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Preface

My research proposal was based on my search for an unsolved problem concerning
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broad, Dr. Bagley posed several questions which were very effective in helping me to focus

more rapidly on a specific equation. I thank him.
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appreciated.

Finally, I thank Dr. Quinn. He has been a constant source of encouragement and
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Carl Edwin Crockett
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Abstract

A nonlinear partial differential equation, motivated by the transverse vibration of a
beam, is shown to have a unique solution. The existence theory, which is in the setting of
semigroups and evolution operators, is a composite and synthesis of theorems of Kato. The
formulation of the problem and the verification that the formula‘ion leads to a selution

are new.

The introductory chapter provides background on the topic generally. Chapter %
provides detailed formulations for the constant coefficient case Chapter 3 describes nonau-
tonomou. cases. The most general theorem is presented here. In Chapter 4, a moiz general
case is considered. Namely, Kelvin-Voigt damping with a coefficient which depends on tl.e
solution. This introduces a nonlinearity to the problem which makes it of the form {re-
quently called quasilinear. This is a stronger form of nonlinearity than semilinear. Results

of a numerical example are presented.
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AN EVOLUTION OPERATOR SOLUTION FOR
A NONLINEAR BEAM EQUATION

1. Introduction

The central problem of this dissertation concerns a nonlinear partial differential equa-
«ion for the modelling of the transverse vibration of a beam. The particular form of non-
linearity that arises gives the equation a form that is frequently referred to as quasilinear.
Tkis is a stronger nonlinearity than the form known ac semilinear. The equation is shown
to have a unique solution. The applicable existence theory is a composition of some the-
orems of Kato. The formulation of the problem and the verification that the formulation

leads to a solution are new.

This introductory chapter provides background on the topic generally. Chapter 2
provides detailed formulations for the constant coefficient cases. Chapters 3 and 4 provide

the generalizations.
1.1 Some general background

Partial differential equations are an essential element in the mathematical modelling
of the physical world. The topics that arise in the study of natural phenomena with
partial differential equation modeis are numerous and varied. Indeed, the fact that two
physical phenomena are very similar does not guarantee any particular connection betwecn
the corresponding mathematical models. In fact, two models of the same behavior, with
one slightly more sophisiticated than the other, can lead to entirely distinct mathematical
entities. Even changes which appear to be very minor or superficial can radically alter the
nature of the solution, and even whether there is a solution. In cases where a solution still

exists, it may be necessary to use entirely different methods to find it (or them).

In the classical theory of partial differential equations the three basic second order

forms are

1. the heat equation us = Uy,




2. the wave equation uy = Uz

3. Laplace’s equation 4y = —uzz.

It is well known that these have quite distinct solution characteristics. The same holds
true for higher order equations. When problems are formulated abstractly, it remains true

that small changes in appearance can lead to significant changes in solution properties.

The equations above have been given names to distinguish their types. The heat
equation is known as an example of a parabolic equation. It has a unique real characteristic
curve. The wave equation is called hyperbolic. It has two distinct characteristic curves.
The Laplace equation is elliptic and has no real characteristic curves. The classifications

are used to distinguish equations whose solutions have certain distinctive behavior.

As an example of a model refinement which may not look too different, Friedman
and Hu [17:pp 249,252] discuss an equation referred to as the hyperbolic heat equation. It
arises when a slight modificaticn to a basic mathematical assumption aveids the physically
unrealistic property, of the usual model, that global temperature changes instantaneously.
The change is to replace the Fourier Law ¢ = —k6, with ¢ + 7¢; = —kf, for some time

delay 7, probably quite small. The resulting equation is
T84 + 6 — 0z = 0, (1)

In the case of abstract equations the affect of a negative sign or of a change in the

order of the equation can be pointed out by observing that the abstract equations

U = Upy
Ut = Uzx
Uy = —Ugzxr (2)

all have classical solutions. But, in their abstract formulation with homogeneous Dirichlet

boundary conditions, none of the equations

U = —Ugg




Uy = —Uzg

Ut = Uzzzez (3)

has a nontrivial classical solution.

The terms parabolic and hyperbolic do not have the same meaning in the abstract
theory as they do for classical second order equations. (The term elliptic is not used for

abstract equations.) An abstract equation of the form
U = Au (4)

is called parabolic if the operator A is the generator of an analytic semigroup. It is called

hyperbolic if A is the generator of only a Cp semigroup (see Definition 2).

The present work addresses an Euler-Bernoulli beam equation with Kelvin-Voigt
damping. The abstract formulation results in an equation which is hyperbolic. Linear and

nonlinear versions will be considered as well as autonomous and nonautonomous versions.

1.2 An introduction t« the basic equation

A fundamental element of most large structures is the beam. Over a period of
many years, as the need for .more and more accurate modelling has become apparent,
the mathematical equations used to describe beam behavior have become more and more
sophisticated. Similarly, more advanced mathematical tools are used in the development
and analysis of such equations. Herein, attention will be focused on equations for the

transverse vibration of a beam.

In particular, an equation with nonlinear damping will be considered. This will

be preceeded by the treatment of simpler equations in order to build up the appropriate

mathematical machinery. FExistence and uniqueness of a solution, in the simple cases,

will be established from the viewpoint of semigroup theory. The more complex cases will

require the mild generalization of a semigroup known as an evolution system.

In this section a review of an early model of beam motion will be presented. In

the next chapter the model will be considered from a mathematically sophisticated (ie
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Figure 1. Cantilevered beam

semigroups) point of view. This will provide a point of departure for the investigation
of more complex and pofentially more precise mathematical models of beam behavior.
Development of the mathematics related to these models is the pmpose of the present
work. It is stated at the outset that while beam equations motivated this mathematical
problem, the engineering is left to others. That is to say, while the equations developed
may be of engineering value, it will not be proved here. The cﬁrrent work is limited to-

establishing of the validity of certain mathematical operations.

1.2.1 The traditional starting place

Consider the cantilevered beam. This is a beam which is fixed at one end, as to a
wall, and free at the other end (see Figure 1). Assume a thin beam whose density and
other physical characteristics are uniform. It is customary to establish a coordinate system,
assumed inertial, whose origin is at the intersection of the beam’s centerline and the wall.
The z-axis is chosen along the beam’s centerline. It is supposed that the centerline is

straight and represents the natural, rest, or unperturbed position of the beam. Let L be

the length of the beam.

Vertical motion of each point z along the beam, with vertical displacement at time
t represented by u(t,z), is considered. Notice that the physical configuration requires (for

consistency) the following mathematical assumptions:

u(t,0) = 0 (5)
ug(t,0) = 0 (6)
uxz(t, L) = 0 (7)




u:c:c.'z:(t,L) = 0. (8)

(Subscripts indicate partial differentiation with respect to the variable appearing as the
subscript.) The physical interpretations of the boundary conditions are as follows: (5) says
that the left end of the beam is held in a fixed position, (6) says that the beam centerline is
perpendicular to the wall, (7) says that there is no curvature at the right end of the beam,
and (8) says that the curvature at the right end is not changing (ie there is no external

torque).

A large variety of physical situations can be described with only slight changes in
(5)-(8). For example if both ends were free, conditions like (7) and (8) would apply at the
left end. If a control mechanism were attached at the right end, then conditions (7) and
(8) would have nonzero right hand sides. Clearly there are many other physical situations
described by closely related sets of conditions. Of course, u(¢,2) must be sufficiently
differentiable for the boundary conditions to make sense. An assumption to this affect is

consistent with typical physical situations.

The simplest model for the transverse motion of a beam is-called the Euler-Bernoulli
beam model. It has been in use for over one hundred years. (See Russell [67:pp 177-216]

for an excellent historical review of models.) The following assumptions are made:

1. The density of the beam, m(z), is known and appropriately smooth. It is assumed

to be constant with respect to %.

2. Vertical displacements are small compared to the length of the beam and any hori-

zontal component of motion is neglected.

3. Young’s modulus, E, (an experimentally determined, material dependent quantity
that relates the amount of stretching to the amount of force applied, see Kolsky

I, are

[37:pg 9] for example)-and the area moment of inertia along the bending axis, 7,

K vars

known and sufficiently smooth (often taken as constant). They are assumed to be

constant with respect to time.

4. Mechanical energy is conserved.




Details of the derivation are provided in Appendix A. The resulting equation is

Uy - (auz:c)z:c =0; 0<z<ZL; 0Lt (9)

= EI
where a = =,

This is the simplest mathematical model for a beam. Transverse vibration is allowed
and elasticitv of bending is considered. Longitudinal stretching and vibration are ignored,
as are time uep. ndent changes in material properties. Also ignored are changes in material
properties due to the history and current state of the beams position and motion. Damping
is not modelled and other imperfections are sure to be present. Nevertheless, some starting
place is needed and the Euler-Bernoulli model is the usual place. It provides a specific

equation for use in demonstrating the mathematical tools to be used in further analysis.

1.2.2 Proposed generalizations and analysis of the equation

The linear partial differential equation above is reduced to a system which is first
order in time. Then an appropriate Banach space is chosen and the system is formulated
as an abstract Cauchy problem. Existence and uniqueness of a solution is then established
from standard theorems. A key challenge is to construct the Banach space wisely so that
the operator i‘n the abstract problem is densely defined and has the properties necessary

to justify the application of the theorems.

The quantity o will then be allowed to vary, thus generalizing the problem. First, o
will be allowed to vary with the space variable. This case does not require any additional

theory.

The next generalization will be the introduction of a Kelvin-Voigt damping term. In

this case the equation has the form

Uyt + (ﬁutxa:):cz + QUgzzr = 0. (10)

The underlying assumption of Kelvin-Voigt damping is that the damping depends on
velocity in the same way the basic equations depends on position. A positive value of

B represents damping in the system. Negative values of §, which represent energy input




or energy generation, will not be considered. To maintain the step by step approach
to generalization, « is held constant while the damping term is considered. Separate
treatments will be given to the cases of

1. constant coefficient of damping,

2. spatially varying coefficient of damping,

3. temporally varying coefficient of damping,

4. combined space and time variation of the coefficient of damping, and

5. solution dependent coefficient of damping,

It is in the last of these that a true nonlinearity appears. The form of the equation

with this nonlinearity is such that the term quasi-linear is appropriate. Interest in this

particular equation motivated the current research.

In another generalization, a will be allowed to vary with time, This case requires
a more powerful existence theorem. A more general theorem, which is a synthesis of two

theorems of Kato and covers this case, is presented.

1.8 A review of the literature

The review of the literature can be divided into three basic areas. First, a general
overview of some problems which use the same general type of theory as that which will
be used in this work is given. Second, some problems which are closely related (at least
in general appearance) to the current problem are presented. Finally, a review of the

literature which provides the theoretical framework for this work is presented.

1.3.1 A sampling of problems from the literature

Higher order equations are used to describe beam behavior. Ball [3:pg 399] describes

a model which accounts for several affects. The equation is

L
Ut + QUpgrr — (ﬁ + k/(; ’u_,%d(i) Uzz + ‘Utszzs

L
—a/ UsUs A Upe + 0wy = O (11)
0




He discusses existence, uniqueness, and regularity for the constant coefficient problem.

The approach is more classical than modern (e not a semigroup approach).

Pivovarchik [59:pg 647] considers the spectrum of a similar looking equation, namely
QUtrzrze T Uzrzer + (g(x)u:c)x + k(x)ut +uy = 0. (12)

More specific examples from the literature will be presented shortly. A brief pause

to make some general comments is appropriate.

The current literature contains a wide variety of problems related to fluid flow, plate
vibration, beam vibration, and the control of these kinds of phenomena. Since small
alterations often make problems which are mathematically distinct, this literature is quite
voluminous. No complete review will be attempted. However, it is certainly appropriate

to present a sample of the kind of work that is being done.

A brief list of the kinds of items involved in the set up of a problem is now given.
A small change in any of these items can lead to entirely different solution behavior. The
domain may be bounded or unbounded, fixed or changing, and the conditions specified at
the boundary can have a variety of forms. The operators which appear may be bounded or
unbounded, linear or nonlinear, autonomous or nonautonomous, they may be self-adjoint, '
skew-adjoint, compact, or closed. The underlying space may be Hilbert, Ba.néch, normed,

linear, metric, or just a set. The order of the equation is significant.

For all of these factors, small changes can affect whether the problem is well-posed,
whether it has a solution, whether solutions are unique, what kind of algorithm can be

used to obtain the solution, or indeed, what notion of solution is appropriate to consider.
A few samples of equations in the recent literature are given.

Bernis [5:pg 227] establishes existence and uniqueness for the equation

(=AY u+g(z,u)= f (13)




on all of RV with certain limitations on f and g. (The symbol A is used for the Laplace

operator.) He also establishes existence and uniqueness for the parabolic problem
u+ (=AY "t |u P u=f (14)

on RN x (0,1). Again, certain restrictions apply.

The Schrédinger equation, [68:pg 823],

%u +iAu+ [ufflu=0 (15)

. 1 . .
where i = (~1)2, also receives attention.

Cannarsa et. al. [7:pg 2] treat a damped wave equation
uy(t, z) = A(u(t, 2) + kw2, 2)) + f(2,2) (16)

on a bounded domain with appropriate boundary and initial conditions. They 1.10te (pg
3) that even a slight change in boundary conditions sends the problem into the realm of
the unknown. Weak solutions are obtained following a transformation which changes the
problem to one where the operator is the generator of an analytic semigroup. They claiin

this approach can be extended to higher order (eg beam) equations.

Kuttler and Hicks [42:pg 1} address existence and uniqueness of a global weak solution

to
My + (P(Mz))z = (e{mz)mat)z = (¢, ). (17)
Their emphasis is on time dependent boundary conditions.

Other uses of similar theory are found in Euler Equations [2:pp 367-382), porous
medium systems [21:pg 86], and Navier-Stokes equations [36:pg 891]. But, it is time to

turn to equations more closely related to the current work.

1.8.2 Review of literature related to the current problem




Fitzgibbon [15:pg 536] addresses (11) as a specific example that comes under an ab-

stract formulation that he gives for a class of quasilinear evolution equations. He examines
uy + cAuy + Au = F(t,u,u) (18)

with appropriate initial conditions. The operator A is allowed to be unbounded, but it
does not depend on t or u. Also, « is a constant. When A4 is chosen to correspond to the
problem of Ball, it turns out that A is self-adjoint and —A is the generator of an analytic

semigroup, see also [71:pp 631-633]. Existence and uniqueness results are obtained.

Huang [23:pg 714] discusses the closely related equation
Uy + Bug+ Au=0 (19)

where B is related to A in a certain way.

Authors concerned with control theory still tend to use the more basic forms of the
equation while they concentrate on progress in the area of controls. For example, Lasiecka

and Triggiani [44:pg 330] and [45:pg 1]-use the relatively mple form
ug + Au = 0. (20)

(See also [39:pg 288], for a classical treatment)

Some recent uses of Kelvin-Voigt damping appear in [4:pg 1] and [6:pg 1391]. The
first uses it in solving for a material property as a distributed parameter. The second

solves for a displacement and stress field in a solid.
Standard treatments of semigroup theory are in [22], [19], [20], and [58].

Several authors have addressed numerical issues related to the implementation of
iterative schetes. An early paper discussing the convergence of difference schemes is {55:pg
321). For a semigroup style numerical analysis book, see as an example, [64]. Another
reference on discrete schemes, with emphasis on time dependent operators, is [57] Another,

with emphasis on nonlinearity, is [26].

10




1.8.8 Some methods of analysis

Two lines of argument, for analysis of the types of equations that have been men-
tioned, will now be briefly discussed. Many authors have written on these issues, but it is
not necessary to give a comprehensive review. The two lines of argument to be mentioned
are due principally to Kato and Crandall. A review of the bibliographies of the articles
cited will quickly lead to broad coverage of the topic.

The development of the theory of semigroups goes back several decades. It is appro-
priate to pick up the story with an article by Kato in 1953 [28]. The equation of interest,
in his paper, is

Lu(t) = A@Du(t) + £0). (21)

This is called an evolution equation because of the time dependence in the definition of

the operator A. He identifies conditions for the existence of a unique solution.

In the years following this publication, several generalizations were obtained. Most
of the extensions were in the direction of weakening one hypothesis or another. Of course,

the goal of such work was to widen the range of applicability of the theory.

The method of proof, of the existence of a solution, involves construction of a sequence
of operators which arc shown to converge to the operator in the original problem. The
modified problems corresponding to each of the new operators are solvable. Results which
confirm that the function, to which the sequence of solutions converges, is a solution to the
original problem are of interest. In this regard the paper of Trotter [70] and a correction

to the proof of one of its theorems by Kato [29] are applicable.

By the mid 60’s, nonlinear versions were receiving appreciable attention. Of course,
in this more complex setting, many distinct variations of a problem can cause it to fail to be
linear. Hence, the term nonlinear is used with several different meanings in the literature.
In some-cases it simply means that a function is set-valued rather than single-valued. If the
forcing function depends on the solution the term semilinear is used. When the operator
depends on the solution, the term quasilinear is used. The terms genuinely nonlinear

and fully nonlinear are alco encountered. Any of the above terms may be abbreviated to
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nonlinear in the literature. Hence, it is important to be wary of one’s own preconceived

notions of what the word suggests.

The 1971 paper of Crandall and Liggett [8] is considered definitive in bringing the
nonlinear problem well in hand. It establishes convergence of an exponential type limit

which converges to the solution, if one exists.

Also in the early 70’s, Kato was publishing in the area of linear evolution equations
of hyperbolic type [31] [32]. Recall that if the operator of an equation generates a strongly
continuous semigroup, then the equation is called hyperbolic. An equation whose operator

is the generator of an analytic semigroup is called parabolic.

By the mid 70’s, Kato was working on quasilinear evolution equations of hyperbolic
type [34] [35). In these papers, conditions are given for existence and uniqueness of solutions

and several applications are discussed. Specific applications are discussed in [24] and [33].

Through the 80’s, Crandall and Souganidis have published [9], [10], and [11] in the
area of noniinear equations. Their approach is to start with a difference scheme as an alter-
nate formulation of the problem. Then the convergence of the-scheme is addressed. This
approach appears to be more independent of the equation’s type. Further, the nonlinear
theory is developed directly as opposed to-being an extension of the linear theory. Special
effort is made to show that situations which satisfy Kato’s hypotheses also-satisfy those of
Crandall. But only in [11] does Crandall claim to have convergence results comparable to

those of Kato.

In the present work, emphasis is on thie theorems of Kato from [24] and [35]). An
excellent text by Pazy [58] incorporates, in well summarized form, a large portion of Kato’s
work. For onvenience, the text of Pazy will be cited for the introduction of terminology
and most of the preliminary results. Another text, which includes a summary of Kato’s

work is [27:pp 237-247).

Other works to broaden perspective include [14] and [53].
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1.4 Outline of what is to follow

The second chapter provides a discussion of the abstract version of (9). The discussion
includes basic concepts of the abstract theory and theorems which are sufficient to establish
the existence and uniqueness of a solution. Much of the work done in this setting is key to
the solution of the more general problem. A linear space and some operators are carefully
chosen and shown to have desirable properties. The abstract version of the problem that
has been formulated is shown to satisfy the hypotheses of appropriate theorems. Kelvin-

Voigt damping is then introduced, leading to the equation

Uy + (ﬂutrx)a:x + (auxz)a::c =0 (22)

and the individual cases of B a constant and § dependent on z are considered.

In the third chapter, o will be held constant and time dependent 8 will be considered.
This requires additional terminology and theory, which is presented. The cases 8 depends

on t, # depends on z and ¢, and finally, # depends on u are also considered.

The fourth chapter considers a case with a dependent on ¢t. This requires more

theory, which will be presented.
The final chapter summarizes conclusions and recommends specific further work.

Citations to the literature are in hrackets and can thus be distinguished from refer-
ences to equations. Throughout the paper the end of a proof is indicated by a box, like

this. ]
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II. Abstract formulations

In this chapter the basic cases are considered. There is quite a bit of terminology to
introduce. This is done in the context of solving the constant coefficient problem. Several

basic theorems are also presented.

2.1 Preliminaries for the constant coefficient case with no damping

The differential equation derived in Appendix A to approximate the unforced trans-

verse vibration of a beam with no damping is
fiyy + D2(aD2%i) = 0 (23)

where D, = 585 and a > 0 represents F”/m. The case for constant ¢ is not difficult.
Indeed, it is easily solved directly by product separation of variables, eg [49:pg 117-120].
Nevertheless, this simple case provides an opportunity to introduce terminology, notation,

and-a strategy for solution which will also be applicable to more complex cases.

The equation will be reformulated as a system of first order equations in t. Let

U3,
u(t) = ((’ )3 where the z dependence is suppressed. Explicitly, the values of u(t)
s(t, )

are elements of a function space which carries the ¢ dependence. For convenience, the
. . ! . .
usual notation will be u = . The functions u; and 12, when evaluated at any point
U2

in their domain, are required to satisfy appiopria.te boundary conditions.

The single higher order equation is now replaced with the first order system
u+ Au=0; t >0, u(0)=up (24)

where the vector variable u depends only on ¢. In order to keep the independent variables
clear, it is reemphasized that while 4; and uy are explicit functions of ¢, their values at a

particular value of ¢ are functions of 2. The vector variable u and the boundary conditions
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on its components are given by

w=| ] w(0)= w'(0) = u(1) = u'(1) = 0. (25)
U3

The operator A is given by
A= A1 = . (26)

The subscript on A is used to distinguish this particular operator from others that will be
introduced later. When A appears without a subscript, no specific operator is intended.
The operator D is a‘%_,—. The symbol 0 is used as a vector where appropriate without any
special notation. Also, the symbol 1 is used for the identity operator without special
notation. The domain of A; will be denoted by D(A;). The beam is assumed to be finite,

with length 1. The boundary conditions are as indicated.

2.1.1 Some definitions

Basic terminology is now reviewed to establish a foundation for discussion of the

abstract problem. The first definition is that of a semigroup [58:pg 1].

Definition 1 Let X be a Banach space. A one parameter family S(t), 0 < t < oo, of

bounded linear operators from X into X is a semigroup of bounded linear operators on X if

1. 5(0) = I, (the identity operator)

2. S(t+s) = S(t)S(s) for every t,s > 0.

There are several notions of continuity for semigroups. In this work, strongly continuous

semigroups [58:pg 4] are used almost exclusively.

Definition 2 A semigroup S(t), 0 <t < oo, of bounded linear operators on X is a strongly

continuous semigroup (abbreviated Cy semigroup). of bounded linear operators if

ltiﬂ)l S(t)z = @ for every z € X. (27)
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The terminology refers freely to semigroups of bounded linear operators (even when the

generators are not). This is appropriate, as the following theorem shows.

Theorem 3 Let S(t) be a Cy semigroup. There ezist constants w > 0 and M > 1 such
that

ISl £ Me*t for 0 < t < . (28)

Proof: See [58:pg 4]. . o

If w £ 0 the semigroup is said to be uniformly bounded. If, in addition, M = 1 then

the semigroup is called a Cy semigroup of contractions.

It may be possible to identify a generator (conceptually very much like a derivative)

for a given semigroup [58:pg 1].

Definition 4 The infinitesimal generator of a semigroup S(t) is the linear operator A

defined by

o Sz —z
Az = lfﬂ)l ——?—— , (29)

whenever this limit exists.

Notice the conceptual similarity of the generator to a derivative. Not all linear op-
erators are the generators of semigroups. And, some semigroups may have infinitesimal
generators which are only defined on a portion of their domain. The notion of an infinites-
imal generator (often referred to simply as a generator) is useful when its domain is dense
in the domain of definition of the semigroup; ‘e, the space X mentioned in the first two
definitions. The collection of all operators A such that —A is the infinitesimal generator

of a semigroup on X bounded by a particular **,w pair is denoted by G(X, M,w).

Later, it will be useful to invert operators of the form I — %A for rational A > 0. It
is appropriate to identify the values of A such that this inverse exists. Special attention is
given to values of A for which the inverse is defined on all of X. Some appropriate terms

are now introduced [58:pg 8].

Definition 5 The resolvent set, p(A), of A is the set of all complex numbers X for which
M - A is invertible. That is, (\] — A)™? is a bounded linear operator on X.
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Definition 6 The family R(\;A) = (M - A)7Y, for all X € p(A), of boundcd lincar

operators is called the resolvent of A.

2.1.2 Choosing an appropriate space X

The dependent space variable is suppressed in the notation of (24). In the original
formulation % = 4(t,2), but now the problem is formulated in a linear space, .X'. The
elements of X are functions of x which satisfy the boundary conditions of the problen.
Thus u is a function of ¢ and assigns, to each value of ¢, a unique element of .X'. The 2

dependence is hidden in the domain and is not explicit in the function.

It is reasonable to think of (24) as an ordinary differential equation over a lincar
space. This is referred to as the abstract formulation of the differential equation and is

known as an abstract Cauchy problem. To be specific, choose
X=qy= € H?[0,1) x H°[0,1) | 3, satisfies boundary conditions (25) . (30)
¥2

Here II” represents the standard Sobolev space (see Definition 8). Notice that X is a
vector space with each component coming from a Sobolev space. Tl . boundary conditions

are as specified in (25). The following lemma allows an alternate description of X.
Lemma 7 Ify € II? and y(0) = y(1)-= ¢'(0) = /(1) = 0, then y € IIZ.

Proof: See Appendix D. o

The particular boundary conditions under consideration make it appropiiate to apply

Lemma. 7 and describe X in the abbreviated form

X={y= ( n \ € HE[0,1) x H°[0,1) ;. (31)
\ %2/

The domain [0,1] will often be omitted in the sequel. Ilowever, it is intended for the

entirety of the paper.




For convenience, the standard Sobolev norm is defined. At this ;;oint the Sobolev
norm is only used to identify functions which are components of elements in the set X.

Points in the linear space X will have a norm to be specified momentarily.

Definition 8 The standard (L style) Sobolev space HP consists of those functions u such
that

S IDu, < o0 (32)

1=0

where D% = u and the norm is given by

p 1/2
llull e = (E IID‘uIlig) ~ (33)
i=0

The points (pairs of functions) in X have been identified and it is easy to see that
they form a linear space. It is desirable to have a Banach space, and hence, a norm must
be specified for the elements of X. Alternatively, it is appropriate to specify an inner
oroduct for the elements of X and let the norm be the one naturally induced by it. An
inner product will be specified and then it will be shown that X is a complete space under

the induced norm. A preliminary lemma is required.

Lemma 9 If z is absolutely continuous on [0,1] and 2'(z) = O almost everywhere, then z

s constant.

Proof: See [65:pg 105]. u]

An inner product is now presented. This inner product has been used previously in

[12:pg 16] and [35:pp 144, 147].
Theorem 10 The expression

u v 1 1
1 , 1 = / aD*uy D%y dx + / Uz d (34)
(%) V2 Y 0

where a is a pesitive constant, defines an inner product on X.
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Proof: This is shown to be an inner product in a straightforward fashion from the defini-
tion (to review the definition, see, for example [54:pg 272], [65:pg 210], or [73:pp 39-40)).
The necessity of having the boundary conditions in the definition of X becomes clear in
the details.

The only issue in doubt is that of positive definiteness. Suppose that

1 1
/ aD?u;D?uy dz + / Uotty dz
s s 0 0

\
1Y
U Uy \)

1 1

a/ (D2u1)2d:v+/ u3 dy
0 0

0. (35)

This requires each integral to be zero, and hence u;” and ug to be zero, at least almost
everywhere (a.e.). Since functions which only differ on a set of measure zero are treated
as identical, it is clear that us is zero. If the boundary conditions force u; = 0, then the

proposed inner product is legitimate.

Lemma 9 is now applied to show that if z € H? and 2" = 0 a.e., then z = 0. Indeed,
for z to be an element of H? requires fj(2”)?dz to exist. Since the domain of integration
is bounded, [j 2”dz exists. It follows that 2’ is absolutely continuous (a.c.). Since 2’ is
a.c. and 2’ = 0 a.e., the lemma says 2’ is constant. The boundary conditions on 2’ force
the constant to be zero. Thus, z is constant. The boundary conditions on z force this

constant to be zero also. Apply the lemma to u; and positive definiteness is clear.
This completes the proof of the theorem. o

The norm chosen for X is || - ||x = (,-)/%. The set X with this norm is the Banach
space that will be referred to in the sequel. (Since the norm comes from an inner product
it would be appropriate to call .~ Hilbert space. However, the more general term Banach

space will usually be used.)

2.1.8 Completeness of X

It is important that X be complete. This issue will now be addressed. Several

preliminaries are needed. As a matter of notation, || - ||, denotes the supremum norm.
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Lemma 11 If z € H? then ||z|iz, < ||2]lco-

Proof: It is important for the proof that the function have a bounded domain of definition.

ey = ([ #eae)

1 1/2
(et o)

= |lolle. O (36)

74N

Lemma 12 If z € H? then, ||2||lco < |2(0)] + ||']IL,-

Proof: Since z € H?, 2’ is square integrable. Since the domain is a bounded interval, it

follows that 2’ is integrable. Then [65:pg 101] z is given (a.e.) by

Az) = 2(0) + /0 " A(&)ds. (37)
It follows that
|2(x)| = |=(0)+ /:z'(a“:)d:f:
< 1)1+ [ (@
< 1=+ [ 140 |8
1

< 101+ [ 17(2) | a8
< 120) |+, (38)

The Schwarz inequality has been used in the last step. Since the right hand side is free of

z it follows that
l2lleo < 12(0) | + |1'lI, (39)

as desired. a

This lemma has an obvious corollary.

Corollary 13 If z € H? and 2(0) = 0, then ||2]|os < ||2]|L,-
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A similar lemma and corollary, for 2’ instead of 2, follow immediately. When z(0) =

2'(0) = 0, these combine to give

lzllz. € lzlloo < 1212, < 112'lle0 < l12"]I2,- (40)

When the above lemmas apply, the following composite result is available.

1/2|{ =2
Lemma 14 For the given norm on X, ||2l|zz < (%) !
0
X

Proof: This is proved by using the previous results.

1/2
(uzna + 11218, + 12”13, )

lellmz =
1/2
< (sl"1e,)"
1/2
1/2 z
= 3) o (41)
a 0
X

This concludes the preliminaries for an argument on the completeness of X.

Theorem 15 The space X, with the inner product introduced in Theorem 10, is complete.

Proof: Let {y,} be a Cauchy sequence in X. Recall that elements of X have two compo-
nents. To be explicit,

Na

{1} = (42)
Y2n
This will converge to a point y = n € X if and only if the first components of the
Y2

given sequence converge to 3 € HZ, and the second components converge to y, € H

Convergence will be addressed for each component separately. Keys to the strategy are
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the relationship

Yin Y1, 0
1 1 + (43)

Y2, 0 Y2

and the fact that (for the specified norm on X) that

Yin l Yin 0
= + . (44)

0 Yo

Y2n Ix X . x

Since the left hand side forms a Cauchy sequence, it is clear that each term on the right

hand side must form a Cauchy sequence. Now focus attention on the second term.

For each n, yo, € HO. Furthermore,

U = loalize. (45)

Y2, X

Hence, {y2,} is Cauchy in ||+ || zo. But, HO is complete by definition, eg [1:pg 44]. Hence,

there exists some g € H®, 92, — 2. This is the desired ys.

The case of y; is nearly as simple. Each element of {y,} is in HZ, and the strategy
is to find 4, in the complete space HZ such that y;, — y1. But, this depends on {y1,}
being a Cauchy sequence in the norm of HZ. This follows immediately from Lemma 14.

Thus {y;,} is Cauchy as a sequence in the complete space H? and converges, say to 1.

It is easy to see that n € X and it follows that X is complete. This completes

Y2
the proof of the theorem. (]

It is worth noting that the boundary conditions were important in these arguments.
Extension of the result to other boundary conditions is not trivial. Additional comments

on this point are in Appendix B.

2.1.4 Identifying the domain of Ay
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It is important to identify the portion of X on which A; makes sense and has its

image again in X. Let )

!
D(A)=<y= n € H' x HE | y, satisfies boundary conditions (25) 3.  (46)

Y2
Notice that the second components satisfy the boundary conditions. This is expressed in
the H2 notation and omitted from the specifier. Recall that the boundary conditions were
specified in (25).

Several comments are appropriate to prepare to establish that the domain of 4, is
dense in .X. First, note that it is sufficient to consider the components individually. Second.
in the way of notation, the collection of all functions which are infinitely differentiable and
have compact support on (0, 1) will be denoted C§°. (It would be moie staudard to wiite
('5°(0.1) so there is some abbreviation here.) Third. the collection of functions in //7

which satisfy the boundary conditions will be denoted II}.
Theocrem 16 For Ay in (26), D(A;) is dense in X.

Proof: The skeleton of an appropriate argument has been presented in [12:pg 19]. For

denseness of the first component it is sufficient to establish that ]_Ig D IT2. Note that

CECHICHECcHE=CF (47)

wlere the closure is with respect to the H2 norm. The first two inclusions are clear. The

last inclusion follows from Lemma 7. The equality holds by definition, cg [1:pg 45].

Note that Hj = A2 and that Hj is the first component of D(A;). Also, I D I3

and hence H3 D H g Denseness of the first components is now clear.

For the second component. it js sufficient 1o establish that JI2 D //0 Considor

CecliclH®cH=L,cCg (48)
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where the closure is with respect to the L norm. The last containment follows from

Theorem 2.19 of [1:pg 31] (see also [20:pg 253] or [54:pg 592]). Now the denseness is clear.

Since each component of D(4;) is dense in the corresponding component of X, it is

clear that D(4,) is dense in X. Q
Corollary 17 The inclusions H} C HZ C H° are dense.

2.1.5 Speciézl properties of Ay and its adjoint

Later, there will be a need for the adjoint, A}, of A;. Initial definitions and com-
putations are presented now. See [54:pp 352, 527], [63:pp 201, 215], or [73:pg 196] for

details.

Definition 18 The operator A* is called the adjoint of the operator A if (Au,v) = (u, A*v)
for all u,v € D(A).

The following derivation identifies the operator A} for A; defined by (26).

U n —u2 ( 2!
A ’

)
Ug () \ aD4 U1 \ Vo

= - ./01 D*uy D%, dz + o /: vo D%y, da

= —aDuy D%y |} +a /01 DuyD%v, dz
+av, D3y |} —a /0 ' Dvy D3y dz

= auy, D% |(1, - /0 ' usD*v; dz

1
—~aDv, D%y |} +a / D2y, D%y dz
0

Uy V2
\\ uz ) —aDiy
/ Uy \ 0 1 (%

= y (49)
\ % —-aDt 0 Vg
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where all of the boundary terms are zero and are dropped after their first appearance.

1t is interesting that A} = —A;. When this occurs, the operator A; is called skew-
adjoint. Since D(A;) = D(—4,) it foliows that D(A}) = D(A;). Thus, since A; is densely
defined, so is A}. (Actually, it is not quite this straightforward. Special care is required in
describing the domain of an unbounded operator. For 4; it is more complete to argue as
follows: Let y € D(A;) be given. The goal is to show that y € D(A}). This requires the
existence of some z € X such that for every z € D(41), (412,9) = (2,2). Let z € D(A;) be
given. By direct computation (4;z,y) = (z,—419). Choose z = —A;y. Since y € D(41)
and D(4;) = D(-4,) it follows that z € X. Thus y € D(A}) and D(4;) C D(A4}). The
argument here is reversible and the containment goes both ways. The equality of the two
domains is now clear.) The issue of A} actually being defined on the dual space has been

ignored since X is a Hilbert space and is identified with its dual (eg [73:pg 91]).
Another useful concept is that of the dissipative operator [58:pg 14].

Definition 19 A linear operator A is dissipative if ||( A — A)u|| 2 M|ul|| for all A > 0 and
all w € D(A).

The idea of an operator being dissipative is quite simple. If Au + u is in some way
less than u, then it is quite reasonable to call A dissipative. If u were a vector it would
be reasonable to think of Au as having a component in the direction of —u. This could
be validated algebraically by considering the inner product and requiring (Au,u) < 0. For
a definition that is acceptable in a Banach space it is reasonable to require u — Au to be
greater, in some sense, than u. If, for every A > 0, it happens that Au — Au is bigger than
Au, then it is certainly reasonable to call A dissipative. This is just what the definition

does.

The following lemma shows that, in a Hilbert space, the desired implication holds.
Lemma 20 If (Au,u) < 0 for every u € D(A), the;n A is dissipative.
Proof: Basic definitions are sufficient to establish the implication.
IOT = Ayl = ((M = A)u, (M - A)u)'/?
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= (Mu = Au, \[u — Au)}/?
(M, M) = (M, Aw) — (Au, M) + (Au, Aw))H/?
. (A2(u, ) ~ 2\(Au, v) + (Au, Au))/?

> (N(u,u) ~ 2X(4u,u)"?
> (W(u,u)"?
= Al © (50)

It is useful to establish that the operators A; and A} are dissipative. First, consider
A

Lemma 21 The operator Ay in (26) is dissipative.

Proof: Proof is by direct computation.

Al ]

1 1
- / D*u, D%y dz + o / ug Dy dz
0 0

1
= —aDusD%uy; |} +a/ DuyD3uy dx
0

1
tauD3uy |} —a /0 DuyD3uy dz
= 0. (51)

where the boundary terms are again zero. This is sufficient, by Lemma 20, to establish

that A is dissipative. 0

It is immediately clear that —A;, A}, and —A} = (~4,)* are all dissipative. This is
a convenience of having an equality when an inequality suffices in (51). Of course this was
not accidental, the choice of inner product made it happen. It is interesting to note how

such an inner product is chosen.
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If the usual Lg inner product is used, then the following computations are sufficient

to check whether 4, is dissipative.

(111 Uy , U /0 ~1 ul\’ ul)‘

1l
—_
R
g
-~
o

\ U Ug Ug / U2
U2 U
= ?
aD4u1 Ua
1 1
= - / uguy dx + / aus Dy dz (52)
0 ()

This quantity must be less than or equal to 0.

One strategy is to redefine the inner product so that everything cancels. Possible

replacements for — fol 1o dz would be

1
- / aug D, dz,
0
! 3
/ aDusDPuy dz, or
0

1
- / aD?up D%,y dz. (53)
0

Each of these, after the appropriate application of integration by parts would show A4,
to be dissipative by making the inner product exactly zero. The last candidate in (53)
corresponds to taking o times the Lo inner product of the second derivatives of the first
components. It has been verified in Theorem 10 that such a replacement leads to a legiti-

mate inner product.

2.1.6 Closedness of Ay
It is also important to establish that the operators A; and A} are closed. A definition

is first given. See [54:pp 241, 529), [63:pg 300}, or [73:pg 77).

Definition 22 A linear operaior A is closed if, when any pair of sequences {z,} C D(A) C
X and {y,} = {Az,} C X both converge, say z, — = € X and y, — y € X then z € D(A)
and Az = y.
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Lemma 23 If A is a closed operator, then so is —A.

Proof: This is clear from the linearity of the space and the equality D(4) = D(—A). O

The proof of the theorem that will be used to establish closedness of A; requires a

lemma.

Lemma 24 Let (+,-) denote an inner product on a linear space X. For fized z € X, let
f(y) = (2,y). Then f is continuous. That is, the inncr product is a continuous function

of ils arguments.

Proof: See [20:pp 179-180] or Appendix D. a

There will be several occasions to use the next result [54:pg 529]. It is actually a
special case of the theorem cited. An additional hypothesis that A be closable and an
additional result that D(A*) is dense are omitted. (The proof of the omitted portion is
relegated to guided exercises in [54:pp 531-532). A different proof is in [25:pg 172]. See
also [63:pp 299-300].)

Theorem 25 Let A be a densely defined linear operator on a Hilbert space H. Then the

adjoint, A*, of A is a closed operator.

Proof: Let uf — u* and A*u} — w* with u}, € D(A*) for all n. By the definition of
adjoint, (Au,u}) = (u, A*u}) for all u € D(A). From the continuity of the inner product it
follows that (u,w*) = (Au,u*). But, again recalling the definition of adjoint, u* € D(A*)
if there is some z € X such that (Au,u*) = (u,2). When this occurs z = A*u*. Clearly,

z = w* is the element needed and A*u* = w*, Thus u* € D(4%).

This establishes that A* is closed. o
Lemma 26 The operaior —A;, in (26), is closed.

Proof: Recall that A} = —A; and that D(A]) = D(4;). Thus, since D(A;) is dense in
X so is D(A}). (A more general approach would be to apply Theorem 1.4.5.c of [58:pg 15]
and Theorem 7.10.3 of [54:pg 529], but this is not necessary in the present case.) Then,
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by Theorem 25, A}* is a closed operator. But A}* = A; (It is almost trivial to verify this
directly. It is not surprising in the Hilbert space setting, for example see [54:pg 353] for the

case of bounded A.) so 4; is a closed operator. It is immediate that — A4, is also closed. O

2.1.7 The generator of a Cy semigroup of contractions

It is important that the operator —A; be the generator of a Cp semigroup of con-

tractions. This is an immediate result of the next theorem.

It is useful to note that the literature is not uniform in the use of A and —A. This
resultc from the form in which the original differential equation is written. That is to say
ut + Au = 0 and u; = Au correspond to opposite sign conventions. Also, some authors
use accretiveness instead of dissipativeness which leads to opposite sign conventions. It is
important to be self-consistent. Nevertheless, it frequently requires a conscious effort to

keep this, somewhat annoying detail, straight.
The next theorem provides a useful tool for establishing that certain operators are

the infinitesimal generators of Cp semigroups.

Theorem 27 Let A be a densely defined closed linear operator. If both A and A* are

dissipative, then A is the infinitesimal generator of a Co semigroup of contractions on X.

Proof: See [58:pg 15] or [40:pg 87, Theorem 4.4]. o

Corollary 28 The operator —A; wn (26) is the generator of a Co semigroup of contrac-

tions.

Proof: It has been established in the preceeding subsections that the hypotheses of the

theorem are satisfied. Hence —A; is the generator of a Cy semigroup of contractions. O

2.2 Remarks

It is interesting to note that A, is, in fact, the generator of a group. (Use Theorem
27 on A* and A**. Also, see [19:pg 22, 2.16, pg 32 Theorem 4.7}, and [58:pg 22, Theorem
1.6.5 and pg 41, Theorem 1.10.8].) This fact is not of any immediate interest. However,
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it is appropriate to note that this feature can be useful. For an example, see [43:pg 745)

where it is used in a controls problem.

A distinctive feature of this work is the attention to hyperbolic problems. This means
that — A4, is the generator of a Cp semigroup but not necessarily of an analytic semigroup
[35:pp 128-129). If it were the generator of an analytic semigroup then the theory of
parabolic equations would apply, eg [16:pg 108). It is appropriate to verify that the current
problem does not fit into the more specialized category. This is proved in Anpendix C to

avoid too much of a distraction at this point.

2.8 Finishing up for constant a

It is time to complete the constant coefficient problem. The preliminaries have been
rather complete and have included verification of the hypotheses of the existence theorem
to be presented now. The next theorem guarantees the existence of a unique C? solution
to (24) for any ug € D(A). A solution is an X valued function u(t) that is continuous on
[0,00), continuously differentiable on (0,00), has u(t) € D(A) for all ¢ > 0, and satisfies
the differential equation (24) for all ¢ > 0 [58:pp 105, 139].

2.3.1 The existence theorem

Theorem 29 Let the operator —A be the infinitesimal generator of a Co semigroup S(t).
Then (24) has a unique solution u(t), which is continuously differentiable on [0,00), for

every initial value in D(—A).
Proof: See [58:pp 102-104]. ]

Theorem 30 The abstract Cauchy problem (24), with A replaced by A, has a unique

classical solution.

Proof: To see that the hypotheses of the preceeding theorem are satisfied, it suffices
to review Theorem 16 and Theorem 27 (which in turn depends on Lemma 21 and the

comments following it). This theorem now follows fromn Theorem 29. m]
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This completes the existence and uniqueness argument for constant o > 0. The

solution is given by

u(t) = S(t)uo (54)

where S5(2) is the semigrcup generated by —A4;.

2.8.2 Continuous dependence

It may be that uo is not known exactly, or even if it is known, it may be that it
cannot be represented exactly. In either of these cases it becomes important to know
whether small changes in ug lead to only small changes in u(t). This is usually referred to

as continuous dependence of the soi. ‘ion on the data.

For the current problem, 5(t)-is a Cp semigroup of contractions. This means that

[ISl| £ 1. Hence, the following theorem is straightforward.

Theorem 31 The unique classical solution of (24), with A replaced by A,, depends con-

tinuously on the initial data.

Proof: Suppose i is an initial condition, possibly different from ug. Let € > 0 be given.

For t > 0, let 4(t) = S(t)do. Then

[u(®) - 2@llx = [S()uo - S(t)dollx
= ||5()(uo — do)llx
< |ISlx lluo — foflx
< luo — dollx - (55)
Choose § = ¢ and the continuity of the dependence is established. (=

2.3.8 Constructing a solution

Before consideration is given to generalizations of the problem, it is appropriate
to consider how the solution, whose existence has just been established, can actually be

obtained.
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If the operator —A is bounded, and the infinitesimal generator of a Cp semigroup,
then the solution to (24) is given by u(t) = e~*4uy. Since A; in (26) need not be bounded,
limit definitions (with the same flavor as that of e~*4) must be carefully analyzed to assure
convergence. But, the conditions which assure that — A4, is the generator of a Cy semigroup
do just that. When it exists, e~*4 is the semigroup $(t). This motivates the terminology
for —A as the generator of S(t). The solution always has the form u(t) = S(t)uo. The key
issue in applications is to determine when S(t) can be determined from A. When S(2) can

be obtained, the first compohent of u(t) is the solution to the original problem.

Here is one way of obtaining a semigroup [58:pg 33].

Theorem 32 Let S(t) be a Cy semigroup on X. If A is the infinitesimal generator of S(t)
then

. t \™" . [n,(n "
Stz = Jim (I— ;;A) ¢ = lim [;—R (-t;- : A)] T (56)

for z € X, and the limit is uniform in t on any bounded interval.

Proof: See [58:pp 34-35]. A more general development is presented later in the same

reference, [58:pp 89-92]. O

In the event that the operator A is either not known precisely or cannot be represented
precisely, it is of interest to know whether the semigroup generated by an approximate A4 is
close to the semigroup that would have been generated by an exact A. This has the same
flavor as the continuous dependence considered above. Indeed, it would be appropriate to

ask whether the semigroup depends continuously on the generator.

Results of this type are obtained by considering a sequence A, which is assumed to
converge to A in an appropriate sense. The question is whether the corresponding semi-
groups Sy(t) converge to the semigroup generated by A. Formal results in this direction
often consider also whether A depends continuously on S. Results of this type are referred
to as Trotter or Trotter-Kato theorems. (Trotter presented the pioneering work in the

linear case. Kato corrected an error in the published proof.)
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For results applicable to the current problem, see [58:pp 35, 84-89], [19:pp 44, 48],
or [73:pg 269]. The results are that three distinct convergences are in fact equivalent: the

operators, the semigroups, and the resolvents of the operators.

The works of Crandall, eg {10] and [11], provide an alternate approach. The alternate
approach will not be pursued here. However, it is appropriate to note that it started with a
fundamental paper in 1971 [8]. The key theorem has a somewhat sketchy proof. A detailed

version is provided as Appendix E.

2.4 Spatially dependent coefficient

Consider uy; + D?(a(z)D?u) = 0. Assume that o is continuously differentiable with
respect to z and for some @pin > 0, () > otmin >0 for all z € [0,1]. Choose the space X
and its inner product as before. For the validation of the inner product to go as before, the
strict inequality in the requirement a(z) > 0 is necessary. This is because {35) must hold
with a inside the integral, otherwise the argument is unchanged. This time {le operator

is defined as follows:
0 -1
A == : (87)
D*(-)D?) ©
Clearly A is a linear operator. Note that D(A2) = D(4;). In crder to determine A3 let
u € D(Az) be given, then

Uy / n —1Ug V1

Az ) ’
Uup k vy D?(a(-)D?)uy v2

= - /0 ' o(z)D*uy D?v; dz + /0 ' v,D%(o(z) Dy ) d

= —afz)DusD?v |} + /01 DuyD(o(z)D?v,) de
+v2D(o(z)D%uy) | - /01 DvyD(a(2)D?uy) de

= upD(e(z)D%v)) |} _./01 up D*(a(x)D%v;) do

1
~Dvya(z)D?uy |} +/ a(2)D%uy D?v, dz
0
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- (31 : 0 1 ()1 \l (58)
/

U2 —D"’(a(z)Dz) 0 (1))

where al. of the boundary terms are zero.

0 1
Observe that 43 = and hence, as before A5 = —A4,. Since the

~-D¥a(-)D?) 0
steps are reversible, it is easy to see that (A3)* = —Aj = (—~A42)* = A;. By Theorem 25,

—Aj is closed.

Next, it is necessary to show that — A, is dissipative. For u € D(Az)

U Uy U2 U1
- A2 )

g ug —D?(o(-)D%u) "\ w

1 1
= / o(z)D*up D%y da:—/ u2D*(a(z) D) da
0 0
1
= o(z)DupD’uy |} —/ Duy D(a(z)D%uy) d
0

—uyD(a(2)D%uy) |§ + /: Duy D(o(z) D) dz
= 0 (59)

where again the boundary terms are each zero.

Clearly A is also dissipative in this case. But Az = (—A2)* and thus (—A4)* is
dissipative. Now all of the theorems apply as in the case of constant o and guarantee the

existence of a unique solution to the differential equation.

2.5 Constant coefficient Kelvin-Voigt damping

Consider uy + Blizrzr + QUggrr = 0 with u(0,2) = ug, us(0,2) = uyo with the

boundary conditions as before. Throughout this section « is a positive constant. To begin,
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U 0 1 7N
= ', (58)
ug —D*(a(z)D?) 0 vy

where al. of the boundary terms are zero.

0
Observe that A3 = and hence, as before A3 = —A,. Since the

—-D%(a(-)D?) 0
steps are reversible, it is easy to see that (43)* = —A3 = (—A2)* = A2. By Theorem 25,

—Aj is closed.

Next, it is necessary to show that — A, is dissipative. For u € D(A2)

(5] L5 U2 (31
_A2 ]

?
up up —D?(a(+)D%uy) up

1 1
= / o(z)D*ug D?uy dz — / upD*(a(z) D%y ) d
0 0
1
= afz)DuD%uy |} —/ DuyD(e(z)D%uy) da
0

—upD(a(2) D) [} + /01 DuyD(e(z)D?uy) dz
=0 (59)

where again the boundary terms are each zero.

Clearly A, is also dissipative in this case. But Az = (—A2)* and thus (—A4)* is
dissipative. Now all of the theorems apply as in the case of constant o and guarantee the

existence of a unique solution to the differential equation.

2.5 Constant coefficient Kelvin-Voigt damping

Consider g + Buizzes + QUzrrr = 0 with 4(0,2) = u, u(0,2) = ug with the

boundary conditions as before. Throughout this section « is a positive constant. To begin,
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1
BDusDus |} - / (D)2 de
0
0 (64)

IA

since 8 > 0.

The next task is to identify (—43)*.

Uy (1 U9 "
--A3 ’ = ' (65)
Ua Vo —aD“ul - ﬂD4U2 V2

= a‘él D?us D%, dz — a/: vo Dty dz — /01 vo D4us dz
= aDuyD%u |} —a/ol Duy D3vy dee — ava D3y |}
+a /01 Dy D3y de — Bvo D3uy |3 +8 /01 Dvo D3y, dz
= —ous D30 |} +o /01 upD*vy de + aDvy D?uy |3
— /o ' D%, D%y do + BDup D% |} /0 " D%, D%y da
= —a /01 D%, D%uy dz + j{: up D%y dz — BDuy D%, |§ +8 ./: D3y, Dug dz

1 1 1
= —a/o D*vy D%y, d + a/ u D%, dz + Bua D3, |}, —-ﬂ/ DYvoug dz
0 0

U 0 -1 v
_ (), : (66)
Uz QD4 —ﬂD4 ()
0 -1
Thus (-A43)* =
aD* --pD*

Notice that this opzrator is not skew-adjoint. Hence, the operator — A3 is not the

generator of 2 group as in the previous cases.

It is necessary to check whether the operator (—Agz)* is dissipative. The details here
follow as for — A3 except for a few sign changes in the intermediate steps so that the result

is the same, and consequently, the details are omitted.
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It is also important that —As be a closed operator. But the adjoint of a densely
defined linear operator is always closed (see Theorem 25). Since, in the present case
.—Az = ((~A3)")* and (—A3)* is densely defined (same domain as Asz), then —A3 is closed

as desired.

The existence of a unique C! solution, u(t), to (60) for any ug € D(4s) is now

guaranteed by Theorem 27 and Theorem 29.

2.6 Spatial dependence in the damping coefficient

Consider uy; + D?(8(z)D%u;) + aD*u = 0. Assume f(z) > 0 for all z € [0,1], and «

a positive constant as before. Formulate the abstract system as before with the operator

A=A4=( 0 -1 \ (67)
aD* DHE(ID?) |

defined as follows:

Note that D(A4) = D(As). It will now be established that —A4 is dissipative. The
details follow the pattern of the case for constant 8. Boundary terms are zero as before.
The symbol / and the symbol D will both be used to represent differentiation with respect
to the spatial variable. Let « € D(A4) be given. Then,

0 1 Uy Uy
—-Asu,u) = ,
. (\-aﬂ‘* —D2<ﬂ<->D2>)(uz) ())
- Ug (51
~aD%y - D*(B(-)D?%u) | '\ us

1 1
= & [ " dz + / (—01D4u1 - Dz(ﬂ(“’)Dzw)) Uy dz
Jo 0

1 1
= au'u" |} —a/ ug'uy" dz — auguy" |} 4o / up'u™ da
0 Jo
1
~0D(B(@&)D*u) b + [ 4/ D(B()D%uz) do
1
= uy'f(z)D%u;y |3 —/0 up"B(z)up” uz

= - [ B is (68)
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and this is clearly not positive since f(z) > 0 for each z.

Next the adjoint (—A4)* of —A4 will be computed. Again the details follow as in the
case for constant 8. For u € D(A4),

2o o) (22
\—aD" —-D*(3(-)D?) w |\ v

(
\
( ( Ug V1
- \\ —aD4uy — D?(B(-)D%u,) ) ’ ( vy ))

1 1
= a/(; ug"vl"dx—A (aD“ul +D2(ﬂ(x)D2u2)) vodz

(_A4u9 v)

= au'v" |} —a/ol up'ny" dze — avouy™ |} +a _/01 vo'uy" dx
—u,D(B(z)D%u2) 5 + /0 " 02’ D(B(z)D%us) de

= —aun™ |} +a /: ugD3vy dz + avo'uy” |§ —a /01 va'luy" dz
+vo'B(2)u” |} - /: v B(z)uy" d

= - /01 v"uy" da 4 a‘/: up Doy dz — v B(z)ug" |} + /01 uy' D(B(z)ve") d

1 1 1
= —a/(; vo'uy" dz + a/o ug D4y dz + ua D(B(z)vs") |3 -—/0 up D?(B(x)ve") d

(.3

(2, (=A4g)*0). (69)

Therefore,

[ o 1)

The argument to show that (—A4)* is dissipative follows the estab.ished pattern and

has the desired result.
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The domain, D((—A4)*), of (—A4)* is the same as D(A4). This is clear from an
inspection of the operators. Hence (—A4)* is densely defined. Note that ((=44)*)* = —44
and thus — Ay is closed by Theorem 25.

Existence of a C? solution in now assured by Theorem 27 and Theorem 29 as before.

2.7 Chapter summary

Basic theorems of semigroup theory have been reviewed and the concept of abstract
formulation of a differential equation has been discussed. A careful description of a linear
space and a careful selection of operators have been provided to demonstrate the termi-

nology. The hypotheses of an appropriate existence theorem were shown to be satisfied.

The beam equations for constant and spatially varying a have been considered. Also,
for constant a, the cases of constant and spatially varying 8 have been considered. Exis-

tence and uniqueness of solutions has been established.

In the next chapter, consideration is given to a nonautoromous problem. All of
the present chapter’s concepts will be needed there. Additional concepts will also be

introduced.
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IIl. The nonautonomous problem

In this chapter the coefficient of damping is allowed to vary with time. A suitable
theory for this case will be presented. Combined temporal and spatial dependence is not
difficult once the time dependent case is complete. The case of a time dependent « is also

treated. This will require the introduction of an additional theorem.

3.1 An overview of the simple nonautonomous case

Consider uy+D?(8(t) D?u;)+aD%*u = 0. Assume a > 0and 8(t) > 0for allt € [0, 7).
Furthermore, f is assumed to be continuously differentiable, As before, formulate the

problem as the abstract system

uy + Au = 0; u(0) = ug (71)
where now,
0 -1
A= AQR) = 45 = (72)
aD? p(t)D4

where D(As) = D(A3). Note that for each t this behaves the same as in the case of

constant 8. The arguments for the adjoint and dissipativity are not repeated.

Because of the explicit time dependence, (71) is called an evolution equation. For
each ¢ > 0, the previous arguments apply to establish that —As is the generator of a Cp
semigroup of contractions which provides a solution as before. If (2, is suitably smooth
it is reasonable to expect to be able to piece together, from the solutions for individual
values of ¢, an overall solution. However, the theorems which gave solutions for individual
values of ¢ do not guarantee the necessary behavior (eg continuity, differentiability) for

their composite to be a solution of the evolution equation.

The solution strategy is as follows. At ¢ = 0 the state of the system is specified.
The solution of the equation for 3(0) is some surface, as in Figure 2. But, since § changes

with time, this solution is only accurate for small values of ¢. Suppose T', the largest value
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Figure 2. The initial solution

of interest, is larger than the interval for which the solution based on §(0) is sufficiently

accurate. Then an iterative procedure is used. This will be briefly outlined.

Let 0 =15 < ¢1 < 13 < +++ < t, = T describe a partition of [0,T]. Apply the
results of the earlier work to the constant coefficient case corresponding to §(0). Let
i(t) = So(t — to)uo on [to,1], where Sp is the semigroup generated by —As(0). Then
@(t1) is an estimate of u(?;). Apply the earlier work again, this time for the constant
coefficient B(t1). This gives @(t) = S1(t —t1)d(t1) on [t1,22). Take 4(22) as an approximate
value for u(t2). If (1) is appropriately smooth then a solution with any specified accuracy
is possible by choosing a small enough upper bound on maz{t; — t;-1| j = 1,2,--+,n}.

Conceptually, this is like Euler’s method in numerical analysis.

In this section, necessary conditions for the solution strategy to make sense are
identified. This will be preceeded by appropriate introductions of additional terminology

and theorcms.

In the earlier solution strategy a semigroup S(¢) was obtained from its infinitesimal
generator —As. But As = A(t) depends on ¢ and there is some risk of confusion of
parameters. The semigroup generated by —A(t) will be denoted Sy(s). Suppose now that
a limiting operator, which always uses the current element of the semigroup, is desired.
This might be represented by something like S;(s), but this would certainly be confusing.
An operator is needed which can propogate from some time s to some time ¢ while using

the appropriate element of the semigroup at each instant of time.

The common choice of notation for this situation is U with two parameters. Namely,

U(t,s) is used for the desired operator, when it exists. The term evolution system is used
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to refer to U(2, s). (Some authors uce the term evolution operator.) So, while U and S play
roles which are conceptually very similar, the terminology is quite different. The following

standard definition is taken from [58:pg 129].

Definition 33 A two parameter family of bounded linear operators U(t,s), 0< s <t L T,

on X is called an evolution system if the following two conditions ere satisfied:

1. U(s,s)=1, U(t,»)U(r,8)=U(t,s)fos 0< s <r <t LT

2. (1,8) — U(t,s) is strongly continuous for 0 < s <t < T.

When there is an evolution system corresponding to a problem with a time dependent
operator, the evolution system is used to produce a solution in the same way a semigroup

is used for the autonomous case. That is, u(t) = U(t, 0)uo.

Notice that property 1 of an evolution system (Definition 33) says that small steps

and large steps give the same result as long as the ultimate end points are the same.

With As allowed to depend on ¢, the same basic ideas as before are still applicable. It
is necessary, however, to modify the requirements on As to assure existence of a solution.
Of course some smoothness of the map ¢ — A(t) is required. The map is required to be
continuous and also the concept of a stable family {A(t)}:¢(o,} is introduced. Further,
since As is allowed to change as ¢ changes, there is the possibility, for an iterative scheme,
that the image of As(t1) would fail to be in the domain of As(¢2) (see Figure 3). This
would cause the iterative scheme to fail. It is useful to identify an appropriate subspace Y,
Y C X, such that for all ¢ € [0,T), it happens that ¥ C D(A(t)). In this regard the notion
of Y being A(t)-admissible is presented. Such a Y will not be very meaningful unless it is

dense in X. This will be required.

When a solution is obtained in Y, it is termed a Y-valued solution [58:pp 138-140].
This is not a significant restriction for the application under consideration since Y will be

all of D(A). However, the properties of Y-valued solutions are useful.

Definition 84 A function u € C([0,T] : Y) is a Y-valued solution of the initial value
problem (71) if u € C((0,T): X) and (71) is satisfied in X.
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Figure 3. The different domains

Theory sufficient to es.tablish the existenc? of a unique solution is presented in the
next section. The development is gradual in that several of the theorems will be minor
extensions of the immediately preceeding theorem. While this means there will be some
overlap, it also has the advantage of step by step development. Most of the proofs will be
by citation only. That is, while all the theorems are available, is seems prudent to gather

statements of the theorems together here. It is not necessary to reproduce all the proofs.

3.2 The simple nonautonomous case

The specific probiem introduced in (71) and (72) is now addressed.

3.2.1 Some technical preliminaries

A fundamental concept is that of a stable family [58:pg 130].

Definition 35 A family {A(t)}icjo) of infinitesimal generators of Co semigroups on a
Banach space X is called stable if there are constants M > 1 and w (called stability con-
stants) such that

o(A()) D (w,00) for all t € [0,T] (73)

and

ﬁ RO : A(t))| € M() =~ w)~F (74)

i=1

for A > w and every finite sequence 0 < t; <ty << H < Tk =1,2,-.-
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For k = 1 this is just the resolvent condition for an individual operater A to be the
generator of a Cp semigroup [58:pg 12, Corollary 1.3.8]. Stability of the family essentially
means that the bounds on the resolvents of individual operators A(%;) can be combined
to give a bound on the composition of resolvents of A(t;)’s. There are other conditions

equivalent to (74), eg [58:pg 131, Theorem 5.2.2).

The next theorem is a standard, very powerful, result.

Theorem 36 (Hille-Yosida) A linear operator A is the infinitesimal generator of a
Co semigroup of contractions S(t), t > 0, if and only if A is closed, D(A5 = X, and
the resolvent set p(A) of A contains R*, and for every A >0

IlB(A = A)]| < 1/ (75)

Proof: See [58:pp 8-11]. 0

There will be several occasions to use the following criterion to establish that a

particular family is stable.

Lemma 37 If, for each t € [0,T], A(t) generates a Co semigroup of contractions, then
the family is stable.

Proof: This is a straightforward application of Definition 35. For contraction semigroups
it is appropriate to choose w = (. Then, for each ¢;, appeal to Theorem 36 to bound the

resolvent by 1/A. Now it is clearly suitable to choose M = 1. ]

Now the phrase A-admissible will be defined [58:pg 122].

Definition 38 Let S(1) be a Cyp semigroup and let A be its infinitesimal generator. A
subspace Y of X is calied A-admissibie if it is an invariant subspace of S(t), t > 0, and the
restriction of S(1) to Y is a Cy semigroup inY (e, it is strongly continuous in the norm

[l -1y )-
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3.2.2 Key theorems

A first step toward finding the evolution system for (71) is given ir the following
theorem [58:pg 135]. The space Y in the theorem bas not yet been chosen. When the
choice is made, it will be with these hypotheses in mind. The points of Y will come from
X and the restriction, of an operator A, to Y will be called the part of A in Y and be

denoted by A. When it is time to apply these th rems, the place of A will be taken by
—As defined in (72).

Theorem 39 Let A(t), 0 <t < T, be the infinitesimal generator of a Cy semigroup Sy(s),
$ 20, on X. Suppose the family {A(t)}seio,) satisfies the conditions

1. {A(t)}ieo,myis a stable family with stability constants M,w.

2. Y is A(t)—admissible for ¢ € [0,7] and the family {fi(t)}te[o,T] of parts A(t) of
A() in Y, is a stable family in Y with stability constants M, .

3. Fort € [0,T}, D(A(t)) DY, A(%) is a bounded operator from Y into X and ¢ — A(2)

is continuous in the B(Y,X) norm |} - |ly~x.
Then, there ezists a unique evolution system U(t,s),0 < s <t < T, in X satisfying

L U@, 8)|| € Me*t=9) for 0 < s <t < T
2, %U(t,s)v li=s= A(s)v forveY, 0<s<T.

3. %U(t,s)v =-U(t,s)A(s)vforveY, 0<s<t<T.

The derivative from the right in the second item and the derivative in the third are in the

strong sense in X.

Proof: See [58:pg 135-138]. o

The properties of U established in the theorem are useful in demonstrating the
uniquenass of the candidate solution it generates. The portion of the proof which describes
the construction of the evolution system is repeated here for convenience and because of

its role in the construction of a solution.
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Consider an approximation of the family {A(t)}:c[o,7) by piecewise constant families

{An(O}ieo1p 7 =1,2,. ., defined as follaws: Let 17 = (k/n)T, k=0,1,...,n and let

An(t) = A(f)forff <t<tf,y, k=0,1,...,n-1 (76)
An(T) = AD).
Since t — A(t) is continuous in the B(Y,X) norm it follows that
[1AQ?) = An@®)|ly=x = 0 as n — o0 (77)

uniformly in ¢ € [0, T). From the definition of A,() and the hypotheses of Theorem 39 it
follows readily that for n > 1, {An(t)}i¢po,r) is 2 stable family in X with constants M,w
while {-‘in(t)}te[o,T] is a stable family in Y with constants M, .

Next, for each n define a two parameter family of operators U,(2,s), 0 < s<t<T

by,
Sp(t—s)fort} <s<t <y,

Un(t,s) = Sip(t— 1) [TTizha Sz (Z)] Sip (8 — o) (78)
fork>1, ¢ <1<, HSs <My,

It is straightforward to verify that Uy (2, s) is an evolution system. Then, let
U(t,s)e = lim Un(t,s)zforz € X, 0<s<t<T. (79)

Details of the proof that this limit exists and is an evolution system are in [58:pg 135-138].

Now consider the associated uniqueness result.

Theorem 40 Let {—A(t)}s¢o,r) be a family of infinitesimal generators of Co semigroups
on X satisfying the conditions of Theorem 39. If the initial value problem (71) has a

Y-valued solution u, then this solution is unique; and moreover, it is given by

u(t) = U(t,sh (80)
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where U(t,s) is the evolution system provided by Theorem 39 and v is the value of u al

timet=s.

Proof: See [58:pg 140]. ]

The next theorem completes the list of properties required of U in order to guarantee

existence of a solution. In its proof, the need for results so far obtained becomes clear.

Theorem 41 Let {A(2)}efo,1) satisfy the conditions of Theorem 89 and let U(1,s), 0 <

s L1 LT be the evolution system given in Theorem 39. If

L UA,s)Y CY for0<s<t<T and

2. ForveY, U(t,s)vis continnousin ¥ for 0<s <t LT

then for every v € Y, U(1, $)v is the unique Y —valued solulion of the initial valuc problamn

du(t)/dt= A)u(t) for 0 < s <t LT (81)
u(s) = . (82)
Proof: See [53:pg 141]. o

3.2.3 A strengthened hypothesis

An alternative for the second hypothesis of Theorem 39 is now presented. It will
be referred to as condition 2*. This condition appears in [35:pg 138]. It will be used to

establish the additional hypotheses of Theorem 41.
(2*) There is a family {Q(t)}sefo,7} of isomorphisms ([54:pg 173] or [65:pp184, 199])

of ¥ onto X such that for every v € Y. Q({)v is Lipschitz continuous in .\ on { € {0.7]

and
QHAMQ) ™ = A() + B(Y) (83)
where B(t), 0 <t < T,is a strongly continuous family of bounded operators on X.

The next lemma establishes that this is indeed at least as strong a condition as

hypothesis 2 of Theorem 39.




Lemma . dypothesis 1 of Theorem 39 and condition 2% imply hypothesis 2 of Theorem
39.

Proof: See [58:pg 142]. The condition 2% is not as strong as the corresponding condition
in the reference. Yet, the proof carries over with no essential modification. Also, see

comments in Appendix D. o

Next it will be showr. that the condition 27 is, in fact, stronger than hypothesis 2 of

Theorem 39. A preliminary lemma is appropriate.

Lemma 43 Let U(l,s), 0 < s <t < T be an evolution system in a Banach space X
satisfying U, s)| < M for 0 < s £t < T. If H(t) is a family of integrable linear
operators in X such that for almost every t, ||H(t)|| < H < oo, then there exists a unique

family of bounded linear operators V(t,s),0 < s <t < T on X such that
t
V(t,s)z = U(t,s)z + / V(@,7)H(r)U(r,s)zdr for z€ X (84)
3
and V(t,s)z is continuous in s,t for 0 < s <t < T.

Proof: The proof is standard for Volterra integrals of the second kind. For details see
[58:pp 142-143]. The hypothesis of integrability is replaced, in the reference, with strong
continuity. But, with the bound H described in the hypothesis, the cited proof holds with

no essential modification. o

Theorem 44 Let A(t), for 0 <t < T, be the infinitesimal generator of a Cy semigroup on
X. If the family {A(t)}:¢[o,1) satisfies the conditions 1 and 3 of Theorem 39 and condition
2%, then there exists a unique evolution system U(t,s), 0 < s <t < T, in X satisfying the

following 5 conditions:
1 |U@ )| < Met=9) for 0< s <t < T,
2. %U(t,s)v li=s= A(s)v forve Y, 0<s < T,
3. £U(t,s)v=-U(t,s)A(s)vforveY, 0<s<t<T,

4. U@t,s)Y CY for0<s<t<T, and
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5. Forv €Y, U(t,s)v is continuousin Y for 0< s <t < T\

Proof: See [58:pp 143-145]. Some comment on the cited proof is appropriate since the
condition 2% in this worI; is weaker than the corresponding condition in the reference.
In the reference, @ is required to be contin‘uously differentiable. Then Q represents the
derivative. In this work, @ is only required to be Lipschitz continuous. But Lipschitz
continuity implies absolute continuity which implies that there is some integrable function,

which will also be denoted @, such that

2 =)+ [ 4 ()

A similar result is obtained in [38:pp 505-507].

It follows that @ is differentiable a.e. with the derivative given by Q wherever the

derivative exists.

The boundedness of Q! and the differentiability of @ a.e. lead to the differentiability

of Q71 a.e.. Where it exists, the derivative is given by

% (@) 2) = -y QMRE) . (86)

With these observations, the proof goes through as cited. o

These results can be combined as a corollary, as in [58:pg 145].

Corollary 45 Let {A(t)}ieo,r) be a family of infinitesimal generators of Co semigroups
on X. If {A(t)}iejoq) satisfies the hypotheses of Theorem 44 for every v € Y then the

initial value problem

du(t)/dt = A(t)u(t) for s <t < T, (87)
u(s) = v, (88)

has a unique Y -valued solution, u, on s <t < T,

3.2.4 The existence theorem for solving (71)
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The problem of solving (71) will fall under the following special case of Corollary
45. The theorem is to be applied to —As, as discussed previously. The next theorem is a

special case of Theorem 5.4.8 in [58:pg 145]. See also [31:pg 252).

Theorem 46 Let {A(2)}¢po,m) be a stable family of infinitesimal generators of Co semigroups
on X. If D(A(?)) = D is independent of t and for v € D, A(t)v is Lipschitz continuous in
X then there exists a unique evolution system U(t,3), 0 < s £t < T, satisfying the five re-
sults of Theorem 44 whereY is the set D equipped with the norm ||v]ly = [|v||x +[||A(0)v]|x.

Proof: See [58:pp 145-146). Also see Appendix D which elaborates on one portion of the
proof cited. o

It may be noted that Theorem 46 made no mention of condition 2*. The hypotheses
of Theorem 46 are such that Q(t) = I + A(t) is an acceptable choice. Thus, whenever
Theorem 46 applies, there is no need to explicitly identify the isomorphism Q. In the
following application, the choice @ = I — (—As) = I + As will be appropriate.

8.2.5 An application of Theorem 46 to the case of nonautonomous damping

The hypotheses of Theorem 46 are satisfied for the problem represented by (71) and
(72). Theorem 46 is to be applied to —As. The satisfaction of the hypotheses will be
considered in some detail. Note that D(As) = D(A3).

Let Y be the same set of points as D(As) but with the graph norm of As(0)

lIglly = llyllx + | 4s(0)y]lx (89)
Lemma 47 The linear space Y is a Banach space under || - ||y.

Proof: Since it is easy fo see that ¥ is a normed linear space, all bul completeness is
clear. Let {y,} be a Cauchy sequence in Y. It is immediate that {y,} and {A4s(0)y.} are
Cauchy sequences in X. Hence, there exist y,§ € X such that y, — y and As(0)yn — 7.

Since —As(0) is the generator of a Co semigroup of contractions (as shown in the case

of B a constant) it follows that A5(0) is a closed operator (see Theorem 36). (The closedness
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of —A5(0), as an operator in X, was established in showing that it is the generator of a
Co semigroup.) From the closedness of 45(0) it follows that y € D(As), and hence y €Y.
Thus Y is complete. a

For each t € [0,T)] it is clear that —A5(t) is the generator of a Cp semigroup of
contractions (from the case for constant 8). Hence, by Lemma 37, the family is stable as

required. The domain has no time dependence as is easily seen from its definition.

Finally, it is necessary to verify the Lipschitz continuity of As with respect to . Let
v € D be given. First consider a straightforward approach to continuity. Let ¢ > 0 be

given. Identify 6§ > 0 such that
l 1) — 19 |< 6= [|A5(t1)v - A5(t2)’v"X < € (90)

From the definitions

0 0 m
0 (B(ta) — B(t2))D* vy

| 45(t1)v — As(t2)vlix

X
_ 0
(B) - D%
1/2
= 180x) - 8| ([ (D*w)ide) (o1

Now, v, € H* and § € C° makes clear the existence of suitable § > 0. Specifically,
vo € H* = IM such that ||vo||gs < M. Also, continuity of § guarantees that there is

some § such that

[t1 —t2 |< 6 =] B(ta) — B(t2) |[< ¢/ M . (92)

This is the required 0.
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In fact, whatever smoothness § has will carry over to As(t)v. For example, to identify

£ As(t)v, consider

lim As(t + h)‘U - As(t)v - (l ( 0 0 7
A0 h o\ 0 (B4R -BED! ) \ v
/1 / 0

PO\ B (B(t+ b) - B(#) Do,

[ o

h~0 \ B!t+h%—ﬁ!t!D4v2

0
B'Dv,

(93)

Since B is continuous and D*v; does not depend on ¢ it is now clear that As(t)v is contin-
uously differentiable with respect to ¢ for ¢ € [0,T]. Thus, in this particular application, a

stronger condition than Lipschitz continuity is satisfied.

This completes the verification of hypotheses for the application of Theorem 46 to
(71).
A brief review of what is known about solving (71), as a result of satisfying the

hypotheses of Theorem 46, is appropriate.

1. Theorem 46 guarantees the existence of U(?,s) satisfying the five results of Theo-

rem 44.
2. Corollary 45 says the problem has a unique Y-valued solution.
3. Theorem 41 says U(2,0)ug is the unique Y-valued solution of the equation.

4. Theorem 39 (proof) describes the construction of a sequence {U,} whose limit is U.

Since U(t, s) is bounded, the continuous dependence on the initial condition vector

follows as in Theorem 31.
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3.8 Combined t,z dependence in the damping coefficient

Consider uy + D*(8(t,2)D%u;) + aD%* = 0. Require the constant « > 0 and
B(t,z) > 0 as before. Furthermore, require 8 and %@ to be twice continuously differ-
entiable with respect to 2, and continuously differentiable with respect to ¢. The problem

can be formulated as a system as in (71) with

s=| ° -1 (94)
"\ aD* D@97 |

Note that D(A¢) = D(43).

It is not difficult to see that the hypotheses of Theorem 46 are again satisfied. Indeed,
for each ¢, —Ag generates a Cp semigroup of contractions as in the §(z) case. Hence, the
family {—Ag(t)}ipo,r) is stable. Furthermore, note that D(—Ag) does not depend on t.
Also, —Ag(t,+) € C! as long as B is appropriately smooth, as is required. Some detail is

appropriate for this last point.

The computation which parallels (91) is now presented.

0 0 (5t
0 D*((ts,2) - Bltzsz)) D* ) \ w2 )|

0
( D* ([B(1,2) - Alta, 2)}D%n) ) x
(/01 [D2 ([ﬁ(tl,x) "ﬂ(t%x)]D"’vz)r dx>1/2
(/: [D ([ﬁ(th:c) ~ B(ta, )} D%,

| 46(t1)v — As(t2)vlx

il

i

1/2

+ (a%ﬁ(tl,x)- %ﬂ(tz,z)) D2v2>]2 d:z:)
(/01 [(ﬂ(h,x) — B(ts,z)) D*v,

+2 (—a%ﬂ(tl,x) - 3—ax~ﬂ(t2,x)) D3y,
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2
+ (aa—Zﬂ(thx) - ;izﬂ(tzax)) DZW] dw)
i (/ [(ﬂ(tl,x) B(tz, )’ (D 4”2)2
4 (2 612) - B,2)) (D)’

5 ; 1/2
-+ (8 2( (tl)m) :B t2,$))) (D2")2) ] )

1 2 1/2
312 {( | 186t1,2) - B, ) (D*0s)” de )

1/2
+2 ( /0 ' [5‘% (B(t1, 2) - ﬂ(tg,m))r (0°)’ d:c)

9 1/2
+( /01 l%(ﬁ(tl,m)— ,B(tz,:v))] (D2v2)2dm) }(95)

IA

IA

The key to continue is that %é is twice continuously differentiable with respect to 2 on a

closed and bounded set. Thus, there exists some Mp such that

)
§ — < M
(i.z)e[ol,l%x[o,q (3tﬁ = B

4e2)
su Z (= < M
(‘»3)6[0,£]x[0,1] (3t 3:z:ﬂ = Mg

o (_6. (_a_‘iﬂ)) <M o
(fvw)GIO,%)']x[o,l] ot \ 02 = M6

Then,

ﬁ(tlam) - ﬂ(t%m)
o (B(11,2) = B(12,%))

IA

Mﬁltl - tzl
/] 0
%ﬂ(thx) - %ﬂ(tz,w)

[0 (9 \\, ,
< —(28) )t —t
= (t,z)e[s(;,l%x[o,n\@t \3zF) ) 1~ tl
< Mgl -
d?
B 2( (tl,m) ﬁ(t?,:v)) < Mpltl—tzl. (97)
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Then, to continue,

1/2
|| 46(21)v — Ast2)v|lx

IN

31/2 [Mpltl — 1 ( /0 ! (1)41;2)2 d:z:)
+2Mp|t1 - tgl (/: (D302)2 dx)llz

+Mplt1 - t2| (/: (D21)2>2 d$>1/2]

312 Mgty ~ 1] {( /o ' ( ])4”2)2 d:c)ll2

+2 ( J{) ' (D%,)” d:c)l/2 + ( /0 1 (D)’ dm>1/2] . (98)

From this point the argument which follows (91) applies as before.

IA

The computation which parallels equation (93) is presented next.

l ( 0 0 n
A\ 0 D*(B(t+hz)-Blt,z) D2 | \ v,

L :
A\ D ((B(t+ hyz) - A(t,2)) D?v2)

lim As(t + h, :z:)v - As(t, (B) = lim
h—0 h h—0

= lim
h—0

lim
h—0

|}
TSN T T .

0
D? (g(t+h.zh)-c(t.z) D? ,02) )

0
( D? (8'Dv,) ) . ©9)

Continuity with respect to ¢ follows from an inequality similar to (98).

Thus, Theorem 46 applies to give the evolution system in terms of which a solution

to the problem is given as described in the (%) case.




3.4 A more general theorem

The most general theorem used in this work is Theorem 48. It is a specialized
combination of Theorem 3.1 of [35:pp 169-170] and The. rem 1 of [24:pp 275-276]). The

proof is patterned after their proofs.

The problem of interest is
ug + AQ, u(t))u = 0; u(0) = up. (100)

The theorem identifies sufficient conditions to guarantee the existence of a unique solution.
Numerous hypotheses are required to describe the setting. They are presented first. The

proof will be presented immediately afterward.

Throughout the remainder of this chapter, the following hypotheses will be assumed.

1. Let X be a real, reflexive, separable, Banach space with norm ||+ ||x. Let ¥ be a
subset of X which, when endowed with an appropriate norm, || - |ly, is itself a real,

reflexive, separable, Banach space. Let ||« |ly> || - ||x-
2. Let W be an open set in Y.

3. Let Q(¢,w) be a collection of isomorphisms of ¥ onto X for (t,w) € [0,T] x W.
Assume T > 0.

4. There are real conmstants Ag, Ag, and pg such that [|Q(t,w)[ly-x < Mo,

1Q(t,w)lx—y < Ag, and [|Q(t,w) ~ @, B)lly~x < pp(l t =1 | +llw - @llx)
for arbitrary (¢,w), (f,%@) € [0,T] x W.

5. Let N(X) be the collection of all norms on X, equivalent to the given one, ||« ||x.
That is, N(X) = {l| -l : || |l is equivalent to || - ||x, where y comes from some

index set}. Let a metric (this will be validated shortly) for N(X') be given by

ylle ol
a(]l - “||l.) = log sup maa’{L . (101
(" "I‘) II "V) 0¢yGX ”y”ll, ”y"u )

6. Let N(t,w) : [0,T] X W — N(X) be a function satisfying d(N(t,w),||-|lx) <
An, d(N(t,w), N, b)) € un(] t ~ 1| +]lw — @||x) for fixed nonnegative Ay, un
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€ R and arbitrary (t,w), ({,%) € [0,T] X W. Let Xy, denote the space X with
the norm N (2, w).

7. Let {A(t,w) : (},w) € t € [0,T] x W} be a family of operators, A(t,w) € B(Y,X).
There are real positive constants A4 ard py4 such that for each (¢, w) € [0,T] x W,
the following hold:

A(t’ w) € G(XN(t,w)a 1’0)
NAG, wlly-x < Aa

14, w) = AG, B)lly—x < pa (jt -1l + lw - b]lx)

8. Q(t, w)A(t,w)Q(t,w)™! = A(t,w) for each (t,w) € [0,T]x W.

Theorem 48 When the above eight hypotheses are satisfied, the following conclusion holds:
For each u(0) = ug € W, there is some T > 0 and a unigue solution u to us-+A(t, u(t))u = 0
with u(0) = up such that u € C([0,T}; W) n C([0,T]; X).

The metric in Hypothesis 5 appears in [24:pg 275].

3.5 Lemmas for use in the proof of Theorem 48

The proof requires several technical results. It will be useful to begin with an overview

of the . "eas involved.

The solution which is to be obtained will be Y-valued. This means that only points
in Y will be considered for values of u(t). A candidate solution can be thought of as a
curve in the space Y with initial point ug. There is no guarantee that soluéions can be
propagated for long periods of time. Hence, consideration is given to candidate solutions

which are supposed to be valid until some time denoted T which is not yet specified.

The proof then is roughly outlined in the following steps. First, a set E is formed
which contains th~ ~~ndidate solutions. Elements of E are curves in Y with initial point
up. It will be established that the chosen set is a complete metric space under an appro-

priate metric. Second, it is shown for each fixed v € E, that the family {A(Z,v(2))}

57




has an associated evolution system (which generates a solution to the linear pr-blem
ug + A(t,v(t))u = 0). Third, it is shown that the solution to the linear problem is, in

fact, in E. Also, the mapping from E to E thus established is a contraction mapping.
Then its fixed point is the desired solution.

There are many details between this outline and the completion of the proof. They

will be presented now.

3.5.1 Preliminary lemmas
Lemma 49 The proposed metric for N(X) in Hypothesis 5 is valid.

Proof: Validation is straightforward from the definition, eg [54:pg 45), [66:pg 27], or [73:pg
4]. In particular, if |- ||, = || - ||, then it is clear that d(||- ||, |- |l.) = 0 since logl = 0.
Also, since H%Hf or its reciprocal will always be greater than or equal to one, it is clear
from the properties of the log function that d(]| - ||, || - ||} 2 0. Similarly,if || -], # [| - |l..»

then d(|| - ||, [l - |l,) > 0. Symmetry is obvious. The triangie inequality is a little tedious
but straightforward. The details follow.

A Do)+ - Do -1,) = Log sup ez {”y"u,"yllv}

OyeY Nyll” [yl
+log sup max {w, "l/”o}
OfyeY lyllo ™ Nyl

- zog( cup max{"y"u llyll»} o mam{nynu,nyuo})
0#yeY [ylle” 19l | ozvey lwlle’ Nyily

log sup (m {nynu uynu} o {nyuu IIyIIo})
0fyeY Nyl Nyl lvllo” vl

= log sup <max{"yllu Iyl Holle isllo Dol liwlle foll ||y||o})

v

oraty \"" Ulull Telle” Tl Mol Tt Totl” ol Tl
|
- (mw {.Iyllu lolllivtle sl uyuo})

0#yEY liollo” Nwll? " Nylailyllo” Nyl

> log sup m{u ||yuo}

0#yEeY N¥llo” Nwll,e
= d(l[-ll, -,y © (102)
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For use in the proof, a collection of possible solutions is formulated as a metric space.

None of the candidates is allowed to go too far from the initial condition vector.

Let ug € W be given with M = |jugl]ly. Choose j > 0 with p < oo, such that
p < dist(ug,Y\W). (The symbol \’ is used for set subtraction.) It is advantageous in
applications to choose p as large as possible within the bounds indicated. The set Y\W is

nonempty since W is an open, proper subset of Y.

Definition 50 Let E be the set of all functions v : [O,T] — Y such that for each t,1 €
[0,7), |[v(2) - wolly < 4, and [Jv(t) - v()llx < Lt — {] where L = 2X4(R + M)Aglge*”
and the value of T' is not yet specified.

The purpose of these requirements is to keep v(t) in W. The value of p has already
been chosen. The choice of T is constrained by (148) and the discussion in the proof of
Lemma 60. These are constraints which guarantee that a certain mapping, to be developed
in the proof of the theorem, is a contraction mapping. Details concerning the choice of T'
will be provided after the mapping has been presented. But first, there are several more

preliminaries.

Define a distance function for pairs of elements in E as follows. For v, w € E

d(v,w) = sup [lo(t) - w(t)lx- (103)
o<t<T

Lemma 51 The set E with the distance function d is a metric space.

Proof: The verification that this is a legitimate metric is completely straightforward. It
is easy to see that d(v,v) = 0. On the other hand, suppose d(v,w) = 0. Then for each
t € 0,77, lv(t) — w(t)|]x = 0. Since || - ||x is a norm, it follows that v(t) = w(t) for each

te {O,f’]. That is, » — 2. When v # w, there is some { such that »(f) # w(f). Then

d(v,w) > sup |lv(t) - w(®)|lx
t€fo,1)
> lv() - w(@)llx
> 0 (104)
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since || - [|x is 2 norm. Symmetry is obvious. The triangle inequality is the only remaining

issue. Let u,v,w € E be given. Then

d(v,w) = sup |lu(t) - w(t)llx

tef0,7]

= sup |lu(®) - v(t) + () - w(t)l|x
tefo,T)

< sup Jlu(t) - v(@)llx + sup [jo(t) — w(t)lix
1€[0,1] tef0,1}

= d(u,v)+ d(v,w). (105)

Thus, E is a metric space. 0

It will be important for E to be a complete metric space.
Lemma 52 The set E, with the metric defined in (103), is a complete metric space.

Proof: Let {v,} be a Cauchy sequence in E. Then for each ¢, {v,(t)} is a Cauchy sequence
in X as is easily seen by examination of the metric on E. Since X is a complete space,
there is some 9(t) € X such that v,(t) — 9(¢) in the X norm. It is easy to sze that 9 is
unique. It is not at all clear whether ¥ lies in Y or is an element of E. These issues are

addressed next.

According to a standard theorem, (eg Theorem 7.70 of [20:pg 204]), {vn(2)} treated
as a sequence in Y has a weakly convergent subsequence, say {2,(t)}. Then, (see Theorem
7.65 of [20:pg 202]) there is some v € Y such that z, — v». If v = 9 then no other
subsequence could converge to any other point. But this is easily shown. Note that
2, — v in the X norm. Thes |[v(t) - 9(2)}]|x = 0. This mea1s that v = 9 pointwise. Thus

v is the only weak limit of {v,}.

If v satisfies the twor.,  ments on elements of E, then the argument for complete-

ness will be finished. But,

[0(2) = wali- = |lv(2) = va(2) + va(t) — wolly
< (@) = @y + [loa(t) = wolly
< €+p (106)
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for any € > 0 when = is sufficiently large. Thus the first requirement is satisfied. Further-

more,

o=@, = o) = valt) + va(t) = va(®) + vald) — o) ,
< o) = 0@y + Jon(t) = 0aD]  + [0aD — D)
< ¢/2+ Ljt—1+¢/2 (107)

for any € > 0. Thus the second requirement is satisfied.

This completes the argument for the completeness of the metric space E. 0O

3.5.2 Preparing for an evolution system

The proof of the theorem will require the solution of a sequence of linear equations.
For each linear equation a solution is obtained from Theorem 46. In this subsection the

linear equations are introduced and it is verified that they satisfy the hypothesis of Theorem

46.

Some convenient notation is now introduced. ¥oreach v € E,let N¥(t) = N(t,v()) =
It 1l @°(t) = Q(2,(t)), and A¥(t) = A(t,v(t)). Throughout the remainder of Section 3.5,

v will always represent an element of .

Consider now, for fixed v, the (still) nonautonomous (but now) linear problem

% +Au=0; 0<t<T; u(0)=uo. (108)

The next major step is to establish the existence of an evolution system which solves
this linear problem. The lemmas which follow are necessary to establish the hypotheses of

a Thecrem 46.

Lemma 53 The family {A”(t)} C G(Xns,u(1))> 1,0) is stable with stability constants My, =
vt (DT gng = 0.

Proof: It is important to bound H—H‘ for the given v and arbitrary ¢, € [0,7]. First,
i

consider that Hypothesis 6 and the second property of L reveal a bound for the distance
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between the two norms.

dll -l -1l < en(t =2 +Hlo() - v(Dllx)
pn(t=21+L -1

pn(+ L) t-1| (109)

IA

From the definition of the distance function on the collection of norms (see Hypothesis

5) it follows that

log sup mam{m, M} < un(+L)|t-17]
OAyEX lwlls™ Hlwlle

so that M < sup maz {_"y”‘, ||y||t}
lloll: = orvex llylls” lise
< ek (1+L))t-1] (110)

and the desired bound is e#n(1+D)t=il,

A method from the proof of Proposition 3.4 of [31:pg 245] is used in the next step.

From the definition of a stable family (Definition 35) and the equivalence of norms, write

k Fv(F &
T ety < entidt-s| T ) + 0
j=1 T i=1 4
g e
< o@D TT (47(1) + )7y
J:l tk
1 DT 1+L T 1
1 —t t—tg— ; -
< XeuN( +L)(T—tx) o (1+L) (e —tk—1) H(A”(tj)-i-)\) y
=1 tk—1
k P . [
< !N (IHL) (T =tk) gy (14 L) (t=th=1) .., ellN(l'*‘L)tl”y"O

e“N(Hi’)T”y]Io

bl

IN
Sefr >l D] ks

|/\ .o
TN TN TN
N’ e N’

-

e#N(1+Z)(j'+j’) ” y”il“
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1 k . e
(3) sty (111)

Clearly this bound holds for any of the norms. Note also that A = 1 is a valid choice in

the current setting.

This yields stability of the family { A¥(£)} with stability constant 3 = 24~ (1+L)T for
any X, meaning the set X with any one of the norms N(¢,v(t)). It remains to translate
this to the original norm on X. But, from Hypotheses 5 and 6, it is easy to establish
that ||-]ly < e*||-|l,, Namely, from the definition in Hypothesis 5 and the bound in
Hypothesis 6 it follows that

ylle lyllx
log sup max{" BWRX L a1 - I
0£yeX lwllx’ llylle (N 11~ 1hx)
< A (112)
Then
sup ma:c{ lylle ,"_y”_X_} < e (113)
0fyeX lwllx” llylle

Now it is clear that §&iX < e*¥ and hence ||y|lx < e*¥||y|; for any nonzero y € X. Then
{A¥(2)} is a stable family in X with stability constant My, = e’ M = A t2un (DT 5

desired. o
Lemma 54 For each v € E, the mapping t — A(t) € B(Y,X) is Lipschitz continuous.

Proof: The proof, which is straightforward, is outlined. Let i,t € [0,7],v € E be given.
Then

14°@) = A(@)llv-x = A 0(2)) = AG, v(D)lly-x

< g {0 =314 ot} - ofDlix)
< ma (=114 Lt -1)
< pa(1+)-4. o (114)

Lemma 55 For eacht € [0,T), v € E, the bound ||Q*(t)|ly—x < Mg holds.

63



3.5.8 The evolution system

The hypotheses of Theorem 46 are now satisfied and the theorem gives an evolution
operator UY(t,s). This is a good time to review how the proof all fits together. Based
on the previous discussion, an evolution operator can be obtained corresponding to ug. If
the image of elements of W, under the action of the operator U%, is again in FE, then
an iterative procedure is justified. This subsection consists of preliminaries necessary to

establish that such images are, in fact, again in E.

Now that the evolution operator has been identified, it will be useful to identify
bounds for it. This will require attention to a portion of the proof of Theorem 44. Bounds

are desired for ||U?||x and ||U”]|y.
Lemma 58 For each v € B, |U?||x < e*v+2un(+D)T

Proof: The bound for ||UY||x is immediate from Lemma 53 and property 1 of Theorem
44. In particular, property 1 of Theorem 44 says that [|JU%(t,s)||x < My, e“(*=%). Lemma
53 says w = 0 and My, has the value indicated. O

A bound for ||UY||y is not as simple to obtain. The bound, which is established in

the next lemma, will be denoted by My,,.
Lemma 59 For eachv € I,

1Ully < AgAgexp [()\N +2un(1+ D)) + po(1 + IZ)/\QTe(*NW”N(HE)T)] . (118)

Proof: The strategy is to define an intermediate operator V? such that U? = (Q*)~*V¥Q".
Notice that while U¥ : Y — Y in this equation, the isomorphism Qv allows V¥ to be a
mapping from X to X. A bound on [[V¥||x can then be multiplied by Aglq to give a
bound for [|T"|ly.

Let C¥(t) = Q¥(4)(Q¥(t))™! where Q¥(2) is the same as discussed in conjunction with
Theorem 44 with the choice @ = I + A. The intermediate operator V¥ will be defined
in terms of U? : X — X. The operator V?, here, is given by the V of Lemma 43. From

65




Proof: This simply requires a careful look at the hypotheses. Let t € [0,7), v € E be

given. Then

l@°@lly-x

e, v(@)lly-x
AQ (115)

IA

where the inequality holds, for each ¢, by Hypothesis 4. Hence, since the bound is uniform,

it also holds for the supremum over all ¢. a

The case for [|Q{t)"Y|x—y < Ag is similar.

Lemma 56 The bound ||Q*(t) — Q*(D)|ly—x < po(1+ L) |t—1], holds for ,t € [0,T]
and each v € E.

Proof: The proof is a straightforward application of Hypothesis 4 and the definition of E.

12°(®) - @*Dlly-x = 1R (®)) - @, v(D)lly-x
po(lt =11 +llo(®) - v(Dllx)
po(lt =11 +L|t~1))

po(t+IL)|t-1} . o (116)

INIA

Lemma 57 For eacht € [0,T) and v € E, Q*(1)A*(1)Q¥(t)~ = A¥(t).
Proof: This is almost immediate from Hypothesis 8, which holds for each ¢.

Q(t,v(1)A(t, v(1))Q(, (1)) ™
A(t,(t))
A@t). o (117)

QM)A (1)Q(1)™

This completes the preliminaries necessary to obtain an evolution system corresponding

to the linear equation 108,
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3.5.3 The evolution system

The hypotheses of Theorem 46 are now satisfied and the theorem gives an evolution
operator U¥(t,s). This is a good time to review how the proof all fits together. Based
on the previous discussion, an evolution operator can be obtained corresponding to ug. If
the image of elements of W, under the action of the operator U¥°, is again in F, then
an iterative procedure is justified. This subsection consists of preliminaries necessary to

establish that such images are, in fact, again in E.

Now that the evolution operator has been identified, it will be useful to identify
bounds for it. This will require attention to a portion of the proof of Theorem 44. Bounds

are desired for ||U?||x and |{U"||y.
Lemma 58 For each v € B, ||U?||x < e*v+2un(+D)T

Proof: The bound for [|[U¥||x is immediate from Lemma 53 and property 1 of Theorem
44. In particular, property 1 of Theorem 44 says that [|U?(¢,s)||lx < My, e*(=%). Lemma
53 says w = 0 and My, has the value indicated. O

A bound for ||U?|]y is not as simple to obtain. The bound, which is established in

the next lemma, will be denoted by My,,.
Lemma 59 For eachv € E,

1U°lly < AgAqexp [(/\N +2un(1+ L)T) + po(1 + i)AQTe('\NH”N(Hﬁ)T)] .o (118)

Proof: The strategy is to define an iatermediate operator V¥ such that U¥ = (Q¥)~1VvQv.
Notice that while UY : Y — Y in this equation, the isomorphism QY allows V? to be a
mapping from X to X. A bound on |[V?||x can then be multiplied by Mgl to give a
bound for ||U?||y.

Let C¥(t) = Q¥(1)(Q¥(t))~" where Q¥(t) is the same as discussed in conjunction with
Theorem 44 with the choice @ = I + A. The intermediate operator V¥ will be defined

in terms of UY : X — X. The operator V¥, here, is given by the V of Lemma 43. From
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Lemma 43, if H(t) = C(t) = Q(¢)(Q(1))"!, then for any « € X, V? is the unique solution

of the integral equation
t
VY(t, )z = U¥(t, s)z +/ VY(t,r)C(r)UY(r, s)x dr. (119)
s

It is shown in the proof of Theorem 44 that V¥, defined in this way, satisfies U¥ =
(@¥)"1V¥Q". For completeness, the relevant details are presented. (For convenience in

writing, the superscripts ‘v’ will be omitted.)

From the boundedness of Q! and the differentiability of @ it follows that Q! is
differentiable a.e.. Note that

2 (a)s) =~ QR0 =, (120)
As a temporary notational convenience, let F(¢,r) = U(¢,7)Q(r)~!. Then

0
—8—TF (t, )z

I

()R e + Uk 1)) s
= =U(t, r)A(r)Q(r)‘lm - U(t, T)Q(r)'lQ(r)Q(r)“lm
~ (F(t,)A(r) + F(t,1)Q(rQ(r) ) o (121)

where the last step uses the commutativity of an operator and its resolvent. Let Uy(t,7) —

U(t,r) so that for any y € Y

(%Un(r, §)y = An(r)Un(r, s)y. (122)

Now,

2 Pty
= =F(t,7) (A(r) + Q(r)Q(r)™) Un(r,s)y
+F(t,7) An(r)Un(r, s)y
= —F(t,7) (A1) + Q()Q(r)™ = An(r)) Un(r, s)y(123)

-a—al;U(t,'r)Q(r)'lUn(r, s)y
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The next step is to integrate the last expression from s to ¢ with respect to r. This will be
displayed.
t .
U n)QE Ua(ro)yls = = [ Ftr) (A0 + Q)™ - 4a(r)) Unlr,shydr
t .
Q) Ua(t,8)y — U(t,8)Q(s) 7'y - /S U(t,m)Q(r)"Q(r)Q(r)  Un(r, s)y dr
+ /t U(r,)Q(r) " (An(r) = A(r)) Un(r,s)ydr  (124)

Note that the second integral vanishes in the limit. Then, from the denseness of Y in X,

it follows that

- QU 9)e + V1,0 e = [ UE,NQ0 MRV, edr  (125)
or

Ut,5)0) e = QWU + | UnQe)RW U (n e dr (126

It is useful to compare this to the form of (119). Specifically, apply Q~1(2) to the left side

of each operator in (119). Then it becomes
t
Q)W (L, 8)z = QT )U(L, 8)x +/ Q™ )V (t,r)C(r)U(r,s)z dr. (127)

It is now clear that Q~1(¢)V(t,s)z, and U(t,s)Q(s)"*z are each solutions to the same

integral equation, which is known to have a unique solution. Hence

U=Q7'vVQ (128)
as desired.
A construction of V is now gi. . The purpose of this construction is to obtain a
bound on [|V||x. Let
Vioy(ts )z = U(t, 1)z (129)
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It is easy to see that

Next,

Vi) (2, 7)allx

Define

4
| Vot sicteviots, e ds

IA

IA

IN

IA

IAN A

IN

Vollx £ Muy. (130)

/j Vioy(t, $)C(s)U(s, )z ds

¢
/ Vio)(ts 8)C{s)Voy (s, 7)e ds

X

[ ot )e)Vigs,ellx ds

[ Wiot, MxllC() Vs, el ds
Moy [ GG )xVigs, el d
Mol | Wi Plxlelx ds

t
My |Cllslellx [ ds
M |Clleslellx (- 7)
Myl el (131)

t
1/(k+1)(t,r)x=/ Viry (2, $)C(s)V0)(8, )2 ds. (132)

Suppose now, for the purpose of proof by induction, that

VAN

IN

~ k
o T

My, ™ ellx NG 77 (133)

gl
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The next step is to show that (133) holds for V{j4.1). Then,

t
W@ n)zlx = | [ Vig)ceVatsrieds]

i
[ Wt s1C(6) V(o rhallx ds
t t—s k
Mol [ ot Viats ety 32 ds

t— r)kil
= ool el Gl
Tk+1

(k+1)!

IN

IA

IN

Mux**2|IClis l=llx (134)

The operator V obtained by the construction is
o0
V(t, 8) = E V(k)(t: s)' (135)
k=0

It is appropriate to verify that this expression for V agrees with (119) of Lemma 43. The
issue is whether V satisfies (1i9) since (119) is known to have a unique solution. So,

consider

o t o
> Voo = [ Y Vit CE)V(rs)o dr (136)
k=1 S k=0

where the & = 0 term froin the left hand side has cancelled with the first term on the right

hand side of (119). Corsider the first remaining summand on each side. By definition,

t
V(l)(t,s):v=/s Vioy(t, 1)C(r)V(o)(, 8) dr. (137)

Likewise, for each succeeding pair of terms, the summand on the left equals the summand

on the right. Hence, the sums are the same.

A bound for V is available in terms of the bounds on the V{;). Namely,

o0
Vilx < LZ% Vi llx

— kll k Tk
< Y My Cllh T
k=0 Ve
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< MUX eMUx "C"wT (138)

where the standard series representation for e is easily recognized.

Everything is in place to bound ||U|ly. The superscripts will now be used again.

Noelly

@)V @ lly

@) Mlx—y IV*lix 1Q*lly—x

AadellVellx

AoAo My, eMux IC¥llT (139)

IN A

[7aN

Recall that C¥ = QV(QV)~L.

The final expression can be made more explicit in terms of fundamental quantities.

IC* (oo

ess sup 19°()Q ) M Ix

tefo,1)

ess sup [|Q°()lly—x 1Q"(1) M lx-y
te(o,7]

ess sup po(l+ L)ig
tefo,1]

= po(1+1L)iq (140)

IA

IA

The combination of estimates (139) and (140) gives
101y < Sogexp [(Mw + 21w (1 + D)F) + po(1 + L)AgPen+2un+DD] - (141)

The bound given by the right hand side of this equation wiil be denoted by My, . This

concludes the proof of the lemma. 0

Thuns, hounds an the evnlution aperators are obtained and the preliminaries for es-
tablishing a contraction mapping are complete. Note that the lincar problem (108) is all
that has been solved at this point. But, as it turns out, the solution is in E and a mapping
from E — E is established. Thenit will be established that the mapping is a contraction.

The fixed point of the contraction map is the desired solution.
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3.5.4 A contraction mapping

Attention now returns to the solution of (108) in terms of U¥(¢, s). In particular,
u¥(t) = U"(t,0)uo. (142)

So, u¥(t) is a continuous mapping of [0, T] into Y by properties 4 and 5 of Theorem 44. By
property 2 it is differentiable for small t. Also, from the definition of a ¥-valued solution,

it is continuously differentiable into X.

It is desirable to establish that u¥ € E. This is the point in the argument where the

choices of I and 7' occur. The conditions that «* must satisfy are:

llu*(2) - wolly

llw¥(2) = v (D)llx

IN

p (143)
L)t -1. (144)

IN

It will now be shown that suitable choices are available to make this so.
Lemma 60 For eachv € E and t € [0,T], u*(t) € E.
Proof: Consider the inequality (144) first. Note that $u¥(t) = —A®(t)u*(2). Recall that

M = |luolly and R is the radius of a ball centered at ug. Then,

d
0
|- 4wl = 1

u¥(t) - u”(t)"x < sup It — 1

< 1A Wly-x e @llylt -1l

< Allur (@, O)uolly [t — i

< AallUlly Nuolly [t ~ 4]

< AR+ MUy It -]

< Ma(R+ M)Agrgexp [ + 2un(1+ L)T)

+po(1+ L)AgPerw+2una+DT] |y g (145)
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The goal is to have this quantity less than or equal to [ — {|. But,
i= 20 4(R+ M)XqAQe)‘N . (146)

Clearly 7° can be chosen small enough for the condition to be satisfied.

The inequality (143) is satisfied for some 7' > 0 since u?(0) = up and u” is continuous,

hence u* € E. |

Thus, a mapping & : £ — E is identified. In particular,’for any v € E, ®&(v) is
obtained by the following steps:

1. Obtain an evolution operator U%(t, s) for the problem a‘—izu + A(t)u = 0.
2. Let u¥(t) = U*(t,0)uo.

3. @(v) =",

The next item to establish is that @ is in fact a contraction map. This will require

a preliminary lemma.

Lemma 61 72t U and V be evolution operators corresponding to A* and AY respectively.

Then
V= Uttty = [ UG s)(456) = AV (s, ruds. (147)

Proof: See Appendix D. 0o

The lemma will now be used to establish that ® is a contraction mapping.
Lemma 62 The map ® : £ — E is a contraction.

Prooft: The argument is straightiorward. Let u, v € E he given. Let & = ®u, 9 = Pv.

d(i, )

sup jji(t) — (O)lix
0<t<T

sup [|U™(t,0)uo — U®(2,0)uol|x
ogt<d
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Sup_ ./: U*(t, s)(A%(s) — AY(s))U¥(s,0)ug ds

0<t<T
t
sup [ |[UY(2, s)(A(s) — AY(s))U(s,0)uol|xds
o<t V0 .

sup My, 2pad(u, v)|juoll xt
ogt<T

< My, pad(u, v)|lullx T (148)

X

IA

IA

where My, is taken from Lemma 53.

It is now clear that 7' can be reduced if necessary to ensure that @ is a contraction

mapping. O

3.6 The proof of the theorem

The Contraction Mapping Theorem, eg [54:pg 126], [13:pg 181], or [46:pp 40-42],
applies to give the desired soluti. and the theorem follows as outlined at the beginning

of Section 3.5. 0

3.7 Applicability of Theorem 48 to an a(t) case

Consider uy + () tgzge = 0 with the abstract formulation u; + A7u = 0; u(0) = up

where

0 -1
A = . (149)
a(t)D* 0

As before, a(t) > amin > 0 for all £ € [0,T}. Furthermore, require c(t) to be continuously
differentiable. Thus there is some oynq, Such that a(t) < ames for all ¢t € [0,T]. Similarly

there is some af,,, such that o/(t) < o, forallt € [0,T). For this equation, it has simply

been assumed that a could vary with ¢ in a model originally derived for constant a.

Notice that, in this particular application, the operator does not have any dependence
on the solution. Thus the full power of the theorem is not exercised. The formal presence

of w in A7(t,w) will nevertheless be retained in the following exposition.

The space X is almost the same as before. The point set is unchanged from (30)

and (31). However, since the inner product on X uses the value of e in its definition, it
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would appear to have a variable norm. Tliough it will be useful to treat a family of noims
corresponding to the various values of a this is not acceptable for the definition of the
Banach space X. Since a is a continucus function of ¢ on a closed and bounded set, there
is some t,,,,, € [0,T] suck that o attains its absolute minimum, say amin. The value a,um
replaces « in the definition of the inner product on X as given in Theorem 10. The space
Y is D(A3) with the norm defined as follows. The norm on Y is a graph norm which
depends on the operator A. Since the operator is now allowed to vary with ¢ and w it is
necessary to be careful so that the norm is well defined. To this end, choose A7({,m, tu)

as the operator in the norm for Y,
lvlly = llwllx + [|Az(tmin, wo)yllx- (150)

The set W is a ball in Y with radius R and center at the initial condition ug. Other

symbols with the same meaning as before are M = |Juglly. and Q = I + A.

It is easily seen that Hypotheses 1-3, 5, and 8 of Theorem 48 are satisficd from the
same arguments that were used in the proof of the theorem. For example. llypotlicsis 8
is satisfied since Q=1 is the resolvent of A and resolvents commute with their genciatois.

The other hypothescs must be addressed individually.

Consider Hypothesis 4. An upper bound on [|Q(¢, w)|ly—x is desired. Let values of

t and w be given. Note that w does not have any role in this particular application. Then.

Rt w)lly—-x = |+ Az(t,w))|ly—x

I+ ALt X
s NI Ar(t )yl
0#yeY lylly

(7 + A7(2, w))yllx
0£yeY ”.7/"/\' + ”A‘t'(tmina UO)?/"X

lyllx + fA7(2, w)ylly
oztyey WWllx + [[A7(tmin, vo)yllx

IN
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Y2
o(t) Dy,
= sup X
ogyey ||9llx + A7(tmin, wo)yllx

lI9llx +

1/2
Iolx + (ctmin Jg (22")? da + a(t)® 3 (D*1)* da)
U
ooy T9llx + A7 (Eomins w0)0 11

(151)

The remazinder of the argument is carried out in two separate cases. First, suppose that

min < 1. Then

lQ(, w)lly-x

IN

IN

IA

IA

1/2
Iyl + 2 Lmin (cin J3 (12" s+ (2)? fo (D*9a)” d)

0¢yEY "y”X + "A7(tmmy uo)yllx

1/2
ol + S8 (hie 13 (0" da + e (D*91)” d)
su
odyey 9l + 1A7Cmin w09l x

1/2
lollx + 2 (amin 2 (12" da + 02, J2 (DY9a)? d)”

amm

OtyeY I9llx + 1| A7(Emin, o)yl x

lyllx + €352 (i f3 (12")? de + 02, 3 (D9n)? d)”
ooy llvllx + | A7(tmin, vo)yllx

lyllx + §=o2|| Az(tmin, wo)yllx
0¢er llyllx + |[A7(tmin, o)yl x

Smaz (152)

Umin

For the second case, suppose apin > 1. Then

Q@ w)lly-x <

IA

IA

lolx + (393) (amin J2 (02")? da 4 alt)? 3 (D) dz)"”

su

odyey Wllx + [[A7(Emin, wo)¥llx
1/2

- lollx +a@) (i 3 (u")? du + [§ (D) dz)

odyey llx + 147 Cmin, wo)lx
g 3 1/2
llsllx + e(t) (ctmin Jo (2")" da + oy fo (D*9)” da)
odyey Tolx + A7(tmin; w0)¥llx
1/2

ol + comae (@min o (92" o+ i fy (D) dz)

ogyey 9% + 147 (Emims wo)ollx
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)1/2

. lllx + {emin fo (32")? da+ @2, fo (D*91)” da
< « su
mas ey Wil + 1470 w0)3lIx

= Qmnaz. (153)
Therefore, choose Ag = ma:z:{%f:?:, Qmaz }-

A lower bound on ||Q(t, w)|ly—x is useful to help identify an upper bound for
1Q(, w)~ | x~y. Since —A7(t,w) is dissipative,

(I + Ar(t, w)ly, [ + Ar(, w)]y)' /2

(9 9) + 203, Ar(t, w)y) + (Aa(t, w), Ar(t, )
(Il + llAs(t, w)all%) ™

27212 |ly]x + | A(t, w)ellx)

1/2
9-1/2 (||y||x + (am,-n ]0 " (9")? do + o(t)? /0 ' (Dt)? dm) )

27/ (Ilyllx + (O‘min /01 (ve")" do + ol /01 ()" dx>1/2>

= 27Y2(|lyllx + NA7(tmin, 0)]Ix)

= 27Y2(||ylix + || Ar(tmin, uo)llx)

= 27 7ylly. oeh

@ w)yllx

AV ||

v

v

It follows from Theorem 5.7.1 [54:pg 244] that an acceptable choice is Ag = 21/2.

The next task is to calculate pug.

I (@@ w) - @G, ) vllx

t,w)— Q(, ¥)|lyox = su
o, w) - Q(F, ®)|ly—x Oiygy Ty
= sup "Q(t, w)y - Q(t7 w)y"X
0£yeY lylly
(I + 4ot 0))y = (I + Ar(d, ) vllx
= su
oRyey ol
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1422, w)y — As(i, D)yllx

sup
0#yeY lllly
N (Ar(t, w) - Ae(E, ) wllx
sup
0#yeY llvlly
0 0
] Y
sup I\ (a(t) - a(f))D* 0 X
0#yEY lylly
0
() - a(f)) Dy X
sup !
0#yeY lylly
( : \
D43/1 )
a(t) — a(t)| su X
lo(t) = o(2) O;éygv lylly

D4.
la(t) - ()] sup ) lx

O#yeY ”y”X + "A7(tminyw)y”X

0
D4y1 x

jo(t) - @)l sup :
oveY | [ o — |
+ l
Y2 Amin D% I x

X

ia(t)-—a(f)i sup 2 X
0£yeY 0
amis:D4yl
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0 )
Din
= la(t) - a(dl —— sup /L
Qmin 0£yeY 0 \
D4ZI1 ) ¥
~ 1
— ! —
amaxlt tlam’_n
o .
= | (155)
OUmin

So, choose jig = %%:—:. This completes the arguments to satisfy Hypothesis 5. Notice that

in this application the isomorphism does not depend on w.

Consider Hypothesis 6. Let N(2,w)y = () I (11")? de + [ y22 dz. Then

A (&) Ix) = log_sup maa {
O#yeX

llylle ||3/||x}
?
llwllx " vl

= log sup mam{
0#yeX

[
< log sup {ﬂ
0%yeX \ Omin
(87
S log_"lﬂ_
Qmin

ot) fo (")’ do+ 3 92’ de amin Jo (") dz + fy 9 dx}
tmin Jo (") do + Jo 922 dz” o) [y (") do + [5 v da

}

(156)

So, choose Ay = log%’:‘?’f. It is easy to see that uy = Ay is suitable for the current

problem.

The next argument

requires a preliminary lemma. The lemma is elementary but is

included to help clarify the argument.

Lemma 63 For positive

Proof: See Appendix D.

real numbers a,b,and ¢ with b > ¢, it follows that ﬁ_‘% < %
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Consider Hypothesis 7. Claim: A7(f,w) € G(Xn(t,w),1,0). Recall that Xn(s,u) is

simply the set X with the norm that uses a(t). For each (¢, w) this reduces to the constant

coefficient case. In particular, for each fixed value of ¢, Lemmas 21 and 26 and Theorem

27 apply to Az(t,w) just as they did to A;.

Claim: {|A7(t, w)|ly=x < A4. This is straightforward, as follows.

|47t w)lly-x =

IA

IN

IA

Choose A4 = Zmaz,

min

sup || A7(2, w)yllx
ogvey  lylly
| A(t, w)yll x

O;éyEY ”y”X + I|A7(tmzmw)yux

su || A7 (2, w)yllx
P
o#yeY || A7(tmin, w)yllx

=¥Y2
oft) Dy
sup X
0#y€eY —1
CminD 4:'Jl X

(cmin 2 (92" iz + a(t) f2 (D9n)? o)
o;é./cy (am n]o yz”)2 4z + amin fo D4y1) dm)1/2
(cmin J2 (02" i+ i 3 (D)? )
o#er (amm ()P d + i [ (D) dx)llz

Qmaz

(157)

Omin

It is suitable to choose p4 = pg. Continuity holds as argued in the 5(t) case.

This completes the verification of hypotheses tor this case. The theorem applies and

guarantees the existence of a unique solution.
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3.8 Chapter summary

A theorem for existence and uniqueness of solutions to a broad class of abstract
Cauchy problems has been presented, along with its proof. Also, an application has been
described, formulated, and shown to satisfy the hypotheses. The existence of a unique

solution is guaranteed.
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IV. A nonlinear damping term

Consider uy + D%(B(v)D%u;) + aD%u = 0. Formulate this as an abstract system as

before with
0 -1
A=Af) = (158)
aD* D?*(B(w)D?)
where, in the abstract system, u is a vector with components u; and u,. The space X and

D(A) are the same as described in the previous chapter.

It is convenient and informative to treat a specific case and demonstrate how the

conditions are verified.

Consider uy + D*((8o + f1u) D?u;) + aD*u = 0 where @, fo, and f; are constants.

Formulate this as an abstract system as before with

Ag = Au) = 0 -t (159)
aD* D?((fo + B1w)D?)

and D(Ag) = D(A3). Certain restrictions will be placed on fo in terms of other constants
in the problem. Portions of the problem formulation which are different from before are

described next.

4.1 Preparation for application of the existence theorem

Let Y be the set of points (pairs of functions) in D(A4g) endowed with the norm

llly = llvllx + 1D%w iz, + 1 D%yl L, (160)

Notice that D(As) does not depend on . The linear space ¥ is complete as shown before.
The graph norm has not been used this time. Use of the graph norm, according to the
previous pattern, would require W to be closed and bounded. The current strategy uses

the norm (160).
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Some earlier terminology is now reviewed. Let W = B(ug;.R) be an open ball in
Y with center uo (the initial condition vector) and radius R (not yet specified). Let
M = ||uolly.

Several lemmas are now presented. They will be used to identify the restrictions on
Bo and in other computations. The purpose of these lemmas is to identify bounds on y."

and y,™ in terms of Diy,.

Lemma 64 For any c € [0,1] and € H?, |lg2"lleo < 32" ()] + [|32"llz-

Proof: This follows immediately from the same line of argument as in the proof of Lemma
12. o

Lemma 65 For any y» € H® with y2'(0) = y2'(1) = 0 there is some ¢ € [0, 1], such that
y2"(¢) = 0.

Proof: Note the continuity of y,” as an element of H3 and the boundary conditions
y2'(0) = 32'(1) = 0. The existence of the desired ¢ € [0,1], such that y"(c) = 0 is

immediate from Rolle’s Theorem. a

It is useful to note that there are at least two such values, say ¢; and ¢,. This is
because an application of Rolle’s Theorem to the continuous function y, and the boundary
conditions on y; gives a point & € (0,1) such that y2'(¢) = 0. Then the argument of Lemma

65 can be applied to each of the intervals (0, ¢) and (é,1).

Corollary 66 For y, € H® and satisfying the boundary conditions,

l192"lleo < 192"l (161)

Lemma 67 For any ¢ € [0,1] and y2 € HY,
llv2" Moo < 192" ()] + 10322, (162)

Proof: This follows immediately from the same line of argument as in the proof of Lemma

12. O
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But, again by Rolle’s theorem, there is some ¢ € [c1, 2] such that y”'(é) = 0. Thus,

the following corollary is immediate.

Corollary 68 For y, € H* and satisfying the boundary conditions,

192" lleo < 1D*32]lL,- (163)

Lemma 69 For w € B(up;R) = W, |uwy| < %& where M = ||uo|ly and a is the

constant in (159) which is also used in the definition of || - || x-

Proof: Since w € W, it is clear that |Jw|ly < R+ M. Recall that components of elements
of Y satisfy the boundary conditions in the specification of D(A). From the definitions it

is not difficult to see that

lwi] < ljwilles
< lwrIlz,
_ 1 wy
T ol/2? 0
X
1
< —plvlx
1
< m"w"y
M+ R

The restriction that Fp will be required to satisfy is now given. It is required that,
for every z € [0, 1), Bo+ B1w1 > 0 for all w € W. Since ||wy]|oo < ’;,—‘1‘7—"3 this can be satisfied
with a finite choice for fo. Or, more to the point, it is desirable that % > —w;(2) for all
x € [0,1). Note that the choice of small values for R and M will allow more flexibility in

the choice of acceptable 8y and fi.

4.2 Applying Theorem 48
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Consider whether the nonlinear damping problem satisfies the hypotheses of Theorem

48. Hypotheses 1 and 2 are clearly satisfied. Hypothesis 3 is satisfied with @ = I+ A as

before.

Bounds on Q and Q! for Hypothesis 4 may be obtained with some effort. In order

to obtain such bounds most easily, several elementary lemmas are presented.

Lemma 70 Fora,b> 0, (a®+ b2)1/2 <a+b.

Proof: See Appendix D. O
Lemma 7. For any real numbers a and b, (a + b)? < 2(a® + b?).

Proof: See Appendix D. O
Corollary 72 For positive real numbers a and b, 2-1/2(al/? 4 b1/2) < (a +b)1/2.
Lemma 73 For positive real nunbers a,b, and c it holds that (a+b+c)? < 3(a?+b2+c?).
Proof: See Appendix D. o
Lemma 74 For any positive, reala,b, and ¢, it holds that (a+b+c)1/2 < (al/2401/24-c112),

Proof: See Appendix D. o

Consider a bound for Q. Equation (40) will be used several times in the following

string of inequalities.

lRQ(w)lly-x = Il + As(w)lly-x

N

H(T + As(w))ylix

= sup
0#yeY llylly

_ ly + As(w)yllx

= sup 7 1
ozvey [[9llx + 1Dz, + D%z,
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IA

IN

IA

IA

IA

IN

IA

IN

IN

. — Ll + 14wl
opaty Tollx + 1D ll, + D%z,

- lullx v s l4s(w)sllx
over Tolx + 10y + 100z * osper Tollx + 1D%0lls + D701l

|| As(w)yllx
14 sup
ozyey [I9llx + 1D%*0llz, + [[D%2(lL,

Il As(w)yllx
14 sup
otvey [D*nllz, + 1D,

\1/2
e (e f3 (") d + J3 (D% + BoDyz + f1D? (w1 D?p))* dz)
u
oy D%z + 100z

@2 (f3 wa)? de) "
14 sup 1 1
ogvey [[1D'llL, + |1D%2|lz,

1/2
(f()1 (C‘D4y1 + ﬂ0D4y2 + ﬂlD2 (w1D2y2))2 d:z:) /

0£YEY ID*nllL, + 15492z,

1/2
12 (fo1 (D% + oD%z + f1D? (w1 Dy,))° dw)
14+ a/“+ sup

0#yeY "-D4y1”L2 + "D4y2"132

1 4, \2 1 4 2 2 \\2 1/2
14 al/? 4 91/2 sup (fo (D) dz + fy (BoD*y2 + 1.D* (wr.D v2)) da:)

0£yeY 1D%llz, + 1D*v2llL,

1 4. \2 1/2 1 4 g 2 W2 1/2
gl s (5 (@D5s)* o)™ + (13 (BoD%z + ArD* (wiD?yn))” d)

0#yeY 1D%31llz, + | D9z,

1/2 (1 FIRY 1 2 2, )2 4o ) /2
1+ a2 1247 + 212 sup 2 (fo (BoDy)" da + Jy (B1.D* (w1 D*y2)) d:c)

0yEY 10%1llz, + 11Dz,

BoD*yo|\L.
1+all2+21/2a+2 sup " 2
otvey |1Dnllz, + |1 D*%liL,
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1/2

42 oup B OD (107" o)
ogvey  [1D%llz + 1D%ellz,

1/2
161 (fo1 (w1 D*y2 + 2w/ D3y, + w1”D2y2)2 d:c)
ID*nllL, + |D*9llL,

= 1+a2 42204 2|B0| +2 sup
0#£yeY

< 14?4220+ 2|6
1/2
2 3121613 wi? (D42)" de + 2 3 P (D00)" da 4 3 (n"}2(D292)? o)
-2 sup
oyey ID*nlz, + |1D*y|lL,

< 14 a2 422 4 2|6
. 1/2
(R+ M) (3 (D'9)’ do+2 f3 (D%9s)’ do + J3 (DPyn)? da)
"D4y1||L2 + ”D4y2"L2

+2-3Y2|8y| sup
0#yeY

< 14024220 4+ 2|6

4 3 2
+2- 31/2|ﬂ1|(R+ M) sup 1D4%2llz, + 21D°92llz, + 1D%ellL,
0#yeY

I1D0%1llz, + ID*yiiv,

IA

1+ !/ 4220+ 2|60| + 8- 3/%|B1| (R + M) (165)

So, choose Mg = 14 /2 4+ 213 4 2|Bo| + 8 - 31/2|B1|(R + M).

Now that @ is bounded, recall that it is also linear, one-to-one, and onto. Then, by
a standard corollary (see [22:pg 47}, or [73:pg 77]) of the Open Mapping Theorem, ¢~ is
also bounded, say by S\Q.

A suitable choice for pq is p4 which is determined in (168).

Hypotheses 5 and 6 are trivially satisfied since the variable norms are not used in

this application.

The first part of Hypothesis 7 is satisfied for each w € W as argued in the f(z)

case. For clarity, the dissipative argument, which appears on the surface to be different, is
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presented. First, some notation is clarified.

0 -1 )
dg =
( aD4 D2((ﬂ0+ﬁ1u1)D2) /

_ \ [«
Ag(u)u = 0 ! !
aD? D¥((Bo + pru1)D?) ) \ v

—Ug
( aD*uy + D? () + Byuy ) D?ug) )

As(w)u

-y
( aD%uy + D% ((Bo + Prw1)D?u,) )

(Ag(w)u, u)

1 1 1
_a/o ug"uy" dz +/0 uga Dy dx +/0 upD? ((ﬂo+ﬂ1w1)D2u2) de

uD ((ﬂo + ﬂlwl)D2u2) 5 - /01 DuyD ((ﬂo + ﬂlwl)D2u2) dz

1
= —Duy ((ﬂo + ﬂ1w1)D2u2) H +/0 D?uy(fBo + frw1)D?uy d

/: (Bo + Brw1)(D%uz)? dz (166)

where, in the line with three integrals, the first two cancel out after integration by parts.
Also, the boundary terms, arising from integrations by parts, are all zero. Ifit happens that
the quantity 8o -+ B1w; is greater than or equal to zero for all z (which is required above)
then — Ag(w) is dissipative. The remainder of the argument to establish Ag(w) € G(X,1,0)
is the same as for the B(z) case. This completes the discussion of the first part of Hypothesis

7.

For the second part of Hypothesis 7 note that, from the work for Ag leading to (165),
it follows that

A = a4 2120 4 2|B0| + 8- 3V B4 |(R + M) (167)
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i3 suitable.

Next, a suitable u4 must be identified for the third part of Hypothesis 7. Notice that

inthe current application there is no explicit time dependence in Ag. For the first inequal-

ity, in the following sequence of equalities and inequalities, a comment is appropriate. The

first two terms in the integrand are bounded in terms of the supremum norm on the facto

involving wy. The third term in the integrand is bounded in terms of the supremum norm

on the D?y, factor which leads to an L, bound on D4y,. Now, by definition

IN

IN

"AS(w) - As(’li))"y_,x = sup ||(A8(w) — As(w))y”X
0%yEY llylly

sup l(As(w) = As(®))yllx
ozveY IIYllx + 1D%nllz, + 1Dz,

0 0 n
0 A1D? ((wy — 1)D?) 2 /|
p A
O#yeY lyllx + 1D*nllz, + ID*%llL,
0

B1.D?% (w1 = 6,)D%y,) X
ozvey lvllx + ID%ullL, + [|1D*wellL,

. 1/2
B1 (3 (D? (w1 = 1) D?4))* )
sup
omer  [wllx + ID%llz, + 1D %allz,

R . 1/2
A (Ja (w1 = 1) Dy + 2(wr = 1Y D3y + (wn = 15,)"Dp)” da)
sup
M ozyey vllx + 1%l + 1Dl

2
(33 (w01 = 1)2(D*y)2+ 4wy’ ~13y")H(D3y2)2+ (wy" = 13y )X(D?4)?) d) .

|31} sup
ook Dl
. . , . 1/2
5, s ((ICr™ = "3, + allr” = 6", + s = 161”13, ) 1D *3ell3, )
Hozver 1D7%allz,

31/2|ﬂl|61/2||wl” _ "51”"1,2

3-2'218y] flo - llx (16%)
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so it is acceptable to choose u,4 = 3+ 21/2|3,).
Hypothesis 8 follows immediately, as before, since Q1! is the resolvent of Ag.

Identification of an acceptable T is a several step process. Since this process has

been demonstrated in detail for a previous application, it will not be repeated here.

The first step of the solution algorithm is now described. Apply the arguments of the
B(x) case to Ag(up). This yields a solution @(t) based on the single operator 4s(ug). Next
apply the iterative scheme, as in the S(t,2) case. to the operator family Ag(@(t)). This
gives an evolution system U(,s) which generates a solution @(t). This i just one step of
the iteration. The fixed point algorithm (from the proof of Theorem 18) guarantecs that

the iterates will converge.

The continuous dependence result, Theorem 3.2 of [35:p 170-171}, is applicable to

this problem,

4.8 A numerical ezample

In this section a specific example is presented. The equation is the same as earlier in
the chapter, but now the constants take on specific values. Also, a specific initial condition

vector is given. The example and the software to propagate its solution are from [60].

Choose the following values for the constants.

a = .008
Bo = .01
ﬁl = .001 (169)
For the first component of ug choose
sinhv — sinv sinh v — sinv

Uy = sinve + cosh v — sinh 1. (170)

cosvx —
cosv — cosh v cosv — cosh v

This is shown in Figure 4 with ¥ = 4.73. The choice of ¥ satisfies cos(v)cosli(rr) = 1. This

is required for up to satisfy the boundary conditions necessary for it to be in D{Ag).
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Initial Condition
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0.000

0.100

0.200 0.3CC 0.400 0.500 0.6C0 0.700 0.800 0.960 1000

Figure 4. Initial value curve for the example
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Choose 0 for the second component of ug.

If 5, were zero, then this problem could be solved by separation of varial.es. The
fundamental frequency corresponds, in this case, to ¥ = 4.73 approximately. Choosc this

value for v and test the basic algorithm for convergence.

The solution algorithm is outlined now.

1. Establish values for the constants in the problem.

2. Establish a grid and assign an initial estimate to the solution at each grid point. As

the first estimate suppose that the initial condition vector is a constant solution.
3. Initialize a counter for time increments, say j = 0.

4. Evaluate the quantity 8o + By u for each grid point, based on the cuirent estimate for

u.

. Increment the counter: j = j + 1.

w

6. Propogate the approximate solution from 1 = (j — 1)At to t = jAL (This step is

done with the program DGEAR from the standard Fortran package known as INSL.)

-1

. If the desired final time has not been reached, go to step 5.

[o4]

If the solution has not converged, go to step 3.

9. This completes the algorithm.

Tlhe results are presented in Figure 5. The plot is for the vertical dispacement of
the midpoint of the beam. The line across the top represents the initial estimate, which
is the initial condition as a constant solution. The next curve down is the estimate aflter
one iteration of the algorithm. The third curve is the estimate after two iterations. The

third iteration lies on top of the second one and cannot be distinguished, though it las

[«5

been include

A second example, with 3, = .008. is shown in Figure 6. Notice that while the

spacing is different, the basic character is the same.
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‘Figure 5. Example 1 .
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‘Figure 6. Example 2
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4.4 Chapter summary

The nonlinearly damped beam vibration problem has been shown to satisfy the
hypotheses of the theory developed in the previous chapter. An example has been presented

which demonstrates rapid convergence of the algorithm developed.
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V. Conclusions and Recommendations

This chapter provides a brief summary of results which have been demonstrated. It

also includes recommendations for further study.

5.1 Conclusions

A standard mathematical model for approximating the transverse vibration of a beam
has been generalized. The existence and uniqueness of solutions have heen establishied.

Certain continuous dependence results have been presented.

A nonlinear problem which was not previously known to have a solution. which could
be obtained by convergent sequences of approximations, has now been shown to have such

a solution.

3.2 PFuture work

Several extensions are quite logical for the work contained herein. Certainly it would
be desirable to extend the work to more general boundary conditions. This, however, may

not be at all straightforward. See Appendix B.

Use of the equations in a parameter identification scheme is certainly appropriate.
Indeed, it was with such use in mind that this project was undertaken. This document
provides tlie theoretical basis to undertake a nonlinear identification scheie aloug the lines
of the linear equation based schemes in [12). The implementation of nuwmetical methods

for this problem should be very interesting.

Of course, issues relating to the stability, long term behavior. stability of iterative
schemes, and continuous dependence on other elements of the equation aie all of interest.
This would include time-dependent Trotter-Katc results, such as in [57], [48:pp 17, 49],
[32], and [41]. Nonlinear Trotter-Kato type results may be found in several references. See
[47:pp 469-476), [41), [50:pp 223-224], [51:pp 403-404], [52:pp 24-25], and [34] for some of
the early work. A good summary is in [18]. A product formula version is addiessed in [62]

and [61].




Application of the style of analysis presented in t}1+ work to other equations is
also of interest. For example, if the original equation had included rotary inertia, then
the nonlinear version of the gquation would have beer. different. A separate analysis is
necessary. Allowing time dependence of the fundamental parameters in the derivation is

another variation that would be interesting to pursue.
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Appendix A. Derivation of the Euler-Bernoulii model

The Euler-Bernoulli model is derived as follows. The total kinetic energy of the bcam

is assumed to be

L
T=1/2 /o m(zud(to, z)dz. (171)

The elastic potential energy due to bending (assumed to be the total potential energy

since changes in gravitational potential will be ignored) is assumed to be
L
V=1/2 / EI(@)e2,(to, z)do. (172)
0

For convenience, the product EI(z) is treated as a single entity in the equations.

The total mechanical energy in the system for the Euler-Bernoulli model is assumed

to be
E=T4V=1/2 /OL[m(m)u?(to,x) + EI(z)u2,(to,z))dz (173)

and the equations of motion are obtained by setting

de/dt = 0. (174)

Consider the expression for the time rate of change of the total mechanical energy.
The arguments of u are suppressed for convenience. Leibnitz rule (see [72:pg 5] or [69:pp

163,170]) is applied to take the differentiation inside the integration.

£ o (1 [ ) oo (22)])

1 (L .0 (ou\?, 1 (b 8 (32u 2
L oud%*u 0%y 8%u
= / (0) 57 5 + / BI(z) 55 o= pde (175)
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Now expand the second integral in the last expression using integration by parts. (It is
assumed that v is smooth enough to justify changes in the order of integration.)

8% 9% |*

%u 3 L 8%y 8 8%
/ ) gapma = P00, . Jo G020z (EI(“’)W) dz

L
0%u 0%u ) oul’
El(=) xzatamo"a—(E )0 2) at|,

T [hou o
+ [ S (EI( 2)os 2) da (176)

Hence,

de 52 v 0% |

o
@ " /0 u( (w)atz EE 2( 1)z 2))‘1”“(”‘)3 7519s |,

0 8% oulf
"EZ(EI(”’)W)EO

It is not difficult to see that for clamped, pinned, or free boundaries the boundary terms

(177)

in this expression are zero. So, the equations of motion must come from

/OLa ( (m)atﬂ +aa2 (EI( )222)) dz =0, (178)

The quantlty 7+ will not be zero over any interval for any interesting beam. In fact,
as time goes by, & St w111 take on a wide variety of values. The only way to guarantee

dé/dt = 0, is to require

o%u 92 %
m(:v) o7 + —a—x—z (Ef(w)—a-;f> =0 (179)

for all z € [0,L] and ¢ > 0. This is all made precise in the calculus of variations. The
terminology admissible function is used for possible values of %t‘. See, for example [72:pp

217-220).
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In the case of constant density, constant cross section, and constant modulus of

elasticity, the equation reduces to

6%y 0%y
— - E[— = 0. 180
m8t2+EIam4 0 (180)
This is usually written as
Uge + (QUzg)ez =0; 0K 2 < L; 0L (181)

where, consistent with the physical situation, it is assumed that ¢ > 0. Since a is a
constant the parentheses are not really necessary but they are suggestive of a more general

equation.
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Apvendix B. No simple extension to other boundary conditions

Consider an example which demonstrates that the type of analysis done herein will
not carry over to spaces similar to X but with different boundary couditions. In particular,
if the boundary conditions on the first component required a zero value on the second

derivative but not on the first, then the space would not be complete.

Consider the sequence of functions

1
z 0<2<59r
- n . n nt+l_
zn(w) = 13211 g — 132n37 + 2n+2(11_2n) 2n1+1 <z< '2‘%}'1‘1‘ (182)
1-2 2%%?-1' <z<1

The limit of this sequence is given by

0 z=0
2(z)=lim zy(s)={ —2?+2 0<z<1 (183)
0 z=1

It is easy to see that each element of the sequence has second derivative zero at the
end points but the limit does not. Slight modifications of this example demonstrate that
boundary conditions other than those cited originally do not lead to a complete space in

the given norm.

One possible approach to get the second derivative under control would be to base
X on H?®x HO instead of H? x HO, But, when a sequence is given as Cauchy in this new
X (with the old norm), it is not possible to show that its first components form a Cauchy

sequence in H2, So, there is no simple answer here.

Another approach is (o let X be the completion of the subset of H? x H° determined
by the boundary conditions. This approach has not been fully analyzed.
Another difficulty arising from other boundary conditions is in establishing the dense-

ness of D(A) in X. In particular, Theorem 7 and its generalization in Appendix D will

not apply. But, see [12:pp 16-18,42ff] and [58:pg 8, 2.5).
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Appendix C. Not the generator of an analytic semigroup

While X has been defined as a real Banach space, complex valued functions could
be allowed and the inner product modified (with conjugation of the second factor in the
integrand) to make everything proper for the possibility of extension to an analytic semi-

group.

Theorem 75 The operator —A; given by (26) is not the generator of an analytic semi-

group.
Proof: The proof of this theorem will be given after several preliminaries have been
established. o

The key to the argument is Theorem 2.5.2.a,c of [58:pp 61-63). For convenience the

relevant portion of the theorem is stated next. Its proof is in the reference as cited.

Theorem 76 Let S(t) be a uniformly bounded Co semigroup. Let A be the infinitesimal

generator of S(t) and assume 0 € p(A). The following statements are equivalent:

a S(t) can be extended to an analytic semigroup in a seclor As = {z :| argz |< §} and

S(2)|| is uniformly bounded in every closed subsector Ag, §' < 8, of As.

c There exist 0 < § < w/2 and M > 0 such that

p(4)D T = {A JargA|< T+ a} u {0} (184)
and
M )
[[R(A: A)|| £ I—M-for AEZ, A#0. (185)
Proof: See [58:pp 61-63]. m)

From Theorem 76 it is clear that the resolvent of —A must include the entire imagi-
nary axis if — A is to be the generator of an analytic semigroup. But, as will be established
for —A; (see (26)), the point spectsum includes infinitely many well spaced points on the

imaginary axis. Hence the conclusion.
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Lemma 77 The point spectrum of —A; ‘includes arbitrarily large values on the positive

and negative imaginary azis.

Proof: First recall that —A; is skew-adjoint. This leads to the necessityl of any eigenvalue
being on the imaginary axis. In particular, if —A;u = Au then (—Aju,u) = (Au,u). But,
as was shown earlier, —A; is dissipative and hence Re(—A u,u) = —Re(Aju,u) < 0.
From skew-adjointness, (—Aju,u) = (u,(—41)*) = (u,A41¢). Thus Re(Aju,u) < 0.

Hence, Re(Ayu,u) = 0. On the other hand, Re(Au,u) = Re(Mu,u)) = Re(Aul},) =
Re(A)||u||2,, which must be zero for arbitrary u. Hence Re(X) = 0.
This has only establisked that any eigenvalues for —A; are constrained to the imag-

inary axis, it remains to show that there are eigenvalues there. This will be done in a very

direct constructive fashion. Solve

0 1 U U
Plaal ! (186)
—aD* 0 ug ug
for A. This is the same as the system
Uy = My
—aD%y; = Au,. (187)
This can be written, by simple substitution, as
- (XD4'IL1 = /\2u1 (188)
or
/\2
Diuy + U= 0. (189)

It is already known that A = i3, for some S, if this equation is to have a nontrivial

solution. From the complementary equation

L. 0
r+a 0, (190)

102




which can be written

it is clear that the roots are
r= 28207114 4ig1 /2011,
For convenience, let 4 = 1/2¢~1/4, Then

u = €17 4 coe” " 4 e3c08 Y2 + ¢4 sinyz

' = v’ — yeee™ " — yezsinyx + yeq cosy2

Now use boundary values to solve for the coefficients.

#w(0)=0 = c1+catec3=0
w(0)=0 = c¢—cotcs=0
#(1)=0 = eYe-+e Vea+ c3cosy + casiny =0
w(1)=0 = e€¥¢; —e Vep~ casiny + cgcosy =0

(191)

(192)

(193)

(194)

The important issue here is to find 7y so that this system has a nontrivial solution. This

requires
1 1 1 0
1 -1 0 1
=90
e’ e cosy siny
e’ —e™7 —siny cosy
This is reduced as follows.
1 1 1 0
0 -2 -1 1
0 -vY+e™7 —e¥+4cosy siny
0 —e¥—e™ —€Y—-siny cosy
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-2 -1 1
—e¥+e™7 —e'+cosy siny | = 0
—e7—e™7 —€7—siny cosy

—2[—€" cos 7 + cos?  + €” siny + sin’ 7]

+[—€"cosy + €™V cosy + €”siny + €7 sin~]
+[e? +e'siny—1— e Vsiny— €2 + €cosy~1+€e Y cosy] = 0
—4 4+ 2eTcosy+2¢"Tcosy = 0
-1+ Mcos'/ = 0

2

coshycosy = 1

coshy = secy (196)

The problem has now been reduced to finding real values of ¥ such that coshy = secy. But
cosh v is defined for all real 4 and is always greater than or equal to 1. On the other hand
secv has asymptotes at y = @%E forn=..-—2,-1,0,1,2,:++. Except for n = 0, each
asymptote is approached by a unique branch of secy which intersects cosh+y. (For n = 0,
two branches intersect at the same point.) Thus an infinite number of arbitrarily large
positive and negative values of 7 are obtained. Now recall v = f1/2a~1/4, so B = y2al/?
where o > 0 is a constant. It is clear that 8 can be arbitrarily large and hence so are the

A values.
This establishes the lemma. m]

Inconveniently, zero is in the spectrum of —A and hence 0 ¢ p(—A). Hence, an
adjustment is necessary to apply Theorem 76. Since —A is the generator of a Cp semigroup
its resolvent set contains the positive real axis. A small shift of the problem will put 0 in

the resolvent set.

Lemma 78 The point spectrum of —A — €I includes arbitrarily large values on the line

Re(A) = —e.

Proof: The argument is exactly the same as in the previous lemma with A replaced by

Ate (]
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Lemma 79 ~A — el is not the generator of an analytic semigroup.

Proof: By Theorem 6.1 of [19:pg 38], —A — I is the generator of a Cp semigroup of
contractions. And hence the generator of a uniformly bounded semigroup. (Or, see [30:pg
499].) To justify application of this theorem, note that ~el is a dissipative operator for
any € > 0. In particular

(efuy,u) = —e(u,u) -
—él|u||?

<0 (197)

There is one more preliminary before the proof of the lemma. It must be established that
0 € p(—A—eI). That is, show that A+ el has a bounded inverse. But, € € p(—A) = ¢+ 4

has a bounded inverse.

Now Theorem 76 applies. Furthermore, any wedge will cross the line £ = —¢ and
hence the sector will include elements of the point spectrum. Thus, the wedge does not lie

intirely in the resolvent set and the lemma is established. o

This concludes the preliminaries. The proof of Theorem 75 is structured as a proof

by contradiction.

Proof: Suppose —A is the generator of an analytic semigroup. Then by Corollary
3.2.2 of [58:pg 81], ~ A—el is the generator of an analytic semigroup. This is a contradiction

to the lemma just established.

The theorem follows. 0
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Appendix D. Miscellaneous proofs

D.1  Proof of Lemma 7
Lemma: ¥ y € H? and y(0) = y(1) = 4’(0) = ¥'(1) = 0, then y € HZ.

Proof: When y € H?, it follows that y,7',y"” € L. Since y” € Lo, there is some
sequence {y;} C C§° such that y? — y".

Let ¢/ (z) = [5 y(%) d2. Note that

IN

IROL
0

AL
[ ot aa
1//»2»
|| @) as (198)

IA

IN

which is bounded since g, € L2. (Note that the last inequality need not hold for ) < 1,

but in this case boundedness is obvious.) Hence g, € L,.

Claim: g}, = ¢/

(@)~ [*9"8)dt = (0) +¢(2) = ¢(2). (199)

Therefore, the claim holds.

Similarly, let y,(z) = [y ¥,(8)dZ, and note that y. € L. It is easy to see that
Y € HE. If y, — y, then y € HZ by the completeness of HZ. But this follows by the same

line of argument used to show y}, — ¥/". ) o
A more general version of this lemma is also known, as stated below.

Lemma: Let v € H™ be given. Then u € HE if and only if u(*)(0) = «(*)(1) = 0 for

every k<m-—1.

Proof: This is essentially a corollary to Theorem 3.3 of [56:pg 67). It is taken from
[56:pg 91]. The proof requires several other theorems which are also in the cited text. It

will not be repeated here. o
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D.2  Proof of Lemma 24

Let (:,-) denote an inner product on a linear space X. For fixed z € X, let f(y) =

(z,7). Then f is continuous.

Proof: Let yo € X and € > 0 be given. It is sufficient to identify § > 0 such that
ly ~ voll < & = | (=,9) - (2,%) |< €. If z = 0 the result is trivial. Assume z % 0. Then

| (z,9)~(z,90)] = |(z,9—w)]
< =iy = oll.

(See [54:pg 273, [63:pg 41], or [66:pg 251] for example, for the Schwarz inequality.) But

||z]| is known since z is fixed, so choose 6 < ¢/||z|- u]

D.3 Comments on the proof of Lemma 42

The cited proof omits some of the detail concerning the boundedness of ||£Q||. The
Uniform Boundedness Principle must be applied. See the proof of Theorem 46 (below) for

an example of such an application.

D.4 Comments on the proof of Theorem 46

Theorem: Let {A(t)}sefo,1) be a stable family of infinitesimal generators of Cp semi-
groups on X. If D(A(t)) = D is independent of ¢ and for v € D, A(t)v is continuously
differentiable in X then there exists a unique evolution system U(t,s), 0 < s <t < T,
satisfying the 5 results of Theorem 44 where Y is the set D equipped with the norm
lolly = llollx + [|A(0)vllx-

Proof: See [58:pp 145-146]. This appendix is to expand on one portion of the proof
cited.

The proof includes a claim that Q(t) = Aol — A(%) is an isomorphism of Y onto X.
1t is appropriate to comment on the validation that Q(2) is in fact such an isomorphism.

For )¢ > w, Theorem 1.5.3 of [58:pg 20] gives existence of an inverse for Q(t) which means
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it must be 1-1. Theorem 2.16.3 of [22:pg 55] gives onto. (See also [19:pg 13].) Linearity is

clear and an algebraic isomorphism is established.

However, for a topological isomorphism, @ and Q=1 must each be bounded. This

can be a difficult issue. First, consider the boundedness of Q.

For any v € Y, G(t)v is continuous from the hypothesis on A(?). Hence, there is
some M, such that [|Q(t)v|ly~x < M, for all . Now the Uniform Boundedness Principle
(eg [65:pg 196]) applies to give a uniform bound, say Mg for ||Q]].

Next, recall that bounded, linear, one-to-one, and onto operators have bounded in-

verses (eg [73:pg 70] or [22:pg 47]). Thus, ||@~?|| is bounded.
Now it is clear that the proposed isomorphism is legitimate.

It is interesting in the above argument that ||Q|ly—x is taken to be bounded by
hypothesis, yet the norm is specified separately. It is appropriate to verify that these are

consistent, de, that @ really is bounded when considered as a mapping from the given Y

to the given X.
_ lR@®)yllx
lRWly-x = 52 Tl
= s |+ A®)) vlix
0#yEY llylly
= sup | (Z + A(0) = A(0) + A(2)) yllx
0#yeY llylly
< sup I+ A(P))@/le + | (A(2) - 4(0)) ylix
0#yeY ||3I"Y
= 1+ sup | (A(t) — A(0) yllx (200)
0#yeY llylly

But the continuous differentiability of A(t), on a closed and bounded interval, gives Lips-

chitz continuity to 4. That is, for some K, ||A(t)y — A(0)y]lx < Kt||yllx. Then

[Q@®lly-x < 1+ KT. (201)
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D.5 Proof of Lemma 61

Lemma 61 Let U and V be evolution operators. Then

V(@E,r)y-Ui,r)y= /: U(t, s)(A%(s) — A¥(s))V (s, r)yds.

(202)

Proof: The proof consists of taking the derivative of a cleverly chosen quantity and then

integrating the result. Recall

%U(t, ) = —A{)U(ts)

(—ld;U(t,s) = U(t,5)A(s).

Now the differentiation is presented.

LUVt

li
As—0 As

li

m U(t,s+ As)V(s+ As,r)y = U2, 8)V(s, )y

m U(t,s+ As)V(s+ As,r)y— U(t, s+ As)V(s,7)y

As—0 As

+ fim Llts+A8)V(s,)y = Ul s)V(s,r)y
As—0 As

V(s+ As,r) =V (s, 'r)y

Aﬂr-r}o Ult,s +As) As

. U(t,s+As)-U(t,s)
+ Alﬂlo As v

(s,7)y
U(t,9) 2V (Y + U8V (5,70
U(t,s)(—=A*(s)V(s,m)y) + U (2, $)A*(s)V (s, T)y

~U(t,8)A(s)V (s, )y + UL, s)A*(s)V (s, )y
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= U(t,8)(A%(s) = A°(s)V(s,7)y (204)

Now, integrate both sides from » to ¢.

UV = [ Ul s A%E) - AV, uds
U, )v(t,r)y-- U, r)V(r? )y /;t U(t, s)(A¥(s) — A¥(s))V (s, )y ds

/t U(t, s)(A%(s) — A¥(s))V(s,r)yds D (205)

V(t,r)y—-U@,r)y

A similar argument is available in {53:pg 552).

D.6 Proof of Lemma 68

Lemma: For positive real numbers a, b,and ¢ with b > ¢, it follows that ﬁ—'c’ < %.
Proof: Let r; = 1‘# and rp = &€, Noticethat ;= ¢+landrp=%+1,50b>¢
implies o > 71 and fi— > 1. Then, r1b = a4+ b and r9¢ = a + ¢. Hence
at+bd lb
at+c ~ Toc
< To Ty b
- rrec
= ¢ m] (206)
= -
D.7 Proofs of Lemmas 70 - 74
Lemma: For a,b > 0, (a®+- bz)l/2 <a+b
Proof: For positive values of a and b it is clear that
(a4 b = o+ 2ab+ 0
> a®+ b (207)
The desired result follows by taking square roots. 0
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Lemma: For any real numbers a and b, (a +& ~ < 2(a® + b?).

Proof: Note that

(a=b? > 0
a?—2ab+b* > 0
a4+ b > 2ab. (208)
Now,
(a+b)? = a?+2ab+b?
< 2a+8%). O (209)

Lemma: For positive real numbers a, b, and c it holds that (a-+b+c)? < 3(a2+b2+c?).

Proof: This is a straightforward calculation.

(a+b+¢)? = a®+2ab+2ac+ b® +2bc+ ¢?

IN

3(a®+0b%+¢%) O (210)

Lemma: For any positive, real a,b, and ¢, it holds that (a+b+c)!/2 < (a¥/2 4+ b1/2 4

cl/?y,
Proof: This is the same as
a+btec< (a2 40124 M2, (211)
But,
(V2 4§12 4 G122 _ Gt bt et 202N 1 9g /22 4 opM /22

> at+b+ec ' (212)
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and the desired result follows by taking square roots.
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or

(T + Ad)~ ]| < |i=l. (216)

But [|(7 + AA)™|| = sup|pu=1 {|(T + AA)722||} and the original form is obtained from the
last equation above. For the nonlinear case the expanded version is used for the notion of

accretive.

It is also useful, in the nonlinear case, to adopt a set theoretic representation of the

operator A. That is, for A C X x X, define

Az = {y:[=z,9) € A}
D(A) = {o:As# )
R(A) = u{dz:z € D(A)} (217)

and note that this allows A to be a multivalued function.

For A,B C X x X and A € R make the natural definitions

A+B = {[z,y+2):y€ Az, z € Bz}
M = {[z,My]:y € Az}
AT = {[y,2): [z, 9] € A} (218)

In this setting, call B C X X X accretive if ( + AB)™ is a function for 2ll A > 0
and [|(I+ AB) 'z — (I + AB)1y|| < |lz = || for all z,y € D (I + AB)™?).

Theorem 80 (Crandall-Liggett) Let X be a Banach space. Let AC X x X andw € R,
satisfying A + wl 1is accretive, be given. If R(I + AA) D D(A) for all sufficiently small
positive A, then

Jim (7 + -:;A)‘"x (219)

exists for x € D(A) and t > 0. Moreover, if S(t)z is defined by this limit, then S(t). €
Qu(D(A)).

114




Note that A is not required to be closed or densely defined or linear or accretive. Also,

note that w and A are now fixed.

The proof is best approached by first establishing a host of preliminary results. This

will, of course, require more notation. Let

= (I + /\A)—1
’ Dy = D(Jy)
el = inf (ol (220)

Lemma 1.2.i: Choose A > 0 such that Aw < 1. Then J) is a function, and for z,y € D),
193z = Jagll < (1= dw) 7|z = y]. (221)

Proof: The proof of this lemma begins with a claim.

Claim: (I + 1,HwA) —1 has Lipschitz constant |1+ tw| for t > 0, 1+ tw # 0.

This is shown in the following,.

-1 1 -1
“ I+ .l_t}-TA T — (I+ 1+twA> Yy (222)
1 -1 -1 -1
= “ (m—) [((1 +tw) +1A)" & — ((1 + tw)I + tA) y]
= [T+ tw| |(I+ 4wl +A) o~ (I +twl+ A) 7 9]
< 1+t = -yl (223)

where the ineauality follows by the accretiveness of A+4w. for ¢ > 0, and directly for ¢ = 0,

and establishes the claim.

Now, choose t = 1—_’\7(; then A = W where ¢ > 0. Hence, only those ¢ such

that #w > ~1, need be considered. The claim gives |1 + tw| as a Lipschitz constant for
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(I +AA)7Y, i.e. for Jy. But

14w = 14+tw
¢
)
= (1-Jw)™! (224)

and the Lipschitz constant has been validated.

Next, establish that Jy is a function. The key is that A 4 wI is accretive and hence
(I +1(A+wI))™ is 2 function for all £ > 0. In particular,

T+UA+wl))? = ([+tA+twl)?
(1 + tw)I +tA)?

1 -1 1 1
= (ﬁ%_) (1 +tw)™ (1 + tw)I +tA)”

i -1
1+ tw)™? (I + mA) (225)

For 1+ 1w # 0 (legitimate as above) it follows that (I + 3 A)~! is a function for all £ > 0.

Choose t such that A = Hﬁ as above and J) is a function. This completes the lemma. O

As a corollary to Lemma 1.2.i
735 - 39l < (1 - M) lo — ] (226)

for all positive integers n.

This is established by induction. The lemma has already established the base case.
Suppose now that ||J7 1z - JP7 1y £ (1 = Mw)~(*D|jz — y||. Let & = JP~1z, §=J7y.
Then

|73z = IRyl = ||IaE = Iad|
< (1-2w)7 Mg -3l

< (1= M)z -] (227)
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and the corollary is established.

Note that, in the above argument, it is assumed that J fa: € Dyfork=1,2,.-+,n~1.
Also, the fact that J) is a function was used to show ti.~t Jy« is uniquely determined. This

can be taken as an additional hypothesis without preventing its desired use later.

As a specific application of the corollary, choose z = Jyy. Then
5+ y = Roll < (1= M) "1 ay — ll. (228)
Lemma 1.2.1i: Choose A > 0 such that Aw < 1. Then
72z = z]] € A(1 = dw)™ Az (229)

for € Dy N D(A).
Proof: Let [z,y] € 4 be given with € Dy N D(A). Let z; = (I + AA)~'z. Then

T+MAA)z1 = =
T = 214 An
= 21+ An. (230)

Recall that Jyz = z; is an alternate notation for (J + AA)~1z = z;. Now

|3z — =l llz1 — =l
1x(21 + Agn) = Ia(z + M)l
< (1= 2) iz + M) = (= + M)l

M1 = dw) 7y (231)

which is valid for all y. Henee,

e =l < M1— X inf ol
yEAx
AL - dw)! | (232)
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as desired. Note, in the above arguments, that (I 4+ AA)z = = + AAz = =+ Ay means that
z = Jx(z + Ay) for all z € D(A). Also, %y + Adyy — 2 = 0. ]

Lemma 1.2.iii: Choose A > 0 such that Aw < 1. Let n be a positive integer,
z € D(J}), and Ajw| < 1. Then,

1032 - ol < (1= A}~ lrz - ol (233)
Proof: Observe that
Be—z = Je-Ir e e -tz —-o
n—-1 .
= 3 (p-in - gy ) (234)
i=0

Claim: z € D(J}) = 2 € D(J}71).

Since & € D(J}), (I+AA)""z is well defined. But, (I+XA)~"z means [(I + AA4)~1z]"
and its well definedness implies that of (I + AA)~'z. Finally,

(I+XA) ™" (T + XA~ =0T 4 2A)1g
(I +24)~V g

Jr 1 (Ihe) (235)

and the well definedness of all the other terms gives that of J3~!. Inductively, the claim

holds for all terms of interest. So, all of the newly introduced terms make sense. Thus,

n=-1

gz —all = |35 a - 53 )
=0
n-1 . N -
< (1= 2y — g (236)
i=0

by Lemma 1.2.i.a.

There are three cases to consider. Case 1: Mw = 0. This case is trivial.
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Case 2: Mv < 0. It is desired to show that

n-1
3 (1 = dw)~mHEH) < p{1 - Aw])™H, (237)

=0

But, \w < 0 = 0 < —=Aw, 1 < 1 - dw. Hence, the terms in the summation are increasing.
The largest term is (1 — Aw)~"*("=141) = 1 and the sum is less than or equal to n. This
case will be complete if (1~ Ajw|) < 1 (since then the inverse will be greater than or equal

to 1) which the.hypothesis Ajw| < 1 clearly assures.

Case 3:.  w > 0. This time

-Aw < 0

1-dw < 1 (238)

Hence, the largest term in the sum is the first one, (1 — Aw)™"*1. The sum is less than
or equal to #(1 — dw)~"*1, The proof will be complete if (1 — Aw)~™! < (1 — Ajw])~"*1.

But \w > 0 = w > 0, i.e. |[w| = w and the equality holds. o

Lemma 1.2.iv: Choose A > 0 such that dw < 1. If A > 0, p € R, and = € D), then

|
Aa:+ ;) Jyxz €D, (239)
and
IHred, (%x + I\:\-MJ,\:Z:) . (240)

Proof: Since z € D), Jxz makes sense. Say

e = ([+24)71z
= Ty, (241)

whence

r = (I+ /\A)ivo
= 29+ Azg
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= zo+ A% (242)

where [29, 0] € A. Now write

A- -
%rc-l- ,\”Jxx = §($o+/\yo)+ ,\“wo
= §$o+ﬂyo+wo—§wo

= o+ 1Yo (243)

It remains to show that zo + pyo € D,. But, [z,%) € A, so 20 € D(A) and
(I + pA)zo = 2o + pyo. This means (I + pA)~Y(zo + uyo) = zo and the first part of the
lemma follows. But, recall Jyz = 29 and zo € Jyu (20 + py0). Hence, Jrz € Ju(zo + pgpo) as
required. o

As a corollary: If z € D(JF), then J¥z € J, (§J,'\°‘1x + %EJ,’{:::) for all integers k.

The lemma establishes the base case. It remains to show

Tz el, (%Jf-lx 42 5 £ fo) = JHg e, (%fo + A—j\—ﬁJ;‘“z) (244)

Let & = J¥z. Then, £ € J, (f{Jf"lw + -)5-;—&:1:) and the desired result is

A€ J, (§x 42 5 a m) . (245)

Since £ € D(Jy), let Jxg = (I+A4)71% = 2;. Then & = (I + M)z = 21 + A\a; =
z1 + Ay1. Note that [z1,31] € A. Write

By A=B o . B A-p
Xiv+ 3 HhE = A(zl + ) + 3o
= I+ MUy (246)
Consider
I+ pd)ey = @1+ un
g1 = (T4 pA) (e + p) (247)
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ie. (214 py) € Dy. But, Jy& = z; and 21 € Ju(z1 + ptn) so Jag € Ju(21 + py1) =
7, (82 + 35£08).

Before presenting the next lemma, 2 brief review of some identities among the bino-

mial coefficients is appropriate.

n!
B(n, m) = m
B(n,n) = 1
B(n,0) = 1
B(n,m)+ B(n,m+1) = B(n+1,m+1) (248)

Lemma 1.3: Let A > ¢ > 0, dw < 1, and ¢ € D(JT) n D(J}}), where m and n are
positive integers with n > m. Let a = §, f = ’\—}E Then

m—1 . .

13z = Jfell < (@-wp)™ > o B(n, Iz ~ g
j=0
n
+ Y (1—wp)am ™ B(j - 1,m - 1)||J2 iz - z||.  (249)
j=m

An abbreviation will be useful. For integers j and k satisfying 0 < j<nand 0 <k <m,
let

an; = |7z — Tl (250)

Also introduce e = (1 — pw)™! £ and B; = (1 — )~ 25£. In this notation the result of

the lemma, takes the form

m—1 n
Am,n < E aljﬂln-JB(n’j)am--j,O + Z almﬁlj_mB(j -1l,m- l)ao;n".‘l" (251)

=0 j=m

Proof: The proof begins with a basic inequality relating the ax,,. This will require several

steps to establish. In the definition of a;; it is desirable to make the replacement

Iz =J, (%Jﬁf‘lx + ﬁ—}bﬁ) . (252)
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This follows from the corollary to Lemma 1.2.iv and Lemma 1.2.i. Now,

a; = |z - Ifal
= ||Jiz-J, (L;-Jf"lx p Aok ; ”Jf\’a:) ”
< (1-pw) | Ji g —~ (%Jf\“l:c + A—;ﬁfo)

- - - A— i
< -t [0 - el + 252 - sl

= @18k-1,j-1 + P18k,j-1 (253)

where the first inequality follows from Lemma 1.2., the second inequality uses &+ i}’i =1
and the triangle inequality, and the last step is simply a change of notation. This is a basic

inequality to be used in the proof.

The proof is by induction on n. The inductive proposition P(n) is: For all m < n

m-1 n
tmn < Y, 0Bt B(n, §)am—jo + Y, e1™ B ™ B(j — 1,m — 1)agn—;. (254)
Jj=0 j=m

Let n = 1, for the base case. Note that m = 1 is the only possible value for m. Claim:

The following inequality holds.

IN

a1,

0 1
> e B B(L, f)ar—jo + Y 1’ Br’ 1 B(j — 1,0)a0,1-;
=0 i=1

= Pa10+ eaop- (255)

The basic inequality says a1 < @1a0,0 + f181,0 and the base case is complete. Note
that apo = 0.
Now suppose that
m-—1 n

U < Y a1’ 1" B(n, §)am—jo + > ™A™ B(j - 1,m — 1)aon-; (256)

7=0 j=m
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for all m < n and seek to establish

m-—1 . . n+l .
i1 £ Y !B B(nt 1, )am-jo+ Y, o™ B ™ B(j - 1,m— 1)ag,nt1-5 (257)
=0 : j=m

for all m < n 4 1. Start with ihe basic inequality,
Apmil S Q10m-1,0 + .Blam,n- (258)

For each m < n the induction hypothesis applies to yield

m—2
mnt1 S @ (Z o1’ 1" B(n, 5)am-1-50
j=0

j=m=-1

+ Z alm—lﬂlj—(m-l)B(j - lam - 2)ao,n—j)

m=1 n
+6 (Z a1 B(n, f)am-jo+ Y, ca™Pi ™ B(j — 1,m - 1)ao,n-j)
j=0 j=m

m=2 n
= Y MBI B(n, )am-ryo+ Y, oa™B?T™B(j — 1,m — 2)agn-j
j=0 j=m=1
m~-1 . . n .
+ Z 017,31"_]+1B(’n,j)am..j,o + Z almﬁl"'*'l—mB(j -1,m- 1)ao,n_§259)
j=0 j=m

Note that m = n+41 and m = 1 must be treated as separate cases. This will be done

later. For now, focus on the first and third summations in the preceeding inequality.

m=1 m-1
> ol B B(n, = Dam-jo+ 3 e’ By B(n, f)am—jo + A" amo
J=1 =1
m=1 . .
= E @y’ By [B(n, § — 1) + B(n, §) am-jo + A" amo
i=1
m—l I3 .
= > BV B(n+ 1, 5)am-j0 + Bi" amo
j=1
m=1 . .
= Y. B B(n+ 1, 5)am-j0 (260)
j=0
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Next consider the second and fourth summations.

n
E almﬁlﬂ.lnm [B(] -1,m- 2) + B(J -1,m~ 1)] ao,n-j + almao,n—(m-—l)
j=m
n 13
= Y "B ™ B(j,m — 1)aon—; + 1™ a0 n-(m-1)
j=m
n .
= Z almﬂ11+l—mB(j’m - 1)a0,n—-j
j=m-1
n+l .
= Z almﬂlJ‘mB(j -1,m~- l)ao,,,.H__,- (261)

j=m
It is easy to see, when the terms are recombined, that the desired result is obtained.

Return now to the case m = i. It is necessary to show

o L 1
agpr ) a? BB L a0+ Y @1’ T B(j - 1,0)a0,n41-
j=0 j=1
n+1 .
= A™aro+ Y, e’ agmtr-; (262)
j=1

This must be established for all » so another induction is in order. For n = 1, it is required

to establish

2
Bilaro+ Y eapriaga-j
=1

= Bila10+ a100,1 + 01B1600. (263)

IN

1,2

But, from the basic inequality

IN

aia0 + P11

= aao,1 + Pi(aoo + fra1,0) (264)

a1,2

as required. (Note again that ago = 0.)




Claim: The following holds.

n+2

2 -
G2 < B Par0+ D e agmo—j

i=1

From the basic inequality and the induction hypothesis it follows that

a1,n+2

as required.

¢100,n41 + B1a1,m41
n+l
1 — -1
180,041+ B1 | B a0 + Y enfriaomya-j
i=1
n41
R .
a1aoms1 + br" a0+ D cafragngr-;
J=1
n+1 .
B a0+ Y cafrlagmti-
=0
n+-1
-1
B 2ay0+ Y c1fr’ tagpya-;
im

Now consider the case m = n + 1. This time it is required to show

Apt1,n41

IA

n

Z o’ B B(n + 1, §)ant1-40

i=0
nt1l .

+ 3 ™I B - 1,n)ag ni1-s
j=n+1

n
> e M B(n + 1, 5)ang1-j0 + ca™agy.
=0

This can best be handled by establishing the following intermediate result

(265)

(266)

(267)

. Let all con-

ditions be as stated in the Lemma, except, consider n < m. The result then becomes

Gmpn £ Lheo @ B1"~3 B(n, j)am-jo- Notice that once this is established, the desired re-

sult follows by replacing m and n with n 4 1 and noting that the n 4 1 term is zero.
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With attention on m > n it is appropriate to represent m by n + k where k is any

appropriate nonnegative integer. Then, proceed with induction on n for the proposition

Let n = i. Then

n

P(n) = For every k, appkn < _Jaljﬁl"'j B(n, 3)an+k-j 0. (268)
3=0
G14k1 S 010k0 + Pr8k41,0 (269)

by the basic inequality. This clearly has the desired form and the base case is complete.

Suppose P(n) in order to establish P(n + 1).

Ant14-knt1

IN

IN

1l

A ntkn + B18nt14kn

n n
a1 Y, 00’ By B(n, §)ansk-jo + P13, e’ B B(n, §)antki1-50
j=0 j=0

n n

2 P B B(n, ) antk-z0 + Y er’ ™7 B(n, §)anski1-40
7=0 =0

n+1 L

> 0/ B1™ 19 B(n, 5 = apski1-jo + > e B B(n, §)antki1-5,0
i=1 j=0

n
™ ago + ) 0 B[ B(n, § — 1) + B(n, §)antkr1-50
i=1

1
+B "t Ontkd41,0

n
o™ aro+ Y 0’ BT B(n 4 1, §)antis1-0 + B antrsn0
J=1
n+1 . .
> a? /"I B(n + 1, §)ankt1-40 (270)
7=0

and the induction is comlete.

This completes the proof of the lemma. m}

Before the next lemma, it is appropriate o recail the Schwartz inequality in the form

el < (Tleit?)” (Shwi?)” (271)
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where the generic sums suggest that the result holds for both finite and infinite sums, eg

[54:pg 548].

Several other preliminaries are also in order. The quantity (a + 8)" will appear.
Waite this in its binomial expansion and take derivatives with respect to a to obtain some

useful identities.

i B(n,5)oipmd

= (a+ph)"
s
> iB(n,j)od" 1" = n(a+ By~
j=0
L iB(n,j)adp™ = an(a+p)*?
j=0
> 2B(n, f)ed"1p" = an(n~ 1)(a+ B)" + n(a + B
j=0
> *B(n, ) = a’n(n-1)(a+ )" +anfa+ 4"
3=0
(272)
Recall now, that a4 8 = 1. The above then simplify to
> B(n,j)eipr = 1
j=0
n » 13
> iB(n, )" = om
j=0
Zj2B(n,j)ajﬂn—j = on(n—1)+an (273)
s

Some similar identities are obtained from the McLaurin series for (1 — 8)~™. The

series looks like

(1-—ﬁ)""=1+mﬂ+m(m+l)-f;—2+---. (274)
But
B(j-1,m~1) = (7= 1!

m- DG —1-(m-D)
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G- 1)

= 11G - ) _
and it is clear that .
o0
Y. B(i-1m-1)p"=(1-4)" (276)
j=m
The next step is to take derivatives with respect to 8 on both sides. This yields
Y. (G- mBG - L,m- 1) = m(1- )
S -m)B(—1,m=1)p™ = mp(1- )™
j=m
S (G —m)B( - 1,m =11 = m(m+1)8(1 - )%+ m(1- )"
j=m
> (G -mPB(j-1,m=-1)F™ = m(m+1)g%1-p)"
j=m
+mp(1 - g)~™? (277)
Recall that 1 — § = o and reduce these to
w I3
Y B(j —1,m-1)a™pi™™ = 1
j=m
o0
> (- m)B(G - 1,m - amgim = 22
j=m
S (5 — 2B — Lm — Damgi-m = Tm+DE mp
J;n(y m)*B(j — 1,m —1)a™p = 7 + a
(278)

Some additional modifications to the form of these equations is desired. To prepare for

them, note that

a+f =1
mPa+mp? = mp
mB  mp® mp
T T
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Now write

o0
> iBG-L,m=1amg = 2ym

j=m

0 . 2

> i*B(j-1,m=1)a"p™ = m(m%)i + %ﬁ +2m (—"ﬁé + m) - m?
j=m ,

(280)

m(m + 1)5? . mﬂ(l: 2m) +m?

o’

It is finally time to state and prove the lemma for which all these preparations have

been made.

Lemma 1.4: Let n > m > 0 be integers and a, B be positive numbers such that
a+ B =1. Then

S~ B(n, )a 8" (m - ) < ((na = m)? + nag) (281)

3=0

and

n 1/2
Z B(j = 1,m—-1)a™B™(n - j) < (_nz,_ﬂ_ + (mT,B +m - n>2) . (282)

j=m

Proof: Consider the first inequality. With n > m, apply the Schwarz inequality to write

S B(n, )i (m~35) < 3 B(n,5)ad " |m - |

j=0 =0n s ) 2
< (2 B(n,j)afﬂ"-f) (Z B(n, §)od B (m ~ j)2>
3=0 i=0

IA

it \ 1/2 n
(Z B(n,j)a"ﬂ""') (Z B(n, ) f*~Im?

i=0 §=0

n n 1/2
~ Y B(n,§)o? B (2mj) + 3 B(n, 7)ol j2)

j=0 j=0
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= (m2 ~ 2man + o®n(n - 1) + an) 2
= ((na - m)? +an(l - «tv))ln

= (('noz -m)?+ anﬂ)ll2 , (283)

This completes the first inequality.

Consider the second inequality.

n

3" B(j—1,m=1)a™B"™(n - j)

j=m
o
< Y B(i-1,m-1)a"F"|n - j|
j=m
- 12 4 1/2
< (Z B(j - 1,m = 1)a™g"" > B(j —1,m=1)a™F" (n - j)?
j=m j=m
mp m(m+ 1) mB(1+2m) 12
= n2—2n<—+m)+ . + + m?
a « o
202 2 2 1/2
= (nz— 2nmp —2nm+3’-—g-+-"@+m—ﬂ+2—m—ﬁ+m2>
a o o a a
2 22 1/2
= (-ng+ﬁgl—-2-ﬁﬁ-(n—m)+n2—2nm+m2)
a a o
1/2
mpB . (mp 2
(3:2‘““ (- (”‘m)>> (264)
This completes the proof of Lemma 1.4. o

Some final preliminaries will now be presented. These are some small details that

are best established outside of the main line of argument.
Claim: If 4 > 0 and plw| < 1 then 1 — plw] £ 1 — puw.
This is equivalent to uw < glw| and is clear. Thus (1 — pjw|)™? > (1 — pw)~L.

Claim: For sufficiently small positive A, (1 — Alw])™™ > (1 = A|w|)~(™~9) as long as

j<m.

For small positive values of J, it is clear that 1 — Ajw| < 1 and hence (1~ Alw|)™? > 1.

Then the result is clear.
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Claim: Given € > 0, there is some positive integer N such that

L1 < € whenever n,m > N (285)
m n .
Consider
1 1 1 1
m n m n
__2
min{n,m}
2
< = 286
<2 (286)

Choose N > % and the result is clear.
Claim: If n is a positive integer and ¢ € [0, 3], then (1 — )™ < ™.

The proof is by induction. Let n = 1. It is required to show

1-1)"t<ge? (287)

Notice that for ¢ = 0 the equality holds. Also note that for ¢t = % the inequality holds
strictly. This is also true in the form 1 < (1 — t)e?. The base case will be completed by
showing that the right hand side is strictly increasing on ¢ € [0, %)

Let f(t) = (1 - t)e*. Tken

fi(t) = 2(1-t)e? —e*

!
—
o
|
N
o~
|
—
~—’
(1)
[
-~

i
—~
=
|
no
o~
~—
®
(4
L

(288)

Since the derivative is always positive, the base case is now clear.

Suppose (1—1)™" < €™, then

-t ™ = -7 a-9™

S (1 _ t)—le2nt
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< 62t62nt

= einH)e (289)

and the claim is established.

This concludes the preliminaries and the proof of the theorem will now be presented.

The first order of business is to establish the existence of the limit.

Let z € D(A). Assume A > g2 > 0, n > m, Aw| < 1. Assume z € D(J{*) n D(J7).

The plan is to establish that fm® is a Cauchy sequence for rational values of p and A,

then an appeal to continuity will complete the problem. Most of the previous lemmas are

used in the algebra.

IA

IA

A

IA

m~1

12s = Iall < (1 - wa)™ 3 @B B(n, T2 o
3=0
n
+ > (1-wpydampTmB(j - 1,m = 1)|J2 "z — o
j=m
m . . >
(1= o)™ 3 @i~ B(n, )Tz — o
J=0
n
+ 3 (1= plw)) o™ F " B(j - 1,m = )||Jp~ e ~ g
j=m
m . . »
(1 o)™ - 0B B(n, 5)(m - )(1 - Awl) 1750 = o]
j=0

+ Zn: (1 - plw) ™9™~ B(j = 1,m = 1)(n - j)(1 = pl]) =4[]z — 2

j=m

|:)\(1 — plw])™*(1 = Alw])™™ i &3 ™3 B(n, §)(m — 7)

=0

j=m

(L= o)™ 3 B B(j = 1,m — 1)(n - j)] |4z

el 2 o 1/2
{}\e--~»l~§e~--}‘l~! ((na - m)“ + naﬁ) !

) 1/2
+ el (%5— + (2;— +m— n) ) } | Az|
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1/2
2hol(ratm) (?fi_ )2 nA—p
[Ae ( ) LY
AZ ) — AN — 2\ }/2
s (TR (TR g )] fae

1/2
[)‘e2lwl(nu+mr\) (ﬁiﬁ _2nmp oo M ﬁi_‘f) /
U

i) [ (2N (2 2\
2wl(nptm il > _ B
[Ae ((A )+ (3 X"))

+e‘2[w]nu (m)\2 ~ mpA + (mA - nu)z)l/z] |Az|
_ [e2|wl(nu+m/\) ((nu —mA)? + np(X = u))llz

te?llns (m)\(z\ - 1) + (mA - nu)z)llz] |Az|

(290)

This establishes a slightly tighter bound than the paper gives for its equation 1.9. However,

no additional strength is given to the theorem.

For any given ¢ and sufficiently large n and m, legitimate values of y2 and A are given

L
m

by £, and

respectively. Some preparation is needed to substitute this in to the inequality

above. The purpose for all this is to establish a result for rational values and then appeal

to continuity. The following are useful for substitution.

np=m\ = t
nu+mir = 2t
np—mA = 0

= mA-nu

1 1

(A -p) = t(;,;‘;)

- 52(3L l)
- m n

= mMA~p)
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Substitution yields

"Jtn/nm - Jt?ma:"

IA

1/2 1/2
et (22 1Y vty (£ - 1Y) e
1 1 1/2 1 i 1/2
= [e‘“lwlt (7—77: - .7_2.) + e2letty (E - .T;) ] |Az|

1/2
< 2tettlel (%—%) |Az]|

1/2
2l (i - 1) |Ag)| (292)

m n

IN

Recall that w is fixed (from the very beginning) and that consideration is currently

being given to a particular . The limit
. n .
Jim J3a (293)

exists since the terms have just been shown to form a Cauchy sequence in a Banach space.

From the corollary to Lemma 1.2.i

1 -n
17 = gl < (1= 20) " llo = ol (299)
Recall that
. wt\™" :
lim (1-—] =e¢“. (295)
n—00 n
Let
= lim J®
S(t)z = Jim Jp 2. (296)

Then S(¢) has e as a Lipschitz constant. Thus, if $ is a semigroup, then S € Q.

The definition of S for elements of D(A) has been given. But S must be defined on
all of X. The extension will rely on the denseness of D(4) in X. Let z € D(A)\D(A) be
given. There is a sequence {z;} of elements in D(A) which converges to 2. The issue to
be resolved is the existence of

. n
Jim Jpz. (297)
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Let € > 0 be given. Choose Ny such that ¢ > Ny implies ||; — 2|| < 5. Choose N3 such

that for any 4,5 > N; and n > Ny it follows that
95 = Tipasll < 26 @i — @5].

Let N = maz{Ny, No}. Then
1987n2i = Jipnzill < €

and the sequence is Cauchy as desired. Also,

"‘]tn/nmf' - Jtn/nx" "Jtr}nxi - Jll’n;lo Jt'}nw.?"

< 2|z — a4l

= 2¢“Y|z; — = + 2 — z;]
: €

< 2 -267

= €

Now it makes sense to define
]

S(t)e = lim lim Jg, ;.

=00 {300

(298)

(209)

(300)

(301)

The Lipschitz continuity of S(t) will now be established. Let 7 > ¢ > 0 be given. For

z € D(A), legitimate values of 4 and A are given by ;‘; and I respectively. Choose n =m

in equation 1.9 and write

IA

1972 = Tipnc]

[((t L

_ 1/2
(T4 -vp) eﬁlwlf] | g

Jim 1770 = Tzl < [lo= IO 4 (7~ )] | 40]

135

(1 - t)| Az| (eﬁlwl(t+r) + e'llwlt)
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But,

dim 11770 = Tzl = | lim Tz~ lim T o
= [I5(r)z - S(t)z]| (303)

Thus S(t)z is Lipschitz continuous in ¢ for z € D(A) and bounded ¢ intervals.
Claim: For z € D(A}, S(t)z is continuous as a function of ¢.

Let 2 € D(A)\D(A) be given. There is a sequence {z;} — z where each z; is
in the domain of A. Let ¢ > 0 be given. It is required to find some § > 0 such that
|5z — S(7)z|| < € whenever ||7 —t|| < 6. But, for any z;

1S(r)a: = S(@)aill < 1t = 7| |4 (eHelt+7) 4 e2lelt) (304)
Furthermore, ||S(t)z; — S(t)z|| < ¢/3 for sufficiently large ¢. Then

15(r)z = 5(t)=]l

IS(7)z = S(7)z; + S(7)z; — S(t)z:i + S()z; — S(t)z||
15(7)z = S(r)zill + |5 (r)e: = S@aill + |5 (t)zi — S|
6/3 + |t = 7| || (A1) 4 ¢elt) 4 ¢/, (305)

IN

IN

All that remains is to choose § such that
jt — i | da] (241047) 4 e2Mlt) < ¢/3 (306)
That is, it is required that
6| da| (3121 4 e2llt) < /3 : (307)

where 7 is the maximum allowable value for .

Choose
€

§ = n
4|AQ}| (e4|w|t + e2|w|t)

(308)
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and the claim follows.

It is clear, from the definition of the Jy terms, that S(0) is the identity. The previous
claim, applied for ¢ = 0 gives the continuity required for S € Q.. The proof is concluded
with the establishment of S(t + 7) = S(¢)S(7). As has been the pattern, there are a few
preliminaries. Namely, by applying the definition and previously established continuity
results, it follows that

(s = [lim )"

Nn—+00

= lim [75,]"

n—o0

= lim [Jt /n]

n—oo

(309)
Also, it now follows that

S(mt) = ,}Bgo‘]mt/n
= Jim J7n,
= 1 [
= Jm [J‘/"]
= [s@" (310)

It will now be established that the semigroup property holds for rational values of ¢

and 7. Let [, k, 7, and s be positive integers. Then

() - 5(55)
[+(2)
D ()]

|_ \ks/ ] ks

+(32()

But, since S(2) is continuous as a function of ¢ and Lipschitz as an operator on X, it

follows that the relationship holds for all real numbers. o
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