equations relating the coefficients of the

downwash and pressure coefficient distributions.

In equation (35) the Nj indicates the area of the (i,j) panel, Pij

indicates the undetermined pressure coefficient strength on the (i, j)

I panel and 1 i is the length of the panel (i,j) along the spanwise

coordinate strip containing the singularity. The quantity w(N,y 3 )

indicates the dounwash strength on the (n,m) panel. This approach still

requires the evaluation of the finite part of an infinite integral but

it does avoid having to treat the jump discontinuity in the modified
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I

I , '[k,x,- ,s(y,- q_) ) (35)

+ byS2(y -q)2

kernel function because the locaticns of the downwash and pressure

coefficient saimple points are not coincident and hence x0*O.

The Mangler integration can be handled in one of two ways as

mentined previously. The first method by Ueda (27:350) involves

I determining an equivalent non-singular expression for the kernel

function at y-4=0 based upon a discrete treatnmt of the Mangler

integration and an asymptotic expansion for small argument of the kernel

function. The second approach is to utilize a modified Gauss quadrature

rule to capture the finite part of the integral (25:1196) in which the

I kernel function is evaluated at the abscissa points by any accurate

mans. Both methods were compared and produced comparable results using

as few as six abscissa points with the quadrature rule. The former

method was chosen, however, because it is more consistent with the

sampling of the kernel function for the other two regions of the

I airfoil. This step collapses the present methodology into the doublet

point method (27:349).
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The method used in this thesis permits the Mangler integration to

be performed by any appropriate means. Another distinction fron the

doublet point method (27:349) is the manner in which the kernel function

is evaluated. The present method computed the kernel function in the

non-singular regions by first computing the modified kernel function,

equation (5) by methods described in Section II and then dividing by the

double-pole singularity term (equation (4)). The kernel function in the

I singular region was handled by the approximation given in equation (46).

The doublet point method (27:349) utilizes the asymptotic expansions,

equations (39) through (44) to compute the kernel function throughout

the domain of the airfoil. The series converge at different rates

depending on the values of the arguments, requiring special treatment of

I summation conputationally. Rather than work with this, the alternate

method was used which did not require any series evaluations.

Ueda has shown (26:169) the kernel function can be written as

3 follori for incompressible flow conditions

K[k,x- ,a(y- ) ] - &' SB(k,x-J, s(y-9)) (36)

I
I
I
I
I 48

I
I



I

I where the function B(k,x-4,s(y-j)) is defined

I (k,x-(,s(y-Tl)) - x -t elk d (7IV2+s3 (y_ ) dv (37/)

I If this integral is separated into its real and imaginary parts, the

real part contains a double-pole singularity in 11 as y- 0 as shown in

equation (38) which was obtained by making a change of variables on

equation (37).

B(kxo 1 s(Y-n)) =s 1  ( q) Ika(y-i) / d1 (38)
52 (y-q, -- (1 + ;2)/

I Ueda has expanded both the real and imaginary parts of equation in an

asymptotic series about small ks(y- 1 ). The series is written as the

following (21:170)

BR(k,x0 O,syO)= (-')'U20
neo

I (39)

2 n 1

L* ii 1 )- E T - y- 1nf- (n + In1) (nT) 2 x +- 2 (n+ 1) 2 n

I
B.,k~(,,n)- (-1)U 2 2.1 + -Sk 22r (0

-k) uo u.o (n+l) (nl)2

iUo - 1 (41)
7o 7a - -+sxv)
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U, k (42)

•U2 - + -n( xo+s -x) (43)

U, (xA- _(ksyo )2 U.2M2!3 (4
(m-2)mI 14+m(m-2)

I
One attractive feature of these series is that every singular part is

I explicitly written as an initial term (26:169). These expressions can

be inserted in the q integral and the integrations can be performed in

the Mangler sense.

IB JE (k, x(,,sy) d (sy 0 ) 1 - C + f (kx sod(yo)-C-Of + f 4.(,xs.

(45)

I Ueda has shown an equivalent expression for B, after including the

effects of the Mangler integral performed in a discrete sese can be

written as the following (27:350)

B (k, X-o,y) - BR(k,-x,0) - -i- + k(InL +y-.)
i2 2 (46)

(syo<o, x0 >O)

I
I
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I This provides a method of evaluating the kernel function when sy0-0 and

can be substituted into the second summation expression in equation

(35). Replace the integration in the second expression in equation (35)

with a discrete sampling of the kernel function as done previously in

equation (34). This permits the panel numbering system (i,j) to

collapse to a single because it is no longer required to track specially

the spanwise coordinate of the modified kernel function for integration

purposes as there exists a way to evaluate the kernel function at sy0=O

and no special integration treatment is now required for the kernel

function. Hence, the (i,j) panel will be relabeled as the i-th panel

with a doublet point at (i'qi and downwash at point xi,y i . This

simplification allows the system of equations in equation (35) to be

I expressed in a much simpler form

VI = 'KO (47)

- p, - {AP15(4_, rj; k)} (48)

0 - {wi} - {0(xIIY)} (49)

K = [K o] = e(5 )I
where i and j can index frmn 1 to N:N, X N, panels. The - indicates a

vector quantity and K distinguishes the matrix quantity fra the

continuous quantity. This system of equations (47) through (50) is

presented as the doublet point method (27:349). This linear system of
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I equations can be solved given an assumed downwash modeshape vector wi .

The beauty in this method is evidenced by not having to presume an

appropriate form for the pressure coefficient distribution. This method

relies om the mathematics embodied inside the kernel function to

determine the correct pressure coefficient distribution. An

I illustration of the ability of the procedure to compute the pressure

coefficient distribution is seen in Figure 9 below. Most methods

discussed previously such as the vortex and doublet lattice methods and

all assumed mode methods, involve assuning sane form for the pressure

coefficient distribution. This distribution is generally singular,

I creating even more difficulties using one of these other approximate

methods. The pressure coefficient AP shown is for a thin rectangular of

aspect ratio two in steady flow. The pressure distribution on an

airfoil of this type under steady flow conditions should possess two

distinct features: first, the flow should exhibit a singularity of the

type E, 6.. 0 at the leading edge of the airfoil (32:5) and the flow to

go to zero at the wing tips with an infinite slope as El, E- 0 (32:5).

I The first type of behavior is demonstrated in Figure 9, becoming more

pronounced as the number of chordwise panels N is increased. The

sec= type of behavior is seen in Figure 10 where C, is shown as a

function of the number of spanwise panels, N1. The coefficient of lift

is calculated using equation (60) which will be introduced shortly. The

I behavior is more pronounced as the number of panels is increased, as

i observed in the previous figure.
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Ftigure 9: Dependence on N1

The total pitching lift coefficient for the case N=i0 is 2.78

3 cunpared with the previously reported value of 2.65 when N,=20. This

demnstrates the dependence between the total pitching lift coefficient

I and the number of panels in the spanwise direction. The total pitching

lift coefficient for the N,=5 case was 2.65 ccmpared to the N=10 case
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with a value of 2.64. This shows the total pitching lift coefficient is

little changed by the number of panels.I

I 4.0

Dooo Nx=5
ooooo NX=10

0
0 0 00

0 I 
1

i 00 0

I .- 2.0 0
I 0

IG

0.0-
0.0 0.5 1.0 1.5 2.0

SPANWISE POSITION

Figure 10: Dependence an N,

These examples serve to show the increased accuracy in the local

pitching lift coefficient achieved by the larger number of panels in the

chordwise direction and little effect the numfiber of chordwise panels has
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I on the save. The unsteady cases also have a similar type of dependence

upon the number of spanwise and chordwise panels.

This procedure is not compared to actual test data here, but is

compared to other approximate methods. Test data such as that in

reference (34) is difficult to ccmpare with at lower reduced

I frequencies. This is due to the very high velocities necessary to

achieve low reduced frequencies (k=,O/V) inside the wind tunnel. These

higher velocities result in high mach numbers, violating the

incompressible flow assumptions upon which the procedure is based. Even

Mach number corrections are not very helpful because the higher Mach

3 numbers feature shock waves traveling along the airfoil which is a nmn-

linear problem not handled by this theory. Comparisons of the computed

steady values of total pitching lift coefficient with those of mdified

I lifting line theory (20:338) and an approximate method by Graham (7:93)

show a maximum error of approximately six percent and a minimun error of

about 0.3 percent for aspect ratios ranging from two through ten with

N=5 and N =20. Although these appear large, the results are

respectable for unsteady aerodynamic analysis. The unsteady results

3 over a range of reduced frequency from zero to one for the aspect ratio

two cases were compared with those of another approximate method by

3 Lawrence (15:769-781) and the agreement was good.

There is a desire to use a large number of elements to achieve

U higher accuracy. However, this increases the size of the linear systen

and significantly increases the solution time, especially when the

computations must be done over a wide range of reduced frequencies. The
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aspect ratio two case was solved using a 100 panel (5 X 20) wing and

aspect ratio ten was solved using a 600 panel (5 X 100) airfoil. The

dependence upon the N7 for each aspect ratio was determined by keeping

the N/AR ratio constant. This method presented in this section and the

doublet point method (27:349) is much less time consuming

computationally than any of the procedures mentioned earlier. Another

option that exists for wings with spanwise symmetry is to reduce the

I number of degrees of freedom by utilizing a constraint matrix (27:351)

I If the pressure coefficient distribution can be represented by a smaller

number of degrees of freedom

I (51)

3 where Q is the constraint matrix. This allows equation (47) to be

written as

Oo= 101OT(52)

I where the number of degrees of freedom is reduced by an amount

determined by the Q matrix. Generally, for rectangular, spanwise

symmetry, the number of degrees of freedom will be reduced by a factor

3 of one-half.

An important feature of this procedure is direct input into finite

I element types of aeroelastic analyses. Once the structural grid is

i established, this routine can be used to obtain reasonably accurate

structural applied loads by caiputing the pressure coefficient vector

for the structure and multiplying by tpV2S. The finite element

technique can then be used to solve the aeroelastic problem.
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I Ashley and Boyd (2:8) have demonstrated the expression for the

modified kernel function in equation (5) is an appropriate form for

cayputing values throughout the complex s-plane provided special

precautions are taken in computing the modified kernel function in

certain regions of the s-plane. Hence, the generalized forces computed

using this method can be treated as Laplace transformed aerodynamic

forces. Modelled with fractional calculus, the generalized forces can

now be used more easily to determine the forced response of the airfoil

which will be discussed in Section VI.

I
I
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3 VI. Equivalent Theodorsen Function for Three-dimensicnal Aerodynamics

I Theodorsen's function is the transfer function relating the

unsteady circulatory lift to the downwash of an infinitely thin,

harmnically oscillating plate in inviscid, incompressible, two-

dimnsional flow (25:418). The Theodorsen function is a ratio of Bessel

functions with no known analytic inverse transform whose arguments are

U defined in term of the reduced frequency and taken as purely imaginary

for stability analysis (4:5). Swinney (24:5) has developed a fractional

calculus model of the Theodorsen function which is valid in the entire

3 s-plane with the appropriate substitution of the dimensionless Laplace

variable s for ik. Unfortunately, no direct functional analog to the

Theodorsen function in three-dimnsional aerodynamics has been

established. The integral equation (3) shows the transfer function is

part of a spatial convolution with the transform of the pressure

coefficient distribution on the airfoil. This transfer function is not

as mathematically clean as the Theodorsen function and little

3 investigation and progress has been made toward the sinplification of

the three-dimensional unsteady aerodynamic transfer function.

This chapter will describe an approach taken to sinplify the

determination of the transfer function in three-dimensional

aerodynamics. As stated above, this transfer function is embedded in

the spatial convolution in the integral equation (3). The approach

taken is to express the generalized aerodynamic forces in three-

dimensional flow in terms of the forces found in two-dimensional flow by
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appropriate use of a new function, the equivalent Theodorsen function

for three-dimensional unsteady aerodynamics. The equivalent Theodorsen

function will be developed and its properties explained. Additionally,

3 since the equivalent Theodorsen function exists in the Laplace dumain,

the accompanying time domain functions used in aeroelastic analysis will

be developed as well.

The idea of relating the two- and three-dimensional aerodynamic

I forces is not new. Many different theories have been authored

describing how to establish such a relationship. Watkins, Runyan and

Woolston established that the kernel function does collapse to the two-

3 dimensional case as the span is increased to infinity (31:713), which

may suggest the existence of same type of mathenatical link between the

I finite span wing and infinite airfoil unsteady aerodynamic phenomena.

I Reissner (21:32) has established an integral correction factor based

upon an strip formula type of approach similar to that of lifting-line

theory which modifies the two-dimensional Theodorsen function to produce

the generalized forces on a finite wing. Another method has been

I developed by Lawrence (15:771) which modifies the Theodorsen function to

produce three-dimensional effects. These methods are based upon

different underlying assuaptions regarding the connection between the

two-and three-dimensional flow conditions. Reissner's theory

establishes the non-circulatory portion of the lift on an infinite wing

remains unchanged as the span becomes finite (6:389). The non-

circulatory flow produces no wake and therefore, the induction effects

associated with it are relatively small. In regions of the wing where
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the induction effects are simll compared to the purely circulatory ones,

this is certainly true. However, this is not true in the inmeiiate wing

tip region because of the larger induction effects from the tip vortices

present. Reissner has also established the unimportance of induction

effects on the accurate prediction of airloads on wings for large values

of reduced frequency since the non-circulatory effects are proportional

to k-2 (6:389). However, induction effects are dcminant for swall values

of k and for small aspect ratio wings. These observations and theories

led to the postulation of the equivalent three-dimensional Theodorsen

function.

I Develoment

Two-dimensional unsteady aerodynamic equations are an appropriate

starting point to begin a search for an appropriate form of the

equivalent Theodorsen function. Lift generated by pure pitching motion

was selected as a generalized aerodynamic force with which to copare

I the two- and three-dimensional unsteady aerodynamics. The lift per unit

span of an airfoil in pure pitch is given by (6:272)

pbO [VA] + 2xpUboC(k) [Va + Lot (53)
2

where C(k) is the Theodorsen function for two-dimensional aerodynamics.

The first term in equation (53) represents the non-circulatory portion

and the second term represent the circulatory portion of lift per unit

span. In this case the downwash functio,. w(x,y,t)=a(x,y,t) has taken on

I
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I the following form to insure positive angle at the leading edge of the

airfoil and to be consistent with equation (53)

w(x,y, t) - a (xy, t) - a-0 xeluC (54)I
Noting that lift per unit span for the finite rectangular airfoil can be

approximated by the following expression while still being consistent

with the original assunptions of the integral equation (1), it is

possible to directly relate the integral equation for three-dimensional

flow to the Theodorsen function.

L- IpV 2 C~(2b0 )2 (55)
w(x,y, tI V

Here the T(k) has been substituted for the usual C(k) and will now be

referred to as the equivalent Theodorsen function for three-dimensional

unsteady aerodynamics because the coefficient of lift, ,,, is computed

usir.g the three-dimensional theory. Substituting these expressions into

eqxation (53) and simplifying yields

C M itik4+2T(k)[1.,] (56)

No. e that this model presumes the changes between two-and three-

I dirmsional flow exists purely in the equivalent Theodorsen function.

Tht, initial model was constructed with no constraints placed on the non-

circulatory and circulatory lift, allow ing the two to vary independenily

of one another. The initial model was found to be suboptimal. Next,

the model in equation (56) in which the ncn-circulatory lift is fixed
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and the circulatory lift is allowed to vary was used. This model was

shown to yield satisfactory results and is an incomplete confirmation of

Reissner's conjecture mentioned earlier which stated that the non-

circulatory lift does not change. This will elaborated upon further

after the fractional calculus model of the equivalent Theodorsen

3 function is presented in the next section. Given the relationship shown

in equation (56), discrete values of T(k) can be computed from the

discrete values of the coefficient of lift and modelled using fractional

calculus. Given a convenient form for T(k), time domain response will

be calculable as is the case with C(k). It should be noted that pure

pitching motion is only one form of motion for which this relationship

should exist. Another form being pure plunge, for example.

Fractional Calculus Model and Results

A fractional calculus model for the two-dimensional Theodorsen

function (24:5) suggested a fractional calculus form for the equivalent

three-dimensional function since the two have been presumed to be

mathemtically related as shown in equation (56). Also, as shown

earlier, the kernel function for incompressible flow conditions ias

shown to possess fractional derivative properties which further

suggested the resulting lift and hence, the equivalent Theodorsen

function T(k), should have these same trends.

The equivalent Theodorsen function is highly nonlinear and there

is a number of possible form of models. In this case, Swinney's model

of the Theodorsen function was used as a suitable form with which to

begin. Before the modelling can begin, the coefficient of lift nust be
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I carputed. The next paragraph will elaborate on the exact method used to

determine the coefficient of lift.

The mode shape for pure pitching about midchord can be written in

a form consistent with equation (19) as

iq 6 (t) (7
a (x, y, t) = -sox-q - (57)

where cx is the shape function describing the position of all points on

the airfoil experiencing pure pitching motion and the minus sign is

included to produce positive angle for poe ive 0% at the leading edge.

The subscript a nukes reference to the pitching anplitude function

qj(t). There is no y dependence in the shape function because there is

pure rigid body pitching and no spanwise bending or torsion is present.

This downwash can be cast into the form in equation (49) as

I
I = 0 = {9'(x,,y 1 )} - a (58)xj

Using the relationship defined previously in equation (50) for K, the

unknown pressure coefficient can now be solved via standard linear

system procedures. The K matrix is well conditioned and solutions were

I obtained using the IMSL routine LSACG which solves ccmplex general

systems of linear equations by Gaussian elimination with iterative

refinement (9:31). Given the pressure coefficient, the following

definitions can be used to obtain the complex lift coefficient per unit

span and total lift coefficient as shown in equations (59) and (60). The

I. coefficients of lift in equations (59) and (60) above can be treated as
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3, C(Yj) = N, I (59)

S C , (60)

derivatives with respect to angle of attack, a, because the coefficients

of pressure upon which they are based are only known to an

-- arbitrary magnitude, e0 , of the pitching motion.

The equivalent Theodorsen function modelling was accomplished

using the same procedure as was performed for modelling the modified

kernel function, the only difference being the real part was used for

regression in this instance versus the imaginary part in the prior case.

3 The real part inexplicably seeired to produce more consistent results in

this case. The functional form used to model the equivalent Theodorsen

function is

I T(k,AR) T o + AR)
1 + b(AR) (ik) (M) (61)

I - g(AR) (ik) + f(AR) (ik)2

where To is given by the steady value of ., as determined in equation

(56) divided by %. The results once again yielded a family of curves,

the parameters in this instance being functions of aspect ratio only.

The accuracy of the modelling of the equivalent Theodorsen function is

-- shown below and in Appendix D. The equivalent Theodorsen function
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models for aspect ratio two and ten along with the two-dimensional C(k)

are shown in Figure 11 and Figure 12 below.

1.0

T R AR 10
T(k)R AR 2

Z 0.8
* 0

U
z(D
I 0.6

0 0.4
0

~_ 0.2

0 .0 1 f A I I I I I ' I ' ' I

0.0 0.2 0.4 0.6 0.8 1.0

REDUCED FREQUENCY

Figure 11: Real Parts of Theodorsen Functions

The resulting model of the coefficient of lift for aspect ratio ten is

given in equation (62) and is shown in Figure 13. One interesting

observation nude f ran these figures is the apparent relationship between

the different Theodorsen functions. It appears the equivalent
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Figure 12: Iraginary Parts of Theodorsen Functions

Theodorsen fumction T(k) tends toward the two-dimensional C(k) in the

limit as the aspect ratio is increased from two to ten; this was not

verified or proven in this work.

T(ik) = To + a(ik)P_ - g(ik) + f(ik) 2  (62)
1 + b(ik)L
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where

T0 0. 778
a1l. 034 p=0.904
b=3.32 f=0.085
g=0.017

S. Model of Cjo.
Real CL* calculated
Imaginary CLOI- calculated
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Figure 13: ,, for Wing of Aspect Ratio 10

It would be interesting to see the results for higher aspect ratio such

I as twenty or fifty. This type of analysis was not pursued further here

because of a lack of available computer nemry. This limiting
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relationship was not proven here but does suggest a topic for further

study. As mentioned earlier, Reissner (22:14-18) has developed a

relationship between the two-dimensional Theodorsen function and three-

dimensional unsteady aerodynamics. This relationship consists of

modifying the Theodorsen function by mltiplicatin with a factor

consisting of an integral factor and a combination of Bessel functions.

The integrals in Reissner's relationship are quite difficult to evaluate

and have been tabulated for easier use (22:70-72). It is believed the

behavior within the fractional calculus model nay fully capture the

adjustment Reissner made to the Theodorsen function with his correction

factor. The theory by Reissner presumes the non-circulatory effects of

the flow remain unchanged between the two- and three-dimensional flow

(6:389). The mathematics of the modelling process suggested this

phenumenon as well. In numerous attenpts to force the three-dimensional

effects to be contained in an additional non-circulatory term, the

models would not converge uniformly for both the real and imaginary

parts of the coefficients of lift. Many different types of additive

non-circulatory term and many different trial vectors were tried with

no success. It was only when the flow modifications were restricted to

the circulatory portion of the flow that good convergence for both the

real and inaginary parts was obtained. The Theodorsen function is the

transfer function for the circulatory portion of two-dimensional flow.

The relative contribution of circulatory lift to the coefficient of

lift, the quantity [1+ik/2] in equation (53), which multiplies the

Theodorsen function for pure pitching motion as shown in equation
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reimined unchanged and all differences between the two- and three-

dimensional flow were placed in the equivalent Theodorsen function.

Another interesting result from this analysis is the relationship

established among the parameters of the model. This relationship can be

used to determine other values of the equivalent Theodorsen function for

rectangular wings of aspect ratios between two and ten. The Lurves

relating the parameters are contained in Appendix E with a sanple shown

in Figure 14 and Figure 15. These results are good only for rectangular

planforms but it is believed such a relationship might exist ror other

planforms such as tapered and swept-tapered.

The parameter a was well behaved but the ji parameter was more

ccmplicated. More is to be gained mathematically by viewing the

polynomial nmdel of these parameters as the first portion of an infinite

power series of same unknown function which fully describes the

behavior. A cubic spline is plotted through the p points as the order

of the polynomial was continually increasing. The coefficients of the

polynomial were lecreasing toward zero quite rapidly, typic7al of a

convergent series. It is postulated that the unusual behavior of the

parameter ii may smooth out if the modelled range of reduced frequenry is

increased.
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I VII. Time Domain Responses Based tp Equivalent Theodorsen Function

In general, it is difficult to get an accurate time domain

representation of unsteady aerodynamic loads using the three-dinwsional

pressure-downwash integral equation (1). Usually, the solution of this

I equation is only presented for frequency only since most of the work

with the kernel function has been restricted to stability or flutter

analyses which are only defined along the positive imaginary axis. In

two-dimensional unsteady aerodynamics, the Theodorsen function has been

approximated with a model that has an elementary inverse Laplace

I transform to permit forced response analysis. As this is the first time

the circulatory properties of the three-dimensional aerodynamics have

been cast into a mathematically tractable form, this will be the first

time the forced responses for wings of finite span will be written in a

mathematically accurate and compact form.

Wagner Function

The advantage of this fractional calculus model is the reasonably

carpact time domain representation of the unsteady aerodynamic loads.

I The other approximate met-hods used to compute the generalized

aerodynamic forces, such as Reissner's (21:1-39) and Lawrence's (15:769-

781), do not have this unique and beneficial feature. The time-

dependent lift is posed in terms of the Wagner function (6:285), #(t),

which is defined in equation (63). The Wagner function represents the

lift resulting from a unit step change in angle of attack (sometimes

called indicial lift).
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The fractional calculus model of the equivalent Theodorsen function,

T(k), in equation (61) can be represented in the Laplace domain as

T( )- To + (T
T 1 + b() - g(F) + f(F)2 (64)

where the dimnsionless Laplace variable s=§ko/V=ik indicates the change

into the Laplace plane, i the general Laplace variable, and where the AR

dependence of the parameters is not shown for compactness. Equation

(64) can manipulated into a form more suitable for inverse Laplace

transformation

IT(F) - To - a + g 1 F 2(5
b a 1 - g( ) + f( ) 2  (65)

By recognizing the binumial series present, this can be further

expressed by the following power series

T(9) = To - __() _ g(W) + f(g)2 (66)

These simplifications lead to the following Laplace domain expression

for the Wagner function

T(W) T b ( ) fA~ D (67)

Making a substitution for 3 the Wagner function can be written in term

of the Laplace variable A
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TTo a bo (LO) fa (68)
a A -b brb) RnL1 Vg V2

Taking the inverse Laplace transform yields

*(t) = Tu_,(t) - " -+
~b D-6 b b) r(jn+i) (9

(69)

- -gu o (t) + ( 2f u+1 (t)
- V

The term uI is a unit step function, the u0 term is the unit delta

function, and the ul term is the unit doublet function. The doublet

function is the derivative of the delta function. The V order Mittag-

Leffler function is defined as (15:102)

Ia
E"(x) x- (70)

r (1 +n)

The p order Mittag-Leffler function shown in equation (70) can be

considered as the generalized Ui order exponential function (4:12) as

setting p equal to one produces the Taylor series for the exponential

function ex. Using this notation to represent the tim series in the

Wagner function produces

!(t) -- TO u_ ( t) - -A H, t ) bo 9-"t*((t)

+ () 2 fu+1 (t)
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I The Wagner function is shown in term of dimensionless time, t=Vt/o, in

equation (72).

() - Tou 1, (t) - - -gu
(72)

I This expression is similar to the Wagner function determined by Swinney

(24:22) with the addition of the discontinuous Dirac delta function and

doublet function. The approxination to Wagner's function in three-

dimensional flow (72) is shown with the Wagner function model developed

by Swinney (24:22) for two-dimensional flow in Figure 16. It should be

I noted that only the continuous portions of the Wagner function

representation in equation (72) are shown in Figure 16. The figure

illustrates the response to a step input in angle of attack reaches a

steady-state value faster in three-dimensional flow than in two-

dimensional flow. This is expected as the finite wing has wing tip

3 effects working to dmrpen motion in addition to the trailing edge

effects it has in common with the infinite wing.

I
I
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U Time Dependent Lift in Terms of Wagner Function

The lift for a wing can be developed using the Wagner function

quite easily. The lift per unit span for an airfoil was given in

equation (53) for pure pitching motion. Generalizing this equation to

include vertical translation as well and constructing the Laplace

I transform yields equation (73).

I (0) = p4 t[S(t 0 Vt(t)]

I [ (73)

+ 2:pVbo g f(t) + va + (t) T()(
1 ~2

I Subetituting the expression in equation (64) for T(s) and taking the

inverse Laplace transform produces equation (74).

L(t) - apbg[A(t) + VA(t)]

+ 2xpVb o To - ,)1(:t) + vi(t) + -*-()

2- pbg o (t-) + VA(t-T) + -& (t-) drv (74)

+ f ' A t T + V* ( t-) + LO 1t(tf -

2- pVbof [h(T) + VA('r) + LJ[b 0  1J d,

H The dot over the Mittag-Leffler function inplies the continuous portion

of the derivative as the discontinuous portions are contained in the

second term.
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K ssner Function

A similar time-dependent lift function is the Kilssner function

U which describes the lift created by a sharp-edged gust striking the

leading edge of an airfoil. The Kussner function #(t) is defined as

(6:287)

I (t ~~e[0 0 Y -1 (0) ) T( + 11()(75)

I Taking the inverse transform of equation (75) yields the time doaiin

representation of the Kussner function.

Hence, for rectangular gecmetry wings between aspect ratio two and

ten, it is beneficial to utilize the equivalent Theodorsen function

inserted into equations of motion developed for two-dimensional flow to

ccupute aerodynamic loads and responses for three-dimensional flow

conditions. With the development of the equivalent Theodorsen function

for finite span wings, the three-dimensional unsteady aerodynamic

analysis of response to arbitrary motion can be easily obtained, a task

which was extremely difficult to accaplish with the method, described

previously. The advanta.ge of the equivalent Theodorsen function is that

it permits the aerodynamic loads to be written in a mathematically

compact form and convenient, closed form inverse Laplace transforms

exist for the equivalent Theodorsen function, making its use quite

attractive.

I
I
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I i VIII. Concl usions

This thesis has investigated two alternative approaches to

predicting the aerodynamic loads produced by time-dependent motions of

thin wings in rectilinear subsonic flight. The first method was an

I attempt to directly integrate the pressure-downwash integral equaticn in

three-dimensional unsteady aerodynamics. This method consisted of

finding a model of the three-dimensional kernel function to capture the

behavior in a more mathematically convenient form to facilitate the

spatial convolution. The model was sought in a fractional calculus form

U to capture better the frequency dependent properties and to nuke the

analytic continuation from the imaginary axis into the entire ccznlex

s-plane easier. It was found that the compressibility effects within

3 the kernel function made the modelling at higher Mach numbers extremely

difficult. The kernel function in inccupressible flow was shown to be

I modelled by a simple four-parameter model throughout most of the domain

of small aspect ratio airfoils; however, the small and large asymptotes

of reduced frequency have not yet been verified. Initial investigations

suggest this should be successful as well. Additionally, the

determination of appropriate behavior for the model in the ccnplex s-

I. plane has not been verified yet either should be acccmplished in the

future. The four-parameter model began to worsen as the values of the

spanwise variable were increased above those of aspect ratio one-half.

The higher cases of aspect ratio need further investigation with

different forms of fractional calculus models. The inplementatin of a
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I ccmplex, nonlinear, least-squares regression algorithm with adaptive

I search methods would greatly enhance the capability of examining these

models. The three-dimensional kernel fumction contains fractional

calculus behavior and it is only a matter of time before a suitable

model, mathematically simpler in form than the kernel function itself,

I will be found and successfully applied to the active control system

design of aircraft.

The second approach taken to the prediction of unsteady

aerodynamic loads on finite span rectangular airfoils was to develop an

equivalent Theodorsen function. The equivalent Theodorsen can then be

substituted into the two-dimensional air load equations and thus

inserted into the equations of motion to capture three-dimensional

induction effects. The equivalent Theodorsen function was constructed

3 with a convenient fractional calculus form to facilitate the capturing

of the frequency-dependent properties of the generalized aerodynamic

I forces. The coefficient of lift resulting from pure pitching motion was

coMputed using a method prese. i which collapses to the modified

Doublet point method (27:348-355). The coefficient of lift was then

used to calculate values of the equivalent Theodorsen function by

utilizing two-dimensional generalized aerodynamic force equations. The

I- values of the equivalent Theodorsen function were in turn modelled using

the fractional calculus model. The fractional calculus model fully

captured the behavior of the ccuputed values of the equivalent

Theodorsen function and coefficient of lift for rectangular wings with

aspect ratios between two and ten. The equivalent Theodorsen function

80
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I was generalized into the complex s-plane and the Wagner function and the

Kiussner function, time-dependent response functions for indicial lift

and sharp-edge gusts, were determined and ccupared to their two-

dimensional counterparts. The success of capturing the properties of

the coefficient of lift for pure pitching motion for rectangular

Iairfoils suggests further investigation of other generalized aerodynamic

forces caused by other types of downwash for more complex wing

geometries. The important calculations in aeroelastic analysis are the

determination of the airloads and the structural stiffness and damping

matrices. The equivalent Theodorsen function allows the use of the more

realistic three-dimensional aerodynamic loads, rather than the two-

dimensional approximate loads, in control system designs. The

development of the equivalent Theodorsen function for finite span

airfoils permits the general response to be written in a mathematically

tractable form. It also enables the active coupling between the

I automatic control system and aeroelastic phenomenon like flutter and

unsteady structural loading which is not available presently in a

practical form.

I
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I Appendix A: Additional Model and Modified Kernel Function
Ccnarisons for Mach Number 0.5

- Model results for the M70.5 case based on equation (26) are

further presented in this appendix. The original discussion was

presented in Chapter IV, compressible flow subsection.

I The model used to produce the fit in Figure 17 is

K"[0.5,k,0.1,0.05] = 8 1 (ik) 2  8, (ik)' (76)
i+0 3 (ik)' 1+ 7 (ik)e (

i where
i ':19991

S1=0. 534 02=0.523
-I=0.116 84=1. 62
85=1.24 86=0. 902
87=0.331 G1l.34

The error is 2.2xi0" and 2.2xi0"2 for the real and imaginary parts.
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Figure 17: model of le[o.5,1.o,o.o5]

86



I _ _ _ _ _ _ _

- Model of K0ooa K' Real calculated

1.5 K* Imog coiculoted
1.5IL6

o 0.5-I 6

I

-- - 1.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0

REDUCED FREQUENCY

Figure 18: Model of Ke[0.5,1.0,1.0]

The model for this particular case in Figure 18 is given by

K(0.5,k,0.1,0.05] =, _ (ik) 0, (ik) (77)
i+0 3 (ik)' 1+8 7 (ik)e,

whereI K=1.7559

=0. 205 2=0.600
-%=0.302 84=1. 43

8 =1.87 8=0. 954
97=0.808 G=1.06

Errors are 2.4x102 and 7.9xlO"3 for the real and imyinary parts.
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I Appendix B: Additional Model and Modified Kernel Function
Comparisons for Incomressible Flow ConditionsI

Additional sarples of the modified kernel function models for

other regions in incampressible flow are presented in this appendix.

The original discussion is contained in the incompressible subsection of

Chapter IV. The form of model was given in equation (30).

The model used for Figure 19 is

l K[ k, -0. 1,0.5] = 81 (ik) (78)
1 + 3 (ik)e

I where
where *=0 .804

81=0. 353 82=0.93Ij=0. 447 04=0.876

producing errors of 2.3xi0 3 and 1 8x10 3 respectively.
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REDUCED FREQUENCY

Figure 20: Model of Kl[C,-1.0,0.8]

The model used to produce Figure 20 is

K* [k, -0.105] = 0.5- 0,(ik) (79)I+ 0 3 (ik) e

where

0 =0.219
8=0.188 k=0. 841
O3=0.791 04=0. 854

with errors of 3.8x..0 " and 1.7xlO ".
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I ~Aendix C: Model Parameters for Incompressible Case

Additional figures describing the variation of the different

I parameters 81 through 84 of the model for the modified kernel function

in incompressible flow is further presented in this appendix. Other

figures were presented along with the initial discussion in Chapter IV.

The four-parameter model is given in equation (30).

I
[
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Figure 21: Paraneter 1 Dependence on sy
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Figure 22: Parameter 2 Dependence on sy0

93



2.5
ooona 

Xo=-1.0

*AXO=1.0

V ) 2.0

L-j

LU, 1.5

<

-1 1.0
LU 0

0

0.5
a

AA

0.0 0.0 
1 .0

SPANWISE VARIABLE

Figure 23: Parameter 3 Depenece on sy0
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Figure 24: Parameter 4 Dependence on sy
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Figure 25: Paramter 1 Dependence on xo

I
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Figure 26: Parameter 2 Dependence on i%

97

IR

Im



I 2.5
00000o syo=O.1

syo=1.0

2.0

LU

<
* I-

1.0

0. -

0

0.5

0.0 -

-1.0 0.0 1.0

CHORDWISE VARIABLE

Figure 27: Paramter 3 Dependence on
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I a : Lift Coefficient Model at Various Aspect Ratios

The coefficients of lift for rectangular wings of various aspect

ratios between two and ten are shown modelled in this appendix. The

initial discussion and development of these models is presented in

I Chapter VI. The general form of the fractional calculus model is

C W N {ik + 2T(k)1 + Lk} (80)

where the equivalent Theodorsen function T(k) is defined as follows.

I T(ik) - To + a(ik)F - g(ik) + f(ik) 2  (81)
1 + b(ik)(

This appendix will present a series of different figures showing the

superb agreement between the model and the calculated lift coefficients

for various aspect ratios. Each figure on the following pages will be

acccananied with an equation showing the model of T(k) used to produce

the fit. The error associated with each plot is not explicitly stated.

However, the error on the real parts was of the order of 10'3 and the

error on the imaginary part of the order of 10-4 for all the cases

shown.
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I

Model of COt*mi o oaaao Real Ct,*m calculated
3.5 aAAAA Imaginary CL .u calculated

2.5
CN

Io
0

J 1.5
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i ~~-0.5 -r-r- - r I-r v v I Y ; v

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 29: CL, for Wing of Aspect Ratio 2

C a xik +2T(k)[1 + _j]} (82)

T(ik) - +,. a(ik)P - g(ik) + f(ik) 2  (83)
1 + b(ik)"

where

T=o.2
a=0.144 izO.92
b=1. 58 f=0.075
g=0.068
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ocoo Real CL.W calculated
_ £ £ & Imaginary CLt.0p calculated
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r5 2.6
- , .

0
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0.0 0.2 0.4 0.6 0.8 1.0

REDUCED FREQUENCY

Figure 30: ,, for Wing of Apect Ratio 3

I " "S ik +27(k)1 .- ]} (84)

I

I ik) TO + a( ik)" - g(ik) + flik)' (85)1 + b- ik)P

Swhere

T=0.523
a=0.286 p-0.923
b=2.053 f=0.078
q--0. 047!
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I
4.6 Model of C I

00000 Real o calculated
Imaginary Ct..ph. calculated

* 3.6

I 2.6

.j

1.6

* 0.6

0.0 0. 0.4 0.6 0.8 1.0

REDUCED FREQUENCY

Figure 31: C,' for Wing of Aspect Ratio 4

C - {Ik.2T(k)[ 1 +2]} (86)

Vlbk)=lk)l - g(lIk) + f (ik) 2  (87)
1 + b ( k) P

where

T, 0. 593
a=O. 433 V=O.927
b=2.49 f--O.0804
g-0.042
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- Model of Cwv,
0.00 Real CLv, calculated

4.6 Imaginary CL.. calculated

I 3.6

II
2.6

I 1.6

1 0.6

-0.4
0.0 0.2 0.4 0.6 0.8 1.0

REDUCED FREQUENCY

i Figure 32: C,, for Wing of Aspect Ratio 5

I ik I1+ 2T(k)1 + _L]} (88)

I ___ l_____)___

T(ik) O  .To a )" - g(ik) + f(1k) 2  (89)I 1 + b(ik)p

where

1T ;=O. 644
a=0.568 U=0.926
b=2.69 f=0.0821
g=0.032
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Model of C.
aooReal CLAW calculated
££££AImaginary C1,so calculated

4.6
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A. 2.6
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I0.0 0.2 0.4 0.6 0.8 1.0

I REDUCED FREQUENCY

Figure 33: qfor Wing of Aspect Ratio 6

I - S{ik 2 T(k)[1 + 2] (90)

IT(Ik) -To + a(ik)P g'(ik) + f(ik)2 (91)

I 1 + b(ik)0

where

b=2 .85 f=0.0823I g-0.026
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5.6 - Model of C
00000 Real CLaWW calculated
l 6£ £ Imaginary Ck1.0p calculated

4.6I"
00 1 3.6

S2.6I 0- "

I 1.6

I -0.6

0.0 0.2 0.4 0.6 . .

REDUCED FREQUENCY

Figure 34: CL,, for Wing of Aspect Ratio 8

I a { ik+2T(k) 1+-'L] (92)

Ik) T + a(ik)" - g(ik) + f(ik) 2  (93)I 1 + b(ik)I

where

M=0.739
a=0.884 P=0.911
b=3.144 f=O.0843
g-0.021
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I56 Modl o C__

6 a a Real C calculated
&AA& imaginary CL.." calculated

I 4.6

o' 3.6

. 2.6

I 1.6
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0.0 0.2 0.4 0.6 0.8 1.0

I REDUCED FREQUENCY

Figure 35: q,, for Wing of Aspect Ratio 9

C - X ik +2T(k)[1 + iJ} (94)rft t 2J

T(Ik) - To  a(ik)' - g(ik) + f(ik) 2  (95)
1 + b(ik)P

where

w=0.7606

a=0.964 p=0.907
b=3.24 f=0.0847
7-0.0185
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I Avpw x E: Additional Model Parameters for
Eauivalent Theodorsen FunctionI

The variation of the parumters of the fractional calculus model

I of the coefficient of lift are presented in this appendix. The

parameters and the model are given in equation (61).

I
I

3.5 -aeao Computed parameter
-Model of parameter

3.0

Of 2.5

I ii'
_J

o 2.0

b(x)'=O.0974+O.952x-O. I12x2+0.0051 x3

1.50 2 48 10

ASPECT RATIO

Figure 36: Parameter b vs. Aspect Ratio

108
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Figure 37: Parawter TO vs. Aspect Ratio
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Figure 38: Parawter g vs. Aspect Ratio
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Figure 39: Parameter f vs. Aspect Ratio
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U

U Appnix F: Derivation oI the Prese-D

3 Integral Equation

Based Upon References 32 and 16

U
The wing is considered a nearly plane inpenetrable surface S

n consistent with the concepts of linear theory. Let the wing lie nearly

n in the x-y plane and let it and the x-y-z coordinate system to which it

is referred be assumed to move with uniform velocity V in the negative

x-direction. Note the positive z-direction is defined opposite to that

in Chapter 2. At the same tine, let each point of the wing be assumed

U to undergo small anplitude harmonic translations ;(xy,t) at circular

frequency , and let c represent the speed of sound in the medium.

Iz
y

IV
*x

IS
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I

I The problem for an oscillating wing consists in solving the wave

equation to certain boundary conditions. The wave equation in

rectangular coordinates is

I C.2Z iv 8 t2a0 (n)

aX2 ay2  8z 2  c 2  
'

The dependent variable 2 in equation (Fl) is regarded as an

acceleration potential. The acceleration is directly related to a

perturbation pressure field and is related to a velocity potential 1.

80 + V80 (F2)

The boundary problen for the wing is completed by calculating the

downwash w(x,y,z,t)=at/az associated with S. This downwash is assumed

to be harn with regard to time which inplies that both potentials j

and 9 are harmonic with respect to time and as shown in equation (73).

3 S(x,y,z,t) * e1intSXx,y,z)

S(X, y, X, 0) ae I (x, y, Z)

With these expressions for S and 0, equation (F2) Iecmns independent of

time and reduces to an ordinary differential equation with one dependent

variable

I-iw¥ + V d
_ (74)dx

This equation can be integrated with respect to x to produce equation

(F5).
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m

Ix I(75)m V

The boundary problem for the wing nay now be expressed

nathenatically in the following manner. Assuming sinple harmonic

motion, equation (Fl) becomes

m2 i + C2 1 t(V a + )2g. (F6)
OX2  Iy 2  (9Z2  C2 I7a ))i

I To insure tangential flow at the wing surface, the potential must

satisfy the following downwash condition.

wxy) = (v8I + IW) F.(X, y) (77)

Here w and % are uiplitudes of velocity and displacements respectively

and are assumed to be known from the motion of the wing. At z=O, the

pressure nust be zero at all points (x,y) off the wing.

P -P ((),o. (n)

The potential g is allowed to be discontinuous at all points on the wing

and the value of p is determined by the magnitude of the discctinuity

in S at the point. In the neighborhood of the trailing edge, p mat go

to zero to satisfy the Kutta condition. Cne other ccwitin, that #

vanish far ahead of the wing is inherently satisfied by the condition

given in equation (PS).
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The potential Zg at a point (x,y,z) due to a harmmically

pulsating doublet located in the x-y plane at a point (,q,0) that

satisfies equation (F6) is

- 0 expVzW t + - a (x-~ .R. (F9)

where

uI(

RI - + P2 (y-)T 2 + P-z 2

The factor A is a strength and dinemsionality factor allowing different

use and interpretations of the potential g0. If g o is considered an

acceleration potential and substituted into equation (F5), the

corresponding velocity obtained may be written in the following mmner.

is X-) t A+ .%- R (PU)

Oo 7Z e F R

I where

R " ).+ 1pz (y-q)2 + Vj-gT

The downwash aI/az associated with # may be written as

Ia 0  =nA a2e J. dl' (F13)Tzm - f V Tr 7 )
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In equation (F13)

I xo -x-

(a),q - Z
I I= +/,'l

With the use of equations (F13) and (F14) and the concept of solving

linear boundary-value problem by means of superposition of elementary

solutions to the governing differential equation, the boundary value

problem presented here can be reduced to an integral equation.

II

W(X,y) - .,AffL(4,1 l) -o- f"2'f e - a

(F15)

Here S represents the surface of the wing and L(( ,q) represents an

mknom lift distribution or doublet strength on S. This integral

equation can be reduced further to the form given in Chapter 2 as shown

in Reference 31.

I

I
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