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1. SCIENTIFIC BACKGROUND

1.1 Motivation

Unlike the Hj system in its ground electronic state, which does not support any bound
states of nuclear motion, this system is known to have a long-lived! ~* excited Rydberg state

2p, 2AY. The high resolution spectroscopic measurements of Herzberg and co-workers®~?

and of Helm and co-workers!®—13

confirmed it beyond doubt. A very intense beam of H3 in
this metastable state has been generated by Garvey and Kuppermann!#. Their estimation
of the lifetime of this metastable state is more than 40 u seconds. This metastable H3
species can liberate 180 Kcal/mole (7.8 eV /molecule) when decomposing into Hz(X 'Z)
molecules according to H3(2p, ’A5) — 3/2H,(X 'EF). Its specific impulse (ISP) is
estimated to be about 2050s, while current rocket fuels have ISP of the order of only 400s.

Such a high ISP makes Hj a very interesting rocket propellant candidate.

What the lifetime of this metastable H; actually is, via what kind of mechanism it
decays, and how collisions affect this lifetime are important questions whose answers are
needed in assessing its potential as a possible rocket propellant. One of the decay channels
is the ro-vibrational predissociation of the 2p, 2A% metastable electronic state into the
2p 2E' repulsive ground electronic state. It is difficult to measure directly the lifetime of
this channel, because it is not accompanied by any emission of radiation. The total lifetime
estimation from linewidth measurements®~? suffers from the Doppler broadening effects
inside the plasma sources which are used to generate H3 metastable molecules, especially
if the lifetime of interest is long, as is the case for the Hj in the 2p, 2A4 state. For this
reason, a theoretical investigation of its lifetime ( for both radiative and predissociative
processes ) is highly desirable. This theoretical investigation should also provide guidance

for the experimental studies of the properties of this metastable species.

1.2 Decay Processes and Lifetime

In the theory of predissociation processes, the lifetime 7 of a bound state predissoci-

ating to an unbound state can be expressed as!%!6

- hoom
Tml = 5—7'_, VE,,. |2 (1)
VP =<V, |H' | Vg > (2)

In these expressions, ¥,, is the wavefunction of the bound state with quantum number m
and energy E,,, Y is that of the unbound state with total energy E, and H' is the part

of total Hamiltonian which provides the coupling between the bound state and unbound
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state. VZ* is called the coupling matrix element between hese two states. The integration
in Eq. 2 is over the coordinates of all electrons and nuclei. The choices of normalization

for the above two wavefunctions are:
<V | ¥, >=1 (3)

< Vg |¥g >=6(E-E') (4)

For electric dipole transitions, the Einstein coefficient between an initial state ¥; and

a final state ¥ is'?
Ais = (4aw®/3c?)|< ¥; | T | ¥, > (5)

and the spontaneous radiation lifetime of this process is
1
T=— 6
A (6)

where « is the fine structure constant, w the frequency of the emitted photon, and ¢ the
speed of light. Here again the initial and final state wavefucntions are normalized as in
Eqs. 3 and 4. < ¥; | T | ¥; > is the electric transition dipole moment between the
initial and the final states, and again the integration in Eq. 5 is over the coordinates of all
electrons and nuclei. For molecular systems, the total wavefunctions in Egs. 2 through 4
can be written, using the Born-Oppenheimer approximation!8, as

Viotal = \I’elcctr ¥ruel (7)

Here ¥,icct- is the electronic wavefunction with fixed nuclear coordinates as parameters
and ¥, describes the nuclear motion in an effective potential generated by the electron

motion (i.e., the electronic potential energy surface).

In order to calculate both the radiative and predissociative lifetimes, Eqgs. 1 through
7 show that the following quantities are needed:

1. The wavefunctions which are solutions of the electronic motion Schrodinger equa-.
tion for the 2p, 244 state and all lower energy electronic states (2p %E' (1)',
2p 2E'(2) and 2s 241), to which the 2p, 244 state may decay either radiatively or
predissociatively. The resulting electronic potential energy surfaces are needed

for solving for the wavefunctions of the nuclear motion.
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2. The coupling matrix elements between those electronic states.
3. The electric transition dipole moments among those electronic states.

4. The ro-vibrational states of the nuclear motion in the field of the potential energy
surfaces which support bound states. The energy eigenvalues of those states will
determine the spectroscopic transition energies, and the wavefunctions are needed

in the lifetime calculations.
5. The scattering wavefunction on the ground potential energy surface.
The following sections describe in detail the progress achieved so far in obtaining

these different quantities necessary for the calculation of the radiative and predissociative

lifetimes.




2. Calculation of the Electronic Wavefunctions and Energies of H,

2.1 General Consideration

The first step toward the investigation of the lifetime of the 2p, 24 metastable state
of Hj is to calculate the electronic potential energy surfaces of the ground and the first
three excited electronic states, as well as the electronically non-adiabatic coupling matrix
elements and the electric dipole transition moments between those electronic states. We
originally hoped that these quantities would be calculated by other groups. Since this has

not turned out to be the case, we initiated a program to calculate them ourselves.

Let us first introduce the notation for those states. When the three protons form an
equilateral triangle, the electronic ground state is degenerate with the first excited state,
and the two generate the 2p 2E' representation of the D, point group!®. The second and
third excited electronic states are classified as 2s 24/ and 2p, 244. The z and y axes are
in the molecular plane, while the z axis is perpendicular to it. (2s, 2p, ;) are the state
assignments for an Li atom in the united-atom limit (UA). We still use this notation to

identify those states even when the nuclear geometry is no longer an equilateral triangle.

The potential energy surface is well known when the three electrons are in the 2p 2E'(1)
ground state!®~22, Using a functional extrapolation and the double many body expansion
method?3~2% Varanda et al. also obtained the potential energy surface of the 2p 2E’(2)
state which, for the equilateral triangle nuclear geometry, is degenerate with the ground
state20:22, Along with the potential energy surfaces, the major coupling matrix elements
between the ground state and the first excited staie were also obtained using the same
method?2.

After the first Hs spectroscopic measurements®, several theoretical electronic calcu-
lations for this system with equilateral triangle nuclear geometry have been made??~3°,
Emphasis was placed on the calculation of a large number of electronic states, in order
to reproduce the observed pattern of the experimental energy levels in the H; Rydberg
spectra. Figure 1 is the state correlation diagram between an equilateral triangular H3 and
a diatom H; plus a distant atom H. In these calculations, a frozen core approximation
was used for H, plus single Rydberg excitations for the third electron. These limited
calculations agree with each other and are qualitatively successful in explaining the exper-
imental spectra. The frozen core treatment gives however poor results for the 2p 2E'(1,2)
states, and also over-estimates the energy gap between the 2s 241 and 2p, 244 states by

a factor of 1.6 to 2.0 32 at the inter-nuclear distance R = 1.64 bohr.
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Figure 1: Energy Level and Correlation Diagram for H;. The spacing of the Hj,

energy levels was obtained theoretically for an equilateral triangle configuration®’ and
referred to the energy of dissociated products by the results of a separate calculation®!.




Recently another calculation for several of the low electronic states of K3 in some
special geometries has been published®?. The MRD-CI method used in that work is very
general and powerful33:3¢, It could be used with arbitrary nuclear geometries and to
generate the full potential energy surfaces. It also offers a much better description of the
2p 2E'(1,2) states, and reduces the energy gap between the 2s 2A| and 2p, 24§ states
to just 10% greater than the experimental measurement®2. The electric dipole transition
moment between these two states for an equilateral triangle nuclear geometry with the
internuclear distance of R=1.64 bohr agrees with the previous calculations. Because of
its capability and performance, we chose this method for our calculations and initiated a
collaboration with Professor J.S. Wright32 of Carleton University, Ottawa, Canada.

2.2 MRD-CI method

The details behind the MRD-CI (Multi-Reference, single and Double excitation Con-
figuration Interaction) are beyond the scope of this report and can be found elsewhere33:34.

“Only the major steps of the calculation are briefly described below:

1. First, a set of atomic orbitals {AO) are chosen. Gaussian-Type atomic orbitals
(GTO) are used®s.

2. Second, the nuclear geometry is taken into account. A set of symmetry-adapted
functions (SAF) is constructed by linear combinations of the set of atomic orbitals.
By taking advantage of the nuclear geometry symmetry, the MRD-CI calculation

for a given molecular system can be speeded up significantly.

3. In the third step, the Self Consistant Field (SCF) calculation with this SAF-
AO basis set is conducted in an iterative manner. The molecular orbitals (MO)

obtained from the SCF serve as the starting point for the CI calculation.

4. In the forth step, before the CI calculation, a reference configuration set and
an threshold energy are chosen. All the single and double excitations over the
reference configurations are generated. First, a small scale CI calculation with
N;.t reference configurztions is performed and an estimation of the eigen-energies
of these wanted states is obtained. Then, one by one, each generated configuration
is tested by being added to the reference configuration set and another small scale
CI calculatio.: of Nie¢ + 1 configurations is performed. Only those configurations:
which lower the energy of any one of the states of interest by an amount bigger
than the threshold energy are included in the final CI calculation. This is a
way of drastically reducing the final CI space size without missing important

contributions from the full single and double excitation CI space. In order to
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ensure the convergence of the calculation, the reference configuration sct is chosen
to be big enough so that the final wavefunction of each wanted state has at lease

90% of its contribution from the reference configurations.

5. The fifth step uses a large fraction of the total CPU time. It is the diagonalization
of the electronic Hamiltonian including all the couiigurations selécted. After
that, another calculation with a new threshold twice as large as old one is made,
including the selection of the configurations to be added to the reference set and
the final diagonolization. Assuming the correctness of the extrapolation back
to the zero threshold energy, the final CI energies can be approximated to even
better values, without doing the calculation at such a small threshold energy as
to make the calculation too costly. This is the most important aspect of this
MRD-CI method.

6. With the resulting electronic wavefunctions, the electric transition dipole moment

between any two known electronic states is then calculated.
2.3 Numerical Details and Results

The version of the MRD-CI code for Sun workstations was obtained from Professor
Wright®2. The CRAY version was obtained directly from Professor Buenker’s group®334.
These codes do not have the capability of calculating the electronically non-adiabatic
coupling matrix elements between two electronic states, and will have to be modified in
the future to permit such calculations, which is needed in the predissociative lifetime

calculation.

Initially we made small testing runs on Sun workstations (Sun-386i, Sun-3, and Sun-
4) and a micro VAX. The production runs have been done on the JPL CRAY-XMP and
the SDSC CRAY-YMP. The typical CPU time on the CRAY-YMP is about 400s for a
complete calculation at a singie nuclear configuration, using the largest one of the basis

sets described below.

The details of the Gaussian-Type atomic orbitals (GTO) are given in Ref. 31. In

summary, they are defined as:
X(ngy gials m) = Nng.i rng_lexp(_éirz)}’l,m(os ¢) (8)

where Nng'; is a normalization factor and Y;,(6,$) the spherical harmonic function.
(r,8,¢) are the spherical coordinates of a point with respect to the origin of the GTO.

ng can have the values 1, 2, 3, ... , { can have the values 0, 1, 2, ... (which corresponds to
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s, p, d, ... orbitals), and m can vary from —! to ! in steps of unity. ¢ is an index for the
exponent &;. Sometimes r*7~ 1Y, ,.(0, ) is replaced by linear combinations of terms of the
form z™:y™v2z"* where (z, y, z) are Cartesian coordinates and n., n,, n, are non-negative

integers whose sum equals ng, — 1.

In some applications contracted basis functions are used. They are defined as linear
combinations of similar GTO functions having the same quantum numbers n,, {, m but

different exponents &;.

Xcontr(ng,-sm) = ZCﬁX(nm S.ial’m) (9)

The C; are called the coefficients of the contraction.

We have used two GTO basis sets. The first one is a variation of the basis set used
in Ref. 28. It consists of (10s/8s, 4p) orbitals, in which there are eight s-type GTOs
(one of them being a contraction of three s-type GTOs), and four p-type GTOs. The
second basis set consists of (12s/7s, 4p, 1d) orbitals, with seven s-type GTOs (one of
them contracted from six s-type GTOs), four p-type GTOs and one d-type GTOs. The
main part of it, 10s/5s, 4p, 1d, is adopted from one used in a H; calculation®®, with
the intention to provide simultaneously an accurate description of the system’s valence
space and the Rydberg states arising from n=2 hydrogen orbitals. In order to improve the
description of the Rydberg states of the H; system, we added two diffuse Gaussian s-type
functions into that basis set, with exponents 0.01149 and 0.0042 (see Tables 1 and 2 for
details).

Both GTO basis sets have been tested and calibrated in calculations for an isolated H
atom, and an isolated H, molecule with bond length R=1.4 bohr. The results are shown
in Table 3. The H atom calculation shows that both sets give a fairly good description
of the H(1s), H(2s), and H(2p.,.;) atomic states. The Hj results clearly show that
the (12s/7s, 4p, 1d) basis set offers a much better description of the H,(X 'Z}) and
H,(b3%Z7) states than does the (10s/8s, 4p) one. Because we are interested in correlating
the 2p, 244, 2s 24} and 2p 2E’(1,2) states of H3 with these two diatomic states mentioned
above plus a free H atomic state (see Figure 1), it is important to have a good description

of these diatomic states.

In the H3 system, the most general geometric symmetry is the reflection symmetry
C, with respect to the plane of these three nuclei. In order to take advantage of this

symmetry, we placed the nuclei in the z y plane, with one nucleus at the origin of the
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Table 1: (10s/8s, 4p) Gaussian-type basis set.

orbital i & Ci
1s 1 68.16 0.002558
2 10.2465 0.01938
3 2.34648 0.0928
2 1 0.67332 1.00000
3s 1 0.22466 1.00000
4s 1 0.0822 1.00000
5s 1 0.0475 1.00000
6s 1 0.01875 1.00000
7s 1 0.0133 1.00000
8s 1 0.00525 1.00000
1p 1 0.7 1.00000
2p 1 0.20 1.00000
3p 1 0.06 1.00000
ap 1 0.024 1.00000 °




Table 2: (12s/7s, 4p, 1d) Gaussian-type basis set.

orbital i & Cs

1s 1 837.22 0.000112

2 123.524 0.000895

3 27.7042 0.004737

4 7.82599 0.019518

5 2.6504 0.065862

6 0.938258 0.178008
2s 1 0.372145 1.00000
3s 1 0.155838 1.00000
43 1 0.066180 1.00000
5s 1 0.027580 1.00000
Bs 1 0.011490 1.00000
Ts 1 0.004200 1.00000
1p 1 1.6 1.00000
2p 1 0.40 1.00000
3p 1 0.09 1.00000
4p 1 0.025 1.00000
1d 1 1.0 1.00000
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Table 3: Calibration of the basis sets for isolated I/ and H,".

Calculated H energy levels

Gaussian H(1s) H(2s) H(2p,) H(Zp;,) H(2p,)
basis set
10s/8s, 4p -0.499942 -0.124989 -0.124812 -0.124812 -0.124812
12s/7s, 4p, 1d -0.499998 -0.124992 -0.124723 -0.124723 -0.124723
Exact value -0.500000 -0.125000 -0.125000 -0.125000 -0.125000

Calculated H; energy levels (R=1.4)

Gaussian H(X '5}) H,(b3L7)
basis set
10s/8s, 4p -1.170045 -0.782718
12s/7s, 4p, 1d -1.173652 -0.783904
Kwbt -1.174474 -0.784150

a: The energies are in hartree and the bond lenth of diatom is in bohr.

b: Accurate values from W. Kolos and L. Wolniewicz?”.
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(z, y, z) coordinate system, another along the positive r axis and the third in the z y half
plane with y positive. The ground state 2p ?E’(1), and the excited states 2p °£’(2), and
2s 24 are symmetric under that symmetry operation (z — —z), while the 2p. 2AY state

is anti-symmetric.

We place sets of GTOs (as listed in Tables 1 and 2) at each of the three nuclei. There
are 20 basis functions for the (10s/8s, 4p) basis set and 25 for the (12s/7s, 4p, 1d) basis
set, where there is one function for each s type GTO, three for each p type GTO and six
for each d type GTO. Because we have three nuclei, the total numbers of basis functions
are 60 for the first case and 75 for the second.

We obtain the energies and wavefunctions for the ensemble of states symmetric with
respect to reflection through the nuclear plane in one calculation and the antisymmetric
ensemble in another one. The energy threshold is 2.0 x 10~ hartree for the symmetric
ensemble, for both sets of basis functions. For the antisymmetric ensemble, the energy
threshold is 0.5 x 10~¢ hartree for the (12s/7s, 4p, 1d) basis set and 1.0 x 10™° hartree for
the (10s/8<, 4p) one. Since the choice of reference configurations depends on the nuclear
geometry, we had to adjust it through a trial and error process for each nuclear geometry.
Generally speaking, we used about 45 to 49 reference configurations in the calculation of

the symmetric ensemble, and about 20 in the calculation of the antisymmetric one.

In Tables 4 and 5, we list the energies of the first four electronic states with the
equilateral triangle nuclear geometry for each basis set. These results are plotted in Figures
2 and 3. In Tables 6 and 7, we list the electric transition dipole moments for this geometry.
Comparison of the results from the (12s/7s, 4p, 1d) basis set for the 2p 2E’(1,2) states
with those of the DMBE calculation®? shows that our curve is nearly parallel to the DMBE
one with an upward shift of about 0.003 hartree. Comparison between the results of the
(10s/8s, 4p) basis set and those in Ref. 28 shows good agreement (except at R = 2.6
bohr). GTO functions located at the the center of mass of three nuclei have been used
in Ref. 28, while a larger set of basis functions located at each nucleus is used in present
calculation. Comparison of Tables 4 and 5 shows that the results with the two basis sets
listed in Tables 1 and 2 are not parallel to each other. This indicates that it is necessary
for us to use the larger basis set (12s/7s, 4p. 1d) in our final production runs in order to

get a potential energy surface having the correct shape.

The C, symmetry ensures that the electric transition dipole moments between the
antisymmetric 2p, 2Aj state and the symmetric 2p 2E'(1), 2p 2E’(2) and 2s 24/, states have

12




Table 4

Electronic potential energies (in hartree) of the first four electronic states of H;* for the (10s/8s, 4p) bas .

R® 2p 2E'(1) 2p 2E(2) 23 34, 2p, 2AY
1.0 -1.273839 -1.273825 -1.267978 -1.245835
1.2 -1.431537 -1.431503 -1.404972 -1.388900
1.4 -1.510877 -1.510886 -1.462253 -1.451243
1.6 -1.549290 " -1.549231 -1.477925 -1.470966
1.64 -1.553811 -1.553849 -1.478022 -1.471764
1.8 -1.564752 -1.564771 -1.471242 -1.467687
2.0 -1.568660 -1.568710 -1.452355 -1.451797
2.2 -1.565200 -1.565174 -1.427605 -1.429583
2.4 -1.558467 -1.558474 -1.400492 -1.404303
2.6 -1.550885 -1.550780 -1.373003 -1.378150
2.8 -1.542112 -1.542476 -1.345840 -1.352258
3.0 -1.534483 -1.534565 -1.319509 -1.327177

a: The origin of energy is that of the six particles {three electrons and three protons)
at infinite separation. The energy of three independent H(1s)} is -1.500000 hartree.
These three nuclei form an equilateral triangle.

b: in bohr.
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Table 5

Electronic potential energies (in hartree) of the first four electronic states
of H;° for the (12s/7s, 4p, 1d) basis set.

R® 2p 2E'(1) 2p 2E'(2) 2s 24/ 2p, 2AY
1.0 -1.286448 -1.286430 -1.280663 -1.258265
1.2 -1.441703 -1.441650 -1.415028 -1.308848
1.4 -1.518046 -1.518017 -1.468988 -1.458043
1.6 -1.554349 -1.554268 -1.482113 -1.475586
1.64 -1.558556 -1.558507 -1.481895 -1.475980
1.8 -1.569022 -1.568989 -1.474258 -1.471001
2.0 -1.571945 -1.571928 -1.455205 -1.454669
2.2 -1.568548 -1.568561 -1.430550 -1.432079
2.4 -1.561349 -1.561420 -1.403023 -1.406783
2.6 -1.552813 -1.552907 -1.375206 -1.380527
2.8 -1.544312 -1.544450 -1.347990 -1.354630
3.0 -1.536907 -1.536859 -1.322044 -1.320407

a: The origin of energy is that of the six particles (three electrons and three protons)
at infinite separation. The energy of three independent H(1s) is -1.500000 hartree.
These three nuclei form an equilateral triangle.

b: in bohr.

14




-1.3

~-1.4

£ (hortree)

-1.5

-1.6

Figure 2: Potential Energy Curves for Equilateral H5. R is the length of the side of

the triangle. The {10s/8s, 4p) basis set was used. The 2p 2E'(1) and 2p 2E'(2) curves
are not completely degenerate with each other because of inaccuracies introduced by the
limited basis set. But the difference between them can not be discerned on the scale of )

the plot (see Table 4).
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Figure 3: Potential Energy Curves for Equilateral H3. R is the length of the side of

the triangle. The (12s/7s, 4p, 1d) basis set was used. The 2p 2E'(1) and 2p 2E'(2) curves
are not completely degenerate with each other because of inaccuracies introduced by the

limited basis set (see Table 5).

16




Table 6

Transition dipole moment® (in atomic units) among the first four electronic states
of Hj for the (10s/8s, 4p) basis set.

R® T41(s) T42(z) T43(z)

1.0 0.769(-3) 0.451(-3) 2.61

1.2 -0.632(-3) 0.230(-3) 2.63

1.4 0.642(-4) 0.705(-3) 2.65

1.6 0.101(-2) -0.593(-4) 2.66

1.64 -0.108(-5) 0.148(-3) 2.66

1.8 0.376(-3) -0.486(-3) 2.66

2.0 -0.159(-3) 0.204(-3) 2.69

2.2 0.596(-3) -0.751(-4) 2.70

2.4 0.120(-2) -0.116(-2) 2.73

2.6 0.707(-3) 0.102(-2) 2.76

2.8 0.531(-3) 0.677(-3) 2.78

3.0 -0.349(-3) 0.271(-3) -2.80

R® T31(x) T31(y) T32(x) T32(y) T21(x) T21(y)
1.0 1.70 -1.48 1.48 1.70 -0.759(-2) -0.590(-1)
1.2 1.64 1.24 -1.24 1.64 -0.269(-1) 0.935(-1)
1.4 -0.673(-1) -1.85 1.85 -0.651(-1) 0.139 0.974(-2)
1.6 1.44 -0.803 0.803 1.44 -0.938(-1) -0.152
1.64 1.11 1.19 -1.19 1.11 0.136(-1) 0.186
1.8 -0.628 1.35 1.35 0.627 -0.142 0.168
2.0 1.29 -0.290 .290 1.29 -0.226 -0.108
2.2 1.12 0.360 -0.359 1.12 -0.218 0.158
2.4 0.953 0.443 -0.440 0.956 -0.179 0.212
2.6 0.373 0.840 0.841 -0.371 -0.180 -0.198
2.8 0.393 0.733 0.730 -0.389 -0.140 -0.209
3.0 -0.177 -0.720 -0.718 0.174 -0.194 -0.101

a: Tij is the transition dipole vector for equilateral triangle configurations. The indices (1, 2, 3, 4) refér‘

to the

four electronic states (2p 2E'(1), 2p 2E'(2), 2s 2A', 2p, 2AY) respectively.

b: in bohr.
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Table 7

Transition dipole moment® (in atomic units) among the first four electronic states
of H, for the (123/7s, 4p, 1d) basis set.

R® T41(s) T42(3) T43(s)

1.0 -0.432(-3) -0.194(-3} -2.61

1.2 0.541(-3) 0.120(-3) -2.63

1.4 -0.483(-3) -0.489(-3) -2.65

1.6 0.809(-3) 0.546(-3) -2.68

1.64 -0.830(-3) 0.378(-3) 2.69

1.8 0.647(-3) -0.538(-3) -2.71

2.0 0.497(-3) 0.732(-3) -2.74

2.2 -0.140(-3) 0.100(-2) -2.75

2.4 0.904(-3) -0.556(-3) -2.78

2.6 0.152(-2) -0.153(-3) -2.80

2.8 0.150(-2) -0.206(-3) -2.81

3.0 0.710(-3) -0.758(-4) -2.82

R® T31(x) T31(y) T32(x) T32(y) T21(x) T21(y)
1.0 -2.25 -0.944(-1) -0.927(-1) 2.26 0.586(-1) -0.521(-1)
1.2 0.199 2.04 2.04 -0.198 -0.916(-1) -0.182(-1)
1.4 -0.161 -1.83 -1.84 0.159 -0.131 -0.227(-1)
1.6 1.22 1.10 1.09 1.22 -0.202(-1) -0.172
1.64 -1.38 0.801 0.803 1.39 0.909(-1) 0.157
1.8 0.362 1.41 1.41 0.361 0.189 0.103
2.0 0.372 1.25 1.25 -0.371 -0.207 -0.135
2.2 0.424 1.07 1.06 -0.421 -0.194 -0.182
2.4 0.474 0.918 -0.917 0.472 0.161 0.225
2.6 0.446 0.812 -0.814 0.444 0.148 -0.226
2.8 0.443 0.702 0.700 -0.439 -0.111 -0.226
3.0 -0.388 -0.639 -0.632 0.385 -0.104 -0.196

a: Tij is the transition dipole vector for equilateral triangle configurations. The indices (1, 2, 3, 4) refer

to the four electronic states (2p 2E’'(1), 2p 2E'(2), 2s %A}, 2p, 2AY) respectively.

b: in borh.
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only z components, and the ones between these symmetric states have no z components.
Since the wavefunctions have been determined by the variational calculation up to a phase

factor, all transition dipoles are subject to a possible sign change.

Although C, is the only symmetry embedded into the calculation, when three nuclei
form an equilateral triangle, the Dj;; symmetry group associated with this geometry will

manifest itself via the following features:

1: The 2p 2E’(1) and 2p 2E’(2) states are nearly degenerate.

2: The electric transition dipoles from the 2p, 247 state to the 2p 2E’(1) and 2p %E’(2)
states are close to zero. |

3: Because of the degeneracy between the 2p 2E’(1) and 2p 2E} states (under the sym-

metry of an equilateral triangle), they can always be written as:
| 2p 2E'(1)) = cosp | 1) + sing | #2) (10)
| 2p 2E'(2)) = —singp | ¢1) + cosp | ¢2) (11)

| #1), | #2) are solutions of the electronic wave equation with the same energy, which
form another E’ representation of the Dj, group. The phase ¢ is not determined by
the variational method alone, and can have an arbitrary value. For two calculations
with different inter-nuclear distances, the relative phase of these two electronic cal-
culations is random, which in turn causes the £ and y components of the transition
dipole moments (T31, T32, and T21) to vary greatly (see Tables 6 and 7). Even so,
the symmetry ensures that:

¢ The magnitudes of T31, T32, and T21 do not depend on the phase ¢ and thus
change smoothly with the inter-nuclear distance.
o |T31|=|T32|, | T31(z) | = | T32(y) |, and | T31(y) | = | T32(2) |

All of these features have been confirmed numerically by the results in Tables 6 and 7
and by Figures 4 and 5. Since the molecular properties are more sensitive to the quality of
the wavefunction than the energy eigenvalues are, the results of the electric transition dipole
moment calculations offer another strong indication that the wavefunctions we obtained

are of good quality.

Our results for the electric transition dipole between the 2s 24 and 2p, 24Y states
(T43(z)) show a very slow, smooth and monotonic variation with the size of the cquilateral
triangle. It is interesting to note that the value of this transition dipole moment is close
to that between the 2s and 2p, states of an isolated H atom ( 3.00 atomic units). The

correlation diagram of Figure 1 shows that those two states dissociate into H (X 1’23‘) +
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[T31| (atomi: unit)
1.5

Figure 4: Length of the transition dipole moment T31 for Equilateral H;. R is the
length of the side of the triangle. |T31]| is the length of the T31 transition dipole moment
(see Tables 6-7 for the defination). The lower curve was obtained with the (10s/8s, 4p)
basis set used, and the upper one with the (12s/7s, 4p, 1d) basis set used.
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Figure 5: Length of the transition dipole moment T21 for Equilateral Hs. R is the
length of the side of the triangle. |T21| is the length of the T21 transition dipole moment
(see Tables 6-7 for the defination). The lower curve was obtained with the (10s/8s, 4p)
basis set used, and the upper one with the (12s/7s, 4p, 1d) basis set used.
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H(2s) and Hz(X 'T}) + H(2p.) respectively, which should indeed furnish transition
dipole moments around 3.00 a.u. As a result we can expect that this transition dipole
moment will be more or less the same for all the nuclear geometries we are intcrested in.

This turns out to be very important in making correct state assignments in our calculation.

Ac the equilateral triangular geometry with an inter-nuclear distance R = 1.64 bohr
( corresponding approximately to the equilibrium geometry of the metastable H3 ), we
calculated the energy spacing between states 2s 24} and 2p 24% to be 1299 cm™! with

! with the smaller one, while the best value previously

the larger basis set and 1374 cm™
calculated®? is 1422 cm™! and the experimentally estimated value3? 1256 cm™!. Bott of
our results for the electric transition dipole moments between these two states agree with

the previous calculation3? within one percent.

In Table 8, we present the results of of the energy calculations with the bond angle
fixed at 60° and one bond length fixed at 10.0 bohr. Since the H atom is now far away
from the H, diatomic molecule, we expect that these states of interest will correlate with

dissociated states according to:

H3(2p 2E'(1)) — Ho(X '=H) + H(1s) (12)
Hy(2s 24)) — Ta{a '27) + H(2s) (13)
— Ha(X 'T}) + H(2p.) (14)

— {a{X u,) + H(2py) (15)

H,(2p 24%) — Ho(X ') + H(2p.) (16)
H;(2p 2E'(2)) — H2(b3ZF) + H(1s) (17)

Since the energies corresponding to the right side of Eqs 13, 14 and 15 are the same,
we write Eqs 14 and 15 as a reminder that we must make the correct state assignments.
The energy output listed in Table 8 confirms that the above equations describe the correct
correlations (also see Figure 6). This is another indication that our GTO basis set is also

appropriate for the H, molecule.

In the equilateral triangle geometry, the energy of the 2p 2E’(2) state is below that of
the 2s 24/ state. However, for configurations in which H and H; are far away from each-
other, this is not generally true (see Figures 2, 3 and 6). The crossing of the corresponding
potential energy surfaces increases the complexity of our calculation, because we have to
be able to identify the states correctly, both for state assignment purposes and the correct

calculation of the electric transition dipoles.
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Potential energies when H and H; are far away from each other®.

Table 8

2p ?E'(1) 2p ?E'(2) 2p, 245

R® this work Kw? this work Kwe this work Kw¢

1.2 -1.663260 -1.664934 -1.218675 -1.218964 -1.288093 -1.298934
14 -1.673015 -1.674474 -1.283682 -1.284150 -1.297616 -1.299474
1.6 -1.667196 -1.668580 -1.331255 -1.331724 -1.292109 -1.293580
1.8 -1.653721 -1.655067 -1.367693 -1.368291 -1.278657 -1.280067
2.0 -1.636826 -1.638132 -1.396762 -1.397064 -1.261499 -1.263131
3.0 -1.556159 -1.557312 -1.471696 -1.472010 -1.181171 -1.182312

a : One bond length is fixed at 10.0 Bohr. The bond angle is 60.0 degree.
R is the bond length of H; (in bohr).

b : Potential energy of Hz(X 'Z}) from W. Kolos and L. Wolniewicz®" with the energy of H(n

added.

1)

c : Potential energy of Hz(b3T}) from W. Kolos and L. Wolniewicz®” with the energy of H(n = 1) added.

d : Potential energy of Hz(X 'T}) from W. Kolos and L. Wolniewicz®? with the energy of H(n

added.
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Figure 6: Potential Energy Curves for Asymmetric H3. The geometry is defined in
Table 8. R is the length of the smallest side of the triangle. The largest side of the triangle
is 10.0 bohr and the bond angle between them is 60.0°. The (12s/7s, 4p, 1d) basis set

was used.
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In order to map out the interesting part of the potential energy surfaces, wc estimate
that about 500 nuclear configurations with different shapes and sizes should be treated.
We have at this moment about 95% of them done. After these calculations are finished,
they wil be fitted by a procedure developed previously®® before being used in the bound

and scattering states calculation of the nuclear motion.

The comparison between our ab snitio results and these results from the functional
extrapolation and double many body expansion (DMBE)?? will permit us to check if
this extrapolation is valid for nuclear configurations appreciably removed from equilateral
triangular nuclear geometries. Recently, the H + H; system has been the subject of

39-42 There are some theoretical calculations

transition state spectroscopy (TSS) studies
on the spectroscopy of the transition between the ground electronic state 2p °E’(1) and
the excited electronic state 2p, 244, but they are limited to either linear configurations or
to 3D calculations using an ad hoc potential surface for the excited state and a constant
electric transition dipole moments*3. Our calculations of the excited surfaces and the
nuclear geometry—-dependent electric transition dipole moments between them will be very
helpful for such theoretical studies of the transition state spectroscopy of the H + H,

system.




3. Ro-vibrational Bound State Calculation for the
Upper Manifold of the Electronic 2p 2E’ States of H;

The next step towards the lifetime calculation is to obtain the ro-vibrational nuclear
wavefunctions on the initial and final electronic potential surfaces. The 2p, 244 state
of Hs supports bound ro-vibrational states which must be calculated. There are several

44—-48

methods for performing such calculations , most of which are based on the variational

principle. A method of choice should have the following properties:
e It should be applicable to all nuclear geometries.
e It should be able to treat large vibrational amplitudes.

e It should be able to take advantage of special nuclear permutation symmetries of the

triatomic system.
e It should be robust, and easy to use.

After a survey of the available methods, we chose the one developed by Tennyson
and Sutcliffe*>. Since the only previously calculated potential energy surface of H; which
supports bound ro-vibrational states (neglecting its coupling to the ground state) is the
upper manifoid of the DMBE 2p 2E’ surface??, we used it as a testing ground for the bound
ro-vibrational state calculation. Because the conical intersection between this surface
and the ground state one introduces the Molecular Aharonov-Bohm (MBA) effect*?52
which needs special treatment, and since we also want to embed the correct P; nuclear
permutation symmetry into the ro-vibrational wavefunction, we also developed a new
hyperspherical coordinate propagation method which is very general and powerful. After
obtaining the 2s 24/ and 2p, %A potential energy surfaces, we will use those two methods

to calculate the corresponding ro-vibrational states.

3.1 Variational Method

The coordinates used in the method of Tennyson and Sutcliffe are the scattering
coordinates?®. Let A;, Az, A5 be the three atoms of the system, and (), v, &) be any cyelic
permutation of ( 1, 2, 3 ). r, is the internuclear vector for the diatom A, A, and R, the
vector of A, with respect to the center of mass of A, A.. After separating the motion
of the center of mass of these three atoms, the system can be described by six variables
(ax, B, 4a, Ra, ra, 01). The three angles (ax,8x,7,) are Euler angles, which describe
the orientation of the tratomic molecule in space. r) and R, are the lengths of vectors r,
and R, respectively and 8, is the angle between these two vectors.

A suitable symmetrized angular basis set for the variational calculation is chosen to
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be:
k) =(1+ 8,0) /% 2712
{0;%(8:) Dy i (@x, Bxs 1) + (=1)°©;,—(85) Divg,— i (@x, Br, M)} (18)

where 8, equals 1 when k& = 0 and zero otherwise. D}{Lk(a;,ﬂ,\,q,\) is the Wigner

rotation function3® and®,;(6,) is the associated Legendre function®*.

p is a quantum
number that can assume the values 0 or 1. J is the total angular momentum quantum
number, with M and k being the quantum numbers of its projections along the space-fixed
z axis and the body-fixed z axis respectively. j is the angular momentum quantum number
of the diatomic vector ry. The Euler angules are chosen in such a way that the body-fixed
z axis is along the R, direction and r, has a positive projection on the body-fixed z axis.

(p, J, M) are constants of the motion for the system. The allowed values of j and k are:
k=(-J,-J+1,...,J-1,J) (19)
7= (lkl, |kl +1,|k] +2,...) (20)
The total parity of the spacial wavefunction under inversion through the system’s center
of mass is (—1)7*7.

The basis functions for (Ry, r,) are chosen to be the analytic Morse oscillator-like

functions:
1
\I’m.n(rky RA) = f,\RA Hm(rl)Hn(Ra\) (21)
m,n = {0,1,2,3,4,...} (22)
where
Hpn(r) = B2 Ny aexp(~y/2)y ** /2 L2 (y) (23)
4D
=5 (24)
_ K 172
B _wc(2D,) (25)
a = integer(A) (26)
y = Aexp[-8(r — r.)] (27y

Nn.o L% is the normalized associated Laguerre polynomial. r in Eq. 27 is either Ry or
ry. The parameters u, r., w, and D, are associated with the reduced mass, equilibrium

separation, fundamental frequency and dissociation energy of the motion of coordinate r.
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In practice r., w., and D, are usually treated as variational parameters and optimized

accordingly.

It is difficult to embed the P; permutation symmetry of A3-type molecules consisting
of three identical nuclei in Tennyson’s method. However, the P, permutation symmetry
of AB,-type molecules can be easily built in*® (also see Eq. 18). Since the potential
energy function of such a molecule is invariant under an interchange of these two B atoms,
the Hamiltonian does not couple the angular basis functions of even j with angular basis

functions of odd j, and we can treat these two cases separately*S.

If we treat an As-type system with only the P> symmetry embedded into the basis set
functions, the final converged result should still satisfy the P; symmetry. The symmetry
would manifest itself in the structure of the eigenenergy levels and in the shape of the
eigenfunctions plotted in a set of appropriately symmetrized coordinates. If an eigenstate
obtained from the even basis set is nondegenerate, it must belong to an A; irreducible
representation of P;. If an eigenstate obtained from the odd basis set is nondegenerate,
then it generates an A, irreducible representation of P5;. If one eigenstate from the even
basis set and one eigenstate from the odd basis set are degenerate with each other, they

must belong to an FE irreducible representation of Pj.

The Tennyson-Sutcliffe (TS) method has some nice properties. It does not depend
on special molecular geometries**, and is applicable to motions with large vibrational
amplitude. The choice of known analytic basis func’ions makes it possible to obtain most
parts of the Hamiltonian matrix elements analytically and thereby save an appreciable
amount of computation time. The only computation-intensive part of the calculation is

the diagonolization of the Hamiltonian matrix.

Numerical details and results

The code we used for the variational state calculation is called TRIATOM, and was ob-
tained from the CPC Program Library of Queen’s University, Belfast, Northern Ireland*S.
We initially made small test runs on Sun workstations and a micro VAX. The major part
of the calculations was done on the SCS-40 mini-supercomputer of the San Diego Super-
computer Center (SDSC).

The ro-vibrational motion of the H;' ion has been treated by Tennyson et al. 5°—57.
Since this molecule has some resemblance with the Hj system in which we are inter-
ested, we repeated part of the calculation for HY with total angular momentum J = 0
for gaining experience with this code. We adopted the same values of the parameters

e, Wy Dr,, R., wg, and Dpg, used previously5~5¢, which are listed in Table 9. The
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Table 9

Optimized parameters of the Morse-like functions in R, and r, for HS with J =0.

D.(au) w,(au) re(au)
J=0 0.230 ¢ 0.0085 ¢ 1.71¢
J=0 0.205 ° 0.0118 % 2.10%

a: Parameters for the Morse-like functions in R).

b: Parameters for the Morse-like functions in r,.
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H potential surface used in our calculation is that included in the TRIATOM package
for code testing®3. It is different from the one used in previous publications®3=5%7, As a
consequence, our results should not be in perfect agreement with the latter. The conver-
gence test and the final results are listed in Tables 10 and 11, which-show that the lowest
ten states are well converged, with the size of the largest basis set being §he same as that

used previously33—57,

For H,, the only currently available potential energy surface which supports bound
ro-vibrational states of nuclear motion is the upper manifold of the DMBE surfaces?? for
the 2p 2E’ electronic states, if coupling between these two manifolds is neglected. We

calculated the ro-vibrational bound states with total angular momenta J = 0 and 1.

Initially we used small sets of basis functions to optimize the r., w,,, D, , R., wg,
and Dp, parameters. Since it had been showed previously that the optimized parameters
for even j basis are more or less the same as those for odd j basis*®, we only did the
optimization for the even j basis calculation. This optimization was done with the basis
set defined to be Mpmaz = 8, Nmaz = 8, Jmaz = 16,and Nyseqr = 576 for J = 0, and
Mmaz = 6, Nmaz = 6, Jmaz = 15,and Nigeqr = 382 for J = 1. For the case of J = 0,
we put the emphasis on the lower 5 states, while for J = 1 we considered the average
effect of the parameter tuning on the lower 12 states. Because the optimization process
is actually done manually, in a finite range of the six dimensional parameter space, with
limited guidance from physical considerations of Egs. 23 to 27, it is possible that a local
minimum may be accepted as the global minimum since there is no sure indication that the
global minimum has been reached. Fortunately, the larger the basis set, the less sensitive
the results are to changes of those parameters. The results of the optimized parameters
are listed in Table 12. ’

We then increased the size of the basis set and tested the results for convergence.
We analyzed the importance of each basis function for a given basis size carefully, and
let the results guide us to achieve an efficient way of increasing the size of the basis set.
The convergence test results for the H3 molecule are listed in Table 13, which shows that
the energy levels are not well converged as for Hy . In general the lower states are better
converged than the upper ones. The calculation turned out to be limited by the amount of
computer memory we could access at that time, which was 3 Mwords. The final results for
Hj are listed in Table 14, with the sizes of basis set in the range of 1100 to 1600 and SCS-40
CPU times ranging from 10 minutes to 30 minutes. The results agree with those from the

hyperspherical coordinate propagation method well, as discussed in the next section.

One of the most important reasons why we need such a large basis set for the Hj
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Table 10

Convergence test of H with J =0 and even j basis functions for the lower ten states®?.

HF, with J = 0 and even j basis functions
m=9, n=7, L=14 m=10, n=8, L=14 m=11, n=8, L=18
N = 340 N = 616 N = 830
-7.067955 -7.067967 -7.067977
-6.816079 -6.816119 -6.816119
-6.750378 -6.750436 -6.750437
-6.590602 -6.590784 -6.590786
-6.567921 -6.568055 -6.568060
-6.512097 -6.512965 -6.512967
-6.441278 - -6.441708 ’ -6.441708
-6.367264 -6.367514 -6.367530
-6.338421 -6.338839 -6.338893
-6.290215 -6.290872 -6.290870

a: The unit of energy is 10* cm™!.

b : See reference 45 for the definitions of (m, n, L} and N.
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Table 11: H] J =0 bound state energies®.

Even basis 0Odd basis
Tennyson's® present® Symmetry Tennyson's® present®
" results results results results
0.00000 0.00000 A;
0.24944 0.25185 E 0.24943 0.25139
0.31911 0.31753 A,
0.47250 0.47718 A
0.49583 0.49991 E 0.49580 0.49990
0.55453 0.55500 E 0.55449 0.55485
0.62768 0.62626 A,
0.69444 0.70044 A,
0.72350 0.72907 E 0.69433 0.70030
, A, 0.74513 0.75069
0.77403 0.77710 A,

a:
b:

Cc:

The energy s in 10% cm™

See refzrences 55-57.

1

Sce text and reference 58.
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Table 12

Optimized parameters of the Morse-like functions in R, and r,

‘for Hy with J =0and J = 1.

D.(au) w.(au) r.(au)
J=0 0.230 @ 0.0130 * 1.96 ¢
J=1 0.262 @ 0.0100 ¢ 2.01°
J=0 0.262 % 0.0122 % 2.09°
J=1 0.232°% 0.0102 % 2.32°%

a: Parameters for the Morse-like functions in R, .

b: Parameters for the Morse-like functions in r,.
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Table 13

Convergence test of H; with J =0 and even j

basis functions for the lower ten states®?®.

H,, with J = 0 and even j basis functions

m=15, n=13, L=16

m=16, n=13, L=18

m=19, n=19, L=26

N =757 N = 1067 N = 1368
-0.824614 -0.826261 -0.827333
-0.662336 -0.664153 -0.665618
-0.512776 -0.514696 -0.516372
-0.376072 -0.377987 -0.379855
-0.369457 -0.369877 -0.370206
-0.253486 -0.256018
-0.236860 -0.237305
-0.134838 -0.140441
-0.119736 -0.120358
-0.049332 -0.053411

a : The unit of energy is 10* cm™?.

1

b : See reference 45 for the definitions of (m, n, L) and N.
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Table 14

Bound state energies without consideration of the geometric phase®.

J =0 J =1 even parity® J =1 odd parity®
3.7210 A, 3.7218 3.7282 Az 3.7294 3.7264 E 3.7276
3.9216 A, 3.9223 3.9284 A, 3.9297 3.9266 E 3.9281
4.1067 A, 4.1073 4.1130 A- 4.1145 4.1114 E 4.1131
4.2759 A, 4.2766 4.2817 Aq 4.2839 4.2802 E 4.2831
4.4282 A, 4.4301 4.4336 As 4.4386 4.4322 E 4.4398
4.5621 A 4.5734 4.5665 A, 4.5803 4.5656 E 4.5894
4.2886 E 4.2886 4.2955 E 4.2956 4.2971 A, 4.2975
4.2969 A 4.2972
4.2904 E 4.2908
4.4533 E 4.4533 4.4596 E 4.4598 4.4610 A, 4.4618
4.4608 A 4.4615
4.4550 E 4.4557
4.5980 E 4.5983 4.6036 E 4.6048 4.6049 A, 4.6083
4.6047 Aq 4.6093
4.5996 E 4.6028
4.7212 E 4.7261 E 4.7349 ,4.7272 A, 4.7370
4.7270 Az 4.7355
4.7225 E
4.6806 Ay 4.6813 4.6871 Az 4.6893 4.6842 E 4.6878

a: The energy is in eV and its origin corresponds to the bottom of the ground electronic state of the
isolated H, molecule.

b: The left column gives the results of the hyperspherical coordinate propagation method and the right col-

umn the TS method results. The central column gives the irreducible representation of the permutation
group of the nuclei to which the spacial part of the nuclear wavefunction belongs.
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system is that the upper manifold of the H; 2p 2E’ surface has a cone-shape structure with
a sharp tip at the equilateral triangle nuclear geometry, while the H} surface has a nice
smooth round shape instead. The Morse-type basis set functions are good for representing
the harmonic-like oscillation of the H; ion. However they are not good for representing
the motion on such a conically shaped surface. As a result, more basis functions are needed
to obtain converged results H; than for H;' , if the same degree of convergence is required.
For the 2s 24! and 2p, ?A¥ electronic states, the Hj is really like a H; core plus a Rydberg
electron in 2s and 2p, states respectively, which interact weakly with the H;' core. For
this reason the suapes of the potential energy surfaces of those two electronic states should
be similr to that of the Hf in its ground electronic state. This suggests that a small basis
sets (vt size about 800) should give converged results for the 2s 24/ and 2p, 24% potential

energy surfaces.

Finally, let us consider the shapes of the ro-vibrational wavefunctions to see if the
final converged calculations yield wavefunctions with the right P; symmetry. We ploted

59 Figure 7 contains contour

the wavefunctions in a system of symmetrized coordinates
lines of the wavefunctions for HF with total angular momentum J = 0 and basis set size
N=880, and Figure 8 for H3 with J = 0 and basis set size N=1363. The plots show that the
wavefunctions do not display P (i.e., Cs,) symmetry, even for the highly converged state
of H}. The reason for this behavor is that in general, the convergence of the eigenvector
is poorer than that of the eigenvalue in a numerical eigenvalue-eigenvector problem. In
order to get the right symmetry with a reasonable basis set size, the symmetry has to
be embeded into this basis set before the variational calculation is performed. This is
difficult to do with Tennyson’s code, so we developed a new method to achive this, which

is described in section 3.2.
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Figure 7: Contour plot of the wavefunction ¥ for the lowest J = 0, A;-type Hf
ro-vibrational state, in symmetrized hyperspherical coordinates®®. Depicted is a cut at
constant Y, chosen to be 2.1 bohr, for which the potential energy function of HI has
a minimum (at X, = Zx = 0). The maximum (near the center of the plot) of the
wavefunction was set equal to 1.0, and contours for ¥ = 0.9 to 0.1 in steps of 0.1 are
displayed. The X, and Z, coordinates are in bohr.
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Figure 8: Contour plot of the wavefunction ¥ for the lowest J = 0, A;-type Hj
ro-vibrational state, in symmetrized hyperspherical coordinates
constant Y, chosen to be 1.967 bohr, for which the potential energy function of H3 has
The maximum (near the center of the plot) of the
wavefunction was set equal to 1.0, and contours for ¥ = 0.9 to 0.1 in steps of 0.1 are

a minimum (at X, = 2, = 0).

displaved. The X, and Z, coordinates are in bohr.
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3.2 Hyperspherical Coordinate Propagation Method

The hyperspherical coordinate approach has been successfully used in recent years
62-67

for the calculation of bound ro-vibrational®®~6! and scattering states of triatomic
systems. Our motivations of using it to study the bound ro-vibrational motion of Hj in

its upper manifold of the electronic 2p 2E’ states are three-fold:

1. The full P; nuclear permutation symmetry of the identical triatomic system can be
easily embedded into the basis set functions so that the final wavefunctions of the
ro-vibrational states will have the correct symmetry. This, as seen in the previous
section, is difficult to achieve with the Tennyson-Sutcliffe variational method.

2. The ground electronic state 2p 2E’(1) of Hj has a conical intersection with the first

excited electronic state 2p 2E’(2) at equilateral triangle nuclear configurations!®-22.
The Born-Oppenheimer real electronic wavefunctions undergo a sign change when one
follows a close path in nuclear configuration space around the line along which the
two states conically intersect!9:22:49=52  Gince the total electro-nuclear wavefunction
is continuous and single valued, there has to be a compensating sign change on the
nuclear part of the wavefunction®®=%2, This is referred to in the literatures as the
Molecular Aharonov-Bohm (MAB]) effect®~52. This effect will modify the energy
levels of the bound ro-vibrational states of the upper electronic state 2p 2E(2) which
would exist in the absence of interaction with the ground state. It is easy to take this
MAB effect into account with the symmetrized hyperspherical coordinate propagation
method described below, while this is not possible with the TS variational method
in its present format. Our results should help to solve the controversy as to whether

these ro-vibrational bound states have been experimentally detected or not2~4,

3. The corresponding wavefunctions will be needed to calculate the overlap integrals
with the ground state scattering wavefunctions (see Eqs. 1 and 2). Since we calculate
the latter using hyperspherical coordinates, it makes sense to obtain the bound state

wavefunctions with the same coordinates.

In the absence of coupling between these two electronic states, the excited 2p 2E(2)
surface should support bound ro-vibrational states. Initially, without including the MBA

effect, we computed those states using a symmetrized hyperspherical coordinate propa-

gation method, and compared the results with those of the variational method (TS), for
total angular momentums J = 0O and J = 1. Then we did the calculation including
the MAB effect, and obtained completely different energy levels®®. The MAB effect also
modifies the scattering calculation in H + H, system®?.
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The Method

Let A,,Ag, A, be the atoms of the system, and (A,v,«) be any cyclic permutation
of (@, B,7). ry is the mass-scaled’ internuclear vector for the diatom A4, A. and R, the
mass-scaled vector of Ay with respect to the center of mass of A, A.. The hyperspherical
method uses the hyper-radius p = (RZ + r2)3 to describe the global size of the triatomic
system and a set of five angles ¢ to describe its shape and orientation in space$2-67:70, In
the Born-Oppenheimer approximation, the electro-nuclear wavefunction can be written as
a product of the electronic part ¥., which we choose to be real, and the nuclear part. The
latter can be factored into a nuclear spin part and a spatial part ¥/MMT  J is the total
nuclear angular momentum quantum number, M its projection onto a laboratory—fixed z
axis, IT the parity with respect to inversion of the nuclear coordinates through their center
of mass and T the irreducible representation of the nuclear permutation group (Pj) to

which ¥/MTT  the electro-nuclear wavefunction excluding the nuclear spin part, belongs:

IMIT = IMIT (5 e (des p5€) (28)

¢,JMHI‘ H

g. refers to the set of all electronic coordinates (spacial and spin). is an eigenfunc-

tion of the nuclear motion Hamiltonian
7 (ps¢) (29)

where p is the three-body reduced mass, A the grand canonical angular momentum and V
the Born-Oppenheimer electronic potential energy function. The nuclear function ¢/M0T
is expanded in a basis of local hyperspherical surface functions (LHSF) M1 .

1 - -
YIMIT (5 ¢) = 3 Y FITT(5;5)8 MM (¢; 5) (30)

The LHSF are defined as the eigenfunctions of the nuclear Hamiltonian at fixed hyperradius

P:
32
[

2up?

+V(5,¢)]8 M (¢;7) = €T (5) 22T (¢: 0) (31)

The coefficients F/T'T in Eq. 30 are solutions of a set of coupled differential equations

62-67  For assumed values of the

in p, whic. ve solve using piece-wise diabatic bases
rovibrational energies, the solutions are propagated forward and backward from small and
large p values where they have negligible amplitudes. The energy is scanned iteratively

until the forward and backward solutions match smoothly at an intermediate value of p.
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In the present study, we use the Whitten—-Smith?!~72 definition of the five angular
coordinates ¢ as modified by Johnson”>. Three Euler angles (af3~) specify the orientation
of the body frame in space. The axes of this frame lie along the principle axes of inertia.
The Z axis is parallel to ry x Ry and the X axis is associated to the smallest moment of
inertia and is oriented such that-rax > 0. Two angles (8,p,) describe the shape of the
molecular triangle and are defined by:

T 0 ©a

= -—— 3

rAX ,ocos(4 2)s in(— 3 ) (32)
NP O

— osin(T _ 9 os( P 33

ray = —psin(% = Doos(22) (53
0

Ryx = pcos(-— - E)cos((pz'\) (34)
Ray = psin(5 - g)sin(%i) (35)

The ranges for these angles are 0 < § < 12'- and 0 < o, < 27. @ = 0 corresponds to the
symmetric top configuration (an equilateral triangle for three identical particles) in which
the principal axes of inertia X and Y are undefined.

The grand canonical angular momentum is given explicitly by®7—°:

d 1 4thcosd -~ O

0
= | X G 0— J
WG 20 aos“‘2 30 sin%e ago2 Y e a0,
[J2 ] sinf ., s
" cos28 sm20 C0520[J +J- (36)

where Jz is the body-fixed Z component of the total angular momentum J, and Jy =
jx + ijy.
Eq. 31 is solved variationally by expansion in a body-fixed basis xJMX built with

ngny
products of simple analytical functions®® :

XaMK = ine®r f () Dysx (aB7) (37)

Dj i is a Wigner rotation matrix>® and n,, is integer or half of an odd integer. f,,(9)
are simple trigonometric functions, such that the LHSF have correct behaviors near the
singularities of the kinetic energy operator # = 0 and 3. In practice, the f,, can be chosen
as the functions cos(ng8) or sin(ne8), with ng integer or half odd integer, in terms of which
the hyperspherical harmonics (whose 0 dependence is usually written as a polynomial in
cos(f)) can be written.
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We now focus attention on the special case of three identical nuclei and describe

YIMIT which are bases for the irreducible

how to build electro-nuclear wavefunctions
representations of the permutation group of the nuclei (P3). The operations of this group
correspond to simple changes in ¢, (which are related to the isomorphism between: P; and
C3y) as indicated in Table 15. If € (= *1) is the symmetry of the electronic wavefunction
with respect to the v « x permutation, then the linear combinations defined by
IMKeT IMK J+K+2n, JM,-K

X,,,lnj = Xnoiny| + e,‘,’,“efm(—l) + ""x,,,‘_|,‘p| (38)

give electro-nuclear wavefunctions W/MTT (Eq. 28) having € (= 1) symmetry with

respect to the v « k permutation.

If there is no conical intersection between electronic states, the electronic wavefunc-
tion t.(de;p,¢) belongs to a one dimensional representation of the nuclear permutation
group (A, for €, = +1, or A, for €, = —1). Table 16 indicates how the total angular
momentum, the parity and the irreducible representation I' of P; to which ¥/MMT helongs

determines the set of quantum numbers n,,.

The hyperspherical method uses 20 ng values, between 4 ( A; or A, symmetry ) and
8 ( E symmetry ) |n,| values (Eqs. 37 and 38), and between 6 ( A; or A, symmetry
) and 12 ( E symmetry ) LHSF (Egs. 30 and 31). The LHSF have been computed at
typically 50 p values between 1.5 bohr and 6.5 bohr. The convergence of the LHSF and
rovibrational energies is of the order of 10™% eV. The compactness of the hyperspherical
expansion comes from the fact that the potential energy around the Y, axis (6 = 0) is
nearly cylindrical (small number of n|,| values) and from the steep increase of the the

potential as a function of 8 (small number of LHSF).

Results and Conclusions

Figure 9 illustrates the main features of the electronic potential energy surface in
an internal configuration space®®. The energy levels obtained from the calculation in the
hyperspherical coordinates are converged to within 1 cm™!, and are very close to those
gotten by using the TS variational method, with the former one more converged and more
accurate. The hyperspherical coordinates propagation method makes the symmetry as-
signment of these levels much easier. Table 14 compares the ro-vibrational energy levels
obtained by these two methods excluding the MAB effect. Table 17 gives the energy levels
when the MAB effect is included, obtained from the hyperspherical coordinate propagé.-
tion method only. Comparison between Tables 14 and 17 shows that this effect is very
important. Figure 10 is the graphic representation of Tables 14 and 17. (u;, u,, l) are

the quantum numbers assigned to those states®3.
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Table 15

Effect of permutations of the nuclei on the angle ¢,.

Permutation Pave® Poen® - P.,.¢ ) Py¢ Py.?
Value of p»* P et pa + 41 2r—@a 2 — o

a : Py, is the identity permutation.

b:
¢ : Py, refers to the cyclic permutation Avx — kAv.
d:
e : The changes in p, are true modulo 2, since o, must remain in the range [0,2x].

P,» refers to the cyclic permutation Avk — vl

P;; refers to the pairwise permutation of nuclei 1 and j.
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Figure 9: The two dimensional plot of the upper sheet of the DMBE potential
surfaces??. The hyperspherical coordinates are used®®. The Z) value is zero. The conical
intersection of those two electronic states happens along the Yy axis. The equipotentials
are equally spaced by 0.25 eV from 3.0 eV to 5.0 eV. X, and Y, are given in bohr.
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Table 16

Choice of n,, for each parity Il and irreducible representation I’

of the nuclear permutation group P;.

II re Ny
Even,without phase® Ai/A2 3m?
Qdd,with phase® E 3m+ 14
Even,with phase® Ai/Az 3m+ %d
0Odd,without phase® E 3m+ -;-“

a0 oe

: without consideration of the geometric phase due to the conical intersection.
: with consideration of the geometric phase due to the conical intersection.

: T is the irreducible representation of P53 to which W/MNT helongs.

: m is a non—negative integer.
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Figure 10: Ro-vibronic energy levels associated to the upper sheet of the DMBE
potential surfaces of H3%2. The full lines are the levels including the effect of the geometric
phase while the dashed ones exclude that effect. The quantum numbers v;, vo and [ are
defined in reference 68. The origin for the energy scale is the bottom of the isolated ground
electronic Hy potential energy curve. These levels are for the J = 0 states, but the J =1
levels are nearly degenerate with them, the splitting being of the order of 10~2 eV. Their
nuclear permutation symmetries depend on J and on the parity I, as well as whether the

geometric phase is or is not included (see Table 15 and Table 16). There are two levels for
each of the sets of quantum numbers (vy =0,v; =1 = %) and (v; = l,vp =1= %), which

would be degenerate if the potential were exactly cylindrically symmetric around the Y,
axis (see text and Figure 9).
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We have described in this section a new hyperspherical coordinate propagation method
for the calculation of bound ro-vibrational states of triatomic system. This method is well
adapted to systems of three identical particles, because it allows easy inclusion of the full
permutation symmetry of the system and of the effect of conical intersections on the phase
of the nuclear wavefunction (MAB effect). Since there is not MAB effect for the 2s 24/
and 2p, 2A} electronic potential energy surfaces, we can use both methods in the study
of their bound ro-vibrational states. The TS method can easily furnish the approximate
locations of the ro-vibrational eigen-energies, while the hypersperical one permits us to
scan energies near those approximate ones and obtain quickly more accurate levels and
their corresponding wavefunctions, having the exact P3 symmetry built in. This work has

hecn published recently®s.
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4. Scattering Wavefunction

4.1 General Considerations

11,12 and of transition state

In the theoretical treatment of predissociation processes
spectroscopy (T'TS)??, the unbound scattering wavefunction with a proper physical bound-

ary condition and normalization is required.

In a typical quantum scattering calculation, the scattering matrix S is obtained instead
of the physical wavefunction with proper boundary conditions and normalization. The
reason is that the scattering matrix S contains all the information about the state-to-
state scattering cross sections (which can be compared with experimental results), and
therefore makes the construction of the physical wavefunction unnecessary. Many methods
of scatteriug caicuilation take advantage of this fact and obtain the S matrix without

62-67.69  QOnly a few calculations involved with

constructing the physical wavefunctions
scattering wavefunctions have been published for triatomic systems, both for collinear”*

and 3D75 cases.

Because the S matrix involves the ratio between the the in-coming parts and the out-
going ones of the scattering wavefunctions in the asymptotic regions (where the triatomic
system becomes a free atom plus a diatomic molecule, and the wavefunctions can be ex-
pressed as a sum of products of the ro-vibration wavefunctions of the diatomic molecule
and the plan-wave functions of the free atom with respect to the center of mass of the
diatomic molecule), it allows the determination of the physical wavefunction in the asymp-
totic regions for a given choice of the in-coming parts. This furnishes the explicit boundary
problem of the Schrodinger equation. The solution will corresponé to the real physical pro-
cess of interest.

Using the coupled-channel method in hyperspherical coordinates, the wavefunction
can be expressed as an expansion in basis set functions of the hyperangles with coefficients
as functions of the hyperradius, the Schrodinger (partial differential) equation can be

transformed into a set of second order ordinary coupled equations as

[I% + Q(z)]¥(z) =0 (39)
with _
Q(z) = (2u/A?)[E1 - V(z)] (40)

where I is the identity matrix, and V(z) the interaction matrix. E is the known total energy
of the system. ¥(z) the expansion coefficient matrix®2-67-76, Here r is the hyperradius.

Detail of the definitions of those matrices can be found elsewhere®2-67-76
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Once scattering matrix S has been determined by a forward integration method, the
physical wavefunction ¥(z) can be calculated from a backward integration of Eq. 39. The
initial conditions are obtained by projecting the wavefunction in *:.¢c as~ - ,totic region,
which is obtained from §, into the hyperspherical surface function at large hyperradins.
The backward integration is then conducted to a small hyperradius where the interaciion

is strongly repulsive and the wavefunction vanishes.

62—-64

Previous calculations are all based on the logarithmic derivative method?” which

is not suitable for the construction of the physical wavefunction in the backward propaga-
tion because it furnishes the logarithmic derivative matrix rather than the wavefunction
matrix itself. We have chosen the renormalized Numerov method”® for that backward
integration.

4.2 Renormalized Numerov Method

In the renormalized Numerov method, the Eq. 39 is transformed into
[I—Tn+1]\pn+1 -IZI—T,‘]‘I’“+[I—T“-1]‘I/"_1 =0 (41)

by using finite difference scheme, where

and
T. = - (42/12)Q(z.) (43)
Here h is the spacing between the N + 1 equally spaced grid point (zo, z;, .., zn) and

Q(z) is defined by Eq. 40. The F,, matrix is defined as
F,=[1-T,¥, (44)
If we substitute Eq. 44 back into Eq. 41, we have
Fo41-UF,+F,_; =0 (45)

with
U, = (I-T,)"" (21 + 10T,) (46)

Next, a ratio matrix R is defined as
R, =F,.,F! (47)
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This transforms Eq. 45 into the two term recurrence relation
R,=U,-R; (48)

This is the basic propagation relation for this method.

At large hyperradii (say, zo and z,), the wavefunction is known, so are the expansion
coefficient matrices ¥y and ¥; which are obtained by the wavefunction projection in the
asymptotic regions. The matrices Fo and F; are obtained by using Eq. 44, and then Ry
by using Eq. 47. Then the backward propagation can be started following Eq. 48, and all

V.. be generated accordingly.

We have implemented the renormolized Numerov propagation scheme in the collinear
H, scattering calculation on its ground potential energy surface in order to test our version

of this propagator. The cc le is currently being debugged and compared with previous

results for forward integration*®. Once this is completed, the backward integration method

for d termined the physical wave function will be extended to three dimensions.
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5. Decay Mechanisms for the H; System

The metastable Hs molecule in the 2p, 2Afz’ electronic state can decay via radiative
processes to the lower 2s 24}, 2p E’(2) and 2p 2E’(1) electronic states and by the predis-
sociation to the unbound 2p 2E’(1) ground electronic state. In this section, we discuss the

calculation of the lifetime via each of these decay channels.
5.1 Radiative Decay and Selection Rules

By coupling to the radiation field, the H3 molecule can emit radiation as it undergoes
a transition from an upper state to a lower one. The general theory of the interaction
between a molecular system and a radiation field is beyond the scope of this report and can
be found elsewhere!”. We will consider here three important kinds of transition: electric
dipole moment (E1), magnetic dipole moment (M1) and electric quadrupole moment
(E2). The lifetime 7 associated to each is inversely proportional to the square of the

.corresponding transition moments:
i 2
T o« [ (U ]X]¥) | (49)

where ¥* and ¥/ are the initial and final wavefunctions for the molecule and X the

transition moment operator under consideration (which can be E1, M1 or E2).

The equilibrium geometries of the bound ro-vibrational states of the 2s 241, 2p, % AY
and the upper manifold of the 2p 2E’ states (in the absence of John-Teller distortions!?:27)
are of that of an equilateral triangle. For this reason, the wavefunctions of those electronic
states display (to zeroth order) Dy, symmetry. Using this symmetry, and with the assump-
tion that the transition dipole moments do not change with nuclear geometry, Herzberg
el.al. have discussed the selection rules for the electric dipole radiative transitions among
those four electronic states®”. We have extended their considerations of the electric dipole

transition {E1), to that of the magnetic dipole (M1), and electric quadrupole (E2).

We use the same assumption that the multipole moments do not change with nuclear
geometry. Under this condition, the integral in Eq. 49 can be separated into a electronic

part and a nuclear part, which permits us to rewrite Eq. 49 as:
i -2 i -2
T o« (U XD | TTI{YL I X ) | (50}

where ¥, and W, stand for the electronic and nuclear wavefunctions respectively. The
electric dipole moment E1 (being a vector) forms an A4 + E’ representation of the Dj;

group, the magnetic dipole moment M1 (being a skew vector) forms an A5 + E” one,
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and the electric quadrupole moment E2 (as a second rank tensor) an 4| + E' + E" one.
The symmetry requires that for the integral over electronic coordinates in the right hand
side of Eq. 50 not to vanish, it is necessary that the integrand (the product of the initial
electronic state, the moment operator and the final electronic state) in that integral must
have an A} component. Using the properties of the D3, group, this furnishes the selection

rules for the transitions between those four electronic states.

For the electric transition dipole moment (E1), the transition can have non-zero intensity

e between the 2p, 245 and 2s 24/ states,
¢ and between the 2s 24| and 2p., 2E'(1,2) states.

For the magnetic transition dipole moment (M1), it can have non-zero intensity

e between the 2p, 244 and 2p, , 2E'(1,2) states.

For the electric transition quadrupole moment (E2), it can have non-zero intensity

o between the 2s 24} and 2p. , 2E'(1,2) states,
e and between the 2p, 2AY and 2p., 2E'(1,2) states.

Since we have calculated the potential energies of the 2p, 245 and 2s 24/ states and
the electric transition dipole moment between them, we can estimate the lifetime of this
decay process. Our estimation was done at R = 1.64 bohr (R being the length of the side
of the equilateral H3) where the nuclear configuration is very close to the minima of both

potential energy surfaces, using
ns”' = 2.02586 x 107%(AE)°T?, (51)

where AE is the transition energy (AE = E; — E;, in cm™!), and T, is the transi-
tion dipole moment (in atomic unit) between the initial state (2s 24/) to the final state
(2p, 2A%), and the dipole transition lifetime 7; ; is in seconds. Our calculated transition
energy is 1299 cm™! and the corresponding electric transition dipole moment is 2.68 a.u.
which yields lifetime of about 31 us. This compares with the results of 1422 cm™!, 2.69
a.u. and 23 us from Petsalakis et al.®2 | and 1988 cm™!, 2.85 a.u. and 7.7 us from King
and MorokumaZ??. The lifetime is very sensitive to the transition energy. If the experimen-
tal transition energy (of 993 cm™1!) is used (which includes the difference between the zero
point energies of the nuclei motion on the 2s 24/ and 2p, 244 potential energy surfacesj,
the resulting lifetime estimations are 70 us (this calculation), 62 us ( King and Morokuma)
and 70 us (Petsalakis et al.) and all agree with the experimental estimated value reported
as being in excess of 40 us'4.
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When the ro-vibrational motion of the nuclei distorts the shape of the molecule away
from equilateral triangle, the Dy, is no longer the symmetry group of the electronic wave-
function, so that those selection rules should not be observed exactly. For a molecular
system, the strength of the coupling with the radiation field generally decreases in the
order 1) electric transition dipole, 2) magnetic transition dipole, 3) electric transition
quadrupole, and so on. Only if some selection rule prevents the stronger coupling to be
non-zero, can the weaker coupling have a chance to show its contribution. When Hj
does not have equilateral triangular geometry, the electric transition dipole coupling can
contribute to each of the possible transition between those lowest four electronic states.
Therefore, it is appropriate for us to study the electric dipole transition first. With the
potential energy surfaces and electric transition dipole moments obtained by the electronic
calculation described in section 2, the nuclear ro-vibrational bound states can be obtained
by the methods described in section 3, and then the radiative lifetime of 2p, 24] — 2s24]

can be calculated.

5.2 Predissociation

Predissociation can occur as a result of coupling between two Born-Oppenheimer
electronically adiabatic potential energy surfaces associated with two electronic states of a
molecular system. The Born-Oppenheimer wavefunctions of the system are not in this case
true eigenstates of the total molecular Hamiltonian. Interaction between the quasi-bound
states of the nuclear motion of an upper surface and the unbound(s.e., scattering) ones of
a lower surface can cause a quantum leakage from the former to the latter!3—16

5.2.1 Fano's Theory!®

In the simplest case, there are two quantum states associated with the Hamiltonian
H. One is bound and denoted as | ¢,) and the other one unbound and denoted as | E).
They are not exact eigenstates of H and satisfy the following conditions:

($n | 8n) =1 (52)
(¢n | E) =0 (53)

(E| E') = 6(E - E') (54)

(¢n | H | ¢n) = En (55)
(E|H | E') = E§(E - E') (56)
(¢n | H | E) = Vo (E) (57)

where n designates the set of quantum number which label the bound state, and E is the

energy for the unbound state. V,(E) is the coupling between the bound state and the
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unbound state and is usually very small. We expand the true eigenstate of H as
| #a(B)) = An(E) [ 6n) + [ BulB,E) | B)dE" (58)

where

H | ¥, (E)) = E | ¥a(E)) (59)

It satisfies the normalization condition

(Va(E) | Un(E")) = 6(E - E') (60)

After replacing Eq. 58 into Egs. 59 and 60, the result is

2 _ | Va(E,) |2
| 4n(E) | '_ (E = En — A,)2 + 72|V, (E,) |* @1)
A, =P / L‘;‘(_Lgfw’ (62)

Let us adopt the time-dependent description and prepare the system in state | ¢,,) at
t = 0. We now let the system evolve with time and ask what is the probability P, (t) of
finding the system still in state | ¢,) state at time ¢t? The answer is

P,(t) = exp(—t/r) (63)
where
h
™ | Va(Ea) P (64)

The above discussion can be easily generalized into the case in which one bound state
is coupled with many unbound states | E,m), as happens when the final predissociated
system can be characterized by the set of quantum numbers m describing the internal

states of the fragments. The result is

h
21 3 | Vi (En) I*

Tn

(65).

with the coupling between the bound state | ¢,,) and the mth unbound state | £, m) as

VI (E) = (¢n | H| E,m) (66)
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5.2.2 The Form of Coupling Element in Nuclear Coordinates

We now discuss the nature of the coupling elements which appear in Fano’s formulas

(Egs. 57, 66). The Hamiltonian of a molecular system has the form:
H = H, +Ty (67)

where electronic H, is the Hamiltonian (with the nuclear variables as parameters) which
contains the Coulombic interactions between all charged particles (including nuclei) in
the molecule, and Ty is the nuclear kinetic energy operator. We assume that the spin-
containing terms are negligible compared with the Coulombic terms as is the case for Hj.

We can define a set of electronic basis functions ¢, (r,R) which satisfy

H.¢n(r;R) = V(R)dn(r;R) (68)
<¢n | ¢n’)r = 5n,n' (69)

where the r denotes the set of all electronic coordinates and R the set of all nuclear
coordinates. n is the set of quantum numbers which describe the eigenstates of H.. In

order to solve the total Schrodinger equation
HY¥(r,R) = E¥(r,R) (70)

We expand the wavefunction ¥ in the ¢,, basis set:

¥ = Y Xa(R)¢n(r;R) (71)

From Egs. 67-71, we get

Y. Tn{xa(R)¢a(r;R)} = D (E = Va(R))xn(R)¢n(r,R) (72)

n

In Eq. 72, the nuclear kinetic operator acts upon both nuclear x,(R) and electronic
#.(r; R) wavefunctions. No choice of reference frame and coordinate system used to de-

scribe the molecular system is so far implied.

In the laboratory reference frame, the nuclear kinetic energy operator Ty is given by

hz
Tw =) —E:V? (73)

3
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where the sum is over all nuclei with p; as their masses. When Eq. 73 is put into Eq. 72
with the help of Eqs. 68 and 69, we get the equations which x,, satisfy:

h’Z
TNXn + Z—I‘ﬁnvi(ﬁn’ 'Vs'Xn’ + Z.¢nTN,¢n'Xn' = (E—Vn)Xn (74)

n'a

In the normal treatment of the nuclear motion, only one term is retained and the

coupled nuclear equations are replaced by a set of uncoupled equations
Tnxn (R) = (E - Va(R)x2°(R) (75)
The corresponding electro-nuclear wavefunction is then

¥BO(r,R) = xB°(R)én(r;R) (76)

It is easy to show that the matrix element of the total Hamiltonian H between a pair

of wavefunctions in the form of Eq. 76 but with different electronic states is:
( O¢n Hl¢nx O>—_(X O|Z<¢n|_v |¢n) V +(¢n|TNl¢n)|XBO\ ( )

In our application to predissociation, the initial nuclear bound state and the final nuclear
unbound state are Born-Oppenheimer solutions (on different electronic potential energy
surfaces), and the corresponding predissociation coupling matrix elements needed for ap-
plication of the Fano's theory are, in Cartesian coordinates, those shown in Eq. 77.

In practice, the reference frame for the electronic motion is usually chosen to be the
body-fixed frame of the nuclei and the translational motion of the center of mass of the
system is removed. Because of the large mass difference between the nuclei and electrons,
the center of mass of the molecule is very close to the center of mass of the nuclei, and
their difference can be safely neglected for the present purposes. The coupling elements

appearing in Eq. 77 can be expressed in terms of elements of the type

a9
(6n | gl KO R (78)
oz
and
62
(n | 5o | ) (1y
where z can be one of the internal nuclear hyperspherical variables (p, wx, 7a) i.e. the
hyperradius and the two internal hyperangles. The elements (¢, | = | ¢n') and (¢, | 5%-

®n') must now be calculated with the help of the corresponding electromc wavefunctions.
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6. Summary

In order to assess its potential as a future rocket propellant, the lifetime and de-
cay mechanisms of the H3 molecule in its metastable 2p. 244 electronic state must be
understood. We initiated a theoretical study of thls decay lifetime, in parallel with the

experimental work on the properties of this species.

We have identified the necessary steps for the theoretical investigation. We initiated
the calculation of the Hj electronic potential energy surfaces for the lowest four electronic
states (2pz.y 2E'(1,2), 2s 24} and 2p, ?4%) , and of the electric transition dipole moments

among them. These calculations will be completed in the near future.

We have developed a very general and powerful hyperspherical coordinate propagation
method to obtain the ro-vibrational nuclear bound states, especially useful for A; systems
(like H3) having three identical nuclei, for which nuclear permutation symmetry plays an
important role. We also used for such calculations the variational method developed by
Tennyson and Sutcliffe as a general and robust way to treat the triatomic ro-vibrational
motion. Both methods have been tested on the upper manifold of the DMBE surfaces??
(2p 2E'(2)), with or without inclusion of the molecular Aharanov-Bohm effect®®. We have
performed scattering calculations on the lower manifold, up to energies of 2.4 eV, using

hyperspherical coordinates®2—64.69

80

, and also showed how to use parallel computers for such

calculations

We have developed a numerical methods for generating scattering wavefunctions via
backward propagation, once the scattering matrix has been calculated. Such wavefunctions

are needed for the predissociation lifetime calculations of interest.

After the ro-vibrational wavefunctions on both the 2s 24} and 2p, 24Y potential
surfaces, and the electric transition dipole moment between them become known, the ra-
diative lifetime calcalation of the 2p, 2AY state to the 25 2 4} state can be finally performed
accurately. Calculation of the predissociative lifetime of the 2p, 244 state will require a
calculation of the appropriate coupling elements to the ground and first excited electronic

states.
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HYPER-SPHERICAL COORDINATE REACTIVE SCATTERING
USING VARIATIONAL SURFACE FUNCTIONS
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An efficient numerical method of calculating surface functions for accurale quantum mechanical three-dimensionai reactive
scattenng using symmetrized hyper-spherical coordinates has been developed. This method 1s at lcast 20 umes faster than the
finite-element method used previously and its accuracy is demonstrated for the H + H. system.

1. Introduction

Accurate quantum soluiions for three-dimensional reactive scattering for triatomic systems were first cal-
culated in the mid 1970s for the system H+H, [1-5]. The difficulty and computational expense of these cal-
culations has, until recently, precluded extension to higher erergies and more complex systems; however, the
development of more efficient algorithms coupled with increased access to supercomputers has resulted in a
resurgence of activity in this field [6-17]. In particular, the use of symmetrized hyper-spherical coordinates
{SHC) and local hyper-spherical surface functions (LHSF) [18,19] is a very promising approach.

The first accurate calculations of 3D reactive scattering matrices using a hyper-spherical coordinate method
were recently performed on the total angular momentum J=0 partial wave of the H+H; system [6]. This
method, applied to the PK2 potential energy surface [20], involved the calculation of sets of LHSF using a
two-dimensional finite-element (FE) approach. The FE method is accurate and reliable for this system, and
has been used to extend the range of energies at which the corresponding J =0 partial wave scattering matrices
have been calculated to 1.6 eV [11]; however, extension to higher values of J and to less symmetric systems
requires an excessive increase in computational effort. As a consequence, there was a need 1o develop a ore
efficient method for calculating these LHSF.

In this paper we present a new variational method for calculating LHSF. The formalism is described in sec-
tion 2. Section 3 discusses the numerical parameters used and section 4 compares the results of LHSF and
scattering calculations for the J=0 partial wave on both the PK2 and LSTH [21,22] potential energy surfaces
with those of previous calculations using a finite-element method [6,11.23] to obtain the surface functions.
In addition, some comparison of the J=1 PK2 scattering results with those of the matching method [3] are
made. A summary is given in section 5.

' Work performed 1n partial fuifillment of the requirements for the Ph.D. degree in Chemistry at the California Institute of Technology.
! Current address: 216 Synchrotron Laboratory 206-49, California Institute of Technology. Pasadena, CA 91125, USA.
’ Contribution No. 7865.
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2. Formalism of variational surface functions

The SHC coordinate system used in this calculation has been described previously [6.11.18.19]. Let A,. A,
A, be the atoms of a tratomic system and 4, v, k an arbitrary permutation of a. S, 7. The 4 SHC for this system
are

r;

_ 7
, ¥ =arccos — Oswg, 7., (1)

2 23172
=(r;+R , w;=2arctan ,
p ( A A) RA R;’A

where r; is the mass-scaled [24,25] internuclear vector for the diatom A, A, and R, the position vector of the
atom A; with respect 1o the center of mass of A,A,.. The orientation of the system in space is determined by
the Euler angles 6.. ¢, (the polar angles of R, with respect to a space-fixed OZ axis ). and y; (the angle between
the R,,r; and R,,0Z half-planes). In this coordinate system the Hamiltonian is expressed as

SN LN L 1542
== p = =+ V(powi )+ T, 2
f 3 ap_p +2up' (o, wi, 7:) S (2)

in which the global reduced mass y is defined as [m,m,m./ (m,+m,+m,)]'’*. The generalized or grand ca-
nonical angular momentum operator A° is defined by .

iz . L
cos’(dw,)  sin(hw,)’

/i:=[:f+

(3)

where /3 and ;7 are the angular momentum operators associated with the vectors R; and r,. respectively. and

., =4r*/( @ .
L:=~ A (_—T+I)Slnw; (4)
sin w; \dw?

is an angular momentum associated with the hyper-angle w,. The term V(p. w;, 7:) is the potenuial energy
function of the electronically adiabatic triatomic system.
The equation that defines the LHSF @/ with associated eigenvalues €77 is

(ﬁ; + V(o wi, ;',.))M'“”’(Cg:p)=eﬁ”’(p) PM(Lp), (5)
in which {; stands for the set of five hyper-spherical angles (w;, 7;, 6., @, v:). The indices J. M, IT. I are,
respectively, the quantum numbers of the total anguiar momentum of the system, its projection on the space-
fixed OZ axis, the inversion parity of the triatomic system through its center of mass, and the irreducible rep-
resentation of the surface function in the permutation group of the system (P, for H+ H.). The boundary con-
ditions for eq. (5) are the usual “‘well-behavedness™ ones (single valuednéss. continuity, non-divergence.
differentiability. etc. ). The index n denotes a Quantum number which. in addition to J. M. /1. I". umiquely labels
the LHSF. A set of two-dimensional surface functions w23  (w;, y.. p) independent of the orentation of the
< tem in space can be defined by expansion of the LHSF in terms of Wigner rotaion matrices
Lvo(0:, 6., w:) [26]3

J
DI (L p)= azo (0., 6w wii (e, vip) . ()

where
Z0(0:. 6., v,) =N Dial0:, 6, )+ (= 1) 72D, _(0:, 6:,v.) ]

and V,q is a normalization constant. 747, is even (odd) with respect to inversion of the system through its
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center of mass for /7=0 (1), and in the case of 2=0 is zero when J+ /T is odd. The boundary conditions for
the w/27 (w;,. 7.. p) which result from the “well-behavedness™ of the @/* are that

Vi (wy, 7:={0.1}:p)=0 for R0

and

v [W.'/Igr( A‘ In p)]ll.-(o x; —0 forQ:O.

Furthermore, the potential function V(p, w;, y;) has in general extrema at y,={0, =} (corresponding to col-
linear configurations of the system). As a result of these considerations, the w’”r can be factored as a function
of w, times a normalized {2] associated Legendre function 2% (cosy;) in the vicinity of v:=0 and =. This
makes it both convenient and desirable (because of the presence in eq. (3) of the operator J3) to expand these

w2 according to

Jﬂ/‘
w2 (W51 P)
vidl(wi v p) = Z f”(cos“)————-nmw P (7

where the coefficients 02715 (w;: p) are called one-dimensional surface functions. Replacement of eqs. (7) and

(6) into eq. (35) leads to the equation satisfied by these functions:

L & JUAD+GHD =290 jU+D T e
2#»0: {[-“(a()- +1) COS:(iw;_) + Sinl(iw,;)] O lw:ip)

h- .
6;—('0—)[».(1 Q) E.(. Q) ol H(wglp)‘i'f-(f.g)f-(],Q)Oﬁﬁﬁ-n(walp)]}

+ 5 VUp w:) 0l% (Wi p) =€ (p) 01 (i p) (8)
jaf2
The muluphcauve factor (sinw;) ™' has been introduced into eq. (7) because of the form of eq. (4). The
presence <. this terrn forces the boundary conditions 6774 (w; ={0, x}; p) =0 for eq. (£). These conditions are
necessary :or w237 not to diverge at w; = {0, x} but may not be sufficient; however, in practice they have indeed
sufficed f>r H+H.. and we do not anticipate problems with other systems. In eq. (8), &.(i. k)=
[i(i+1)=k(k=1)]"* and the term V% is given by

V&p w, = ‘ 28 (cosy,) Vip.w,. 7)) 22 (cosy)siny, dys . (9)

[}

It is imp. 1ant 1o note that for eq. {8) to be valid. the functions 9277} with 2=0 must be defined to be iden-
tically equal to zero when J+ /7 is odd. The set of equations (6}. (7). and (8) are equivalent to eq. {5).
The v 1ational basis set is suggested by the expansion equation (7) and by eq. (8). We define functions
t7, (wy; . ) with associated eigenvalues el a(p) which satisfy the latter after the £2 and j coupling 1s removed:
: +1)-2Q° (j+
[_yz_( 3, JUFLHHU+D =220 U+ )H

N\ w? - 4cos (iw;) 4sin‘({w;)

]Ha—eua’.;n (10)

These fui :tions are required to satisfy the same boundary conditions as the #7745 : 17%,(0. p) =1/ ( 7, p) =0.
We now asfine a five-dimensional vart..ional bas.s set by ’

FIMI( ) =00, 6. w.) 2R(cosy) [ alwiip) . (an

where for notational convenience we have defined f 7%g(w;: p) =t%(w;: p)/sin w;. Since this basis set is con-
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centrated in the / arrangement channel region when p is sufficiently large, accurate representation of the surface
functions concentrated in the v and k channels may require a lurge number of terms at such values of p. To
overcome this difficulty. a new basis set is constructed which consists of the union of the basis sets F7'\/,
Fi¥ and F{}]. Furthermore. for systems containing either two or three identical atoms we construct sym-
metrized basis sets which belong to irreducible representauions I of the P, or P, permutation groups, respec-

tively. For the three identical atom case, these symmetrized variational basis sets are given by

Fug™(Lapy= X ol FL0a(G 0, _ ‘ (12)

where the sum in 4’ is over A, v and x, the ¢/, are easily determined constants, and the sets of angles {, and
{,. are considered 1o be functions of {;. The functions F7%"" will be referred to as primitives to distinguish
them from the unsymmetrized basis functions F77. The five-dimensional LHSF are now expanded in terms

of these primitives:

QMI(L . p)= zaa{,’}JC(p) FLEmM(sip) . (13)
)

The primitive basis set is not orthogonal. since the variational basis sets with different +* overlap: therefore.
calculation of the a?/Z, coefficients requires the determination of overlap integrals for the variational basis set
as well as integrals involving the Hamiltonian. Integration over the three Euler angles 8., ¢,. and v, is analyuc.
leaving two-dimensional quadratures to be done numerically. These quadratures are the most expensive part
of the entire computation. Any quadrature scheme may be emploved: the one we used is discussed in section
3

Once all of the necessary integrals have been calculated. the @/, coefTicients are determined by a generalized
eigenvalue-eigenvector procedure. With sufficienty large basis sets. the overlap matrix between the primitives
becomes nearly singular as a consequence of near linear dependence: for this reason it was necessary 1o develop
a method for dealing with this situation. The pnmitive overlap matrix is diagonalized. and eigenvectors cor-
responding to eigenvalues smaller than a tolerance parameter (for the calculations described below, this pa-
rameter was set to zero ) are eliminated from consideration. The remaining set of eigenvectors is used to transform
the Hamiltonian matrix 1o yield a new eigenvalue probiem from which the linear dependence effects have been
removed.

From egs. (6), (12), and (13), the expansion of the two-dimensional surface functions w23 (w;, 7. p) in
terms of the one-dimensional functions f 7%, can be shown to be

vad (Wi i p)= T alga{f08 [1+ (= 1)/ 16§) 27 (cos7:) ffa (wiip)

1y

+cldih (8,,) 28 (cosy,) [l (w,:p)+cl (=12 dl] (4.) PP (cos ) [ (Wi p) . (14)

The functions d&ih () =dbg ()Y +(=1)*7*2 3L 4 (4). where d’ is the Wigner little d matrix {2=]: they
appear in eq. (14) because of the integration of products of two 74/}, functions depending on different Euler
angles. The angles 4,, between the vectors R, and R, and J;, between the vectors R, and R; are functions of
w; and 7, only.

The same formalism is used in determining the surface functions at values of p for which the surface function
amplitude is negligible in regions of configuration space in 1hc interstices between the arrangement channel
regions. For such values of p, the overlap between / /%, and / /% o vanishes. making the set of primitive func-
tions be automatically orthogonal; this greatly reduces the numencal work necessary for the LHSF calculation.
because the basis set includes only the 4 basis functions.

The calculations of the six-dimensional scattering wavefunction ¥/*7" is done by expanding it in terms of
the five-dimensional LHSF:
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@y Ty = S I 5y DTG (15)

The @7 are determined at a set of discrete values of ¢. labeled p,. Subsuituting eq. (13) into the (ume-
independent) Schrodinger equation corresponding to the Hamiltonian defined by eq. (2) and using eq. (5).
the coefficients b(p; p,) are found 10 satisfy

( AR 4P ISE

~ 8—upz+(%) fi”’(/i)—E)J:'bi”’(p:gi)+ };b.’.”’(p:;i)ll’”’]:'(p:i.)=0.~ (16)

in which the interaction matrix #/7" is defined by

(S7)0 (2 = KO p) I VA, i, 725 ) 1 @M (L 2)
=Y T afl0)alTa . )CFLE™ (G o)1 Vo, wi vt I FUIE (G2)) (17)

w2 v 2
with F(p. w;, 7::p.) = V(p. w;, 7.) = (9./0)*V(p., wi. 7:). The integrals in the right-most part of eq. (17) are
obtained from linear combinations of related integrals involving the variational basis set (11).
The coefficients b(p: p,) are calculated as a function of p in a region near p, corresponding to a hyper-spher-
ical shell. The smooth matching of the scattering wavefunc:'~n across the boundary p, ., of adjacent hvper-
spherical shells is accomplished by imposing the condition=

b‘tjvnr(puol:p-l*l)= Z b{vnr(pu*l:p-l)[(!‘l”r]: (/i-»lv/;:) * (18)

(ab:"f(p;ﬁ,..)) -5 (abﬁ’”(p: £.)
o=p') n

Jnrya ¢ 5 n
ap ap >ﬂ_p‘(’-’ll[€ ]n (p1+lvp|) Ll (19)

in which the overlap matrices ¢ are defined by
LC) 0 (Prars ) = KPR e VIO (Lii0) D
=Y T allp.)alTa. GICFLET i NWFIE (i) (20)

182 vy 2

The methodology described above is closely related in spirit to the method independently developed by Schatz
{17}, which was published after the present work was completed. The major differences are in the selection
of reference potenuial for calculation of the w;-dependent portion of the basis set and in the method for dealing
with overcompleteness of the basis set. Qur reference potential, denoted by the term Vf," in eq. (10), is the
potential energy surface at fixed p averaged over the diatomic rotation: the choice of this reference potential
naturally follows from the expression for the one-dimensional surface functions /7" of eq. (8). We allow for
the large amount of linear dependence which is produced by this reference potential at small values of g by
the method for solution of the generalized eigenvalue problem described above. This does not increase the time
required for the calculation. Schatz, on the other hand. chooses for his reference potential V(p. w;. ;=
n/2) for p= 3.3 bohr and }(p=3.3 bohr. w,, 7;=r/2) for p< 3.3 bohr; the change in the reference potential
at small g avoids problems with linear dependence.

3. Numerical parameters
One of the most important parameters in the calculations performed is the number of primitives used to

expand the surface functions. In addition to the indices J, M. ITand I” which label the LHSF, the basis functions
and the primitives formed from them are labelled by indices r. j, and £2. which asymptotically correspond re-
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spectively to the diatom vibrational. total rotational and helicity rotational projection quantum numbers [2.3].
The range of (1. /. 22) included in the calculation of a desired set of LHSF is selected by preliminary calculations
at a small subset of the values of p to be used in the full calculation. For these initial calculations, the basis
set 1s deliberately chosen to be larger than necessary for the accuracy and number of surface functions desired.
The number of accurate surface functions obtained by this method is determined by comparison of two such
calculations with different size basis sets at each value of p. Examination of the coefficients of the basis func-
tions contributing 10 each surface function considered allows selection of a smaller basis set which can be used
with minimal Joss of accuracy. This method becomes complicated with larger variational basis sets, due to in-
creasing linear dependence among some of the primitive functions; however, the overall pattern of important
coefficients is still effective in optimizing the choice of basis sets for succeeding calculations. When this method
of selection is used, the number of good surface functions of each symmetry which are produced is approxi-
mately one half the number of primitives of that symmetry used in the calculation.

To obtain the results presented below, the one-dimensional numerical functions /7 (w;; p) from eq. (10)
are calculated on a grid of 450 w; points using a one-dimensional finite element method. Each element is qua-
dratic and uses two Gauss-Legendre points. The reference potential ¥ for these functions is determined by
a Gauss--Legendre quadrature with 96 7; points. The grid for the two-dxmensxonal integrals is the direct product
of these two independent quadrature grids. Convergence of the surface function energies with the fineness of
the mesh is to four decimal places.

For the system H+ H.. the dependence ofthe basis functions eq. (11) in the v and « coordinates 1s the same
as that for the 2 channel functions, 50 it is not necessary 10 repeat the calculation for r7%, and (/%. In addition.
the integrals between products of functions in the 4 and v channels equal the integrals between the corre-
sponding functions in the » and k channels, so the integration need only be done for 4,» pairs to obtain the
overlap integrals for all three regions.

LHSF are calculated every 0.2 bohr from p=2.0 to 12.0 bohr, and interaction matrices J 7" (see eqs. (16)
and (17)) are determined at five evenly spaced values of p for every value of g,. One overlap matrix ¢/ (see
eqs. (18)-(20)) is calculated between sets of the LHSF at each pair of adjacent p values. For g2 6.2 bohr the
variational basis functions in arrangement channel 4 are orthogonal to those in v and x because we set the
maximum value of w; equal to the physically reasonable value 2 arcsin(3.0 bohr/ p), which at p=6.2 bohr equals
57.9° This value of w; is deep in a classically forbidden region for all y; for the total energies discussed below.
As a result, the time needed for the surface function calculation in this region is smail compared to that for
the p < 6.2 bohr region. The initial value problem described by eq. {16) is solved using a logarithmic derivative
propagator [27] with a step size of A2=0.025 bohr and a constant-p projection {6,11,28] at 12.2 bohr. These
parameters were chosen to achieve a calculation accuracy about equal to that described previously [6.11).

The five-dimensional basis functions are generated from the functions f 4, according to eq. (11). For each
of the potential energy surfaces and for J=0, a set of (v, j, 2=0) quantum numbers was chosen to give a
variational basis set of 152 functions. This set has a maximum of 12 vibrational functions for the value y=0.
with monotonically decreasing number of vibrations for each succeeding vatue of j to the maximum of j=23
for which only one vibrational function is used. Symmetrization of this basis set yielded 76 A, 76 A, and 152
E primitives.

For the LSTH potential energy surface, the scattering results were obtained from 36 A,, 35 A., and 69 E
LHSF at each value of p. The calculation of each LHSF (including the evaluation of all the associated overiap
and 1nteraction matrices for the solution of the propagation equation (16)) requires an average of 0.27 s on
a Cray X-MP/48. The timings are very similar for the PK2 potential energy surface.

For J=0, the variational LHSF calculation 1s about a factor of 20 faster than the finite-element method one
ior equivalent accuracy [6,11]. We estimate that the numerical effort required for the finite-element calcu-
lation of the LHSF will increase with J as (J+1)® with 2<a< 3. whereas for the variational method a=2
therefore, the speed of the variational LHSF calculation with respect to that of the finite-element one is ex-
pected to increase with increasing J.
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Fig 1. Probabilities (a) and probability differences (b) as a
function of total energy £ (lower abscissa) and initial relative
translational energy Eoo (upper abscissa) for the J=0 (0, O,
0)--(0. 0, 0) E symmetry transition in H+ H; collisions on the
PK2 potential energy surface. The symbol (v, j, Q) labeis an
asymptotic state of the H+ H, system in which v,  and Q2 are the
quantum numbers of the initial or final H, siates as defined in
the text. The vertical arrows on the upper abscissa denote the
energies at which the corresponding H, (v, ;) states open up. The
length of those arrows decreases as v spans the values 0, 1, and 2,
and the numbers 0, 5. and 10 associated with the arrows define a
labelling for the value of ;. The square svmbols in (a) are the
current vanational surface function results and the solid line are
the FE results [ 11]. The differences between the former and the
latter are plotied in (b).

4, Results and discussion
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Fig. 2. Same as for fig. | for the LSTH potential energy surface.
The FE results are taken from ref. {22].

As can be seen in table 1, the present variational (V) LHSF energies consistently fall below those calculated
by the finite-element method (FE) (11,23], with a maximum reduction of about 65 meV for the higher energy
LHSF. As both methods obey a minimum principle, this implies better quality of the LHSF in the current

method.
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Flux is conserved for the PK2 surface to better than 1% for energies less than 1.55 eV for the scattering cal-
culations using FE LHSF [11] and for energies below 1.74 ¢V for the current calculations. For the LSTH sur-
face. flux is conserved to better than 2% below 1.35 ¢V for the FE results {23] and. for the current results, to
better than 1% below 1.68 eV and 1o better than 2% between 1.68 and 1.74 eV. Examination of the scattering
matrices produced by each method shows good agreement between the two below the first resonance at 0.97
eV, with a difference which is usually no greater than 2% for probabilities greater than 10~>. Above this energy
the agreement between the results for the v=0 10 " =0 state transitions remains equally good; however, the
agreement for v=1 to ¢" = | transitions is not as good, with a difference usually no greater than 4% in the prob-
abilities greater than 10~ ° for these transitions. On the basis of the lower LHSF energies and the better scat-
tering matrix unitarities of the current method, we believe that the current scattering calculations are more
accurate than the ones using FE LHSF. A comparison of J=0 probability curves generated by the two methods
is plotted in fig. [ for the PK2 surface and in fig. 2 for the LSTH surface, together with the difference of the
results of the two methods. The relative differences for the probabilities of these figures never exceed 6% for
the PK2 or 2% for the LSTH potential energy surface; the greater maximum relative difference for the former
is due to the smaller minimum value of the probability itself rather than to a greater difference between the
results.

The scattering results calculated from the variational LHSF are converged with respect to number of surface
functions used in the propagation to 2% in the probabilities greater than 0.1 and 1.5° in the corresponding
scattering matrix element phases. The energies of the LHSF corresponding to asvmptotically open states are
converged to 0.3% with respect 10 size of the basis set used in their calculation, and thus the scattering results
are also well converged with respect to this parameter.

Calculations were also performed for both parities of the /=1 partial wave and are of similar quality. /=1
probabilities in excess of 0.1 generally agree with the matching method ones [3] (which were obtained up to
0.7 eV only) to better than about 3%. In none of these calculations have we encountered the difficulties pre-
viously predicted [10]. A detailed analysis of the J=1 results, up to 1.75 eV, and of the corresponding res-
onances will be the subject of a separate publication.

5. Summary

A new general variational method for calculating local LHSF was described. It is about a factor of 20 more
efficient than the finite-element method for the J=0 partial wave of H + H.; this relative efficiency is expected
to increase with increasing J. The results of the two methods agree well at the LHSF level. and at the scattering
matrix level agree well for energies below 0.97 eV and moderately well for higher energies; the variational cnes
are believed to be the more accurate ones.
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We have performed accurate quantum mechanical three-dimensional reactive scattering calculations for both panties of the
J=1 partial wave of the H+ H. svstem up 1o 1otal energies of 1.75 eV. The collision lifetime resonance spectra for both /=0 and
J=1 are discussed in terms of the charactenstics of the system’s potential energy surface and of a simple physical mode! involving

11s symmetry properties.

1. Introduction

We “ave recently developed a new varnational
technique [1] for calculating the local hyperspher-
ical surface functions (LHSF) necessary for per-
forming three-dimensional (3D) quantum mechan-
ical reactive scattering calculations by the
symmetrized hyperspherical coordinate method. We
have shown that this technique produces results of
similar quality as the finite element (FE) one pre-
viously used [2.3], with significantly less numerical
effort. Using che LHSF generated by this variational
method, we have performed 3D reactive scattering
calculations for the H+H; system on the PK2 [4]
and LSTH {5.6] potential energy surfaces for the
J=0 and both parities of the 7= | partial waves. The
calculations are of sufficiently high quality for res-
onance analysis using the collision lifetime matrix
formalism {7]. We briefly describe the parameters
used in the calculation, and follow with a preseata-
tion and analysis f the results. Other recent hyper-
spherical ca'culations for J=1 H+H, have been
published by Schatz [8] and by Pack. Parker and co-
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the Ph.D. Degree in Chemistry at the Califorma Institute of

Technoiogy.

* Current address. Mail code 206-49, California Institute of
Technology. Pasadena. C4 91125, USA.
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workers [9], over a more limited energy range. In
addition, results using different methods have been
obtained by Mladenovic et al. [10] and by Zang and
Miller [11].

2. Method

The details of the partial wave methodology for
arbitrary J and the parameters used for the /=0 cal-
culation have been presented previously [1]; there-
fore, only a few relevant points will be mentioned
here. The /=0 and J=1 calculations use the same
values for many numerical parameters: the choice of
gd is the same, as are the number and location of
the sets of LHSF. The basis set for /=0 is formed
from a choice of quantum aumbers (1. j, R=0)
[1.12], vielding a-total of 152 functions. This basis
is symmetrized according to the irreductble repre-
sentations of the P, symmetry group of H+H.. to
give 76 A, 76 A.. and 152 E “pnmitive” functions.
These are used as a variational basis for calculation
of the LHSF of the corresponding symmetry. The
same set of v and j quantum numbers is used for the
J=1 calculations; in addition, making £2 equal 10 both
0 and | produces a variational basis set of 292 func-
tions. From these. a primitive basis set is generated
consisting of 64 A, 76 A, and 140 E primitives for
the even parity /7=0 (which for /=1 contains only

440 0 009-2614/89/% 03.50 © Elsevier Science Publishers B.V.
( North-Holland Physics Publishing Division )
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=1 functions) and another with 140 A,, 152 A,
and 292 E primiuves for the odd parity [7=1 (con-
taining both =0 and =1 functions).

The J=1 scattering results on the PK2 surface were
obtained from 31 A}, 31 A., and 64 E LHSF for [7=0
and 67 A, 62 A,, and 133 E LHSF for [T=1. The
calculation of each J=1 LHSF and all associated
matrices used in the logarithmic derivative propa-
gation [13] required an average of 13.1 s on an SCS-
40 minisupercomputer, as compared to 6.9 s for J=0.
Similarly, the J=1 scattering calculations for the
LSTH surface used 32 A,, 32 A, and 64 E LHSF for
IT=0and 74 A,, 70 A,, and 127 E LHSF for /T=1,
with an average time of 12.5 s per LHSF, compared
10 6.6 s for J=0. The corresponding maximum de-
viation from flux conservation is never greater than
1% for the PK2 and 2% for the LSTH surface.

3. Results and discussion

From our irreducible representation scattering
matrices we have calculated distinguishable atom
J=1 state-to-state reaction probabilities over the en-
ergy range 0.3 to 1.73 eV for the PK2 potential en-
ergy surface. The coupled channel (CC) results pub-
lished by Schatz at 0.5 and 0.6 eV {8] and ours agree
to within [0%, which is reasonabie since he used a
much smaiier basis set than ours. Schatz also made
calculations based on the coupled states (CS) ap-
proximation using a larger basis set than in this CC
method. These CS probabilities are closer 1o our
highly converged values than the CC ones. indicat-
ing that the CS approximation for his larger basis set
1s more accurate than the CC results using his smaller
basis set. Qur J=1 results agree with the LSTH cal-
culations of Zhang and Miller [11] a1 1.14 eV to
about 2% or better.

We performed lifetime matrix analysis {3.7.14] of
each of the matnces $ /77 for '=A,, A, E, I7=0, 1,
and J=0, 1. We label the resonances obtained by the
notation appropnate for vibrational states of linear
triatomic molecules, (v,, v¥, v3), where v,. v;, and vy
denote respectively the quantum numbers for the
symmetric, bend and asvmmetric vibrations and X
is the quantum number of the vibraiional angular
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momentum [15]*'. For the resonance state, vy, t
and v, denote approximate constants of the motion:
their values are chosen on the basis of the energy
spacing of the resonances. In the present paper. as
well as in all previous ones using this labeling. 1t has
been customary to set v3=0 [3,16.17], implying that
such resonances have no asymmetnc stretch char-
acter. However, modeling of collinear Hj resonances
(for which only v, and v, are defined ) has shown that
they may have significant asymmetric as .wei, as
symmetric stretch character, The vibrationally adi-
abatic model suggests that the lowest collinear H,
resonance be assigned the quantum numbers v, =1,
v3=0 [18], whereas the hyperspherically adiabatic
model leads to the assignment v, =0, v,=2 [19,20].
corresponding 1o the second excited state of the
asymmetric stretch and asymptotically correlating to
the v=1 state of the isolated diatom. Therefore. the
nodal structures of the corresponding model wave-
functions are completely different, and neither should
be assumed correct without further comparison with
the accurate resonance wavefunction. The assign-
ment v3=0 used in this paper corresponds to a vi-
brationally adiabatic description, but is a matter of
notation rather than of physical validity.

Lifetime matrix analyses of the J=0 scattering
matrices for the PK2 surface were previously per-
formed np tc 1.6 eV using the FE method for cal-
culating the LHSF [3]. They were recalculated using
the variauonal LHSF approach, and the results are
comparable. The resonant time delays and reso-
nance positions found for scattering matrices gen-
erated from both FE and variational LHSF are listed
in table 1; the lifetime matrix eigenvalues for the cur-
rent variational LHSF calculation are plotted versus
energy in fig. 1. The main difference between the two
calculations s the appearance of two weak reso-

*' In a previous paper [3] we used £ to denote the vibrational
angular momentum quantum number. 1n analogy 10 the nota-
tion of refs. [16.17). However, we have also used £2 [1.3] 10
denote the quantum number for the component of the sys-
tem’s total angular momentum along the direction of the vec-
tor which connects the center of mass of a pair of the system’s
atoms to the third atom (and asymptotically corresponds to
the helicity rotational quantum nuher). Since these two an-
gular momentum components are in geneial distinct, we will
for clanity use the symbol K'in this paper to denote the first one
(i.c. the vibrational angular momentum component}, while
continuing to use §2 for the second.

aar .
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Table |
Resonance charactenistics for PK2 *’ potenual energy surface
p
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J Assignment Current resuits FE®™ RPO

hifetume (fs) E (eV)
Elev) Iifeume tf5) E(eV)

0,1 (0.0°.0) 0.61 7 061 0.655

i (0.1'.0) 0.74 6

C, 1 (0.2°.0) 0.85 3 0.847 0.934

0,1 (1,0°,0) 0.97 4] 0.971 42 0.975

1 (0.3'.0) 0.97 6

0,1 (0,4%0) 1.07 2

i (1,1.0) 1.08 18

0,1 (1.2°,0) 117 7 1.170 1.178

0,1 (2,0°0) 1.38 46 1.382 50 1.366

1 (2. 10 1.47 35

0 ? 1.51 7 1.542

0,1 (2,2°,0) 1.56 20 1.56

1 (2,3'.0) 1.65 S

*' Ref. [4].
' Finite element results. ref. (3],
¢! Resonant pertodic orbit results, ref. {21].

nances at energies of 1.07 and 1.51 eV, which were
not previously reported. The first is assigned the la-
bel (0, 4°, 0); however. the resonance at 1.51 eV, in-
dicated by an unlabeled arrow in fig. 1, does not seem
to correspond to the energy of an expected state of
metastable linear H, and as such will remain unla-
beled. The lifetimes of these resonances vary greatly;
the long-lived ones at 0.969, 1.381, and 1.56 eV cor-
respond to Feshbach resonances and have lifetimes
of 41, 46, and 20 fs, respectively, while the weaker
peaks correspond 10 shape or barrier resonances [21]
and have an average lifetime of 6 fs. In both calcu-
lations, the A, and E symmetries show the same res-
onar..c energies and lifetimes, with more numerical
noise present in the E caiculation due to the larger
number of states, and no resonance structure is found
in the A, symmetry.

The J=0 LSTH surface resonance energy and life-
times from the current calculations and the previous
FE calculations are listed 1n 1able 2. and the present
lifetime matrix eigenvalues are displayed in fig. 2.
The assignment of these states is the same as for those
found for the PK2 surface. In addition, there is a high
energy resonance at 1.72 eV, which corresponds to
(2, 4% 0); however, the lifetime analysis near this
energy is obscured " numerical noise, 56 this encrgy
is less reliable than the other resonance energies.
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The energy spacings of each of the ¢, =0, t»=2 and
v.=4 series of resonances suggest that a resonance
with assignment (1, 4%, 0) should exist, for the LSTH
surface, at the position indicated in fig. 2. So far, this
resonance has not been found. By analogy, an cquiv-
alent resonance should exist (but is not found) for
PK2, as indicated in fig. 1. The latter cannot cor-
respond to the unlabeled resonance at 1.51 eV, be-
cause of the insufficiently large spacing between the
(0, 4° 0) and (2, 4° 0) resonances for the LSTH
surface.

The J=1 partial wave includes resonance states
with K=1 in addition to K=0. Interestingly, the life-
time matrix analysis of the J= !, [T=1, A, symme1ry
yields the same resonance energies as those found for
the J=0, A, symmetry for both the PK2 and LSTH
surfaces, with one exception; we therefore interpret
these resonances as K=0 states. The exception is that
there is no visible A, resonance at 1.51 eV for either
surface, but it is possibie that numerical noise inter-
feres with its detection. The absence of a discernable
energy shift due to the increase in J is consistent with
the approximate rotational constants for linear H,
{23]; estimates of the magnitude of the shift in going
from J=0 to J=1 vields a value of about 0.002 eV,
which is small compared with the accuracy to which
we have determined the resonance energies.
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Fig. 1. Resonant lifeume as a function of energy for the A, sym-
metry of the /=0 partiai wave of H+ H, (PK2 surface}. The ab-
cissa E is the total energy and the ordinate represents the reso-
nant cigenvalue of the collision lifetime matrix. The vertical
arrows on the upper abeissa denote the energies of the H. (v, /)
states. The length of these arrows decreases as v spans the values
0 through 3. The numbers 0, 5, and 10 define a labeling for the
value of j. The energy grid used for these lifetime caiculations was
0.001 eV in the neighborhood of the two strongest resonances
(1.0°0) and (2,0°0) and 0.0l eV elsewhere. The labeling of
the resonances at the top of the panel is described in the text. The
downward pointing uniabeled vertical arrow at 1.51 eV indicates
an unassigned resonance. The downward pointing arrow labeied
(1, 4% 0) corresponds to a resonance expected on the basis of en-
eTgy spacings (see text) but not found in the present calculations.

Additional resonances appear in the J=1, [7T=1,
A, and J=1, IT=0, A, partial waves. For the PK2
surface, they occur at 0.74,0.97, 1.08, 1.47, and 1.65
eV (fig. 3). The assignments and lifetimes are given
in table 1. The v, and v, assignments are done on the
basis of the energy spacings, and the K assignment
on the basis of the restrictions imposed by the values
of J and v, and the evenness of v, [3,25]. The cor-
responding values for the LSTH surface are listed in
table 2 and displayed in fig. 4; they have energies of
0.77, 1.00, 1.09, 1.22, 1.45, and 1.63 eV. The strong
resonances (1, 1',0), (2,1',0) and (2, 3', 0) were
found previously with approximate modeis using the
LSTH surface [16,17,23,24); these results are also
given in table 2 for comparison. The remaining peaks
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in the lifetime analysis are weak and have not been
reported before. No resonances were found for the
J=1, IT=0, A, symmetry on either surface. All res-
onances seen in the J=1 A, and A, symmetries with
a particular panty are also seen in the J=1 E sym-
metry of the same panty. Again, the E results are of
lower accuracy because of the larger number of states.

Calculations for collinear triatomic systems have
previously given strong indications [19] that the
characteristics of resonance spectra are closely re-
lated to the geometry of potential energy surfaces in
the strong interaction region of configuraticn space,
and that it may be possible to infer such geometry
from experimentally observed resonance spectra. We
will now try to obtain such relation with the /=0, |
resonance at hand. Examination of the energy spac-
ings between consecutive resonances in each of the
series (0, v¥, 0), (1, v¥, 0), and (2, v%. 0) shows
them to be nearly constant with respect to v, and ¢,
and having global averages of 0.104+0.013 and
0.103+0.015 eV for the LSTH and PK2 surfaces, re-
spectively. This correlates very well with the spac-
ings of 0.11 and 0.12 eV predicted from the corre-
sponding bending force constants [6,26] and a
harmonic model.

Examining the senies (v,, 0%, 0) for v, =0. 1, 2 fur-
nishes consecutive resonance energy differences of
0.33and 0.38 ¢V for LSTH and 0.36 and 0.41 eV for
PK2, whereas a harmonic model based on the sym-
metric stretch force constant predicts constant spac-
ing of 0.26 ¢V for LSTH and 0.47 eV for PK2. Not
surprisingly, a symmetric stretch static model does
not fit the resonance spectra well.

The energy shift between the (0, 0° 0) LSTH and
PK2 resonances should depend in part on the dif-
ference of 0.029 eV between the corresponding sad-
dle point energies {4,6]. The observed downward
shift of 0.04 eV can be totally accounted for by the
difference in zero point bend energies and saddle
point heights; this method of accounting does not
seem to be physically reasonable, since the difference
in the symmetric and/or asymmetnic stretching
characteristics of the potential energy surfaces should
also contribute to this shift.

We conclude that bending mode force constants in
the saddle point region of this system can easily be
obtained from the corresponding resonance level
spacings, but that static characteristics of the sur-
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Table 2
Resonance charactenstics for LSTH *' potential energy surface
J Assignment Current results FE® RPO®’ SCSA ¢ CEQB*®) cs”
hifetime (fs) E (eV) E (eV) E(eV) E (eV)
E (eV) lifetime ({s) E (eV)
0.1 (C, 0% 0) 0.65 1t 0.65 11
1 (0,1',0) 0.77 9 :
0,1 (0,2%0) 0.88 10 0.880 10
0.1 (1,0°0) 0.98 28 0.981 8 0.981 0.98 0.97
i (0,3'.0) 1.00 8
i (1,1%,0) 1.09 29 1.085 1.09 1.09 1.10
0,1 (0, 4%,0) 1.10 5
0,1 (1,20.0) 1.19 8 1.191 1.186 1.20 1.20
i (0.5'.0) 1.22 6
0.1 (2.0°0) 1.36 30 1.364 31 1.374 1.24 1.35
1 (2,1.0) 1.45 38 1.461 1.35
0 ? 1.50 4
0.1 (2,2°,0) 1.54 12 1.55+£0.03 1.545 1.46
1 (2,3.0) 1.63 8 1.641
0.1 (2,4%0) 1.72% 5 1.734
*' Refs. [5.6]. ° Ref. [22)
¢! Resonant periodic orbit results, ref. {23].
4 Small curvature semiclassical adiabatic results, ref. (24].
¢! Collinear exact quantum with adiabatic bend results, ref. ({7].
1 Coupled state results, ref. [16].
) This resonance energy is less accurate than the rest. See text for details.
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Fig. 2. Same as fig. | but for the LSTH surface; a constant energy

gnd of 0.01 eV was used throughout.

444

83

The abcissa and ordinate are as given in fig }; the energy gnd is
0.01 ¢V throughout. The downward pointing labeled arrows have
similar meanings to the ones in figs. | and 2.
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Fig. 4. Same as fig. 3 but for the LSTH surface.

Table 3
Empirical resonance selection ~ules

J n K A, A E

0 0 0 yes no ves
i Q { no yes ves
1 t 0 no yes yes
1 { 1 ves no yes

faces are inadequate {0 understand the streich mo-
tion features of the resonance spectra.

The presence or absence of resonances in each of
the partial waves examined is summarized in table
3. An empirical selection rule, satisfied by the results
of that table, is that resonances are present in the
I'=E symmetry for all allowed values of K, and in
I'=A,, A, when the quantity (—1)7*% equals X,
where Xr=1 (~1) for '=A, (A,). This result can
be derived from a simple model. According to it, no
resonances in the J, /7, I" partia) wave can exist if the
scattering wavefunction vanishes identically for all
configurations of the system in the vicinity of the
saddle point for which the distances of the two end
atoms to the central atom are equal. This is physi-
cally reasonable since we expect the resonance scat-
tering wavefunction to have large density for sym-
metnc displacements of the system around the saddle
point.
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Let us now show how this model leads to the em-
pirical rule just mentioned. Let ABC be a linear tn-
atom for which atoms A and C are identical. Con-
sider a bent configuration of this system in which the
distances AB and BC are equal. Let X be the eigen-
value of the operator which permutes A and C, which
is equal to 1 for '=A, and to ~1 for '=A,. This
permutation is equivalent to the product of the in-
version operator and a rotation by x around the sys-
tem's principle axis of inertia, and rherefore appli-
cation of these operations multiplies the triatom
wavefunction by (—1)7 and (—1)%, respectively.
Since the wavefunction of the initial symmetric con-
figuration cannot by assumption vanish identically
if a resonance is to exist, we must have
Xr=(-1)7*% QED. For a system in which all three
atoms are identical, neither of the two degenerate E
symmetry wavefunctions is necessarily even or odd
with respect to two-atom permutations. and when
one of these wavefunctions is subjected to this per-
mutation the result is a linear combination of both;
thus the E symmetry should display the resonances
found in both the A, and A, symmetry results of the
same parity, as we have indeed observed.

The existence of resonances seems also to require
the presence of minima in adiabatic curves as a func-
tion of an appropriate reaction coordinate [18-
20,27-33]. In the particular case of hyperspherical
coordinates, one examines LHSF energies including
adiabatic correction terms as a function of p; these
correction terms are large for the H+F, system. Plots
of LSHF energies for the /=0, 1 partial waves of each
parity and symmetry do indeed show minima (even
without corrections) for the symmetry-parity com-
binations which support resonances, but not for those
combinations which have shown no resonances. A
physical interpretation of the resonances depends. in
addition to the symmetry arguments given above, on
an explanation as to why these particular combina-
uions of irreducible representation and inversion
parity yield adiabatic energy versus p curves with
minima.

4. Summary

Application of the variational method for calcu-
lation of LHSF to the J=1 partial wave of H+H,
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vields results of sufficien: quality for lifetime matnx
analysis to give accurate resonance energies and life-
times. The dependence of resonance energies on the
bending mode characteristics of the system’s poten-
tial energy surface is explained by a simple harmonic
model, and the existence of patterns of resonant be-
havior in terms of the irreducible representations of
the P, permutation group is interpreted using a sim-
ple physical picture.
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CALCULATION Or BOUND ROVIBRATIONAL STATES
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The bound rovibrational states of the upper manifold of the two lowest electronic states of H, have been calculated using
vanationai and hy perspherical coordinate propagation methods. neglecting in both the coupling between those electronic states.
Inclusion of the effect of the geometnc phase induced by the conical intersection between those manifolds {sometimes referred
10 as the molecular Aharonov-Bohm effect) 1s shown to change significantly the number. the energies and the wavefuncuions of
those bound rovibrational states. Quantum numbers are defined which permit a physical undersianding of these changes.

1. Introduction

The Rydberg spectrum of the H, system has been extensively studied by Herzberg and coworkers [1]. Of
particular interest is the experimental discovery of a long-lived metastable state [1-3]. On the theoretical side.
investigations have been restricted to the calculation of electronic energies for a few nuclear geometries [4-
7]. but the complete electronic potential energy surfaces, necessary to investigate the rovibrational structures
of the spectrum and 1o compute accurately the lifetimes of the excited states, are available only for the ground
and the first electronically excited states (DMBE potential [8]). In the equilateral triangular nuclear config-
uration, these two electronic states are degenerate and their electronic wavefunctions belong to the “E" rep-
resentation of the Dy, group. Displacement away from the equilateral tnangular geometry lifts this degeneracy
and generates a conical intersection between two Jahn-Teller sheets [9]. Whereas the lower sheet is responsible
for H+ H, reaciive scattering below about 3 eV [10-17], the upper one supports rovibrational quasi-bound
states, which can predissociate by rovibronic coupling to the ground electronic state [18,19].

In this Letter. we assume that the upper Jahn-Teiler sheet is decoupled from the lower one and therefore
supports bound rovibrational states. We compare two methods of computing these states on the DMBE excited
potential energy surface. One is the variational method of Tennvson and Sutcliffe {20.21] (referred 10 as TS
method in this paper) The other, described in section 2, is a hyperspherical propagation method which uses
modified Whitten-Smith coordinates [22.23] and derives from reactive scattering theory [10-13.24]. It gen-
eralizes earlier molecular bound state calculations limited to J=0 [25.26]. We show in section 3 that the hy-
perspherical method 1s very appropriate to the H, system because:

- [t allows easy inclusion of the full permutation symmetries of the three identical nuclel, whereas the TS
method only aliows inclusion of the permutation symmetrics of two identical atoms.

- It permits inclusion of the effect of the conical intersection on the phase of the nuclear wavefunction (27~
29]. This effect results from the sign change of the electronic wavefunction as one follows a closed path in the
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nuclear configuration space around the line along which the two “E’ electronic states conically intersect. It cor-
responds to a particular case of Berry's geometric phase {30] which has been experimentally observed in the
Na, system [31]. Since the total electronuclear wavefunction is continuous and single valued. there has to be
a compensating sign change in the nuclear part of the wavefunction. which can be included casily in the hy-
perspherical method. The effect of the conical intersection on the phase of the nuclear wavefunction is some-
times referred 10 as the molecular Aharonov-Bohm effect {28.29,32], but we will use the simpler name “geo-
metric phase” in the following.

2. Hyperspherical method

Let Ag, Ag. A, be the atoms of the system, and (4, ¥, k) be any cyclic permutation of (a, B, v). . is the mass-
scaled [33) internuclear vector for the diatom A,A, and R, the mass-scaled vector of A; with respect to the
center of mass of A,A,. The hyperspherical method uses the hyperradius p= (R? +r3)'/? 10 describe the global
size of the triatomic system and a set of five angles { to describe its shape and orientation in space [10-
13,22.23,33.34]. In this paper, we will neglect all spin-orbit and spin-spin interactions. In the Born-Oppen-
heimer approximation, the electronuclear wavefunction can be written as a product of the electronic part y..
which we choose to be real. and the nuclear part. The latter can be factored into a nuclear spin part and a
spacial part w7, J is the total nuclear angular momentum quantum number. A its projection onto a lab-
oratory-fixed axis, /7 the parity with respect to the inversion of nuclear coordinates and [ the irreducible rep-
resentation of the nuclear permutation group (P,) to which ¥/¥/7 the electronuclear wavetunction excluding
the nuclear spin part. belongs:

WM = I (0, §) e (4e: 0. §) (1)
g. refers to the set of all. spacial and spin, electronic coordinates. w’*"" is an eigenfunction of the nuclear
motion Hamiltonian:
h? d A3
=—— -39 s + ——+1(n3). (2)

21 " » T 2w’

where 4 is the three-body reduced mass, 4 the grand canonical angular momentum and !” the Born-Oppen-
heimer electronic potential energy function. The nuclear function "7 is expanded in a basis of local hy-
perspherical surface functions (LHSF) @/¥7:

1
W.wnr(p’; = bT/i Z F:nr(p) ¢'.‘l.wﬂl'(,:;p) . (3a)

The LHSF are defined as the eigenfunctions of the fixed hyperradius nuclear Hamiltonian:

(7/:2:7 +1(p. :)) DM pr=€eT(p) OM(Sp) . (3b)
The coefficients F2 1n eq. (3a) are solutions of a set of coupled differential equations in p. which we solve
using piece-wise diabatic bases [10.34]. For assumed values of the rovibrational energies. the solutions are
propagated forward and backward from small and large p values where they have negligible amplitudes. The
energy is scanned iteratively until the quantization condition that the forward and backward solutions match
smoothly at an intermediate value of p 1s reached.

In the present study. we use the Whitten-Smith [22] definition of the five angular coordinates , as modified
by Johnson {23). Three Euler angles (afy) specify the orientation of the body frame in space. The axes of
this frame lie along the principle axes of inertia: the Z axis is parallel to r, X R, and the .\  axis is associated 10

)
e
™
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the smallest moment of inertia and is oriented such that r;x> 0. Two angles (6, ¢;) describe the shape of the
molecular triangle and are defined by

r,y=pcos(n/4~-60/2)sin(p,:/2) . (4a)
riy==psin(x/4—6/2)cos(p;/2). (4b)
Rixy=pcos(n/4-6/2)cos(¢./2). (4c)
Riy=psin(n/4-6/2)sin(p,/2) . (4d)

The ranges for these angles are 0 <6< n/2 and 0< ¢; < 2n. =0 corresponds 10 the symmetric top configuration
(an equilateral triangle for three identical particles) in which the principal axes of inertia X and Y are undefined.
The grand canonical angular momentum is given cxplicitly by [22,23]

1 a 1 & 4ificos@ 2(.72 )y B3 sm0

2. _4Ah2
4 h (sm 2636 sin 26 sm oo¢2) t ~5in0 sin%6 T2 35 aqu coszﬁ sinzﬂ cos?6

(JL +J2),
(5)

where J; is the body-fixed Z component of the total angular momentum J, and J. =J, +iJy.
Eq. (3b) is solved variationally by expansion in a body-ﬁxed basis xJ4X built with products of simple an-
alytical functions [13]:

JMK

XK =exp(in,9:) foe(0) Di(afy) . (6)

D« is a Wigner rotation matrix [35] and n, is integer or half of an odd integer. f,,(6) are simple trigonometric
functions, such that the LHSF have correct behaviors near the singularities of the kinetic energy operator =0
and n/2. In practice, the /., can be chosen as the functions cos(n,0) or sin(ng), with n, integer or half odd
integer, in terms of which the hyperspherical harmonics (whose § dependence is usually written as a polynomial
in cos §) can be written (eq. (31) in ref. [36], eqs. (20)-(23) in ref. [37] or eq. (32) in ref. {38]).

We now focus attention on the special case of three identical nuclei and we describe how to build electro-
nuclear wavefunctions ¥/ which are bases for the irreducible representations of the permutation group of
the nucler (Py). The operations of this group correspond to simple changes in ¢; (which are related to the
isomorphism between P; and C,,) as indicated in 1able 1. If ¢, (= 1) is the symmetry of the electronic
wavefunction with respect to the v+« permutation, then the linear combinations defined by

JOMK = g IMK |+ € (= 1) TR I (M)

give electronuclear wavefunctions /7 (eq. (1)) with the €2 (= % 1) symmetry with respect to the ve—x
permutation.

If theie is no conical intersection between electronic states, the electronic wavefunction y.(q.. 2, {) belongs
1o a one-dimensional represent>tion of the nuclear permutation group (A, for ¢, =+1, or A; for €;, =~1).
Table 2 indicates how the total angular momentum, the parity and the irreducible representation 7 of P, to
which P/MI7 belongs determines the set of quantum numbers n,.

Table |
Effect of permutations of the nuclei on the angle ¢,

Permutation Pie® P Poui®’ P P P

value of 9, ' o @.+2x/3 @.+4x/3 2r~9, 2x/3-9; 4n/3~9,

*' P, <15 theidentity permutation. ' P, refers to the cyclic permutation Jox- xi. ' P, refers to the cyclic permutation /.vk —xiv.
4! P, refers to the pairwise permutation of nucle1 t and ;.
*’ The changes in @, are true moduio 2x. since @, must remain 1 the range (0, 2r].
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Table 2
Choice of n, for each parity /T and irreducible representation " of the nuclear permutation group P,

Hi re n,

even, vithout phase *’ A /A, Iim®
odd, with phase ®’ E Imzi @
even, with phase ® AJA, Im+i®
odd, without phase * E Imz} @

* Without consideration of the geometric phase due to the conical intersection.

*) With consideration of the geometric phase due 10 the conical intersection.

) I'is the irreducible representation of Py to which ¥/ (see text and eq. (1)) belongs.
% m is a non-negative integer.

If there is a conical intersecticn between electronic states for equilateral triangular configurations of the nu-
clei and if the geometric phase is taken into account, one can show [27-29] that in the vicinity of the conical
intersection (8=0), the ¢; dependence of the Born-Oppenheimer electronic wavefunction is given by

Ye=cos(9:/2) we' —sin(@:/2) wE (€.=~1), (8a)
or ,
Ve xCos(0,/2) wE +sin(@:/2) wE (€.=+1), (8b)

where (wE', wE) are two degenerate p-dependent but ¢;-independent states at =0 which form a basis for the
E irreducible representation of Py (w5 being symmetric for the v—x permutation and w®? antisymmetric).
Although permutations of the nuclei can only change the sign of y,, these Born-Oppenheimer electronic wave-
functions do not belong to a one-dimensional irreducible representation of P, and are discontinuous in the
internal configuration space {39] in the plane ¢, =0. However, continuous electronuclear wavefunctions which
belong to irreducible representations of P; can be built if the new set of n, indicated in table 2 is used for the
nuclear wavefunctions.

3. Results

Fig. 1 illustiawes the main features of the electronic potential in the internal configuration space defined in

Fig. 1. Plot of the DMBE excited electronic potential ¥ in the
internal configuration space defined in ref. [39] along the plane
o=n/2,3x/2 (i.¢. Z;=0). In this space. the coordinates (p. 6. ¢,)
defined in the text correspond 1o spherical polar coordinates with
respect to the Y, axis of the figure. This axis is also the one along
which the excited DiYIBE potential conically intersects the iower
one. The equipotentials are equally spaced by 0.25 eV in the range
{3, 5eV]. The contours for }'=3 and 4 eV are specifically indi-
cated. The distances on the X, and Y, axes are in bohr. Along
constant Y, lines, }"shows the usual “V*-shaped behaviour char-
acteristic of conical intersections. The approximate constancy of
the X; spacing between the equipotentials in this figure is 2 man-
ifestation of this linear dependence. Equipotentials on cuts along
other planes containing the Y; axis look, in the vicinity of this
X axis, very similar to the ones displaved in this figure. i.e. } hasa
2. -1, 0. 1. 2. 3. local nearly cylindrical symmetry around Y,.

i
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ref. [19]. [1 has a quasi-cvlindrical symmetry around the Y, axis of that figure (6=0) which corresponds to
the axis of the conical intersection and to the local minima on the fixed p spheres. It has an absolute minimum
for p=2.6 bohr. =0 corresponding to an energy of 2.72 eV with respect to the bottom of the ground electronic
state H. well. In the vicinity of that minimum. the potential increases steeply and almost linearly as a function
of 8, but more slowly as a funcuion of p.

Table 3 compares the rovibrational energy levels for this potential obtained by the hyperspherical method
and the.TS variational method without consideration of the geometric phase.

The hyperspherical method uses 20 71, values, between 4 (A, and A; symmetry) and 8 (E symmetry) {n,|
values (eqs. (6) and (7)), between 6 (A, or A, symmetry) and 12 (E symmetry) LHSF (eq. (3)). The LHSF
have been computedd at typically 50 p values between 1.5 and 6.5 bohr. The convergence of the LHSF and
rovibrational energies is of the order of 10~*eV. The compactness of the hyperspherical expansion comes from* -
the quasi-cylindrical symmetry of the potential around the 8=0 line (small number of n, values) and from
the steep increase of the potential as a function of 8 (small number of LHSF).

The TS method uses a body frame with its Z axis in the direction of R; 2rd computes the bound states vari-
ationally by expansion on a product basis of two Morse-like functions (in R; and r;) for the radial part and
of associated Legendre functions for the angular part. The optimized parameters of the Morse potential which
we chose are indicated in tabie 4. Nearly 1400 such product functions have been used for each J, each inversion
panity /Tand each of the two symmetries for the permutation of the two identical atoms v and «. This unusually
large number of basis functions (only 880 such functions were used to get fully converged resuits on Hy in
ref. {4071} is required by the shape of the potential and the sudden change of its derivative in the vicinity of
the conical intersection axis. Table 3 shows that the convergence of the energy levels is always worse with the
TS method than with the hyperspherical method. The quality of the TS calculation for /=1 odd panity is not

Table 3
Bound state energies without consideration of the geometric phase *’
YA J=0° J=1even parity < J=1 odd parity
000 317210 A, 3.7218 3.7283 A, 3.7294 3.7264 E 3.7276
100 39216 A, 3.9223 39284 A, 3.9297 39266 E 3.9281
200 4.1067 A, 4.1073 41130 A, 41145 41114 E 4.1131
joo 42759 A, 4.2766 42817 A, 4.2849 42802 E 4.2831
400 44282 A, 4.4301 44336 A, 4.4386 44322 E 4.4398
500 4.5621 A, 4.5734 4.5665 A, 4.5803 45656 E 4.5894
01! 42886 E 4.2886 42955 E 4.2956 4,297} A, 4.2975
4.2969 A, 42972
42904 E 4.2908
| 4.4533 E 4.4533 44596 E 4.4598 44610 A, 4.4618

"4.4608 A, 44615

44550 E 44557

211 4.5980 E 4.5983 4.6036 E 4.6048 4.6049 A, 4.6083
46047 A, 4.6093

45996 E  4.6028

It 47212 E 4.7261 E 4.7349 4.7272 A, 4.7370
47270 A, 4.7355
47225 E

020 46806 A, 46813 4.6871 A, 4.6893 46842 E 4.6878

*! The energy is in ¢V and its origin corresponds to the botiom of the ground electronic state of the isolated H; molecule.

®' Quantumn numbers used to classify the states (see text)

¢! The left column gives the hypersphericai method results and the right column the TS method results. The central column gives the
irreducible representation of the permutation group of the nuclei 1o which the spacial pan of the nuclear wavefunction belongs.
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Table 4
Optimized parameters of the Morse-like functions in R, and r,

D, (au) *' w, (aut *’ ro(au) *’
J=0 0.230 ® 0.0130°% .96
J=1 0.262> 0.0100® 2.01®
J=0 0.262¢ 0.0122¢ 2.09 <!
J=1 0.232¢ 0.0102¢ 2.32¢

*"These parameters are defined in egs. (19) and (20) of ref. {20].
® Parameters for the Morse-like functions in R,.
) Parameters for the Morse-like functions in 7,

as good as the TS calculation for J=0 since the global size of the basis has been kept constant instead of being
doubled. For a given total angular momentum and parity, the quality of the TS results decreases as the energy
increases, and in particular, states diffuse along p (corresponding to high v, values, see below) are poorly rep-
resented. This suggests that different sets of optimized parameters of the Morse-like functions should be used
for compact and diffuse states.

The hyperspherical method can be compared with the TS method from computational and formal points of
view:

- The hyperspher’cal method requires less memory: smaller basis sets can be used for the variational solution
of the two-dimensional LHSF equation (see eq. (3b)) than for the three-dimensional variational solution of
the bound states in the TS method. However, the hyperspherical method required about two times more CPU
time than the TS method, since the computation of the LHSF has to be repeated many times, but did not exceed
40 min of total CPU time on an SCS-40 for a typical run J=0, A, plus E permutation symmetries. In addition,
the hyperspherical method does not involve adjustable parameters which have to be optimized in the TS method.

- The bases used in the TS method to expand the bound state wavefunctions do not have the P, permutation
symmetry, but only the P, symmetry of two identical nuclei. As a result, plots of the bound state wavefunctions
show that, even in the J=0 case where the energy convergence is belter than 10-3 eV, the shape of the TS
wavefunctions do not exhib:t the correct symmetry properties of a system of three identical particles, whereas
they are imbedded in the LHSF basis used in the hyperspherical method. Moreover, the TS method does not

48
! -2elye0
4 1 'é' 6'
46- 5 =% 9_v, 7t
L __3__ ; w20 R
ik - s % % Fig. 2. Rovibronic energy levels associated to the first electroni-
—_— v, 4 caily excited state of Hy. The full lines are the levels including the
> Fol3L %0 | effect of the geometnc phase while the dashed ones exclude that
2 a2k 1 v effect. The quantum numbers ¢, 1; and / are defined in the text.
w 2 v, 1 The ongin for the energy scale is the bottom of the isolated ground
ol electronic H; potential energy curve, These leveis are forthe /=0
cok vy20Q states. but the /=1 levels are nearly degenerate with them. the
3 ;- ;_ splitting being of the order of 10-2 eV. Their nuclear permuta-
S v. / tion symmetries depend on J and on the panity /7, as well as
28k 2 whether the geometric phase is or is not included (see tables 3
vis0 and 5). There are two levels for each of the sets of quantum num-
L '6'6' bers (1, =0. v;=/=%) and (v, =), 1;=/=1), which would be de-
v. 1 generate if the poiential were exactly cylindrically symmetnic

around the Y, axis (se¢ text and fig. 1 ).

577"

91




.

Volume 166. number 5.6 CHEMICAL PHYSICS LETTERS 9 March 1990

Tabie 5

Hyperspencal method energy levels including the effect of the geometric phase *°

Ll J=0 J=1 even panty J=1 odd panty

04 40215 (F) 4.0286 (E) 4.0256 (A ®
4.0243 (A;)
4.0284 (E)

1 4.2049 (E) , 42114 (E) 4.2087 (A,) ¢
4.2076 (A;)
. 42113 (E)

S22 4.3710 (E) 4.3769 (E) 4.3744 (A) ¥
4.3734 (A;y)
4.3768 (E)

344 4.5189 (E) 4.5243 (E) 45220 (A) ¥
4.5210 (A;)
4.5241 (E)

a4y 4.6468 (E) 4.6517 (E) 4.6496 (A,) ¥
4.6487 (A,)
4.6515 (E)
0} 4.5005 (A) @ 4.5071 (A;) 4.5050 (E)
4.5700 (A,) 4.5768 (A,) ¢ 4.5733 (E)
134 4.6425 (A,) V- 4.6484 (A;) 4.6466 (E)
47177 (A;) 4.7237 (A) @ 4.7223 (E)

*! The energy 1s1n ¢V and its onigin corresponds to the bottom of the ground electronic state of the isnlated H; molecule.
®) The irreducible representations are the ones for the permutation group of the nuclei 10 which #/%" belongs.

¢’ Quantum numbers used to classify the states (see text).

4 Levels with A, symmetry are included for completeness, but are forbidden by the Pauli principle.

permit inclusion of the geometric phase due 1o the conical intersection whereas the hyperspherical method does.

Fig. 2 and table 5 show the important modifications of the bound rovibrational energies when the geometric
phase is included in the hyperspherical calculation. These changes can be understood if one defines quantum
numters to the bound states of tables 3 and § by modeling the nuclear wavefunction in the following way *':

- We retain a single term in the expansion of the bound states in the LHSF basis (eq. (3a)). This Born-
Oppenheimer-type approximation, also used to model reactive scattering resonances [24], is very accurate in
the present case where the frequency associated 1o the hyperspherical mode is smaller than those of the fixed-
p bending modes: the resulting bound state energies are shifted by less than 0.4 meV. This approximation sug-
gests that we define the quantum number v, associated with the hyperradial motion as the number of nodes
of the hyperradial function FZ7 (p) (eq. (3a)). This mode corresponds to the breathing normal mode 1n the
limit of small amplitude vibrations, but in the present case, it can have large amplitudes with an excitation as
large as v, =3 (table 3).

- We assume that the fixed-p bending vibration has small amplitude, so that the wavefunction is concentrated
near §=0. This approximation is reasonable due to the steep increase of the potential as a function of 6. It
suggests that we neglect the asymmetric top coupling elements in the kinetic energy (last term oieq. (5)) and
the ¢; dependence 1n the potential. The (non-symmetrized) LHSF can then be factored as

@M =exp(ingg;) 8..(8:p) Dix(a. B, 7) )

where g,,, is defined by

*" The actual energy values given in tabies 3 and § are calculated accurately: this model is used only 1o assign quantum numbers to these
levels.
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28 /(13 8 1) .. ® (.I(.I+l)—}1(‘ K\,,
[—ﬂp:<060039—01)+l(p.6)]g..,,<&p)-[e..,/(p)— —@—:——t;g)h gu(8.p) . (9b)

Eq. (9b) is the small-@ limit of eq. (3b) (see also eq. (5)). / quantizes the absolute value of the vibrational
angular momentum in a new body frame, which is an Eckart frame associated to the equilibrium position of
the nuclei in the equilateral triangular configuration {41], and is given by /=|a, - }K]. v, is the bending vi-
brational quantum number and is defined by analogy with the two-dimensional harmonic oscillator such that
the number of @ nodes of g, is $(vy~1) [42]. v, and [ are both integers when the geometric phase is not:
considered and become both half odd integers when it is taken into account. If the pote-tial were a harmonic
function of 6, the bound state energies would increase linearly with v, for each v, value. Although the potential
is an approximate linear function of 8, tables 3 and 5 indicate that the dependence of the bound state energies
on v is not far from linear. Therefore, as shown in fig. 2, each of the levels with the geometric phase (v, half
odd integer) is almost half way in energy between two consecutive ones without this phase (v; integer).

The quantum numbers v; and / defined above are closely related to the ones (n and ;) defined in ref. {31]
for the analysis of the geometric phase in the 2 2E’ Na, excited state. However, due to important differences
in the shapes of the electronic potentials (minimum for equilateral triangular configurations in the present
excited H; state, but for distorted configurations [9] in the Na; potential used in ref. [31]), the dependence
of the bound state energies on these quantum numbers is different in the two systems.

Due to the Pauli principle and to the symmetries of the nuclear spin wavefunction with respect to interchange
of the identical nuclei, the only allowed electronuclear wavefunctions ¥/ (eq. (1)) have A, or E nuclear
permutation symmetries, and they correspond 10 quartet and doublet nuclear spins respectively. The number
of such levels which satisfy the Pauli principle and their spin syn...ietries change significantly when the effect
of the geometric phase is included.

4. Conclusions

We have described a new hyperspherical propagation method for the calculation of bound rovibrational states.
This method is well adapted to systems of three identical particles, because it allows easy inclusion of the full
permutation symmetries of the system and of the effect of conical intersections on the phase of the nuclear
wavefunction.

We have shown that, in the case of the bound rovibrational states in the first electronically excited state of
H;, the geometric phase results in bending modes having half odd integer quantum numbers and in important
changes of the rovibrational state energies and of their symmetry properties. In the following paper [43], we
study the influence of the geometric phase on the chemical reaction which occurs in the ground electronic state
of H;.
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The effect on the H + H; reaction of the geometric phase induced by the conical intersection between the two lowest electronic
states of H, is investigated by an accurate quantum mechanical computation up to 2.6 eV above the botiom of the ground state
H; electronic potential well for the total angular momentum J=0. The main effects of the inclusion of the geometric phase are a
sign change in the reactive scattering matrix and modifications in the nuclear permutation symmetries of the calculated reso-
nances. Cross-sections to which non-reactive processes contribute (ortho—ortho and para—para) are significantly modified,

whereas the others (ortho—+para and para—ortho) are not.

1. Introduction

Most of the quantum theoretical studies on the
H(®S)+H,('Z; ) reaction have used the Born-Op-
penheimer approximation (see for instance refs. 1~
12]), and assumed that the reaction occurs on the
single ground electronic potential energy surface. This
approximation is expected to be quite accurate be-
low about 2.6 eV of total energy (with respect to the
bottom of the H, ('L} ) potential well) since this is
0.1 eV below the energy of the minimum of the first
excited potential.

However, a complication neglected in all the pre-
vious numerical studies [1-12] arises from the fact
that the ground electronic state conically intersects
the first excited one for equilateral triangular con-
figurations of the nuclei. There is a sign change of the
electronic wavefunction as one follows a closed path
in nuclear configuration space around the line of the
conical intersection. Since the total electronuclear
wavefunction is continuous and single-valued, there
has to be a compensating sign change in the nuclear
part of the wavefunction [13-16]. This sign change
is a particular case of Berry’s geometric phase [17]

' Permanent address: UPR 261 du CNRS, Observatoire de Paris,
92195 Meudon. France.
2 Contribution No. 8053.

and is sometimes referred to as the molecular Aha-
ronov-Bohm effect [14-16,18]. We use the expres-
sion “‘geometric phase™ in the rest of this paper. In
the preceding paper [19], referred to hereafter as I,
we have shown that this geometric phase completely
modifies the energy spectrum and the permutation
symmetry properties of the quasi-bound rovibra-
tional states of the first electronically excited state.
In this Letter, we study the effect of this geometric
phase on the chemical reaction which occurs on the
ground electronic potential energy surface.

It has been shown formally that, if the condition
that the wavefunction is zero in a certain region of
nuclear configuration space separating different ar-
rangement channels (see section 3) is fulfilled, the
only effect of the geometric phase is to produce an
interference between reactive and non-reactive scat-
tering amplitudes which is exactly the opposite 10
what it would be without consideration of the con-
ical intersection [16]. This condition is likely 10 be
satisfied for the low collision energies considered in
the earlier quantum studies of this reaction {1-3].
but a numerical study including the geometric phase
exactly is required to find out if this condition re-
mains valid at the higher energies reached using more
recent methods [4-12].

To include the geometric phase in the calculation
of the scattering states of the system, two distinct ap-

0009-2614/90/% 03.50 © Elsevier Science Publishers B.V. ( North-Holland ) 581
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proaches can be followed, both leading to the same
final result:

- One can use real electronic and nuclear wave-
functions with compensating sign changes and in-
clude the geometric phase simply by enforcing ap-
propriate boundary conditions and permutation
symmetries on the nuclear wavefunction.

- Alternatively, one can add extra complex phase
factors 10 the electronic and nuclear parts of the
wavefunction to enforce the continuity and single-
valuedness of each of them. These extra phases add
10 the nuclear Schrédinger equation a term formally
similar to a vector potential associated to a delta-
function magnetic field located on the conical inter-
section line [14,15]. Similarly to the Aharonov-
Bohm effect [18], this magnetic field modifies the
interference pattern between semi-classical trajec-
tories passing on opposite sides of the conical inter-
section line [14]. '

In this paper, we use the first of these two ap-
proaches to compute the quantum-mechanical three-
dimensional reactive scattering matrix for the total
angular momentum J=0 and for total energies be-
low 2.6 ¢V. We restrict the use of the second ap-
proach to the semi-classical interpretation of the re-
sults. Section 2 describes briefly how the proper
boundary conditions and symmetry properties of the
nuclear wavefunction can be easily incorporated in
a hyperspherical formalism which uses modified [20]
Whitten-Smith coordinates {21] to describe the
strong interaction of the three atoms and symme-
trized hyperspherical coordinates [4,22] derived
from Delves’ coordinates [23] to describe the initial
and final H+H, arrangements. In section 3, we de-
scribe in detail the effect of the geometric phase on
the scattering matrix and cross-sections for distin-
guishable and undistinguishable nuclei.

2. Method

We outline here the main features of the hyper-
spherical method, aiready described in 1. As in that
paper, we neglect spin-orbit and spin-spin interac-
tions throughout. In the Bohr-Oppenheimer ap-
proximation, the total wavefunction is a product of
electronic and nuclear parts. The latter is a product
of nuclear spin and nuclear spacial wavefunctions.
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The electronuclear wavefunction ¥/ excluding the
nuclear spin part (see eq. (1) in I) is chosen to be-
long 1o an irreducible representation I of the nuclear
permutation group (P,;) of H,. It is also labelled by
the total nuclear angular momentum quantum num-
ber J, its component M along a laboratory-fixed axis
and the nuclear parity /7. In the absence of the geo-
metric pHase, we make the usual assumption that the
electronic wavefunction belongs to the A, irreduc-
ible representation of the nuclear permutation group
(P;). In this case, the spacial part ¢’ of the nu-
clear wavefunction belongs to the same irreducible
representation I” as /" In the presence of the
geometric phase, although ¥’/ still belongs 10 the
irreducible representation I” of P;, the spacial part of
the nuclear wavefunction and the electronic wave-
function do not.

Let A, Ag, A, be the atoms of the system, and
(4, v, x) be any cyclic permutation of (a, B, ¥). r; is
the mass-scaled {23] internuclear vector for the di-
atom A,A, and R, the mass-scaled vector of A; with
respect to the center of mass of A,A.. In the hyper-
spherical method, the Hamiltonian is written in terms
of the hyperradius p=(R3+r})'/? which parame-
trizes the global size of the triatomic system and of
a set of five angles { which describe its shape and ori-
entation in space [4,5,10-12,19-24]:

h? 9,0 A2
H==—p3=p’=—+=—=—+V(p{). 1

In this expression, u is the three-body reduced mass,
A the grand-canonical angular momentum and V the
Bom-Oppenheimer electronic potential. The spacial
nuclear scattering wavefunction ¢’ is an eigen-
function of the nuclear Hamiltonian (eq. (1)) and
is expanded in a basis of local hyperspherical surface
functions (LHSF), M.

v (p,{)= P Z Fi(p) &M (Lp)y,  (2)

which are eigenfunctions of the fixed-hyperradius
Hamiltonian:

/iz
(Zup’

=& (p) ®MIT({;p) .

+V(p, C))¢.’.””'(C;p)

(3)

The coefficients F77" in eq. (2) are solutions of a




Volume 166, number 5.6

set of ordinary coupled differential equations in p.
which we solve using piece-wise diabatic bases
(4.25].

A solution of eq. (3) efficient for all values of the
hyperradius requires a division of the internal con-
figuration space into two regions:

- Region | corresponds to small values of the hy-
perradius for which the three atoms interact strongly.
We use the modified [20]) Whiiten-Smith {21 ] def-
inition of the five angular coordinates in this region:
three Euler angles define the orientation of the frame
of the principal axes of inertia in space, and the an-
gles (8, ¢;) specify the shape of the molecular tni-
angle. The LHSF are computed numerically by ex-
pansion in a product basis of simple trigonometric
functions in 8 and ¢, (see egs. (6) and (7) in I).
Table | indicates how to choose the functions of ¢,
to obtain electronuclear wavefunctions ¥ with
correct permutation symmetries, with and without
consideration of the geometric phase.

- Region [l corresponds to large values of the hy-
perradius for which the system has separated into an
atom and a diatom. The nuclear wavefunction is now
localized in the electronic potential valleys associ-
ated to each of the corresponding asymptotic ar-
rangements and its amplitude on the plateaux sep-
arating the arrangement channels is negligible. This
localization makes the expansion of the LHSF on the
delocalized product basis used in region I inefficient
and suggests the use of symmetrized hyperspherical
coordinates {4,22] instead. Therefore, (6, ¢,) are
replaced in region II by (w;, y,) defined by w,=
2arctan(r;/R;) and y,=arccos(R;-r./R,r;), each
in the range 0 to x. The LHSF are now expanded in
a product basis [4] of Legendre polynomials in cos y;

Table |
Basis in ¢, for expansion of the J=0 LHSF
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and vibrational-type functions in w;. Since product
bases associated to different arrangements do not
overlap in region 1I, the LHSF which include the
geometric phase differ from the ones which exclude
it only by simple changes in the signs of the pieces
of the wavefunction within each arrangement chan-
nel. The geometric phase can be included straight-
forwardly in region II since it does not change the
overlap and interaction matrices.

The LSTH Born-Oppenheimer electronic poten-
tial energy surface has been used [26). This surface
was chosen, rather than the DMBE {27] one used
for the bound state calculations of paper I, because
we already had accurate scattering results [4] for it
which served to test the validity of the new hyper-
spherical method described here. Recent resuits {7,9)
indicate that the use of the DMBE potential does not
significantly change the final scattering matrix re-
sults. The boundary between region I and region I1
was set at p=6 bohr. Surface functions were com-
puted at 20 values of p between 2 and 6 bohr in re-
gion I and 31 values of p between 6 and 12 bohr in
region II. The results shown below have been ob-
tained with 1156 product functions (34 for each of
the two angular coordinates 8 and ¢,) in region I and
156 product functions in region II, We verified that
the convergence of the scattering matrix elements
with respect to the size of the product basis was of
the order of 1% by comparing with a smaliler cal-
culation involving 900 product functions in region
I. 65 LHSF for A, and A, permutation symmetries
and 130 LHSF for E symmetries, with energies ac-
curate to within approximation 10~3 eV, have been
used in the expansion of the wavefunction. The uni-
tarity of the resulting scattering matrix was always

AI ) AZ a) El)
without phase ®’ cos(3ne;) sin(3ng;) cos{(3n1)g;]
with phase ©! cos{(3n+{)g,] sin{(3n+])e,] cos[(3nt {)gy)

*? lrreducible representation of the permutation group of the nuclei to which the electronuclear wavefunction ¥/~ b- ,ongs. We choose
the component of the E irreducible representation which is symmetric with respect to the A,~A, permutation (sce text). n is a non-

negative integer.

*’ Excluding consideration of the geometric phase. In this case, the electronic wavefunction is assumed to belcng 1o the A, irrecducible

representation of P,.
) Including consideration of the geometric phase.
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better than 1%. except for the E symmetry above 2.4
eV for a few columns and rows associated to highly
excited reactants or products.

3. Results

We first discuss the effect of the geometric phase
on the scattering matrices associated to electronu-
clear wavefunctions %%/ which are bases for ir-
reducible representations of the permutauon group
of the nuclei. Then, we switch to the scattering ma-
trices associated to distinguishable particles. This
representation affords a simple understanding of the
effect of the geometric phase on the H + H, reaction.

Figs. I and 2 show some transition probabilities
for the total angular momentum J=0 and for elec-
tronuclear wavefunctions ¥/ belonging to irre-
ducibie representations of P,. Comparison of both
rows of figs. 1 and 2 shows that the inclusion of the
geometric phase induces important changes in the
qualitative features of the transition probabilities as-
sociated 1o irreducible representations of the per-
mutation group, except for the transitions from para
to ortho (and ortho to para because of the micro-
scopic reversibility) hydrogen in the E irreducible
representation which remain almost unchanged (last
column of fig. 2).

One interesting modification due to the inclusion
of the geometric phase is the exchange of qualitative
features between the transition probabilities associ-
ated to the A, and A, irreducible representations (fig.
1). In particular, the resonances, which correspond
to A, wavefunctions without geometric phase, ap-
pear on the A, probabilities when this phase is in-
cluded. This exchange results from a similar one in
the nodal structure of the nuclear wavefunctions. In-
deed, the last of ref. {4] shows that resonance wave-
functions are non-zero for near linear configurations
of H; where two internuclear distances are equal.
These configurations correspond to the half planes
¢.=n/3, n, 5r/3, which, according to table 1, are
nodal planes for the A, wavefunctions in the absence
of the geometric phase and for the A, wavefunctions
when this phase is included. Therefore. the reso-
nances must correspond to A, electronuclear wave-
functions ¥/ without the geometric phase and to
A, wavefunctions with this phase for J=0.
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Fig. 1. Transition probabilities as a function of energy for /=0
without (upper row) and with (lower row) consideration of the
geometric phase. The left column corresponds 10 an electronu-
clear wavefunction ¥/ which belongs to the A, irreducible
representation of the permutation group of the nuclei and 10
the transition H+H;(v=0, j=0, m,=0)<~H+H, (v =1,; =0,
m; =0). The right column corresponds 10 an electronuclear
wavefunction /™ which belongs 10 the A, irreducible repre-
sentation of the permutation group of the nuclei and 10 the tran-
sition H+ Hy(v=0, j= |, m=0)-H+H:(v' =1,/ =1, m,. =0).
The lower abscissa is the total energy and the upper abscissa the
reagent ‘elative translational energy. The vertical arrows on the
upper abscissa denote the energies of the H;(v, j=0) states and
are labeiled by the values of v. The squares on the probability
curves indicate the points for which the scattering calculations
were made.

More generally, the inclusion of the geometric
phase modifies the result of the symmetry analysis
of resonances for low total angular momentum de-
scribed in the last of ref. [4]. This paper shows that
the exchange of the two extreme hydrogen atoms of
the near linear configurations considered in the pre-
vious paragraph multiplies the spacial part of the nu-
clear wavefunction by a factor (=1)7*X where K is
the vibrational angular momentum of the resonant
state and /7 its parity. If X is the eigenvalue of the
operator which permutes the two extreme hydrogen
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Fig. 2. Transition probabilities as a function of energy for J=0
without (upper row) and with (lower row) consideration of
the geometric phase, for the tranmsitions H+H,(v=0, =0,
m,=0)~H+H:(v'=1,;°=0,m, =0) (left column) and H+
H;(v=0, j=0, m=0)~H+H,(v' =1, =1, m, =0) (right col-
umn) with the electronuclear wavefunction ¥/ belonging to
the E irreducible representation of P,. For the other details, see
the caption of fig. 1.

atoms in the electronuclear wavefunction ¥4 (+1
for the A, irreducible representation, — 1 for A, and
+1 for the E doubly degenerate irreducible repre-
~ sentation, according to which component is consid-
ered), the condition for having a resonance without
consideration of the geometric phase is
Xr=(—1)"*X since, in this case, we assume that
the electronic part of the wavefunction is symmetric
for the permutation of the hydrogen nuclei. If now
the geometric phase is included, the condition for
having a resonance becomes X, = ( —1)7*%*! since
the electronic wavefunction is now antisymmetric
with respect to the nuclear permutation. Therefore,
the symmetry assignments of the resonances are ex-
changed for the A, and A, irreducible representa-
tions, but remain unchanged for the E irreducible
representation, which has doubly degenerate sym-
metric and antisymmetric components.
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We now assume that the three hydrogen atoms are
distinguishable particles. Fig. 3 shuws that the non-
reactive (direct) and reactive (exchange) transition
probabilities are almost not affected by the inclusion
of the geometric phase. Only slight changes (less than
10%) appear in the probabilities above 2 eV for low
excited states of the reactants and products (these
changes however can become larger than 10% for
smal! transitions between rotationally excited reac-
tant and product states). The strong effect observed
in fig. 1 in the transition probabilities associated to
the irreducible representations of the permutation
group of the nuclei resuits mainly in a change of n in
the phase of the reactive scattering matrix elements.
whereas the phases of the non-reactive matrix ele-
ments and the norms of the reactive and non-reac-
tive scattering matrix elements are only slightly
modified by the geometric phase. These numerical
results validate the conclusion of ref. [16] and the
assumption on which it rests over a wide energy
range. Indeed, ref. [16] shows formally that. if the
wavefunction is zero in the vicinity of the half plane
¢.=n, then the only effect of the geometric phase is
to change the sign of the reactive scattering matrix.
This result should be also valid for non-zero total an-
gular momenta.

Ref. [14] suggests a semiclassical picture for the
effect of the geometric phase on the reactive prob-
abilities, in terms of the modification of the inter-
ference pattern between trajectories passing on op-
posite sides of the conical intersection axis (=0).
However, the quantum results suggest that, since only
the phases of the reactive scattering matrix elements
are significantly changed, almost all trajectories
should pass on the same side of the conical inter-
section, namely the one nearest the minimum energy
path. We performed quasi-classical trajectory cal-
culations for J=0 with a sample of 400 trajectories
for each collision energy. Below 2.6 eV, we found in-
deed that for the ground rovibrational initial state
(v=j=0) only one trajectory (at 2.4 eV) passes on
the side of the conical intersection opposite to the
minimum energy path. However, rotational excita-
tion of the reactants can increase this number: 10%
of the reactive trajectories pass on the side opposite
to the minimum energy path at 2.5 eV for j= 10 and
15. This suggests that. as observed in the quantum
results, the effect of the geometric phase can become
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Fig. 3. Non-reactive (left) and reactive (right) transition probabilities for H+H;(v=0, j=0,m,=0)=H+H,(v' =1, =0, m, =0).
The dots and the continuous lines refer 10 the calculations excluding and including the geometric phase respectively. For the other details,

see the caption of fig. 1.

more important for some transiticns between rota-
tionally excited reactants and products. Finally, the
number of trajectories passing on the side of the con-
ical intersection opposite to the minimum energy
path increases strongly above 2.8 eV and reaches 40%
of the totai number of reactive trajectories for j=0
at 4 eV. This indicates that the geometric phase
modifies both the norms and the phases of the scat-
tering matrix elements in this high energy range.
‘However, inclusion of the electronic coupling to the
first electronically excited state becomes necessary to
obtain quantitatively correct resuits in this energy
range.

Consideration of the Pauli-antisymmetrized (de-
fined in the second ref. [1]) J=0 partial cross-sec-
tions allows us to estimate qualitatively how the
Pauli-antisymmetrized integral cross-sections are
modified by inclusion of the geometric phase. The
previous discussion indicates that the para to ortho
or ortho to para antisymmetrized cross-sections are
almost not modified for energies below 2.6 eV by in-
clusion of the geometric phase, since only the reac-
tive scattering amplitude appears in the expressions
of the antisymmetrized cross-sections for these tran-
sitions (see eqs. (5.39) and (5.40) in the second ref.
{1]). Therefore, this phase cannot be the reason for
the important discrepancies between experimental
and theoretical integral cross-sections below 1.4 eV

586
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for para to ortho transitions: the strong resonant pat-
terns which are present on the experimental integral
cross-sections [28] will not appear on the corre-
sponding theoretical results {6,7,12] even if the geo-
metrnic phase is included. However, fig. 4 suggests that
antisymmetrized cross-sections can be significantly
modified by the introduction of the geometric phase
for para to para or ortho to ortho transitions, since
the way reactive and non-reactive scattering ampli-
tudes interfere is, with a good accuracy below 2.6 eV,
changed to its opposite (see egs. (5.39) and (5.40)
in the second ref. {1]). This change is not very im-
poriant at low energy when the reaction probabilities
are small compared to the non-reactive ones (see the
000-020 transition probability below 0.6 eV in fig.
4), but it can modify even the qualitative features
and the order of magnitude of the antisymmetrized
cross-sections when, at higher energy, reactive and
non-reactive scattering amplitudes become of the
same order of magnitude.

The effect of the geometric phase on the details of
the angular distributions of the ortho—ortho and
para-»para cross-sections shouid be even more pro-
nounced than on the corresponding integral cross-
sections. The differential cross-sections for these
transitions show an oscillatory dependence on scat-
tering angle [ 1] which should become more intense
as energy increases. These oscillations are due 1o in-
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terferences between direct and exchange scatterings,
and a change in the sign of the exchange scattering
amplitude should make constructive interferences
destructive and vice versa [16].

4. Conclusions

The present numerical study of the geometric phase
in the H+H, validates the conclusion of ref. {16] in
a wide energy range below 2.6 eV: quite accurate
cross-sections can be obtained by neglecting the geo-
metric phase in the computations of the reactive and
non-reactive scattering matrix elements and by in-
cluding it a posteriori by changing the signs of the
reactive scattering matrix elements. This sign change
can modify significantly the spin-averaged cross-sec-
tions when the energy is high enough for reactive
transition probabilities to be non-negligible com-
pared to the non-reactive ones. Quasi-classical tra-
jectory calculations indicate that this approximate
treatment of the geometric phase becomes inaccur-
ate at the higher energies for which the Born-Op-
penheimer approximation is expected to break down.
Finally, our quantum study also indicates that in-
clusion of the geometric phase changes the symmetry
assignments of the resonances.
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QUANTUM MECHANICAL REACTIVE SCATTERING
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We have performed accurate three-dimensional quantum mechanical reactive scattering calculations for the H+H, system on
the Caltech/JPL Mark Ilifp 64 processor hvpercube, using the method of symmelrized hypersphencal coordinates and local
hyperspherical surface functions. The results and timing obtained demonstrate that such distributed memory paraliel architec-
tures are competitive with the CRAY X-MP, CRAY 2 and CRAY Y-MP supcrcomputers and should allow the study of larger,
more complicated chemical systems. In addition. we show that a selection rule for scattering resonances developed previously and
tested for J=0. 1 resonances is also satisfied by the J=2 resonances obtained in the present calculations.

1. Introduction

There is considerable current interest in perform-
ing accurate quantum mechanical three-dimensional
reactive scattering cross section calculations. Accu-
rate solutions have until recently proved to be dif-
ficult and computationally expensive to obtain, in
farge part due to the lack of sufficiently powerful
computers [ {-7]. Prior to the advent of supercom-
puters, one could only solve the equations of motion
for model systems or for sufficiently light atom-di-
atom systems at low energy [ 1-4]. As a result of the
current development of efficient methodologies and
increased access to supercomputers, there has been
a remarkable surge of activity in this field (8-19].
The use of s'mmetrized hyperspherical coordinates
(20] and of the local hyperspherical surface function
formalism [8,9,21] has proven to be a successful ap-
proach to solve the three-dimensional Schrédinger
equation [8,9,15,16]. However, even for modest re-
active scattering calculations the memory and CPU

' Work performed in partial fulfillment of the requirements for

the Ph.D. degree in Chemistry at the California Institute of
Technology.

3 Current address: 2338 Redwood Road, Scotch Plains, NJ
07076. USA.

3 Contribution number 8068.

demands are so great that CRAY-type supercom-

- puters will soon be limiting progress.

Although there has been a steady improvement in
the necessary technologies of the basic logic speeds
of computers, there is little prospect of substantially
faster single processor designs in the near future.
Concurrent supercomputers are a natural next step
in meeting the need for both increased memory and
faster CPU. Individual processors, although slower
than a singie sequential supercomputer processor. can
be connected together in sufficient number to make
a powerful supercomputer. Such architectures offer
the potential to obtain large increases in computing
speed by simply increasing the number of proces-
sors. The actual speed-up depends on the nature of
the algorithm, the characteristics of the processors,
and the particular way these communicate with each
other. The algorithms used and the codes developed
on sequential machines should be replaced by codes
optimized for parallel machines.

The essential property a calculation must have to
be efficiently done on a highly parallel computer is
that it be decomposable in such a way that in per-
forming it almost all processors should be computing
efficiently almost all of the time, and that the com-
munication time between the processors should rep-
resent a small fraction of the computation time. In

0009-2614/90/$ 03.50 © Elsevier Science Publishers B.V. ( North-Holland ) 429
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the present paper we show how quantum mechanical
reactive scattering calculations can be structured so
as 1o fulfil these critena.

The hypercube architecture is a leading design for
MIMD-type (multiple insiruction multiple data)
distributed memory parallel architectures based on
message passing. The first such machine was devel-
oped by Seitz [22] and used by Fox {23,24], both
at Caltech. We have created efficient codes to solve
the quantum mechanical equation of motion for re-
active collisions of an atom with a diatomic mole-
cule using a hypercube computer of this type. Very
similar codes should be appropriate for other MIMD
distributed memory parallel architectures.

In this paper, we present a concurrent algorithm
for calculating local hyperspherical surface functions
(LHSF) and use a parallelized version {25] of John-
son’s logarithmic derivative method [26], modified
to include the improvements suggested by Manolo-
poulos [27]. for integrating the resulting coupled
channel reactive scattering equations. We review the
formalism briefly in section 2. In section 3 we dis-
cuss the parallel algorithms and in seciion 4 we com-
pare the results of scattering calculations on the Cal-
tech/JPL Mark 11lfp 64 processor hypercube for the
H+H,; system /=0, 1, 2 partial waves on the LSTH
[28,29] potential energy surface with those of cal-
culations done on a CRAY X-MP/48 and a CRAY-
2. Both accuracy and performance are discussed, and
speed estimates are made for the Mark I1Ifp 128 pro-
cessor hypercube soon to become available and the
San Diego Supercomputer Center CRAY Y-MP/864
machine which has just been put into operation. We
summarize the conclusions in section 5.

2. Methodology

The detailed formulation of reactive scattering
based on hyperspherical coordinates and local vari-
ational hyperspherical surface functions (LHSF) is
discussed elsewhere [8.9,15]. We present a very brief
review to facilitate the explanation of the parallel
algorithms.

For a triatomic sysiem, we label the three atoms
Aa, Ag and A,. Let (4, v, x) be any cyclic permuta-
tion of the indices (a, f, Y). We define the A coor-
dinates, the mass-scaled [30] internuclear vector r,
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from A, to A,, and the mass-scaled position vector
R, of A with respect to the center of mass of the A A,
diatom. The symmetrized hyperspherical coordi-
nates [20] are the hyperradius p= (R3 +r3)'/*, and
a set of five angles w,, 7;, 6;, ¢, and w,, denoted col-
lectively as {,. The first two of these are in the range
0 to n and are respectively 2 arctan{r,/R,) and the
angle between R, and r;. The angles 6,, ¢, arc the po-
lar angles of R, in a space-fixed frame and y, is the
tumbling angle of the R;, r; half-plane around iis edge
R,. The hamiltonian A, is the sum of a radial kinetic
energy operator term in p, and the surface Hamil-
tonian A,, which contains all differential operators in
{i and the electronically adiabatic potential V(p, w;,
7:). A, depends on p parametrically and is therefore
the “frozen" hyperradius part of H;.

The scattering wave function ¥/ is labelled by
the total angular momentum J, its projection 7 on
the laboratory-fixed Z axis, the inversion paruy I7
with respect 10 the center of mass of the system and
the irreducible representation I” of the permutation
group of the system (P; for H+H;) to which the
electronuclear wave function, excluding the nuclear
spin part [31,32], belongs. It can be cxpanded in
terms of the LHSF @’/ defined below, and cal-
culated at the values g, of p:

PN (9, C)= T BAT (0 B O (G B4

(1

The index { is introduced to permit consideration of
a set of many linearly independent solutions of the
Schriodinger equation corresponding to distinct ini-
tial conditions which are needed to obtain the ap-
propriate scattering matrices.

The LHSF @7MM7((; j.) and associated energies
€T (j,) are respectively the eigenfunctions and ei-
genvalues of the surface Hamiltonia=.";. The; are
obtained using a variational approaca [15] The
variational basis set consists of products of Wigner
rotation matrices Di,o(8;. 6;. v,), associated Le-
gendre functions of y; and functions of w; which de-
pend parametrically on g, and are obtained from the
numz:ical solution of one-dimensional eigenvalue-
eigenfunction differential equations in w, invoiving
a potential related to V{(g, w;, 1)

The variational method leads to an eigenvalue
problem with coefficient and overlap matrices
' (p,) and s7"7(j,) and whose elements are five-
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dimensional integrals involving the variational basis
funcuons.

The coetficients 627 (p: g,) defined by eq. (1)
satisfy a coupled set of second-order differential
equations involving an interaction matnx J77 (p;
F.) whose elements are defined by

(L7, B ) 17 = (PG P IV Dy wi 12
- (pq/p): V(p-q- wlg },A)“p:,unr( ;Avﬁq)> . (2)

The configuration space p, {; is divided in a set of Q
hyperspherical shells p,<p<p,., (9=1, 2, ..., Q)
within each of which we choose a value g, used in
expansion (1).

When changing from the LHSF set at g, to the one
atg,., neither ¥/ nor its derivative with respect
10 p should change. This imposes continuity condi-
tions on the 52" and their p derivatives at p=p,,,,
involving the overlap matrix ¢ (g,,,, §,) be-
tween the LHSF evaluated at §, and g .,

[(Jnr(ﬁqtl-p—q)]:l
= (@ e MNP 5) ) (3)

The five-dimensional integrals required to evalu-
ate the elements of A’ s/, 4/ and €’7" are
performed analvtically over ¢;, 6; and y; and by two-
dimensional numerical quadratures over y; and w;.
These quadratures account for 90% of the total time
needed to caiculate the LHSF @7 and the ma-
trices S/ and ¢/,

The system of second-order ordinary differential
equations in the 2777 is integrated as an initial vaiue
problem from small values of p to large values using
Manolopoulos’ loganthmic derivative propagator
[27]. Matrix inversions account for more than 90%
of the time used by this propagator. All aspects of the
physics can be extracted from the solutions at large
p by a consiant p projection [8,9,33].

3. Parallel algorithm

The computer used for this work is a 64 processor
Mark llifp hvpercube. Each node consists of two in-
dependent Motorola 68020 microprocessors, one for
computation and one for /O, and four megabytes of
dynamic memory. The computation microprocessor
has a Motorola 68882 floating-point arithmetic co-
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processor and 128 kilobvies of static private mem-
ory.The 1/0 microprocessor has 64 kiloby1es of static
private memory. An additional daughter board with
a pipe-lined 32-bit floating point unit bascd on the
Weitek XL series of chips is attached 1o each node
and has a2 nominal peak speed of 16 Mflops. The
crystalline operating system (CrOS)-channel-ad-
dressed synchronous communication provides the li-
briry routines to handle communications between
nodes {24,34,35]. Program development is done on
a Motorol: 68020-based Counterpoint workstation
that runs on UNIX. The programs are written in C
programming lar.zuage except for the time-consum-
ing two-ditaensional quadratures and matrix inver-
sions, . ~.ich are optimized in assembly language.

The hypercube is configured as a two-dimensional
array of processors. The mapping is done using bi-
nary Gray codes [24.36] which gives the Cartesian
coordinates in processor space and communication
channel tags for a processor’s nearest neighbors. With
a distributed-memory machine like the hypercube.
the elements of a large matrix of data must be dis-
tributed across the memory of all the processors. This
makes it possible to fully utilize the large memory
available and facilitates the load-balancing task of
keeping most of the processors busy doing useful
arithmetic most of the time. The parallelization of
scientific codes is frequently based on a large grain
size decomposition of the task. A method of distrib-
uting the global matrix among the processors is the
first choice that must be made and it is ciosely re-
lated to the paralle algorithm chosen.

We mapped the matrices into processor space by
local decomposition. Let N, and N, be the number of
processors in the rows and columns of the hypercube
configuration, respectively. Element A(i, j) of an
M x M matrix is placed in processor row P, =int(iN,/
M) and column P.=int(yN./M), where int x means
the integer part of x.

The paraliel code implemented on the hvpercube
consists of five major steps. Step one constructs. for
each value of j,, a primitive basis set composed of
the product of Wigner rotation matrices. associated
Legendre functions, and the numerical one-dimen-
sional functions in w,; mentioned in section 2 and
obtained by solving the corresponding one-dimen-
sional eigenvalue-eigenvector differential equation
using a finite difference method. This requires tha-
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a subset of the eigenvalues and eigenvectors of a tri-
diagonal matrix be found.

A bisection method [37] which accomplishes the
eigenvalue computation using the TRIDIB routine
from EISPACK [38] was ported to the Mark lIfp.
This implementation of the bisection method allows
computation of any number of ¢onsecutive eigen-
values specified by their indices. Eigenvectors are

obtained using the EISPACK inverse iteration rou-’

tine TINVIT with modified Gram-Schmidt ortho-
gonalization. Each processor solves independent tri-
diagonal eigenproblems since the number of
eigenvalues desired from each tridiagonal system is
small but there are a large number of distinct tridi-
agonal systems. To achieve load balancing, we dis-
tributed subsets of the primitive functions among the
processors in such a way that no processor computes
greater than one eigenvalue and eigenvecior more
than any other. These large grain tasks are most eas-
ily implemented on MIMD machines: SIMD (single
instruction multiple data) machines would require
more extensive modifications and would be less ef-
ficient because of the sequential nature of effective
eigenvalue iteration procedures. The one-dimen-
sional bases obtained are then broadcast to all the
other nodes.

In step two a large number of two-dimensional
quadratures involving the primitive basis functions
which are needed for the variational procedure are
evaluated. These quadratures are highly parallel pro-
cedures requiring no communication overhead once
each processor has the necessary subset of functions.
Each processor calculates a subset of integrals
independently.

Step three assembles these integrals into the real
symmetric dense matrices s”(5,) and A7 (5,)
which are distributed over processor space. The en-
tire spectrum of eigenvalues and eigenvectors for the
associated variational problem is sought. With the
parallel implementation of the Householder method
(39]. this generalized eigensystem is tridiagonalized
and the resulting single tridiagonal matrix is solved
in each processor completely with the QR algorithm
(40]. The QR implementation is purely sequential
since each processor obtains the entire solution to
the eigensystem. However, only different subsets of
the solution ~re kept in different processors for the
evaluation of .he interaction and overlap matrices in
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step four. This part of the algorithm is not time-con-
suming and the straightforward sequential approach
was chosen. It has the further effect that the resulung
solutions are fully distributed, so no communication
1s required.

Step four evaluates the two-dimensional quadra-
tures needed for the interaction /7 (p, p,) and
overlap ¢’ (g,,,; #,) matrices. The same type of
algorithms are used as were used in siep two. By far,
the most expensive part of the sequential version of
the surface function calculation is the calculation of
the large number of two-dimensional numerical in-
tegrals required by steps two and four. These steps
are, however, highly parallel and well suited for the
hypercube.

Step five uses Manolopoulos' [27] algorithm to
integrate the coupled linear ordinary differential
equations. The parallel implementation of this al-
goriinm is discussed elsewhere [25]. The algorithm
is dominated by parallel Gauss-Jordan matrix in-
version and is /O intensive, requiring the input of
one interaction matrix per integration step. To re-
duce the [/0 overhead a second source of parallel-
ism is exploited. The entire interaction matrix (at all
p) and overlap matrix (at all ,) data sets are loaded
across the processors and many collision energies are
calculated simultaneously. This strategy works be-
cause the same set of data is used for each collision
energy and because enough main memory is avail-
able. Calculation of scattering matrices from the fi-
nal logarithmic derivative matrices is not compu-
tationally intensive, and is done sequentially.

The program steps were all run on the Weitek co-
processor which only supports 32-bit arithmetic. Ex-
perimentation has shown that this precision is suf-
ficient for the work reported below. The 64-bit
arithmetic hardware needed for larger calculations
was installed after the present calculations were
completed.

4. Results and discussion

Accuracy. Calculations were performed for the
H+H, system on the LSTH surface {28.29] for par-
tial waves with total angular momentum J=0. 1, 2
and energies up to 1.6 e¢V. Flux is conserved to better
than 1% for J=0, 2.3% for J=1 and 3.6% for /=2
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Fig. 1. Probabilities (a) and probability differences (b) as a
function of total energy £ (lower abscissa) and initial relative
translational energy Eoo {upper abscissa) for the J=0 (0, 0,
0)~(0,0,0) A, symmetry transition in H+ H, collisions on the
LSTH potential energy surface. The symbol (v, j. ) labels an
asymptotic state of the H+ H, system in which v, /, and 2 are the
quantum numbers of the initial or final H; states. The vertical
arrows on the upper abscissa denote the energies at which the
corresponding H;(r, j) states open up. The length of those ar-
rows decreases as v spans the values 0, 1 and 2, and the numbers
0. 5, and 10 associated with the arrows define a labelling for the
value of j. (a) The results from the Mark [1Ifp hypercube; (b)
differences between these and those from the CRAY X-MP/48.
The number of LHSF used was 36 and the number of primitives
used to calculate these surface functions was 80.
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Fig. 2. Same as for fig. 1 except for J=1, A|, odd parity ([T="),
(0,0,0)=(0, 0, 2) transitions. The number of LHSF used was
74 and the number of primitives used to calculate these surface
functions was 152.

for all open channels over the entire energy range
considered.

To illustrate the accuracy of the 32-bit arithmetic
calculations, the scattering resuits from the Mark Ilifp
with 64 processors are shown in figs. 1. 2. and 3 for
J=0, 1, 2, respectively, in which some transition
probabilities as a function of the total collision en-
ergy E are plotted. Also shown are the differences
between these resuits and those obtained using a
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Fig. 3. Same as for fig. 1 except for J=2, A,, odd parnity (/[T=1),
(0,2,1)—(0, 2, 1) transition. The differences plotied in (b) are
between the Mark 111fp hypercube and the CRAY-2 results. The
number of LHSF used was 65 and the number of primitives used
to calculate these surface functions was 136,

CRAY X-MP/48 and a CRAY-2. These differences
do not excede 0.004 in absolute value over the en-
ergy range investigated. The effect of the geometric
phase associated with the conical intersection be-
tween the two lowest electronic potential energy sur-
face of Hy [32] is not included in these resuits. Much
of the structure in the transition probability curves
is due 1o the underlying resonances [1. 9, 16] and
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are discussed below. The two sets of data in each fig-
ure are virtually indistinguishable on the scale of the
plots.

Analysis of J= 2 resonances. Table | contains a list
of the /=2 resonance energies detected from the
maxima in the lifetime versus energy curves, calcu-
lated as described previously [9.16], as well as their
quantum number assignments, permutation and in-
version symmetry labels, and lifetimes. The per-
mutation symmetries are given with and without the
inclusion of the effect of the geometrical phase (GP)
associated with the conical intersection between the
two lowest electronic state polential energy surfaces
[31,32]. The energy of these resonances is consis-
tent with the physical model for the selection rule
previously developed [16] and tested with the J=0.
1 resonances. The results of table 1 adds additional
credence to the generality of that rule. According to
it, if GP effects are ignored, a necessary (but not suf-
ficient) condition for resonances to occur in A, (A,)
partial waves is that (—1)7*% be equal to 1{—1).
where K is the vibrational angular momentum quan-
tum number, whereas they are permitted in E parntial
waves for all K. To include the GP effect, it sufTices
to interchange A, and A; in this selection rule [32].
In agreement with this picture, not all higher energy
J=2 resonances which are allowed by this rule were
detected.

Timing and parallel efficiency. In tables 2 and 3 we
present the timing data on the 64 processor Mark
I1ifp, a CRAY X-MP/48 and a CRAY-2, for both
the surface function code (including calculation of
the overlap ¢/ and interaction S“7" matrices) and
the logarithmic derivative propagation code. For the
surface function code, the speeds on the first two
machines is about the same. The CRAY-2 is 1.43
times faster than the Mark I[IIfp and 1.51 times faster
than the CRAY X-MP/48 for this code. The reason
is that this program is dominated by matrix-vector
multiplications which are done in optimized assem-
bly code in all three machines. For this particular op-
eration the CRAY-2 is 2.03 times faster than the
CRAY X-MP/48 whereas for more memory-inten-
sive operations the CRAY-2 is slower than the CRAY
X-MP/48 [41]. A slightly larger primitive basis set
ts required on the Mark 1Ifp in order to obtain sur-
face function energies of an accuracy equivalent to
that obtained with the CRAY machines. This is due
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Table !
J=2 resonances and their charactensucs for H,

CHEMICAL PHYSICS LETTERS 11 May 1990

Assignment Permutation symmetry *’ Inversion E (eV) Lifeume (fs)
symmetry
without GP ®' with GP®’ mne
(0,0°0) AL E AL E 0 0.65 ]
(0, ll, 0) Ag. A|.E 'AhA:,E 0. 1 077 9
(0,2°0) ALE A, E 0 0.88 10
(0.22,0) AL ALE A3 ALE 0,1 0.90 10
(1,0%0) ALE ALE 0 0.98 28
0,3,0) Ay ALE ALALE 0.1 1.00 8
(1,14,0) Ay, ALE " ALALE 0.1 1.9 29
(0,4°0) AL E Ay E 0 1.10 b
(0.4%,0) ALALE Az, ALE 0,1 1.12 5
(1,2%,0) AL ALE An A, E 0.1 1.22 8
(0, 5'.0) AL ALE AL AL E (VN 1.22 6
(2,11,0) ALALE AL AL E 0.1 1.45 38

*) This refers to the irreducible representation of the P; permutation group 1o which the electronuclear wave function. exciuding the

nuclear spin part. belongs {31,32].

5 With(out) GP refers to the case in which the effect of the geometrnical phase associated to conical intersection between the two lowest

electronic state potential energy surface is (not) included [31.32].

<) When two values of /7 are indicated. the first (second) one is associated with the first (second) permutation symmetry.

to the lower accuracy of the 32-bit arithmetic of the
former with respect to the 64-bit arithmetic of the
latter.

The absolute times presented in table 2 and 3 are
apt to decrease as the codes are improved and the
numerical parameters are further tuned. As a result,
they are not well suited for an appropnate compar:
ison of the relative effectiveness of different reactive
scattering methodologies [8-19]. The relevant in-
formation in those tables is, instead, the relative times
among different machines as given by the corre-
sponding speeds. These are indicative of the relative
effectiveness of these machines for performing the
reactive scattering calculations described in this
paper.

The efficiency (¢) of the paraliel LHSF code was
determined using the definition ¢=T,/NTy, where
T\ and Ty are respectively the implementation times
using a single processor and .V processors. The single
processor times are obtained from runs performed
after removing the overhead of the parallel code, i.e.
after removing the communication calls and some
logical statements. Perfect efficiency (eé=1.0) im-
plies that the .V processor hypercube is N times faster
than a single processor. In fig. 4 efTiciencies for the
surface function code (including the calculation of

the overlap and interaction matrices) as a function
of the size of the primitive basis set are plotted for
2,4, 8, 16, 32 and 64 processor configurations of the
hypercube. The global dimensions of the matrices
used are chosen 10 be integer multiples of the num-
ber of processor rows and columns in order to insure
load balancing among the processors. Because of the
limited size of a single processor memory, the effi
ciency determination is limited to 32 primitives. As
shown in fig. 4, the efficiencies increase monotoni-
cally and approach unity asymptotically as the size
of the calculation increases. Converged results re-
quire large enough primitive basis sets so that the ef-
ficiency of the surface function code is estimated to
be about 0.95 or greater.

The data for the logarithmic derivative code given
in table 3 for a 245 channel (i.e. LHSF) example
show that the Mark [IIfp has a speed about 62% 10
that of the CRAY-2 but only about 31% of that of the
CRAY X-MP/48. This code is dominated by matrix
inversions, which are done in optimized assembiy
code in all three machines. The reason for the slow-
ness of the hypercube with respect to the CRAYs is
that the efficiency of the parallel logarithmic deriv-
ative code is 0.52. This relatively low value is due to
the fact that matrix inversions require 2 significant
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Table 2
Performance of the surface function code *?

J Mark Ilifp ® 64 processors CRAY X-MP/48 CRAY-2
ume (h) speed (Mflops) ume (h) speed (Mflops) time (h) speed (Mflops)
0 0.71 ¢ 100 ¢ 0.74% 96" 0.49% 145®
1 2.88" 12e 3.047 106 201v 160™
2 5.600 1249 5.94™ 1 396 176 %

*) This code calculates the surface functions at the 51 values of g from 2.0 to 12.0 bohr in steps of 0.2 bohr, the corresponding overlap
matrices between consecutive values of 5 and the propagation matrices in p steps of 0.1 bohr. The number of primitives used for each
J and described in the remaining footnctes permits us to generate enough LHSF 10 achieve the accuracy described in the text.

» Sixty-four single precision processors.

) For 80 A,, 80 A; and 160 E primitives. This basis is larger than the one described in ¢) below and is needed 0 generate the same
number of lincarly independent surface functions as in ¢). The reason for this difference is the 32-bit arithmetic of the Mark [Hfp
compared to the 64-bit arithmetic of the CRAY X-MP/48.

4 Estimated on the basis of the absolute measured speed on the CRAY X-MP/48 and the measured relative speeds of the Mark Ilifp
with respect to the CRAY X-MP/48.

¢ For76 A,, 76 A; and 152 E primitives.

Y Measured using the hardware-performance monitor of the PERFMON and PERFPRT subroutines.

% This time, for the same primitives as describes in ¢) was estimated on the basis of the relauve speeds of the CRAY-2 and CRAY X-
MP/48 measured {or a set of five values of 5. It is smaller than the time in ¢) for the reason in h).

" Estimated on the basis of the relative speed of the CRAY-2 with respect 10 the CRAY X-MP/48 described in g). The reason this speed
is § of the corresponding CRAY X-MP/48 speed 1s that the dominant parts of the calculation are optimized assembly code matrix-
vector multiplications for which the CRAY-2 is 50% faster than the CRAY X-MP/48. Otherwise, the CRAY-2 is slightly slower than
CRAY X-MP/48. See text. .

" For 72 A,. 80 A; and 152 E primitives of even panity and 152 A,, 160 A, and 312 E primitives of odd parity These numbers of
primitives are larger than the ones given in j) for the reason giveninc¢).

P For64 A,, 76 A, and 140 E primitives of even parity and 140 A,, 152 A; and 292 E primitives of odd parity.

*! Estimated on the basis of the relative speeds of the CRAY X-MP/48 and CRAY-2 and the measured CRAY X-MP/48 times or speeds.

" For 216 A, 232 A; and 448 E primitives of even parity and 136 A,, 152 A; and 288 E primitives of odd parity. These numbers are
larger than those in o) for the reason giveninc).

™!This time is estimated as in k), since the calculation cannot be done on the CRAY X-MP/48 because of insufficient memory.

*’ Estimated 10 be the same as in ) since the calculation cannot be done on the CRAY X-MP/48 for the reason given inm).

°' For 204 A, 216 A, and 420 E primitives of even parity and 128 A,, 140 A, and 268 E primitives of odd parity.

amount of inter-processor communication. Fig. § the last row of this table, the speed of the logarithmic
displays efficiencies of the logarithmic derivative derivative code using this configuration of the 64
code as a function of the number of channels prop- processor Mark l11fp is 48.5 Mflops, which is about

agated for different processor configurations, as done 44% of that of the CRAY X-MP/48 and 88% of that
previously for the Mark 111 [25,42] hypercubes. The of the CRAY-2. As the number of channels in-

data can be fit well be an operations count formula creases, the number of processors per cluster may be
developed previously for the matrix inversion pan made larger in order to increase the amount of mem-
of the code [43]; this formula can be used to ex- ory available in each cluster. The corresponding ef-
trapolate the data to larger numbers of processors or ficiency should continue to be adequate due 10 the
larger numbers of channels. It can be seen that for an larger matrix dimensions involved.

8 processor configuration, the code runs with an ef- In the near future, the number of processors of the

ficiency of 0.81. This observation suggested that we Mark I11fp will be increased to 128 and the 1/0 sys-
divide the Mark [IIfp into 8 clusters of 8 processors temn will be replaced by high performance C1O (con-

cach and perform calculations for different energies current 1/0) hardware. The new Weitek coproces-
in different clusters. The corresponding timing in- sors installed since the present calculations were done
formation is also given in 1able 3. As can be seen from perform 64 bit floating point arithmetic at about the
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Table 3
Performance of tne logarithmic derivative code *'
Mark Iilfp*’ CRAY X-MP/48 CRAY-2
64 processor 8 clusters of
global configuration © 8 processors ¢’
total time (h) 48 3418 1.5 2.9™
time for 1 energy (min) 2.27 1.6" 0.7 1.3
efficiency 0.52 0.81 - -
speed?’ (Mflops) 3440 48.5Y 110 55.4

*! Based on a caiculation using 245 surface funciions and [ 31 energies, and a logarithmic derivative integration step of 0.01 bohr.

*) Sixty-four single precision processors.

) The calculation for each energy was distributed among all 64 processors.

4" The hypercube was configured into 8 clusters of 8 processors each. Each cluster did full calculations for [6 energies. for a total of 128
energies. The times reported were multiplied by 131/128 for normalization purposes. All 8 clusters operated simultaneously.

¢ This includes 1.9 h of 1/O time.

" This includes 1.6 h of 1/0 time. This time is shorter than that in ¢) because of a different and more efficient broadcast of the data
between the host and the 8 clusters.

# Each cluster did full calculations for 16 energies for a total of 128 energies. The total time reported was obtained by subtracting the
1/0 time from the measured time, multipling the result by 131/128 for normalization to 131 energies and adding the [/O ume.

" Estimated on the basis of the CRAY X-MP/48 times and the ratio of the speeds of the CRAY-2 and CRAY X-MP/48 for the loganth-
mic denivative code.

" This includes the pro-rated [/O contribution.

Al speeds include 1/0 contribution.

*’ Estimated on the basis of the measured CRAY X-MP/48 speed for the logarithmic derivative code and the relative speeds of the Mark
[I1fp and CRAY X-MP/48 for this code.
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Fig. 4. Efficiency of the surface function code (including the calculation of the overlap and interaction matrices) as a function of the

global matrix dimension (i.e. the size of the primitive basis set) for 2, 4. 8, 16, 32, and 64 processors. The solid curves are straight line
segments connecting the data points for a fixed number of processors and are provided as an aid to examine the trends.
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Fig. §. Efficiency of logarithmic derivative code as a function of the global matrix dimension (i.¢. the number of channels of LHSF) for
8, 16, 32, and 64 processors. The solid curves are straight line segments connecting the data points for a fixed number of processors and

are provided as an aid 10 examine the trends.

Table 4
Overall speed of reactive scattering codes on several machines

Mark Ilifp CRAY X-MP/48 CRAY-2 CRAY Y-MP/864
64 processor 128 processars
surface function code
for J=2 (Mflops) 124 240% SRAL 176 2
loganithmic derivative
code ¢’ (Mflops) 4859 127 240 1o® 55.4° 187%
total main memory of
computer (64-bit Mwords) 32 64 8 256 64

*' Estimated on the basis of the 64 processor performance.
®! For singie processor operation.

¢ For 245 channels. As the number of channels increases, the Mark 111fp speed increases by a factor not exceding 1.25. but the speed of

the CRAY machines remains approximately constant.
4 Hypercube configured in clusters of 8 processors.

' This speed assumes four-foid increase in the 1/0 data rate. compared to the 64 processor machine, due to concurrent /0 hardware.

same nominal peak speed as the 32 bit boards. From
the data in ihe present paper it is possible to predict
with good reliability the performance of this up-
graded version of the Mark Illfp. A CRAY Y-MP/
864 has just been installed at the San Diego Super-
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computer Center. Initial speed measurements show
that it is 2 times faster than the CRAY X-MP/48 for
the surface function code and 1.7 times faster for the
logarithmic derivative code. In table 4, we summa-
rize the available or predicted speed information for
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the present codes for the current 64 processor and
near future 128 processor Mark 1l1fp as well as the
CRAY X-MP/48, CRAY-2 and CRAY Y-MP/864
supercomputers. [ts can be seen that Mark llIfp
machines are competitive with all of the currently
available CRAYs (operating as single processor
machines).

S. Summary

We performed quantum mechanical reactive scat-

tering calculations on the Mark HIfp hypercube par-
allel computer. The results obtained for the H+H,
system J=0, 1, 2 partial waves agree well with those
from a CRAY X-MP/48 and a CRAY-2. The reso-
nance structure in the J=2 calculiations is consistent
with a selection rule developed previously {9,16].
The high degree of parallelism of the most time-con-
suming step of the surface function calculation (the
evaluation of two-dimensional numerical quadra-
tures) leads to a high efficiency for that calculation.
As a result, the speed of the 64 processor Mark IIfp
for the surface function calculation is about the same
as that of the CRAY X-MP/48 and about 0.7 of that
of the CRAY-2. When configuring the Mark I fp into
8 clusters of 8 processors each, the logarithmic de-
rivative code is about 56% slower than the CRAY X-
MP/48 and 12% slower than the CRAY-2. The speed
of the 128 processor Mark IIIfp soon to become
available should exceed. both for the surface func-
tion calculation and the logarithmic derivative cal-
culation, those of the CRAY X-MP/48 and CRAY-
2; however, although still comparable to the CRAY
Y-MP/864 for the surface function code, it will be
32% slower for the logarithmic derivative code (the
CRAYs operating as single processor machines).
These results demonstrate the feasibility of perform-
ing reactive scattering calculations with high effi-
ciency in parallel fashion. As the number of proces-
sors continues to increase, such parallel calculations
in systems of greater complexity will become prac-
tical in the not too distant future.
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