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1. SCIENTIFIC BACKGROUND

1.1 Motivation

Unlike the H3 system in its ground electronic state, which does not support any bound

states of nuclear motion, this system is known to have a long-livedl - 4 excited Rydberg state

2p, 2A". The high resolution spectroscopic measurements of Herzberg and co-workers s5 9

and of Helm and co-workers1 0- 13 confirmed it beyond doubt. A very intense beam of 13 in

this metastable state has been generated by Garvey and Kuppermann" 4 . Their estimation

of the lifetime of this metastable state is more than 40 A seconds. This metastable 113

species can liberate 180 Kcal/mole (7.8 eV/molecule) when decomposing into H 2 (X 'E+)

molecules according to H3(2p, 'A") - 3/2H2 (X 'E+). Its specific impulse (ISP) is

estimated to be about 2050s, while current rocket fuels have ISP of the order of only 400s.

Such a high ISP makes H3 a very interesting rocket propellant candidate.

What the lifetime of this metastable H3 actually is, via what kind of mechanism it

decays, and how collisions affect this lifetime are important questions whose answers are

needed in assessing its potential as a possible rocket propellant. One of the decay channels

is the ro-vibrational predissociation of the 2 pz, 2A" metastable electronic state into the

2p 2E' repulsive ground electronic state. It is difficult to measure directly the lifetime of

this channel, because it is not accompanied by any emission of radiation. The total lifetime

estimation from linewidth measurements' - ' suffers from the Doppler broadening effects

inside the plasma sources which are used to generate H3 metastable molecules, especially

if the lifetime of interest is long, as is the case for the H3 in the 2p, 2A" state. For this

reason, a theoretical investigation of its lifetime ( for both radiative and predissociative

processes ) is highly desirable. This theoretical investigation should also provide guidance

for the experimental studies of the properties of this metastable species.

1.2 Decay Processes and Lifetime

In the theory of predissociation processes, the lifetime r of a bound state predissoci-

ating to an unbound state can be expressed as L5 '16

_r; h IV. [2v 12 (1)

VP = < H' 4r > (2)

In these expressions, %Fm is the wavefunction of the bound state with quantum number m

and energy Em, 'T E is that of the unbound state with total energy E, and H' is the part

of total Hamiltonian which provides the coupling between the bound state and unbound



state. VZ is called the coupling matrix element between these two states. The intcgration

in Eq. 2 is over the coordinates of all electrons and nuclei. The choices of normalization

for the above two wavefunctions are:

< IQ,, T" >=1 (3)

< %P I TE' >= 6(E- E') (4)

For electric dipole transitions, the Einstein coefficient between an initial state %Pi and

a final state 'Pf is17

Aij, = (4aw3 /3c 2)l< I I T IPf >I (5)

and the spontaneous radiation lifetime of this process is

1
7 = 1(6)

Aij,

where a is the fine structure constant, w the frequency of the emitted photon, and c the

speed of light. Here again the initial and final state wavefucntions are normalized as in

Eqs. 3 and 4. < ' 1 I T I Tf > is the electric transition dipole moment between the

initial and the final states, and again the integration in Eq. 5 is over the coordinates of all

electrons and nuclei. For molecular systems, the total wavefunctions in Eqs. 2 through 4

can be written, using the Born-Oppenheimer approximation1 8 , as

ktaial = Telcctr PuCL (7)

Here 'PLectr is the electronic wavefunction with fixed nuclear coordinates as parameters

and , describes the nuclear motion in an effective potential generated by the electron

motion (i.e., the electronic potential energy surface).

In order to calculate both the radiative and predissociative lifetimes, Eqs. 1 through

7 show that the following quantities are needed:

1. The wavefunctions which are solutions of the electronic motion Schrodinger equa-.

tion for the 2p, 2A" state and all lower energy electronic states (2p 2E'(1),

2p 2E'(2) and 2s 2A'), to which the 2p, 2A" state may decay either radiatively or

predissociatively. The resulting electronic potential energy surfaces are needed

for solving for the wavefunctions of the nuclear motion.

2



2. The coupling matrix elements between those electronic states.

3. The electric transition dipole moments among those electronic states.

4. The ro-vibrational states of the nuclear motion in the field of the potential energy

surfaces which support bound states. The energy eigenvalues of those states will

determine the spectroscopic transition energies, and the wavefunctions are needed

in the lifetime calculations.

5. The scattering wavefunction on the ground potential energy surface.

The following sections describe in detail the progress achieved so far in" obtaining

these different quantities necessary for the calculation of the radiative and predissociative

lifetimes.

3



2. Calculation of the Electronic Wavefunctions and Energies of H3

2.1 General Consideration

The first step toward the investigation of the lifetime of the 2p, 2A" metastable state

of H 3 is to calculate the electronic potential energy surfaces of the ground and the first

three excited electronic states, as well as the electronically non-adiabatic coupling matrix

elements and the electric dipole transition moments between those electronic states. We

originally hoped that these quantities would be calculated by other groups. Since this has

not turned out to be the case, we initiated a program to calculate them ourselves.

Let us first introduce the notation for those states. When the three protons form an

equilateral triangle, the electronic ground state is degenerate with ihe first excited state,

and the two generate the 2p 2E' representation of the D3h point group'O. The second and

third excited electronic states are classified as 2s 2A' and 2 p. 2A". The x and y axes are

in the molecular plane, while the z axis is perpendicular to it. (2s, 2p,,y,,) are the state

assignments for an Li atom in the united-atom limit (UA). We still use this notation to

identify those states even when the nuclear geometry is no longer an equilateral triangle.

The potential energy surface is well known when the three electrons are in the 2p 2E'(1)

ground state1 9- . Using a functional extrapolation and the double many body expansion

method23 - 26 , Varanda et al. also obtained the potential energy surface of the 2p 2EI(2)

state which, for the equilateral triangle nuclear geometry, is degenerate with the ground

state20 '22 . Along with the potential energy surfaces, the major coupling matrix elements

between the ground state and the first excited staute were also obtained using the same

method22 .

After the first H 3 spectroscopic measurements5 , several theoretical electronic calcu-

lations for this system with equilateral triangle nuclear geometry have been made27- 3 0 ,

Emphasis was placed on the calculation of a large number of electronic states, in order

to reproduce the observed pattern of the experimental energy levels in the 113 Rydberg

spectra. Figure 1 is the state correlation diagram between an equilateral triangular H3 and

a diatom H2 plus a distant atom H. In these calculations, a frozen core approximation

was used for H + , plus single Rydberg excitations for the third electron. These limited

calculations agree with each other and are qualitatively successful in explaining the exper-"

imental spectra. The frozen core treatment gives however poor results for the 2p 2E'(1, 2)

states, and also over-estimates the energy gap between the 2s 2A' and 2pz 2A" states by

a factor of 1.6 to 2.0 32 at the inter-nuclear distance R = 1.64 bohr.

4



14- X1 *+*H2(Xg)H+

12 H2 (X 17-g) + H(n=3)

10 H(X +) + H (n=2)

__ H3 +e

~8- 3s , 2A;
76. 3p 2E~
C

6- 2p, 2A ;
-~ 2s, A;'

C3 3H(n=1)

2 -

0- H 2 (X )+ H (n1l)

Figure 1: Energy Level and Correlation Diagram for H3 . The spacing of the H:3

energy levels was obtained theoretically for an equilateral triangle configuration 27 and
referred to the energy of dissociated products by the results of a separate calculation 3 '
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Recently another calculation for several of the low electronic states of 113 in some

special geometries has been published3 2 . The MRD-CI method used in that work is very

general and powerful33' 4 . It could be used with arbitrary nuclear geometries and to

generate the full potential energy surfaces. It also offers a much better description of the

2p 2E'(1,2) states, and reduces the energy gap between the 2s 2A' and 2 p, 2A states

to just 10% greater than the experimental measurement3 2 . The electric dipole transition

moment between these two states for an equilateral triangle nuclear geometry with the

internuclear distance of R=1.64 bohr agrees with the previous calculations. Because of

its capability and performance, we chose this method for our calculations and initiated a

collaboration with Professor J.S. Wright 2 of Carleton University, Ottawa, Canada.

2.2 MRD-CI method

The details behind the MRD-CI (Multi-Reference, single and Double excitation Con-

figuration Interaction) are beyond the scope of this report and can be found elsewhere 3 '3 4.

Only the major steps of the calculation are briefly described below:

1. First, a set of atomic orbitals (AO) are chosen. Gaussian-Type atomic orbitals

(GTO) are used35 .

2. Second, the nuclear geometry is taken into account. A set of symmetry-adapted

functions (SAF) is constructed by linear combinations of the set of atomic orbitals.

By taking advantage of the nuclear geometry symmetry, the MRD-CI calculation

for a given molecular system can be speeded up significantly.

3. In the third step, the Self Consistant Field (SCF) calculation with this SAF-

AO basis set is conducted in an iterative manner. The molecular orbitals (MO)

obtained from the SCF serve as the starting point for the CI calculation.

4. In the forth step, before the CI calculation, a reference configuration set and

an threshold energy are chosen. All the single and double excitations over the

reference configurations are generated. First, a small scale CI calculation with

Nref reference configurations is performed and an estimation of the eigen-energies

of these wanted states is obtained. Then, one by one, each generated configuration

is tested by being added to the reference configuration set and another srnall scale

CI calculatio.i of Nref + 1 configurations is performed. Only those configurations.

which lower the energy of any one of the states of interest by an amount bigger

than the threshold energy are included in the final CI calculation. This is a

way of drastically reducing the final CI space size without missing important

contributions from the full single and double excitation CI space. In order to

6



ensure the convergence of the calculation, the reference configuration set is chosen

to be big enough so that the final wavefunction of each wanted state has at lease

90% of its contribution from the reference configurations.

5. The fifth step uses a large fraction of the total CPU time. It is the diagonalization

of the electronic Hamiltonian including all the configurations selected. After

that, another calculation with a new threshold twice as large as old one is made,

including the selection of the configurations to be added to the reference set and

the final diagonolization. Assuming the correctness of the extrapolation back

to the zero threshold energy, the final CI energies can be approximated to even

better values, without doing the calculation at such a small threshold energy as

to make the calculation too costly. This is the most important aspect of this

MRD-CI method.

6. With the resulting electronic wavefunctions, the electric transition dipole moment

between any two known electronic states is then calculated.

2.3 Numerical Details and Results

The version of the MRD-CI code for Sun workstations was obtained from Professor

Wright 32 . The CRAY version was obtained directly from Professor Buenker's group 33'34 .

These codes do not have the capability of calculating the electronically non-adiabatic

coupling matrix elements between two electronic states, and will have to be modified in

the future to permit such calculations, which is needed in the predissociative lifetime

calculation.

Initially we made small testing runs on Sun workstations (Sun-386i, Sun-3, and Sun-

4) and a micro VAX. The production runs have been done on the JPL CRAY-XMP and

the SDSC CRAY-YMP. The typical CPU time on the CRAY-YMP is about ,400s for a

complete calculation at a singie nuclear configuration, using the largest one of the basis

sets described below.

The details of the Gaussian-Type atomic orbitals (GTO) are given in Ref. 31. In

summary, they are defined as:

x(ng, iql, rm) = Nng,i r exp-(0,) (8)

where N,,,i is a normalization factor and Yi,,(O,O) the spherical harmonic function.

(r, 0, 0) are the spherical coordinates of a point with respect to the origin of the GTO.

ng can have the values 1, 2, 3, ... , I can have the values 0, 1, 2, ... (which corresponds to
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s, p, d, ... orbitals), and m can vary from -i to I in steps of unity. i is an index for the

exponent j. Sometimes r'n'Y,,,(O, 0) is replaced by linear combinations of terms of the

form x'Y'Yz' 8, where (x, y, z) are Cartesian coordinates and n., n,, n. are non-negative

integers whose sum equals n. .- 1.

In some applications contracted basis functions are used. They are defined as linear

combinations of similar GTO functions having the same quantum numbers n., 1, m but

different exponents ej.

Xcontr(nu.m) = x(ng, i,1,m)(9)

The C are called the coefficients of the contraction.

We have used two GTO basis sets. The first one is a variation of the basis set used

in Ref. 28. It consists of (10s/8s, 4p) orbitals, in which there are eight s-type GTOs

(one of them being a contraction of three s-type GTOs), and four p-type GTOs. The

second basis set consists of (12s/7s, 4p, 1d) orbitals, with seven s-type GTOs (one of

them contracted from six s-type GTOs), four p-type GTOs and one d-type GTOs. The

main part of it, lOs/5s, 4p, ld, is adopted from one used in a H3 calculation 3 , with

the intention to provide simultaneously an accurate description of the system's valence

space and the Rydberg states arising from n=2 hydrogen orbitals. In order to improve the

description of the Rydberg states of the H3 system, we added two diffuse Gaussian s-type

functions into that basis set, with exponents 0.01149 and 0.0042 (see Tables 1 and 2 for

details).

Both GTO basis sets have been tested and calibrated in calculations for an isolated H

atom, and an isolated H 2 molecule with bond length R=1.4 bohr. The results are shown

in Table 3. The H atom calculation shows that both sets give a fairly good description

of the H(ls), H(2s), and H(2p.,,,) atomic states. The H 2 results clearly show that

the (12s/7s, 4p, id) basis set offers a much better description of the H2 (X 'E+) and

H2 (b 3E+) states than does the (lOs/8s, 4p) one. Because we are interested in correlating

the 2 p_ 2A", 25 2A' and 2p 2E'(1, 2) states of H3 with these two diatomic states mentioned

above plus a free H atomic state (see Figure 1), it is important to have a good description

of these diatomic states.

In the H 3 system, the most general geometric symmetry is the reflection symmetry

C, with respect to the plane of these three nuclei. In order to take advantage of this

symmetry, we placed the nuclei in the x y plane, with one nucleus at the origin of the

8



Table 1: (10s/Ss, 4p) Gaussian-type basis set.

orbital 1 C

Is 1 68.16 0.002558
2 10.2465 0.01938
3 2.34648 0.0928

2s 1 0.67332 1.00000

3s 1 0.22466 1.00000

4s 1 0.0822 1.00000

5s 1 0.0475 1.00000

6s 1 0.01875 1.00000

7s 1 0.0133 1.00000

8s 1 0.00525 1.00000

ip 1 0.7 1.00000

2p 1 0.20 1.00000

3p 1 0.06 1.00000

4p 1 0.024 1.00000
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Table 2: (12s/7s, 4p, ld) Gaussian-type basis set.

orbital J Ci

Is 1 837.22 0.000112
2 123.524 0.000895
3 27.7042 0.004737
4 7.82599 0.019518
5 2.6504 0.065862
6 0.938258 0.178008

2s 1 0.372145 1.00000

3s 1 0.155838 1.00000

4s 1 0.066180 1.00000

5s 1 0.027580 1.00000

6s 1 0.011490 1.00000

7s 1 0.004200 1.00000

lp 1 1.6 100000

2p 1 0.40 1.00000

3 p 1 0.09 1.00000

4p 1 0.025 1.00000

ld 1 1.0 1.00000
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Table 3: Calibration of the basis sets for isolated If and H 2".

Calculated H energy levels

Gaussian H(ls) H(2s) H(2p.) H(2pV) H(2p.)
basis set

10s/8s, 4p -0.499942 -0.124989 -0.124812 -0.124812 -0.124812

12s/7s, 4p, Id -0.499998 -0.124992 -0.124723 -0.124723 -0.124723

Exact value -0.500000 -0.125000 -0.125000 -0.125000 -0.125000

Calculated H2 energy levels (R=1.4)

Gaussian H2 (X 1E) H2  0
basis set

10s/8s, 4p -1.170045 -0.782718

12s/7s, 4 p, Id -1.173652 -0.783904

KWb -1.174474 -0.784150

a: The energies are in hartree and the bond lenth of diatom is in bohr.

b: Accurate values from W. Kolos and L. Wolniewicz3 7.
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(-, y, z) coordinate system, another along the positive x axis and the third in the x y half

plane with y positive. The ground state 2p 2E'(1), and the excited states 2p 2E'(2), and

2s 2A are symmetric under that symmetry operation (z --* -z), while the 2 p, 2A" state

is anti-symmetric.

We place sets of GTOs (as listed in Tables 1 and 2) at each of the three nuclei. There

are 20 basis functions for the (lOs/8s, 4p) basis set and 25 for the (12s/7s, 4 p, id) basis

set, where there is one function for each s type GTO, three for each p type GTO and six

for each d type GTO. Because we have three nuclei, the total numbers of basis functions

are 60 for the first case and 75 for the second.

We obtain the energies and wavefunctions for the ensemble of states symmetric with

respect to reflection through the nuclear plane in one calculation and the antisymmetric

ensemble in another one. The energy threshold is 2.0 x 10- 6 hartree for the symmetric

ensemble, for both sets of basis functions. For the antisymmetric ensemble, the energy

threshold is 0.5 x 10- 6 hartree for the (12si7s, 4p, 1d) basis set and 1.0 x 10- 6 hartree for

the (10s/8., 4p) one. Since the choice of reference configurations depends on the nuclear

geometry, we had to adjust it through a trial and error process for each nuclear geometry.

Generally speaking, we used about 45 to 49 reference configurations in the calculation of

the symmetric ensemble, and about 20 in the calculation of the antisymmetric one.

In Tables 4 and 5, we list the energies of the first four electronic states with the

equilateral triangle nuclear geometry for each basis set. These results are plotted in Figures

2 and 3. In Tables 6 and 7, we list the electric transition dipole moments for this geometry.

Comparison of the results from the (12s/7s, 4p, ld) basis set for the 2p 2E'(1, 2) states

with those of the DMBE calculation 22 shows that our curve is nearly parallel to the DMBE

on- with an upward shift of about 0.003 hartree. Comparison between the results of the

(10s/8s, 4p) basis set and those in Ref. 28 shows good agreement (except at R = 2.6

bohr). GTO functions located at the the center of mass of three nuclei have been used

in Ref. 28, while a larger set of basis functions located at each nucleus is used in present

calculation. Comparison of Tables 4 and 5 shows that the results with the two basis sets

listed in Tables 1 and 2 are not parallel to each other. This indicates that it is necessary

for us to use the larger basis set (12s/7s, 4p. 1d) in our final production runs in order to-

get a potential energy surface having the correct shape.

The C. symmetry ensures that the electric transition dipole moments between the

antisymmetric 2 p, 2A" state and the symmetric 2p 2E'(1), 2p 2E'(2) and 2s 2A' states have

12



Table 4

Electronic potential energies (in hartree) of the first four electronic states of H3' for the (10s/8s, 4p) bas

Rb 2p 2E'(1) 2p 2 E(2) 2a 2A'1  
2pa 2A"2

1.0 -1.273839 -1.273825 -1.267978 -1.245835
1.2 -1.431537 -1.431503 -1.404972 -1.388900
1.4 -1.510877 -1.510886 -1.462253 -1.451243
1.6 -1.549290 -1.549231 -1.477925 -1.470966

1.64 -1.553811 -1.553849 -1.478022 -1.471764
1.8 -1.564752 -1.564771 -1.471242 -1.467687
2.0 -1.568660 -1.568710 -1.452355 -1.451797
2.2 -1.565200 -1.565174 -1.427605 -1.429583
2.4 -1.558467 -1.558474 -1.400492 -1.404303
2.6 -1.550885 -1.550780 -1.373003 -1.378150
2.8 -1.542112 -1.542476 -1.345840 -1.352258
3.0 -1.534483 -1.534565 -1.319509 - 1.327177

a: The origin of energy is that of the six particles (three electrons and three protons)
at infinite separation. The energy of three independent H(ls) is -1.500000 hartree.
These three nuclei form an equilateral triangle.

b: in bohr.
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Table 5

Electronic potential energies (in hartree) of the first four electronic states
of H3'2 for the (12s/7s, 4p, ld) basis set.

Rb 2p 2E'(1) 2p 2E'(2) 2 s 2AL 2pz 2A

1.0 -1.286448 -1.286430 -1.280663 -1.258265
1.2 -1.441703 -1.441650 -1.415028 -1.398848
1.4 -1.518046 -1.518017 -1.468988 -1.458043
1.6 -1.554349 -1.554268 -1.482113 -1.475586
1.64 -1.558556 -1.558507 -1.481895 -1.475980
1.8 -1.569022 -1.568989 -1.474258 -1.471001
2.0 -1.571945 -1.571928 -1.455205 -1.454669
2.2 -1.568548 -1.568561 -1.430550 -1.432079
2.4 -1.561349 -1.561420 -1.403023 -1.406783
2.6 -1.552813 -1.552907 -1.375206 -1.380527
2.8 -1.544312 -1.544450 -1.347990 -1.354630
3.0 -1.536907 -1.536859 -1.322044 -1.329407

a: The origin of energy is that of the six particles (three electrons and three protons)
at infinite separation. The energy of three independent H(ls) is -1.500000 hartree.
These three nuclei form an equilateral triangle.

b: in bohr.
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Figure 2: Potential Energy Curves for Equilateral H3 . R is the length of the side of

the triangle. The (lOs/8s, 4p) basis set was used. The 2p 2E'(1) and 2p 2E'(2) curves
are not completely degenerate with each other because of inaccuracies introduced by the
limited basis set. But the difference between them can not be discerned on the scale of,
the plot (see Table 4).
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Figure 3: Potential Energy Curves for Equilateral H3 . R is the length of the side of
the triangle. The (12s/7s, 4p, Id) basis set was used. The 2p 2E'(1) and 2p 2E'(2) curves
are not completely degenerate with each other because of inaccuracies introduced by the
limited basis set (see Table 5).
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Table 6

Tfransition dipole moment' (in atomic units) among the first four electronic states
of H 3 for the (10l/8s, 4p) basis set.

Rb T41(s) T42(z) T43(z)

1.0 0.769(-3) 0.451(-3) 2.61
1.2 -0.632(-3) o.230(-3) 2.63
1.4 0.642(-4) 0.705(-3) 2.65
1.6 0.101(-2) -0.593(-4) 2.66

1.64 -0.108(-5) 0.148(-3) 2.66
1.8 0.376(-3) -0.486(-3) 2.66
2.0 -0.159(-3) 0.204(-3) 2.69
2.2 0.596(-3) -0.751(-4) 2.70
2.4 0.120(-2) -0.116(-2) 2.73
2.6 0.707(-3) 0.102(-2) 2.76
2.8 0.531(-3) 0.677(-3) 2.78
3.0 -0.349(-3) 0.271(-3) -2.80

Rb T31(x) T31(y) T32(x) T32(y) T21(x) T21(y)

1.0 1.70 -1.48 1.48 1.70 -0.759(-2) -0.590(-1)
1.2 1.64 1.24 -1.24 1.64 -0.269(1) 0.935(-1)
1.4 -0.673(1) -1.85 1.85 -0.651(-1) 0.139 0.974(-2)
1.6 1.44 -0.803 0.803 1.44 -0.938(-1) -0.152

1.64 1.11 1.19 -1.19 1.11 0.136(-l) 0.186
1.8 -0.628 1.35 1.35 0.627 -0.142 0.168
2.0 1.29 -0.290 .290 1.29 -0.226 -0.108
2.2 1.12 0.360 -0.359 1.12 -0.218 0.158
2.4 0.953 0.443 -0.440 0.956 -0.179 0.212

2.6 0.373 0.840 0.841 -0.371 -0.180 -0.198
2.8 0.393 0.733 0.730 -0.389 -0.140 -0.209
3.0 -0.177 -0.720 -0.718 0.174 -0.194 -0.101

a: Tij is the transition dipole vector for equibteral triangle configurations. The indices (1, 2, 3, 4) refir
to the

four electronic states ( 2 p 2E'(1), 2 p 2E'(2), 2s 2A' , 2 pz 2A") respectively.

b: in bohr.
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Table 7

Transition dipole moment' (in atomic units) among the first four electronic states
of H3 for the (12,s/7.,, 4p, Id) basis set.

R b T41(z) T42(s) T43(z)

1.0 -0.432(-3) -0.194(-3) -2.61
1.2 0.54 1(-3) 0.120(-3) -2.63
1.4 -0.483(-3) -0.489(-3) -2.65
1.6 0.809(-3) 0.546(-3) -2.68

1.64 -0.830(-3) 0.378(.3) 2.69
1.8 0.647(-3) -0.538(-3) -2.71
2.0 0.497(-3) 0.732(-3) -2.74
2.2 -0.140(-3) 0.100(-2) -2.75
2.4 0.904(.3) -0.556(-3) -2.78
2.6 0.152(.2) -0.153(-3) -2.80
2.8 0.150(-2) -0.206(-3) -2.81
3.0 0.710(-3) -0.758(-4) -2.82

R b T31(x) T31(y) T32(x) T32(y) T21(x) T21(y)

1.0 -2.25 -0.9440-) -0.927(-l) 2.26 0.586(-1) -0.521(1
1.2 0.199 2.04 2.04 -0.198 -0.916(-l) -0-182(-l)
1.4 -0.161 -1.83 -1.84 0.159 -0.131 -.0.22704)
1.6 1.22 1.10 1.09 1.22 -0.2020-) -0.172
1.64 -1.38 0.801 0.803 1.39 0.909(-l) 0.157
1.8 0.362 1.41 1.41 0.361 0.189 0.103
2.0 0.372 1.25 1.25 -0.371 -0.207 -0.135
2.2 0.424 1.07 1.06 -0.421 -0.194 -0.182
2.4 0.474 0.918 -0.917 0.472 0.161 0.225
2.6 0.446 0.812 -0.8 14 0.444 0.148 -0.226
2.8 0.443 0.702 0.700 -0.439 -0.111 -0.226
3.0 -0.388 -0.639 -0.632 0.385 -0.104 -0.196

a: Tij is the transition dipole vector for equilateral triangle configurations. The indices (1, 2, 3, 4) refer
to the four electronic states (2p 'E'(1), 2p 2E'(2), 23 2A'1, 2p. 2A"12) respectively.

bin borh.
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only z components, and the ones between these symmetric states have no z components.

Since the wavefunctions have been determined by the variational calculation up to a phase

factor, all transition dipoles are subject to a possible sign change.

Although C, is the only symmetry embedded into the calculation, when three nuclei

form an equilateral triangle, the D3h symmetry group associated with this geometry will

manifest itself via the following features:

1: The 2p 2E'(1) and 2p 2E'(2) states are nearly degenerate.

2: The electric transition dipoles from the 2 p, 2A" state to the 2p 2E'(1) and 2p 2E'(2)

states are close to zero.
3: Because of the degeneracy between the 2p 2E'(1) and 2p 2E states (under the sym-

metry of an equilateral triangle), they can always be written as:

I2p 2E'(1)) = cosp 01) + sino 1 02) (10)

I2p 2E'(2)) = -sinv j e1) + cosv 1 .2) (11)

I € 0) are solutions of the electronic wave equation with the same energy, which

form another E' representation of the D3h group. The phase p is not determined by

the variational method alone, and can have an arbitrary value. For two calculations

with different inter-nuclear distances, the relative phase of these two electronic cal-

culations is random, which in turn causes the z and y components of the transition

dipole moments (T31, T32, and T21) to vary greatly (see Tables 6 and 7). Even so,

the symmetry ensures that:

* The magnitudes of T31, T32, and T21 do not depend on the phase V and thus

change smoothly with the inter-nuclear distance.

SI T31 I = I T32 1, 1 T31(x) I = IT32(y) I, and I T31(y) I T32(x) I

All of these features have been confirmed numerically by the results in Tables 6 and 7

and by Figures 4 and 5. Since the molecular properties are more sensitive to the quality of

the wavefunction than the energy eigenvalues are, the results of the electric transition dipole

moment calculations offer another strong indication that the wavefunctions we obtained

are of good quality.

Our results for the electric transition dipole between the 2s 2A' and 2p, 2A" states,

(T43(z)) show a very slow, smooth and monotonic variation with the size of the equilateral

triangle. It is interesting to note that the value of this transition dipole moment is close

to that between the 2s and 2pz states of an isolated H atom ( 3.00 atomic units). The

correlation diagram of Figure 1 shows that those two states dissociate into H2 (X iE+) +
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Figure 4: Length of the transition dipole moment T31 for Equilateral H3 . R is the

length of the side of the triangle. IT311 is the length of the T31 transition dipole moment

(see Tables 6-7 for the defination). The lower curve was obtained with the (lOs/8s, 4p)

basis set used, and the upper one with the (12s/7s, 4p, id) basis set used.
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Figure 5: Length of the transition dipole moment T21 for Equilateral H3 . R is the

length of the side of the triangle. IT211 is the length of the T21 transition dipole moment
(see Tables 6-7 for the defination). The lower curve was obtained with the (lOs/8s, 4p)
basis set used, and the upper one with the (12s/7s. 4p, id) basis set used.
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H(2s) and H2 (X 'E+j) + H(2p-) respectively, which should indeed furnish transition

dipole moments around 3.00 a.u. As a result we can expect that this transition dipole

moment will be more or less the same for all the nuclear geometries we are intcrested in.

This turns out to be very important in making correct state assignments .in our calculation.

A6 the equilateral triangular geometry with an inter-nuclear distance R = 1.64 bohr

( corresponding approximately to the equilibrium geometry of the metastable H3 ), we

calculated the energy spacing between states 2s 2A' and 2p 2A" to be 1299 cm - 1 with

the larger basis set and 1374 cm - 1 with the smaller one, while the best value previously

calculated3 2 is 1422 cm-L and the experimentally estimated value3 2 1256 cm- t . Botl: of

our results for the electric transition dipole moments between these two states agree with

the previous calculation 32 within one percent.

In Table 8, we present the results of of the energy calculations with the bond angle

fixed at 600 and one bond length fixed at 10.0 bohr. Since the H atom is now far away

from the 112 diatomic molecule, we expect that these states of interest will correlate with

dissociated states according to:

1H3(2p 2E'(1)) - H 2 (X 'F+) -4- H(ls) (12)
H3 (2s 2A) - 71

2 (A 'I+) + H(2s) (13)

H 2 (X 'E+) + H(2p.) (14)

!1J2- Lg + H (2py) (15)

H3(2p 2A") H2 (X 'E+) + H(2pz) (16)

H3(2p 2E'(2))-- g 2 (b 3 I+,) + H(ls) (17)

Since the energies corresponding to the right side of Eqs 13, 14 and 15 are the same,

we write Eqs 14 and 15 as a reminder that we must make the correct state assignments.

The energy output listed in Table 8 confirms that the above equations describe the correct

correlations (also see Figure 6). This is another indication that our GTO basis set is also

appropriate for the 12 molecule.

In the equilateral triangle geometry, the energy of the 2p 2E'(2) state is below that of

the 2s 2A' state. However, for configurations in which H and H2 are far away from each,

other, this is not generally true (see Figures 2, 3 and 6). The crossing of the corresponding

potential energy surfaces increases the complexity of our calculation, because we have to

be able to identify the states correctly, both for state assignment purposes and the correct

calculation of the electric transition dipoles.
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Table 8

Potential energies when H and H2 are far away from each other " .

2p 2E'(1) 2p 2E'(2) 2p, 2A'

Ra this work KWb this work KWc this work KW4

1.2 -1.663260 -1.664934 -1.218675 -1.218964 -1.288093 -1.298934
1.4 -1.673015 -1.674474 -1.283682 -1.284150 -1.297616 -1.299474
1.6 -1.667196 -1.668580 -1.331255 -1.331724 -1.292109 -1.293580
1.8 -1.653721 -1.655067 -1.367693 -1.368291 -1.278657 -1.280067
2.0 -1.636826 -1.638132 -1.396762 -1.397064 -1.261499 -1.263131
3.0 -1.556159 -1.557312 -1.471696 -1.472010 -1.181171 -1.182312

a: One bond length is fixed at 10.0 Bohr. The bond angle is 60.0 degree.
R is the bond length of H2 (in bohr).

b: Potential energy of H2 (X 'E+) from W. Kolos and L. WolniewicZ 37 with the energy of H(n - 1)
added.

c : Potential energy of H2 (b 3E+) from W. Kolos and L. Wolniewicz 3 7 with the energy of H(n = 1) added.

d : Potential energy of H 2 (X 'E+) from W. Kolos and L. Wolniewicz 37 with the energy of H(n - 2)
added.
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Figure 6: Potential Energy Curves for Asymmetric H3 . The geometry is defined in

Table 8. R is the length of the smallest side of the triangle. The largest side of the triangle

is 10.0 bohr and the bond angle between them is 60.0'. The (12s/7s, 4p, 1d) basis set
was used.
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In order to map out the interesting part of the potential energy surfaces, we estimate

that about 500 nuclear configurations with different shapes and sizes should be treated.

We have at this moment about 95% of them done. After these calculations are finished,

they will be fitted by a procedure developed previously 3 before being used in the bound

and scattering states calculation of the nuclear motion.

The comparison between our ab initio results and these results from the functional

extrapolation and double many body expansion (DMBE)2 2 will permit us to check if

this extrapolation is valid for nuclear configurations appreciably removed from equilateral

triangular nuclear geometries. Recently, the H + H2 system has been the subject of

transition state spectroscopy (TSS) studies3 1 - 4 2 . There are some theoretical calculations

on the spectroscopy of the transition between the ground electronic state 2p 2E'(1) and

the excited electronic state 2p, 2A", but they are limited to either linear configurations or

to 3D calculations using an ad hoc potential surface for the excited state and a constant

electric transition dipole moments43 . Our calculations of the excited surfaces and the

nuclear geometry-dependent electric transition dipole moments between them will be very

helpful for such theoretical studies of the transition state spectroscopy of the H + H2

system.
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3. Ro-vibrational Bound State Calculation for the

Upper Manifold of the Electronic 2p 2E' States of H3

The next step towards the lifetime calculation is to obtain the ro-vibrational nuclear

wavefufnctions on the initial and final electronic potential surfaces. The 2 pz 2A" state

of H3 supports bound ro-vibrational states which must be calculated. There are several

methods for performing such calculations44 - 48 , most of which are based on the variational

principle. A method of choice should have the following properties:

" It should be applicable to all nuclear geometries.

" It should be able to treat large vibrational amplitudes.

" It should be able to take advantage of special nuclear permutation symmetries of the

triatomic system.

" It should be robust, and easy to use.

After a survey of the available methods, we chose the one developed by Tennyson

and Sutcliffe4 . Since the only previously calculated potential energy surface of H3 which

supports bound ro-vibrational states (neglecting its coupling to the ground state) is the

upper manifoid of the DMBE 2p 2E' surface22 , we used it as a testing ground for the bound

ro-vibrational state calculation. Because the conical intersection between this surface

and the ground state one introduces the Molecular Aharonov-Bohm (MBA) effect 49 - 5 2

which needs special treatment, and since we also want to embed the correct P3 nuclear

permutation symmetry into the ro-vibrational wavefunction, we also developed a new

hyperspherical coordinate propagation method which is very general and powerful. After

obtaining the 2s 2A' and 2p, 2A" potential energy surfaces, we will use those two methods

tu calculate the corresponding ro-vibrational states.

3.1 Variational Method

The coordinates used in the method of Tennyson and Sutcliffe are the scattering
coordinates 45 . Let A,, A 2 , A 3 be the three atoms of the system, and (A, v, ic) be any cyclic

permutation of ( 1, 2, 3 ). rA is the internuclear vector for the diatom A,,A,, and RA the

vector of AA with respect to the center of mass of A1,A,,. After separating the motion

of the center of mass of these three atoms, the system can be described by six variables

(a, Ox I/ , RA, rx, O). The three angles (ax, ,x, -1,%) are Euler angles, which describe

the orientation of the tratomic molecule in space. rx and RA are the lengths of vectors rA

and RA respectively and Ox is the angle between these two vectors.

A suitable symmetrized angular basis set for the variational calculation is chosen to
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be:

IJ, k) =(1 + k,o) - 2 2-1/2

{ejkCoA)D k(AIh, ) + (-l)"O ,k(GA)D,_(,I,, y;)} (18)

where 6 k,o equals 1 when k = 0 and zero otherwise. D(,,3A,yA) is the Wigner

rotation function5 3 ande1 , ;(0 x) is the associated Legendre function5 4 . p is a quantum

number that can assume the values 0 or 1. J is the total angular momentum quantum

number, with M and k being the quantum numbers of its projections along the space-fixed

z axis and the body-fixed z axis respectively. j is the angular momentum quantum number

of the diatomic vector rA. The Euler angules are chosen in such a way that the body-fixed

z axis is along the RA direction and rX has a positive projection on the body-fixed i axis.

(p, J, M) are constants of the motion for the system. The allowed values of j and k are:

k =(-J,-J + 1,...,J- 1, J) (19)

j= (Ik, IkI + 1, IkI + 2,...) (20)

The total parity of the spacial wavefunction under inversion through the system's center

of mass is (-1)J+P.

The basis functions for (RA, rx) are chosen to be the analytic Morse oscillator-like
functions:

__1n sq ,n (rA , R A ) = 1AR- H (r )H , (R ) (2 1)

m, n = {0,1,2,3,4,...} (22)

where

H,(r) = 13/ 2 N.,.exp(-y/2)y("'+')/ 2 L,(y) (23)

A 4D (24)

# = We( -A )1/2 (25)

a = integer(A) (26)

y = Aexp[-fi(r - re)] (27)'

N,,,L, is the normalized associated Laguerre polynomial. r in Eq. 27 is either RA or

rA. The parameters ju, r,, w, and D, are associated with the reduced mass, equilibrium

separation, fundamental frequency and dissociation energy of the motion of coordinate r.
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In practice r,, w,, and De are usually treated as variational parameters and optimized

accordingly.

It is difficult to embed the P3 permutation symmetry of A3-type molecules consisting

of three identical nuclei in Tennyson s method. However, the P2 permutation symmetry

of AB 2-type molecules can be easily built in45 (also see Eq. 18). Since the potential

energy function of such a molecule is invariant under an interchange of these two B atoms,

the Hamiltonian does not couple the angular basis functions of even j with angular basis

functions of odd j, and we can treat these two cases separately 45 .

If we treat an A3-type system with only the P2 symmetry embedded into the basis set

functions, the final converged result should still satisfy the P3 symmetry. The symmetry

would manifest itself in the structure of the eigenenergy levels and in the shape of the

eigenfunctions plotted in a set of appropriately symmetrized coordinates. If an eigenstate

obtained from the even basis set is nondegenerate, it must belong to an A, irreducible

representation of P3. If an eigenstate obtained from the odd basis set is nondegenerate,

then it generates an A 2 irreducible representation of P 3 . If one eigenstate from the even

basis set and one eigenstate from the odd basis set are degenerate with each other, they

must belong to an E irreducible representation of P 3 .

The Tennyson-Sutcliffe (TS) method has some nice properties. It does not depend

on special molecular geometries 44 , and is applicable to motions with large vibrational

amplitude. The choice of known analytic basis func tions makes it possible to obtain most

parts of the Hamiltonian matrix elements analytically and thereby save an appreciable

amount of computation time. The only computation-intensive part of the calculation is

the diagonolization of the Hamiltonian matrix.

Numerical details and results

The code we used for the variational state calculation is called TRIATOM, and was ob-

tained from the CPC Program Library of Queen's University, Belfast, Northern Ireland 4s .

We initially made small test runs on Sun workstations and a micro VAX. The major part

of the calculations was done on the SCS-40 mini-supercomputer of the San Diego Super-

computer Center (SDSC).

The ro-vibrational motion of the H + ion has been treated by Tennyson et al. -

Since this molecule has some resemblance with the H 3 system in which we are inter-

ested, we repeated part of the calculation for H + with total angular momentum J = 0

for gaining experience with this code. We adopted the same values of the parameters

re, w,,, D,., R,, wR. and DR. used previously 5 - 56 , which are listed in Table 9. The
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Table 9

Optimized parameters of the Morse-like functions in RA and r, for H3 with J = 0.

D,(au) w.e(au) r. (au)

J = 0 0.230 " 0.0085 a 1.71 a

J = 0 0.205 b 0.0118 b 2.10 b

a: Parameters for the Morse-like functions in Rk.

b: Parameters for the Morse-like functions in rx.
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H + potential surface used in our calculation is that included in the TRIATOM package

for code testing 58 . It is different from the one used in previous publications5 - 5T7 . As a

consequence, our results should not be in perfect agreement with the latter. The conver-

gence test and the final results are listed in Tables 10. and 11, which-show that the lowest

ten states are well converged, with the size of the largest basis set being the same as that

used previously s s -5 .

For HT_, the only currently available potential energy surface which supports bound

ro-vibrational states of nuclear motion is the upper manifold of the DMBE surfaces 22 for

the 2p 2E' electronic states, if coupling between these two manifolds is neglected. We

calculated the ro-vibrational bound states with total angular momenta J = 0 and 1.

Initially we used small sets of basis functions to optimize the r,, wr,, Dr6 , Re, WR,

and DR parameters. Since it had been showed previously that the optimized parameters

for even j basis are more or less the same as those for odd j basis"', we only did the

optimization for the even j basis calculation. This optimization was done with the basis

set defined to be mm..a = 8, n. = 8, ',az = 16, and Ntota = 576 for J = 0, and

Mnna = 6, n.a = 6, a = 15, and NtotaL = 382 for J = 1. For the case of J = 0,

we put the emphasis on the lower 5 states, while for J = 1 we considered the average

effect of the parameter tuning on the lower 12 states. Because the optimization process

is actually done manually, in a finite range of the six dimensional parameter space, with

limited guidance from physical considerations of Eqs. 23 to 27, it is possible that a local

minimum may be accepted as the global minimum since there is no sure indication that the

global minimum has been reached. Fortunately, the larger the basis set, the less sensitive

the results are to changes of those parameters. The results of the optimized parameters

are listed in Table 12.

We then increased the size of the basis set and tested the results for convergence.

We analyzed the importance of each basis function for a given basis size carefully, and

let the results guide us to achieve an efficient way of increasing the size of the basis set.

The convergence test results for the H 3 molecule are listed in Table 13, which shows that

the energy levels are not well converged as for H+. In general the lower states are better

converged than the upper ones. The calculation turned out to be limited by the amount of

computer memory we could access at that time, which was 3 Mwords. The final results for

H 3 are listed in Table 14, with the sizes of basis set in the range of 1100 to 1600 and SCS-40

CPU times ranging from 10 minutes to 30 minutes. The results agree with those from the

hyperspherical coordinate propagation method well, as discussed in the next section.

One of the most important reasons why we need such a large basis set for the H 3
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Table 10

Convergence test of H3+ with J = 0 and even j basis functions for the lower ten states ',b.

H3+ , with J = 0 and even j basis functions

m=9, n=7, L=14 m=10, n=8, L=14 m=11, n=8, L=18
N=340 N=616 N=880

-7.067955 -7.067967 -7.067977
-6.816079 -6.816119 -6.816119
-6.750378 -6.750436 -6.750437
-6.590602 -6.590784 -6.590786
-6.567921 -6.568055 -6.568060
-6.512097 -6.512965 -6.512967
-6.441278 -6.441708 -6.441708
-6.367264 -6.367514 -6.367530
-6.338421 -6.338839 -6.338893
-6.290215 -6.290872 -6.290870

a: The unit of energy is 104 cm - .

b See reference 45 for the definitions of (m, n, L) and N.
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Table 11: H, J = 0 bound state energies'.

Even basis Odd basis

Tennyson'sb presentc Symmetry Tennyson'sb presentc
results results results results

0.00000 0.00000 A,
0.24944 0.25185 E 0.24943 0.25139
0.31911 0.31753 A,
0.47250 0.47718 A,
0.49583 0.49991 E 0.49580 0.49990
0.55453 0.55500 E 0.55449 0.55485
0.62768 0.62626 A,
0.69444 0.70044 A,
0.72350 0.72907 E 0.69433 0.70030

A2  0.74513 0.75069
0.77403 0.77710 A,

a: The energy :s in 10 cm - " and its origin is the ground state energy

b: See references 55-57.

c: Se text and reference 58.
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Table 12

Optimized parameters of the Morse-like functions in Rx and rx,

for H3 with J 0 and J 1

De(au) we(au) r(u

j =0 0.230Oa 0.0130 a 1.96 a
J = 1 0.262 a 0.0100 a 2.01 a

j =0 0.6 .12b 2 .0 9 b

J = 1 0.232 b 0.0102 b 2.32 b

a: Parameters for the Morse-like functions in RA.

b: Parameters for the Morse-like functions in r.
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Table 13

Convergence test of H13 with J = 0 and evenj

basis functions for the lower ten states, b.

H13, with J = 0 and even j basis functions

m=15, n=13, L==16 m=16, n=13, L=18 m=19, n=19, L=26
N =757 N =1067 N =1368

-0.824614 -0.826261 -0.827333
-0.662336 -0.664153 -0-665618
-0.512776 -0.514696 -0.516372
-0 376072 -0.377987 -0.379855
-0.369457 -0.369877 -0.370206

-0.253486 -0.256018
-0.236860 -0.237305
-0.134838 -0.140441
-0.119736 -0.120358
-0.049332 -0.053411

a: The unit of energy is 104 cm-1 .

b :See reference 45 for the definitions of (in, n, L) and N.
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Table 14

Bound state energies without consideration of the geometric phase'.

J =
b  J= 1 even parityb J 1 odd parityc

3.7210 A, 3.7218 3.7282 A2  3.7294 3.7264 E 3.7276
3.9216 A, 3.9223 3.9284 A2  3.9297 3.9266 E 3.9281
4.1067 A, 4.1073 4.1130 A2  4.1145 4.1114 E 4.1131
4.2759 A, 4.2766 4.2817 A2  4.2839 4.2802 E 4.2831
4.4282 A, 4.4301 4.4336 A2  4.4386 4.4322 E 4.4398
4.5621 A, 4.5734 4.5665 A2  4.5803 4.5656 E 4.5894
4.2886 E 4.2886 4.2955 E 4.2956 4.2971 A, 4.2975

4.2969 A2  4.2972
4.2904 E 4.2908

4.4533 E 4.4533 4.4596 E 4.4598 4.4610 A, 4.4618
4.4608 A2  4.4615
4.4550 E 4.4557

4.5980 E 4.5983 4.6036 E 4.6048 4.6049 A ,  4.6083
4.6047 A2  4.6093
4.5996 E 4.6028

4.7212 E 4.7261 E 4.7349 4.7272 A, 4.7370
4.7270 A2  4.7355
4.7225 E

4.6806 Al 4.6813 4.6871 A2  4.6893 4.6842 E 4.6878

a: The energy is in eV and its origin corresponds to the bottom of the ground electronic state of the
isolated H2 molecule.

b: The left column gives the results of the hyperspherical coordinate propagation method and the right col-
umn the TS method results. The central column gives the irreducible representation of the permutation
group of the nuclei to which the spacial part of the nuclear wavefunction belongs.
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system is that the upper manifold of the H 3 2p 2E' surface has a cone-shape structure with

a sharp tip at the equilateral triangle nuclear geometry, while the H' surface has a nice

smooth round shape instead. The Morse-type basis set functions are good for representing

the harmonic-like oscillation of the H + ion. However they are not good for representing

the motion on such a conically shaped surface. As a result, more basis functions are needed

to obtain converged results H 3 than for H+, if the same degree of convergence is required.

For the 2s 2A' and 2 p, 2A" electronic states, the H 3 is really like a H + core plus a Rydberg

electron in 2s -axnd 2 p, states respectively, which interact weakly with the H+ core. For

this reason the sIiapes of the potential energy surfaces of those two electronic states should

be simil-tr to that of the H + in its ground electronic state. This suggests that a small basis

sets (ui size about 800) should give converged results for the 2s 2A' and 2p. 2A" potential

energy surfaces.

Finally, let us consider the shapes of the ro-vibrational wavefunctions to see if the

final converged calculations yield wavefunctions with the right P3 symmetry. We ploted

the wavefunctions in a system of symmetrized coordinates59 . Figure 7 contains contour

lines of the wavefunctions for H+ with total angular momentum J = 0 and basis set size

N=880, and Figure 8 for H 3 with J = 0 and basis set size N=1363. The plots show that the

wavefunctions do not display P 3 (i.e., C3.) symmetry, even for the highly converged state

of H'. The reason for this behavor is that in general, the convergence of the eigenvector

is poorer than that of the eigenvalue in a numerical eigenvalue-eigenvector problem. In

order to get the right symmetry with a reasonable basis set size, the symmetry has to

be embeded into this basis set before the variational calculation is performed. This is

difficult to do with Tennyson's code, so we developed a new method to achive this, which

is described in section 3.2.
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Figure 7: Contour plot of the wavefunction %P for the lowest J 0, A,-type H+

ro-vibrational state, in symmetrized hyperspherical coordinates"0 . Depicted is a cut at

constant YA chosen to be 2.1 bohr, for which the potential energy function of H + has

a minimum (at XA = Zx = 0). The maximum (near the center of the plot) of the

wavefunction was set equal to 1.0, and contours for %P = 0.9 to 0.1 in steps of 0.1 are

displayed. The XA and ZA coordinates are in bohr.
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Figure 8: Contour plot of the wavefunction 41 for the lowest J = 0, A,-type H13

ro-vibrational state, in symmetrized hyperspherical coordinates s g . Depicted is a cut at
constant YA chosen to be 1.967 bohr, for which the potential energy function of H3 has
a minimum (at X, = Z\ = 0). The maximum (near the center of the plot) of the
wavefunction was set equal to 1.0, and contours for 'I = 0.9 to 0.1 in steps of 0.1 are
displayed. The X. and Z), coordinates are in bohr.
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3.2 Hyperspherical Coordinate Propagation Method

The hyperspherical coordinate approach has been successfully used in recent years

for the calculation of bound ro-vibrational 6 - 6 ' and scattering62- 6 7 states of triatomic

systems. Our motivations of using it to study the bound ro-vibrational motion of H3 in

its upper manifold of the electronic 2p 2El states are three-fold:

1. The full P 3 nuclear permutation symmetry of the identical triatomic system can be

easily embedded into the basis set functions so that the final wavefunctions of the

ro-vibrational states will have the correct symmetry. This, as seen in the previous

section, is difficult to achieve with the Tennyson-Sutcliffe variational method.

2. The ground electronic state 2p 2E'(1) of H3 has a conical intersection with the first

excited electronic state 2p 2E'(2) at equilateral triangle nuclear configurations 19 ' 22 .

The Born-Oppenheimer real electronic wavefunctions undergo a sign change when one

follows a close path in nuclear configuration space around the line along which the

two states conically intersect 19 '22 '49 - 52 . Since the total electro-nuclear wavefunction

is continuous and single valued, there has to be a compensating sign change on the

nuclear part of the wavefunction 4 0 - 52 . This is referred to in the literatures as the

Molecular Aharonov-Bohm (MAB) effect 5 1- 5 2 . This effect will modify the energy

levels of the bound ro-vibrational states of the upper electronic state 2p 2E(2) which

would exist in the absence of interaction with the ground state. It is easy to take this

MAB effect into account with the symmetrized hyperspherical coordinate propagation

method described below, while this is not possible with the TS variational method

in its present format. Our results should help to solve the controversy as to whether

these ro-vibrational bound states have been experimentally detected or not2 - 4 .

3. The corresponding wavefunctions will be needed to calculate the overlap integrals

with the ground state scattering wavefunctions (see Eqs. 1 and 2). Since we calculate

the latter using hyperspherical coordinates, it makes sense to obtain the bound state

wavefunctions with the same coordinates.

In the absence of coupling between these two electronic states, the excited 2p 2E'(2)

surface should support bound ro-vibrational states. Initially, without including the MBA

effect, we computed those states using a symmetrized hyperspherical coordinate propa.-

gation method, and compared the results with those of the variational method (TS), for

total angular momentums J = 0 and J = 1. Then we did the calculation including

the MAB effect, and obtained completely different energy levels0 8 . The MAB effect also

modifies the scattering calculation in H + H 2 system 60 .
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The Method

Let A,,Ag,A., be the atoms of the system, and (A, v,r) be any cyclic permutation

of (a,/3, -y). rX is the mass-scaled"° internuclear vector for the diatom A, A and RA the

mass-scaled vector of AA with respect to the center ofmass of A,,A,.. The hyperspherical

method uses the hyper-radius p = (RI + r) 2 to describe the global size of the triatomic

system and a set of five angles f to describe its shape and orientation in space 62- 6 7 ' 70 . In

the Born-Oppenheimer approximation, the electro-nuclear wavefunction can be written as

a product of the electronic part 0,, which we choose to be real, and the nuclear part. The

latter can be factored into a nuclear spin part and a spatial part pJMnrI, J is the total

nuclear angular momentum quantum number, M its projection onto a laboratory-fixed z

axis, rI the parity with respect to inversion of the nuclear coordinates through their center

of mass and r the irreducible representation of the nuclear permutation group (P 3 ) to

which qJMnr, the electro-nuclear wavefunction excluding the nuclear spin part, belongs:

sMnr = OJMnr(p,',,(4; P, .) (28)

refers to the set of all electronic coordinates (spacial and spin). ojmnr is an eigenfunc-

tion of the nuclear motion Hamiltonian

H h2 _5 a 5 a 12 (9
5 P + -p,2 + V (29)

where k& is the three-body reduced mass, A the grand canonical angular momentum and V

the Born-Oppenheimer electronic potential energy function. The nuclear function OAJfIr

is expanded in a basis of local hyperspherical surface functions (LHSF) 4Mpnr

nncsnr(~q 4ZFnr p-P nr q (30)
p 2 n,

The LHSF are defined as the eigenfunctions of the nuclear Hamiltonian at fixed hyperradius

j2

V-ri n n en(~~ nr(. (31)

The coefficients F,nr in Eq. 30 are solutions of a set of coupled differential equations.

in p, whic: ve solve using piece-wise diabatic bases62- 67 . For assumed values of the

rovibrational energies, the solutions are propagated forward and backward from small and

large p values where they have negligible amplitudes. The energy is scanned iteratively

until the forward and backward solutions match smoothly at an intermediate value of p.
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In the present study, we use the Whitten-Smith 7 1 - 72 definition of the five angular

coordinates as modified by Johnson 73 . Three Euler angles (afl-') specify the orientation

of the body frame in space. The axes of this frame lie along the principle axes of inertia.

The Z axis is parallel to rA x R% and the X axis is associated to the smallest moment of

inertia and is oriented such that- rAx _ 0. Two angles (0, VX) describe the shape of the

molecular triangle and are defined by:

rXX = pcos( 4 -2 (32)7r in 3-" (33)
rAy = -psin(4 - O33

R,\x = pcos( 47 - 0.)O("(44 2 2
7r 9

RX=po(--)cs(-T) (34)

RAy = psin(- - -)sin(-) (35)
4 2 2

The ranges for these angles are 0 << M and 0 < Vo , _ 27r. 0 =0 corresponds to the

symmetric top configuration (an equilateral triangle for three identical particles) in which

the principal axes of inertia X and Y are undefined.

The grand canonical angular momentum is given explicitly by 67- 6 0 :

2 1 a .n0 a 1 a2 4ihcos0 - a

sin2-2 TO O ' sin2O Jz a-',
+2[3 _-ZI+ 1 sin0 2(6

+ cos20 +sin 2 + 2 + 1 (36)

where Jz is the body-fixed Z component of the total angular momentum j, and J+ -

Jx ± iJy.

Eq. 31 is solved variationally by expansion in a body-fixed basis built with

products of simple analytical functions 66

JMK inp=
X, f,,, (0) D K -a13) (37)

D K is a Wigner rotation matrix 3 and n,, is integer or half of an odd integer. fn. (0)

are simple trigonometric functions, such that the LHSF have correct behaviors near the
singularities of the kinetic energy operator 0 = 0 and 1. In practice, the fn' can be chosen

as the functions cos(no0) or sin(no0), with no integer or half odd integer, in terms of which

the hyperspherical harmonics (whose 0 dependence is usually written as a polynomial in

cos(O)) can be written.
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We now focus attention on the special case of three identical nuclei and describe

how to build electro-nuclear wavefunctions qlJM"i which are bases for the irreducible

representations of the permutation group of the nuclei (P3 ). The operations of this group

correspond to simple changes in Vo% (which are related to the isomorphism between P3 and

C3.) as indicated in Table 15. If e,.(= ±1) is the symmetry of the electronic wavefunction

with respect to the v - r. permutation, then the linear combinations defined by
JMK _ JMK en e l)J+K+ 2 nx,,JM(,-K

X nnpi -- Xnn,j + Evo='-vo n0,_ln.i (38)

give electro-nuclear wavefunctions pwrir (Eq. 28) having en(= ±1) symmetry with

respect to the v +-* r. permutation.

If there is no conical intersection between electronic states, the electronic wavefunc-

tion 'e(e;p, ') belongs to a one dimensional representation of the nuclear permutation

group (A1 for ,, = +1, or A 2 for ee = -1). Table 16 indicates how the total angular

momentum, the parity and the irreducible representation r of P3 to which VJMnr belongs

determines the set of quantum numbers n,,.

The hyperspherical method uses 20 no values, between 4 ( A, or A 2 symmetry ) and

8 ( E symmetry ) In I values (Eqs. 37 and 38), and between 6 ( A, or A2 symmetry
) and 12 ( E symmetry ) LHSF (Eqs. 30 and 31). The LHSF have been tomputed at

typically 50 5 values between 1.5 bohr and 6.5 bohr. The convergence of the LHSF and

rovibrational energies is of the order of 10' eV. The compactness of the hyperspherical

expansion comes from the fact that the potential energy around the YX axis (0 = 0) is

nearly cylindrical (small number of nslj values) and from the steep increase of the the

potential as a function of 0 (small number of LHSF).

Results and Conclusions

Figure 9 illustrates the main features of the electronic potential energy surface in

an internal configuration space s '. The energy levels obtained from the calculation in the

hyperspherical coordinates are converged to within 1 cm - ', and are very close to those

gotten by using the TS variational method, with the former one more converged and more

accurate. The hyperspherical coordinates propagation method makes the symmetry as-

signment of these levels much easier. Table 14 compares the ro-vibrational energy levels

obtained by these two methods excluding the MAB effect. Table 17 gives the energy levels
when the MAB effect is included, obtained from the hyperspherical coordinate propaga-

tion method only. Comparison between Tables 14 and 17 shows that this effect is very

important. Figure 10 is the graphic representation of Tables 14 and 17. (Azl, ;12 , 1) are

the quantum numbers assigned to those states6".
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Table 15

Effect of permutations of the nuclei on the angle (x.

Permutation PA.,. pv#Ab . pv,, d pA. d pA. d

Value of ,e 2, + r P + I 2r - V 2 - 9P-

a Px,,. is the identity permutation.
b P,,,A refers to the cyclic permutation Avx - vxA.
c: PcA, refers to the cyclic permutation Aw. - rAv.
d :Pj refers to the pairwise permutation of nuclei i and j.
e : The changes in VA are true modulo 27r, since VA must remain in the range (0,2irl.
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9 2 1. 0. 1. 2. 3

Figure 9: The two dimensional plot of the upper sheet of the DMBE potential

surfaces22 . The hyperspherical coordinates are used"0 . The ZA value is zero. The conical

intersection of those two electronic states happens along the YX axis. The equipotentials

are equally spaced by 0.25 eV from 3.0 eV to 5.0 eV. Xx and Yx are given in bohr.
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Table 16

Choice of n, for each parity Hl and irreducible representation r

of the nuclear permutation group P3 .

HI r c n,

Even,without phase' A8 /A2 3md
Odd,with phaseb E 3m± l

d

Even,with phaseb A1/A 2  3m+ 2d
Odd,without phase' E 3m± I "

a : without consideration of the geometric phase due to the conical intersection.
b : with consideration of the geometric phase due to the conical intersection.

c: r is the irreducible representation of P3 to which 1 Mnr belongs.
d: m is a non-negative integer.
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Figure 10: Ro-vibronic energy levels associated to the upper sheet of the DMBE
potential surfaces of H322. The full lines are the levels including the effect of the geometric
phase while the dashed ones exclude that effect. The quantum numbers vj, v2 and I are
defined in reference 68. The origin for the energy scale is the bottom of the isolated ground
electronic H2 potential energy curve. These levels are for the J = 0 states, but the J = 1
levels are nearly degenerate with them, the splitting being of the order of 10 - 2 eV. Their
nuclear permutation symmetries depend on J and on the parity II, as well as whether the
geometric phase is or is not included (see Table 15 and Table 16). There are two levels for
each of the sets of quantum numbers (V1 0, V2 = I - -) and (v1 = 1,v 2 = I =), which

would be degenerate if the potential were exactly cylindrically symmetric around the YA
axis (see text and Figure 9).
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We have described in this section a new hyperspherical coordinate propagation method

for the calculation of bound ro-vibrational states of triatomic system. This method is well

adapted to systems of three identical particles, because it allows easy inclusion of the full

permutation symmetry of the system and of the effect of conical intersections on the phase

of the nuclear wavefunction (MAB effect). Since there is not MAB effect for the 2s 2A'
and 2p, 2A' electronic potential energy surfaces, we can use both methods in the study

of their bound ro-vibrational states. The TS method can easily furnish the approximate

locations of the ro-vibrational eigen-energies, while the hypersperical one permits us to

scan energies near those approximate ones and obtain quickly more accurate levels and

their corresponding wavefunctions, having the exact P3 symmetry built in. This work has

puL-I: A-A u%-Ae recentLy6 .
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4. Scattering Wavefunction

4.1 General Considerations

In the theoretical treatment of predissociation processes 11,12 and of transition state

spectroscopy (TTS) 39 , the unbound scattering wavefunction with a proper physical bound-

ary condition and normalization is required.

In a typical quantum scattering calculation, the scattering matrix S is obtained instead

of the physical wavefunction with proper boundary conditions and normalization. The

reason is that the scattering matrix S contains all the information about the state-to-

state scattering cross sections (which can be compared with experimental results), and

therefore makes the construction of the physical wavefunction unnecessary. Many methods

of scatteriig calculation take advantage of this fact and obtain the S matrix without

constructing the physical wavefunctions 6 -6 7 ,69 . Only a few calculations involved with

scattering wavefunctions have been published for triatomic systems, both for collinear",

and 3D 75 cases.

Because the S matrix involves the ratio between the the in-coming parts and the out-

going ones of the scattering wavefunctions in the asymptotic regions (where the triatomic

system becomes a free atom plus a diatomic molecule, and the wavefunctions can be ex-

pressed as a sum of products of the ro-vibration wavefunctions of the diatomic molecule

and the plan-wave functions of the free atom with respect to the center of mass of the

diatomic molecule), it allows the determination of the physical wavefunction in the asymp-

totic regions for a given choice of the in-coming parts. This furnishe3 the explicit boundary

problem of the Schrodinger equation. The solution will correspond to the real physical pro-

cess of interest.

Using the coupled-channel method in hyperspherical coordinates, the wavefunction
can be expressed as an expansion in basis set functions of the hyperangles with coefficients

as functions of the hyperradius, the Schrodinger (partial differential) equation can be

transformed into a set of second order ordinary coupled equations as

+ Q~x)J ()=0 (39)

with

Q(x) = (21s/h 2) [EI - V(x)] (40)

where I is the identity matrix, and V(x) the interaction matrix. E is the known total energy

of the system. TI(x) the expansion coefficient matrix62 - 6 7 ,7 6 . Here x is the hyperradius.

Detail of the definitions of those matrices can be found elsewhere 62- 67 , 76
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Once scattering matrix S has been determined by a forward integration method, the

physical wavefunction T1(x) can be calculated from a backward integration of Eq. 39. The

initial conditions are obtained by projecting the wavefunction in -- a totic region,

which is obtained from S, into the hyperspherical surface function at large hyperradi,,_.

The backward integration is then conducted to a small hyperradius where the interaction

is strongly repulsive and the wavefunction vanishes.

Previous calculations 62 - 64 are all based on the logarithmic derivative method77 which

is not suitable for the construction of the physical wavefunction in the backward propaga-

tion because it furnishes the logarithmic derivative matrix rather than the wavefunction

matrix itself. We have chosen the renormalized Numerov method"8 for that backward

integration.

4.2 Renormalized Numerov Method

In the renormalized Numerov method, the Eq. 39 is transformed into

[I - T,+ L] T+ I - [21 - T,, %,, + [I - Tn-_LJ q"_ = 0 (41)

by using finite difference scheme, where

41n = Tx") (42)

and

T7= -(h 2 /12)Q(X,) (43)

Here h is the spacing between the N + 1 equally spaced grid point (xo, X1 , .. , XN) and

Q(x) is defined by Eq. 40. The F, matrix is defined as

F,, = [I - T,,1,4' (44)

If we substitute Eq. 44 back into Eq. 41, we have

F.+1 - UnF, + F,- 1 = 0 (45)

with

Un = (I - T,,) - ' (21 + 10T,.) (46)

Next, a ratio matrix R is defined as

R,. = F,.+,Fn' (47)
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This transforms Eq. 45 into the two term recurrence relation

R,, = U - R-' L(48)

This is the basic propagation relation "for this method.

At large hyperradii (say, x0 and x1), the wavefunction is known, so are the expansion

coefficient matrices To and *1 which are obtained by the wavefunction projection in the

asymptotic regions. The matrices F 0 and Ft are obtained by using Eq. 44, and then Ro

by using Eq. 47. Then the backward propagation can be started following Eq. 48, and all

P, be generated accordingly.

We have implemented the renormolized Numerov propagation scheme in the collinear

HI3 scattering calculation on its ground potential energy surface in order to test our version

of this propagator. The cr le is currently being debugged and compared with previous

results for forward integration'D. Once this is completed, the backward integration method

for d termined the physical wave function will be extended to three dimensions.
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5. Decay Mechanisms for the 1[3 System

The metastable 113 molecule in the 2p, '2A electronic state can decay via radiative

processes to the lower 2s 2A', 2p 2E'(2) and 2p 2 E'(1) electronic states and by the predis-

sociation to the unbound 2p 2 E'(1) ground electronic state. In this* section, we discuss the

calculation of the lifetime via each of these decay channels.

5.1 Radiative Decay and Selection Rules

By coupling to the radiation field, the H3 molecule can emit radiation as it undergoes

a transition from an upper state to a lower one. The general theory of the interaction

between a molecular system and a radiation field is beyond the scope of this report and can

be found elsewhere' 7 . We will consider here three important kinds of transition: electric

dipole moment (El), magnetic dipole moment (Ml) and electric quadrupole moment

(E2)- The lifetime r associated to each is inversely proportional to the square of the

.corresponding transition moments:

rx ¢c If ) - (49)

where qI' and ! are the initial and final wavefunctions for the molecule and X the

transition moment operator under consideration (which can be El, ML or E2).

The equilibrium geometries of the bound ro-vibrational states of the 2s 2 A', 2 pz 2 Al

and the upper manifold of the 2p 2 E' states (in the absence of John-Teller distortions 19' 2 7 )

are of that of an equilateral triangle. For this reason, the wavefunctions of those electronic

states display (to zeroth order) D3h symmetry. Using this symmetry, and with the assump-

tion that the transition dipole moments do not change with nuclear geometry, Herzberg

el.al. have discussed the selection rules for the electric dipole radiative transitions among

those four electronic states5 ' 7 . We have extended their considerations of the electric dipole

transition (El), to that of the magnetic dipole (Ml), and electric quadrupole (E2).

We use the same assumption that the multipole moments do not change with nuclear

geometry. Under this condition, the integral in Eq. 49 can be separated into a electronic

part and a nuclear part, which permits us to rewrite Eq. 49 as:

Tx- 0C I (, I X~ 14,) 1-2 1 ("'k I XJ I q) 1-1 (50*

where %P, and T, stand for the electronic and nuclear wavefunctions respectively. The

electric dipole moment El (being a vector) forms an A" + E' representation of the D3h

group, the magnetic dipole moment M1 (being a skew vector) forms an A' + E" one,
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and the electric quadrupole moment E2 (as a second rank tensor) an A' + E' + E" one.

The symmetry requires that for the integral over electronic coordinates in the right hand
side of Eq. 50 not to vanish, it is necessary that the integrand (the product of the initial

electronic state, the moment operator and the final electronic state) in that integral must

have an A' component. Using the properties of the D3h group, this furnishes the selection

rules for the transitions between those four electronic states.

For the electric transition dipole moment (El), the transition can have non-zero intensity

* between the 2 pz 2A" and 2s 2A' states,

" and between the 2s 2A' and 2px.y 2 E'(1, 2) states.

For the magnetic transition dipole moment (M1), it can have non-zero intensity

* between the 2 p, 2A" and 2p., 2E'(1, 2) states.

For the electric transition quadrupole moment (E2), it can have non-zero intensity

* between the 2s 2A' and 2p.,y 2E'(1, 2) states,

* and between the 2 P. 2A" and 2p, 1, 2 E'(1, 2) states.

Since we have calculated the potential energies of the 2pz 2A" and 2s 2A' states and

the electric transition dipole moment between them, we can estimate the lifetime of this

decay process. Our estimation was done at R = 1.64 bohr (R being the length of the side

of the equilateral H 3 ) where the nuclear configuration is very close to the minima of both

potential energy surfaces, using

= 2.02586 x 10- 6 (AE)3 T?1  (51)

where AE is the transition energy (AE = Ei - Ei, in cm-'), and Ti,! is the transi-

tion dipole moment (in atomic unit) between the initial state (2s 2A ) to the final state

(2p 2A), and the dipole transition lifetime rij is in seconds. Our calculated transition

energy is 1299 cm - 1 and the corresponding electric transition dipole moment is 2.68 a.u.

which yields lifetime of about 31 /As. This compares with the results of 1422 cm - 1 , 2.69

a.u. and 23 As from Petsalakis et al.3 2 , and 1988 cm - 1 , 2.85 a.u. and 7.7 As from King

and Morokuma27 . The lifetime is very sensitive to the transition energy. If the experimen-

tal transition energy (of 993 cm - 1) is used (which includes the difference between the zero

point energies of the nuclei motion on the 2s 2A' and 2p, 2A potential energy surfaces),

the resulting lifetime estimations are 70 As (this calculation), 62 As ( King and Morokuma)

and 70 As (Petsalakis et al.) and all agree with the experimental estimated value reported

as being in excess of 40 Asp4
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When the ro-vibrational motion of the nuclei distorts the shape of the molecule away

from equilateral triangle, the D 31 , is no longer the symmetry group of the electronic wave-

function, so that those selection rules should not be observed exactly. For a molecular

system, the strength of the coupling with the radiation field generally decreases in the

order 1) electric transition dipole, 2) magnetic transition dipole, 3) electric transition

quadrupole, and so on. Only if some selection rule prevents the stronger coupling to be

non-zero, can the weaker coupling ha 'e a chance to show its contribution. When 113

does not have equilateral triangular geometry, the electric transition dipole coupling can

contribute to each of the possible transition between those lowest four electronic states.

Therefore, it is appropriate for us to study the electric dipole transition first. With the

potential energy surfaces and electric transition dipole moments obtained by the electronic

calculation described in section 2, the nuclear ro-vibrational bound states can be obtained

by the methods described in section 3, and then the radiative lifetime of 2pz 2A" --+ 2s 2A'

can be calculated.

5.2 Predissociation

Predissociation can occur as a result of coupling between two Born-Oppenheimer

electronically adiabatic potential energy surfaces associated with two electronic states of a

molecular system. The Born-Oppenheimer wavefunctions of the system are not in this case

true eigenstates of the total molecular Hamiltonian. Interaction between the quasi-bound

states of the nuclear motion of an upper surface and the unbound(i.e., scattering) ones of

a lower surface can cause a quantum leakage from the former to the latter'15 -16

5.2.1 Fano's Theory 16

In the simplest case, there are two quantum states associated with the Hamiltonian

H. One is bound and denoted as 10,,,) and the other one unbound and denoted as I E).

They are not exact eigenstates of H and satisfy the following conditions:

(4 0 It) = 1 (52)

(4s E) = 0 (53)

(E E') = 6(E - E) (54)

H I0, = E. (55)

(El H E') = E6(E- E') (56)-
(0€,, 1 H E) = V.(E) (57)

where n designates the set of quantum number which label the bound state, and E is the

energy for the unbound state. Vn(E) is the coupling between the bound state and the
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unbound state and is usually very small. We expand the true eigenstate of H as

I'I,,,(E)) = A, (E) ¢) + fB,,(E',E) E')dE' (58)

where

H I IF (E)) = E I IF (E)) (59)

It satisfies the normalization condition

(I.(E) I '.(E')) = 6(E - E') (60)

After replacing Eq. 58 into Eqs. 59 and 60, ihe result is

I A.,(E)12 = .,E,) 12
(E - E. - A.) 2 + r2l V,(E,) 4 (61)

f, I p/JV,(E')t
A, E' dE' (62)

Let us adopt the time-dependent description and prepare the system in state 4€) at

t = 0. We now let the system evolve with time and ask what is the probability P,(t) of

finding the system still in state On) state at time t? The answer is

P,(t) = exp(-t/r.) (63)

where

=r, h 12 (64)
27r I V.(E.) 1

The above discussion can be easily generalized into the case in which one bound state

is coupled with many unbound states I E,m), as happens when the final predissociated

system can be characterized by the set of quantum numbers m describing the internal

states of the fragments. The result is

= 27r E I V4_(En) 2 (65).

with the coupling between the bound state I On) and the mth unbound state I E, m) as

Vr(E) = (On I HI5E,4m) (66)
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5.2.2 The Form of Coupling Element in Nuclear Coordinates

We now discuss the nature of the coupling elements which appear in Fano's formulas

(Eqs. 57, 66). The Hamiltonian of a molecular system has the form:

H = H. + TN (67)

where electronic H, is the Hamiltonian (with the nuclear variables as parameters) which

contains the Coulombic interactions between all charged particles (including nuclei) in

the molecule, and TN is the nuclear kinetic energy operator. We assume that the spin-

containing terms are negligible compared with the Coulombic terms as is the case for H 3 .

We can define a set of electronic basis functions On (r, R) which satisfy

H.e,.(r;R) = V(R) ,.(r;R) (68)

(O'n I =, . 6.,. (69)

where the r denotes the set of all electronic coordinates and R the set of all nuclear

coordinates. n is the set of quantum numbers which describe the eigenstates of He. In

order to solve the total Schrodinger equation

HT(r,R) = EI,(r,R) (70)

We expand the wavefunction IQ in the On basis set:

= ZXn(R)On(r;R) (71)

From Eqs. 67-71, we get

Z TN{X.(R)On(r;R)} = Z(E - V.(R))xn(R)On(r,R) (72)
n n

In Eq. 72, the nuclear kinetic operator acts upon both nuclear x,(R) and electronic

O,(r; R) wavefunctions. No choice of reference frame and coordinate system used to de-

scribe the molecular system is so far implied.

In the laboratory reference frame, the nuclear kinetic energy operator TN is given by

TN = Z - V2 (73)
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where the sum is over all nuclei with pi as their masses. When Eq. 73 is put into Eq. 72

with the help of Eqs. 68 and 69, we get the equations which X,, satisfy:

TNX. + + ¢nTN¢,-,Xn = (E-V)X, (74)

n',i ALj '7

In the normal treatment of the nuclear motion, only one term is retained and the

coupled nuclear equations are replaced by a set of uncoupled equations

TNxB°(R) = (E- V,,(R))x °(R) (75)

The corresponding electro-nuclear wavefunction is then

°(r, R) = x 0 (R)On(r;R) (76)

It is easy to show that the matrix element of the total Hamiltonian H between a pair

of wavefunctions in the form of Eq. 76 but with different electronic states is:

Ah2
H = n, = Vi I n' V + (On I TN 10,) X (77)

In our application to predissociation, the initial nuclear bound state and the final nuclear
unbound state are Born-Oppenheimer solutions (on different electronic potential energy

surfaces), and the corresponding predissociation coupling matrix elements needed for ap-
plication of the Fano's theory are, in Cartesian coordinates, those shown in Eq. 77.

In practice, the reference frame for the electronic motion is usually chosen to be the

body-fixed frame of the nuclei and the translational motion of the center of mass of the
system is removed. Because of the large mass difference between the nuclei and electrons,
the center of mass of the molecule is very close to the center of mass of the nuclei, and
their difference can be safely neglected for the present purposes. The coupling elements
appearing in Eq. 77 can be expressed in terms of elements of the type

(0. a I O,). 9(78)

and

(0 a O' (79)'

where x can be one of the internal nuclear hyperspherical variables (p, wA, -I,) i.e. the

hyperradius and the two internal hyperangles. The elements (On I a I On') and (On I
O,,) must now be calculated with the help of the corresponding electronic wavefunctions.
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6. Summary

In order to assess its potential as a future rocket propellant, the lifetime and de-

cay mechanisms of the H 3 rrolecule in its metastable 2p, 2A" electronic state must be

understood. We initiated a theoretical study of this decay lifetime, in parallel with the

experimental work on the properties of this species.

We have identified the necessary steps for the theoretical investigation. We initiated

the calculation of the H3 electronic potential energy surfaces for the lowest four electronic

states (2 px,y 2E'(1, 2), 2s 2A' and 2 p, 2A") , and of the electric transition dipole moments

among them. These calculations will be completed in the near future.

We have developed a very general and powerful hypersphericai coordinate propagation

method to obtain the ro-vibrational nuclear bound states, especially useful for A 3 systems

(like H3 ) having three identical nuclei, for which nuclear permutation symmetry plays an

important role. We also used for such calculations the variational method developed by

Tennyson and Sutcliffe as a general and robust way to treat the triatomic ro-vibrational

motion. Both methods have been tested on the upper manifold of the DMBE surfaces2 2

(2p 2E'(2)), with or without inclusion of the molecular Aharanov-Bohm effect 6". We have

performed scattering calculations on the lower manifold, up to energies of 2.4 eV, using

hyperspherical coordinates 6 2 - 4 '6 0 , and also showed how to use parallel computers for such

calculations8 ° .

We have developed a numerical methods for generating scattering wavefunctions via

backward propagation, once the scattering matrix has been calculated. Such wavefunctions

are needed for the predissociation lifetime calculations of interest.

After the ro-vibrational wavefunctions on both the 2s 2 A' and 2 pz 2 A" potential

surfaces, and the electric transition dipole moment between them become known, the ra-

diative lifetime calcalation of the 2p, 2 A" state to the 2s 2 A' state can be finally performed

accurately. Calculation of the predissociative lifetime of the 2 p, 2A" state will require a

calculation of the appropriate coupling elements to the ground and first excited electronic

states.
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HYPER-SPHERICAL COORDINATE REACTIVE SCAT'ERING
USING VARIATIONAL SURFACE FUNCTIONS
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An efficient numerical method of calculating surface functions for accurate quantum mechanical three-dimensional reactive
scattenng using symmetrized hyper-spherical coordinates has been developed. This method is at lcast 20 times faster than the
finite-element method used previously and its accuracy is demonstrated for the H - H., system.

1. Introduction

Accurate quantum solutions for three-dimensional reactive scattering for triatomic systems were first cal-

culated in the mid 1970s for the system H+ H, [ 1-5 ]. The difficulty and computational expense of these cal-
culations has, until recently, precluded extension to higher energies and more complex systems; however, the

development of more efficient algorithms coupled with increased access to supercomputers has resulted in a
resurgence of activity in this field [6-17]. In particular, the use of symmetrized hyper-spherical coordinates
(SHC) and local hyper-spherical surface functions (LHSF) [ 18,19 ] is a very promising approach.

The first accurate calculations of 3D reactive scattering matrices using a hyper-spherical coordinate method
were recently performed on the total angular momentum J=0 partial wave of the H+H 2 system [6 1. This
method, applied to the PK2 potential energy surface [20], involved the calculation of sets of LHSF using a
two-dimensional finite-element (FE) approach. The FE method is accurate and reliable for this system, and
has been used to extend the range of energies at which the corresponding J= 0 partial wave scattering matrices
have been calculated to 1.6 eV [ 11 ]; however, extension to higher values of J and to less symmetric systems
requires an excessive increase in computational effort. As a consequence, there was a need to develop a more
efficient method for calculating these LHSF.

In this paper we present a new variational method for calculating LHSF. The formalism is described in sec-
tion 2. Section 3 discusses the numerical parameters used and section 4 compares the results of LHSF and
scattering calculations for the J=0 partial wave on both the PK2 and LSTH [21,22] potential energy surfaces
with those of previous calculations using a finite-element method [6,11,231 to obtain the surface functions.

In addition, some comparison of the J= I PK2 scattering results with those of the matching method [3] are
made. A summary is given in section 5.

' Work performed in partial fulfillment of the requirements for the Ph.D. degree in Chemistry at the California Institute of Technology.
2 Current address: 216 Synchrotron Laboratory 206-49. California Institute of Technology. Pasadena, CA 91125, USA.

Contnbution No. 7865.
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2. Formalism of variational surface functions

The SHC coordinate system used in this calculation has been described previously [6.1 I. ]8.19] Let A_. A,.
A. be the atoms of a tnatomic system and ,',. v. K an arbitrary permutation of a. f, 7. The 4' SHC for this system
are

p=(rA;+RA)" / ,  cv =2arctan- 7 -= Rccs 'r (,,
R* Rj rA

where ra is the mass-scaled [24,25] internuclear vector for the diatom A,.A. and RA the position vector of the
atom AA with respect to the center of mass of AA,. The orientation of the system in space is determined by
the Euler angles 6.. 01 (the polar angles of RA with respect to a space-fixed OZaxis), and W., (the angle between
the R.,r, and Rk,OZ half-planes). In this coordinate system the Hamiltonian is expressed as

h 2 8,. 5: / 2 + 'i 1 h
"+ a + 2  , (2)

in which the global reduced mass u is defined as [m;,m,j(m + in,+ ,,) ])2" The generalized or grand ca-
nonical angular momentum operator A2 is defined by

+ + i (3 )

cos.'~w,) sin(!w) 

(3

where i, and Jf are the angular momentum operators associated with the vectors Ri and r,. respectively, and

L -=n-4h2 ( _ 1 0 + 1) sin uiA (4)

Ssin wAaw Gcut-

is an angular momentum associated with the hyper-angle w;. The term V(p. aij, yA) is the potential energy
function of the electronically adiabatic triatomic system.

The equation that defines the LHSF V.n with associated eigenvalues Er is

(p 2 + V(P, U, .. ))OJMnr((.P)einr(p.Anr(.p) (5)

in which CA stands for the set of five hyper-spherical angles (coA, 7A, 6,, 0 , W). The indices J. M, R, F are,
respectively, the quantum numbers of the total angular momentum of the system, its projection on the space-
fixed OZ axis, the inversion parity of the triatomic system through its center of mass, and the irreducible rep-
resentation of the surface function in the permutation group of the system (P 3 for H + H,). The boundary con-
ditions for eq. (5) are the usual -well-behavedness" ones (single valuedndss, continuity, non-divergence.
differentiability, etc.). The index n denotes a quantum number which. in addition to J. Al, 7,/ . uniquely labels
the LHSF. A set of tvo-dimensional surface functions WJnrW ,, .p) independent of the orientation of the

tem in space can be defined by expansion of the LHSF in terms of Wigner rotation matrices

L'~u2 (0i, 0, WA) [26]:

J

922:, ,€ (6)
D2=O

where

and .Vja is a normalization constant. .ztn% is even (odd) with respect to inversion of the system through its
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center of mass for 17= 0 ( 1 ). and in the case of S= 0 is zero when J+17 is odd. The boundary conditions for

the yFw,r ,, p) which result from the "well-behavedness" of the V,"r are that

V/lr(c., , = 0. n' p) =0 for Q20

and

a

Furthermore, the potential function V(p, wo, '7j) has in general extrema at ={0, t} (corresponding to col-

linear configurations of the system). As a result of these considerations, the ,r' can be factored as a function

of wA times a normalized [2] associated Legendre function _91(cos y) in the vicinity of j,=0 and n. This

makes it both convenient and desirable (because of the presence in eq. (3) of the operator.j/ ) to expand these

rr according to

,a wJ;';p = , ;.(cos ';) (7)o ~ p

sin W

where the coefficients ,, :,P) are called one-dimensional surface functions. Replacement of eqs. (7) and

(6) into eq. (5) leads to the equation satisfied by these functions:

(: +  (J+)+j(j+I2W+ j+)]

F!2  ..rn rnrco h(z [ 0.Js) .. ) jnr ja., (,.,;p) + _J.Q (j, S) jnr _,, (COA,.p)]I
- 1os 

1W Q

+ toi (.;)0 lq%(O p) =lr(p) Jir(w.p) (8)

The muliplicative factor (sin oj has been introduced into eq. (7) because of the form of eq. (4). The

presence v ?this term forces the boundary conditions 0'r(wA, = {0, n}; p) =0 for eq. (8). These conditions are

necessary :'r va0r not to diverge at wi= {0, n} but may not be sufficient; however, in practice they have indeed

sufficed ,'r H+H:. and we do not anticipate problems with other systems. In eq. (8), _(i. k)=
[i(i+l)-k(k= I)]'' and the term V' is given by

V0-p. co .-= ?a(cosT,) V(p. w, w_) ??(cos y) sin ',, d', . (9)
0

It is imp, -tant to note that for eq. (8) to be valid, the functions 0'00, with 02=0 must be defined to be iden-

tically equal to zero when J+17 is odd. The set of equations (6). (7). and (8) are equivalent to eq. (5).

The v- iational basis set is suggested by the expansion equation (7) and by eq. (8). We define functions

t~'a(c,;, )with associated eigenvalues e ,,(p) which satisfy the latter after the SQ and} coupling is removed:

[ 2h2 a J(J+I) +'(j+I) -202 Ju+Il) ,] , ii (10)-1 - 1 -- +1- + J,1.

These fui :tions are required to satisfy the same boundary conditions as the j,,r: t,,9(. 0.p) =r(0:)t,('tp) =O.

We now ofine a five-dimensional vari-,ional bas., set by

F ",407(;;:k) 0-- vO .. ) j r,)y f'Q(cu; P) .( 1

where for notational convenience we have defined f" (ou;:p)=t, (w;: p)/sin wA. Since this basis set is con-
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centrated in the ;. arrangement channel region when p is sufficiently large, accurate representation of the surface
functions concentrated in the v and K channels may require a lirge number of terms at such values of p. To
overcome this difficulty, a new basis set is constructed which consists of the union of the basis sets
F,,,nand F ,,n Furthermore. for systems containing either two or three identical atoms we construct s m-
metrized basis sets which belong to irreducible representations F of the P., or P3 permutation groups, respec-
tively. For the three identical atom case, these symmetrized variational basis sets are given by

F,7' (PP)) (2

where the sum in A' is over A, v and K, the cr, are easily determined constants, and the sets of angles C, and
C, are considered to be functions of Cj. The functions F','ar will be referred to as primitives to distinguishA/70

them from the unsymmetrized basis funcons F.4LQ. The five-dimensional LHSF are now expanded in terms
of these primitives:

apjmna(..p) a (p) J£ r(:p). (13)
.412

The primitive basis set is not orthogonal. since the variational basis sets with different o' overlap: therefore.
calculation of the a,,a coefficients requires the determination of overlap integrals for the variational basis set
as well as integrals involving the Hamiltonian. Integration over the three Euler angles 0;, 0_. and yv is analytic.
leaving two-dimensional quadratures to be done numerically. These quadratures are the most expensive part
of the entire computation. Any quadrature scheme may be employed, the one we used is discussed in section
3.

Once all of the necessary integrals have been calculated, the aJ.,fr coefficients are determined by a generalized
eigenvaiue-eigenvector procedure. With sufficienty large basis sets. the overlap matrix between the primitives
becomes nearly singular as a consequence of near linear dependence: for this reason it was necessary to develop
a method for dealing with this situation. The primitive overlap matrix is diagonalized. and eigenvectors cor-
responding to eigenvalues smaller than a tolerance parameter (for the calculations described below, this pa-
rameter was set to zero) are eliminated from consideration. The remaining set of eigenvectors is used to transform
the Hamiltonian matrix to yield a new eigenvalue proh!em from which the linear dependence effects have been
removed.

From eqs. (6), (12), and (13), the expansion of the two-dimensional surface functions ,4gr( y.,; p) in
terms of the one-dimensional functions f '.,Q can be shown to be

+nr dJ .rT;)= ? a { (1+(os f cf J9 0(Co.'.)f pa +w )

+cnd )(-,",) 9a (cos.ff (?Qp)+c( l)a (cos)f, (co.;p) (14)

The functionsdQa (j)=dJa ) ()+(- 1)'1daJ,- (J). where dJ is the Wigner little d matrix [2,1: they
appear in eq. ( 14) because of the integration of products of two .,9'7% functions depending on different Euler
angles. The angles J, between the vectors R, and R, and J,, between the vectors R, and R are functions of
co; and y. only.

The same formalism is used in determining the surface functions at values ofp for which the surface function
amplitude is negligible in regions of configuration space in the interstices between the arrangement channel
regions. For such values of p, the overlap between f " and.f',s vanishes, making the set of primitive func-

tions be automatically orthogonal; this greatly reduces the numerical work necessary for the LHSF calculation,
because the basis set includes only the A basis functions.

The calculations of the six-dimensional scattering wavefunction Psr1 is done by expanding it in terms of
the five-dimensional LHSF:
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ttJlr (p ) - V ,,nr(p. - ) I ,r( 1 . (15)

The cb'iiir are determined at a set of discrete values of e. labeled p,. Substituting eq. (15) into the (time-
independent) Schrdinger equation corresponding to the Hamiltonian defined by eq. (2) and using eq. (5).
the coefficients b(p;p,) are found to satisfy

A - I d2 5' +,, 15h 2 \ u7r n
-- ,p)+-+ E e'nr( )-E6br(p)+ bJ.7r(p; p)[fJIrl(p;p,)= 0,. (16)

\2,u p \P+/)

in which the interaction matrix jJ"r is defined by

[ Jnr] (p:.)'= ( Jflr( ;fi) I V(p, Co, 7,; p) I .,,nr(C ; P) >

= X X aj', (p )<FI ~( P) 7(p,-oJ, z.;P,)I . (17)
tj12 :' 0

with "(p, co;,, YX; P) = V(p, w:, ) - (P,/p) 2 V(p-,, wA, 7). The integrals in the right-most part of eq. (17) are
obtained from linear combinations of related integrals involving the variational basis set ( 11 ).

The coefficients b(p: pJ are calculated as a function ofp in a region nearp, corresponding to a hyper-spher-
ical shell. The smooth matching of the scattering wavefunc ,n across the boundary p,.,, of adjacent hyper-
spherical shells is accomplished by imposing the condition,

bJr(p.p,)= Z binr(p,. ,p ) [nrl(p) ,  (18)

( b Jnr (P.,i~) (bj ~bfir (,o-,) [Cjnrfl,,)(9
aP a-p n2 P, P') (19)

in which the overlap matrices CJifr are defined by

[ CJ f r] " ( , ) = <0J.if7r( , -., ) 0,Jnfr( )
- aJ(, r (P,)(F.Jar (;,,;+)I- F- ,;fr ( )) . (20)

t A J A0"

The methodology described above is closely related in spirit to the method independently developed by Schatz
[17 ], which was published after the present work was completed. The major differences are in the selection
of reference potential for calculation of the wA-dependent portion of the basis set and in the method for dealing
with overcompleteness of the basis set. Our reference potential, denoted by the term V'2 in eq. (10), is the
potential energy surface at fixed p averaged over the diatomic rotation. the choice of this reference potential
naturally follows from the expression for the one-dimensional surface functions 0 r ofeq. (8). We allow for
the large amount of linear dependence which is produced by this reference potential at small values of/ pby
the method for solution of the generalized eigenvalue problem described above. This does not increase the time
required for the calculation. Schatz. on the other hand. chooses for his reference potential V(p_, W;,. YA =
t/2 ) for p>- 3.3 bohr and 1'(p= 3.3 bohr. u)., 7%=t/2 ) for p< 3.3 bohr; the change in the reference potential

at small 6 avoids problems with linear dependence.

3. Numerical parameters

One of the most important parameters in the calculations performed is the number of primitives used to
expand the surface functions. In addition to the indices 4M. l'and Fwhich label the LHSF, the basis functions
3nd the primitives formed from them are labelled by indices L', j, and 2. which asymptotically correspond re-
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spectively to the diatom vibrational, total rotational and helicitv rotational projection quantum numbers (2.31.
The range of (v, j, Q) included in the calculation ofa desired set of LHSF is selected by preliminary calculations
at a small subset of the values of p to be used in the full calculation. For these initial calculations, the basis
set is deliberately chosen to be larger than necessary for the accuracy and number of surface functions desired.
The number of accurate surface functions obtained by this method is determined by comparison of two such
calculations with different size basis sets at eacli value ofi, Examination of the coefficients of the basis func-
tions contributing to each surface function considered allows selection of a smaller.basis set which can be used
with minimal loss of accuracy. This method becomes complicated with larger variational basis sets, due to in-
creasing linear dependence among some of the primitive functions; however, the overall pattern of important
coefficients is still effective in optimizing the choice of basis sets for succeeding calculations. When this method
of selection is used, the number of good surface functions of each symmetry which are produced is approxi-
mately one half the number of primitives of that symmetry used in the calculation.

To obtain the results presented below, the one-dimensional numerical functions ta(w;p) from eq. (10)
are calculated on a grid of 450 wA points using a one-dimensional finite element method. Each element is qua-
dratic and uses two Gauss-Legendre points. The reference potential VI for these functions is determined by
a Gauss--Legendre quadrature with 96 7y. points. The grid for the two-dimensional integrals is the direct product
of these two independent quadrature grids. Convergence of the surface function energies with the fineness of
the mesh is to four decimal places.

For the system H + H2, the dependence of the basis functions eq. ( 11 ) in the v and K coordinates is the same
as that for the ;. channel functions, so it is not necessary to repeat the calculation for ta and In addition.
the integrals between products of functions in the 2 and v channels equal the integrals between the corre-
sponding functions in the v and K channels, so the integration need only be done for .,v pairs to obtain the
overlap integrals for all three regions.

LHSF are calculated every 0.2 bohr from p-= 2.0 to 12.0 bohr, and interaction matrices ,J-ir (see eqs. (16)
and (17) ) are determined at five evenly spaced values of p for every value ofpi;. One overlap matrix (snr (see
eqs. (18)-(20) ) is calculated between sets of the LHSF at each pair of adjacent ivalues. For p> 6.2 bohr the
variational basis functions in arrangement channel A are orthogonal to those in v and K because we set the
maximum value of o, equal to the physically reasonable value 2 arcsin(3.0bohr/j), which at p-6.2 bohr equals
57.9" This value of wj is deep in a classically forbidden region for all y, for the total energies discussed below.
As a result, the time needed for the surface function calculation in this region is small compared to that for
the p < 6.2 bohr region. The initial value problem described by eq. (16) is solved using a logarithmic derivative
propagator [ 27] with a step size of Ap= 0.025 bohr and a constant-p projection [ 6,11,28 ] at 12.2 bohr. These
parameters were chosen to achieve a calculation accuracy about equal to that described previously [6.11].

The five-dimensional basis functions are generated from the functionsf, according to eq. (II). For each
of the potential energy surfaces and for J--O, a set of (v, j, Q=0) quantum numbers was chosen to give a
variational basis set of 152 functions. This set has a maximum of 12 vibrational functions for the value j =0.

with monotonically decreasing number of vibrations for each succeeding value ofj to the maximum ofj= 23
for which only one vibrational function is used. Symmetrization of this basis set yielded 76 A, 76 A, and 152
E primitives.

For the LSTH potential energy surface, the scattering results were obtained from 36 A,. 35 A. and 69 E
LHSF at each value of5 The calculation of each LHSF (including the evaluation of all the associated overlap
and interaction matrices for the solution of the propagation equation (16) ) requires an average of 0.27 s on
a Cray X-MP/48. The timings are very similar for the PK2 potential energy surface.

For J=0, the variational LHSF calculation is about a factor of 20 faster than the finite-element method one
'or equivalent accuracy [6,11]. We estimate that the numerical effort required for the finite-element calcu-
lation of the LHSF will increase with J as (J+ 1 )" with 2< a < 3. whereas for the variational method a t 2:
therefore, the speed of the variational LHSF calculation with respect to that of the finite-element one is ex-
pected to increase with increasing J.
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Fig. I. Probabilities (a) and probability differences (b) as a Fig. 2. Same as for fig. I for the LSTH potential energy surface.
function of total energy E (lower abscissa) and initial relative The FE results are taken from ref. (22 1.
translational energy E0 (upper abscissa) for the J=O (0, 0,
0)-(0. 0, 0) E symmetry transition in H+Hz collisions on the
PK2 potential energy surface. The symbol (v, j, 2) labels an
asymptotic state of the H + H2 system in which v, I and D are the
quantum numbers of the initial or final H2 states as defined in
the text. The vertical arrows on the upper abscissa denote the
energies at which the corresponding H. (u.) states open up. The
length of those arrows decreases as vspans the values 0. 1, and 2.
and the numbers 0. 5. and 10 associated with the arrows define a
labelling for the value of j. The square symbols in (a) are the
current vanational surface function results and the solid line are
Ihe FE results [II I ). The differences between the former and the
latter are plotted in (b).

4. Results and discussion

As can be seen in table 1, the present variational (V) LHSF energies consistently fall below those calculated
by the finite-element method (FE) [ 11,23 ], with a maximum reduction of about 65 meV for the higher energy
LHSF. As both methods obey a minimum principle, this implies better quality of the LHSF in the current
method.
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Flux is conserved for the PK2 surface to better than 1% for energies less than 1.55 eV for the scattering cal-
culations using FE LHSF [ I I] and for energies below 1.74 eV for the current calculations. For the LSTH sur-
face. flux is conserved to better than 20.o below 1.55 eV for the FE results [23] and, for the current results, to
better than 1% below 1.68 eV and to better than 2% between 1.68 and 1.74 eV. Examination of the scattering
matrices produced by each method shows good agreement between the two below the first resonance at 0.97
eV, with a difference which is usually no greater than 2% for probabilities greater than 10--. Above this energy
the agreement between the results for the v=0 to V =0 state transitions remains equally good; however, the
agreement for v= I to ' I 1 transitions is not as good, with a difference usually no greater than 4% in the prob-
abilities greater than 10' for these transitions. On the basis of the lower LHSF energies and the better scat-
tering matrix unitarities of the current method, we believe that the current scattering calculations are more
accurate than the ones using FE LHSF. A comparison of J=0 probability curves generated by the two methods
is plotted in fig. I for the PK2 surface and in fig. 2 for the LSTH surface, together with the difference of the
results of the two methods. The relative differences for the probabilities of these figures never exceed 6% for
the PK2 or 2% for the LSTH potential energy surface; the greater maximum relative difference for the former
is due to the smaller minimum value of the probability itself rather than to a greater difference between the
results.

The scattering results calculated from the variational LHSF are converged with respect to number of surface
functions used in the propagation to 2% in'the probabilities greater than 0.1 and 1.5' in the corresponding
scattering matrix element phases. The energies of the LHSF corresponding to asymptotically open states are
converged to 0.50,o with respect to size of the basis set used in their calculation, and thus the scattering results
are also well converged with respect to this parameter.

Calculations were also performed for both parities of the J= 1 partial wave and are of similar quality. J= I
probabilities in excess of 0.1 generally agree with the matching method ones [ 3] (which were obtained up to
0.7 eV only) to better than about 3%. In none of these c, lculations have we encountered the difficulties pre-
viously predicted [ 10]. A detailed analysis of the J= 1 results, up to 1.75 eV, and of the corresponding res-
onances will be the subject of a separate publication.

5. Summary

A new general variational method for calculating local LHSF was described. It is about a factor of 20 more
efficient than the finite-element method for the J=0 partial wave of H + H,; this relative efficiency is expected
to increase with increasing J. The results of the two methods agree well at the LHSF level, and at the scattering
matrix level agree well for energies below 0.97 eV and moderately well for higher energies, the variational ones
are believed to be the more accurate ones.
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SYMMETRY ANALYSIS OF ACCURATE H+H, RESONANCES
FOR LOW PARTIAL WAVES
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We have performed accurate quantum mechanical three-dimensional reactive scattering calculations for both panties of the
J= I partial wvave of the H + H. system up to total energies of 1.75 eV. The collision lifetime resonance spectra for both J=0 and
J= I are discussed in terms of the characteristics of the system's potential energy surface and of a simple physical model involving
its smmetr properties.

1. Introduction workers [9], over a more limited energy range. In
addition, results using different methods have been

We !,ave recently developed a new variational obtained by Mladenovic et al. [ 10] and by Lang and
technique [ I ] for calculating the local hyperspher- Miller [11].
ical surface functions (LHSF) necessary for per-
forming three-dimensional (3D) quantum mechan-
ical reactive scattering calculations by the 2. Method
symmetrized hyperspherical coordinate method. We
have shown that this technique produces results of The details of the partial wave methodology for
similar quality as the finite element (FE) one pre- arbitrary J and the parameters used for the J=0 cal-
viously used r2.3], with significantly less numerical culation have been presented previously [ I ]; there-
effort. Using the LHSF generated by this variational fore, only a few relevant points will be mentioned
method, we have performed 3D reactive scattering here. The J=0 and J= 1 calculations use the same
calculations for the H + H, system on the PK2 [4] values for many numerical parameters: the choice of
and LSTH [5.6] potential energy surfaces for the grid is the same, as are the number and location of
1=0 and both parities of the -= I partial waves. The the sets of LHSF. The basis set for J=0 is formed
calculations are of sufficiently high quality for res- from a choice of quantum .,umbers (L. j, Q=0)
onance analysis using the collision lifetime matrix [1.12], yielding a-total of 152 functions. 'his basis
formalism [7]. We briefly describe the parameters is symmetrized according to the irreducible repre-
used in the calculation, and follow with a preseata- sentations of the P, symmetry group of H + H, to
tion and analysis f the results. Other recent hyper- give 76 A, 76 A,. and 152 E "primitive' functions.
spherical calculations for J= 1 H+H, have been These are used as a variational basis for calculation
published by Schatz [8] and by Pack, Parker and .o- of the LHSF of the corresponding symmetry. The

same set of v andj quantum numbers is used for the
Work performed in partial fuifillment of the requirements for J= I calculations: in addition, making 2 equal to both
the Ph.D. Degree i. Chemistr at the Califormia Institute of 0 and I produces a variational basis set of 292 func-
Technology.

" Current address. Mal code 206-49, California Institute of tions. From these, a primitive basis set is generated
Technology. Pasadena. C .91125. USA. consisting of 64 Al, 76 A, and 140 E primitives for
Contribution No. '909 the even parity 17=0 (which fo- J= I contains only

440 0 009-2614/89/$ 03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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= 1 functions) and another with 140 A, 152 A, momentum [ 15]S". For the resonance state, 1,), V.
and 292 E primitives for the odd parity 17= 1 (con- and U) denote approximate constants of the motion:
taining both 2=0 and 2= 1 functions), their values are chosen on the basis of the energy

The J= I scattering results on the PK2 surface were spacing of the resonances. In the present paper. as
obtained from 31 A, 31 A,, and 64 E LHSF for 17= 0 well as in all previous ones using this labeling. it has
and 67 A,, 62 A,, and 133 E LHSF for17= 1. The been customary to set v3 = 0 [ 3,16.17 ], implying that
calculation of each J= 1 LHSF and all associated such resonances have no asymmetric stretch char-
matrices used in the logarithmic derivative propa- acter. However, modeling of collinear H3 resonances
gation [ 13) required an average of 13.1 s on an SCS- (for which only v, and v3 are defined) has shown that
40 minisupercomputer, as compared to 619 s for J=0. they may have significant asymmetric as .wei; as
Similarly, the J= 1 scattering calculations for the symmetric stretch character. The vibrationally adi-
LSTH surface used 32 A,, 32 A2 and 64 E LHSF for abatic model suggests that the lowest collinear H3
17=0 and 74 A,, 70 A,, and 127 E LHSF for 17= 1, resonance be assigned the quantum numbers v, = 1,
with an average time of 12.5 s per LHSF, compared v3 = 0 [ 18 ], whereas the hyperspherically adiabatic
to 6.6 s for J=0. The corresponding maximum de- model leads to the assignment v,= 0, L'3 = 2 [ 19,20].
viation from flux conservation is never greater than corresponding to the second excited state of the
1% for the PK2 and 2% for the LSTH surface. asymmetric stretch and asymptotically correlating to

the v= I state of the isolated diatom. Therefore. the
nodal structures of the corresponding model wave-
functions are completely different, and neither should

3. Results and discussion be assumed correct without further comparison with
the accurate resonance wavefunction. The assign-
ment V3=0 used in this paper corresponds to a vi-

From our irreducible representation scattering brationahy adiabatic description, but is a matter of
matrices we have calculated distinguishable atom notation rather than of physical validity.
J= I state-to-state reaction probabilities over the en- Lifetime matrix analyses of the J=0 scattering
ergy range 0.3 to 1.73 eV for the PK2 potential en- matrices for the PK2 surface were previously per-
ergy surface. The coupled channel (CC) results pub- formed lip tc 1.6 eV using the FE method for cal-
lished by Schatz at 0.5 and 0.6 eV [8] and ours agree culating tie LHSF [ 3 ]. They were recalculated using
to within 10%, which is reasonable since he used a the variational LHSF approach, and the results are
much smalier basis set than ours. Schatz also made comparable. The resonant time delays and reso-
calculations based on the coupled states (CS) ap- nance positions found for scattering matrices gen-
proximation using a larger basis set than in this CC erated from both FE and variational LHSF are listed
method. These CS probabilities are closer to our in table I; the lifetime matrix eigenvalues for the cur-
highly converged values than the CC ones. indicat- rent variational LHSF calculation are plotted versus
ing that the CS approximation for nis larger basis set energy in fig. 1. The main difference between the two
is more accurate than the CC results using his smaller calculations js the appearance of two weak reso-
basis set. Our J= 1 results agree with the LSTH cal-
culations of Zhang and Miller [II] at 1.14 eV to "In a previous paper [3] we used 2 to denote the vibrational
about 2% or better. angular momentum quantum number. in analog, to the nota-

tion of refs. 116.17]. However, we have also used Q [1.31 todenote the quantum number for the component of the sys-
each of the matrices S ,rr for r= A,, A,, E, 17 0, 1, tem's total angular momentum along the direction of the vec-
and J =0, 1. We label the resonances obtained by the tor which connects the center of mass of a pair of the system's
notation appropriate for vibrational states of linear atoms to the third atom (and asymptoticall. corresponds to
triatomic molecules, (vI, V, V3), where v,. v:, and v3  the helicit) rotational quantum ni,9her). Since these two an-

gular momentum components are in generl distinct, we willdenote respectively the quantum numbers for the forclarity use the symbol Kin this paper to denote the first one
symmetric, bend and asymmetric vibrations and K (i.e. the vibrational angular momentum component). while
is the quantum number of the vibrpkional angular continuing to use 0 for the second.
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Table I
Resonance charactenstics for PK2 " potential energy surface

Assignment Current results FE" RPO'
lifetime (fs) E (eV)

E e N ifw IsE (e) lifetime ( fs) E (eV)

0,1 (0,00.0) 0.61 7 061 0.655
1 (0.11.0) 0.74 6
C, 1 (0. 20.0) 0.85 3 0.847 0.934

0,1 (1,00 , 0) 0.97 41 0.971 42 0.975

1 (0, 3'. 0) 0.97 6
0,1 (0,40.0) 1.07 2
I (1,13.0) 1.08 18
0,1 (1,20.0) 1.17 7 1.170 1.175
0,1 (2.0" , 0) 1.38 46 1.382 50 1.366

I (2, 11.0) 1.47 35
0 7 1.51 7 1.542
0,l (2,2 °

.0) 1.56 20 1.56
1 (2, 3'. 0) 1.65 5

"Ref. [4].
, Finite element results. ref. [ 3 1

Resonant perodic orbit results, ref. [21].

nances at energies of 1.07 and 1.51 eV, which were The energy spacings ofeach of the v, = 0, v, = 2 and
not previously reported. The first is assigned the la- v =4 series of. resonances suggest that a resonance
bel (0, 40, 0); however, the resonance at 1.51 eV, in- with assignment ( 1, 40, 0) should exist, for the LSTH
dicated by an unlabeled arrow in fig. I, does not seem surface, at the position indicated in fig. 2. So far, this
to correspond to the energy of an expected state of resonance has not been found. By analogy, an cquiv-
metastable linear H 3 and as such will remain unla- alent resonance should exist (but is not found) for
beled. The lifetimes of these resonances vary greatly; PK2, as indicated in fig. I. The latter cannot cor-
the long-lived ones at 0.969, 1.381, and 1.56 eV cor- respond to the unlabeled resonance at 1.51 eV, be-
respond to Feshbach resonances and have lifetimes cause of the insufficiently large spacing between the
of 41, 46, and 20 fs, respectively, while the weaker (0, 40, 0) and (2, 40, 0) resonances for the LSTH
peaks correspond to shape or barrier resonances [ 211 surface.
and have an average lifetime of 6 fs. In both calcu- The J= I partial wave includes resonance states
lations, the A, and E symmetries show the same res- with K= I in addition to K=0. Interestingly, the life-
onar..c energies and lifetimes, with more numerical time matrix analysis of the J= 1, 17= 1, A2 symmetry
noise present in the E calculation due to the larger yields the same resonance energies as those found for
number of states, and no resonance structure is found the J=0, A, symmetry for both the PK2 and LSTH
in the A. symmetry, surfaces, with one exception; we therefore interpret

The J= 0 LSTH surface resonance energy and life- these resonances as K= 0 states. The exception is that
times from the current calculations and the previous there is no visible A. resonance at 1.51 eV for either
FE calculations are listed in table 2, and the present surface, but it is possible that numerical noise inter-
lifetime matrix eigenvalues are displayed in fig. 2. feres with its detection. The absence of a discernable
The assignment of these s:ates is the same as for those energy shift due to the increase in J is consistent with
found for the PK2 surface. In addition, there is a high the approximate rotational constants for linear H3

energy resonance at 1.72 eV, which corresponds to (23 1; estimates of the magnitude ofthe shift in going
(2, 40, 0). however, the lifetime analysis near this from J=0 to J= 1 yields a value of about 0.002 eV,
energy is obscured '-:- nur,, ikois, so this encrgy which is small compared with the accuracy to which
is less reliable than the other resonance energies. we have determined the resonance energies.
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' ... ] in the lifetime analysis are weak and have not been

I . reported before. No resonances were found for the
0 10 J= 1, I7=0, A, symmetry on either surface. All res-

jo o0o (1.ooo) (2o o, onances seen in the J= I A, and A, symmetries with
(020.0) 1.o 0.0 ' i2.20 a particular parity are also seen in the J= I E sym-

(°"°'°)1, 'metry of the same parity. Again, the E results are of
40 lower accuracy because of the larger number of states.

Calculations for collinear triatomic systems have
previously given strong indications 119] that the

0 (1.40.0) characteristics of resonance spectra are closely re-
W lated to the geometry of potential energy surfaces in

the strong interaction region of configuration space,
LL 0 and that it may be possible to infer such geometry

from experimentally observed resonance spectra. We
will now try to obtain such relation with the J=0, 1

.20- resonance at hand. Examination of the energy spac-
ings between consecutive resonances in each of the

04 06 08 ,0 12 ,4 1 series (0, v2, 0), (1, vj, 0), and (2, v. 0) shows
E / eV them to be nearly constant with respect to v and v.

Fig. 1. Resonant lifetime as a function of energy for the A, sym- and having global averages of 0.104 ± 0.013 and
metry of the 1=0 partial wave of H + H2 (PK2 surface). The ab- 0.103 ± 0.015 eV for the LSTH and PK2 surfaces, re-
cissa E is the total energy and the ordinate represents the reso- spectively. This correlates very well with the spac-
nant eigenvalue of the collision lifetime matrix. The vertical ings of 0.11 and 0. 12 eV predicted from the corre-
arrows on the upper abcissa denote the energies of theH,(vj) sponding bending force constants [6,261 and a
states. The length of these arrows decreases as v spans the values
0 through 3. The numbers 0, 5, and 10 define a labeling for the harmonic model.
value ofi. The energy grid used for these lifetime calculations was Examining the series (v,, 0', 0) for t, = 0, I, 2 fur-
0,001 eV in the neighborhood of the two strongest resonances nishes consecutive resonance energy differences of
( 1 00,0) and (2,00, 0) and 0.01 eV elsewhere. The labeling of 0.33 and 0.38 eV for LSTH and 0.36 and 0.41 eV for
the resonances at the top of the panel is described in the text. The PK2, whereas a harmonic model based on the sym-
downward pointing unlabeled vertical arrow at 1.51 eV indicates
an unassigned resonance. The downward pointing arrow labeled metric stretch force constant predicts constant spac-
( . 40,0) corresponds to a resonance expected on the basis of en- ing of 0.26 eV for LSTH and 0.47 eV for PK2. Not
ergy spacings (see text) but not found in the present calculations. surprisingly, a symmetric stretch static model does

not fit the resonance spectra well.
Additional resonances appear in the J= 1, 17= 1, The energy shift between the (0, 00, 0) LSTH and

A, and J= 1, 7=0, A2 partial waves. For the PK2 PK2 resonances should depend in part on the dif-
surface, they occur at 0.74, 0.97, 1.08, 1.47, and 1.65 ference of 0.029 eV between the corresponding sad-
eV (fig. 3). The assignments and lifetimes are given die point energies (4,6]. The observed downward
in table 1. The v, and v. assignments are done on the shift of 0.04 eV can be totally accounted for by the
basis of the energy spacings, and the K assignment difference in zero point bend energies and saddle
on the basis of the restrictions imposed by the values point heights: this method of accounting does not
of J and v2 and the evenness of v2 [ 3,25 ]. The cor- seem to be physically reasonable, since the difference
responding values for the LSTH surface are listed in in the symmetric and/or asymmetric stretching
table 2 and displayed in fig. 4; they have energies of characteristics of the potential energy surfaces should
0.77, 1.00, 1.09, 1.22, 1.45, and 1.63 eV. The strong also contribute to this shift.
resonances ( 1, 1P, 0), (2, 1 1,0) and (2, 3', 0) were We conclude that bending mode force constants in
found previously with approximate modeis using the the saddle point region of this system can easily be
LSTH surface [ 16,17,23,24); these results are also obtained from the corresponding resonance level
given in table 2 for comparison. The remaining peaks spacings, but that static characteristics of the sur-
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Table 2
Resonance charactenstics for LSTH potential energy surface

I Assignment Current results FE b  RPO" SCSA 4' CEQB') CS r

lifetime (fs) E(eV) E(eV) E(eV) E CV)

E (eV) lifetime (fs) E (eV)

0.1 (0,0010) 0.65 II 0.65 I1
1 (0, 11.0) 0.77 9
0,1 (0,20,0) 0.88 10 0.880 10
0.1 (1,00,0) 0.98 28 0.981 8 0.981 0.98 0.97
1 (0, Y,0) 1.00 8
1 (1,.1,0) 1.09 29 1.085 1.09 1.09 1.10
0.1 (0,40,0) 1.10 5
0, (1,20,0) 1.19 8 1.191 1.186 1.20 1.20
1 (0, 510) 1.22 6
0.1 (2, 0 , 0) 1.36 30 1.364 31 1.374 1.24 1.35
1 (2, 11,0) 1.45 38 1.461 1.35

0 ? 1.50 4
0. I (2, 20,0) 1.54 12 1.55±0.03 1.545 1.46
1 (2,3'.0) 1.63 8 1.641
0, 1 (2,40.0) 1.72" 5 1.734

" Refs. (5.6]. b" Ref. [22]
" Resonant periodic orbit results, ref. [ 23 .
4) Small curvature semiclassical adiabatic results, ref. (24].
") Collinear exact quantum with adiabatic bend results, ref. ( 1 7].

Coupled state results, ref. [ 16 1.
' This resonance energy is less accurate than the rest. See text for details.

Is . 0

0 lO.11.O) (1.11.0) (2.11.0)
5 0 (0.3'.0) (,2.3'.O)

10.0 .0) 1.00.01 (2.00.0) '0 -

(0.20.0) (1.20.01 (2.20.0)
40 -(0,40,0; (2.40.0j

- 20

(1.40.0)

U 0. ( 1 .3 1 .0 )

L.. 0
-J-

-20

.20 - 0.4 0.6 0.8 .0 1.2 14 6

SE/eV
u4 o6 08 1 0 1,2 1 0 T6 Fig. 3. Resonant lietime as a function of energy for the A, sym-

E/ eV metry of the J= 1. 17=0 partial wave of H + H2 (PK2 surface).
The abcissa and ordinate are as given in fi. I; the energy grid is

Fig 2. Same as fig. I but for the LSTH surface; a constant energy 0.01 eV throughout. The downward pointing labeled arrows have
grid of 0.01 eV was used throughout. similar meanings to the ones in figs. I and 2.
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.. .... " 44 .. .. e1 t us now show how this model leads to the em-
: pirical rule just mentioned. Let ABC be a linear tri-

s , o atom for which atoms A and C are identical. Con-
01,oo ' 0, 1' 0) sider a bent configuration of this system in which the

40y3' 0-y 0) distances AB and BC are equal. Let X1- be the eigen-
(0.51.0) value of the operator which permutes A and C, which

is equal to I for F=A and to - I for F=A,. This
permutation is equivalent to the product of the in-

je A version operator and a rotation by x around the sys-
II s, a: tem's principle axis of inertia, and therefore appli-

(1.31.0) cation of these operations multiplies the triatom
LL o - wavefunction by (- I )n and (-I )X, respectively.

Since the wavefunction of the initial symmetric con-
figuration cannot by assumption vanish identically

.20 if a resonance is to exist, we must have
Xr= (- - )n+ , QED. For a system in which all three

04 06 08 1 0 12 1.4 16 atoms are identical, neither of the two degenerate E
EieV symmetry wavefunctions is necessarily even or odd

Fig. 4. Same as fig. 3 but for the LSTH surface, with respect to two-atom permutations, and %hen

one of these wavefunctions is subjected to this per-

Table 3 mutation the result is a linear combination of both:
Empirical resonance selection -ules thus the E symmetry should display the resonances

found in both the A, and A, symmetry results of the
______ K_____A _ _ same parity, as we have indeed observed.
0 0 0 yes no yes The existence of resonances seems also to require
1 0 1 no yes yes the presence of minima in adiabatic curves as a func-
I I 0 no yes yes tion of an appropriate reaction coordinate [18-

I I I yes no yes 20,27-33]. In the particular case of hyperspherical

coordinates, one examines LHSF energies including
faces are inadequate to understand the stretch mo- adiabatic correction terms as a function of p; these
tion features of the resonance spectra. correction terms are large for the H + E2 system. Plots

The presence or absence of resonances in each of of LSHF energies for the J= 0, 1 partial waves of each
the partial waves examined is summarized in table parity and symmetry do indeed show minima (even
3. An empirical selection rule, satisfied by the results without corrections) for the symmetry-parity corn-
of that table, is that resonances are present in the binations which support resonances, but not for those
F= E symmetry for all allowed values of K, and in combinations which have shown no resonances. A
F=A,, A2 when the quantity ( - I )nIK equals X/-, physical interpretation of the resonances depends. in
where Xr= 1 ( - 1 ) for F=A, (A,). This result can addition to the symmetry arguments given above, on
be derived from a simple model. According to it, no an explanation as to why these particular combina-
resonances in the. J7, F partial wave can exist if the tions of irreducible representation and inversion
scattering wavefunction vanishes identically for all parity yield adiabatic energy versus p curves with
configurations of the system in the vicinity of the minima.
saddle point for which the distances of the two end
atoms to the central atom are equal. This is physi-
cally reasonable since we expect the resonance scat- 4. Summary
tering wavefunction to have large density for sym-
metric displacements of the system around the saddle Application of the variational method for calcu-
point, lation of LHSF to the J= I partial wave of H+H,
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The bound rovibrational states of the upper manifold of the two lowest electronic states of H, have been calculated using
vanational and h.perspherical coordinate propagation methods, neglecting in both the coupling between those electronic states.
Inclusion of the effect of the geometric phase induced by the conical intersection between those manifolds (sometimes referred
to as the molecular -kharonov-Bohm effect ) is shown to change significantly the number, the energies and the wavefunctions of
those bound ro'ibrational states. Quantum numbers are defined % htch permit a physical understanding of these changes.

1. Introduction

The Rydberg spectrum of the H3 system has been extensively studied by Herzberg and coworkers [ I ]. Of
particular interest is the experimental discovery of a long-lived metastable state [ 1-3]. On the theoretical side.
investigations have been restricted to the calculation of electronic energies for a few nuclear geometries [4-

71, but the complete electronic potential energy surfaces, necessary to investigate the rovibrational structures
of the spectrum and to compute accurately the lifetimes of the excited states, are available only for the ground
and the first electronically excited states (DMBE potential [8] ). In the equilateral triangular nuclear config-
uration, these two electronic states are degenerate and their electronic wavefunctions belong to the 2E' rep-
resentation of *he D3h group. Displacement away from the equilateral triangular geometry lifts this degeneracy
and generates a conical intersection between two Jahn-Teller sheets [ 9 ]. Whereas the lower sheet is responsible
for H + H2 react-v " scattering below about 3 eV [10-17 ], the upper one supports rovibrational quasi-bound
states, which can predissociate by rovibronic coupling to the ground electronic state [ 18,19 ].

In this Letter. we assume that the upper Jahn-Teller sheet is decoupled from the lower one and therefore
supports bound rovibrational states. We compare two methods of computing these states on the DMBE excited
potential energy surface. One is the variational method of Tennyson and Sutcliffe [20.21 ] (referred to as TS
method in this paper) The other, described in section 2, is a hyperspherical propagation method which uses
modified Whitten-Smith coordinates [ 22.231 and derives from reactive scattering theory [ 10-13.24 ]. It gen-
eralizes earlier molecular bound state calculations limited to J=0 [25.26]. We show in section 3 that the hy-
perspherical method is vert" appropriate to the H, system because:

- It allows easy inclusion of the full permutation symmetries of the three identical nuclei. whereas the TS
method only allows inclusion of the permutation symmotr'^s of two identical atoms.

- It permits inclusion of the effect of the conical intersection on the phase of the nuclear wavefunction [27-
29 ]. This effect results from the sign change of the electronic wavefunction as one follows a closed path in the
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nuclear configuration space around the line along which the two 2E' electronic states conically intersect. It cor-
responds to a particular case of Berr"s geometric phase ( 301 which has been experimentally observed in the
Na 3 system [ 311. Since the total electronuclear wavefunction is continuous and single valued, there has to be
a compensating sign change in the nuclear part of the wavefunction. which can be included easily in the hy-
perspherical method. The effect of the conical intersection on the phase of the nuclear wavefunction is some-
times referred to as the molecular Aharonov-Bohm effect [ 28.29.32 1, but we will use the simpler name "'geo-
metric phase" in the following.

2. Hyperspherical method

Let A., Ap. A, be the atoms of the system, and (., v, K) be any cyclic permutation of (a, [3, y). r, is the mass-
scaled [ 33] internuclear vector for the diatom AA., and RA the mass-scaled vector of A. with respect to the
center of mass of AA, The hyperspherical method uses the hyperradiusp= (R? + r2)11 2 to describe the global
size of the triatomic system and a set of five angles C to describe its shape and orientation in space [ 10-
13,22,23,33.34 ]. In this paper, we will neglect all spin-orbit and spin-spin interactions. In the Born-Oppen-
heimer approximation, the electronuclear wavefunction can be written as a product of the electronic part y'e.
which we choose to be real, and the nuclear part. The latter can be factored into a nuclear spin part and a
spacial part VrJ' " r . J is the total nuclear angular momentum quantum number. M its projection onto a lab-
oratory-fixed axis, /7 the parity with respect to the inversion of nuclear coordinates and F the irreducible rep-
resentation of the nuclear permutation group (P3 ) to which 1,mi1r. the electronuclear wavefunction excluding
the nuclear spin part, belongs:
PJzwlr= V1'1r(p, C) V (q,; p,

q, refers to the set of all, spacial and spin, electronic coordinates. v"Ifnrs an eigenfunction of the nuclear
motion Hamiltonian:

H=- 3  -5 a a + p2
2,u Fp F+ ,2p (2)

where y is the three-body reduced mass, ,i the grand canonical angular momentum and I' the Born-Oppen-
heimer electronic potential energy function. The nuclear function W,"nr is expanded in a basis of local hy-
perspherical surface functions (LHSF) c. nr:

v,'mr(p, )= F (p) p) (3a)

The LHSF are defined as the eigenfunctions of the fixed hyperradius nuclear Hamiltonian:

S + V(p..C) 0.nr( p. p nr,) ,plfnr, -.2,up2 n n ( .. P - •3b

The coefficients Ff n r in eq. (3a) are solutions of a set of coupled differential equations in p. which we solve
using piece-wise diabatic bases [10.34]. For assumed values of the rovibrational energies. the solutions are
propagated forward and backward from small and large p values where they have negligible amplitudes. The
energy is scanned iteratively until the quantization condition that the forward and backward solutions match
smoothly at an intermediate value ofp is reached.

In the present study, we use the Whitten-Smith [22 ] definition of the five angular coordinates , as modified
by Johnson [23]. Three Euler angles (afi') specify the orientation of the body frame in space. The axes of
this frame lie along the principle axes of inertia: the Z axis is parallel to r' x R and the X axis is associated to
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the smallest moment of inertia and is oriented such that rx >_ 0. Two angles (0, () describe the shape of the
molecular triangle and are defined by

r, , =p cos(n/4 - 0/2 ) sin ((o/l2) . (4a)

rr=-psin(n/4-/2) cos(0A/2) , (4b)

Rjx=pcos(n/4-O/2)cos((pA/2) , (4c)
R~jy=p sin (n/4-O0/2) sin (9,/2). (4d)

The canges for these angles are 0 < 0< x/2 and 0 < (A < 2n. O=0 corresponds to the symmetric top configuration
(an equilateral triangle for three identical particles) in which the principal axes of inertia Xand Yare undefined.

The grand canonical angular momentum is given explicitly by [22,23]
/ 18=_. 1 0_ 4ifhcosO. 8 2(Ji2 -J) j + sin-

sin2sin 2+ W s20 s cos2O +sin2+ cos2z(J +))

(5)

where Jz is the body-fixed Z component of the total angular momentum J, and j. =Jx ± iji.
Eq. (3b) is solved variationally by expansion in a body-fixed basis built with products of simple an-

alytical functions [ 131:

X -, exp(in,,.()f.(6) DJ1K(a3y) (6)

DJWK is a Wigner rotation matrix [ 35 ] and n,, is integer or half of an odd integer.f.,(6) are simple trigonometric
functions, such that the LHSF have correct behaviors near the singularities of the kinetic energy operator O= 0
and n/2. In practice, thef,, can be chosen as the functions cos(noO) or sin(no6 ), with no integer or half odd
integer, in terms of which the hyperspherical harmonics (whose 0 dependence is usually written as a polynomial
in cos6) can be written (eq. (31) in ref. [36], eqs. (20)-(23) in ref. [37] or eq. (32) in ref. [38]).

We now focus attention on the special case of three identical nuclei and we describe how to build electro-
nuclear wavefunctions Pum.7r which are bases for the irreducible representations of the permutation group of
the nuclei (P). The operations of this group correspond to simple changes in iA (which are related to the
isomorphism between P, and C3j) as indicated in table 1. If t, ( = ± I) is the symmetry of the electronic
wavefunction with respect to the v--K permutation, then the linear combinations defined by
X,' =x.,K +te es.. ( - It )J -K+ZX ., ( 7 )

give electronuclear wavefunctions F nr (eq. (1)) with the e (= _+ I ) symmetry with respect to the v-,K
permutation.

If theie is no conical intersection between electronic states, the electronic wavefunction iv,(q,; p, 0 belongs
to a one-dimensional represent't'on of the nuclear permutation group (A, for te = + I, or A2 for el,= - I ).
Table 2 indicates how the total angular momentum, the parity and the irreducible representation r of P3 to
which psi4nr belongs determines the set of quantum numbers n,.

Table I
Effect of permutations of the nuclei on the angle vA

Permutation Pi., P.,A P... P,.
8 ) Pa. d) PL. d)

value of 1 " O V,+ 2x/+3 ip4+4R/ 3  2x-p 2x/3-A 41t/3-qp,

P s the identity permutation. " P,,A refers to the cyclic permutation ;iIK- 'c.. "' P,. refers to the cyclic permutation ;.v-,c_'.y.
P,, refers to the pairwise permutation of nuclei i andj.

The changes in 9. are true modulo 21. since OPA must remain in the range (0. 2n).
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Table 2
Choice of n, for each panty 17 and irreducible representation Fof the nuclear permutation group P3

17 F
' 

n'

even. v'thout phase A,/A 2  3m dl

odd, with phase bI E 3m= 1 41

even, with phase bI A,/A 2  3m+ dl

odd, without phase )  E 3m±j d1

• Without consideration of the geometric phase due to the conical intersection.
' With consideration of the geometric phase due to the conical intersection.
')ris the irreducible representation of P3 to which ,1M1- (see text and eq. (I )) belongs.

m is a non-negative integer.

If there is a conical Intersection between electronic states for equilateral triangular configurations of the nu-
clei and if the geometric phase is taken into account, one can show [ 27-29 ] that in the vicinity of the conical
intersection (8=0), the (pA dependence of the Born-Oppenheimer electronic wavefunction is given by
y/;z cos((p/2) v.11 -sin ((A/2) y/ ,," (8a)

or
,z=cos((p,1/2) u/ +sin((p,1/2) ,E,( I + (8b)

where (V,' V,1) are two degenerate p-dependent but (p-independent states at 0=0 which form a basis for the
E irreducible representation of P3 (y'," being symmetric for the V-K permutation and y/E1 antisymmetric).
Although permutations of the nuclei can only change the sign of ,, these Born-Oppenheimer electronic wave-
functions do not belong to a one-dimensional irreducible representation of P3 and are discontinuous in the
internal configuration space [39] in tne plane (pA=0. However, continuous electronuclearwavefunctions which
belong to irreducible representations of P3 can be built if the new set of n, indicated in table 2 is used for the
nuclear wavefunctions.

3. Results

Fig. I illustraTcS the main features of the electronic potential in the internal configuration space defined in

Fig. 1. Plot of the DMBE exci'ed electronic potential , in the
___internal configuration space defined in ref. [39] along the plane

y. ;t _=X/2, 3x/2 (i.e. Z4=0). In this space. the coordinates (p.. 0,)v
defined in the text correspond to spherical polar coordinates with
respect to the Yj axis of the figure. This axis is also the one along

4 which the excited D:ABE potential conically intersects the lower
4- \one. The equipotentials are equally spaced by 0.25 eV in the range

[3, 5 eV]. The contours for V= 3 and 4 eV are specifically indi-
r cated. The distances on the X, and YA axes are in bohr. Along

constant Y lines, Vshows the usual "V'-shaped behaviour char-
acteristic of conical intersecions. The approximate constancy of
the XA spacing between the equipotentials in this figure is a man-
ifestation of this linear dependence. Equipotentials on cuts alongr other planes containing the Y) axis look, in the vicinity of this

0.1 X axis, very similar to the ones displayed in this figure. i.e. I. has a
-3 -2. -1. 0. 2 3. local nearly cylindrical symmetry around YA.
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ref. [ 19]. It has a quasi-cylindrical symmetry around the Yj axis of that figure (6=0) which corresponds to
the axis of the conical intersection and to the local minima on the fixed p spheres. It has an absolute minimum
forp= 2.6 bohr. O= 0 corresponding to an energy of 2.72 eV with respect to the bottom of the ground electronic
state H: well. In the vicinity of that minimum, the potential increases steeply and almost linearly as a function
of 0. but more slowly as a function of p.

Table 3 compares the rovibrational energy levels for this potential obtained by the hyperspherical method
and theTS variational method without consideration of the geometric phase.

The hyperspherical method uses 20 no values, between 4 (AI and A2 symmetry) and 8 (E symmetry) I I
values (eqs. (6) and (7)), between 6 (A, or A2 symmetry) and 12 (E symmetry) LHSF (eq. (3)). The LHSF
have been compute- at typically 50 p values between 1.5 and 6.5 bohr. The convergence of the LHSF and
rovibrational energies is of the order of 10" eV. The compactness of the hyperspherical expansion comes from •
the quasi-cylindrical symmetry of the potential around the 0=0 line (small number of n, values) and from
the steep increase of the potential as a function of 0 (small number of LHSF).

The TS method uses a body frame with its Z axis in the direction of RA ard computes the bound states vari-
ationally by expansion on a product basis of two Morse-like functions (in Rj and r) for the radial part and
of associated Legendre functions for the angular part. The optimized parameters of the Morse potential which
we chose are indicated in table 4. Nearly 1400 such product functions have been used for each J, each inversion
parity (land each of the two symmetries for the permutation of the two identical atoms v and K. This unusually
large number of basis functions (only 880 such functions were used to get fully converged results on H3 in
ref. (401 ) is required by the shape of the potential and the sudden change of its derivative in the vicinity of
the conical intersection axis. Table 3 shows that the convergence of the energy levels is always worse with the
TS method than with the hyperspherical method. The quality of the TS calculation for J= I odd parity is not

Table 3
Bound state energies without consideration of the geometric phase "

t, L-1' J=O " J= I even parity J= I odd parity

000 3.7210 A, 3.7218 3.7283 A2  3.7294 3.7264 E 3.7276
I 00 3.9216 A, 3.9223 3.9284 A,  3.9297 3.9266 E 3.9281
200 4.1067 A, 4.1073 4.1130 A2  4.1145 4.1114 E 4.1131

3 00 4.2759 A, 4.2766 4.2817 A, 4.2849 4.2802 E 4.2831
4 00 4.4282 A, 4.4301 4.4336 A2  4.4386 4.4322 E 4.4398
500 4.5621 A, 4.5734 4.5665 A2  4.5803 4.5656 E 4.5894
0 1 1 4.2886 E 4.2886 4.2955 E 4.2956 4.2971 A, 4.2975

4.2969 A, 4.2972
4.2904 E 4.2908

I I I 4.4533 E 4.4533 4.4596 E 4.4598 4.4610 A, 4.4618
4.4608 A2  4.4615

4.4550 E 4.4557

2 I I 4.5980 E 4.5983 4.6036 E 4.6048 4.6049 A, 4.6083
4.6047 A2  4.6093
4.5996 E 4.6028

3 I 1 4.7212 E 4.7261 E 4.7349 4.7272 A, 4.7370

4.7270 A2  4.7355
4.7225 E

020 4.6806 A, 4.6813 4.6871 A 2  4.6893 4.6842 E 4.6878

' The energy is in eV and its origin corresponds to the bottom of the ground electronic state of the isolated H 2 molecule.
Quantum numbers used to classify the states (see text)

" The left column gives the hyperspherical method results and the right column the TS method results. The central column gives the
irreducible representation of the permutation group of the nuclei to which the spacial part of the nuclear wavefunction belongs.
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Table 4
Optimized parameters of the Mlorse-like functions in Th and r

D, (au) w, (au) r, (au)

J=0 0.230 " 0.0130 ' 1.96 "'

J_ I 0.262 bl 0.010011, 2.01 bl

J=0 0.262" 0.0122 ' 2.09 "
J= I 0.232" 0.0102 "' 2.32 "

'These parameters are defined in eqs. ( 19) and (20) of ref. 1201.
hi Parameters for the Morse-like functions in R1.

" Parameters for the Morse-like functions in rA.

as good as the TS calculation for J=0 since the global size of the basis has been kept constant instead of being
doubled. For a given total angular momentum and parity, the quality of the TS results decreases as the energy
increases, and in particular, states diffuse along p (corresponding to high t, values, see below) are poorly rep-
resented. This suggests that different sets of optimized parameters of the Morse-like functions should be used
for compact and diffuse states.

The hyperspherical method can be compared with the TS method from computational and formal points of
view:

- The hyperspherical method requires less memory: smaller basis sets can be used for the variational solution
of the two-dimensional LHSF equation (see eq. (3b)) than for the three-dimensional variational solution of
the bound states in the TS method. However, the hyperspherical method required about two times more CPU
time than the TS method, since the computation of the LHSF has to be repeated many times, but did not exceed
40 min of total CPU time on an SCS-40 for a typical run J=0, A, plus E permutation symmetries. In addition.
the hyperspherical method does not involve adjustable parameters which have to be optimized in the TS method.

- The bases used in the TS method to expand the bound state wavefunctions do not have the P 3 permutation
symmetry, but only the P2 symmetry of two identical nuclei. As a result, plots of the bound state wavefunctions
show that, even in the J=0 case where the energy convergence is better than 10-1 eV. the shape of the TS
wavefunctions do not exhibit the correct symmetry properties of a system of three identical particles, whereas
they are imbedded in the LHSF basis used in the hyperspherical method. Moreover, the TS method does not

v.0

46 - 5 3 . . o V2

L . 3 v,.0

44  2 2 2 Fig. 2. Rovibronic energy levels associated to the first electioni-
S -3 0 V2 I call, excited state of H3.The full lines are the levels including the

> _ .... effect of the geometnc phase while the dashed ones exclude that
1 1 1 effect. The quantum numbers V,. V2 and / are defined in the text.

2 v Z The ongin for the energy scale is the bottom of the isolated ground
electronic H2 potential energy curve. These levels are for the J= 0

4- states, but the J= I levels are nearly degenerate with them. the
O ._splitting being of the order of 10- 1 eV. Their nuclear permuta-

tion symmetries depend on J and on the parity 17, as well as
whether the geometric phase is er is not included (see tables 3

3 v1-.0__ and 5). There are two levels for each of the sets of quantum num-

' 0 0 bers (vi =0. vz=1=,) and (&, = 1. L,==). which would be de-
generate if the potential were exactly cylindricilly symmetric

around the YA axis (see text and fig. I).
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Table 5
Hpersp ierical method energ, levels including the effect of the geometric phase .'

I J=O J= I even parity J= I odd parity

0 t 4.0215 (F) 4.0286 (E) 4.0256 I , A '

4.0243 (A,)
4.0284 (E)

1 4.2049 (E) . 4.2114 (E) 4.2087 (A,)d,

4.2076 (A2 )
4.2113 (E)

211 4.3710 (E) 4.3769 (E) 4.3744 (A,) dl

4.3734 (A 2 )
4.3768 (E)

3 j 4.5189 (E) 4.5243 (E) 4.5220 (A,) dl

4.5210 (A,)
4.5241 (E)

411 4.6468 (E) 4.6517 (E) 4.6496 (Ai)d

4.6487 (A2 )
4.6515 (E)

01 4.5005 (A,) 4  
4.5071 (A 2 ) 4.5050 (E)

4.5700 (A 2 ) 4.5768 (A,) d 4.5733 (E)
1 3 2 4.6425 (A,) , 4.6484 (A 2 ) 4.6466 (E)

4.1177 (A 2 ) 4.7237 (A,)d1 4.7223 (E)

" The energy is in eV and its origin corresponds to the bottom of the ground electronic state of the isniated H 2 molecule.
bl The irreducible representations are the ones for the permutation group of the nuclei to which 1"Mnr belongs.

Quantum numbers used to classify the states (see text).
dl Levels with A, symmetry are included for completeness, but are forbidden by the Pauli principle.

permit inclusion of the geometric phase due to the conical intersection whereas the hyperspherical method does.
Fig. 2 and table 5 show the important modifications of the bound rovibrational energies when the geometric

phase is included in the hyperspherical calculation. These changes can be understood if one defines Quantum
numters to the bound states of tables 3 and 5 by modeling the nuclear wavefunction in the following way : I

- We retain a single term in the expansion of the bound states in the LHSF basis (eq. (3a)). This Born-
Oppenheimer-type approximation, also used to model reactive scattering resonances [24 ], is very accurate in
the present case where the frequency associated to the hyperspherical mode is smaller than those of the fixed-
p bending modes: the resulting bound state energies are shifted by less than 0.4 meV. This approximation sug-
gests that we define the quantum number v, associated with the hyperradial motion as the number of nodes
of the hyperradial function Fl.nr(p) (eq. (3a)). This mode corresponds to the breathing normal mode in the
limit of small amplitude vibrations, but in the present case, it can have large ,amplitudes with an excitation as
large as v, = 5 (table 3).

- We assume that the fixed-p bending vibration has small amplitude, so that the wavefunction is concentrated
near 6=0. This approximation is reasonable due to the steep increase of the potential as a function of 6. It
suggests that we neglect the asymmetric top coupling elements in the kinetic energy (last term o,^eq. (5)) and
the (; dependence in the potenial. The (non-symmetrized) LHSF can then be factored as

0.-'-n=exp~(inpj g,10, p) D-1'W(Ot, fl, 7) , (9a)

where g,,, is defined by

' The actual energy values given in tables 3 and 5 are calculated accurately: this model is used only to assign quantum numbers to these
levels.
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2h2 I( 1J(J+ I- K'+ 1K,) h",. (p) (9b

Eq. (9b) is the small-O limit of eq. (3b) (see also eq. (5)). I quantizes the absolute value of the vibrational
angular momentum in a new body frame, which is an Eckart frame associated to the equilibrium position of
the nuclei in the equilateral triangular configuration [41 ], and is given by 1= In,- iKI. v2 is the bending vi-
brational quantum number and is defined by analogy with the two-dimensional harmonic oscillator such that
the number of 0 nodes of g, is I (V2 -1) [42]. v2 and I are both integers when the geometric phase is not-
considered and become both half odd integers when it is taken into account. If the pote-tial were a harmonic
function of 0, the bound state energies would increase linearly with v2 for each v, value. Although the potential
is an approximate linear function of 0, tables 3 and 5 indicate that the dependence of the bound state energies
on v2 is not far from linear. Therefore, as shown in fig. 2, each of the levels with the geometric phase (v2 half
odd integer) is almost half way in energy between two consecutive ones without this phase (v2 integer).

The quantum numbers v2 and I defined above are closely related to the ones (n and j) defined in ref. [ 31]
for the analysis of the geometric phase in the 2 2E' Na 3 excited state. However, due to important differences
in the shapes of the electronic potentials (minimum for equilateral triangular configurations in the present
excited Hj state, but for distorted configurations [ 9] in the Na 3 potential used in ref. [311), the dependence
of the bound state energies on these quantum numbers is different in the two systems.

Due to the Pauli principle and to the symmetries of the nuclear spin wavefunction with respect to interchange
of the identical nuclei, the only allowed electronuclear wavefunctions V?4'7r (eq. ( I )) have A2 or E nuclear
permutation symmetries, and they correspond to quartet and doublet nuclear spins respectively. The number
of such levels which satisfy the Pauli principle and their spin syn..etries change significantly when the effect
of the geometric phase is included.

4. Conclusions

We have described a new hyperspherical propagation method for the calculation of bound rovibrational states.
This method is well adapted to systems of three identical particles, because it allows easy inclusion of the full
permutation symmetries of the system and of the effect of conical intersections on the phase of the nuclear
wavefunction.

We have shown that, in the case of the bound rovibrational states in the first electronically excited state of
H3, the geometric phase results in bending modes having half odd integer quantum numbers and in important
changes of the rovibrational state energies and of their symmetry properties. In the following paper [43 ], we
study the influence of the geometric phase on the chemical reaction which occurs in the ground electronic state
of H3.

Acknowledgement

This work has been supported in part by Air Force Astronautics Laboratory contract F04611-86-K-0067 and
by DOE grant DE-AS03-83ER. Most of the calculations were performed on the CRAY-XMP/48 and SCS-40
computers at the NSF San Diego Supercomputing Center. BL thanks the "Centre National de la Recherche
Scientifique" for financial support and J.M. Launay for useful discussions on the hyperspherical method.

References

I I G. Herzberg. J. Chem. Phys. 70 (1979) 4806;
I. Dabrowski and G. Herzberg, Can. J. Phys. 58 (1980) 1238;

579

93



Volume 166, number 5.6 CHEMICAL PHYSICS LETTERS 9 March 1990

G. Herzberg and J.K.G. Watson. Can. J. Phys. 58 (1980) 1250-
G. Herzberg, H. Lew. J.J. Sloan and J.K.G. Watson. Can. J. Phys. 59 (1981) 428;
G. Herzberg, .J. Sloan and J.K.G. Watson. Can. J. Phys. 60 (1982) 126 1.

[2] H. Helm. Phys. Re'. Letters 56 (1986) 42.
[3] J. Garvey and A. Kuppcrmann. Chem. Phys. Letters 107 (1984) 491.
[4] H. King and K. Morokuma, J. Chem. Phys. 71 (1979) 3213.
[5] M. Jungen. J. Chem. Phys. 71 (1979) 3540.
[6] R. Martin. J. Chem. Phys. 71 (1979) 3541.
[7] I.D. Petsalakis, G. Theodorakopoulos and J.S. Wright, J. Chem. Phys. 89 t 1988) 6850.
[8] AJ.C. Varandas, F.B. Brown, C.A. Mead, D.G. Truhlar and N.C. Blais, J. Chem. Phys. 86 (1987) 6258.
[9] H.A. Jahn and E. Teller, Proc. Roy. Soc. A 161 (1937) 220.

[10] G.C. Schatz and A. Kuppermann, J. Chem. Phys. 65 (1976) 4668;
R.T. Ling and A. Kuppermann, in: Electronic and Atomic Collisions, Abstract of the 9th International Conference on the Physics
of Electronic and Atomic Collisions, Seattle, Washington, 24-30 July 1975, Vol. 1, eds. J.S. Risley and R. Geballe (Univ. Washington
Press, Seattle, 1975) pp. 353, 354;
A. Kuppermann and P.G. Hipes, . Chem. Phys. 84 (1986) 5962;
P.G. Hipes and A. Kuppermann, Chem. Phys. Letters 133 (1987) 1;
S.A. Cuccaro, P.G. Hipes and A. Kuppermann, Chem. Phys. Letters 154 (1989) 155; 157 (1989) 440.

[1 ) R.T Pack and G.A. Parker, J. Chem. Phys. 87 (1987) 3888.
[12] J. Linderberg, S. Padkjzr, Y. Ohm and B. Vessal, J. Chem. Phys. 90 (1989) 6254.
[ 131 J.M. Launay and M. Le Dourneuf, Chem. Phys. Letters 163 (1989) 178.
[ 14] J.Z.H. Zhang and W.H. Miller, Chem. Phys. Letters .153 (1988) 4," - 159 (1989) 130.
[15 ] A.B. Elkowitz and R.E. Wyatt. J. Chem. Phys. 62 (1975) 2504:63 (1975) 702;

D.E. Manopoulos and R.E. Wyatt, Chem. Phys. Letters 159 (1989) 123.
[16] R.B. Walker, E.B. Stechel and J.C. Light. J. Chem. Phys. 69 (1978) 2922;

F. Webster and J.C. Light, J. Chem. Phys. 90 (1989) 300.
[17] M. Mladenovic, M. Zhao, D.G. Truhlar, D.W. Schwenke, Y. Sun and D.J. Kouri. J. Phys. Chem. 92 (1988) 7035; Chem. Phys.

Letters 146 (1988) 358.
[18] M. Vogler, Phys. Rev. A 19 (1979) 1.
[19] J.K.G. Watson, Phys. Rev. A 22 (1980) 2279.
[201 J. Tennyson, Computer Phys. Commun. 42 (1986) 257.
[211 J. Tennyson, Computer Phys. Rept. 4 (1986) 1.
(22] R.C. Whitten and F.T. Smith, J. Math. Phys. 9 (1968) 1103.
[23] B.R. Johnson, J.'Chem. Phys. 73 (1980) 5051; 79 (1983) 1906, 1916.
[24] J.M. Launay and B. Lepetit, Chem. Phys. Letters 144 (1988) 346;

B. Lepetit and J.M. Launay, Chem. Phys. Letters 151 (1988) 287.
(25] R. Wallace, Chem. Phys. 37 (1979) 93.
[26 J.G. Frey. Chem. Phys. Letters 102 (1983) 421;

J.G. Frey and B.J. Howard, Chem. Phys. 99 (1985) 415.
[27] H.C. Longuet-Higgins, U. Opik, M.H.L. Pryce and R.A. Sack, Proc. Roy. Soc. A 244 (1958) 1;

G. Herzberg and H.C. Longuet-Hiwins, Discussions Faraday Soc. 35 (1963) 77;
H.C. Longuet-Higgins, Advan. Spectry. 2 (1961) 429.

[28] C.A. Mead and D.G. Truhlar, J. Chem. Phys. 70 (1979) 2284.
(291 C.A. Mead, Chem. Phys. 49 (1980) 23.
[30] M.V. Berry, Proc. Roy. Soc. A 392 (1984) 45.
[31 ]G. Delacritaz. ER. Grant. R.L. Whetten, L. W6ste and J.W. Zwanziger, Phys. Rev. Letters 56 (1986) 2598.
[32 1 Y. Aharonov and D. Bohm. Phys. Rev. 115 (1959) 485.
[33] L.M. Delves. Nuct. Phys. 9 (1959) 391: 20 (1960) 275.
[34] B. Lepetit. J.M. Launay and M. Le Dourneuf, Chem. Phys. 106 (1986) 103.
[35] A.S. Davydov, Quantum mechanics, 2nd Ed. (Pergamon Press, Oxford, 1976) pp. 151-16 1.
[36] W. Zickendraht. Ann. Phys. 35 (1965) 18.
[371 H. Mayer, J. Phys. A 8 (1975) 1562.
[38] L Wolniewicz. J. Chem. Phys. 90 (198V) 371.
[391 A. Kuppermann. Chem. Phys. Letters 32 (1975) 374.
[40 J. Tennyson and B.T. Sutcliffe, Mol. Phys. 51 (1984) 887.
[41] E.B. Wilson, J.C. Decius and P.C. Cross, Molecular vibrations (Dover, New York, 1980) ch. II.
[42] S. FlUgge, Practical quantum mechanics (Springer, Berlin, 1974) problem 42.
[43] B. Lepent and A. Kuppermann, Chem. Phys. Letters 166 (1990) 581.

580

94



Volume 166. number 5.6 CHEMICAL PHYSICS LETTERS 9 March 1990

NUMERICAL STUDY OF THE GEOMETRIC PHASE IN THE H+H 2 REACTION
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The effect on the H + H2 reaction of the geometric phase induced by the conical intersection between the two lowest electronic
states of H) is investigated by an accurate quantum mechanical computation up to 2.6 eV above the bottom of the ground state
H2 electronic potential well for the total angular momentum J=0. The main effects of the inclusion of the geometric phase are a
sign change in the reactive scattering matrix and modifications in the nuclear permutation symmetries of the calculated reso-
nances. Cross-sections to which non-reactive processes contribute (ortho-ornho and para-para) are significantly modified,
whereas the others (onho-para and para-onho) are not.

1. Introduction and is sometimes referred to as the molecular Aha-
ronov-Bohm effect [ 14-16,18 ]. We use the expres-

Most of the quantum theoretical studies on the sion "geometric phase" in the rest of this paper. In
H (2S) + H2 ('1+" ) reaction have used the Born-Op- the preceding paper [ 19], referred to hereafter as 1,
penheimer approximation (see for instance refs. [I - we have shown that this geometric phase completely
12] ), and assumed that the reaction occurs on the modifies the energy spectrum and the permutation
single ground electronic potential energy surface. This symmetry properties of the quasi-bound rovibra-
approximation is expected to be quite accurate be- tional states of the first electronically excited state.
low about 2.6 eV of total energy (with respect to the In this Letter, we study the effect of this geometric
bottom of the H2 (Il+ ) potential well) since this is phase on the chemical reaction which occurs on the
0.1 eV below the energy of the minimum of the first ground electronic potential energy surface.
excited potential. It has been shown formally that, if the condition

However, a complication neglected in all the pre- that the wavefunction is zero in a certain region of
vious numerical studies [ 1- 12] arises from the fact nuclear configuration space separating different ar-
that the ground electronic state conically intersects rangement channels (see section 3) is fulfilled, the
the first excited one for equilateral triangular con- only effect of the geometric phase is to produce an
figurations of the nuclei. There is a sign change of the interference between reactive and non-reactive scat-
electronic wavefunction as one follows a closed path tering amplitudes which is exactly the opposite to
in nuclear configuration space around the line of the what it would be without consideration of the con-
conical intersection. Since the total electronuclear ical intersection [ 16]. This condition is likely to be
wavefunction is continuous and single-valued, there satisfied for the low collision energies considered in
has to be a compensating sign change in the nuclear the earlier quantum studies of this reaction [ 1-3 ],
part of the wavefunction [ 13-16]. This sign change but a numerical study including the geometric phase
is a particular case of Berry's geometric phase (17] exactly is required to find out if this condition re-

mains valid at the higher energies reached using more
Permanent address: UPR 261 du CNRS, Observatoire de Paris, recent methods [4-12].
92195 Meudon. France. To include the geometric phase in the calculation

2 Contribution No. 8053. of the scattering states of the system, two distinct ap-
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proaches can be followed, both leading to the same The electronuclearwavefunction W M" excluding the
final result: nuclear spin part (see eq. ( 1 ) in 1) is chosen to be-

- One can use real electronic and nuclear wave- long to an irreducible representation Fof the nuclear
functions with compensating sign changes and in- permutation group (P3) of H 3. It is also labelled by

clude the geometric phase simply by enforcing ap- the total nuclear angular momentum quantum num-
propriate boundary conditions and permutation ber J, its component M along a laboratory-fixed axis

symmetries on the nuclear wavefunction. and the nuclear parity 17. In the absence of the geo-
- Alternatively, one can add extra complex phase metric phase, we make the usual assumptioni that the

factors to the electronic and nuclear parts of the electronic wavefunction belongs to the A, irreduc-
wavefunction to enforce the continuity and single- ible representation of the nuclear permutation group
valuedness of each of them. These extra phases add (P 3). In this case, the spacial part V Ju n r of the nu-

to the nuclear Schr6dinger equation a term formally clear wavefunction belongs to the same irreducible
similar to a vector potential associated to a delta- representation r as WP"",M In the presence of the
function magnetic field located on the conical inter- geometric phase, although W 1n still belongs to the
section line [14,15 ]. Similarly to the Aharonov- irreducible representation rof P3, the spacial part of
Bohm effect (18 ], this magnetic field modifies the the nuclear wavefunction and the electronic wave-
interference pattern between semi-classical trajec- function do not.
tories passing on opposite sides of the conical inter- Let A., Ap A, be the atoms of the system, and
section line [ 141. (A, V, K) be any cyclic permutation of (a, 13, y). rk is

In this paper, we use the first of these two ap- the mass-scaled [23] internuclear vector for the di-
proaches to compute the quantum-mechanical three- atom AA,, and RA the mass-scaled vector of A, with
dimensional reactive scattering matrix for the total respect to the center of mass of A.A. In the hyper-
angular momentum J= 0 and for total energies be- spherical method, the Hamiltonian is written in terms
low 2.6 eV. We restrict the use of the second ap- of the hyperradius p= (Ra +rA2) "2 which parame-
proach to the semi-classical interpretation of the re- trizes the global size of the triatomic system and of
suits. Section 2 describes briefly how the proper a set of five angles Cwhich describe its shape and ori-
boundary conditions and symmetry properties of the entation in space [4,5,10-12,19-24]:
nuclear wavefunction can be easily incorporated in fi - A2

ahypersphericalformalismwhichusesmodified [20] H=- - p p i + - + V(p, C). (1)
Whitten-Smith coordinates (211 to describe the 2 y 8p 8p 2 pp2

strong interaction of the three atoms and symme- In this expression,/u is the three-body reduced mass,
trized hypersphercal coordinates [4,221 derived A the grand-canonical angular momentum and V the
from Delves' coordinates [ 231 to describe the initial Born-Oppenheimer electronic potential. The spacial
and final H+H 2 arrangements. In section 3, we de- nuclear scattering wavefunction W1.

u rn " is an eigen-
scribe in detail the effect of the geometric phase on function of the nuclear Hamiltonian (eq. (1)) and
the scattering matrix and cross-sections for distin- is expanded in a basis of local hyperspherical surface
guishable and undistinguishable nuclei, functions (LHSF),0Mur:

2 dMnr(p, o= 7-5 . FJ,!nr(p) 0 Mnr(C;p) , (2)
2. Method

which are eigenfunctions of the fixed-hyperradius
We outline here the main features of the hyper- Hamiltonian:

spherical method, already described in I. As in that A2

paper, we neglect spin-orbit and spin-spin interac- +_ V)
tions throughout. In the Bohr-Oppenheimer ap- 2p

2

proximation, the total wavefunction is a product of = EJr(p) 0 A fnr(,; p). (3)
electronic and nuclear parts. The latter is a product
of nuclear spin and nuclear spacial wavefunctions. The coefficients F-n r in eq. (2) are solutions of a
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set of ordinary coupled differential equations in p. and vibrational-type functions in c,. Since product
which we solve using piece-wise diabatic bases bases associated to different arrangements do not
(4.25]. overlap in region II, the LHSF which include the

A solution of eq. (3) efficient for all values of the geometric phase differ from the ones which exclude
hyperradius requires a division of the internal con- it only by simple changes in the signs of the pieces
figuration space into two regions: of the wavefunction within each arrangement chan-

- Region I corresonOids to small values of the hy- nel. The geometric phase can be included straight-
perradius for which the three atoms interact strongly. forwardly in region II since it does not change the
We use the modified [ 20] Whiiten-Smith [ 21 ] def- overlap and interaction matrices.
inition of the five angular coordinates in this region: The LSTH Born-Oppenheimer electronic poten-
three Euler angles define the orientation of the frame tial energy surface has been used [ 26 ). This surface
of the principal axes of inertia in space, and the an- was chosen, rather than the DMBE [27] one used
gles (0, () specify the shape of the molecular tri- for the bound state calculations of paper I, because
angle. The LHSF are computed numerically by ex- we already had accurate scattering results [41 for it
pansion in a product basis of simple trigonometric which served to test the validity of the new hyper-
functions in 0 and (pt (see eqs. (6) and (7) in I). spherical method described here. Recent results [7,9j
Table I indicates how to choose the functions of ( indicate that the use of the DMBE potential does not
to obtain electronuclear wavefunctions PJ"nr with significantly change the final scattering matrix re-
correct permutation symmetries, with and without suits. The boundary between region I and region II
consideration of the geometric phase. was set at p=6 bohr. Surface functions were com-

- Region 1I corresponds to large values of the hy- puted at 20 values of p between 2 and 6 bohr in re-
perradius for which the system has separated into an gion I and 31 values of p between 6 and 12 bohr in
atom and a diatom. The nuclear wavefunction is now region II. The results shown below have been ob-
localized in the electronic potential valleys associ- tained with 1 i 56 product functions (34 for each of
ated to each of the corresponding asymptotic ar- the two angular coordinates 0 and V) in region I and
rangements and its amplitude on the plateaux sep- 156 product functions in region II. We verified that
arating the arrangement channels is negligible. This the convergence of the scattering matrix elements
localization makes the expansion of the LHSF on the with respect to the size of the product basis was of
delocalized product basis used in region I inefficient the order of 1% by comparing with a smaller cal-
and suggests the use of symmetrized hyperspherical culation involving 900 product functions in region
coordinates [4,22] instead. Therefore, (0, 9v) are 1. 65 LHSF for A, and A2 permutation symmetries
replaced in region II by (wi, yA) defined by wt= and 130 LHSF for E symmetries, with energies ac-
2 arctan(r/RA) and 7A=arccos(RA-rA/RjrA), each curate to within approximation 10- 3 eV, have been
in the range 0 to t. The LHSF are now expanded in used in the expansion of the wavefunction. The uni-
a product basis [4] of Legendre polynomials in cos 7A tarity of the resulting scattering matrix was always

Table I
Basis in q for expansion of the J= 0 LHSF

A, A2  E a)

without phasebl cos(3noA) sin(3n9PA) cos[ (3n± l )qpA]
with phase" )  cos[ (3n+J)A]I sin[ (3n+ )PA] cos[ (3n ± )]

" Irreducible representation of the permutation group of the nuclei to which the electronuclear wavefunction V "Inrb ,onps. We choose
the component of the E irreducible representation which is symmetric with respect to the A,-A. permutation (tee text). n is a non.
negative integer.

b' Excluding consideration of the geometric phase. In this case, the electronic wavefunction is assumed to belong to the A, irreducible
representation of P,.

C) Including consideration of the geometric phase.
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better than %. except for the E symmetry above 2.4 E0/ 9V E0, /v
eV for a few columns and rows associated to highly I. 0 I 6 I . I6 .
excited reactants or products. 0 , 2 3 , , 2 3 4 S1

Pt~~o-loo Po -,

3. Results

We first discuss the effect of the geometric phase
on the scattering matrices associated to electronu-
clear wavefunctions P 1 which are bases for ir- 0.
reducible representations of the permutation group Z
of the nuclei. Then, we switch to the scattering ma-
trices associated to distinguishable particles. This 1 3 a 1,2.0

representation affords a simple understanding of the 10 2 P.O-.,o

effect of the geometric phase on the H + H, reaction. I
Figs. I and 2 show some transition probabilities

for the total angular momentum J=O and for elec- °04 26

tronuclear wavefunctions P""r belonging to irre-
ducible representations of P3. Comparison of both
rows of figs. I and 2 shows that the inclusion of the o _

geometric phase induces important changes in the 0/ ,0 ,° 26 02 IQE eV 26

qualitative features of the transition probabilities as-
sociated to irreducible representations of the per- Fig. I. Transition probabilities as a function of energy for J=O
mutation group, except for the transitions from para without (upper row) and with (lower row) consideration of the
to ortho (and ortho to para because of the micro- geometric phase. The left column corresponds to an electronu-

scopic reversibility) hydrogen in the E irreducible clear wavefunction P.r'r which belongs to the A, irreducible
representation of the permutation group of the nuclei and torepresentation which remain almost unchanged (last the transition H+H2(v=o.j=O, m,=O)-H+H 2(v'= l.j =0,

column of fig. 2). mr-0). The right column corresponds to an electronuclear
One interesting modification due to the inclusion wavefunction V1iHI which belongs to the A2 irreducible repre-

of the geometric phase is the exchange of qualitative sentation of the permutation group of the nudei and to the tran-

features between the transition probabilities associ- sition H + H2(u0,j I. m,=O) -H + H2(v = Ij = I. m =0).
The lower abscissa is the total energy and the upper abscissa the

ated to the A, and A2 irreducible representations (fig. reagent relative translational energy. The vertical arrows on the
I ). In particular, the resonances, which correspond upper abscissa denote the energies of the H2 (v, j- 0) states and
to A, wavefunctions without geometric phase, ap- are labelled by the values of P. The squares on the probability

pear on the A2 probabilities when this phase is in- curves indicate the points for which the scattering calculations

cluded. This exchange results from a similar one in were made.

the nodal structure of the nuclear wavefunctions. In-
deed, the last of ref. [4] shows that resonance wave- More generally, the inclusion of the geometric
functions are non-zero for near linear configurations phase modifies the result of the symmetry analysis
of H3 where two internuclear distances are equal. of resonances for low total angular momentum de-
These configurations correspond to the half planes scribed in the last of ref. [4]. This paper shows that
9, =x/3, x, 5x/3, which, according to table I, are the exchange of the two extreme hydrogen atoms of
nodal planes for the A2 wavefunctions in the absence the near linear configurations considered in the pre-
of the geometric phase and for the A, wavefunctions vious paragraph multiplies the spacial part of the nu-
when this phase is included. Therefore, the reso- clear wavefunction by a factor (- I )",x where K is
nances must correspond to A, electronuclear wave- the vibrational angular momentum of the resonant
functions V11n without the geometric phase and to state and 17 its parity. If Xr is the eigenvalue of the
A, wavefunctions with this phase for J=O. operator which permutes the two extreme hydrogen
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Ew/eV Ew/eV We now assume that the three hydrogen atoms are
o 08 6 a 08 I6

distinguishable particles. Fig. 3 shuws that the non-
0 2 4 , ; 0 2 3 , reactive (direct) and reactive (exchange) transition

06- 20 P=o 10 . probabilities are almost not affected by the inclusion

Al of the geometric phase. Only slight changes (less than
1 I10%) appear in the probabilities above 2 eV for low

I ,J excited states of the reactants and products (these

L changes however can become larger than 10% for
Ismall transitions between rotationally excited reac-

tant and product states). The strong effect observed
in fig. I in the transition probabilities associated to
the irreducible representations of the permutation

M 10 2 3 £ 0 1 2 3 4
a. . LOP . 1 group of the nuclei results mainly in a change of Yt in

.10 ~1 -, the phase of the reactive scattering matrix elements.
f~j whereas the phases of the non-reactive matrix ele-

,A', ments and the norms of the reactive and non-reac-
.. I tive scattering matrix elements are only slightly
I !modified by the geometric phase. These numerical

i 14 results validate the conclusion of ref. [ 161 and the
0' 1 2 assumption on which it rests over a wide energy0.2 I0 a 26 02 a0 a 26

E / *V E / ev range. Indeed, ref. [ 161 shows formally that. if the
wavefunction is zero in the vicinity of the half plane

Fig. 2. Transition probabilities as a function of energy for J=0 (A= t, then the only effect of the geometric phase is
without (upper row) and with (lower row) consideration of to change the sign of the reactive scattering matrix.
the geometric phase, for the transitions H+H&(v=0,j=0, This result should be also valid for non-zero total an-
m,=0)-H+H2(V" = Ij' =0. m, =0) (left column) and H+ gular momenta.
H 2(v=0,j=0, mj=0)-H+H 2(v' = Ij]= 1, m =0) (right col-
umn) with the electronuclear wavefunction P"Irr belonging to Ref. [ 14 1 suggests a semiclassical picture for the
the E irreducible representation of P,. For the other details, see effect of the geometric phase on the reactive prob-
the caption of fig. I. abilities, in terms of the modification of the inter-

ference pattern between trajectories passing on op-
atoms in the electronuclear wavefunction P1srr ( + 1 posite sides of the conical intersection axis (0=0).
for the A, irreducible representation, - 1 for A2 and However, the quantum results suggest that, since only

I I for the E doubly degenerate irreducible repre- the phases of the reactive scattering matrix elements
sentation, according to which component is consid- are significantly changed, almost all trajectories
ered), the condition for having a resonance without should pass on the same side of the conical inter-
consideration of the geometric phase is section, namely the one nearest the minimum energy
Xr= (- I )I. , since, in this case, we assume that path. We performed quasi-classical trajectory cal-
the electronic part of the wavefunction is symmetric culations for J= 0 with a sample of 400 trajectories
for the permutation of the hydrogen nuclei. If now for each collision energy. Below 2.6 eV. we found in-
the geometric phase is included, the condition for deed that for the ground rovibrational initial state
having a resonance becomes Xr= ( - I )7+K+ I since (v=j=0) only one trajectory (at 2.4 eV) passes on
the electronic wavefunction is now antisymmetric the side of the conical intersection opposite to the
with respect to the nuclear permutation. Therefore, minimum energy path. However, rotational excita-
the symmetry assignments of the resonances are ex- tion of the reactants can increase this number: 10%
changed for the A, and A2 irreducible representa- of the reactive trajectories pass on the side opposite
tions, but remain unchanged for the E irreducible to the minimum energy path at 2.5 eV for j= 10 and
representation, which has doubly degenerate sym- IS. This suggests that, as observed in the quantum
metric and antisymmetric components. results, the effect of the geometric phase can become
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Eo00 eV E0o eV
0 08 16 0. 08 1 6

0.0 ,

0 2 3 4 5 T 2 3 4 5
NRJ.O R j.O

Pooo-.1oo P0OO-00

to<0.02-

0
0. •

0 -. '

0.2 1.0 1.8 2.6 0.2 1.0 1.8 2.6

E/eV E/eV

Fig. 3. Non-reactive (left) and reactive (right) transition probabilities for H+H 2(v=0,j=0, m,=0)-H+H 2 ( = lI=0, Mj =0).
The dots and the continuous lines refer to the calculations excluding and including the geometric phase respectively. For the other details,
see the caption of fig. 1.

more important for some transitions between rota- for para to ortho transitions: the strong resonant pat-
tionally excited reactants and products. Finally, the terns which are present on the experimental integral
number of trajectories passing on the side of the con- cross-sections [28] will not appear on the corre-
ical intersection opposite to the minimum energy sponding theoretical results (6,7,121 even if the geo-
path increases strongly above 2.8 eV and reaches 40% metric phase is included. However, fig. 4 suggests that
of the total number of reactive trajectories for j=0 antisymmetrized cross-sections can be significantly
at 4 eV. This indicates that the geometric phase modified by the introduction of the geometric phase
modifies both the norms and the phases of the scat- for para to para or ortho to ortho transitions, since
tering matrix elements in this high energy range. the way reactive and non-reactive scattering ampli-
However, inclusion of the electronic coupling to the tudes interfere is, with a good accuracy below 2.6 eV,
first electronically excited state becomes necessary to changed to its opposite (see eqs. (5.39) and (5.40)
obtain quantitatively correct results in this energy in the second ref. ( I ). This change is not very im-
range. portant at low energy when the reaction probabilities

Consideration of the Pauli-antisymmetrized (de- are small compared to the non-reactive ones (see the
fined in the second ref. [ I ] ) J=0 partial cross-sec- 000-020 transition probability below 0.6 eV in fig.
tions allows us to estimate qualitatively how the 4), but it can modify even the qualitative features
Pauli-antisymmetrized integral cross-sections are and the order of magnitude of the antisymmetrized
modified by inclusion of the geometric phase. The cross-sections when, at higher energy, reactive and
previous discussion indicates that the para to ortho non-reactive scattering amplitudes become of the
or ortho to para antisymmetrized cross-sections are same order of magnitude.
almost not modified for energies below 2.6 eV by in- The effect of the geometric phase on the details of
clusion of the geometric phase, since only the reac- the angular distributions of the ortho-ortho and
tive scattering amplitude appears in the expressions para-,para cross-sections should be even more pro-
of the antisymmetrized cross-sections for these tran- nounced than on the corresponding integral cross-
sitions (see eqs. ( 5.39) and (5.40) in the second ref. sections. The differential cross-sections for these
[ I ] ). Therefore, this phase cannot be the reason for transitions show an oscillatory dependence on scat-
the important discrepancies between experimental tering angle [ I ] which should become more intense
and theoretical integral cross-sections below 1.4 eV as energy increases. These oscillations are due to in-
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Fig. 4. Antisymmetrized J=0 partial integral cross-sections for the transition H + H, (z=O.j=O, mn =O)-H+H,(L,' =O.J' =2, tr =0)
(left) and H+H 2 (v=0.j=0. m,=0).H+H 2 (u' = I,j' =0. m. =0) (right). The dots and the continuous lines refer to the calculations
excluding and including the geometric phase respectively. For the other details, see the caption of fig. 1.

terferences between direct and exchange scatterings, Acknowledgement
and a change in the sign of the exchange scattering
amplitude should make constructive interferences This work has been supported in part by Air Force
destructive and vice versa [ 16 ]. Astronautics Laboratory Contract F04611-86-K-0067

and by DOE grant DE-AS03-83ER. The quantum
4. Conclusions calculations were performed both on the CRAY-

XMP/48 and SCS-40 computers at the NSF San

The present numerical study of the geometric phase Diego Supercomputing Center and the CRAY-XMP/

in the H +H 2 validates the conclusion of ref. [161 in 18 of the Jet Propulsion Laboratory. The quasi-cias-

a wide energy range below 2.6 eV: quite accurate sical trajectory calculations were performed on the

cross-sections can be obtained by neglecting the geo- 8 node Mark III hypercube of the California Insti-

metric phase in the computations of the reactive and tute of Technology. BL thanks the "Centre National

non-reactive scattering matrix elements and by in- de la Recherche Scientifique" for financial support
cluding it a posterori by changing the signs of the and J.M. Launay for useful discussions on the hy-

reactive scattering matrix elements. This sign change perspherical method.

can modify significantly the spin-averaged cross-sec-
tions when the energy is high enough for reactive References
transition probabilities to be non-negligible com-
pared to the non-reactive ones. Quasi-classical ira- I ] A. Kuppermann and G.C. Schatz. J. Chem. Phys. 62 (1975)
jectory calculations indicate that this approximate 2502:
treatment of the geometric phase becomes inaccur- G.C. Schatz and A. Kuppermann. J. Chem. Phys. 65 (1976)
ate at the higher energies for which the Born-Op- 4642.

penheimer approximation is expected to break down. [2] A.B. Elkowitz and R.E. Wyatt. J. Chem. Phys. 62 (1975)
2504; 63 (1975) 702.

Finally, our quantum study also indicates that in- [31 R.B. Walker, E.B. Stechel and J.C. Light, J. Chem. Phys. 69
clusion of the geometric phase changes the symmetry (1978) 2922.
assignments of the resonances. [4] R.T. Ling and A. Kuppermann. in: Electronic and Atomic

Collisions. Abstract of the 9th International Conference on
the Physics of Electronic and Atomic Collisions, Seattle.

587

101



Volume 166, number 5.6 CHEMICAL PHYSICS LETTERS 9 March 1990

Washington. 24-30 July 1975, Vol. 1, eds. J.S. Risley and (141 C.A. Mead and D.G. Truhlar, J. Chem. Phys. 70 (1979)
R. Geballe (Univ. WAashington Press, Seattle. 1975) pp. 353. 2284.
354; 151 IC.A. Mead. Chem. Phys. 49 (1980) 23.
A. Kuppermann and P.G. Hipes. J. Chem. Phys. 84 (1986) 1161 C.A4. Mead, J. Chem. Phys. 72 (1980) 3839.
5962:* [ 171 M.V. Berry. Proc. Roy. Soc. A 392 (1984) 45.
P.G. Hipes and A. Kuppermann. Chem. Phys. Letters 133 [18] Y. Aharonov and D. Bohm, Phys. Rev. I1I5 (1959) 485.
(1987) 1; [1191 B. Leptit, Z. Peng and A. Kuppermann. Chem. Phys. Letters
S-A. Cuccaro. P.G. Hipes and A. Kuppermann. Chem. Phys. 166 (1990) 572.
Letters 154 (1989) 155;.157 (1989) 440. [20] B.R. Johnson. J. Chem. Phys. 73 (1980) 5051; 79 (1983)

[1 G.C. Schatz Chem. Phys. Letters ISO (1988) 92. 1906; 1916.
[6]) J.Z.H. Thang and W.H. Miller, Chem. Phys. Letters 153 1211) R.C. Whitten and F.T. Smith, J. Math. Phys. 9 (1968) 1103.

(1988) 465; 159 (1989) 130. (221 A. Kuppermann, Chem. Phys. Letters 32 (1975) 374.
(71 D.E. Manopoulos and R.E. Wyatt. Chem. Phys. Letters 159 1231 L.M. Delves, Nuc. Phys. 9 (1959) 391; 20 (1960) 275.

(1989) 123. [21JM anyadB eeiCe.Py.Ltes14(98
18]1 F. Webster and J.C. Light. J. Chem. Phys. 90 (1999 300. [24 6;.Lua n . eiCe.Pys etr ~(98
(9] M. Mladenovic, M. Zhao, D.G. Truhiar, D.W. Schwenke, 346; ttad .. LuaChm h- etes11(98

Y. Sun and 0DJ. Kouni, Chem. Phys. Letters 146 (1988) 28. pstadJM any hm hs etr 5(98
358;J1. Phys. Chem. 92 (1988) 703. 27

110] J. Linderberg, S. Padkjar, Y. Ohm and B. Vessal. J. Chem. (25] B. Lepetit, J.M. Launay and M. Le Dourneuf, Chem. Phys.
Phys. 90 (1989) 6254. 106 (1986) 103.

[I I] R.T Pack and G.A. Parker.J. Chem. Phys. 87 (1987) 3888. [26) P. Siegbahn and B. Liu, J. Chem. Phys. 68 (1978) 2457;
( 12] J.M. Launay and M. Le Dourneuf, Chem. Phys. Letters 163 DO. Truhlar and C.J. Horowitz, J. Chem. Phys. 68 (1978)

(1989) I'S8. 2466; 71 (1979) 1514.
[ 13 ] H.C. Longuet-Higgins. U. Opik. M.H.L. Pryce and R.A. (27] A.J.C. Varandas, F.B. Brown, C.A. Mead, D.G. Truhlar and

Sack. Proc. Roy. Soc. A 244 (1958) 1; N.C. Blais. J. Chem. Phys. 86 (1987) 6258.
0. Herzberg and H.C. Longuet-Higgins, Discussions [281 J.C. Nieh and J.J. Valentini. Phys. Rev. Letters 60 (1988)
Faraday Soc. 35 (1963) 77; 519.
H.C. Longuet-Higgins. Advan. Spectry. 2 (1961) 429.

588

102



Volume 168. number 5 CHEMICAL PHYSICS LETTERS I I May 1990

QUANTUM MECHANICAL REACTIVE SCATTERING
USING A HIGH-PERFORMANCE DISTRIBUTED-MEMORY PARALLEL COMPUTER

Yi-Shuen Mark WU ', Steven A. CUCCARO, Paul G. HIPES 2 and Aron KUPPERMANN
AnhurAmos Noyes Laboratory of Chemical Physics. Division of Chemistry and Chemical Engineering.
California Institute of Technology. Pasadena. CA 91125. USA

Received 17 January 1990; in final form 21 February 1990

We have performed accurate three-dimensional quantum mechanical reactive scattering calculations for the H + H2 system on
the Caltech/JPL Mark 1lfp 64 processor hypercube, using the method of symmetrized hyperspherical coordinates and local
hyperspherical surface functions. The results and timing obtained demonstrate that such distributed memory paraliel architec-

tures are competitive with the CRAY X-MP, CRAY 2 and CRAY Y-MP supercomputers and should allow the study of larger,

more complicated.chemical systems. In addition, we show that a selection rule for scattering resonances developed previously and
tested for J= 0. I resonances is also satisfied by the J= 2 resonances obtained in the present calculations.

1. Introduction demands are so great that CRAY-type supercom-
puters will soon be limiting progress.

There is considerable current interest in perform- Although there has been a steady improvement in
ing accurate quantum mechanical three-dimensional the necessary technologies of the basic logic speeds
reactive scattering cross section calculations. Accu- of computers, there is little prospect of substantially
rate solutions have until recently proved to be dif- faster single processor designs in the near future.
ficult and computationally expensive to obtain, in Concurrent supercomputers are a natural next step
large part due to the lack of sufficiently powerful in meeting the need for both increased memory and
computers ( 1-7 ]. Prior to the advent of supercom- faster CPU. Individual processors, although slower
puters, one could only solve the equations of motion than a single sequential supercomputer processor. can
for model systems or for sufficiently light atom-di- be connected together in sufficient number to make
atom systems at low energy [ 1-4 1. As a result of the a powerful supercomputer. Such architectures offer
current development of efficient methodologies and the potential to obtain large increases in computing
increased access to supercomputers, there has been speed by simply increasing the number of proces-
a remarkable surge of activity in this field (8-19]. sors. The actual speed-up depends on the nature of
The use of ."-nmetrized hyperspherical coordinates the algorithm, the characteristics of the processors,
(20] and of the local hyperspherical surface function and the particular way these communicate with each
formalism [ 8,9,21 ] has proven to be a successful ap- other. The algorithms used and the codes developed
proach to solve the three-dimensional Schrddinger on sequential machines should be replaced by codes
equation ( 8,9,1 5,16 ]. However, even for modest re- optimized for parallel machines.
active scattering calculations the memory and CPU The essential property a calculation must have to

be efficiently done on a highly parallel computer is
Work performed in partial fulfillment of the requirements for that it be decomposable in such a way that in per-
the Ph.D. degree in Chemistry at the California Institute of forming it almost all processors should be computing
Technology.
Current address: 2338 Redwood Road, Scotch Plains, NJ efficiently almost all of the time, and that the com-

07076. USA. munication time between the processors should rep-
Contribution number 8068. resent a small fraction of the computation time. In
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the present paper we show how quantum mechanical from A, to AK, and the mass-scaled position vector
reactive scattering calcalations can be structured so Rj of A with respect to the center of mass of the A,,A,
as to fulfil these criteria, diatom. The symmetrized hyperspherical coordi-

The hypercube architecture is a leading design for nates [ 201 are the hyperradius p= (R 2 + r. ) /2 and
MIMD-type (multiple insiruction multiple data) a set of five angles w,,, Yi, OA, OA and e.v, denoted col-
distributed memory parallel architectures based on lectively as A. The first two of these are in the range
message passing. The first such machine was devel- 0 to t and are respectively 2 arctan(rj/Rj and the
oped by Seitz [22] and used by Fox [23,24], both angle between RA and rA. The angles 0 , 0, are the po-
at Caltech. We have created efficient codes to solve lar angles of RA in a space-fixed frame and 4,, is the
the quantum mechanical equation of motion for re- tumbling angle of the RA, rA half-plane around i i edge
active collisions of an atom with a diatomic mole- RA. The hamiltonian RA is the sum of a radial kinetic
cule using a hypercube computer of this type. Very energy operator term in p, and the surface Hamil-
similar codes should be appropriate for other MIMD tonian hl, which contains all differential operators in
distributed memory parallel architectures. CA and the electronically adiabatic potential V(p, co,

In this paper, we present a concurrent algorithm 7-). 9A depends on p parametrically and is therefore
for calculating local hyperspherical surface functions the "frozen" hyperradius part of HI.
(LHSF) and use a parallelized version [ 25 ] of John- The scattering wave function 'P unr is labelled by
son's logarithmic derivative method [26], modified the total angular momentum J, its projection 14 on
to include the improvements suggested by Manolo- the laboratory-fixed Z axis, the inversion parity 17
poulos [27]. for integrating the resulting coupled with respect to the center of mass of the system and
channel reactive scattering equations. We review the the irreducible representation F of the permutation
formalism briefly in section 2. In section 3 we dis- group of the system (P3 for H+H 2) to which the
cuss the parallel algorithms and in secion 4 we com- electronuclear wave function, excluding the nuclear
pare the results of scattering calculations on the Cal- spin part [31,32], belongs. It can be cxpanded in
tech/JPL Mark IIIfp 64 processor hypercube for the terms of the LHSF VMnr, defined below, and cal-
H + H2 system J= 0, 1, 2 partial waves on the LSTH culated at the values flq of p:
[28,29] potential energy surface with those of cal-
culations done on a CRAY X-MP/48 and a CRAY- n '.a)= " . .

2. Both accuracy and performance are discussed, and
speed estimates are made for the Mark IIIfp 128 pro- The index i is introduced to permit consideration of
cessor hypercube soon to become available and the a set of many linearly independent solutions of the
San Diego Supercomputer Center CRAY Y-MP/ 864 Schr'dinger equation corresponding to distinct ini-
machine which has just been put into operation. We tial conditions which are needed to obtain the ap-
summarize the conclusions in section 5. propriate scattering matrices.

The LHSF 0 Mnr(CA; q) and associated energies
efJlr(flq) are respectively the eigenfunctions and ei-

2. Methodology genvalues of the surface Hamiltonia:--i. The-. are
obtained using a variational approaci [15] The

The detailed formulation of reactive scattering variational basis set consists of products of Wigner
based on hyperspherical coordinates and local vari- rotation matrices D 3W(O., OA, Vz), associated Le-
ational hyperspherical surface functions (LHSF) is gendre functions of y; and functions of wo which de-

discussed elsewhere [ 8,9,15 ]. We present a very brief pend parametrically on 0, and are obtained from the
review to facilitate the explanation of the parallel nurvic:ical solution of one-dimensional eigenvalue-
algorithms. eigenfunction differential equations in wA involving

For a triatomic system, we label the three atoms a potential related to V(5, &o., yJ.
A., AO and A, Let (;.. u, K) be any cyclic permuta- The variational method leads to an eigenvalue
tion of the indices (a, 0, y). We define the A coor- problem with coefficient and overlap matrices
dinates, the mass-scaled [30] internuclear vector rA hnr(15 ) and slnr(#l4 ) and whose elements are five-
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dimensional integrals involving the variational basis processor and 128 kilobytes of static private mem-
functions. ory.The 1/0 microprocessor has 64 kilobies of static

The coefficients b7p: ,,) defined by eq. (I) private memory. An additional daughter board with
satisfy a coupled set of second-order differential a pipe-lined 32-bit floating point unit based on the
equations involving an interaction matrix J.1n1r(p; Weitek XL series of chips is attached to each node
S) whose elements are defined by and has a nominal peak speed of 16 Mflops. The

7r(p;,,) ],;,< .JInr, - . (p,,crystalline operating system (CrOS)-channel-ad-
= A ,) I A, ) dressed synchronous communication provides the li-

-(j/P) 2 l'(,l,. wa. yA)l(A'lr(l;Pq)> • (2) brAry routines to handle communications between

The configuration space p, CA is divided in a set of Q nodes [24,34,35 1. Program development is done on

hyperspherical shells Pq<P<Pq+I (q= 1. 2 ... , Q) a Motoroft 68020-based Counterpoint works:ation

within each of which we choose a value fl, used in that runs on UNIX. The programs are written in C

expansion ( I ). programming lar.6uage except for the time-consum-

When changing from the LHSF set at lyq to the one ing two-diwensional quadratures and matrix inver-

at ,, neither I r ni vv th p sions, ich are optimized in assembly language.to p should change. This imposes continuity condi- The hypercube is configured as a two-dimensional
tionpshold the and Thi impoderives auty cdi- array of processors. The mapping is done using bi-
involving the overlap matrix at r(pqs , ,) be- nary Gray codes [24.36] which gives the Cartesian

inlp at ad b- icoordinates in processor space and communication
tween the LHSF evaluated at, and channel tags for a processor's nearest neighbors. With

n('0 . .),T a distributed-memory machine like the hypercube.

- ,,nr g" t( 1- 3)r the elements of a large matrix of data must be dis-
I I (fZ.,i; #q)) > (3) tributed across the memory of all the processors. This

The five-dimensional integrals required to evalu- makes it possible to fully utilize the large memory
ate the elements of h , s" r , Jr and Cnr are available and facilitates the load-balancing task of
performed analytically over 0 , OA and V, and by two- keeping most of the processors busy doing useful
dimensional numerical quadratures over yA and wA. arithmetic most of the time. The parallelization of
These quadratures account for 90% of the total time scientific codes is frequently based on a large grain
needed to calculate the LHSF q0-M7r and the ma- size decomposition of the task. A method of distrib-
trices JJr7r and C-j1r. uting the global matrix among the processors is the

The system of second-order ordinary differential first choice that must be made and it is closely re-
equations in the bJnwr is integrated as an initial value lated to the parallel algorithm chosen.
problem from small values of p to large values using We mapped the matrices into processor space by
Manolopoulos' logarithmic derivative propagator local decomposition. Let N, and N, be the number of
(27 ]. Matrix inversions account for more than 90% processors in the rows and columns of the hypercube
of the time used by this propagator. All aspects of the configuration, respectively. Element A(i, j) of an
physics can b. extracted from the solutions at large Mx M matrix is placed in processor row Pr= int ( i,/

p by a constant p projection [8,9,33]. Mf ) and column P,=int(jN)/Af), where intx means
the integer part of x.

The parallel code implemented on the hypercube
3. Parallel algorithm consists of five major steps. Step one constructs. for

each value of py, a primitive basis set composed of
The computer used for this work is a 64 processor the product of Wigner rotation matrices, associated

Mark lllfp hypercube. Each node consists of two in- Legendre functions, and the numerical one-dimen-
dependent Motorola 68020 microprocessors, one for sional functions in mA mentioned in section 2 and
computation and one for I/O, and four megabytes of obtained by solving the corresponding one-dimen-
dynamic memory. The computation microprocessor sional eigenvalue-eigenvector differential equation
has a Motorola 68882 floating-point arithmetic co- using a finite difference method. This requires tha"
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a subset of the eigenvalues and eigenvectors of a tri- step four. This part of the algorithm is not time-con-
diagonal matrix be found. suming and the straightforward sequential approach

A bisection method [ 37 ] which accomplishes the was chosen. It has the further effect that the resulting
eigenvalue computation using the TRIDIB routine solutions are fully distributed, so no communication
from EISPACK [38] was ported to the Mark lllfp. is required.
This implementation of the bisection method allows Step four evaluates the two-dimensional quadra-
computation of any number of qonsecutive eigen- tures needed for the interaction Jnr(p; a,) and
values specified by their indices. Eigenvectors are overlap CJnr(fl,i; ,) matrices. The same type of
obtained using the EISPACK inverse iteration rou-" algorithms are used as were used in step two. By far,
tine TINVIT with modified Gram-Schmidt ortho- the most expensive part of the sequential version of
gonalization. Each processor solves independent tri- the surface function calculation is the calculation of
diagonal eigenproblems since the numiber of the large number of two-dimensional numerical in-
eigenvalues desired from each tridiagonal system is tegrals required by steps two and four. These steps
small but there are a large number of distinct tridi- are, however, highly parallel and well suited for the
agonal systems. To achieve load balancing, we dis- hypercube.
tributed subsets of the primitive functions among the Step five uses Manolopoulos' [27] algorithm to
processors in such a way that no processor computes integrate the coupled linear ordinary differential
greater than one eigenvalue and eigenvector more equations. The parallel implementation of this al-
than any other. These large grain tasks are most eas- gor'.nm is discussed elsewhere [25 ]. The algorithm
ily implemented on MIMD machines: SIMD (single is dominated by parallel Gauss-Jordan matrix in-
instruction multiple data) machines would require version and is I/O intensive, requiring the input of
more extensive modifications and would be less ef- one interaction matrix per integration step. To re-
ficient because of the sequential nature of effective duce the I/O overhead a second source of parallel-
eigenvalue iteration procedures. The one-dimen- ism is exploited. The entire interaction matrix (at all
sional bases obtained are then broadcast to all the p) and overlap matrix (at all j,) data sets are loaded
other nodes. across the processors and many collision energies are

In step two a large number of two-dimensional calculated simultaneously. This strategy works be-
quadratures involving the primitive basis functions cause the same set of data is used for each collision
which are needed for the variational procedure are energy and because enough main memory is avail-
evaluated. These quadratures are highly parallel pro- able. Calculation of scattering matrices from the fi-
cedures requiring no communication overhead once nal logarithmic derivative matrices is not compu-
each processor has the necessary subset of functions. tationally intensive, and is done sequentially.
Each processor calculates a subset of integrals The program steps were all run on the Weitek co-
independently. processor which only supports 32-bit arithmetic. Ex-

Step three assembles these integrals into the real perimentation has shown that this precision is suf-
symmetric dense matrices s.nr//(#q) and hilt(pc) ficient for the work reported below. The 64-bit
which are distributed over processor space. The en- arithmetic hardware needed for larger calculations
tire spectrum ofeigenvalues and eigenvectors for the was installed after the present calculations were
associated variational problem is sought. With the completed.
parallel implementation of the Householder method
[ 39 ], this generalized eigensystem is tridiagonalized
and the resulting single tridiagonal matrix is solved 4. Results and discussion
in each processor completely with the QR algorithm
[40]. The QR implementation is purely sequential Accuracy. Calculations were performed for the
since each processor obtains the entire solution to H +H 2 system on the LSTH surface [28,29] for par-
the eigensystem. However, only different subsets of tial waves with total angular momentum J=0. 1. 2
the solution -re kept in different processors for the and energies up to 1.6 eV. Flux is conserved to better
evaluation of .he interaction and overlap matrices in than 1% for J=0. 2.3% for J= I and 3.6% for J= 2
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Fig. I. Probabilities (a) and probability differences (b) as a Fig. 2. Same as for fig. I except for.J= 1. A,, odd parity (17=!
function of total energy E (lower abscissa) and initial relative (0. 0. 0) - (0, 0, 2) transitions. The number of LHSF used was
translational energy E00 (upper abscissa) for the J=O (0. 0, 74 and the number of primitives used to calculate these surface
0) - (0, 0, 0) A, symmetry transition in H+ H2 collisions on the functions was 152.
LSTH potential energy surface. The symbol (v, j, £) labels an
asymptotic state of the H + H2 system in which v. j, and S2 are the
quantum numbers of the initial or final H2 states. The vertical for all open channels over the entire energy range
arrows on the upper abscissa denote the energies at which the considered.
corresponding H2(, j) states open up. The length of those ar- To illustrate the accuracy of the 32-bit arithmetic
rows decreases as v spans the values 0, I and 2, and the numbers calculations, the scattering results from the Mark lllfp
0, 5. and 10 associated with the arrows define a labelling for the
value of.j. (a) The results from the Mark fllfp hypercube; (b) with 64 processors are shown in figs. 1. 2. and 3 for
differences between these and those from the CRAY X-MP/48. J=O, 1, 2, respectively, in which some transition
The number of LHSF used was 36 and the number of primitives probabilities as a function of the total collision en-
used to calculate these surface functions was 80. ergy E are plotted. Also shown are the differences

between these results and those obtained using a
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E00/eV are discussed below. The two sets of data in each fig-

00 02 04 06 0.8 1 0 1.2 ure are virtually indistinguishable on the scale of the
plots.

Analysis of J= 2 resonances. Table I contains a list
.0o s -0 of the J=2 resonance energies detected from the

1.0 0 so maxima in the lifetime versus energy curves, calcu-

lated as described previously [9,16], as well as their
H.8 2  quantum number assignments, permutation and in-

0.8 version symmetry labels, and lifetimes. The per-

mutation symmetries are given with and without the
inclusion of the effect of the geometrical phase (GP)

0.6 I
. 0 )associated with the conical intersection between the
0 

3C, two lowest electronic state potential energy surfaces
0.4 [31,321. The energy of these resonances is consis-

0.4 itent with the physical model for the selection rule
previously developed [ 16 ] and tested with the J= 0.
1 resonances. The results of table I adds additional

0.2 3 credence to the generality of that rule. According to
it, if GP effects are ignored, a necessary (but not suf-

(a) ficient) condition for resonances to occur in A, (A,)
00 partial waves is that ( - I )nIX be equal to I ( - I ).

where K is the vibrational angular momentum quan-
tum number, whereas they are permitted in E partial
waves for all K. To include the GP effect, it suffices

D 0,4 to interchange A, and A2 in this selection rule [32].
U In agreement with this picture, not all higher energy

0.000 J= 2 resonances which are allowed by this rule were
detected.

-0,004 Timing and parallel efficiency. In tables 2 and 3 we
present the timing data on the 64 processor Mark

(b) IlIfp, a CRAY X-MP/48 and a CRAY-2, for both
, , , , ,the surface function code (including calculation of

02 014 0.6 0.8 1.0 1.2 1.4 1.6 the overlap Cenr and interaction finr matrices) and
E/eV the logarithmic derivative propagation code. For the

surface function code, the speeds on the first twoFig. 3. Same as for flg. I except for.J=2, A,, odd parity (11=1), machines is about the same. The CRAY-2 is 1.43
(0, 2, I)- (0.2, I ) transition. The differences plotted in (b) are

between the Mark lIIfp hypercube and the CRAY-2 results. The times faster than the Mark IIIfp and 1.51 times faster
number of LHSF used was 65 and the numberorprimitives used than the CRAY X-MP/48 for this code. The reason
to calculate these surface functions was 136. is that this program is dominated by matrix-vector

multiplications which are done in optimized assem-
CRAY X-MP/48 and a CRAY-2. These differences bly code in all three machines. For this particular op-
do not excede 0.004 in absolute value over the en- eration the CRAY-2 is 2.03 times faster than the
ergy range investigated. The effect of the geometric CRAY X-MP/48 whereas for more memory-inten-
phase associated with the conical intersection be- sive operations the CRAY-2 is slower than the CRAY
tween the two lowest electronic potential energy sur- X-MP/48 [411. A slightly larger primitive basis set
face of H3 [321 is not included in these results. Much is required on the Mark IlIfp in order to obtain sur-
of the structure in the transition probability curves face function energies of an accuracy equivalent to
is due to the underlying resonances [ I, 9, 16] and that obtained with the CRAY machines. This is due
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Table I
J=2 resonances and their characteristics for H3

Assignment Permutation symmetry Inversion E (eV) Lifetime (fs
symmetry

without GPb with GP J7 c

(0.,0 , O) A,, E A, E 0 0.65 I1
(0.11,0) A, A. E At.A,, E 0. 3 0.77 9
(0,20.0) A. E A2, E 0 0.88 30
(0.22.0) A,. A,, E A2, A, E 0.1 0.90 30
(1,00.0) A. E A2, E 0 0.98 28
(0,31,O) At, A. E A, A2, E 0. 1 1.00 8
(1,I',0) A2,A,, E A,. A2, E 0.1 1.09 29
(0,40,0) A,, E A2, E 0 3.10 5
(0,42,0) A., At, E A2, A,. E O, 1.12 5
(1.22. 0) A,. At, E A2, A,, E 0.3 1.22 8
(0,5 I.0) A2. A,. E A,, A2, E 0.3 1.22 6
(2.',0) Al. A,. E A,, A2 , E 0,3 1.45 38

This refers to the irreducible representation of the P3 permutation group to which the electronuclear wave function, excluding the
nuclear spin part. belongs [ 31.32 1.

hi With(out) GP refers to the case in which the effect of the geometrical phase associated to conical intersection between the two lowest

electronic state potential energy surface is (not) included [31.32 1.
€ When two values off7are indicated, the first (second) one is associated with the first (second) permutation s.mmetrv.

to the lower accuracy of the 32-bit arithmetic of the the overlap and interaction matrices) as a function
former with respect to the 64-bit arithmetic of the of the size of the primitive basis set are plotted for
latter. 2, 4, 8, 16, 32 and 64 processor configurations of the

The absolute times presented in table 2 and 3 are hypercube. The global dimensions of the matrices
apt to derease as the codes arv improved and the used are chosen to be integer multiples of the num-
numerical parameters are further tuned. As a result, ber of processor rows and columns in order to insure
they are not well suited for an appropriate compar, load balancing among the processors. Because of the
ison of the relative effectiveness of different reactive limited size of a single processor memory, the effi-
scattering methodologies [8-191. The relevant in- ciency determination is limited to 32 primitives. As
formation in those tables is, instead, the relative times shown in fig. 4, the efficiencies increase monotoni-
among different machines as given by the corre- cally and approach unity asymptotically as the size
sponding speeds. These are indicative of the relative of the calculation increases. Converged results re-
effectiveness of these machines for performing the quire large enough primitive basis sets so that the ef-
reactive scattering calculations described in this ficiency of the surface function code is estimated to
paper. be about 0.95 or greater.

The efficiency (e) of the parallel LHSF code was The data for the logarithmic derivative code given
determined using the definition e=T,/NT, where in table 3 for a 245 channel (i.e. LHSF) example
T, and Ts are respectively the implementation times show that the Mark iIIfp has a speed about 62% to
using a single processor and N processors. The single that of the CRAY-2 but only about 31% of that of the
processor times are obtained from runs performed CRAY X-MP/48. This code is dominated by matrix
after removing the overhead of the parallel code, i.e. inversions, which are done in optimized assembly
after removing the communication calls and some code in all three machines. The reason for the slow-
logical statements. Perfect efficiency (e = 1.0) im- ness of the hypercube with respect to the CRAYs is
plies that the N processor hypercube is N times faster that the efficiency of the parallel logarithmic deriv-
than a single processor. In fig. 4 efficiencies for the alive code is 0.52. This relatively low value is due to
surface function code (including the calculation of the fact that matrix inversions require a significant
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Table 2
Performance of the surface function code

J Mark lllfp ", 64 processors CRAY X-MP/48 CRAY-2

time (h) speed (Mflops) time (h) speed (Mflops) time (h) speed (Mflops)

0 0.71 1) 100 ) ) 0.74-) 96f 09 6) 145.4)

I 2.88 )  
112 4, 3.04 J  106 2.01 k) 160 hl

2 5.6011 124 d )  5.94 )  117' 3.960 )  176k'

") This code calculates the surface functions at the 51 values of#i from 2.0 to 12.0 bohr in steps of 0.2 bohr, the corresponding overlap

matrices between consecutive values of p and the propagation matrices in p steps of 0. 1 bohr. The number of primitives used for each
J and described in the remaining footnotes permits us to generate enough LHSF to achieve the accuracy described in the text.

hi Sixty-four single precision processors.
C) For 80 A,. 80 A2 and 160 E primitives. This basis is larger than the one described in e) below and is needed to generate the same

number of linearly independent surface functions as in e). The reason for this difference is the 32-bit arithmetic of the Mark Illfp
compared to the 64-bit arithmetic of the CRAY X-MP/48.

d Estimated on the basis of the absolute measured speed on the CRAY X-MP/48 and the measured relative speeds of the Mark ltlfp
with respect to the CRAY X-MP/48.

*) For 76 A,. 76 A2 and 152 E primitives.
fi Measured using the hardware-performance monitor of the PERFMON and PERFPRT subroutines.

') This time. for the same primitives as describes in e) was estimated on the basis of the relative speeds of the CRAY-2 and CRAY X-
MP/48 measured for a set of five values of A. It is smaller than the time in e) for the reason in h).

hi Estimated on the basis of the relative speed of the CRAY-2 with respect to the CRAY X-MP/48 described in g). The reason this speed
is j of the corresponding CRAY X-MP/48 speed is that the dominant parts of the calculation are optimized assembly code matrix-
vector multiplications for which the CRAY-2 is 50% faster than the CRAY X-MP/48. Otherwise. the CRAY-2 is slightly slower than
CRAY X-MP/48. See text.
For 72 A,. 80 A2 and 152 E primitives of even parity and 152 A,, 160 A2 and 312 E primitives of odd parity These numbers of
primitives are larger than the ones given in j) for the reason given in c).

) For 64 A,, 76 A, and 140 E primitives of even parity and 140 A,. 152 A2 and 292 E primitives of odd parity.
ki Estimated on the basis of the relative speeds of the CRAY X-MP/48 and CRAY-2 and the measured CRAY X-MP/48 times or speeds.

') For 216 A,. 232 A2 and 448 E primitives of even parity and 136 A,, 152 A2 and 288 E primitives of odd parity. These numbers are
larger than those in o) for the reason given in c).

"This time is estimated as in k). since the calculatioh cannot be done on the CRAY X-MP/48 because of insufficient memory.

*) Estimated to be the same as in f) since the calculation cannot be done on the CRAY X-MP/48 for the reason given in m).
0 For 204 A,, 216 A2 and 420 E primitives of even parity and 128 A1 , 140 A2 and 268 E primitives of odd parity.

amount of inter-processor communication. Fig. 5 the last row of this table, the speed of the logarithmic
displays efficiencies of the logarithmic derivative derivative code using this configuration of the 64
code as a function of the number of channels prop- processor Mark IIIfp is 48.5 Mflops, which is about
agated for different processor configurations, as done 44% of that of the CRAY X-MP/48 and 88% of that
previously for the Mark III [25,421 hypercubes. The of the CRAY-2. As the number of channels in-
data can be fit well be an operations count formula creases, the numbei of processors per cluster may be
developed previously for the matrix inversion part made larger in order to increase the amount of mem-
of the code [43]; this formula can be used to ex- ory available in each cluster. The corresponding ef-
trapolate the data to larger numbers of processors or ficiency should continue to be adequate due to the
larger numbers of channels. It can be seen that for an larger matrix dimensions involved.
8 processor configuration, the code runs with an ef- In the near future, the number of processors of the
ficiency of 0.81. This observation suggested that we Mark IIIfp will be increased to 128 and the I/O sys-
divide the Mark IIfp into 8 clusters of 8 processors tern will be replaced by high performance CIO (con-
each and perform calculations for different energies current 1/0) hardware. The new Weitek coproces-
in different clusters. The corresponding timing in- sors installed since the present calculations were done
formation is also given in table 3. As can be seen from perform 64 bit floating point arithmetic at about the
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Table 3
Perfornance oftne logarithmic derivative code '

Mark lllfpbh CRAY X-MP/48 CAY-2

64 processor 8 clusters of
global cenfiguration 8 processors

total time (h) 4.8 3.4( 4 )  1.5 2.9'"
time for I energy (min) 2.2 ')  1.6 0 0.7 1.3
efficiency 0.52 0.81 - -
speed' ) (Mflops) 34.4 k) 4 8 .5 k) 110 55.4

"Based on a calculation using 245 surface functions and 131 energies, and a logarithmic derivative integration step of 0.01 bohr.
b' Sixty-four single precision processors.
0 The calculation for each energy was distributed among all 64 processors.
d The hypercube was configured into 8 clusters of 8 processors each. Each cluster did full calculations for 16 energies, for a total of 128

energies. The times reported were multiplied by 131 / 128 for normalization purposes. All 8 clusters operated simultaneously.
" This includes 1.9 h of 1/O time.
ri This includes 1.6 h of I/O time. This time is shorter than that in e) because of a different and more efficient broadcast of the data

between the host and the 8 clusters.
'" Each cluster did full calculations for 16 energies for a total of 128 energies. The total time reported was obtained by subtracting the

I/O time from the measured time, multipling the result by 131 / 128 for normalization to 131 energies and adding the 1/0 time.
'"Estimated on the basis of the CRAY X-MP/48 times and the ratio of the speeds of the CRAY.2 and CRAY X-MP/48 for the logarith.

mic derivative code.
This includes the pro-rated I/O contribution.

' All speeds include 1/O contribution.
'"Estimated on the basis of the measured CRAY X-MP/48 speed for the logarithmic derivative code and the relative speeds of the Mark

Illfp and CRAY X-MP/48 for this code.

1.0

~0.6-

0.4-

0.2

0.01
0 10 20 30 40

Global Matrix Dimension

Fig. 4. Efficiency of the surface function code (including the calculation of the overlap and interaction matrices) as a function of the
global matrix dimension (i.e. the size of the primitive basis set) for 2, 4. 8, 16, 32. and 64 processors. The solid curves are straight line
segments connecting the data points for a fixed number of processors and are provided as an aid to examine the trends.
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Fig. 5. Efficiency of logarithmic derivative code as a function of the global matrix dimension (i.e. the number of channels of LHSF) for
8. 16, 32. and 64 processors. The solid curves are straight line segments connecting the data points for a fixed number of processors and
are provided as an aid to examine the trends.

Table 4
Overall speed of reactive scattering codes on several machines

Mark IIlfp CRAY X-MP/48 CRAY-2 CRAY Y-MP/864

64 processor 128 processors

surface function code
forJ=2 (Mflops) 124 240-1 1171" 17 6 b1 2 3 2 bl

logarithmic derivative
code"' (Mflops) 48.5d) 127- I t 0b) 55.4 bi 187 "1

total main memory of
computer (64-bit Mwords) 32 64 8 256 64
Estimated on the basis of the 64 processor performance.

b, For single processor operation.

, For 245 channels. As the number of channels increases, the Mark lIfp speed increases by a factor not exceding 1.25. but the speed of
the CRAY machines remains approximately constant.

d Hypercube configured in clusters of 8 processors.
This speed assumes four-fold increase in the I/O data rate. compared to the 64 processor machine, due to concurrent I/O hardware.

same nominal peak speed as the 32 bit boards. From computer Center. Initial speed measurements show
the data in the present paper it is possible to predict that it is 2 times faster than the CRAY X-MP/48 for
with good reliability the performance of this up- the surface function code and 1.7 times faster for the
graded version of the Mark IIfp. A CRAY Y-MP/ logarithmic derivative code. In table 4, we summa-
864 has just been installed at the San Diego Super- rize the available or predicted speed information for
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CRAY X-MP/48, CRAY-2 and CRAY Y-MP/864 The calculations were performed on the 64 processor
supercomputers. Its can be seen that Mark lllfp Mark IllIfp Caltech/JPL hypercube, the CRAY X-
machines are competitive with all of the currently MP/48 and CRAY Y-MP/864 at the NSF San Diego
available CRAYs (operating as single processor Supercomputing Center and the CRAY-2 at the Air
machines). Force Weapons Laboratory and we thank those in-

stitutions for their help. We also thank Dr. B. Lepetit
and Professor Geoffrey Fox for useful discussions.
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