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Preface

My original objective in performing this thesis was to learn about
this strange fractional calculus by applying its principles to unsteady
aerodynamics. The original goal was to analytically integrate the
pressure-downwash integral equation (a feat which had never been
accanplished before) by simplifying the mathematics through the use of
the fractional calculus. As the research progressed, the unsteady
aerodynamic problem proved to be more challenging than originally
anticipated and the analytic integration was not achieved. However,
this treatment is the first recorded attempt to model three-dimensional
unsteady aerodynamic forces on wings with fractional calculus. By
being the first, there was a great deal of ground to cover and a fair
amount of dead ends discovered. However, I was able to sinplify the
unsteady three-dimensional aerodynamic problem by the development of the
equivalent Theodorsen function. This development will permit the
unsteady aerodynamic loads on a finite airfoil to be written in a
carpact mathematical form and easily evaluated and applied to control
system design. The thesis is written in such a way to allow an
individual unfamiliar with the material to read and understand the
cancepts and to continue the work if desired.

I wish to give a special thanks to Lt Col Ron Bagley for his
tolerant listening abilities and strong guidance. I would also like to
thank Captain Greg Warhola for providing me with an appreciation of
mathematics and for his encouragement and understanding during a
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difficult personal crisis. Pinally, I would like to express my
heartfelt appreciation to my wife, Suzie, and daughter, Alex, for their
understanding and strong support in helping me achieve one of my goals.
I would like to dedicate this thesis to two special pecple.
First, to my mother whose strength and determination through a recent
divorce inspired me to continue under difficult circumstances. And to
Alex, on the anniversary of her first birthday, whose accamwplishments

will someday outshine my own.
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AFIT/GAE/ENY/90D-25
Abstract

A fractional calculus model is developed for the kernel function under
incarpressible subsonic flow conditions for rectangular plahfom
airfoils with small aspect ratio. A model valid for restricted regions
of the kermel function for compressible subsonic flow conditions is also
developed. Additionally, a method for numerically solving the pressure-
downwash integral equation for rectangular planform wings of aspect
ratio two through ten in incampressible flow is developed. An
equivalent Theodorsen function for three-dimensional unsteady flow is
developed, enabling the use of the simpler two-dimensional aeroelastic
equations of motion to fully capture the more canplicated three-
dimensional effects. . . | ' e

xii




MODELLING AND ANALYSIS OF KERNEL FUNCTION AND DEVELOPMENT OF BEQUIVALENT
THEODORSEN FUNCTION FOR 3-D AEROELASTIC ANALYSIS

I. Introduction

This thesis presents the development and results of two
alternative approaches to the prediction of aerodynamic loads produced
by time dependent motions of thin wings in rectilinear subsonic fl-.ght.
The first approach taken is an attempt to directly integrate the
pressure-downwash integral equation. The second approach taken is the
development of the equivalent Theodorsen function for three-dimensional
unsteady aerodynamics.

The first of the two approaches was motivated by Bagley (4:16) who
demonstrated the ability of fractional calculus to model the three-
dimensional kernel function at the conditions given in (31:718). The
three-dimensional kernel function is the transfer function relating the
airloads to the downwash (vertical velocity) for a wing. This first
approach is an attempt to model the transcendental nature of the kernel
function with a mathematically simpler function. The kernel function is
defined throughout the cawplex s-plane, but because of the camplicated
mathematics, analysis is usually restricted to the imaginary axis. This
restricts the use of the kernel function to stability analyses such as
flutter and has little benefit to the control system designer. A simple
model which captures fully the behavior of the kernel function

throughout the entire s-plane could be of valuable use in active control




algoritlhms. The model of the kernel function (the transfer function)
could be applied directly to control system design to increase the
capabilities of active control of unsteady aerodynamic loads.

The second of the two approaches develops the equivalent
Theodorsen function. The equivalent Theodorsen function is constructed
by relating two- and three-dimensional lift coefficients in unsteady,
incompressible flow. The three~dimensional lift coefficients were
evaluated numerically by a method developed in this thesis which is a
more general form of a method developed by Ueda and Dowell (27:350). A
fractional calculus model is used to capture the behavior of the
equivalent Theodorsen function. The modelling was motivated by Swinney
(24:5) who successfully modelled the two-dimensional Theodorsen function
using fractional calculus. The relatively simple form of the equivalent
Theodorsen function permits the inclusion of the three-dimensional
effects in the two-dimensional equations of motion. Three-dimensional
theory produces more accurate results than those of two-dimensional
theory. Therefore, the equivalent Theodorsen function in fractional
calculus form should prove to increase the accuracy in the two-
dimensional equations of motion without greatly increasing the effort
required to generate a solution.

This thesis is divided into eight chapters and five appendices.
The first chapter is the introduction. Chapter two discusses the
background of the kernel function, presents a camputational form for the
kernel function, and describes the general solution methodology of the

three-dimensional aeroelastic problem. The next chapter presents a




brief summary of fractional calculus and discusses information necessary
to understand the application in this work. References for further
study will be given. Chapter four develops the fractional calculus
modelling of the modified kernel function for both campressible and
incampressible flow conditions. An approximate solution methodology for
the pressure-downwash integral equation is developed in Chapter five.
The equivalent Theodorsen function is derived in Chapter six along with
accampanying fractional calculus models. Chapter seven shows the
utility of the equivalent Theodorsen functian in fractional calculus
form by presenting campact time-domain representations to typical
aercelastic responses. The thesis concludes with Chapter eight.

Six appendices have been included to present additional
information without detracting from the flow of the thesis. Appendices
A and B supply additional fractional calculus models of the modified
kernel function. The parameter variations of the fractional calculus
models for the modified kernel function are shown in Appendix C.
Fractional calculus models of the coefficient of 1ift for wings of
aspect ratios between two and ten is contained in Appendix D. The
variation of the parameters of the equivalent Theodorsen function will
be shown in Appendix E. Finally, a presentation of the original
development of the pressure-downwash integral equation is included in

Appendix F.




II. Background and Definition of Kernel Function

Kissner is generally credited with the development of the
pressure-downwash integral equation and the three-dimensional kernel
function. A presentation of his development in English is given in
(16:1-28) and a sumary of the development is shown in Appendix F. His
integral equation relating pressure to downwash is the solution to the
wave equation written in cartesian coordinates. The dependent variable
is chosen to be Prandtl's acceleration potential that is directly
related to the perturbation pressure field (16:2). The wing is treated
as a nearly plane impenetrable surface S' lying in the x-y plane as
shown in Figure 1. It should be mentiocned that the convention of the z-
axis positive downward was adopted subsequent to the original
development to cast the equations into a form which produced results
campatible with those of analytical flutter analyses. The x-y-z
coordinate system and the surface S' are assumed to move with uniform
velocity in the negative x direction. The solution is forced to be
unique by satisfying three conditions. First, disturbances must vanish
far away from the wing and its wake. Second, the perturbation pressure
can only be discontinuous within the region of the surface S'. Finally,
the perturbation pressure must vanish along the trailing edge of the
surface S' to satisfy the Kutta condition. Assuming a harmonic downwash
and satisfying the three conditions just mentioned produces the unique
solution written in equation (1). The differential equation can be

rewritten as an integral equation relating the downwash w(x,y,t) at any




ty, in

b,x, b.§

Figure 1: Definition of Coordinate System

point (x,y) on the wing to the perturbation pressure coefficient

AP(E .q.t) at a point (£,5) on the wing.

W(XIYI t) = bo!f’l
1’4 8rnJ-1
(1)

fla.m AP(E,n,t) K[M, k,x-§,s(y-n)]dEdn

la(n)

The variables in equatiomn (1) are defined as follows

] semispan of wing
Eier &te coordinates of leading and trailing
edges
M Mach number
\' velocity
K[M,k,x-§,s(ym)] kernel function
5




x-§ dimensionless chordwise variables
referred to root semichord,

Y dimensionless spanwise variabiles
referred to semispan, §

s ratio of semispan to root semichord

by root semichord

Equation (1) is referred to as the pressure-downwash integral equation
in three-dimensional unsteady aerodynamics. The perturbation pressure

coefficient Ap in equation (1) is defined as

p.-p,
ApP(§,n,t) = i (2)
2

The downwash and pressure coefficient distributions in equation (1) are
both assumed positive downward. When the analysis is restricted to
wings of rectangular planform, then 51e(|) and €te(|) are replaced with -1
and +1 respectively.

The pressure-integral equation (1) is used in the direct sense to
solve for the unknown pressure coefficient distribution for a given
planform, a known or assumed mode of oscillation, and a prescribed set
of stream conditions. A pressure coefficient distribution must be
determined which satisfies the edge conditions appropriate to the
planform and flow regime under consideration and which, when multiplied
by the kernel function and integrated over the planform yields the
downwash distribution corresponding to the mode of oscillation (32:5).
The pressure-integral equation (1) is used in the direct sense to solve
for the downwash distribution for a given planform, an assumed or given
pressure coefficient distribution, and given stream conditions.

Nurmerical procedures are usually employed to solve the pressure-downwash

6
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integral equation as analytic solutions have not yet been determined for
most realistic planforms.

It should be noted that the integration of the spanwise variable
will require the use of the finite part of an infinite integral in the
Mangler sense (32:13) to handle the double-pole singularity in y-4 which
is evident in equation (5). The generalization to transient motion is
accamplished by forming the Laplace transformed version of equation (1).

This is accamplished by replacing ik with carmplex s (2:5)

Mx,y:8) _ bo'f’l
|4 8 /-1
(3)

fze.(.)Ap(Elmg) RIM, 5, x-§,8(y-n)1dEdn

lely)

Here the circumflex indicates a Laplace transform and s=8ky/V is the
dimensionless Laplace parameter.

The majority of references addressing the kernel function have
been primarily concerned with numerical computation of the kernel
function and numerical integration of the pressure-downwash integral
equation. Analytic, closed form solutions of the pressure-downwash
equation (1) have been found only a small number of special planforms
and flow conditions (32:2). One of the first and most often cited works
treating the kernel function is (31:703-718). This pioneering work cast
the kernel function into a form more amenable to numerical camputation
and provided explicit relations for handling limiting cases such as
incampressible, sonic, and steady flow conditions. The paper also

addressed the nature of the singularities present and provided series
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representations of the kernel function within regions of its damain.
Two of these authors later added another author and produced (32:1-21)
which presented a systematic procedure for solving the integral
equation. This method involved assuming a plausible pressure mode shape
which added more singularities and difficulties to the problem but the

method does produces satisfactory results. Next a series of at least

twenty different attempts to solve the integral equation reached the
literature. One of the more popular is that of Reissner who developed a
method based on a lifting surface approach to the solution of the
integral equation (21:1-39,22:1-97) that was exact in the limit as the
span approached infinity and resembled lifting line theory at steady
flow. The next series of attempts to solve the integral equation
involved approximate solutions based upon discrete element methods and
was coincident with the development of faster computers. Among these
methods are the vortex lattice (20:1-492), doublet lattice (1:279-285),
doublet point (27:348-355), finite element techniques (12:626-633) and
variational techniques (29:492-498) just to name a few. Landahl and
Stark (13:2049-2060) wrote a carplete synopsis of the progress made in
the solution of this problem. Each of these methods produces
satisfactory results, same more easily than others. Coincident with
this development was the development for solutions to the larger class
of problems, namely the non-planar wing (14:1045-1046). The number of
different methods and procedures attempted to obtain the best solution
are a testament to the difficulty of obtaining solutions to the

pressure-downwash integral equation.
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Camputational Form of Kernel Function

Accurate camputation of the kernel function is essential if the
kernel function is to be modeled with any degree of accuracy. The
kernel function poses some numerical impediments that must be carefully
avoided for accurate results. The numerical difficulties arise
primarily from the presence of both discontinuities and singularities.

The kermel function can be written as (32:7)

K'[M.k,XO:S(Y‘ﬂ)]

. (4
bys?(y-n)?

K[M, k, X,, 8(y-n)] =

where K is denoted the modified kernel function and the shorthand
notation %=x-§f is adopted for brevity. This form of the modified
kernel function is particularly helpful because it shows the secand
order singularity at y=y that exists in the kernel function and admits a
less difficult calculation of the modified kernel function, K'. The
modified kernel function is defined in equation (5) (32:7) where K, and
I, are modified Bessel functions of the first order and first and second
kinds respectively, L, is the modified Struve function of the first
order (8:374-379,495-502) and B=(1-M2)l/2. The modified kermel function,
K does not contain any singularities but it does contain cne
discontinuity at x%=x-§=0 and Yp=Y—m=0 which can be shown to have the

limiting form shown in equation (6) (32:7).




K* (M k, %, 8(y-n)) = e -iks|y-n| + ks|y-n|K (ks|y-n]|)

1—f[x., -M +p2g3(y-q}
+

V% +B2s? (y-n)?

+ izks|y-n|[I,(ks|y-n|) - L, (ks|y-n])]

[ - 0y@r P -7]

1
- iks|y-n |foﬁ‘slr-nl e“"ly"'l‘dt}

J1+'L'5
(5)
2¢ k% x>0
lim  K*[M,k,x,, 8(y-n)] = 0 (6)
y-n-=0 0 X,<0
This form of the modified kernel function as shown in equation (5)
exists for steady motion (k=0) as well and can be shown to have the
following limiting form (32:7,31:710)
K*[M,0, %y, 8(y=m)] =1 + 0 (7)

‘/';g + 32 (y-n)2

Although the calculation of the modified kernel function may seem
trivial, there are two numerical problems hidden within the equation.
The first problem is the quantity I-L and the second is the definite
integral term in equation (5). The quantity LI within the modified
kernel function is difficult to accurately campute for large argument
because both individual functions grow unmbounded for large arguments.

This problem can be eliminated by using the definition (33:425)

10




I,(ks|y-n|) - L (ks|y-q|) = gk—s,lry—_ﬂ-lf:\/l—ti L

This definite integral could be handled by numerical integration but
there would be an unknown amount of uncertainty associated with the
result depending upon such factors as step size associated with the
integration routine. An alternate approach is to approximate the
integrand with a function which is integrable in closed form and
evaluate the result. This approximation approach is used in this case
because the error of the approximation is small. In some instances,
accurate approximations to the integrand may not be available and
nurerical integration would be the only recourse. The result is the

following expression (32:8)

I,(ks|y-nl) - L(ks|y-n]) =

2ks|y-n| a,ks|y-n|
n a, + a,k?s*(y-q)? (9)

ks|y-n|
+|E - a ka|y-n|| 222 2 e-ksly-l
[4 4 ly ﬂ' az + kzsz(y—ﬂ)z

where

.0085
.3410
.0050
.8675
. 4648
.9159

AL L0
Wl
OO0

11




This approximation introduces an error of approximately 0.4 percent in
the vicinity of ksly-“|= 4 and is less throughout the damain of the
function (32:8).

The second numerical difficulty is in the evaluation of the
integral term of the modified kermel function, equation (5). This
integral has not been solved in closed form to date. Numerical
integration once again is possible; instead, an approximation to the
integrand, integrable in closed form, exists (32:8) and will be used to
minimize the uncertainty in the result. The following approximation can
be used to replace the integrand in the integral of the modified kermel

function

T

1/1+1:’

#1-a,e" - a,6"- a,e™ ginns (10)

where

2=0.101

a2=0.899

2,=0.09480933

1'1=0.329

r2=l.4069

r3=2.90
The maximum error of this approzimation is about 0.24% near t=1.5 and
this function possesses the same limiting value as the integrand at the
two limits of integration (32:8). However, this expression is only
valid for positive values of 1T so the integral must be broken up into
two regions and a change of variables made on one of the two parts to

write the carplete integral in terms of positive limits of integration

where the limits of integration are defined as follows.
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acd__ = 1kg|y-n]
fo /l + Ti 0 I I

fd_”-—t— e iksly-nitde X, <M3|y-n]| (12)

o YT+t

ar = —_ X0 (13)
Bs|y-n|

d = MJ’%"’BzSz(Y‘ﬂ)z (14)
p*s|y-n|

The modified kernel function is now in a form which can be readily and
accurately evaluated throughout the domain of any wing planform.

The solution of the integral equatinn (1) involves the integration
of the kernel function. Although the sc.utiom is not specifically
addressed in this section, it is appropriate to discuss the special
integration required in the spar:-ise intearation. The chordwise §
integration does contain a finite jump discontinuity which can be easily
handled by separating the integral into two regions, solving each
individually by appropriate means. The spanwise integration contains a
double-pole singu.arity at y—y=0 which necessitates the use of the
Mangler finite part of an infinite integral (32:13) as shown in equation
(15). The integration of a function F(y) other than F(y)=1 is more
difficult in general and can only be performed provided the function F
is not singular at 4=0. In most instances, the integration is

sufficiently difficult to warrant analysis by numerical means. Van
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Nierkerk (30:1196) and Ueda and Dowell (27:350) have both developed

(15)

approximate numerical methods capable of accurately evaluating such an
integral. Thc first method by Van Nierkerk (30:1196) uses a special
Gauss quadrature rule which is generally accurate with as few as four
abscissa points for most functions. The second method by Ueda and
Dowell (27:350) develops an equivalent expressiaon for the integrand
under the singular integral which can be used in discrete element

solutions to the pressure-downwash integral equation.

General Solution Methodology

This section outlines the modification of the general aerodynamic
problem into a form suitable for solution by the approximate methods
described earlier. The pressure-downwash integral equation is used in
the direct sense of lifting surface theory to solve for the unknown
pressure coefficient distribution given a known or assumed downwash
distribution. As there are only a very limited number of special cases
for which closed form solutions are exist, the general problem must be
solved by approximate numerical procedures as discussed in the previous
section. The wing is assumed to be undergoing a displacement H(x,y,t)
which is represented as the superposition of rigid body and elastic

modes of vibration
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H(x,y, t) = h(x,y)q(t) + hy(x,y) g (t) + .
(16)

+ hy(x,y) @y (t) + ..
Linear superposition is possible because the boundary conditions used by
Kissner were linear, preserving the linearity of the wave equation
operator and hence the solution, the integral equation (1), is itself a

linear operator. For sinusoidal oscillations we have the following
@y (L) = & oot n

where the tilde indicates the magnitude of the displacement in the j-th
mode, ¢ is the frequency of oscillation, h]-(x,y) describes the shape of
the j-th mode and i=(—l)1/2. The downwash w(x,y.t) for a given

displacement H(x,y,t) is given by the following (32:5)

w(X.Y, t) = (.BK%{ + -ait)H(x:y, t) (18)
0

This can be rewritten using the above relations in equations (16) and
(17) for the j~th mode of vibration.

0

Seeking the downwash as the product of a shape function and an unknown

time dependent magnitude reduces the expression above to the following

w,(x,y) = d . 20
..J_‘_,_ (_a.;‘ + lk)hj(x,y) (20)

where the downwash has been assumed as

15




w(x: Yy, t) = ﬁ(x,y) ei“c (21)
The pressure coefficient distribution on the wing can also be put into a

similar form

AP(E,n, t) = AB(E,n;k) eiet (22)
The shape function in equation (22) is shown with k, the reduced
frequency, as parameter. By choosing the downwash mode shape, the
pressure coefficient is forced to behave as specified by the kernel
function. The pressure coefficient is a function of reduced frequency
to counter the frequency-dependence in the kernel function. The type of
notation in equation (22) allows for easy transition to the Laplace
domain formulation in equation (3). The use of these equations produces
the following relationship between the shape of the downwash and the
shape of the pressure distribution throughout the spatial damain of the

airfoil

w(x,y) = bo'f‘)'
14 8x /-1
(23)

f!umAP(E'n;k)I([M,k.X'E. S(Y‘ﬂ)]dzdﬂ

SY)
For a general problem, the general displacement shape is decamwposed into
a finite number of modes (either rigid body or elastic modes). Each
mode shape is handled separately, solving the integral equation by an
appropriate means for the pressure coefficient distribution respansible
for the assumed downwash distribution. The sumwmation of the individual

modal pressure coefficient distributions produce the total resultant

16




pressure coefficient distribution for the general condition. The
pressure coefficient distribution can in turn be used to campute

generalized aerodynamic forces acting on the wing.
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I1I. Fractional Calculus

The mathematics of fractional calculus is nearly as old as that of
classical calculus. The fractional calculus treats derivatives and
integrals of fractional order and is not solely restricted to integer
order as is the classical calculus (23:115). An interesting discussion
of the historical development of fractional calculus has been written by
Ross (23:115-122). The early engineering applications of fractional
calculus were precipitated by the observation that the stress relaxation
phenarenon of viscoelastic materials appeared to proportional to time
raised to the fractional power. This observation in turn suggested a
fractional order time derivative rather than an integer order time
derivative in the equations of motion for a system camprised of the
material. This discovery spawned a renewed interest in the fractional
calculus in the twentieth century. The fractional derivative can be
defined as the inverse operation of fractional integration attributed to

Reimann and Liouville (3:203)

S . 1 dl’. t X(t)
D**®x(t)] = — dt ;
(x{c}] F(1-a) det*=Jo (t-1)* (24)
0<a@<1, meN
One especially convenient feature of the fractional derivative is
Q{D***[x(t)]} = s**L{x(t)) (25)

which shows differentiation in the Laplace domain is equivalent to

multiplication by the quantity g (3:203), 8§ being the general Laplace
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variable. A similar relation holds in the Fourier domain when s is
replaced by iy and Fourier transforms are used instead of Laplace
transforms in equation (25). For example, the Laplace damain
representation of the fractional derivative of order one half of the
function £(t)=ed is s/!/(s+a). These mathematical features, coupled
with the apparent correct description of viscoelastic phenamenon, have
generated the renewed interest in fractional calculus and its
applications to engineering problems. The fractional derivative
operator DM ] is a linear operator so all the mathematical
conveniences associated with linearized problems can still be utilized

when the fractional calculus is included in the problem.
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IV. Model of the Modified Kermel Function

The primary emphasis of this portion of research is to develop a
model which accurately describes the frequency dependent and chordwise
and spanwise spatially dependent behavior of the kernel function. It
should be emphasized that the modelling will be performed on computed
values of the kernel function in an attempt to simplify the mathematics
involved in its analysis and is not performed to actual test data. One
major goal is to substitute relatively simple functions for
transcendental cnes, reducing the effort presently required to calculate
the kernel function along the imaginary axis and throughout the camplex
s-plane. Additionally, if a suitable model could be found which was
more amenable to analytic integration than the kernel function itself,
equations of motion for the finite airfoil could be written directly as
functions of this integration and evaluated directly in closed form.
Finally, given the first two goals, if the model is of a form which has
a closed form inverse Laplace transform, then this transform can be used
as the transfer function in control system analyses. The kemel
function can be thought of as a transfer function spatially convolved
with the pressure coefficient distribution to produce the downwash
distribution. A model which describes the behavior of the kermel
function along the imaginary axis, integrable in closed form, and
available for analytic continuation into the camplex plane is the target
of the project. Given this descriptive model can be developed, a

tractable, analytically integrable transfer function that can be
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spatially convolved to produce the response of the system to general

input will be obtained.

Model Devel opment

The candidate model must be capable of capturing the variation of
the kernel function over a wide range of reduced frequencies along the
inaginary axis with the ability to be analytically continued into the
entire cumnplex plane without difficulty. The range of reduced frequency
has to be sufficiently large to insure that both the small and large
argument asymptotic behavior of the kermel function was captured. As
shown earlier, the kernel function has the second order singularity
which could cause problems in developing an accurate model, especially
in the vicinity of the singularity. Therefore, the modified kernel
function shown in equation (5) earlier will be modelled as it is more
well behaved mathematically. It should be noted, however, that the
singular nature of the kernel function shown in equation (4) can be
included before the integration is performed.

The modified kernel function will be modelled with the functional
form shown in eqaution (26). Ko' is given by the steady value camputed
using equation (7). This equation will be shown later in Chapter VII to
be carprised of two functions which are derivatives of two general order
Mittag-Leffler functions (17:102) with step functions as the leading
coefficients. Bagley (5:742) has shown a model similar in form is
appropriate for describing the frequency dependent behavior of the

modulus of a viscoelastic material. In Bagley's model (5:742), a
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0, (M, x,,y,) (ik)% M%7

K* [Mlklx IYJ - K(; -
e 1 +0, (M, X, v,) (1K) %M %50

(26)

05 (M, X, y,) (1) % M%oryo)
1+, (M, x,,y,) (1k)%HM%rd)

single Mittag-Leffler function was sufficient to capture the behavior of
the modulus. Swinney (25:5) was able to capture fully the frequency
dependent behavior of the Theodorsen function for two-dimensional flow
(25 :418) using a single Mittag-Leffler function. The Theodorsen
function relates the variation of circulatory lift to downwash of a flat
plate undergoing simple harmonic motion (25:1). Swinney's model was
also extended to include the laplace variable for arbitrary motion. The
success in modeling the two-dimensional aerodynamic function led Bagley
(4:16) to suppose the three-dimensional kermel function could be
modelled with a similar functional form. Early investigation over a
broad band of reduced frequencies demonstrated Bagley's form of model
(4:16) was incapable of capturing the behavior in the higher subsonic
region of the kermel function (M=0.8+). The model shown in equation
(26) with two terms rather than one was adopted in an attempt to capture
better the properties of the modified kernel function over a wide range
of reduced frequencies. The fractiaonal calculus based model is
especially convenient because the analytic continuation is autamatic
with the substitution of the general Laplace parameter for the purely

imaginary argument. Additionally, this type of functional relationship
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is capable of capturing two independent phase lags because of the two
independent derivatives of the Mittag-Leffler functions present.

There is actually same empirical foundation for a model of this
form. In two-dimensional flow, the wing is considered infinite in span
and the only wake produced is along the trailing edge. Under steady
flow conditions, the wake leaves the trailing edge smoothly. As the
reduced frequency is increased, the wake no longer leaves smoothly but
instead produces disturbances along the trailing edge which propagate
forward and change the effective angle of attack of the wing. For wings
of finite span, the wing tips may also create disturbances independent
of those along the trailing edge which cause additional disruption in
the motion of the airfoil. This type of phenamenon may require two
functions with ‘.. .eparate phase lags. The functions in equation (26)
are capable ~f representing two separate phase lags because the 8, and
8 values are independent, one capturing the trailing edge effects and
the other capturing the wing tip effects.

The model shown in equation (26) is a direct function of reduced
frequency with the parameters being functions of Mach number and
dimensionless chordwise and spanwise spatial variables. The Mach
nunbers of interest ranged from incampressible (M=0) up to high subsonic
(M=0.8+). The range of the dimensionless chordwise variable would have
to include values ranging from "0‘:['2'2]' The range of the
dimensionless spanwise variable would depend upon the aspect ratio of
the given airfoil syac[—ZS,Zs] where s is the ratio of semispan to root

semichord. A general camprehensive model which could describe the

23




iYS B N AN B D BE B B e

entire range of the modified kermel function was not discovered. The
large number of independent variables created additional difficulties in
determining a suitable functional form for the model parameters, ej.
However, many regions were adequately modelled and all regions were
fully investigated and analyzed.

As evidenced by the form of the model in equation (26) and the
nature of the modified kernel function discussed in equation (5), this
curve fitting is a highly nonlinear problem and a suitable method of
nonlinear optimization had to be found to solve the problem in a timely
manner. For models with a small number of parameters, it is sametimes
sufficient to perform manual regression. However, in this case with
eight independent parameters, a nonlinear least squares regression
routine using the modified Levenberg-Marquardt algorithm (18:431-441) to
generate a sequence of approximations to the minimum point was used to
expedite the process. This algorithm uses a "trust region” approach
with a bounded step. The Jacobian is needed to optimize the parameters
of the model and is computed numerically in this instance by forward
finite differences (10:243). The IMSL routine RNLIN which implements
this algorithm was used (10:239) in the present analysis. There is a
certain amount of insight required to use such a routine in this type of
application.

This routine is designed for regression of real valued functions,
not camplex valued functions. In performing a modelling of the modified
kernel function a model must be constructed which adequately predicts

the behavior of both the real and imaginary parts of the function. A
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simultaneous regression performed on both the real and imaginary parts
is desired. Unfortunately, in this present work, the simultaneous
regression was not readily programmable and was not used.

Two different attempts were made to trick the routine into
performing a simultaneous regression. The routine requires a real-
valued function which camputes the error between the function and the
model at a discrete number of points. This is the only possible input
to the routine which could potentially be modified to achieve a
simultaneous fit. The first attempt was to return to the routine the
magnitude of the complex error between the points. The real part caused
the routine to diverge in this instance. BAnother attempt was made to
treat the real and imaginary parts as one real-valued curve by
translating the imaginary part to begin at the tail of the real part.
This failed as well because the derivative of the curve was, in general,
discontinuous at the point where the two parts were joined. Without a
quick method of performing simultaneous regression, the regression was
performed solely on the imaginary part. The imaginary part proved to be
more amenable to fitting than the real part. When the real part of the
model (based upon the regression of the imaginary part) was carpared to
the real part of the modified kernel function it was generally observed
to produce a satisfactory fit as well. Normally, the real part of a
carplex function would not be well modelled by specifying the imaginary
part. However, given a linear transfer function, the imaginary and real
parts can be shown to be related through derivative operators using

Fourier transformrs. In this work, a good model for the imaginary
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produced a good model for the real part as well, evidence of the strong
linear nature of the modified kernel function.

Another obstacle in this IMSL routine is the requirement for a
starting point in the optimization space. A good initial point would
produce good regression results and a bad initial vector would produce
no regression result and unfortunately no information regarding how to
improve the initial value. The real difficulty in the procedure is
determining the correct initial vector; because this function has not
been modelled in this manner before, the selection of the initial trial
vector was samething gained by experience and practice. One
recammendation for further investigation in this area is the use of a
camplex regression algorithm for evaluating models of the modified
kernel function.

There are several advantages associated with this IMSL routine as
well. First, as the routine is available internationally and used
extensively, the routine probably has been extensively tested against
established test cases and has no errors. Creating a routine takes a
large amount of time to code and test. Another advantage is speed. The
IMSL routines are coded for efficient operation. The routine was one of
the better nonlinear regression routines available in either pre~coded
or algorithm format.

One interesting and helpful result discovered during the modelling
process was the nature of the regression parameters, Bj.
regression for one particular Mach number, Xy and Yy, a reasonable

Given a good

initial value for another x and ¥y value for the same Mach number could
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be interpolated quite readily . This resulted in family of regression
curves for the various parameters of the model. Unfortunately, this
behavior was not observed fo. all regions of the modified kermel
function using this form of model, possibly suggesting the present form
of model is not quite appropriate in the region. The existence of the
strong relagionship between the parameters of the model in many regions
suggests the existence of same type of fractional derivative model that
could adequately represent the camplicated and highly intractable
modified kernel function.

The goodness of fits of the fractional calculus models were
minimized using a least squares type of error calculation. The error is

calculated using the following

p=Np /3
err = 3’1—{ Y [f(x,) - fc(xp)]z} (27)
D

p=0

where f(xp) is the value of the modified kernel function at the p-th
point, fc(xp) is the value of the fractional calculus model at the p-th
point in the interval, Ny indicates the total number of points in the
interval, and p is an index locating the point of comparison. The
errors for the models will be given when the model is presented. The
number of points used to campute the error varies in the thesis. The
models and functions throughout the thesis were coampared at intervals of
5 percent of reduced frequency (the independent variable). Hence, for
an interval between zero and one, there would be twenty-one points
cangared and for an interval between zero and three, there would be

sixty-one points of camparison between the target points and the model.

27




Mcdel Results

The results presented are restricted to thin rectangular planform
airfoils. It should also be pointed out that the modelling of the
modified kernel function was performed to calculated values and not
actuul test data.

Campressible Flow. The modelling of the modified kernel function

was generally unsuccessful for compressible flow conditions using the
form of model in equation (26). There were a number of obstacles
encountered in attempting to model the modified kernel function. The
first attempt at modelling was performed at Mach number 0.8. This
proved to be extremely difficult with the form of model shown in
equation (26). The model would predict behavior well in regions of X
between 0.7 and 1.0; in other regions, the overall trends of the
modified kernel function were followed but the actual functional values
were generally not achieved. One possible reason for the difficulty is
the camwpressibility effects beginning to daminate at the higher Mach
nunbers. As the Mach number approaches one, shock waves 17ill begin to
form on the wing. Shock waves are viewed as a non-linear phenamenon and
as such, the kernel function, which is a linear operator, would probably
have difficulty capturing these effects. It can be shown that the
modified kernel function at Mach number 1.0 (saonic) is equal to zero
(%<0, all SYO) campared to the subsonic case where the modified kernel
function was equal to zero for (x=0, syp~ 0) equation (6). It is
postulated that possibly a third function would need to be added to the

two function model to help capture the shock formation phenomenon. The
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investigation at Mach number 0.8 was abandoned for lack of camplex non-
linear regression software to perform the statistical regression on a
increasingly difficult problem. It was evident at this point that the
global modified kernel function model would not be obtained. Another
Mach nunber in the campressible regime was analyzed in an attempt to
characterize the modified kernel function at least one Mach number.

The Mach number was reduced to 0.5 in an attempt to decrease the
daninance of the compressibility effects, but still retain enough
campressibility to attempt to capture the subdominant effects. The
modelling at this Mach number produced same very good results. The
modified kernel function was best modelled in the regions with small Xy
small sy and large g, large sy,. Acceptable models were obtained in
the vicinity of small Xy, large sy and poorer fits were found for large
X, small SYp - Negative x; values were not analyzed for this case
because the modelling was determined to be insufficient to capture fully
all of the behavior.

The resulting model for two of the regions will be shown in the
main body of the text and samples from the remaining two regions
contained in Appendix A. A sample camparison between the real and
imaginary parts of the model and modified kernel function in the small

%, small sy region is shown in Figure 2. The model is shown below

8,(ik)% 8, (ik)%

(28)
1+0,(ik)% 1+0,(1k)®

X*[0.5,k,0.1,0.05] = K -
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where
Ky'=1.917
91=—0.027 8,=1.205
8,=0.154 8,=0.094
8;=0.236 8=1.01
8,=0.064 8;=0.95

The error for the real and imaginary parts is 2.6x10” and 1.3x10°
respectively. The steady value is computed using the relationship in
equation (7). As shown in the figure, there is excellent correspondence
between the model and the modified kernel function for both real and
imaginary parts. In this region, the exponential limiting form of
equation (6) is daminant and this behavior is evidenced in the figures
shown. If the curves were extended to include values of negative
frequency, the beginning of a finite jump discontinuity could be seen,
resembling a travelling wave at this point. As mentioned earlier, other
values of the modified kernel function in the vicinity of this chordwise
and spanwise location can be interpolated with a certain amount of
accuracy. There appear to be a substantial number of local minima in
the nonlinear least squares minimization function created by the model
and the modified kernel function. Therefore, the modelling of cne
region of the function does not necessarily produce good results for
another region. The compressibility effects are thought to be
contributing to the large number of local minima present. A true
carplex regression algorithm might be more beneficial.

Another region investigated was small Xy and large syy - The model
had increasing difficulty capturing the behavior of the modified kermel

function for larger sy, primarily due to the more oscillatory nature of
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Figure 2: Model of K[0.5,0.1,0.05]

the kernel function for large arguments (26:174). A sample of the model
in the larger sy, domain is shown in Figure 3. The model has the form
shwn in equation (29) with the real and imaginary parts having errors
of 3.2x107 and 7.1x107 respectively. As the reduced frequency is

increased, the modified kernel function becomes oscillatory which would
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Figure 3: Model of K'[0.5,0.1,1.0]

8, (ik)% 8, (ik)% (29)
1+0,(10% 1+0,(1k)"%

k*[0.5,k,0.1,0.05) = K, -

where
Ky =1.1147
6,=0.647 8,=0.888
8=0.549 8=1.04
6,=0.263 8,=0.263
6,=0.109 8y=1.37
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require successively more terms in the model. This may suggest an
infinite series with an argument consisting of a function similar to the
one used in the model. This is an area that could be further developed.
The large k behavior is important because the large asymptotes must be
sufficiently modelled to have an accurate inverse Laplace transform (the
Laplace transform and its inverse are defined over the infinite camplex
frequency plane).

The region of large x; and small sy, is shown in Figure 17 located
in Appendix A. Once again, in this region the exponential limiting term
is dominant and the modified kernel function is highly oscillatory,
causing difficulty in the modelling. Although the imaginary part is
following the function quite nicely, the real part is losing its ability
to describe the function. A true simultaneous regression of both real
and imaginary parts of the model might have overcame this deficiency.

The region cawprising both large % and large sy, was handled
reasonably well for the particular values investigated but the
performance of the model will degrade as the reduced frequency is
increased because of the oscillatory nature of the modified kemel
function mentioned earlier. Figure 18 in Appendix A show the behavior
in this region.

Overall, the modelling of the modified kernel fumction for Mach
nunber 0.5 was not canpletely satisfactory and did not provide a
carplete modelling over the damain of the wing. Further analysis into
the possibility of analytic integration of the integral equation as

originally planned was not performed because of time constraints.
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However, the modelling and investigation do give promise that such a
model could exist, given the correct form could be determined. As
mentioned earlier, a carplex non-linear regression routine would greatly
increase the ability to explore other model forms. Lack of total
success in the campressible damain led to the investigation of the
modified kernel function for incampressible flow. The supposition that
carpressibility of any magnitude greatly increased the complexity of the
problem will be tested in the next section.

Incampressible Flow. The incampressible case would require
another model. The model given in equation (26), when tried in this
case, had too many parameters for the regression to be performed with
any degree of caonsistency. The following model was adopted for the

incarpressible flow conditions where, once again, the Ko' value is given

8, (X, ¥,) (ik) %o (30)
1+0,(x,,y,) (1k)% %7

KLk, X, 5] =K -

by the steady limiting form in equation (7) and the Mach nurber, M, has
been eliminated from the argument for brevity. A more thorough study
was conducted on the incampressible case than on the other campressible
cases previously conducted because the incampressible case provided the
most opportunity for camplete modelling of the modified kermel function.
One model describing the modified kernel for incampressible flow
conditions throughout its entire domain was not found either. However,
the model in equation (30) shows a very strong potential for modelling
wings of small aspect ratios (aspect ratios less than ane-half) such as
those found in the late stages in turbamachinery. The modelling of the
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modified kermel function in the incampressible regime discussed in this
section was shown to be very capable of describing the smaller aspect
ratio wings throughout the damain of the airfoil. However, the
asymptotic behavior of the model with respect to the modified kernel
function for small and large asymptotic values of reduced frequency has
not established and is currently under investigation. Ueda (26:169-
174,28:346-347) provides asymptotic expansions of the kernel function
for both small and large arguments. These behaviors need to be verified
before the model can be said to fully describe the modified kernel
function for small aspect ratio wings. Samples of the model in specific
regions are presented here and in Appendix B.

A sample of the model! for small SYp and large x) is showm in

Figure 4. The model has the following representation

9, (ik)*

(31)
1 +0,(1k)%

X*'[k,-0.1,0.5] = K5 -

where
Ky'=1.9987
8,=1.729 8,=0.81
8,=0.267 8,=1.34

with errors of 9.9x10° and 2.4x10°* for the real and imaginary parts.
The agreement between the model and the camputed modified kernel
function is much better than the same case for the Mach number 0.5 case,
indirectly supporting the supposition that campressibility effects cause
difficulty in the modelling of the modified kermel function. This
particular case represents the worst agreement between model and

modified kermel function for the incompressible case. Although not
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perfect, it is reasonable considering the relative time required to
evaluate equation (30) and equation (5). The model also worked
reasonably well for large X and large sy. The small % and large sy
behavior was modelled very well using equation (30) as shown in
Figure 5. The model for this particular case is written in equation
(32) with errors of 1.1x10°? and 4.7x10° respectively for the real and
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imaginary parts.
s 0 8
K*[k,-0.1,0.5] = K - —alik) 2 (32)

where

1+0,(1k)%

Ky =1.099
6,=0.837 8,=0.871
8,=0.582 8,=0.956
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Camparing this figure to the corresponding case at M=0.5 (Figure 3)
shows the higher Mach number case has a much sharper curve than the
respective incampressible case, demonstrating the more camplex behavior
due to carpressibility effects. In addition to investigating the
positive x) behavior, negative x behavior was also analyzed. The
behavior for small values of negative ¥ and small sy, is given in
Figure 19 which is included in Appendix B. The model clearly captures
the behavior of the modified kernel function in this region. Note that
thase curves will be forced to zero as the sy, values are decreased
toward zero in keeping with the limiting form given in equation (6). In
this region, where the daminant behavior is characterized by a step
function of magnitude two, it is important to include some negative
reduced frequency values in the regression process to insure that the
step behavior, the small argument asymptotic behavior, is fully
captured. The advantage of the fractional derivative model is that it
is capable of representing a step function type of behavior quite
easily. This particular type of behavior in the modified kernel
function has just been initially investigated but is not presented here.
Figure 20 shows an example of the model in this region. The
difficulties associated with the modelling of the modified kemel
function occurred in the regions of the step function and the region
containing negative x, and large values of syy. As stated earlier, the
restriction to values of sy, less than one merely suggests the

suitability of the model for smaller aspect ratio wings. Another form
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of model might be necessary to successfully model rectangular airfoils
of higher aspect ratio.

It is possible to construct curves describing the dependence of
the parameters of the model upon X and Sy;. A sample of the variation
of the parameters of the model for the incompressible case is contained
in Appendix C. These curves can in twrn be fit with polynamials of up
to order five quite easily. However, rather than viewing these as
pelynamial curves, it is more convenient to view the terms of the
polynomial models as the first few terms in an infinite power series of
sare unknown function which would fully describe the behavior of the
parameters. If the infinite series can be shown to represent a
mathematically convenient functional expression, it could facilitate the
direct analytic integration of the integral equation or, at least, allow
for an easier inverse Laplace transformation. These ideas have been
initially studied in this work and continued work in this vein is
planned to determine if this is a viable approach to the solution of the
problem.

The modelling of the modified kernel function with fractional
calculus types of functions has pramise. It has been demonstrated that
models can be developed which are sufficient for describing much of the
behavior for moderate Mach number but not totally descriptive over all
the damin of the kernel function. Higher Mach number behavior is more
cifficult to capture but same behavior was captured with a very sinple
model suggesting further investigation. The modified kernel function

for incampressible flow was found to be modelled quite well for small
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aspect ratio rectangular airfoils by a fractional calculus model with as
few as four parameters. Although the model asymptotes for small and
large values of reduced frequency have not yet been veri. i-1, - _.e result
that the majority of the damain of the modified kernel function could be
captured with a simple fractional calculus makes an imper+..it thrust
into a new area of application for fractional calculus.

One additiocnal topic which must be addressed before the model can
be deemed camplete is the comparison with the modified kernel function
in the complex s-plane. Ashley (2:7-8) provide forms of the modified
kernel function suitable for evaluation throughout the carmplex plane,
one of which has been used here as equation (5). If this model is shown
to predict the behavior of the modified kernel function in the camplex
s-plane, then the model will be suitable for control analyses, not just
stability analyses.

This particular work was only successful in modelling wings of
very small aspect ratios under one-half. The goal of finding a directly
integrable model of the kernel function does seem unlikely but the
development of a model that can be inverted in the Laplace or Fourier
sense seems very feasible. This type of model would be of extreme
importance as it would permit the incorporation of the model of the
kermnel function into the equations of motion of the airfoil. If the
model can be extended analytically into the left half s-plane, then
equations of motion for general motion, not just stability, could be

solved using the simple model of the kernel function. There is a great
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need for more work in this area as this was the first attempt at

performing such a modelling on this function.
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V. Approximate Solution of the Pressure-Downwash Integral Equation

Although the approximate solution of the integral equation (3) or
(23) was not a direct goal of the thesis, it became necessary after the
lack of success experienced in Section IV discussed earlier. The
approximate method is used to calculate the inverse kermel function K!
by sampling the integral equation and reducing the problem to a linear
system of equations. The inverse kernel function can then be used to
calculate numerically the generalized aerodynamic forces which will be
used to determine the equivalent Theodorsen function for three-
dimensional aerodynamics.

This chapter outlines the development of a method to evaluate
numerically the integral equation (3) or (23) which will collapse down
to a form similar to the doublet point method developed by Ueda and
Dowell (27:348-355). The doublet point method (27:348-355) is a
variation of the doublet lattice method (1:279-285) which is easier to
apply. Although the doublet point method was not used directly, the
result of the author's method reduces to a form which is close to that
of the doublet point formulation warranting the reference and credit for
the original work.

The procedure involves dividing the wing into a finite number of
panels and representing the entire pressure coefficient and downwash
distributions over the small panel by a single concentrated load with a
yet to be determined magnitude. This is mathematically equivalent to

treating the pressure coefficient distribution as a series cf
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acceleration doublet points (27:349) represented as Dirac delta
functions. A downwash mode is assumed and a )inear system of equations
is formed by the sampling caused by the delta functions. The linear
system is solved to determine the unknown coefficients of the delta
functions which define the pressure coefficient distribution in a
discrete sense.

The integral equation (23) is separated as shown in equation
(33) to permit special treatment of the second order singularity present

in the denaminator when sy,=0.

W(XIY) = bo!f’l
v 8 /-1
(33)

{fy-v + fyw + f‘lAP(E'nik)K[k:x'ﬁ:s(}’-ﬂ)]dﬂ}dﬁ

-1 y-o y+o
The singular dy integration in equation (33) will have to be performed
by taking the finite part of an infinite integral in the Mangler sense
(32:13) and o in this instance indicates a small distance away fram y.
Note that the Mach number dependence has been amitted fram the kernel
function because the flow conditions have been specified to be
inca.pressible. However, the procedure described in this chapter is
applicable to carpressible cases as well, provided the proper form of
the kernel function is used. The airfoil surface is divided into g-
integration regions to facilitate the integration process: the region
containing the singularity will be referred to as Region II, the region
to the left of this Region I, and to the right, Region III as shown in

Figure 6. As mentioned previocusly, the modified kernel function
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E=+1 g
n=-1 y-o | y+o n=+1

Figure 6: Integration Regions

possesses a finite jump discontinuity as x-§- 0 and y—y- 0. Otherwise
the d§ integration poses no extreme challenges. The wing is now divided
into N panels as shown in Figure 7. The number of panels in the x-
direction is denoted by N, and in the y-direction by N, such that N=N, X
N’. The pressure coefficient information for the entire panel (i, j)
will ve concentrated at the point (§{.q) located at the one quarter chord
and mid-span position on the panel and the downwash information
concentrated at the panel three quarter chord and mid-span point (x,y)

as shown in Figure 8. The convention of utilizing the one-quarter/
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1,3

i,3

bx, b

Figure 7: Discretization of Airfoil Surface

three-quarter chord rule for doublet and downwash location has been used
successfully for years by both the vortex and doublet lattice methods
(20:2) but the rigorous analytical justification for such an assumption
is lacking to date (20:325-342).
Hence, the pressure coeffic:ent distribution can be written in the
following form shown in equation {(34).
AP(E,n;k) = P ;(k)B(E-§,,n-ny) Regions I, III

(34)
AB(E,n;k) = P, (k)8 (E-E,) Region II
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Doublet point (f,q)

Downwash point (x,y)
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Figure 8: Airfoil panel

Using equation (34) for the pressure coefficient distribution and a
similar type of formulation for the downwash distribution produces the
following system of linear equations relating the coefficients of the
downwash and pressure coefficient distributions.

In equation (35) the AiJ' indicates the area of the (i, j) panel, Pij
indicates the undetermined pressure coefficient strength on the (i, 3J)
panel and ¢; is the length of the panel (i,3j) along the spanwise
coordinate strip containing the singularity. The quantity w(xn,yl)
indicates the downwash strength on the (n,m) panel. This approach sti!l
requires the evaluation of the finite part of an infinite integral but

it does avoid having to treat the jump discontinuity in the modified
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Ny m-1

b, ¢ Klk,x,-8;,9(ya-n;)1]
W(x,, ¥, = =2 P a i =2 ) A
woe 9"{1“-:1;-:1 1 bis*(y-n)3 19

N,
~ wto K'[K, Xx,-§;,8(y,-n)]
+ P, e Y, a~ %4 - d (35)
E 1%4), g bgs’(y,,-ﬂ)’ n

- :": p. KUk, %,-8; 8(ya-n)]
1=1 jem+1 1 bgs’(y.-ﬂj)’ 4

kermel function because the locations of the downwash and pressure
coefficient sample points are not coincident and hence xy»0.

The Mangler integration can be handled in one of two ways as
mentioned previously. The first method by Ueda (27:350) involves
determining an equivalent non-singular expression for the kemmel
function at y4=0 based upon a discrete treatment of the Mangler
integration and an asymptotic expansion for small argument of the kernel
function. The second approach is to utilize a modified Gauss quadrature
rule to capture the finite part of the integral (25:1196) in which the
kernel function is evaluated at the abscissa points by any accurate
means. Both methods were campared and produced camparable results using
as few as six abscissa points with the quadrature rule. The former
method was chosen, however, because it is more consistent with the
sampling of the kermel function for the other two regions of the
airfoil. This step collapses the present methodology into the doublet

point method (27:349).
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The method used in this thesis permits the Mangler integration to
be performed by any appropriate means. Another distinction fram the
doublet point method (27:349) is the manner in which the kernel function
is evaluated. The present method camputed the kermel function in the
non-singular regions by first computing the modified kernel function,
equation (5) by methods described in Section Il and then dividing by the
double-pole singularity term (equation (4)). The kernel function in the
singular region was handled by the approximation given in equation (46).
The doublet point method (27:349) utilizes the asymptotic expansions,
equations (39) through (44) to campute the kernel function throughout
the damain of the airfoil. The series converge at different rates
depending on the values of the arguments, requiring special treatment of
sumation computationally. Rather than work with this, the alternate
method was used which did not require any series evaluations.

Ueda has shown (26:169) the kernel function can be written as

follows for incampressible flow conditions

Klk,x-E,9(y-n)] = e **™pB(k, x-E,3(y-0)) (36)
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where the function B(k,x-f,s(y—vy)) is defined

-¢ elkv

Blk,x-E,8(y~n)) =fx dv (37)

~= [vieg? (y_n)z]3/2

If this integral is separated into its real and imaginary parts, the
real part contains a double-pole singularity in 4 as 4~ 0 as shown in

equation (38) which was obtained by making a change of variables on

equation (37).
1 (x-8)/8(y-n) elk'(y—n)l
B(k,x,, - = - etk . (38)
(k, x, s(y-n)) 82(y_ﬂ)2f-- (1 + 12)3/2

Ueda has expanded both the real and imaginary parts of equation in an
asymptotic series about small ks(y—y). The series is written as the

following (21:170)

BR(kIXOISYO) = E (-1)RU“,

ne=0

(39)

-~ 1 1 w1 k
ETn 3(a+y ! 1n2}

-»=3
kr\a»
o pep BT
B (k, x,, 8Y,) nzo( 1)2Uppey * n-O (n+1) (n1)3

_ Ky
2 Eo (n+1) (n!1)?

) x{

(41)

u, = 1
FeeAen - =)
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[j‘1 - —._—k_-. (42)
+8% yy

A v AR CT R ST

o=k (kX" (ksy,)?
- (m-2)m! m(m-2)

Upz ? m23 (44)
+8% yp

One attractive feature of these series is that every singular part is
explicitly written as an initial term (26:169). These expressions can
be inserted in the  integral and the integrations can be performed in

the Mangler sense.

f_: By(k,x,,8y,) d(sy,) = %Pg[[:’( + f"B,(k,xo,syo) d(sy,) - %]
X,> 0
(45)
Ueda has shown an equivalent expression for B after including the
effects of the Mangler integral performed in a discrete sense can be
written as the following (27:350)

2

_ x3 ko _
Bl(k'xolsy')) e Bn(kl .xolo) 6—03’ + k’(ln—z' +yY 2

) (46)

(8y,<0, X,>0)




This provides a method of evaluating the kernel function when syy=0 and
can be substituted into the second sumation expression in equation
(35). Replace the integration in the second expression in equation (35)
with a discrete sampling of the kermel function as done previously in
equation (34). This permits the panel numbering system (i, j) to
collapse to a single because it is no longer required to track specially
the spanwise coordinate of the modified kernel function for integration
purposes as there exists a way to evaluate the kernel function at 8y,=0
and no special integration treatment is now required for the kernel
function. Hence, the (i,j) panel will be relabeled as the i-th panel
with a doublet point at §,,y; and downwash at point X;.Y;. This
simplification allows the system of equations in equation (35) to be

expressed in a much simpler form

B = (p} =~ {AB(& . ny:k)) (48)
@ = (W} = (P(xy,¥,)} (49)
K= [Kij] = —Jz—;zK[k,xi‘{,,B(Yi‘ﬂj)] (50)

vhere i and j can index fram 1 to N=N, X N’ panels. The . indicates a
vector quantity and K distinguishes the matrix quantity fram the
continuous quantity. This system of equations (47) through (50) is

presented as the doublet point method (27:349). This linear system of
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equations can be solved given an assumed downwash modeshape vector W .
The beauty in this method is evidenced by not having to presurme an
appropriate form for the pressure coefficient distribution. This method
relies on the mathematics embodied inside the kernel function to
determine the correct pressure coefficient distribution. An
illustration of the ability of the procedure to campute the pressure
coefficient distribution is seen in Figure 9 below. Most methods
discussed previously such as the vortex and doublet lattice methods and
all assumed mode methods, involve assuming same form for the pressure
coefficient distribution. This distribution is generally singular,
creating even more difficulties using one of these other approximate
methods. The pressure coefficient Ap shown is for a thin rectangular of
aspect ratio two in steady flow. The pressure distribution on an
airfoil of this type under steady flow conditions should possess two
distinct features: first, the fiow should exhibit a singularity of the
type €!, e 0 at the leading edge of the airfoil (32:5) and the flow to
go to zero at the wing tips with an infinite slope as ei, €- 0 (32:5).
The first type of behavior is demonstrated in Figure 9, becaming more
pronounced as the number of chordwise panels N, is increased. The
second type of behavior is seen in Figure 10 where CM is shown as a
function of the number of spanwise panels, N,. The coefficient of lift
is calculated using equation (60) which will be introduced shortly. The
behavior is more pronounced as the number of panels is increased, as

observed in the previous figure.
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Figure 9: Dependence on N

The total pitching lift coefficient for the case N’=10 is 2.78
campared with the previously reported value of 2.65 when N’=20. This
demonstrates the dependence between the total pitching lift coefficient
and the number of panels in the spanwise direction. The total pitching

lift coefficient for the Nx=5 case was 2.65 camwpared to the N,=10 case
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with a value of 2.64. This shows the total pitching l1ift coefficient is
little changed by the number of panels.
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Figure 10: Dependence on N’

These examples serve to show the increased accuracy in the local
pitching lift coefficient achieved by the larger number of panels in the
chordwise direction and little effect the number of chordwise panels has
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on the same. The unsteady cases also have a similar type of dependence
upon the number of spanwise and chordwise panels.

This procedure is not carpared to actual test data here, but is
campared to other approximate methods. Test data such as that in
reference (34) is difficult to campare with at lower reduced
frequencies. This is due to the very high velocities necessary to
achieve low reduced frequencies (k=qlby/V) inside the wind tunnel. These
higher velocities result in high mach numbers, violating the
incampressible flow assumptions upon which the procedure is based. Even
Mach nurber corrections are not very helpful because the higher Mach
nurbers feature shock waves traveling along the airfoil which is a non-
linear problem not handled by this theory. Carmparisons of the computed
steady values of total pitching lift coefficient with those of modified
lifting line theory (20:338) and an approximate method by Graham (7:93)
show a maximum error of approximately six percent and a minimum error of
about 0.3 percent for aspect ratios ranging from two through ten with
N=5 ard N,=20. Although these appear large, the results are
respectable for unsteady aerodynamic analysis. The umsteady results
over a range of reduced frequency fram gero to one for the aspect ratio
two cases were campared with those of another approximate method by
Lawrence (15:769-781) and the agreement was good.

There is a desire to use a large number of elements to achieve
higher accuracy. However, this increases the size of the linear system
and significantly increases the solution time, especially when the

carputations rust be done over a wide range of reduced frequencies. The
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aspect ratio two case was solved using a 100 panel (5 X 20) wing and
aspect ratio ten was solved using a 600 panel (5 X 100) airfoil. The
dependence upon the N’ for each aspect ratio was determined by keeping
the N!/AR ratio constant. This method presented in this section and the
doublet point method (27:349) is much less time consuming
camputationally than any of the procedures mentioned earlier. Another
option that exists for wings with spanwise symmetry is to reduce the
nurber of degrees of freedam by utilizing a constraint matrix (27:351)
1f the pressure coefficient distribution can be represented by a smaller

nunber of degrees of freedom

B =0p (51)
where Q is the constraint matrix. This allows equation (47) to be

written as
oT# = [0"KO|P (52)

where the number of degrees of freedam is reduced by an amount
determined by the Q matrix. Generally, for rectangular, spanwise
synmetry, the nunber of degrees of freedom will be reduced by a factor
of one-half.

An important feature of this procedure is direct input into finite
element types of aeroelastic analyses. Once the structural grid is
established, this routine can be used to obtain reasonably accurate
structural applied loads by computing the pressure coefficient vector
for the structure and multiplying by gpvzs. The finite element

technique can then be used to solve the aeroelastic problem.
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Ashley and Boyd (2:8) have demonstrated the expression for the
modified kernel function in equation (5) is an appropriate form for
carputing values throughout the camplex s-plane provided special
precautions are taken in coamputing the modified kernel function in
certain regions of the s-plane. Hence, the generalized forces camputed
using this method can be treated as Laplace transformed aerodynamic
forces. Modelled with fractional calculus, the gemeralized forces can
now be used more easily to determine the forced response of the airfoil

which will be discussed in Section VI.
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Vi. Equivalent Theodorsen Function for Three-dimensional Aerodynamics

Theodorsen's function is the transfer function relating the
unsteady circulatory lift to the downwash of an infinitely thin,
harmonically oscillating plate in inviscid, incampressible, two-
dimensional flow (25:418). The Theodorsen function is a ratio of Bessel
functions with no known analytic inverse transform whose arguments are
defined in terms of the reduced frequency and taken as purely imaginary
for stability analysis (4:5). Swinney (24:5) has developed a fractional
calculus model of the Theodorsen function which is valid in the entire
s-plane with the appropriate substitution of the dimensionless Laplace
variable 8 for ik. Unfortunately, no direct functional analog to the
Theodorsen function in three-dimensional aerodynamics has been
established. The integral equation (3) shows the transfer function is
part of a spatial convolution with the transform of the pressure
coefficient distribution on the airfoil. This transfer function is not
as mathematically clean as the Theodorsen function and little
investigation and progress has been made toward the simplification of
the three-dimensional unsteady aerodynamic transfer function.

This chapter will describe an approach taken to simplify the
determination of the transfer function in three-dimensional
aerodynamics. As stated above, this transfer function is embedded in
the spatial convolution in the integral equation (3). The approach
taken is to express the generalized aerodynamic forces in three-

dimensional flow in terms of the forces found in two-dimensional flow by
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appropriate use of a new function, the equivalent Theodorsen function
for three-dimensional unsteady aerodynamics. The equivalent Theodorsen
function will be developed and its properties explained. Additionally,
since the equivalent Theodorsen function exists in the Laplace damain,
the accampanying time damain functions used in aercelastic analysis will
be developed as well.

The idea of relating the two- and three-dimensional aerodynamic
forces is not new. Many different theories have been authored
describing how to establish such a relationship. Watkins, Runyan and
Woolston established that the kernel function does collapse to the two-
dimensional case as the span is increased to infinity (31:713), which
may suggest the existence of sane type of mathematical link between the
finite span wing and infinite airfoil unsteady aerodynamic phenomena.
Reissner (21:32) has established an integral correction factor based
upon an strip formula type of approach similar to that of lifting-line
theory which modifies the two-dimensional Theodorsen function to produce
the generalized forces on a finite wing. Another method has been
developed by Lawrence (15:771) which modifies the Theodorsen function to
produce three-dimensional effects. These methods are based upon
different underlying assumptions regarding the connection between the
two-and three-dimensional flow canditions. Reissner's theory
establishes the non-circulatory portion of the lift on an infinite wing
remains unchanged as the span becames finite (6:389). The non-
circulatory flow produces no wake and therefore, the induction effects

associated with it are relatively small. In regions of the wing where
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the induction effects are small camwpared to the purely circulatory omes,
this is certainly true. However, this is not true in the immediate wing
tip region because of the larger induction effects fram the tip vortices
present. Reissner has also established the unimportance of induction
effects on the accurate prediction of airloads on wings for large values
of reduced frequency since the non-circulatory effects are proportiocnal
to K (6:389). However, induction effects are dominant for small values
of k and for small aspect ratio wings. These observations and theories
led to the postulation of the equivalent three-dimensional Theodorsen

function.

Development

Two-dimensional unsteady aerodynamic equations are an appropriate
starting point to begin a search for an appropriate form of the
equivalent Theodorsen fimction. Lift generated by pure pitching motion
was selected as a generalized aerodynamic force with which to campare
the two- and three-dimensional unsteady aerodynamics. The lift per umit

span of an airfoil in pure pitch is given by (6:272)
2 b, (53)
L = xphby [V&] + 2xpUb,C(k) [V& + —z-a]

where C(k) is the Theodorsen function for two-dimensional aerodynamics.
The first term in equatian (53) represents the non-circulatory portion
and the second term represent the circulatory portion of lift per unit

span. In this case the downwash functic: w(x,y,t)=a(x,y,t) has taken on




the following form to insure positive angle at the leading edge of the

airfoil and to be consistent with equation (53)
wix,y, t) = a(x,y, t) = -a,xel®" (54)

Noting that lift per unit span for the finite rectangular airfoil can be
approximated by the following expression while still being consistent
with the original assuwptions of the integral equation (1), it is
possible to directly relate the integral equation for three-dimensional

flow to the Theodorsen function.

L = 2pvic, a(2b))
(55)

wix,y, t)
17

a =
Here the T(k) has been substituted for the usual C(k) and will now be
refserred to as the equivalent Theodorsen function for three-dimensional
unsteady aerodynamics because the coefficient of lift, CM' is camputed
usirg the three-dimensional theory. Substituting these expressions into

equation (53) and simplifying yields

C, = s{ik*ZT(k)[l +L2k } (56)

No.e that this model presunes the changes between two-and three-
dirensional flow exists purely in the equivalent Theodorsen function.
The initial model was constructed with no constraints placed on the non-
circulatory and circulatory lift, allouing the two to vary independently
of one another. The initial model was found to be suboptimal. Next,

the model in equation (56) in which the non-circulatory lift is fixed
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and the circulatory lift is allowed to vary was used. This model was
shown to yield satisfactory results and is an incamplete confirmation of
Reissner's conjecture mentioned earlier which stated that the non-
circulatory lift does not change. This will elaborated upon further
after the fractional calculus model of the equivalent Theodorsen
function is presented in the next section. Given the relationship shown
in equation (56), discrete values of T(k) can be camputed fram the
discrete values of the coefficient of lift and modelled using fractional
calculus. Given a convenient form for T(k), time domain response will
be calculable as is the case with C(k). It should be noted that pure
pitching motion is anly one form of motion for which this relationship

should exist. Another form being pure plunge, for example.

Fractional Calculus Model and Results

A fractional calculus model for the two-dimensional Theodorsen
function (24:5) suggested a fractional calculus form for the equivalent
three-dimensional function since the two have been presumed to be
mathematically related as shown in equation (56). Also, as shown
earlier, the kernel function for incampressible flow conditions vas
shown to possess fractional derivative properties which further
suggested the resulting lift and hence, the equivalent Theodorsen
function T(k), should have these same trends.

The equivalent Theodorsen function is highly nanlinear and there
is a number of possible forms of models. In this case, Swinney's model
of the Theodorsen function was used as a suitable form with which to

begin. Before the modelling can begin, the coefficient of lift must be
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camputed. The next paragraph will elaborate on the exact method used to
determine the coefficient of lift.

The mode shape for pure pitching about midchord can be written in

a form consistent with equation (19) as

By (57)

a(x,y, t) = -a,x

where X is the shape function describing the position of all points on
the airfoil experiencing pure pitching motion and the minus sign is
included to produce positive angle for poc: .ive o at the leading edge.
The subscript a makes reference to the pltching amplitude function

qj(t) . There is no y dependence in the shape function because there is
pure rigid body pitching and no spanwise bending or torsion is present.

This downwash can be cast into the form in equation (49) as

== (P, ¥y} = {-a,(1+1kxy)} (58)

Using the relationship defined previously in equation (5S0) for K, the
unknown pressure coefficient can now be solved via standard linear
system procedures. The K matrix is well conditioned and solutions were
obtained using the IMSL routine LSACG which solves camplex general
systems of linear equations by Gaussian elimination with iterative
refinement (9:31). Given the pressure coefficient, the following
definitions can be used to obtain the complex lift coefficient per unit
span and total lift coefficient as shown in equations (59) and (60). The

coefficients of 1ift in equations (59) and (60) above can be treated as
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; PijA;
= d=3 (59)

N, N,
- 1% ~ 60
C = g.;.:l{cz(yj);l“u} (60)

derivatives with respect to angle of attack, a, because the coefficients
of pressure upon which they are based are only known to an
arbitrary magnitude, oy, of the pitching motion.

The equivalent Theodorsen function modelling was accamplished
using the same procedure as was performed for modelling the modified
kermel function, the only difference being the real part was used for
regression in this instance versus the imaginary part in the prior case.
The real part inexplicably seemed to produce more consistent results in
this case. The functional form used to model the equivalent Theodorsen
function is

a(AR) (ik)#AR

T(k,AR) = T,

- g(AR) (1k) + f(AR) (1k)?

where T; is given by the steady value of CL.n as determined in equation
(56) divided by x. The results once again yielded a family of curves,
the parameters in this instance being functions of aspect ratio only.

The accuracy of the modelling of the equivalent Theodorsen function is
shown below and in Appendix D. The equivalent Theodorsen function
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models for aspect ratio two and ten along with the two-dimensional C(k)

are shown in Figure 11 and Figure 12 below.

THEODORSEN FUNCTIONS

0.0 L A BN R R S SN R DU SN RN B ENNS R SNAND S SN R BENNE S
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REDUCED FREQUENCY

Figure 11: Real Parts of Theodorsen Functions

The resulting model of the coefficient of lift for aspect ratic ten is
given in equation (62) and is shown in Figure 13. One interesting
observation made from these figures is the apparent relationship between

the different Theodorsen functions. It appears the equivalent
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Theodorsen function T(k) tends toward the two-dimensional C(k) in the
limit as the aspect ratio is increased from two to ten; this was not

verified or proven in this work.

cry o a(ik)* _ . : 1) 2 62
T(ik) = T, + T+ biiET" g(ik) + £(ik) (62)
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Pigure 13: q‘,. for Wing of Aspect Ratio 10

It would be interesting to see the results for higher aspect ratio such
as twenty or fifty. This type of analysis was not pursued further here

because of a lack of available camputer memory. This limiting
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relationship was not proven here but does suggest a topic for further
study. As mentioned earlier, Reissner (22:14-18) has developed a
relationship between the two-dimensional Theodorsen function and three-
dimensional unsteady aerodynamics. This relationship consists of
modifying the Theodorsen function by multiplication with a factor
consisting of an integral factor and a cambination of Bessel functions.
The integrals in Reissner's relationship are quite difficult to evaluate
and have been tabulated for easier use (22:70-72). It is believed the
behavior within the fractional calculus model may fully capture the
adjustment Reissner made to the Theodorsen function with his correction
factor. The theory by Reissner presumes the non-circulatory effects of
the flow remain unchanged between the two- and three-dimensional flow
(6:389). The mathematics of the modelling process suggested this
phenanenon as well. In numerous attempts to force the three-dimensional
effects to be contained in an additional non-circulatory term, the
models would not converge uniformly for both the real and imaginary
parts of the coefficients of 1ift. Many different types of additive
non-circulatory terms and many different trial vectors were tried with
no success. It was only when the flow modifications were restricted to
the circulatory portion of the flow that good convergence for both the
real and imaginary parts was obtained. The Theodorsen function is the
transfer function for the circulatory portion of two-dimensional flow.
The relative contribution of circulatory lift to the coefficient of
lift, the quantity [1+ik/2] in equation (53), which multiplies the

Theodorsen function for pure pitching motion as shown in equation




remained unchanged and all differences between the two- and three-
dimensional flow were placed in the equivalent Theodorsen function.

Another interesting result fram this analysis is the relationship
established among the parameters of the model. This relationship can he
used to determine other values of the equivalent Theodorsen function for
rectangular wings of aspect ratios between two and ten. The curves
relating the parameters are contained in Appendix E with a sample shown
in Figure 14 and Figure 15. These results are good only for rectangular
planforms but it is believed such a relationship might exist tor other
planforms such as tapered and swept-tapered.

The parameter a was well behaved but the p parameter was more
complicated. More is to be gained mathematically by viewing the
polynamial model of these parameters as the first portion of an infinite
power series of same unknown function which fully describes the
behavior. A cubic spline is plotted through the p points as the order
of the polynamial was continually increasing. The coefficients of the
polynamial were .lecreasing toward zero quite rapidly, typical of a
convergent series. It is postulated that the unusual behavior of the
parameter u may smooth out if the modelled range of reduced frequenry is

increased.
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VII. Time Damain Respanses Based Upon Equivalent Theodorsen Function
In general, it is difficult to get an accurate time domain
representation of unsteady aerodynamic loads using the three-dimensional
pressure-downwash integral equation (1). Usually, the solution of this
equation is only presented for frequency only since most of the work
with the kemel function has been restricted to stability or flutter
analyses which are only defined along the positive imaginary axis. In
two-dimensional unsteady aerodynamics, the Theodorsen function has been
approximated with a model that has an elementary inverse Laplace
transform to permit forced response analysis. As this is tne first time
the circulatory properties of the three-dimensional aerodynamics have
been cast into a mathematically tractable form, this will be the first
time the forced responses for wings of finite span will be written in a

mathematically accurate and carmpact form.

Wagner Function

The advantage of this fractional calculus model is the reasonably
campact time domain representation of the unsteady aerodynamic loads.
The other approximate methods used to campute the generalized
aerodynamic forces, such as Reissner's (21:1-39) and Lawrence's (15:769-~
781), do not have this unique and beneficial feature. The time-
dependent lift is posed in terms of the Wagner function (6:285), ¢(t),
which is defined in equation (63). The Wagner function represents the
lift resulting fram a unit step change in angle of attack (sametimes
called indicial lift).

72




b(t) = u-*[ﬂg—’-] (63)
The fractional calculus model of the equivalent Theodorsen function,
T(k), in equation (61) can be represented in the Laplace damain as

= . a(g)* _ = - 2 64
T(8) =T, + T+ g(g) + F£(8) (64)

where the dimensionless Laplace variable s=§b°/v=ik indicates the change
into the Laplace plane, S the general Laplace variable, and where the AR
dependence of the parameters is not shown for campactness. Equation
(64) can manipulated into a form more suitable for inverse Laplace

transformation

+

1 - g(F) + £(7)3 (65)

F) = - a___ 1
T(8) T, 5B5)F + 1

olm

By recognizing the binanial series present, this can be further

expressed by the following power series

)1 -ay(_-1)__ 35 Bk (66)
T(5) = T, bg;(b(a,)“) g(3) + £(7)

These simplifications lead to the following Laplace doamain expression

for the Wagner function

T(8) . T _ag(-i\® 1 1 __5 5’ 67
3 ;,(b) 3 g9+f (67)

8 b

Making a substitution for s the Wagner function can be written in terms

of the Laplace variable 8




T™Ms) . T _avy -ve) 1 b b,
B B,.‘%[bxb) s v ()

Taking the inverse Laplace transform yields

() (E) ok

b b,\?
- —V%guo(t) +(—‘§-) fu,, (¢t)

$(t) = T,u_,(t) - -g

et

o

The term w,; is a unit step function, the u term is the unit delta

(68)

(69)

function, and the u,; term is the unit doublet function. The doublet

function is the derivative of the delta function. The u order Mittag-

Leffler function is defined as (15:102)

xn
By (x) g; F'(1+pn)

The p order Mittag-Leffler function shown in equation (70) can be

(70)

considered as the generalized u order exponential function (4:12) as

setting u equal to one produces the Taylor series for the exponential

function ef. Using this notation to represent the time series in the

Wagner function produces

$(t) = Tyu_, (¢) -

ol
g
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The Wagner function is shown in terms of dimensionless time, T:=Vt/bo, in
equation (72).

-c*

$(t) = Tyu_,(t) - %E"[T] - %gUO(E)

(72)
b,\? —
+ (—‘;) fu,(t)

This expression is similar to the Wagner function determined by Swinney
(24:22) with the addition of the discontinuous Dirac delta function and
doublet function. The approximation to Wagner's function in three-
dimensional flow (72) is shown with the Wagner function model developed
by Swinney (24:22) for two-dimensional flow in Figure 16. It should be
noted that only the continuous portions of the Wagner function

representation in equation (72) are shown in Figure 16. The figure

steady-state value faster in three-dimensional flow than in two-
dimensional flow. This is expected as the finite wing has wing tip
effects working to dampen motion in addition to the trailing edge

effects it has in common with the infinite wing.
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Time Dependent Lift in Terms of Wagner Function

The lift for a wing can be developed using the Wagner function
quite easily. The lift per unit span for an airfoil was given in
equation (53) for pure pitching motion. Generalizing this equation to
include vertical translation as well and constructing the Laplace

transform yields equation (73).

L(8) = mpby L[A(L) + va(t)]
(73)

+ 2xpVb, R|E(L) + Va + i’;eut) 7(3)

Substituting the expression in equation (64) for T(s) and taking the

inverse Laplace transform produces equation (74).

L(t) = xpbi[A(t) + V&(L)]

+

zxpVbo(To - )[fx(t) + Va(L) + %a(t)]

a
b

prbggf:d;‘t{ﬁ(c-t) + Va(t-t) + -let(t-t)]dt (74)

+

2rp b, t &8 | _ _ b, _
= ffo dt‘lﬁ(t ) + Va(t-t) + —E-a(t t)]dt

»
2zpvbo[°‘[ﬁ(t) + Va(z) + %a(r)]g,{:ﬁ(ﬂf_‘)_) ]dt
0

The dot over the Mittag-Leffler function implies the continuous portion

of the derivative as the discontinuous portions are contained in the

second term.
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Kissner Function

A similar time-dependent lift function is the Kiissner function
which describes the lift created by a sharp-edged gust striking the
leading edge of an airfoil. The Kiissner function #(t) is defined as
(6:287)

¥(t) =2 {e?[(I,(8) - I,(8))T(5) + I,(8)]} (79)

Taking the inverse transform of equation (75) yields the time damein
representation of the Kiissner function.

Hence, for rectangular geometry wings between aspect ratio two and
ten, it is beneficial to utilize the equivalent Theodorsen function
inserted into equations of motion developed for two-dimensional flow to
campute aerodynamic loads and responses for three-dimensional flow
conditions. With the development of the equivalent Theodorsen function
for finite span wings, the three-dimensional unsteady aerodynamic
analysis of response to arbitrary motion can be easily obtained, a task
which was extremely difficult to accawplish with the methods described
previously. The advantwge of the equivalent Theodorsen function is that
it permits the aerodynamic loads to be written in a mathematically
carpact form and convenient, closed form inverse Laplace transforms
exist for the equivalent Theodorsen function, making its use quite

attractive,
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VIIil. Conclusions

This thesis has investigated two alternative approaches to
predicting the aerodynamic loads produced by time-dependent motions of
thin wings in rectilinear subsonic flight. The first method was an
attempt to directly integrate the pressure-downwash integral ecuation in
three-dimensional unsteady aerodynamics. This method consisted of
finding a model of the three-dimensional kernel function to capture the
behavior in a more mathematically convenient form to facilitate the
spatial convolution. The model was sought in a fractional calculus form
to capture better the frequency dependent properties and to make the
analytic continuation fram the imaginary axis into the entire canplex
s-plane easier. It was found that the compressibility effects within
the kernel function made the modelling at higher Mach numbers extremely
difficult. The kernel function in incompressible flow was shown to be
modelled by a simple four-parameter model throughout most of the damain
of small aspect ratio airfoils; however, the small and large asymptotes
of reduced frequency have not yet been verified. Initial investigations
suggest this should be successful as well. Additionally, the
determination of appropriate behavior for the model in the complex s-
plane has not been verified yet either should be accamwplished in the
future. The four-parameter model began to worsen as the values of the
spanwise variable were increased above those of aspect ratio one-half.
The higher cases of aspect ratio need further investigation with

different forms of fractional calculus models. The implementation of a
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carplex, nonlinear, least-squares regression algorithm with adaptive
search methods would greatly enhance the capability of examining these
models. The three-dimensional kernel function contains fractional
calculus behavior and it is only a matter of time before a suitable
model, mathematically simpler in form than the kernel function itself,
wili be found and successfully applied to the active control system
design of aircraft.

The second approach taken to the prediction of unsteady
aerodynamic loads on finite span rectangular airfoils was to develop an
equivalent Theodorsen function. The equivalent Theodorsen can then be
substituted into the two-dimensional air load equations and thus
inserted into the equations of motion to capture three-dimensional
induction effects. The equivalent Theodorsen function was constructed
with a convenient fractional calculus form to facilitate the capturing
of the frequency-dependent properties of the generalized aerodynamic
forces. The coefficient of 1ift resulting fram pure pitching motion was
camputed using a method preses.- 1 which collapses to the modified
Doublet point method (27:348-355). The coefficient of lift was then
used to calculate values of the equivalent Theodorsen function by
utilizing two-dimensional generalized aerodynamic force equations. The
values of the equivalent Theodorsen function were in tuwrn modelled using
the fractional calculus model. The fractional calculus model fully
captured the behavior of the camputed values of the equivalent
Theodorsen function and coefficient of 1ift for rectangular wings with

aspect ratios between two and ten. The equivalent Theodorsen function
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was generalized into the camplex s-plane and the Wagner function and the
Kussner function, time-dependent response functions for indicial lift
and sharp-edge gusts, were determined and carpared to their two-
dimensional counterparts. The success of capturing the properties of
the coefficient of 1lift for pure pitching motion for rectangular
airfoils suggests further investigation of other generalized aerodynamic
forces caused by other types of downwash for more camplex wing
geametries. The important calculations in aercelastic analysis are the
determination of the airloads and the structural stiffness and damping
matrices. The equivalent Theodorsen function allows the use of the more
realistic three-dimensional aerodynamic loads, rather than the two-
dimensional approximate loads, in control system designs. The
development of the equivalent Theodorsen function for finite span
airfoils permits the general response to be written in a mathematically
tractable form. It also enables the active coupling between the
automatic control system and aerocelastic phenomenon like flutter and
unsteady structural loading which is not available presently in a

practical form.
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Camparisons for Mach Number 0.5

Model results for the M=0.5 case based on equatian (26) are
further presented in this appendix. The original discussion was
presented in Chapter IV, campressible flow subsection.

The model used to produce the fit in Figure 17 is

0,(ik) 8, (ik)% (76)

k*[0.5,k,0.1,0.05] = K -
1+0,(ik)% 1+8,(1k)%

where
Ky'=1.9991
8,=0.534 8,=0.523
8,=0.116 8=1.62
8;=1.24 8;=0.902
8,=0.331 8,=1.34

The error is 2.2x107 and 2.2x107 for the real and imaginary parts.
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Figure 17: Model of K'[0.5,1.0,0.05]
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Figure 18: Model of K'[0.5,1.0,1.0]

The model for this particular case in Figure 18 is given by
8,(ik)%  8,(ik)%

X*[0.5,k,0.1,0.05) = K -
1+0,(1k)% 1+8,(1k)%

where
Ky =1.7559
8,=0.205 8,=0. 600
8,=0.302 8,=1.43
6,=1.87 8,=0.954
8,=0.808 8y=1.06

Exrors are 2.4x10"! and 7.9x10° for the real and imeginary parts.
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Appendix B: Additional Model and Modified Kernel Function
Camparisons for Incampressible Flow Conditions

Additional samples of the modified kernel function models for
other regions in incompressible flow are presented in this appendix.
The original discussion is contained in the incompressible subsection of
Chapter IV. The form of model was given in equation (30).

The model used for Figure 19 is

ey
0, (ik)™ (78)

K*[k,-0.1,0.5] = -
5 1 +0,(1k)%

where
'-0.804
=0.353 =0.93
%:o.«? gi=o.876

producing errors of 2.3x10" and 1.8x107 respectively.
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Pigure 19: Model of K'[0,-0.1,0.5]
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Figure 20: Model of K[C,-1.0,0.8]

The model used to produce Figure 20 is

8, (ik)*

X'[k,-0.1,0.5] = -
5 1+0,(1k)%

where
Ky'=0.219
6,=0. 188 8,=0. 841
8,=0.791 8,=0.854

with errors of 3.8x10° and 1.7x107.
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Appendix C: Model Parameters for Incampressible Case

Additional figures describing the variation of the different
parameters 6, through 8, of the model for the modified kermel function
in incamwpressible flow is further presented in this appendix. Other
figures were presented along with the initial discussion in Chapter IV.

The four-parameter model is given in equation (30).
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Appendix D: Lift Coefficient Model at Various Aspect Ratios

The coefficients of 1lift for rectangular wings of various aspect
ratios between two and ten are shown modelled in this appendix. The
initial discussion and development of these models is presented in

Chapter VI. The general form of the fractional calculus model is
Cp, = s{ik+2T(k)[1 + -1—21-5 } (80)
where the equivalent Theodorsen function T(k) is defined as follows.

- a(ik)* _ (i i k)3 (81)
T(ik) = Ty + 505y -~ glik) + £(iK)

This appendix will present a series of different figures showing the
superb agreement between the model and the calculated lift coefficients
for various aspect ratios. Each figure on the following pages will be
accampanied with an equation showing the model of T(k) used to produce
the fit. The error associated with each plot is not explicitly stated.
However, the error on the real parts was of the order of 107 and the
error on the imaginary part of the order of 10" for all the cases
shown.
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Figure 29: q'. for Wing of Aspect Ratio 2

Cr, = ={ik+ 212 -1 (82)
- a(ik)® - : { k)2 83
T(ik) = T, + SIS - g(ik) + £0ik) (83)
Ty=0.422
a=0.144 1=0.92
b=1.58 £=0.075
g=0.068
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Figure 30: Cl.t for Wing of Aspect Ratio 3

- Ak 84
C, x{1k+22’(k)[1+ 3 } (84)
- a(ik)* _ , 2 (85)
T(ik) = T, + T+ b(iK)* g(ik) + £(ik)
7,=0.523
a=0.286 n=0.923
b=2.053 £=0.078
g=0.047
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Pigure 31: c,h. for Wing of Aspect Ratio 4

ik

= :{.ik+2T(k)[1+—2— } (86)

T(ik) = T a(ik)*  _ o(ik) + £(ik)? (87)
(1k) = 1y + ALERD - g(ix) v £0ik)
7,=0.593
az0.433 =0.927
b=2.49 £20.0804
g=0.042
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= ik 88
Cr u{ik+2r(k)[1+ 5 ]} (88)
- a(ik)* ; 2 (89)
T(ik) = Ty + T+ b(1E)* g(ik) + £(ik)
T,=0. 644
=0.568 1n=0.926
b=2.69 £=0.0821
g=0.032
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Figure 33: q‘.. for Wing of Aspect Ratio 6

- xli ik
C, :{1k+2T(k)[1+ 3 } (90)
- a(ik)® _ ; 2 91
T(ik) = Ty + SV glik) + £(dik) (91)
7,=0. 684
a=0.688 n=0.9167
b=2.85 £=0.0823
g=0.026
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Figure 34: q". for Wing of Aspect Ratio 8

. ik
cp, = s{1k+2T(k)[1+—§- } (92)

- a(ik)* _ _ .. 2 (93)
T(ik) = Ty + T bk g(ik) + £(ik)
Ty=0.739
a=0.884 p=0.911
b=3.144 £=0.0843
g=0.021
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c, - x{ik+2r(k)[1+125 } (94)
ik)»
T(ik) = T, + —8UIKY g0k + £(ik)? (95)
( °* Tebiir Y (
where
Ty=0.7606
a=0.964 u=0.907
b=3.24 £=0.0847
g=0.0185
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Equivalent Theodorsen Function

The variation of the paramcters of the fractional calculus model
of the coefficient of lift are presented in this appendix. The

parameters and the model are given in equation (61).
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Appendix F: Derivation of the Pressure-Downwash
Integral Equation
Based Upon References 32 and 16

The wing is considered a nearly plane impenetrable surface S
consistent with the concepts of linear theory. Let the wing lie nearly
in the x-y plane and let it and the x-y-z coordinate system to which it
is referred be assumed to move with uniform velocity V in the negative
x-direction. Note the positive z-direction is defined opposite to that
in Chapter 2. At the same time, let each point of the wing be assumed
to undergo small amplitude harmonic translations Z (x,y,t) at circular
frequency ¢ and let c represent the speed of sound in the madium.
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The problem for an oscillating wing consists in solving the wave
equation to certain boundary conditions. The wave equation in
rectangular coordinates is

B , PR, PR _ 1

o . 9 \Vg- rn
ox? oy? dz? c? V-a;*ﬁ) g8=0 (F)

The dependent variable £ in equation (Fl) is regarded as an
acceleration potential. The acceleration is directly related to a

perturbation pressure field and is related to a velocity potential &.

20 , 30
g=.3..t. Vax (F2)

The boundary problem for the wing is campleted by calculating the
downwash w(x,y,z,t)=9#/3z associated with §. This downwash is assumed
to be harmonic with regard to time which implies that both potentials g
and & are harmonic with respect to time and as shown in equation (F3).

B(x,y,z,t) = ei*tB(x,y,2)
(F3)

®(x,y,zt) =et*t¥(x,vy,2)

With these expressions for § and &, equation (F2) becames independent of
time and reduces to an ordinary differential equation with one dependent

variable

T -in® -+ v%.g (r4)

This equation can be integrated with respect to x to produce equation
(FS).

113




exp iwx (#S)
= v * iwA
3 _1__)‘, [[BGh,y, 2 exp( > )cn
The boundary problem for the wing may now be expressed

mathematically in the following manner. Assuming simple harmonic

motion, equation (Fl) becomes

63§+83§+63§__1_V6 i 2-8-=0 (Fe6)
dx? dy? dz? c’( " Q)
To insure tangential flow at the wing surface, the potential must
satisfy the following downwash condition.

— _ [09® e v 9 —

wix,y) (3; . (Vax + iu)z.(x,y) (F7)

Here w and 2, are aplitudes of velocity and displacements respectively
and are assumed to be known fram the motion of the wing. At 2=0, the

pressure must be zero at all points (x,y) off the wing.

pP=-p(B),. (F8)

The potential § is allowed to be discontinuous at all points on the wing
and the value of p is determined by the magnitude of the discontinuity
in g at the point. In the neighborhood of the trailing edge, p must go
to zero to satisfy the Kutta condition. One other condition, that &
vanish far ahead of the wing is inherently satisfied by the condition

given in equation (FS).
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The potential By at a point (x,y,2) due to a harmonically
pulsating doublet located in the x-y plane at a point (§,4,0) that

satisfies equation (F6) is

exp(iwlt + M (x-p) - B )
g =2 .} | cp? cPp3 (F9)
° “9z R

where

R=f(x-5)F +Pi(y-q)2 + piz?

The factor A is a strength and dimensionality factor allowing different
uses and interpretations of the potential 8- 1f 8y is considered an
acceleration potential and substituted into equation (FS), the
corresponding velocity obtained may be written in the following manner.

; A MA R
iw(x- .x- exp[l(o(t - —_— - )J (F1)
8 -age v [T bl

R= + P (y-n) + Biz

The downwash aﬁ/az associated with & may be written as

30, _ , 37 -2 rx o180 -w/ITTTY) 13
?? Awe f_- ~ dA ( )

115




In equation (F13)

X, = x-§
w=w/VB?

r=y(y-n)*+ 24

With the use of equations (F13) and (F14) and the concept of solving
linear bomxdary-valm problems by means of superposition of elementary
solutions to the governing differential equation, the boundary value

problem presented here can be reduced to an integral equation.

ie —(s . -
vix,y) = ;i‘gAffL(C.n)e ﬂﬁd{dq a’zf"- oiS-wIT)
* 9z2/-=  JAT¥r?

(F15)

Here S represents the surface of the wing and L(f,q) represents an
unknown lift distribution or doublet strength on S. This integral
equation can be reduced further to the form given in Chapter 2 as shown

in Reference 31.
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