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Abstract

This study presents a method of moments solution for the surface

currents and charge distributions on an aperture-fed, stacked patch

antenna. To make the solution independent of the antenna excitation

technique, an aperture magnetic current distribution is assumed, and the

spatial Green's functions of the antenna are used to calculate the

tangential fields on the antenna patches and coefficients for a finite

series expression of the surface currents and charge densities. The

Green's functions of the antenna are modeled with polynomials that are a

function of the radial distance separating observer and source loca-

tions. The method of moments solution is implemented using FORTRAN 77

and requires no external software support. The numerical techniques,

algorithms, and complete software functional descriptions are also

included.
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A METHOD OF MOMENTS SOLUTION FOR THE ELECTRIC

CURRENTS ON AN APERTURE-FED, STACKED PATCH MICROSTRIP ANTENNA

I. Introduction

This chapter presents a brief overview of microstrip antennas and

the motivation for the analysis of the aperture-fed, stacked patch

microstrip antenna. The exact goals of this thesis, along with the as-

sumptions made during the research, are discussed. A brief review of

current aperture-fed, stacked patch microstrip antenna analysis efforts,

and an introduction to the method of moments is also included. In con-

clusion, an overview of the remaining chapters of the thesis is given.

1.1 Background on 11icrostrip Antennas

In its simplest form, a microstrip antenna consists of two paral-

lel, conducting layers separated by a dielectric substrate. Typically,

the upper layer is the radiating element and the lower serves as a



ground plane. Input to the antenna can be supplied in a number of ways.

Two of the most versatile feed techniques are the microstrip feedline

and the coaxial feed (see Figure 1-1). Radiation from the antenna is

Microstrip Radiating Patches
Feedline

Ground Plane

Coaxial Feed
(a) (b)

Figure 1-1 Microstrip Antenna with (a) Microstrip Feed and (b) Coaxial
Feed

produced by fringing of the electric field along the open-circuited

edges of the patch. The radiating patch of the antenna is typically A/2

long, thus the normal components of the antenna's radiation tend to

cancel in the far-field, while the components parallel to the antenna

ground plane are in phase. Therefore, the radiated fields are at a

maximum in the direction normal to the antenna's surface [1:5]. The

radiating patch may be any shape, but rectangular or circular elements
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are commonly used because of the relative simplicity of analyzing their

radiation characteristics 12:488).

G. A. Deschamps first proposed the concept of a microstrip antenna

in 1953. However, 20 years passed before photo-etching techniques and

material properties were developed to the point where practical micro-

strip antennas could be built [1:11. A series of successful, indepen-

dent experiments in the early 1970's demonstrated the feasibility of

microstrip antennas. By 1978, the microstrip antenna was widely known

and used in a variety of communications systems [6:2]. Since the

1970's, extensive research and development exploiting the numerous ad-

vantages of the microstrip antenna, both as a single radiation source

and as an array element, have established it as a separate entity within

the broad field of microwave antennas [1:1].

1.2 Advantages and Disadvantages of Microstrip Antennas

Microstrip antennas are well suited to the current emphasis on

miniaturization and increased reliability. The antennas have been

successfully adapted for use in systems ranging from biomedical diagno-

sis to satellite and aircraft communications [20:424].

The widespread use of microstrip antennas can be attributed to the

numerous advantages they offer when compared to more traditional antenna

types. Some of these advantages include low volume, weigit, and fabri-

cation cost, mechanical ruggedness, and compatibility with modular
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designs, since solid state devices can be manufactured simultaneously

and on the same circuit board as the antenna [23:2].

Some of the disadvantages associated with microstrip antennas

include narrow bandwidth, antenna gains much less than unity, poor

isolation between feed and radiating elements, and low power handling

capability [1:2].

Narrow bandwidth is the most restrictive of these shortcomings.

The bandwidth of a simple microstrip antenna is typically less than five

percent of the resonant frequency [21:145]. The bandwidth of a micro-

strip antenna can be improved by reducing the permittivity or increasing

the thickness of the arltenna substrate [1:62). However, using a low

permittivity substrate degrades the performance of other solid state

components etched on the same substrate as the antenna. Increasing sub-

strate thickness detracts from the microstrip antenna's low profile, and

causes difficulties in matching the antenna input impedance with that of

the feed network [23:3].

1.3 The Aperture-Fed, Stacked Patch Microstrip Antenna

Several practical ways to overcome bandwidth limitations without

compromising the advantages of the microstrip antenna have been tried

and proven. The aperture-fed, stacked patch antenna (see Figure 1-1) is

,n effort to improve bandwidth by employing two of these techniques, the

aperture-fed and stacked patch configurations, in a single design.
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Radiating Patch Substrate #3

Feed Patch Substrate #2

Ground Plane Feed Aperture

Microstrip
Substrate #1 F i ne

Feedline

Figure 2-2 Geometry of the Aperture-Fed, Stacked Patch Microstrip
Antenna

By placing the antenna patches on a substrate separated from other

active circuit components, the aperture-fed configuration allows

selection of substrate permittivity and thickness for maximum antenna

performance without affecting the operation of other circuit elements.

Additionally, placing the ground plane between the feed network and the

radiating elements of the antenna overcomes the problem of poor isola-

tion between spurious feed network and antenna radiation [31:936].

Because there is no physical connEt;tion between the feed network and the

antenna, the aperture-fed configuration is simple to manufacture and

consequently, very appealing for use in antenna arrays, especially those

containing a large number of elements.
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The use of the stacked patch configuration provides further

bandwidth enhancement [23:3]. Proper selection of the additional

dielectric layer's permittivity and thickness, as well as the shapes,

sizes, and relative locations of the feed and radiating patches, can

provide the additional benefits of enhanced gain or dual frequency

operation [5:609].

1.4 Research Description

The aperture-fed, stacked patch microstrip antenna presents a

complex analysis problem. One analysis has been completed by Nazar [233

using the mixed potential integral equation (MPIE) approach. Nazar's

work provides the integral equations that can be used to calculate the

currents and potentials on an aperture-fed, stacked patch microstrip

antenna. However, the integral equations cannot be solved analytically;

thus, a numerical solution is required.

1.4.1 Problem Statement. Develop the FORTRAN software necessary

to calculate the electric surface currents and charge densities on the

elements of an aperture-fed, stacked patch microstrip antenna.

1.4.2 Research Objectives and Scope. This effort uses Nazar's

analysis as a basis for developing a Method of Moments (MoM) solution

for the surface currents and charge densities on an aperture-fed,

stacked patch microstrip antenna. With this solution, the radiated

1-6



fields and impedances characteristics of the antenna design can be

calculated.

The product of this research is a software package that completes

the MoM solution for a user specified aperture-fed, stacked patch

microstrip antenna. The package is written in FORTRAN 77 and requires

no external software to complete the solution. Results obtained with

the package have been verified as much as possible using data available

in current literature [18]. Descriptions explaining the use of the

software and the design, coding, and logic of the solution are also pro-

vided.

1.4.3 Research Assumptions. Nazar's analysis uses Green's func-

tions to characterize the interactions and radiation mechanisms of the

aperture-fed, stacked patch antenna. By definition, the Green's

functions are expressions for the potentials created by a unit electric

or Hertz dipole located within one of the antenna's surfaces or ground

plane. By expressing any arbitrary signal applied to the antenna as a

spectrum of unit sources, the Green's functions can be used to calculate

the resulting fields in the antenna [19:165]. With the fields known, it

is then possible to calculate the radiated fields.

Nazar expresses the Green's functions as integral equations that

are derived under the restrictions of each dielectric layer having

finite thickness while being homogeneous, isotropic, and lossless.

Additionally, the patch conductors and ground plane are infinitely thin,

perfect conductors.
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The software developed for this thesis does not explicitly

evaluate the integral expressions for the aperture-fed, stacked patch

microstrip antenna's Green's functions. Instead, the Green's functions

are represented by appropriately chosen polynomials in accordance with

the work of Erwert [8].

1.5 Summary of Current Knowledge

As previously discussed, Nazar has derived the Green's Functions

necessary to model the aperture-fed, stacked patch microstrip antenna.

His work combines the aperture-feed analysis of Sullivan and Schaubert

[29] with the MPIE approach of Mosig and Gardiol [20] to derive the

spatial Green's functions for the antenna. The MPIE approach is attrac-

tive because it fully characterizes the near-fields of the antenna in-

cluding surface wave. [23:ii]. The Green's functions for the antenna

are expressed in the form of Sommerfeld integrals that can only be

evaluated numerically. However, the numerical stability of the Green's

functions allow the use of approximations for their values without

unacceptable loss of accuracy [19:429;21:224-226]

The method of moments is a numerical technique that has been

successfully used to solve a wide variety of electromagnetic radiation

and scattering problems. The MoM approach provides a well understood

means for converting a series of complex, integral equations into matrix

equations that are easily solved on a digital computer. Furthermore,
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the MoM technique has been used in microstrip antenna radiation solu-

tions by numerous authors [16;22;24]. Sullivan and Schaubert [29) have

successfully applied the method of moments in the analysis of an

aperture-fed antenna, and Barlatey et al. [5] have employed the tech-

nique to obtain the MPIE solution of the stacked patch configuration.,

1.6 Materials and Equipment Needed

Theoretically, the MoM software package can be executed on any

computer system equipped with a FORTRAN 77 compiler. However, due to

the large number of numerical integrations required by the MoM solution,

a high speed computer is best suited for the task. In this study, the

calculations were accomplished on the Air Force Institute of Technology,

School of Engineering Digital Equipment Corporation VAX 8550 computer.

1.7 Thesis Organization

The remainder of this document is organized as follows. Chapter

II presents a survey of literature focusing on current research efforts

involving MPIE analysis of aperture-fed microstrip antennas, stacked

patch microstrip antennas, or aperture-fed, stacked patch microstrip

antennas and the use of the method of moments in obtaining solutions to

microstrip antennas. Chapter III presents the equations needed to model
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the antenna and the specifics of the MoM solution. Chapter IV discusses

the numerical techniques needed to complete the MoM solution and a

detailed description of the logic, algorithms, and FORTRAN code.

Chapter V discusses the predictions made with the software and their

accuracy as compared to data reported in the literature. Finally, the

conclusions drawn from this research and recommendations for further

work are presented in Chapter VI.

1-10



I. Current Efforts - Microstrip Antennas

This chapter presents a review of current microstrip analysis

efforts relevant to the research of this thesis. To begin, a detailed

discussion of aperture-fed and stacked patch microstrip antennas is

presented with emphasis on the benefits of the configurations. Next,

research on aperture-fed, stacked patch antennas is reviewed, and

finally, applying the method of moments to solutions for microstrip

antennas is discussed.

2.1 Aperture Fed Microstrip Antennas

The bandwidth performance of a microstrip antenna can be improved

by either increasing the thickness or decreasing the relative permit-

tivity of the dielectric substrate separating the conductors of the

antenna [1:62]. However, these changes result in loss, radiation, and

input impedance mismatch problems which would typically offset any

bandwidth gains [23:3]. One way to take advantage of increased sub-
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strate thickness while avoiding these problems is the aperture-fed

microstrip antenna which was first proposed by D. M. Pozar [26).

Pozar's configuration places a ground plane between a microstrip

feedline and a microstrip antenna patch (see Figure 2-1). The signal

MirostrIp Feedline x

M or1 MIcrooi
Antenna

2 -I

Apert ure

Antenna Substrate

Ground Pion* Feed Subetrate Antenna Substrate und Plane

(a) (b)

Figure 2-1 Side View (a) and Top View (b) of Pozar's Aperture-Fed
Microstrip Antenna

applied to the microstrip feedline is electromagnetically coupled to the

radiating patch, thus the aperture-fed configuration does not require a

direct connection between the feedline and antenna. Pozar notes three

advantages to this configuration:

(i) The configuration is well suited for monolithic phased
arrays, where active devices can be integrated on, for
example, a gallium arsenide substrate with the feed network
and the radiating elements can be located on an adjacent
(low dielectric constant) substrate, and coupled to the feed
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network through apertures in the ground plane separating the
two substrates. The use of two substrates thus avoids the
deleterious effect of a high-dielectric-constant on the
bandwidth and scan performance of a printed antenna array.

(ii) No radiation from the feed network can interfere with
the main radiation pattern, since a ground plane separates
the two mechanisms.

(iii) No direct connection is made to the antenna elements,
so problems such as large probe self-reactances or wide
microstrip line (relative to patch size), which are critical
at millimeter-wave frequencies, are avoided. [26:49]

Pozar uses the cavity model of a patch antenna and small hole

coupling theory to analyze the aperture coupling and quantify the

relationship between aperture placement and the coupling of energy to

the radiating patch. Pozar found an aperture with a long y-dimension

(see Figure 2-1) and a narrow x-dimension provides the strongest

coupling between the feedline and radiating patch [25:50]. Also,

varying the length of the feedline extending beyond the aperture and the

aperture size provides two means of tuning the antenna [25:50]. Pozar

suggests the use of as small an aperture as possible, while adjusting

the feedline length to match the antenna input impedance with that of

the feed circuit. While no bandwidth performance is reported, Pozar

does note the design appears to be quite robust in terms of flexibility

and ease of fabrication [25:49]. Measurements of a prototype antenna

employing the aperture feed show the principal plane radiation patterns

are basically the same as other microstrip antennas of the same geometry

[25:50].

Sullivan and Schaubert [29) have completed a more detailed math-

ematical analysis of an aperture-fed microstrip antenna with a single
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patch. Their analysis uses coupled integral equations and a Galerkin

moment method to solve for the feedline electrical surface currents, the

radiating patch electrical surface currents, and the equivalent magnetic

surface currents on the ground plane. As part of this work, Sullivan

and Schaubert used their model to investigate the effect of increased

feedline thickness and relative permittivity. They report increased

relative permittivity of the feedline substrate improved coupling, but

left the resonant frequency of the antenna unchanged [29:982]. As

feedline substrate thickness was increased, aperture coupling decreased

while the resonant frequency of the antenna remained unchanged [29:982].

These results demonstrate the wide range of design flexibility offered

by the aperture-fed antenna. Additionally, the analysis provides a

means to predict antenna input impedance and resonant frequency based on

aperture length and the thickness and dielectric constant of the feed-

line and antenna substrates.

2.2 Stacked Patch Microstrip Antennas

An example of a coaxially-fed, stacked patch microstrip antenna is

shown in Figure 2-2. The lower patch of the antenna is referred to as

the driven or feed patch. The upper patch is the radiating element and

is excited by energy electromagnetically coupled from the driven patch.

Because of this coupling mechanism, stacked patch antennas are also

referred to as electromagnetically coupled patch (EMCP) antennas.
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Radiating Patch
SuDtrate 02

Driven Patch

Substrate #1

Ground Plane

Coaxiat Feed

Figure 2-2 Coaxially-Fed, Stacked Patch Microstrip Antenna

Oltman and Huebner [25] first introduced the concept of electro-

magnetically coupled microstrip radiators with a study of microstrip

dipoles stacked near a microstrip feedline.

The study cites four advantages offered by the stacked configura-

tion. Because of increased ground plane-radiator spacing, the stacked

geometry provides greater bandwidth performance and increased radiation

efficiency [25:151]. Experimental data reported in the study show

bandwidth values between 2.5 and 5.5 percent for VSWR of 1.92 or higher

[25:1541.

A third advantage of the stacked geometry is reduced radiation

from feedline bends, junctions, and other discontinuities. In the

stacked geometry, the radiating element can be placed farther away from

the feed circuitry, while the feed circuitry can be simultaneously

located close to the ground plane. Since feedline radiation is directly
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proportional to the separation between the feedline and ground plane,

the feedline radiation is reduced [25:152].

The fourth advantage of the stacked geometry is the ease in

matching the electromagnetically coupled radiator to its feedline. For

a basic microstrip radiator, the radiator configuration that provides a

perfect match is unique. Since the stacked geometry employs electric

and magnetic field coupling, Oltman and Huebner describe the perfect

match configuration as a near ellipsoidal surface, :hereforc the perfect

match point is easier to achieve [25:152].

Sabban [28] expands on the stacked element concept by replacing

the microstrip dipoles with patches. In Sabban's design, the lower

patch is sized to resonate at center frequency, and the upper patch is

slightly larger than the lower. A low permittivity material, such as

air, is used to separate the patches. Several antennas were constructed

and tested as single radiators and as array elements over the S to Ka

frequency bands. Sabban reports adjustments to patch separation enable

impedance matching between the antenna and the feed circuit over a wide

frequency range [28:64]. Depending on the antenna geometry, bandwidths

of 9 to 15 percent with VSWR less than 2:1 were obtained [28:64].

2.3 Aperture Fed, Stacked Patch Antennas

Tsao et al [31] combine the aperture feed and stacked patch

configurations to achieve even larger antenna bandwidths. Their purpose
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in using the aperture-fed antenna is two fold. First, the aperture-fed

antenna is simpler to manufacture since no probe must be soldered to the

antenna. Second, the ground plane separating the feed network and the

antenna prevents interference between spurious feed network radiation

and antenna radiation [31:936]. Proper selection of the thicknesses and

permittivities of dielectric layers separating the antenna elements,

employed in conjunction with appropriately selected geometries for the

coupling aperture and microstrip patches, provides a means to meet

various antenna bandwidths requirements [31:936]. Depending on desired

polarization characteristics, bandwidths of 19.2 and 23 percent were

obtained for VSWR less than 2 [31:936].

In [23], Nazar combines the MPIE and stratified media techniques

to perform a detailed analysis of the aperture-fed, stacked patch

antenna. Using the vector and scalar potentials for infinitesimal

sources embedded in stratified media, Nazar derives a set of Green's

functions in the form of Sommerfeld integrals expressed in terms of

antenna spatial variables [23:13-39]. Nazar describes the characteris-

tics of the Green's functions' integrands, discusses integrand problem

areas, and provides FORTRAN software for numerical evaluation of the

integrals [23:49-84]. Also, a technique for using the Green's func-

tions in a method of moments solution for the antenna currents is

described [23:39-48].
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2.4 Microstrip Antenna Solutions Using the Method of Moments

As previously mentioned, the method of moments is a numerical

technique widely used to solve electromagnetic problems. The MoM

provides a well understood and easily implemented means of transforming

linear functional equations, i.e. integral, differential, or integro-

differential equations, into a matrix equation easily solved on a

computer. The equation being transformed typically describes an

appropriately selected boundary condition that must be satisfied. In

the case of a microstrip antenna, the boundary condition is the require-

ment of all tangential electric field components summing to zero. While

the MoM technique is a unique process, the methods by which each step of

the process is completed are diverse and bear careful consideration.

This review concentrates on past efforts that provide insight into

choosing the features which provide the best compromise between accuracy

and computational feasibility of the MoM solution.

As employed in microstrip antenna problems, the MoM breaks the

scattering or radiating body into a collection of smaller bodies,

typically referred to as cells. A simple approximation for the surfice

currents on each cell, referred to as a basis function, is proposed.

Therefore, the surface currents of the complete body is the finite sum

of appropriately weighted basis functions of each cell. The challenge

of the MoM solution is determining the appropriate weight, or coeffi-

cient, for each cell's basis function. The basis function coefficients

are found by replacing the original boundary condition with a set of
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approximate ones, and then testing each basis function for satisfaction

of the approximated boundary condition using a set of weights or testing

functions (21:221].

The accuracy and computational feasibility of the MoM solution is

determined by selection of the appropriate number of cells, basis

funct'ons, and testing functions. Typically, the accuracy of the MoM

solution increases in direct proportion to the number of the cells on

the body. However, the number of cells dictates the dimensions of the

matrices in the MoM matrix equation, and there is a point where the

increase in accuracy is offset by a penalty paid in increased computer

processing time and memory requirements. Selecting the number of cells

is then a trade between acceptable accuracy and demands on computer

resources.

The accuracy of the MoM solution is also affected by how well the

basis functions satisfy the surface current boundary conditions. While

complex basis functions tend to improve accuracy, a penalty of increased

computation difficulty must be paid [18:317].

Finally, selecting the appropriate test functions can also affect

the MoM solution accuracy and complexity. Since the test functions are

integrated against the basis function to form an inner-product, the

complexity of the test function also dictates the complexity of the

computations. Secondly, careful selection of testing functions may help

to avoid integration difficulties if the fields exhibit singularities,

such as those of the fields near the edges of a conductor.
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In [18), Mosig addresses the issue of selecting the appropriate

number of cells, basis functions, and testing functions for a radiating

microstrip patch. In this research, Mosig used several schemes to

divide an arbitrarily shaped patch while measuring the computation

requirements and accuracy of the MoM solution for different combinations

of basis and testing functions. To determine the best choices, Mosig

considered computation speed and the ability to predict measured values

of resonant frequency, quality factors, and input impedance for a patch

resonator [18:322]. In this effort, the antenna patch was divided into

rectangular cells referred to as charge cells, with two adjacent charge

cells forming a current cell. For charge cells, Mosig found that using

cells with an x-dimension of 0.05A, along with the appropriate basis and

testing functions provides solution accuracy of within one percent

[18:320J. The y-dimension of the cells does not affect solution

accuracy very much, and Mosig reports any number of transverse cells

greater than 3 should prove adequate for engineering calculations

[18:320). The basis functions of choice are two-dimensional, rooftop

functions defined over each current cell [18:318]. The x-directed

surface currents and y-directed surface currents are expanded in

independent sets of rooftop basis functions. With the rooftop basis

functions, the best selection for testing functions are a unit pulse

defined over the line segment connecting the centers of the two charge

cells comprising a single current cell [18:318]. By defining the

testing functions between charge cell centers, the need to evaluate the
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fields near patch edges are avoided thus the field singularities at the

edges will not adversely effect the MoM solution [20:427].

2.5 Summary of Current Knowledge

While microstrip antennas offer numerous advantages over conven-

tional antennas, their applications are somewhat restricted due to

limited bandwidth. Pozar's aperture feed technique and Sabban's stacked

patch configuration provide methods to overcome these bandwidth limita-

tions to an acceptable degree. Tsao et al have demonstrated the band-

width improvements possible by combining the aperture feed and stacked

patch configurations. Nazar's analysis of the aperture fed, stacked

patch antenna provides the Green's functions and numerical techniques

necessary to develop the method of moments solution for the antenna

currents. Mosig's research in applying the MoM to microstrip radiators

provides the means to maximize the accuracy of a MoM solution while

minimizing computational requirements. Combining the results from Nazar

and Mosig provides a proven approach for employing the MoM to find the

electric surface currents on the aperture fed, stacked patch microstrip

antenna.
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III. Theory

This chapter discusses the use of the MPIE Green's functions and

the method of moments to solve for the surface currents of the aperture-

fed, stacked patch microstrip antenna. The complete antenna model is

first described, and the equations needed to find the unknown surface

currents on all four interfaces of the antenna are explained. The

details of the MoM solution are described and the equations for the MoM

matrix elements and characteristics of the resulting matrix equation are

presented.

After the complete model of the antenna is derived, some of the

challenges of completing the solution for all four planes of the antenna

are discussed. Next, the full model is modified so that the MoM

solution can be accomplished independent of the antenna excitation

technique by using an approximation for the magnetic fields of the

antenna aperture. The MoM matrix equation for the resulting 3-plane

solution is then derived from the results for the full antenna model.

Finally, an iterative technique for solving the MoM matrix equation and

the equations needed to calculate the radiated fields of the antenna are

discussed.
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Throughout the remainder of this thesis, vector values will 
be

designated by a single underline and a dyadic will be designated 
using a

double underline.

3.1 The Antenna Model

The object of the analysis is to obtain expressions for 
the

electric surface currents on the antenna. To begin the analysis, the

electric and magnetic surface currents are defined as shown in Figure

3-1. The electric surface current on the microstrip feedline produced

Interface 3b ' Upper Patch

2_ Lower Patch

Region inteoace 2b

b Mb =m
-- 1 -- Ground Plane with

Interface )b Aperture Closed

R Interface Is o
Region Mirosoerip Feed,,..

L. Interface 2e - 1 -M1 /

j dinc +Jf1z
Figure 3-1 Equivalent Antenna Model With Incident and Induced Currents.
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by the applied signal is defined as ,inc, and the electric surface

current on the feedline resulting from electric fields internally

scattered by the antenna is defined as Lf. The equivalence principle is

used to replace the ground plane aperture with its equivalent magnetic

surface current, f11. To insure continuity of the tangential electric

field through the aperture, the magnetic surface current below the

ground plane, kI'j, is defined as the negative of that above the ground

plane, hIl [29:978]. The electric surface current vector on the patch

immediately above the ground plane is defined as J2 and that of the

uppermost patch is 13. The space below the ground plane is designated

region a (z < 0) and that above the ground plane is region b (z > 0).

The antenna coordinate system's origin is located at the center of the

aperture, with the x-axis extending parallel to the length of the

microstrip feedline.

In region a, the feedline/dielectric interface is numbered 2a and

the dielectric/ground plane interface is numbered la. In region b, the

ground plane/dielectric interface is numbered Ib, the patch/dielectric

interface immediately above the aperture is numbered 2b, and the

uppermost patch/dielectric interface is numbered 3b. While only the x-

components of the surface currents are shown in Figure 3-1, this

solution considers both x- and y-directed surface currents.

The unknown surface currents If, 2, 13, and !A, are found by

solving the four MPIE enuations that describe the boundary conditions

for the tangential magnetic field of the aperture and tangential

electric fields on the feedline and patches of the antenna. These
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equations are written to satisfy the boundary conditions of Table 3-1

and are solved via the method of moments. The boundary conditions not

shown in Table 3-1 are incorporated in the construction of the Green's

functions for the antenna [23:16].

Table 3-1 Antenna Tangential Field Boundary Conditions [23]

1) it' - 0 on the Patch of Interface 2b

2) Et' - 0 on the Patch of Interface 3b

3) Et' - 0 on the feedline

4) V11 is continuous through the aperture

3.2 Tangential Electric Field Equations

Nazar's analysis provides the Green's function necessary to

calculate the magnetic vector potential and electric scalar potential

resulting from electric surface currents and electric surface charge

density via a superposition integral taken over the source surface. For

example, to find the magnetic vector and electric scalar potentials at

interface 2b resulting from the electric surface currents and the

electric charge density on interface 3b, the following integral expres-

sions are used [23:151

6b 'A3b (R) ds'
3b (3-1)

bb
Vq23(-) -3
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where

AbD(A) - the magnetic vector potential produced on interface 2b

by surface currents on interface 3b

R - ip - p l

S3b - the surface of the patch on interface 3b

EbA23(R) - the dyadic Green's function used to calculate the

contribution to the magnetic vector potential on interface 2b

created by the electric surface current on interface 3b

Vbq2 3 (2 ) - the electric scalar potential on interface 2b created by

the surface charge density of interface 3b

Gbq23(R) - the Green's function used to calculate the contribution

to the electric scalar potential at interface 2b created by the

electric charge density on interface 3b

q3(£') - the surface charge density on the patch of interface 3b

The dot in the expression for the magnetic vector potential

indicates the vector dot product of the dyadic Green's function and the

electric surface current vector. The first numeral in each subscript

identifies the interface where the field is observed and the second

numeral identifies the interface where the source is located. The

superscript b signifies the interfaces of interest are located in

region b of Figure 3-1. The vectors p and p' are the position vectors

of the observer and source points, respectively. Both vectors are a

function of the cartesian coordinate pairs (x,y) and (x',y') or the

cylindrical coordinate pairs (p,V) and (p',V'), respectively.
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The general dyadic Green's function, CAb(R) is defined

GbR (R) k G XY(R)jk (3-2)-b (R _yR9

Using the time dependence of exp(jct) where j - 4rT, the vector

and scalar potentials are then used to calculate the tangential electric

fields:

E - -j - VV (3-3)

The tangential electric fields generated by the magnetic surface

currents of the aperture are found using the appropriate Green's func-

tions as follows [23:39]:

Et- (!I) " (R, • (Z ) ds' (3-4)21 fib -E21

where

g bE21(R, ) - the dyadic Green's functions used to calculate the

contribution to the electric field at interface 2b from the

magnetic surface current of interface lb
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The variable in equation (3-4) is the angle between the source

direction and the direction to observer location, and is defined as

follows:

fsini [ sinpR sinv. x-directed sources (35)

sin'Pcos- R /COSV] y-directed sources

On interface 2b, the tangential field is a sum of contributions

from the electric surface currents on both patches and the magnetic

surface current of the aperture. Using equations (3-1), (3-3), and

(3-4), the integral equation for the tangential electric fields at

interface 2b satisfying the first boundary condition of Table 3-1 is

[23:40]

- G b (R) j2(Z ) ds' - V G2b G 2 2 (R) q2(Z ) dS'
S2 bmA

2 2

- jW G b (R) ) (')dS' - Vt G 2 3(R) q 3 ( Z )ds (3-6)
JS 3b =A23 J3Z S3bb = (Rqz (() )£ )s -s 036

+ fSlb E2 R~ .~~)d'-

where the superscript r on the del operator indicates the operation is

applied only to the transverse observer coordinates, x and y in a

cartesian system and p and V in a cylindrical system.
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Similarly, the integral equation for the tangential electric

fields at interface 3b satisfying the second boundary condition of

Table 3-1 is [23:40]

- s~ A32"'!2s2b 32 (R) q s ~ q2( ds-'

-W g S bA (R) . e)ds' -VtJs Gq3 3 (R) q 3 (') ds' (3-7)

f+ Jb(R, M, (Z) ds' -0

On the feedline of interface 2a, the tangential electric fields

are the difference between the tangential fields created by the applied

signal, the fields created by the reflected current, and the fields

created by the magnetic currents of the aperture. The equation satisfy-

ing the third boundary condition of Table 3-1 is (23:411

-jJSw Z (R) (p') ds' Vfs Gq22 (R) qi.(P') ds'

+ j s JS 2a (R). Jf(p') ds' + Vtfs2Gq2 (R) qf(p_ )ds (3-8)

+ J SG&E21 (R, ).M e(p')ds' - 0

The final boundary condition of Table 3-1 requires a continuous

tangential magnetic field through the aperture. Therefore, the tangen-

tial magnetic fields due to sources above the ground plane must equal

those fields produced by sources below the ground plane. To calculate
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the magnetic fields produced by the magnetic surface currents, the

appropriate Green's functions are first integrated against the magnetic

surface current vector and magnetic charge density to obtain the

electric vector and magnetic scalar potentials [23:39]

E(P) - [ f(R)•( ) s
', g() - ' ds' (3-9)

v.(P) " s, G (a) q (p) dsl

where

F(p) - the electric vector potential

GF(p,p') - the dyadic Green's function used to calculate the

contribution to the electric vector potential from the magnetic

surface current

G.(p,p') - the Green's function used to calculate the contribution

to the magnetic scalar potential from the magnetic charge density

q.(p') - the equivalent magnetic surface charge density

Using the electric vector and magnetic scalar potentials, the

magnetic fields are then calculated from the relationship

(3-10)

"f - jE - VV.
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The contribution to the magnetic fields from the electric surface

current vector are found by integrating the surface current vector

against the appropriate Green's function in the same manner as eql.ation

(3-4).

In region a, the magnetic fields are created by the electric

surface currents, Ji,, and If, and the lower magnetic surface current of

the aperture, M11. In region b, the magnetic fields are produced by the

electric surface currents on both patches, J, and J, and the aperture's

upper magnetic surface current of the aperture, Mjb. The integral equa-

tion satisfying the fourth boundary condition of Table 3-1 is [23:41]

rGsa -a2R,)inc (P-/)ds' / + 0 (R, tf(')d-
JS~a R,~).. + J 2 a~i

j w f s l g ;1 ( R ) -. 1 ( - d s ' - V t fj G ~ a l ( R ) q . , ( ) d s ' 3 - 1

- b (R, ) J('ds' + f G (R,0.J3 (') ds'

+ fF11b (R (p') ds' + Vt G b (R) q. 1(p_') ds'

fs~b-F1(3-11)

Equations (3-6), (3-7), (3-8), and (3-11) are the four equations

that are solved simultaneously to obtain the unknown surface currents -

I, 11, J2, and M1 .
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3.3 Details of the Method of Moments Solution

The first step of the MoM solution is the division of the patches,

feedline, and aperture into rectangular areas referred to as charge

cells. All charge cells are taken to be the same size and have dimen-

sions a x b, see Figure 3-2. Research completed by Mosig [18:320] has

shown the most suitable charge cell dimensions are setting a - 0.05A and

choosing b such that there are 3 or more charge cells across the plane

in the y-direction. Having all cells the same size is not ait a" olute

requirement, but doing so reduces the complexity and computation time

for the solution [20:425].

x-curentSource Contour

b

CX1 CXCharge Cells

ey-current
cells

I--a ----

Figure 3-2 Geometry of the Antenna Charge and Current Cells
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Two adjacent x-directed (y-directed) charge cells form an x-

directed (y-directed) current cell. The x-directed line segment

connecting the center of the jth charge cell and the adjacent charge

cell to the right forms an x-directed test segment, Cxj. Similarly, the

y-directed line segment connecting the center of the kth charge cell

and the adjacent charge cell to the top forms a y-directed test segment,

Cyk . This arrangement provides an overlap of current cells and means

the number of current cells on the plane depends upon the number of

charge cells. The exact relationship between the number of charge cells

and current cells is not easily determined for an arbitrarily shaped

source. However, for a rectangular patch with m x n charge cells, the

number of x-directed current cells is given by N, - (m - 1)n and the

number of y-directed cells is NY - m(n - 1) [20:426]. Any charge cell

not on the perimeter of the source will support up to two x-directed

current cells and two y-directed current cells.

The center of test segment Cj and the jth x-directed current cell

has position vector pj. The left and right ends of Cxj have position

vectors p-xj and p+xj, respectively. The position vectors for the test

segment's ends are related to the center position vector through the

relationships [20:426]

S ±' _+ (3-12)

where is the x-directed unit vector.
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Similarly, the y-directed test segment Cyk has position vectors

4yk, A-yk, and e+k • The vector Cyk identifies the position of the center

of the lower charge cell in the current cell and A+yk identifies the

position of the center in the upper cell. The relationship between the

position vectors of C~k is given by equation (3-12) by exchanging b - a

and y - x.

3.3.1 Basis and Test Functions. To obtain the most general

solution, no a priori assumptions are made concerning the distribution

of currents on the conductors and aperture. This stipulation eliminates

the possibility of using entire domain basis functions in the method of

moments solution [20:425]. Previous comparisons of various subdomain

basis functions have shown that rooftop functions, see Figure 3-3, can

provide an acceptable representation for the surface currents while

maintaining relative simplicity in the MoM impedance element calcula-

tions [18:320].

Each x-directed current cell supports a single rooftop function,

T1 (p'), described by

{- Il; Ix'f<a, ly'<b (3-13)T. (XI )a -2

0 ;Otherwise

where

-(3-14)

-T(z -Z'J)
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Figure 3-3 Surface Current Rooftop Basis Functions and Surface Charge
Pulse Doublet Basis Functions for x- and y-directed Current Cells

Similarly, each y-directed current cell supports a rooftop basis

function T,(y'). The expression for T,(y') is obtained by interchanging

a - b and x y in equation (3-13).

Using the rooftop basis functions, the electric currents are

expanded in the finite series

1 N, N

1(5) i . xT+(xy) .j ± . a, T.(y/) (3-15)

where

Ct - the unknown surface current expansion coefficients
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All four unknown surface currents are expanded in the same manner.

The expansion coefficients, a, for surface current f are identified by

superscript f, the coefficients for magnetic surface current M, by

superscript 1, the coefficients of L by superscript b2, the coeffi-

cients of L by superscript b3, and the coefficients of linc by super-

script inc.

As discussed by Mosig and Gardiol [20:426], the factors of 1/a and

1/b in the expressions for the surface currents give the coefficients

the units of a current. In fact, the coefficients quantify the total

current flowing across the adjacent boundary of the two charge cells

that form each current cell [20:426].

To expand the electric surface charge density, the surface current

expansion is substituted into the continuity equation

V.J +jq - 0 (3-16)

and the surface charge density expansion is [20:426]

q(kl) . a. Jf(Xt) + - ajfy(y')I (3-17)
jcdab j-fr .1

The functions 11.(x') - -Vt - T(x') and IL(y') - -Vt • Ty(y') are

x- and y-directed pulse doublets described as follows:
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i; O<x'<a, Jy'Jl<b

n:(')-_1; -a<x' <O, Y, I< b

0; Otherwise

(3-18)

1; Ix' < < a, -b<)? <0

IY (P') -- 1; Ix1l< a, 0:5y'<b

0 ; Otherwise

where x' and y' are defined by equation (3-14).

The charge density of a single charge cell can be calculated from

the expansion coefficients of all the current cells sharing the charge

cell. For example, for the jth charge cell identified by the position

vector pxj, see Figure 3-2, the charge qj is calculated using [20:426]

qj. j- a1 a , 3.l-Q +Gy ~k.1-y k ]  (3-19)

where the subscript of each coefficient is taken from the test segments

adjoining the adjacent charge cell centers. The subscripts j and j+1

indicate the expansion coefficients belonging to the current cells

formed by the charge cell of interest and the charge cell to the

immediate left, subscript j, and the charge cell to the immediate right,

subscript J+1. Similarly, the coefficient k identifies the coefficient

for the current cell formed by the charge cell of interest and the
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charge cell immediately below, and the subscript k+l identifies the

coefficient for the current cell formed by the charge cell of interest

and the charge cell immediately above.

Figure 3-3 shows the relationship between the charge cells,

current cells, rooftop functions, and pulse doublets for both x- and y-

directed current cells.

Using the same rooftop function and pulse doublet functions, the

expansions for the magnetic surface currents and charge densities are

obtained.

With rooftop basis functions, a practical choice for test func-

tions are unidimensional, rectangular pulses [18:318;20:426]. These

pulse test functions provide a simple means to complete the required

inner-products for the MoM solution without sacrificing accuracy of the

results. The test functions are defined only along the paths from P-Xj

to e+x on x-directed current cells and P-Yk to P+yk on y-directed current

cells. By defining the test segments along these paths, the need to

compute field values near the plane's edges is eliminated, thereby

avoiding field singularities that adversely effect the accuracy of the

MoM solution [20:4271.

Now, define an inner-product for the x-directed test function,

w,(x) and any general vector function Q(r) such that

(wi(X)G(r) > - cwj(x) • G(r) dx (3-20)
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Similarly, <wk(y), _(p,p')> is defined with integration along the

path Cyk. Since the test functions selected for this solution are a

unidimensional, rectangular pulse of amplitude one, the inner products

reduce to integrations of the function Q(r) along the appropriate path.

3.3.2 Converting Integral Equations to Matrix Equations. Follow-

ing the standard procedure of the method of moments, the surface current

and charge density expansions, equations (3-15) and (3-17), are substi-

tuted into the integral equations (3-6), (3-7), (3-8) and (3-11). Next,

an inner-product of the integral equations with test functions are

taken, and these inner-products form the elements of the matrices in the

MoM matrix equation.

However, before proceeding with the substitution and statement of

the matrix forms of the integral equations, a simplification for the

field contributions from the surface charges should be discussed.

Consider the fourth term of equation (3-6) which is the expression for

the tangential electric field on interface 2b created by the surface

charge density on interface 2b:

E2 (q 2 ) - S3 VtG 2 2 (R) q2 (P') ds (3-21)

Note that this expression contains a gradient operation with respect to

the transverse obserer coordinates x and y.

Now take the inner-product, as defined by equation (3-20), along

the path C,j with wj(x) - 1 and g(r) - rb 22 (q 2 )
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-Js3b Gq 2 2 (R) q2  ds'

2wc)E2 (q 2 )) -Jb[JVtG 22 (R) * ij(fdI (-2Jf~[Cx _I -- )

The fact that the gradient is taken with respect to the observer

or unprimed coordinates allows an exchange in the order of operations in

the inner-product. Since the contour C. is the path from g7-j to A*,j,

the bracketed integral in the center of equation (3-22) can be simpli-

fied to the difference of the Gb.2 2 evaluated at the endpoints of Cxj,

p+,j and p-xj.

With these simplifications, the inner-product of the fields

created by the surface charge and the test functions are

(yi (wX) ,E (q2)) - [G bG22 (AiZ) - G b (2

Using the inner products as expressed in equation (3-23) and the

expansion for the surface currents and charge density given by equations

(3-15) and (3-17) equation (3-6) describing the fields at interface 2b

can be written
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N2 N2 { J f c21  2JGb22

jwab 2 j -d q22 (R ij
) - G 22 (R j) ]n -ys ) ds'

(3-24)
iI . .O (Rj). q2(yj) ds'N2 N3 :3j -- 1 s 3j A23 b3

i- 1 J-1 + S [Gbz3 R j b j)]sb+J G 23 R j - G q23 (aR i H (J) d
jwsa 3b 3 fS

N2 N1

- ~ ~{~fc: jfSl.E Rjj, T(-yj) ds'j al - 0i-i J1j-l[ 1j f -J2i1 E21 J -

where

Csi - Cx; 1 _5 i :s N..; s- 1, 2, 3

C~i - Cyr; NX < i _5 N,; s - I, 2, 3

N1 , N2 , N3 - the total number of current cells on interface la and

interface ib, interface 2b, and interface 3b, respectively

t. - a 3 ; 1 l5 j :5 N,,, s- I, 2, 3

tsj -b s ; Nsx < j -< N,, s -I, 2, 3

dl -X dx ; 15 i -< NX, s - 1, 2, 3

dl - ^ dy ; Nx < i -5 N., s - 1, 2, 3

j - index of the current cell on the source plane

i - index of the current cell on the observer plane

Rij pi - p'jI

R+-j I p+j - p'j I, R-j is defined similarly
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.j and £-.i - the position vectors of the endpoints of test

segment Cj as defined in equation (3-12)

and

' x(P - t Ik ) , 05J:5N.. 1

J 9" (Z' _ZYJ No<j-N,

{ i T,(Oj) ;:j 1 s - 1, 2, 3 (3-25)

T[y(-Yj) ;N 1<JSN s

f11Qr3) ;O0:j:SN.

110( ) - Iy( 7  ) ;N x<j<-N,

Equation (3-24) can be written using matrices as follows:

z 2]ab]+[Z2]ab]_[b2l 1 1 (3-26)

where Z indicates impedance matrices 'ith units of ohms per unit length,

C indicates coupling matrices with units of length
-' [23:45], and the

superscripts are assigned in accordance with previous conventions.

The same substitutions and simplifications for equation (3-6),

which describes the fields on interface 3b, produces
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J-- j Ac3 2 (Rij) T(-) ds'bj 2
N 3 N 2 2 j f c 1 ' -- S , ,9 A 3 2 ,b 2-

r ra 3
+r[Gb 32(R'j) - Gb22(R-j)]f~j s

jwa2 b 2 JS 2 j Lq 1 (3-27)
JW fc3  .

b  (R ) .- ( j) ]ds ,l(3 -2ds

3 N3 t3 i 31 JS3j A33 b3-

T w-a1 3 S3 j

N_ N1  dl. 1 Gb (Rij.j).T(Tjlds' al - 0
SE 3JE31(--

The equivalent matrix equivalent for equation (3-27) is

[32] [Eb2] + [Zbo3]C 3] - [Cr']['] _ 0 (3-28)

Before substituting the expansion for the surface current and

charge density into the equation for the fields of interface 2a, the

terms are rearranged so that the known quantity Jinc is on the righc of

the equal sign. Using the subscript f to identify variables associated

with the microstrip feedline, equation (3-8) can be written
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a (Rj,) . -y ds' a 1

4. [jWab f [G 2 (R) - 1(7j) ]n ) ss(-9

Nf Nf tf ~± f fA22 J Q~

m a g e t i f i l d b co m e s f E

3-23a (329



.fb b2ds'}

-7 - Gg 1X (n) ]II ( d

(3-31)
+--1 f j.f Gb (R4 ).*(::)ds'

+ :1 t N, Lj JCll J$12 I

N 'LO { f u (R,,) z(yj) ds'

" f [G3 (R " f -Ri , I ( R ) I'(y) ds' C

-70 lb s,

The third and fourth double summations of equation (3-31) describe

admittance matrices, denote:: by a Y, with units of mhos per unit length

[23:46]. The matrix form of equation (3-31) is

[+f.[ ] [ [ 3] [Y] -] [11 R][-j] - ][ ] (3-32)

where

[j~ -9 +Zj (3-33)
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These four matrix equations are solved simultaneously to form the

MoM matrix equation. The impedance, coupling, and admittance matrices

of equations (3-26), (3-28), (3-30), and (3-32) are sub-matrices in the

MoM solution matrix. The complete MoM matrix equation is

b22] [b23] _[Cb2l] [0] [b2
[ b32] tZr'] _[Cb3] [3]

3.3.3 Properties of the MoM Solution Matrix. The diagonal sub-

matrices in the MoM solution matrix of equation (3-34) characterize the

contributions to the tangential fields on an interface created by

surface currents located on the same interface. The diagonal terms of

each of these sub-matrices characterize the fields of a current cell

caused by the currents in that same cell. These self-impedance are the

strongest and thus, each sub-matrix and the solution matrix is diagonal-

ly dominant [23:47]. While the MoM impedance matrix is considerably

large, it can be inverted using standard Gaussian elimination [20:427].

However, a solution using an iterative scheme offers a savings in

computer processing time [17:271).

The position of each sub-matrix of the solution matrix determines

its role in describing the tangential fields. The row index identifies

the observer location with rows 1 through 4 corresponding to interfaces
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2b, 3b, la 'and b, and 2a, respectively. The column index identifies the

source location with the same order as the row index. Thus, the sub-

matrix located in row 1 and column 2 characterizes the fields observed

on interface 2b resulting from sources located on interface 3b. The

zero sub-matrices identify locations in the antenna where sources do not

contribute to observed fields. For instance, the zero matrix in row 2,

column 4 signifies the sources of interface 2a do not contribute to the

fields observed at interface 3b.

The number of rows in each sub-matrix is determined by the total

number of current cells on the observer plane, and the number of columns

is determined by the total number of current cells in the source plane.

Each diagonal sub-matrix will be a square matrix because the observer

and source planes are the same for these matrices. Since each source

and observer plane is represented in both dimensions of the solution

matrix, the solution matrix is a square matrix with its dimension in

either direction being equal to the sum of the current cells on all four

interfaces of the antenna.

3.4 Challenges of the MoM Solution

Completing the MoM solution for the entire antenna is an arduous

process. Before any calculations on the MoM solution are possible, the

Sommerfeld integrals defining the Green's functions must be evaluated,

and the expansion coefficients for ±nc must be calculated.
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3.4.1 Evaluating the Antenna's Green's Functions. Due to the

numerical complexity of evaluating the Sommerfeld integrals, the Green's

functions for the antenna will not be explicitly evaluated in the

software written to complete the MoM solution.

As shown by Nazar [23:74-84] and discussed by Mosig and Gardiol

[21:224-226], the Green's functions are dependent only on kR, where k is

the wavenumber of the input signal. The Green's function can therefore

be evaluated at a finite number of points within a range of kR and

interpolation can be used to find the Green's.functions anywhere within

the interval [19:429;19:2241.

The approach used here will be to employ polynomial representa-

tions of the general Green's functions as presented by Erwert [9]. When

the asymptotic form of a Green's function for R - 0 is iieeded a combina-

tion of interpolation from tabulated data and an analytic term will be

used. The asymptotic approximations are discussed in Sections 3.4.1.1

and 3.4.1.2. The approximations of the Green's functions are either

sixth-order polynomials or a combination of an eighth or tenth-order

polynomials. Because the Green's functions are also dependent on the

applied signal's wavenumber, different polynomials must be used as the

input frequency is varied.

3.4.1.1 Asymptotic Green's Functions for R - 0. For the

case when source and observer locations are coplanar and on the same

current cell, the value of R will approach zero. Since the Sommerfeld

integrals defining the Green's functions contain Hankel functions of the

second kind, the integral will be undefined when R - 0. To overcome the
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singularity at zero, Nazar derived an asymptotic form for the Sommerfeld

integrals of interest - Gbb2 2, GbA33 , Gbq22 and Gbq33. The asymptotic

expression involves two integrals of Bessel functions over finite

intervals and a constant term proportional to R-1. For example, the

asymptotic form of the Green's functions describing x-directed fields on

interface 2b created by x-directed surface currents on interface 2b is

given by [23:59]

r c Jo(AR)A 
UZbcOsh(U

2b(b2b-blb) )  
]

G bAl 0 A D*() /4b2 3 U3bsinh(U2 b(b 2 b-blb)) J (3-35)
GA+2(R) 1 ' Mb23 RAC J0 (x) dx + 1 Jb23

1+ Ab13 + A'b12 + ilb23 fo R (I +Ab13 +Pb12 +yb23))

The variables in the first and third terms of equation (3-35) are

defined on the first page of Appendix A.

The integrals of equation (3-35) are now over finite intervals,

are therefore finite for all R, and can be evaluated numerically. The

thiru term of the approximation must be integrated analytically over the

surface of the source for use in the method of moments solution. The

evaluation of the integral is the subj t of the following section.

3.4.1.2 Evaluating the Analytic Term in the Asymptotic

Green's Function Expression. With the rooftop basis functions, the

integral defining the surface integration over the jth x-directed

current cell for the R- term in the asymptotic expression is given by
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I (R) -4 4. i.IXxf dsl dx (3-36)

where

Xj, yj - the x- and y-components of the cell's position vector.

ds' - dy' dx'

R - [(x - x') 2 + (yj - y,)2]J

Completing the surface integration produces the expression

9T2 csch"1 (3,r) + clsinh-1(3-r ) - "T2 csch-1 ( r ) + C2sinh-1 ( -r)

I - b2' 4- 
(3-37)

-6 - -

where

a

- 54a 2 - 7b 2 + 18ab (3-38)ci " 24ab

b2 -42a 2 - 18ab
c 2 " 24ab

The result of the surface integration over a y-directed current

cell is obtained by interchanging a - b in equations (3-37) and (3-38).

The details of completing the integration of equation (3-36) are given

in Appendix B.
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Using the result of equation (3-37), the asymptotic value of the

Green's function can be obtained as follows:

1) Using tabulated data and linear interpolation, find the

contribution to the Green's function from the integral of

equation (3-35).

2) Using numerical integration, complete the surface inte-

grations over the source cell for the product of the inte-

grals of equation (3-35) and the rooftop basis function.

3) Add the contribution of equation (3-38), multiplied by

the appropriate constant, to the result of step #2. The

result is the integration of the product of the Green's

function and the rooftop basis function over the source

cell's surface.

3.4.2 Modeling the Microstrip Feedline. To complete the MoM

solution as described in section 3.3, the expansion coefficients for the

surface current linc must be known. Finding the coefficients requires

completion of another MoM solution using the same basis and test

functions as those of the antenna's solution. The exact excitation

model would depend upon the means used to excite the microstrip feed-

line. One common excitation is the use of a coaxial probe, and several

means to model this excitation have been described by various authors

[5:613;19:431-436;20:428;21:229-231] with one especially detailed model

developed by Hall and Mosig for microstrip antennas with electrically

thick substrates (10:370-375]. For a general mircostrip feedline,
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Kobayashi presents closed-form expressions for the normalized longitudi-

nal and transverse feedline current distributions [20].

Since the excitation model can cake on such wide variations, and

the purpose of this research is to obtain a more general solution for

the antenna, the MoM solution of section 3.3 will be changed to elimi-

nate dependence upon the antenna excitation technique. The modified

version of the MoM solution is explained in the following section.

3.5 The 3-Plane Model - A Solution Independent of the Excitation Source

To prevent the MoM solution from being dependent upon the excita-

tion model, the antenna model can be generalized by assuming a distri-

bution for the magnetic currents on the aperture. By making this

assumption, the feedline's role in the solution is eliminated, and the

solution now depends only upon the interactions of the aperture and

patches.

3.5.1 Approximations for the Aperture Fields. As discussed by

Pozar [26:50], the best coupling of energy from the aperture to the

driven patch is obtained when the aperture is a long, thin rectangular

slot. With the geometry of this analysis, the long, thin rectangular

slot results in the y-dimension of the aperture being considerably

larger than the x-dimension. Given this configuration, the electric

fields for the aperture will be dominated by an x-directed component

resulting in a y-directed equivalent magnetic current on the aperture.
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Since the aperture is electrically small, it is reasonable to assume the

electric field of the aperture can be represented by a single piecewise

sinusoidal function [27:1443;27:978]

sin [k. L. 2EIy7 (3-39)

Wsin ]

where

W - the x-dimension of the aperture

L - the y-dimension of the aperture

k. - the effective wavenumber of the piecewise sine

The effective wavenunber is best represented as the average of the

wavenumbers in the regions adjacent to the aperture [26:1440;29:979].

Thus, the effective wavenumber of the piecewise mode is given by

t la b 7 (3-40)
k -" k0  2

where

ko - free space wavenumber

ezl* - the relative permittivity of the dielectric between inter-

faces la and 2a of the antenna
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erlb - the relative permittivity of the dielectric between inter-

faces lb and 2b of the antenna

With this approximation for the aperture electric fields, the

magnetic currents can be calculated as follows

sin k.[LIrj
-l _ jX Eb - i x i4 b- (3-41)

Wsin[_ ]

By approximating the aperture magnetic currents in this manner,

the solution of the antenna becomes a matter of satisfying the first two

boundary conditions in Table 3-1.

3.5.2 Modified Matrix Equation. As discussed previously, on each

patch the tangential electric fields are the sum of contributions from

the magnetic current of the aperture, the surface currents on the patch

itself, and the surface currents of the remaining patch. Since the

magnetic currents of the aperture are now a known variable, the fields

created by the magnetic currents become the forcing function in the

field equations. Thus, the matrix equation satisfying the first two

boundary conditions of Table 3-1 is
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[b3Z2] [Zb3] ][(b3 ] [(w~ Eb) 3-2
z ij I - I

where all the elements on the left of the equation are the same as those

previously specified in equations (3-27) and (3-31).

The inner-products comprising the elements of the column matrix to

the right of the equals sign in equation (3-42) are given by

!, b2l\ - fcdl.. f" gb (R, )Mb (A/) dsl
J 2 i J-E21 -

(3-43)

EEb31\- dl G~b ( Z,)M~e)

i C 3 1 1- fAPE31lR s

Equation (3-42) is the method of moments matrix equation that will

be solved in this thesis.

3.6 Solving the MoM Matrix Equation

The solution matrix of equation (3-34) and impedance matrix of

equation (3-42) both have large dimensions. For example, consider an

antenna with dimensions shown in Table 2. Using the charge cell

dimension of a - 0.05A and choosing five y-directed charge cells across

each plane of the antenna, the dimensions of the square solution matrix
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of equation (3-34) would be 448, and with the 3-plane model, the square

impedance matrix would have dimensions of 170. Solving the MoM matrix

Table 3-2 An Example Antenna with its Associated MoM Segmentation

Antenna Element x-dimensions x-directed y-directed

(wavelengths) current cells current cells

Feedline 1.5 145 120

Aperture 0.1 5 8

Lower Patch 0.5 45 40

Upper Patch 0.5 45 40

equation of the 3-plane model using Gaussian elimination to invert the

impedance matrix is feasible [20:427]. However, for the larger matrix

of the complete antenna model, an iterative solution scheme might prove

to be more advantageous.

3.6.1 Solving the Matrix Equation via Iteration. As discussed by

Moore and Pizar (17:2701, iterative schemes offer economies of computer

storage and processing time, as compared to Gaussian elimination or

other factorization approaches, when the matrices in the MoM solution

are very large. Since the square impedance matrices of the three or

four plane MoM solution may have very large dimensions for certain

geometries, development of an iterative scheme for solving the MoM

matrix equation is worthwhile.

3.6.2 Basic Iterative Method. For the matrix equation ZI - V,

the matrix Z may be decomposed such that
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Z - ZD+ Z, (3-44)

where Z0 is more easily inverted than Z. By substituting equation

(3-44) into the original matrix equation, the equation may be rewritten

ZO, - V - (3-45)

Based on equation (3-44), an iterative process can be defined such

that [16:272]

Z0 (k-l) - v - Z1 k) ; k-0,1,2 ...... (3-46)

Moore and Pizer discuss several iterative schemes based on a

priori knowledge of various characteristics of the matrix system being

solved. Earlier discussions of the MoM matrix equation and characteris-

tics of the Z matrix have emphasized the fact that the MoM solution and

impedance matrices are diagonally dominant, and one approach highlighted

by Moore and Pizer is well suited to a system with this characteristic.

3.6.3 An Iterative Approach Suited to the MoM Solution. The

iterative scheme best suited to the MoM solution of the complete antenna

model was proposed by Ferguson et al. [9:230-235] and begins with the

decomposition of Z such that
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Z - L + B + U (3-47)

where B is a banded matrix formed by elements on either side of the

diagonal of Z. The matrices L and U are the lower and upper triangular

matrices, respectively, left when the elements of B are replaced by zero

in Z.

The key to this scheme, making it ideally suited to the solution

of the aperture-fed, stacked patch antenna, is that the matrix B must

contain the largest elements of Z in order for the system to converge.

Since the Z matrix of the MoM solution is diagonally dominant, this

condition will always be satisfied. Also, since the largest elements of

the MoM matrix are already on the diagonal, no row pivoting is required

during decomposition which results in the most efficient iterative

solution scheme [9:230).

Using this representation for Z, the iterative scheme becomes

_(k-1)B-i[ _ (LU) (k) (3-48)

The iteration is repeated until a previously selected stopping

criterion is satisfied. One criterion presented by Moore and Pizer

[17:276] is based on the relative change in the norms of successive

solutions. Denote the present iterated solution with a superscript

(k+l) and the last iteration with superscript (k), and suppose the

vector j contains N elements. The first step in determining satisfac-
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tion of the stopping criterion is to form the difference vector 6 1 (k
-
1)

where

61(k -1) - _(k.1) _ !(k) (3-49)

where the ith element of the vector 6 ICk+I) is the difference between the

ith element of I(k+1) and I (k ). Next, the norm of 6 I(k+1) is calculated

N

I2 "---l 12 6 1 (k-1) 6 !(k1)-  (3-50)
i-i

where the * indicates complex conjugate. Similarly, the norm of I(k) is

found. The stopping criterion is satisfied when

I6!(k)I < E I (k1) 1 (3-51)

where c is selected based on the required accuracy of the solution.

Ferguson et al. report processor time saving of 5 to 10 times, and

up to 23 times, relative to Gaussian elimination. However, this

particular scheme does not allow any computer memory savings unless some

algorithm for disc storage of the matrices in the scheme is employed.
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3.7 Calculating the Fields of the Antenna

While the calculations of the fields on the antenna interfaces

will not be a part of this effort, the software developed to complete

the MoM solution can be used to do so. This section outlines how the

fields on the antenna interface and the far-field patterns can be

calculated using the results of the MoM solution.

3.7.1 Calculating the fields on the Antenna Interfaces. After

the surface current and charge density coefficients are known, all the

sources on the antenna are defined, and the fields at any location on

either of the three interfaces of the 3-plane antenna model can be

calculated using many of the same Green's function da-a as used in the

MoM solution. The only additional data needed is the analytic expres-

sion for the divergence of the surface charge Green's functions so that

the surface charge field contributions of equations (3-6) and (3-7) can

be calculated.

Once the divergence of the surface charge Green's functions is

known, the subroutines of the MoM software can be used to complete the

integrations needed to find the fields at any point on the antenna's

interfaces.

One reason to calculate the fields on the interfaces is that doing

so would provide a means to validate the MoM solution. If the solution

is correct, the fields at any location on either of the two patches

should be approximately equal to zero. Another reason to calculate the

fields would be to calculate the radiation patterns of the antenna. One
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approach to finding the antenna patterns is presented in the following

section.

3.7.2 Calculating the Antenna Far-Field Patterns. As mentioned

in Section 1.1, radiation from microstrip antennas is produced by the

fringing fields along the edges of the microstrip patch. In the

aperture-fed, stacked patch microstrip antenna the fringing fields of

the patch on interface 3b produce the radiation. One approach to

finding the antenna field patterns is to model the fringing fields of

the patch with equivalent radiating apertures. The far-field patterns

of the antenna can then be calculated using theory for radiating

apertures.

3.7.2.1 An Aperture Model for the Antenna. Hammer et al. have

shown the validity of using an aperture model to calculate the radiated

fields of a microstrip antennas [12]. The first step of the modelling

is the construction of four apertures along the edges of the antenna's

radiating element. Next, the tangential fields on the interface of the

radiating patch are calculated, and an equivalent electric field

distribution is found such that the following relationship is satisfied:

Y [i -dl - E.- 2a (3-52)

where

- the tangential electric field value

Ea - the equivalent field distribution value

2a - the width of the radiation aperture

3-40



Actually, the value of t decreases to zero at a finite distance

from the patch edge, and the upper limit of the integral in equation

(3-52) can be replaced with a distance L where, in general, L is much

less than the value of the free-space wavelength [12:267].

In (12], a closed-resonator model is used to approximate the

tangential field magnitude. In this analysis, the Green's functions and

the electric and magnetic surface currents permit the calculation of the

tangential fields. Once the tangential fields have been calculated, the

actual x-component and y-component of the fields can be replaced with an

equivalent distribution such that the relation of equation (3-52) is

satisfied for the x-directed and y-directed fields. This procedure

produces an aperture model for the antenna as illustrated in Figure 3-4.

Since the radiating apertures of the antenna model have constant,

uniform field distributions, the far-field patterns are readily calcu-

lated.

3.7.2.2 Far-Field Pattern Equations. The far-field pattern is

the sum of the pattern produced by the radiation of each aperture. To

begin, consider aperture 1 of Figure 3-4 with equivalent tangential

fields represented by the following expression:

ft- - E 1i 
+ Ey1

9  (3-53)
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Aperture #4

S................................................................................... .... A p e rtu re # 1

204 .

IL ..... 2-b

A e t r ................ .. .. .. i..2 ............... _J, 2b

,.,,... 2o, J.- Aperture #2

Figure 3-4 Aperture Model for Calculating Far-Field Radiation Patterns

The equivalent field principle can be used to obtain an expression

for the magnetic surface currents of the aperture [2:460]:

tal - -2n X Etl - 2Eyli - 2EjI (3-54)

Since the magnetic surface current can be expressed in terms of

the components of the tangential fields, the components of the far-field

pattern of the aperture can be found using the relationships [2:455-458]

el - [-E 7 1sin - Ecos~ j ', e ° r' co ds'

El- [EY, cose cos~p - E 1 1 cosB sinw]Is, ejkor/c8 ds'
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where

S' - the aperture surf-ce

- x' cosO cosq + y' cose sinv

and the constants in the expression have been neglected since only the

field pattern equations are desired.
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IV. Method of Moments Software Description

This chapter presents the details of the FORTRAN software devel-

oped to complete the MoM solution for the 3-plane model of the aperture-

fed, stacked patch microstrip antenna. The chapter begins by deriving

the numerical integration equations needed to perform the various

integrations of the MoM solution. Next, the algorithms and logic of the

subroutines of the MoM solution software are described.

4.1 Numerical Integration Equations

The major task of completing the MoM solution for the antenna is

performing the integrations needed to evaluate the elements of the MoM

matrix equation. In the interest of accuracy and economy, Gaussian

quadrature is used to complete all of these integrations.

To begin, the number of integration nodes to be used in the

Gaussian quadrature must be determined. T i selection of the number of

nodes is based on the numerical behavior of the integrand within the

interval of integration. If the integrand is oscillatory within the
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interval, a larger number of nodes is required to accurately evaluate

the integral. Therefore, the numerical stability of the integrands of

the matrix elements must be investigated before a selection of the

number of nodes is made.

Since the integrands are products of a Green's function and either

a linear rooftop function or the constant 11 function, the numerical

characteristics of the Green's function will dominate the integrand's

behavior. For the surface and line integrals in the MoM solution, the

arguments of the Green's functions are rather small. Based on data

presented by Nazar [23:74-84], under these conditions the real and

imaginary parts of the Green's functions are well behaved. Therefore a

relatively small number of quadrature nodes should suffice. To simplify

software development and use, the same number of quadrature nodes will

be used for all integrations. For the remainder of this discussion,

five node quadrature will be assumed.

To derive the numerical integration equations, the integrations

for the impedance sub-matrix describing the fields on interface 2b

produced by the surface currents and charge density of interface 3b will

be considered:

i-i __ __
"-  (R-j)dl T(3j)ds'

b23 N N { J 3j (4-1)

4-q2Rij)- Gq23(Rij dst
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This expression is typical of the expressions defining the

remaining sub-matrices of the MoM impedance matrix and the numerical

integration equations for this sub-matrix can easily be adapted for

those sub-matrices.

To begin, the dot product operations in equations (4-1) must be

completed. First, the dot product of the dyadic Green's function and

the rooftop basis functions in the source surface integration will be

simplified. Recall for 1 : j : N3., the rooftop vector functions are x-

directed, and for N3. < j 5 N3, the rooftop vect - functions are y-

directed. Therefore, the dot product between che dyadic Green's

function and the rooftop vector functions produces the following

vectors:

[kG bxx.- -Rj + byx .03j) " I5j:NUx (4-2)

(RA23 - :0 3j) A23A23 (Ri j) IT j

G(A2)(Rij) +Y GAfl3(Rij) ]Ty(-y3j) ;N 3x<j5N3

Next, consider the line integration along the observer current

cell's test segment dotted with the surface integration over the source

current cell surface. The test segments are x-directed for 1 5 i S N2x

and y-directed for N2, < i s N2. The dot product of the line and

surface integrals is then
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Jc E. j .(Rs) - 1(03,j) ds'

dxll bxx ( T<N 2 1
G^~i 23 ( 10 T(3j) dsl < _~

-1d j<-N3 . (4-3)
SyidYJs3.j G by,(Rij) T.(7 3 j) ds' ; N 2 2' i -NJ

JC2z dxJ GJS3)A3 (Ri) Ty(3) ds ; 1<i<N2

N3,<j :5N 3
y dy3yJ G^23 (Rij) Ty(7 3 j) ds' ; N2 x< 1_5N 2

4.1.1 Impedance Sub-Matrix Gaussian Quadrature Equations. Using

five-node Gaussian quadrature, and integration over the interval

x c [-1,1] can be approximated by the summation

5

f 1f ( x ) dx = wf(x n) (4-4)
- n-1

where

wn - the weight assigned to the nth Gaussian quadrature node in

the interval [-1,1]

Y, - the location of the nth Gaussian quadrature node in the

interval [-1,1]

To complete the triple integrations of equation (4-1), the singl..

variable quadrature is extended to incorporate three variables. Then,
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for example, the triple integrations of equation (4-4) for the index

ranges 1 : j 5 N3. and 1 5 i s N2 can be approximated by the triple

summation

dx (Rij) Tx(-j)ds'Jc2x id S3 xj bx

(4-5)
5 5 5
=~ WlM n A23(kili, mn) X(73jmn)

where

wI, W., wn - the Gaussian quadrature weights as determined by the

value of their subscript variables

1 - the quadrature node index for the observer current cell's test

segment

m, n - the quadrature node indices for the source current cell's

x-coordinate and y coordinate, respectively

The position vectors pil and p'j in equation (4-5) now require

clarification. Since the Gaussian quadrature nodes and weights are

generally available for the interval (-1,1], a coordinate transformation

must be made with regard to the integration variables of equation (4-5).

The appropriate transformation is given by [4:2-83]

A22- A I f A 2 -X+X(A 2 -A) dx (4-6)
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On the x-directed observer current cells, the line integration

along the cell's test segments means Al - Xi - a2/2 and A, - xi + a2/2.

Then, according to equation (4-6), the scale factor of the coordinate

transformation is a2/2, and the position vector ail is

Ai + r la2 +j yy ;i l :SN 2. (4-7)

where

x, - the ith Gaussian quadrature node in the interval [-1,1]

xi and y1 - the x- and y-coordinates of the position vector p

Along a y-directed observer test segment, A1 - Yi - b2/2 and

Az - Yi + b2/2. The coordinate transformation generates a scale factor

of b2/2, and the position vector pil is

Ail- ix + f i + yl.b..;N2 <i N 2  (4-8)

where

yi - the Ith Gaussian quadrature node in the interval [-1,1]

xi and yi - the x- and y-coordinates of the position vector pyi

The surface integrations require transformations in both the x-

and y-coordinates. Over an x-directed current cell of interface 3b, the
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intervals for the surface integrations are x c [xj - a3, xj + a3] and

y e [yj - b3/2, yj + b3/2]. Thus, the coordinate transformation scale

factor is a3b3/2, and the position vector p'j., is

J.n . (x + xna 3 ) + y lj N3x (4-9)

where

x, - the mth quadrature node location in the interval [-1,1]

Yn - the nth quadrature node location in the intarval [-1,1]

Over the surface of a y-directed cell x c [xi - a3/2, xj + a3/2]

and y c [yj - b3, yj + b3]. The scale factor is again a3b3/2, and p'jn

is given by

n + --- + (Yj +yb 3) ;N3x<j<N 3  (410)

With these definitions for the position vectors, the variable 7jn

becomes

1:5j:N 3 .
-Yjjm (4-11)
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Substituting the appropriate coordinate transformation scale

factors and summation approximations for the integrations of (4-1), the

numerical integration equations for the impedance sub-matrix becomes

,'JWa2a3 ,.rbxx I__N x }

5 5 A23 2X

1-1 M-1 n-1 |wb 2 a 3 ,,byx
A23 N2 x< i:N2 l-k<-N3 x

[z N2 N3 - -~~ WmnflGPq23 (4N-12)sN
3 3 m-1 n-1 {j

i - 1 k-1 jwa.b , bxy-- W 55UA23 1:I-i-5N2x

A2 5~x i :N2NcP5k:N3

+ TW E WnGP~q 3
m-1 n-i

where the summation index j of equations (3-24), (3-27), (3-29), and

(3-31) has been replaced with the index k to prevent confusion with the

use of j to indicate the V-. The other variables of equation (4-12)

are defined as follows:
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Wlmn - WlwmW n

Wmn - Wmwn

GTbxx - G b X -

~A23 "A23 (kij' jmnYjfl

G /r byz . byx , . P / j n
A(3 -Gj,)

Grbxy - G bxyA " iiA'£jmn) Ty(Tjmn) (4-13)

G byy , byy- T Oy m
GTA 23 - G'^2G A23 )lYjmn) YG(Tji)

GPX -[ G b  -I , x(jmn)

GPq 2 3  [Gq2 3(P&x;, j.) =q 2 3 (_xi 1/jmn)]

4.1.2 Inner-Product Gaussian Quadrature Equations. The elements

of the forcing function in the 3-plane MoM matrix equation are defined

in equation (3-43). As with the impedance sub-matrix, the first step in

obtaining the Gaussian quadrature equations for the inner-products is

understandinF the significance of the dot product between the dyadic

Green's function and the magnetic surface current ve-tor of the aper-

ture. From equation (3-39), the magnetic surface current vector is

y-directed, therefore the dot-product of the general dyadic Creen's

function GF" and the magnetic surface current vector is

G b .M b  G -yM + 5cbyyG Y (4-14)
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On the x-directed current cells, the test functions, wi(x), are x-

directed, and over the y-directed current cells they are y-directed.

Thus, the dot product between the line and surface integrals of equation

(3-43) produces the following:

(ri, ~ ~ l E ~ Y~y ) ds' ;l:5i:5N, (4-15)
GE b(pZ)My (Y ) d' ; N.<i-N

JcyidXlslb
b E

As with the impedance elements, Gaussian quadrature is used to

numerically evaluate the integrations of equation (4-15) using the same

summation index assignments as for equations (3-24), (3-27), (3-29) and

(3-31). On the observer current cells, the paths Cxj and Cyi are such

that x c [xi - a/2, xi + a/2] and y e [yj - b/2, y1 + b/2J, respectively.

Therefore, the coordinate transformation into the interval [-1,i1

produces the scale factor a/2 on the x-directed current cells and b/2 on

the y-directed current cells. The position vector pil is the same as

defined in equations (4-7) and (4-8).

Since the center of the aperture is defined as the origin of the

antenna's coordinate system, the antenna's aperture surface is defined

by x e [-W/2, W/2] and y c [-L/2, L/2]. With the required coordinate

transformation, a scale factor of WL/4 is obtained, and the source

position vector is defined
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XnW (yL(4-16)

where

x. and y, - the mth and nth Gaussian quadrature nodes in the

interval [-1,1]

Using these definitions, the numerical approximations for the

inner-products of equation (3-42) are

a2WL Gbxy 
;

5 5 5 8 E 2 1 ( i '  n )  M y  (Y )  1 : l 1i N 2 ,,

i-i m-i n-1 b 2WL byy,GE21 i £. ) Mi)•N2.:5 i:<N2

(4-17)

(a3WL bxy(5 55GE31 x~L, In) My (Y/) 1" li<!-N3x

1-1 m-I n- 1 b3 WL 0 byy
G E31 il,/ My(y/ N3x_< i <-N3

4.2 Software Overview

The MoM solution software is designed around evaluating the

summations of equations (4-12) and (4-17). The operations of equation

(4-17) are very similar to those of equation (4-12), therefore identify-

ing the requirements for evaluating equation (4-12) will also serve to

identify those for equation (4-17).
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Equation (4-12) must be evaluated to form each of the four

impedance sub-matrices that form the MoM impedance matrix. Calculating

the elements of each impedance sub-matrix requires the following steps:

(1) Establish the index of the observer current cell, this is the

value of summation index I of equation (4-12) and the row index

for the element's location within the impedance sub-matrix.

(2) For each observer index, complete the triple summation over

indices 1, m, and n of (4-12) for each current cell on the source

plane. The source current cell is determined by summation index j

of equation (4-12). The index j also determines the column index

of the element's location within the impedance sub-matrix.

Completing the triple summation over indices 1, m, and n in

equation (4-12) requires the following steps:

(1) Establish the value of index 1 which corntrols the progression

over the quadrature nodes of the observer current cell test

segment.

(2) For each node on the test segment, complete the summation

over indices m and n. For each of the possible combinations of

indices 1, m, and n, I.il - p'j.I must be calculated according to

equations (4-7) or (4-8) and (4-9) or (4-10) and the surface
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current or surface charge density basis function must be calculat-

ed. Based on the value of Jil - k°jmI, the appropriate Green's

function must be evaluated using the polynomial model.

The difference between completing the opetations of equation

(4-17) and (4-12) is that for equation (4-17) the source plane is now

the complete aperture, and the piecewise sinusoidal magnetic current

distribution function is used instead of the rooftop basis function.

Completing the antenna solution involvesthree basic functions.

First, antenna parameters - operating frequency, dielectric permit-

tivities and permeabilities, element dimensions - and the Green's

functions' polynomial coefficients must be read from data files. Next,

data for calculating the integration node position vectors must be

calculated. The MoM matrix elements are then calculated and the MoM

matrix equation is solved to obtain the expansion coefficients for the

surface currents and surface charge densities. Finally, the surface

currents are calculated using the expansion coefficients.

The MoM software consists of a main program and 13 subroutines.

The function of the main program is to call subroutines in the appropri-

ate order and set operation flags and variables for the subroutines.

Since the main program does not complete any major portion of the

solution, it will not be described in detail. Instead, any inputs to

subroutines provided by the main program will be described as each

subroutine is described. The following sections detail the subroutines

that were developed to complete the three basic functions needed to
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complete the MoM solution. Complete listings of the MoM software are

contained in the Computer Program Supplement for this thesis.

4.3 Antenna Data Subroutines

Three subroutines are used to either read data for the solution or

calculate data needed in the solution. These subroutines are the first

executed by the main program.

4.3.1 Subroutine INPUT. The data input is accomplished by

subroutine INPUT. Subroutine INPUT is used to read data from two

separate data files and then perform several short calculations with the

data. The first data file accessed is file GEO.DAT. This file contains

seven lines of antenna data. The expected entries and read formats for

the data file are as follows:

Line 1) The relative permeabilities of the dielectric

substrates between interfaces lb and 2b, named MURB, be-

tween interfaces 2b and 3b, named MUR2B, and above interface

3b, named MUR3B. All values on the same line in the same

order. The read format for these values is five columns with

three decimal places.

Line 2) The relative permittivities of the dielectric

sibstrates between interfaces la and 2a, named EPSRIA, be-

tween interfaces lb and 2b, named EPSR1B, between interfaces
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2b and 3b, named EPSR2B, and above interface 3b, named

EPSR3B. All values on the same line with the value for

EPSR1A first. The read format for these values is five

columns with three decimal places. The variables EPSR1A and

EPRSRIB are then used to calculate the effective wavenumber,

variable KE, for the aperture's magnetic field approxima-

tion.

Line 3) The operating frequency of the antenna in GHz. The

read format for the frequency is five columns with two deci-

mal places, thus limiting the maximum operating frequency to

99.99 GHz. However, the read format can be changed to

accommodate any higher frequencies, there are not any soft-

ware features that would prevent raising the maximum possi-

ble frequency. The frequency is converted to radians/second

and assigned the variable name OMEGA.

Line 4) The number of integration nodes to be used for all

line and surface integrations. The value is read using a

one column integer format and is assigned the variable name

NUMNODES. The software is written for four or six node

Gaussian quadrature.

Lines 5-7) These lines contain the geometry data of the

antenna. Line 5 contains data for the aperture, Line 6
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contains data for the patch of interface 2b, and Line 7

contains data for the patch of interface 3b. Each line

contains the x-dimension of the aperture or patch, the y-

dimension of the aperture or patch, the height of the inter-

face above the aperture, and then the x- and y-distances

between the patch's center relative to the aperture's cen-

ter. The origin of the antenna is set at the aperture cen-

ter, so the height and offset entries on Line 4 will all be

zero. All dimension entries in the data file are in units

of centimeters. After the dimension data is read, it is

converted to units of meters and placed in the one-dimen-

sional arrays XDIMEN, YDIMEN, ZPLANE, XOFFSET, and YOFFSET.

The array indices of these arrays designate to which element

of the antenna the dimension applies, with one corresponding

to the aperture, two corresponding to the patch on interface

2b, and three corresponding to the patch on interface 3b.

All dimensional data is read with a format of six columns

and three decimal places.

The second data file accessed is file GREENFS.DAT. This file

contains the data for the polynomial representations of the antenna's

Green's functions. The coefficients are stored in 3 three-dimensional

arrays - GBA, IB, and GBQ. The details of the polynomial models for the

various Green's functions are given in Appendix A.
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Array GBA contains the polynomial coefficients for the three

Green's functions that have subscripts Ast, where s and t e [2,3]. The

first index of an element in array GBA designates which Green's function

the coefficients belong to - 1 - GA 2 , 2 - G.33, and 3 - GA3 or GA23. For

the A22 Green's functions, the function with superscript bxx equals the

function with superscript byy, and the functions with superscript bxy

and byx are zero. Thus, the coefficients in array GBA with a first

index equal to one represents all non-zero Green's functions with

subscript A22. Similarly, the Green's functions subscripted A33 have

the bxx function equal to byy, with byx and bxy equal to zero. The

third row of array GBA contains the coefficients of the Green's GA23 or

GA32. For these Green's functions, the functions with superscript bxx

are equal to those with superscript byy, and the functions with super-

script bxy or byx are zero. Additionally, the Green's functions with

subscript A23 are equal to those with subscript A32.

The Green's functions that have a superscript of E21 or E31 are

defined by two or more Sommerfeld integrals, and array IB contains the

coefficients for the polynomials representing these integrals. The

first index of array IB determines which of the six integral parts the

coefficients represent. Array elements with a first index of 1, 3, and

5 correspond to E21 Green's function, and the elements with a first

index of 2, 4, and 6 correspond to the E31 Green's function.

Array GBQ contains coefficients for the Green's functions needed

to calculate the electric fields created by the surface charge density.
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The first index of the array corresponds to the subscript of the Green's

function - 1 - q22, 2 - q33, 3 - q23, and 4 - q32.

The polynomial models for the GA and GE Green's functions all have

the same form - real component represented by a polynomial whose form is

determined by the value of R, and an imaginary component represented by

the same polynomial over all values of R. For these functions, a

second index equal to 1 indicates coefficients for the polynomial

modelling the real component for R < .01, and a second index equal to 2

indicates coefficients for the polynomial modelling the real component

when R > 0.01. The elements with a second coefficient equal to 3

contain the coefficients for the polynomial modelling the imaginary

component of the Green's functions. The third dimension of the array

elements in arrays GBA and IB indicates the coefficient subscript as

detailed in Appendix A. The value of the third index is equal to the

coefficient subscript plus one.

The Gq Green's functions are modeled with one polynomial which is

valid over all values of R representing the real component, and differ-

ent polynomials valid over two different intervals of R representing the

imaginary component. The second index of array GBQ has the same

function as the second index of arrays GBA and IB, except an index value

of one designates the polynomial for the real component, a second index

of two designates the polynomial data for the interval R < 0.01, and an

index of 3 indicates data for the interval R > 0.01.

The coefficients are all real values and are first read into array

GBA, then IB, and GBQ. Each Green's function has a polynomial model for
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its real component of imaginary component valid only for specific ranges

of R, and the first line defines these ranges. The next 63 lines

contain the data for arrays GBA and lB. The data is arranged such that

the coefficients of the polynomial of the function's real component for

R < 0.01 are on the first two lines; five then four coefficients per

line. Next come the coefficients for the R > 0.01 real component

polynomial; two lines with five coefficients per line then a single

coefficient. Finally, the coefficients for the imaginary component are

on lines six and seven; five then two coefficients per line.

The last 28 lines of the GREENFS.DAT file contain the coefficients

for the Gq Green's fuc'ctions; seven lines per Green's function. The

first two lines contain the coefficients for the real component's

polynomial; five then two coefficients per line. Lines three and four

contain the coefficients for the interval R < 0.01 polynomial of the

imaginary component; five then four coefficients per line. Lines five

through seven contain the coefficients of the imaginary component's

polynomials for R > 0.01; with five coefficients per line on lines five

and six and one coefficient on line seven. The coefficients are read

using the format IPEI6.7.

4.3.1 Subroutine SEGMENT. The first data calculation subroutine

is named SEGMENT. This subroutine calculates the data needed to deter-

mine the value of R for the surface and line integration nodes on all

planes.

As discussed in the details of the MoM solution, each of the

patches are divided into N, x-directed current cells and Ny y-directed
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current cells. Each charge cell has an x-dimension of a and a y-dimen-

sion of b. Following Mosig's work [17:320], the position vector data is

calculated using a - 0.05A and b such that there are five y-directed

current cells for each patch. To calculate the value of a, the subrou-

tine assumes the x-dimension of the patch on interface 3b is approxi-

mately A/2, thus a is equal to one-tenth of the patch's x-dimension.

Using the a value for interface 3b, the patch on interface 2b is divided

so that its a value is less than or equal to that of interface 2b.

Having established the dimensions of the charge cells, the current cell

dimensions are known, and position vector data can be found.

To calculate and store the position 7ector data, each patch's

current cells are modeled as two-dimensional arrays. For example,

Figure 4-1 illustrates the case of five x-directed charge cells and five

y-directed charge cells across the patch. In this case, a 4x5 array of

x-directed current cells and a x5 array of y-directed current cells is

obtained. The first x-directed current cell, in the upper left corner

of the patch, corresponds to element (1,1) of the current cell array and

the twentieth x-directed current cell, in the lower right corner, corre-

sponds to element (4,5).

Since the current cell position vector locates the cell's center,

all current cells in the same column of the array have equal x-compo-

nents in their position vectors, and all current cells In 'he : qme ro

of the array have equal y-components. With the origin at the lower left

of the patch, the x- and y-components of the position vector for any

current cell are
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First x-directed current cell Twntieth y-dlrected currrent cell
corresponds to array element (1.) corresponds to array element (6.4)

_________________ . ... .-I. .. .. ........... ... ... ............

..................... . .........

Etch current cell oelllon
vector In tho re-a now*e

*QUO Y-offionetleTwentieth x-alrected
First y-directed current cell cdr~ urrent l
Corresponds to array element (1.1) curresnt s to

array elemnent (5.4)
Etch OU1r,$nCI 6110081101
vector in In. colIumlia
hbne equat _-oomponenis

--- Charge cell bounderrles ......Center of y-dimension of cells

Figure 4-1 Array Representation of Current Cells on the Antenna Patch-
es.

Xc- ca

(4-18)

Yrc - W - r

where

r - the array row index of the current cell

c - the array column index of the current cell

W - the y-dimension of the patch
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On the patch of Figure 4-1, the y-directed current cells form a

4x5 array, with the first y-directed current cell corresponding to ele-

ment (1,1) being located in the lower, left corner of the patch. The

elements in the y-directed current cell array are numbered such that a

larger column index indicates an increase in the y-direction, and a

larger row index indicates an increase in the x-direction. With this

convention, the twentieth y-directed current cell, corresponding to

array element (4,5), is located in the upper right corner of the patch.

In this instance, the position vectors of the current cells in the same

array row will have equal x-components, and the position vectors of

current cells in the'same column will have equal y-components. The

position vector components for the y-directed current cells are given by

Xrc " r (4-19)

Yrc - cb

To translate the origin from the lower left corner to the center

of the patch, one half the x-dimension of the patch is subtracted from

each x-component, and one half the y-dimension of the patch is subtract-

ed from the y-component. To compensate for the possible offset between

the patch and aperture centers, the patch's center offset values are

added to the appropriate coordinates.

Using this array model, subroutine SEGMENT calculates the position

vector x- and y-components for the rows and columns of current cells
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storing them in 4 two-dimensional arrays. The data arrays XXCOORD and

XYCOORD contain the position vector components for the columns and rows,

respectively, of x-directed current cells on the patch, and data arrays

YXCOORD and YYCOORD contain the same information for the rows and

columns of the y-directed cells. The first index of these data arrays

designates the array row or column in which the cell is located, and the

second index identifies on which plane the cell is located.

The surface integration node position vector components are

calculated using similar array models, except the array is contained

within an x-directed or y-directed current cell. The node array is

square, with dimensions being equ-' to the number of Gaussian quadrature

nodes, variable NUMNODES. The nodes are arranged in the array such that

element (1,1) corresponds to the node with the most negative x-coordi-

nate and most positive y-coordinate, and element (NUMNODES,NUMNODES) is

the node with the most positive x-coordinate and the most negative y-

coordinate. With the origin located at the current cell's center, on x-

directed current cells the coordinates for the integration node array

rows and columns are

Xmn - Xna

-ym b 
(4-20)

Ymn "-- -

where
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m and n - the summation indices as used in equations (4-12) and

(4-17), m corresponds to the node array's row index, n corresponds

to the node array's column index

x, - the value of the nth integration node on x e [-1,1]

y. - the value of the mth integration node on y c [-1,1]

For y-directed current cells, the coordinates of the integration

node array rows and columns are

Xna
Xmn - 7 (4-21)

Ymn - -Ymb

The position data of the surface integration nodes is stored in 4

two-dimensional arrays. For nodes on an x-directed current cell, the

data array XCOL contains the x-coordinates for the node array columns,

and the data array XROW contains the y-coordinates for the rows. In a

y-directed current cell, the x-coordinates of the rows in the node array

are contained in the data array YROW, and the y-coordinates of the node

array columns are contained in data array YCOL. For all node coordinate

data arrays, the first index designates the quadrature node with which

the coordinate matches, and the second index designates on which plane

the node is located.

The line integration nodes are modeled as a one-dimensional array

along the test segment of the observer current cell. For an x-directed
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current cell, the test segment is centered in the cell with respect to

the y-direction, and the segment covers the interval x e [-a/2, a/2].

Since the test segment is centered with respect to the y-direction, the

y-coordinate for all nodes along the test segment is zero, and the x-

coordinate is

a- 1  (4-22)

where

n- the value of the lth integration node in the interval [-1,11

1 - the summation index as used in (4-12) and (4-17)

On a y-directed current cell, the test segment is centered with

respect to the x-direction, thus the x-coordinate of all nodes along the

test segment is zero. Since the y-directed test segment covers the

interval y e f-b/2, b/2], the y-coordinate of the nodes along the test

segment are

nlb (4-23)

The line integration node coordinates are stored in 2 two-dimen-

sional data arrays. The data array SEGX contains the node coordinates

for the line integration nodes along the test segment of an x-directed
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current cell, and SEGY contains the coordinates for the nodes along the

test segment of a y-directed cells. The first index of the data array

elements identifies with which node the coordinate belongs, and the

second index identifies the plane on which plane the node is located.

Since the antenna aperture is not divided into charge and current

cells, its position vector calculations are slightly different. Subrou-

tine SEGMENT treats the aperture as a single x-directed current cell

centered on the origin, thus the values of XXCOORD(l,l) and XYCOORD(l,l)

are both zero. The coordinates of the aperture's integration nodes are

X/  .XnW

n --y- 
(4-24)

Y mn "--T-

The aperture surface integration node position vector components

are stored in the data arrays XROW and XCOL using the same index assign-

ment conventions as for the nodes on the antenna patches.

Since the aperture serves only as a source plane in the three

plane solution, there is no need to calculate integration node position

vector data for observer cell line integrations.

4.3.2 Subroutine ASYGFS. Subroutine ASYGFS evaluates the value

of the 1/R term in the asymptotic form of the Green's functions GA22,

GA33, Gq22, and Cq33 which is given by equation (3-37). The subroutine

first calculates the scaling factor for the surface current, array

JFACT, or surface charge, array QFACT, Green's functions based on the
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plane of interest, then the expression of (3-37) is evaluated. The

total contribution of the 1/R term is calculated by multiplying the

value of equation (3-37) by the appropriate scale function. The

contribution of the I/R term is stored in two, 2-dimensional arrays.

Array JASYVAL contains the contribution for Green's functions GA 2 and

GA33 .G The array QASYVAL contains the contribution to Green's functions

Gq22 and Gq33. For both arrays, the first index indicates to which plane

the contribution belongs - 2 - interface 2b and 3 - interface 3b. The

second index of the arrays indicates to which orientation of cell the

contribution belongs - I - an x-directed current cell and 2 - a y-direc-

ted current cell.

4.4 Method of Moments Matrix Equation Subroutines

The MoM matrix equation is constructed and solved using the first

level subroutines EVALSUB, EVALRHS and SOLVNVRS. Subroutine EVALSUB

evaluates the elements of each impedance sub-matrix and places the

elements in the proper locations of the MoM impedance matrix. The

subroutine EVALRHS calculates the column matrix of inner products that

form the forcing function of the MoM matrix equation. Subroutine

SOLVNVRS is used to solve the MoM matrix equation via inversion of the

impedance matrix. All these subroutines rely on second or third level

subroutines to complete their task. The descriptions of these lower
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level subroutines and their functions immediately follow the description

of the higher level subroutine that uses them.

4.4.1 Subroutine EVALSUB. As mentioned above, EVALSUB evaluates

the impedance sub-matrices of the MoM impedance matrix. Subroutine

EVALSUB only calculates the impedance matrix for the observer/source

plane combination designated by the main program, thus four calls to

EVALSUB are needed to complete the MoM impedance matrix. As each

element of the sub-matrices are evaluated, EVALSUB stores the element in

the MoM impedance matrix, program variable Z. By inserting the elements

directly into the MoM impedance matrix, program memory requirements are

reduced because the need for a large array to store the impedance sub-

matrix is eliminated, and program execution time is saved because the

time required to transfer the sub-matrices from temporary locations into

the Z matrix is eliminated.

To complete it's assigned task, subroutine EVALSUB performs the

summations of equation (4-12) for each combination of the observer plane

current cell index, variable name INDEXOBS, and the source plane current

cell index, variable name INDEXSRC. The variable INDEXOBS corresponds

to the summation index i of equation (4-12), and variable INDEXSRC

corresponds to the summation index j of equation (4-12). To increment

through the observer/source cell combinations, EVALSUB uses a two-level,

nested do loop. The outer loop controls variable INDEXOBS, and the

inner loop controls variable INDEXSRC. Since the observer plane current

cell index controls the row index of the element in the impedance sub-

matrix and the source cell index controls the column index, these two do
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loops actually determine which element of the sub-matrix is being

evaluated.

Before the summations are started, EVALSUB uses row and column

indices of the present impedance matrix element, the appropriate scale

factor, variable SCALEC, for the summations

Sjwaa INDEXSRCSN'
1 , INDEXOBSN X

SCALEC - (4-25)

jbb l INDEXSRC>N'I, INDEXOBS>Nx

where the prime indicates source plane variables.

Since the Green's functions with superscripts byx and bxy in

equation (4-12) are zero, the triple summations of the equation are only

calculated when the observer and source cells are both x-directed or y-

directed cell and the value of SCALEC is only needed for the ranges of

indices i and j as indicated in equation (4-25). The triple summations

of equation (4-12) are calculated in part by EVALSUB and in part by a

second level subroutine named SURFINT. Subroutine EVALSUB completes the

summation over the index 1 of equation (4-12), and SURFINT evaluates all

summations for the indices m and n of equation (4-12). The details of

subroutine SURFINT are presented section 4.4.2.

To complete the triple summations of equation (4-12), EVALSUB uses

a do loop that is executed once for each node on the observer cell test

segment. At each node, SURFINT is called to calculate the double summa-

tion over indices m and n returning the result in variable VALUSURF.

4-29



Subroutine EVALSUB then sums the product of VALUSURF, the appropriate

Gaussian node weight, and SCALEC for all nodes on the test segment. The

sum for all test segment nodes is assigned the variable name CELEMENT.

After completing the evaluation of the surface current field

contributions, the fields produced by the surface charge density are

calculated with two calls to SURFINT. The first call evaluates the sum

over indices m and n with the observer point located at p+xj, and the

second evaluates contributions for the observer point at -xj. The

variable LQ is used to inform subroutine SURFINT that the call is for

evaluation of a charge contribution. The flag LQ can have three values,

LQ - 0 implies the call to SURFINT is for evaluation of surface current

field contributions, LQ - 1 implies the call is for surface charge field

contributions at p'.j, and LQ - 2 implies the call is for surface charge

field contributions at Z-x. Subroutine SURFINT returns the value of

the double summatioi. in variable VALUSURF, then EVALSUB multiplies the

value by SCALEQ - (j2c) - . The contributions of the surface charge

density are placed in variable QELEMENT. The final value of the sub-

matrix element is found by adding variables CELEMENT and QELEMENT.

The sub-matrix element is then placed in the proper element loca-

tion of Z, the MoM impedance matrix. Subroutine EVALSUB calculates LhC

Z matrix location for each sub-matrix element using the variables

ISTRTROW, ISTRTCOL, INDEXOBS, and INDEXSRC. The variables ISTRTROW and

ISTRTCOL identify the MoM impedance matrix row and column in which the

first element of the current impedance sub-matrix is located. Thus, the
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MoM impedance matrix row index is (ISTRTROW - INDEXOBS - 1). The column

index for the sub-matrix element is (ISTRTCOL - INDEXSRC - 1).

4.4.2 Subroutine SURFINT. The second level subroutine SURFINT is

used by first level subroutines EVALSUB and EVALRHS to calculate the

variable VALUSURF. When called by subroutine EVALSUB, SURFINT performs

the double summations over the indices m and n in equation (4-12). When

called by EVALRHS, SURFINT calculates the double summation over indices

m and n of equation (4-17).

To complete the double summations, SURFINT uses a two-layer,

nested do loop. The outer loop controls summation index m in equations

(4-12) and (4-17) through variable MSURFY. As implied by its name,

MSURFY controls the y-coordinate, or the node array column index, of the

source cell surface integration nodes. The inner do loop controls the

summation index n of equation (4-12) and (4-17) through variable NSURFX.

Index NSURFX controls the x-coordinate, or the node arr row index, of

the source cell surface integration nodes. The number of times these

two do loops are executed is determined by the value of NUMNODES.

When called by EVALSUB to find fields from surface currents,

SURFINT completes the double summations over the source cell surface

integration nodes for the present observer test segment node. SURFINT

calls the third level subroutine RHOFIND to calculate R for the present

source surface integration and observer test segment nodes. Subroutine

RHOFIND uses the variables INDEXOBS, INDEXSRC, MSURFY, and NSURFX and

appropriate elements of the node coordinate data arrays to determine the

coordinates for the observer and source plane integration nodes. Details
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of RHOFIND are presented in section 4.4.3. The value of R is returned

in variable RHODIFF. Subroutine RHOFIND also calculates the rooftop

function, variable CAPT- Next, SURFINT calls subroutine EVALORN to find

value of the appropriate Green's for the present value of RHODIFF which

is returned in variable CF. Details of subroutine EVALGRN are given in

section 4.4.4.

Next, the product of the Gaussian node weights for MSURFY and

NSURFX is computed and given the variable name GAIN. If the call from

EVALSUB was for evaluation of a surface current contribution, the

variable LQ will be set to 0 by EVALSUB, and the product of GAIN, CAPT,

and CF is summed for all surface integration nodes to obtain VALUSURF.

lf the call from EVALSUB is for the evaluation of a surface charge

contribution, the value of variable LQ will be 1 or 2 and VALUSURF is

calculated differently. In this case, subroutine RHOFIND will calculate

RHODIFF and the surface charge density basis function, variable PI, for

the observer being located at the appropriate end of the observer

current cell test segment. The Green's function for the charge density

contributions will then be evaluated, and the product of GAIN, PI, and

GF will be summed to obtain VALUSURF.

When called by EVALRHS, SURFINT completes the summations of

equation (4-17) for the aperture surface integration and the observer

test segment nodes. In this case, the do loop indices MSUR; and NSURFX

control the row and column indices of the array of integration nodes on

the surface of the aperture. The call to subroutine RHOFIND will return

RIODIFF; the value of the piecewise sinusoidal function of equation
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(3-37), variable PWS; and the angle ', variable ZETA, as defined in

equation (3-5) for y-directed sources. The appropriate Green's function

polynomial and GAIN are then evaluated, and VALUSURF is obtained by

summing the product of GAIN, PWS, and GF for all nodes on the aperture.

If the source and observer are coplanar and in the same current

cell, the contribution of the 1/R term as calculated by subroutine

ASYGFS is added to VALUSURF.

4.4.3 Subroutine RHOFIND. Subroutine RHOFIND is a third-level

subroutine that is called by the second level subroutine SURFINT. Sub-

routine RHOFIND calculates R for the source and observer integration

nodes, the surface current or charge density basis function or the

piecewise sinusoidal function for the source integration node, and the

angle .

Subroutine RHOFIND first finds the position coordinates for the

source integration node. The first task is to find the position of the

current cell relative to the plane's center. Next, the position of the

present integration node relative to the cell's center is found. The

integration node's position relative to the antenna's origin is then

found using the relative positions of the cell and node.

Using the array model to represent the current cell's on the

planes of the antenna means finding the position coordinates of any cell

is accomplished by first determining the array row and column indices

for the cell and then extracting position data from the appropriate data

arrays, XXCOORD and XYCOORD or YXCOORD and YYCOORD.

4-33



The array indices are found by using variable INSEXSRC to deter-

mine the cell's ordinal number within the array of x-directed or

y-directed current cells. Recall, 1 : INDEXSRC < N, where N is the

total number of x- and y-directed cells on the source plane. The

current cells on a plane are numbered such that INDEXSRC - 1 for the

first x-directed cell and INDEXSRC - N for the last y-directed cell.

Therefore, for an x-directed current cell, INDEXSRC is the cell's

ordinal number.

Once the ordinal number is known, the row and column indices are

found in two steps. First, the ordinal number is divided by the number

of current cells per row of the x-directed cell array. The whole nurber

portion of the quotient is one greater than the cell's row index, vari-

able IROW. For instance with 4 cells in a row and an ordinal number of

9, the quotient is 2.25, thus IROW - 3.

Next the column index, variable ICOL, is found by subtracting the

product of the row index less one and the number of cells in a row of

the x-directed cell array from the cell's ordinal number. Continuing

the example, with the row index of 3, ICOL - 9 - [4 x (3-1)] - 1. Thus,

for the patch of Figure 8, th& ninth x-directed cell corresponds to

element (3,1) of the current cell array. The x-coordinate of this

cell's center is contained in data array element XXCOORD(3,JSRCPLAN),

and the cell center's y-coordinate is contained in XYCOORD(1,JSRCPLAN).

To obtain the ordinal number for a y-directed cell, the number of

x-directed cells on the plane, variable NX(JSRCPLAN), must be subtracted

from the value of INDEXSRC. The indices IROW and ICOL are then calcu-
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lated in the same steps as those for an x-directed cell. The x-coordi-

nate of the cell's center is YXCOORD(IROW,JSRCPLAN) and the y-coordinate

of the cell's center is YYCOORD(ICOL,JSRCPLAN).

Since SURFINT progresses through the array of integration nodes on

the current cell using a row and column index, no manipulations of the

integration node indices are needed. For all cells, the x-coordinate of

the node's relative position is XCOL(N.URFX,JSRCPIAN) and the y-coord-

inate is YROW(MSURFY,JSRCPLAN

The cell and node relative position coordinates are summed to find

the node's absolute position coordinates and the values are stored in

the one dimensional array RHOPRIME. Element RHOPRIME(1) contains the

x-coordinate of the node's location, and the element RHOPRIME(2)

contains the y-coordinate.

Having determined the source node position, the basis functions of

equations (3-13) and (3-18) and the magnetic current of equation (3-40)

can be calculated. From equations (3-13) and (3-18), the basis func-

tions are dependent on the value of (£'j - ) which is actually the

position of the integration node relative to the center of the cell.

Thus, the surface current basis function, CAPT, and the surface charge

density basis function, PI, are calculated as follows
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+ XCOL (NSURPX, JSRCPLAN) ;XCOL (NSURFX, JSRCPLAN) (0
A(JSRCPLAN)

INDEXSRC
1 XCOL(NSURFX,JSRCPLAN) ;XCOL(NSURFX,JSRCPLAN) >0 < NX(JSRCPLAN)

A(JSRCPLAN)

1 Othezwise (4-2 6)CAPT-

YROW (MSURFY,JSRCPLAN) YROW (MSURFYJSRCPLAN) <0B(JSRCPLAN)
1- Y~w(SI3FYJRCPA~)INDEXSRC

YROW (SURFYJSRCPLAN) YROW (SURFY,JSRCPLAN) >0 < NX (JSRCPLAN)
I ;OtherwiseI

1 ; XCOL(NSURFX,JSRCPLAN) <0

1XCOL(NSURFXSRCPLAN)>0 INDEXSRC < NX (JSRCPLAN)

to; Otherwise (
P1 - (4-27)

[-1 ; YROW(MSURFY,JSRCPLAN) <0

1; YROW(MSURFY,JSRCPLAN)>0 INDEXSRC< NX(JSRCPLAN)

0 ; Otherwise

If the source plane is the antenna aperture, then the piecewise

sinusoidal magnetic current function, variable PWS, is evaluated by

R1OFIND. Since the aperture is treated as a single x-directed current

cell, the integration node's y-coordinate on the aperture, variable

XROW(MSURFY,1), determines the value of PWS. Subroutine SEGMENT

segments the aperture such that A(l) - W/2 and B(l) - L, therefore

s sin FE.f~ [B 1) MSURFY (IROW, JSRCPLAN) (-8PWS - T-(4-28)

2 *A(l) oi EBl

where * denotes scalar multiplication.
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The observer test segment node location is found in the same

way as the source integration node location, except the ordinal number

of the cell is found based on the value of INDEXOBS, and the data

arrays' second indices are now IOBSPLAN.

When the field contributions from surface currents are being

evaluated, the observer cell integration node index is controlled by

variable LINENODE. Since the test segments are centered in the current

cell, only one coordinate is needed to locate the node relative to the

current cell's center. On an x-directed cell,*the line integration is

along an x-directed contour, and the coordinates of the node are

RH O(1) - XXCOORD(ICOL, IOBSPLAN) + SEGX(LINENODE, IOBSPLAN) (4-29)

RHO(2) - XYCOORD(IROW,IOBSPLAN)

On a y-directed cell, the line integration is along a y-directed

contour, and the coordinates of the node are

RHO(l) - XXCOORD(IROW,IOBSPIAN) (4-30)

RHO(2) - YYCOORD(ICOL,IOBSPLAN) + SEGY(LINENODE,IOBSPLAN)

If the contributions from the surface charge density is being

evaluated, the observer location is at either end of the cell's test

segment. The value of variable LQ informs RHOFIND at which end of the

test segment the observer is located as discussed in section 4.4.1. The

4-37



location of the test segment's ends relative to the current cell's

center is given in equation (11). Therefore, on an x-directed cell the

x-coordinate of the test segment ends are found as follows:

(XXCOORD (ICOL, IOBSPLAN) + A (ZODSPLAN) * LQ - 2

RHO(1) - 2 (4-31)
XXCOORD (ICOL, IOBSPLAN) - A(IOBSPLAN) ; L -2

2

and the y-coordinate for the end of the test segment is equal to that of

the current cell's center.

For a y-directed current cell, the x-coordinate of the test

segment's ends is equal to that of the current cell, and the y-coordi-

nate for the ends is given by

YYCOORD(ICOL,IOBSP.AN) , B(IOBSPLAN) ; LQ- 12
RHO (2) - 2 (4-32)

YYCOORD (ICOL,IOBSPAN) - B(IOBSPLAN) LO - 22

Having calculated the x- and y-coordinates for the positions of

the observer and source integration nodes, the value of variable

RHODIFF, can be found

RHODIFF - [(RHO (1) - RHOPRIME(1) )2 +(RHO(2) - RHOPRIME (2))] (4--33)
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If the aperture is the source plane, JSRCPLAN - 1 and the variable

ZETA is calculated in accordance for equation (3-5) for y-directed

sources. Since the x- and y-coordinates of the position vectors are

known, the value of 0 and 4' are the inverse tangent of the y-coordinate

divided by the x-coordinate.

4.4.4 Subroutine EVALGRN. Subroutine EVALGRN is a third level

subroutine called by SURFINT to calculate the value of the appropriate

Green's function polynomial given the present value of RHODIFF.

First, value of RHODIFF is compared to the range information

obtained from data file GREENFS DAT to determine which coefficients and

polynomial form are to be used. Next, the subroutine determines which

Green's function is needed based on the values of IOBSPLAN, JSRCPLAN,

INDEXOBS, NX(IOBSPLAN), and LQ. Calculating the Green's function is

then only a matter of evaluating the appropriate polynomials to obtain

the components of the Green's functions' value. The result of the

calculations is returned to SURFINT in variable GF.

4.4.4 Subroutine EVALRHS. Subroutine EVALR-IS is the first-level

subroutine that calculates the elements in the column matrix of inner-

products as defined in equation (4-17). Subroutine EVALRHS is called

twice by the main program. The first call evaluates the inner products

for the patch of interface 2b and the second evaluates the inner-

products for the patch of interface 3b.

In equation (4-17), the matrix element's row is determined by the

observer current cell index, with one row for each cell on the observer

plane. The source plane for all calculations is the antenna aperture.
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Since the aperture is modeled as a single x-directed current cell, the

value of INDEXSRC is always one.

Subroutine EVALRHS controls the variable INDEXOBS to calculate the

inner-product for each observer cell. At each observer cell, EVALRHS

completes the summations of equation (4-17) by controlling the summation

over index 1, variable LINENODE, and calling subroutine SURFINT to com-

plete the summation over indices m and n of equation (4-17). For calls

from EVALRHS, SURFINT returns the variable VALUSURF where

NU 2ODES K"ODES JGE ( l,bx mn)My(y) ; 1 INDEXOBS N2 (4
- 34)

VALUSURF -
E Zwn)

m-I n-1 GEYY( N,2.n) <y(y/); N2 < INDEXOBSsN

Subroutine EVALRHS then uses VALUSURF to complete the calculation

of the inner-product as follows:

aWL N1ODES VALUSURF

RHS(ISTRTROW+INDEXOBS-I) -Ib (4-35)

bWLN"1E VALUSURF

The result of equation (4-35) is then placed in the appropriate

location of the inner product data array, variable name RHS. To inform

EVALRHS of the correct element index of RHS, the main program sets

variable ISTRTROW before EVALRHS is called each time. Variable ISTRTROW
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identifies in which RHS element the inner-product for the first observer

cell must be stored. The index for the element of matrix RHS being

calculated is given by (ISTRTROW + INDEXOBS - 1).

4.5 Matrix Equation Solution Subroutines

Subroutine SOLVNVRS solves for the expansion coefficients using

matrix inversion and multiplication. The inversion of the MoM impedance

matrix is completed by a second-level routine named INVERT.

4.5.1 Subroutine SOLVNVRS. Subroutine SOLVNVRS finds the

solution to the general matrix equation Ax - b, x being the unknown

vector, by calculating 2 - A-b. The subroutine call for SOLVNVRS is

"CALL SOLVNVRS(Z, IDIM, RHS, ALPHAS)" where Z is the IDIM x IDIM matrix

equivalent to the matrix A in the equation Ax - b, RES is the known

forcing function of the equation equivalent to the vector b, and ALPHAS

is the unknown equivalent to the vector x.

Subroutine SOLVNVRS first calls subroutine INVERT to find the

inverse of Z which is returned in the matrix ZINV. Next, the solution

matrix ALPHAS is calculated by forming the matrix product of ZINV and

RHS.

4.5.2 Subroutine INVERT. Subroutine INVERT is a third-level

subroutine called by subroutine SOLVNVRS to calculate the inverse of the

matrix specified in the subroutine call. The subroutine call is 'CALL

INVERT(BINPUT, IDIM, INVERSE) where BINPUT is the matrix to be inverted,
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IDIM is the dimension of BINPUT, and INVERSE is the variable name

assigned to the inverse of BINPUT. Subroutine INVERT uses Gaussian

elimination to calculate the inverse matrix.

Since analysis of the antenna requires all original matrices be

preserved, the first task of INVERSE is to transfer the matrix BINPUT

into a local matrix INPUT. Duplicating the BINPUT matrix is necessary

because the reduction to triangular form will overwrite elements of the

original matrix with row permutation parameters. Since the inverse

matrix will be calculated column by column, the alterations to the

original matrix must be tracked via permutation parameters so the same

alterations may be made to each identity matrix column. More detail on

the permutation parameters is in the subsequent discussion.

Once the BINPUT matrix is copied, the next step is to transform

the INPUT matrix into triangular form using the standard row manipula-

tions of Gaussian elimination. Partial pivoting is used to reduce

rounding errors during Gaussian elimination [12:28]. As the rows of the

matrix are pivoted, the pivot changes are stored in the one-dimension-

al zrray IPIVOT. For instance, if row I was pivoted with row J during

the elimination process, IPIVOT(I) would equal J. If the row was not

pivoted, the element IPIVOT(I) will be I.

As each row is changed, row permutation parameters are stored in

the INPUT matrix elements that would be zero with the matrix in lower

triangular form. For instance, if the element INPUT(I,J) is reduced to

zero by multiplying all elements of row J by the factor INPUT(I,J)/INPU-

T(J,J) and then subtracting the result from all elements of row I, the
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permutation parameter for INPUT(I,J) is -INPUT(I,J)/INPUT(J,J). The

changes to every row are recorded in this manner.

After the matrix is in triangular form, the row permutation

parameter contained in element INPUT(K,L) will show what factor row L

was multiplied by so that subtracting row L from row K would produce a

zero value for element INPUT(K,L).

With the matrix in triangular form, the inverse matrix is calcu-

lated a column at a time by backsolving the system Ax - b where A is the

triangular matrix INPUT, Z is the ith column of the inverse matrix, and

b is the ith column of the IDIM x IDIM identity matrix, local variable

RHS.

Before backsolving for the inverse column elements, matrix RHS

must be altered in the same way as the original INPUT matrix was altered

during reduction to triangular form. The elements of RHS are trans-

formed one at a time by repeating these three steps for each element.

1) First, as the element RHS(K) is altered, the entry for

IPIVOT(K) is checked, if IPIVOT(K) o K, then elements RHS(K)

and RHS(IPIVOT(K)) are exchanged.

2) Sum the products of the current entry in RHS(K) and the

permutation parameters located on row K of matrix INPUT

which have column indices less than K. This summation,

variable name DEL(K), is the total change for RHS(K) result-

ing when matrix INPUT was reduced to triangular form.
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3) Form the transformed RHS(K) by adding DEL(K) to RHS(K).

After these manipulations, the column matrix RHS is in the same

form as if it had been placed in an augmented matrix with INPUT and

undergone the row manipulations while INPUT was being reduced to

triangular form.

When RHS has undergone the appropriate changes, the system can be

backsolved to obtain the elements for the column of the inverse matrix.

The inverse matrix elements are found beginning with element IDIM and

continuing to element 1. The algorithm used to complete the backsolving

is the same as that found in Figure 2-1 of [10], except the variable

names have been changed to match those of subroutine INVERSE, and as

each element of the inverse matrix is found, the element is placed into

its proper position in the matrix INVERSE.

4.6 Data Output Subroutines

All data output from the MoM solution software is handled by the

first-level subroutine OUTPUT. Subroutine OUTPUT uses the second-level

subroutine JDISTR to calculate data for the surface curiant distribu-

tions.

4.6.1 Subroutine OUTPUT. Subroutine OUTPUT first writes the

surface current expansion coefficients to file COEFFS.OUT. Before

writing to file, OUTPUT performs several calculations to determine the
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format to be used for the coefficients. The coefficients are written in

two columns, with the coefficients for the x-directed then y-directed

cells on the patch of interface 2b being the first in the file. After

the coefficients are written to file, the subroutine to calculate the

surface current distributions is called.

4.6.2 Subroutine JDISTR. Subroutine JDISTR calculates the value

of the surface currents along the centers of each row of x-directed and

y-directed current cells on both antenna patches. For each current

cell, the surface current function is calculated at five sample points.

The surface current data is first calculated for the cells on the

patch of interface 2b then interface 3b, with the x-directed cell data

being the first calculated for both patches. There are five samples

taken at equal intervals across each current cell. For instance, for x-

directed cells, the sample points are spaced a distance of a/2 with the

first point being located on the leftmost boundary of the left charge

cell. With these sample point locations and the overlap of current

cells, the three sample points in the right charge cell of the current

cell overlap with the first three sample points in the left charge cell

of the current cell immediately to the right. Subroutine JDISTR

compensates for the overlap by summing the surface current contributions

for both cells sharing a charge cell.

The progression over a row of charge cells is controlled by a two

layer, nested do loop. The outer most loop controls the cell within the

row and the inner do loop controls the index of the sample point. At

each cell in the row, the index of the expansion coefficient for the

4-45



cell is first calculated, then the surface current value at the sample

point is found.

After the surface current values for the complete row have been

calculated, they are normalized to units of milliamps/square meter.

Next, the y-coordinate (x-coordinate) of the x-directed (y-directed)

row's center is written to file along with the x-coordinate (y-coordi-

nate) and surface current value at each sample point. Since the surface

current is a complex quantity, the real components are written in file

JREAL.OUT and the imaginary components are written to file JIMAG.OUT.
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V. Results

This chapter presents the data obtained from the MoM solution

software described in Chapter IV. The MoM software was used to find the

solutions for two different antennas using both four and six node

Gaussian quadrature. The results for each run of the software are

contrasted and compared.

5.1 Physical Description of the Sample Antennas

The MoM solution data presented in this chapter was obtained using

the following examples of aperture-fed, stacked patch antennas. All

solutions are for an operating frequency of 3.7 GHz.

5.1.1 Antenna #1. The antenna example referred to as antenna ;I

has resonance frequencies of 3.62 Ghz and 4.05 GHz [30:48] and is

described as follows:

- The thickness of each substrate is 0.158 cm, and all substrates

have er - 2.2 and #u - 1.0.
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- The aperture has an x-dimensicn of 0.15 cm and a y-dimension of

1. cri.

- Both patches have dimensions of 2.5 x 2.5 cm and are centered

over the aperture.

The MoM segmentation results in 45 x-directed and 40 y-directed

current cells on each patch. On each patch a - 0.25 cm and b - 0.5 cm.

The MoM impedance matrix is 170 x 170 and each impedaucr. sub-matrix is

85 x 85.

5.1.2 Antenna o2. The antenna referred to as antenna #2 is

identical to antenna #1, except the patch of interface 3b is 2.65 x 2.65

cm. Measurements of this design shows resonant frequencies for this

antenna at 3.54 GHz and 4.15 GHz [30:51].

The MoM impedance matrix and sub-matrices for antenna #2 have the

same dimensions. The cell dimensions for the patch on interface 2b are

the same as for antenna #1, but on the patch of interface 3b, a - 0.265

cm and b - 0.53 cm.

5.2 Surface Current Data

Figures 5-1 through 5-10 are plots of the surface current data as

calculated by the MoM software. The plots were made using data obtained

from the files JREAL.DAT and JIMAG.DAT and are presented in pairs, with

the real component of the surface current shown in the left plot and the
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imaginary in the right plot. As discussed in Section 4.6.2, subroutine

JDISTR produces data at sample points located in the center of the

current cells along the row, and the location of the row is given above

each plot.

5.2.1 Surface Currents on Antenna #1. Figure 5-1 shows the x-

directed currents in the top three of the five rows of x-directed

current cells on the patch of interface 2b for antenna #1. Comparison

of the magnitudes of the real and imaginary components of the currents

shows the imaginary component of the currents are clearly dominant. The

reason for this dominance is that the antenna is operating near reso-

nance at 3.7 GHz and at resonance the surface currents are always

dominated by the imaginary component [18:321]. Also, both components

are symmetric along the x- and y-axes w4" aspect to the cell's center.

Figure 5-1 also shows 7r the real components of the currents are

fairly constant as the cell's is traversed along the y-axis. On the

other hand, the imaginary components vary appreciably along the y-axis,

peaking in magnitude at the cell's center (see plot (c) of Figure 5-1).

This peak in the imaginary component of the currents means the strongest

coupling occurs at the patch's center. These same features are evident

in the x-directed currents on the patch of interface 3b (see Figure

5-4).

Figures 5-2 and 5-3 show the y-directed currents on the patch of

interface 2b. Figure 5-2 shows currents in the first three rows of

y-directed current cells on the patch, and Figure 5-3 shows the currents

in rows four, five, and six. While the magnitudes of the y-directed
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Figure 5-1 Plots of x-directed Surface Currents for the First Three
Rows of x-Cells on the Patch of Interface 2b, Antenna #1 (data from four
node quadrature)
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Figure 5-2 Plots of y-directed Surface Currents for the First Three
Rows of y-cells on the Patch of Interface 2b, Antenna #1; (data from
four node quadrature)
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Figure 5-3 Plots of y-directed Surface Currents for Rows Four, Five,
and Six of y-cells on the Patch of Interface 2b, Antenna #1 (data from
four node quadrature)
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currents are much smaller than those of the x-directed currents, the

dominance of the imaginary component of the currents is evident. In

contrast to the x-directed currents, the y-currents appear to show no

symmetry at all. However, close comparison of plots (b) and (c) in

Figure 5-2 shows the surface currents are symmetric along the cell's x-

axis with respect to the center of the cell, but as the center of the

cell is crossed, the currents experience a 180* phase shift. This

feature is also evident in all data obtained for the y-directed cur-

rents. (see Figure 5-6, plots (b) and (c) and Figure 5-10, plots (a) and

(b)).

Figures 5-4 through 5-6 show the surface currents on the patch of

interface 3b. These currents have the same general features as those

explained for the patch of interface 2b. As compared to the currents of

interface 2b, the currents of interface 3b are about one order of

magnitude smaller than those of interface 2b. Also, a comparison of

plots (a) and (b) of Figures 5-1 and 5-4 shows that there is a phase

shift of 1800 between the imaginary components of the currents on the

two patches. As was the case with the patch of interface 2b, the

imaginary component of the currents peaks at the cell's center.

Figures 5-7 and 5-8 are plots of the same currents as shown in

Figures 5-1 and 5-4, respectively, except data plotted in Figures 5-7

and 5-8 were obtained using six node quadrature. While the distri-

butions of the real current components have the same general shapes for

four and six node quadrature, the distributions of the imaginary
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Figure 5-4 Plots of x-directed Currents for the First Three Rows of
x-cells on the Patch of Interface 3b, Antenna #1 (data from four node
quadrature)
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Figure 5-5 Plots of y-directed Currents for the First Three Rows of
y-cells on the Patch of Interface 3b, Antenna #1 (data from four node
quadrature)
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Figure 5-6 Plots of y-directed currents for the First Three Rows of
y-cells on the Patch of Interface 3b, Antenna #1 (data from four node
quadrature)
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Figure 5-7 Plots of x-directed Currents for the First Three Rows of
x-cells on the Patch of Interface 2b, Antenna #1 (data from six node

quadrature)
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Figure 5-8 plots of x-directed Currents for the First Three Rows of
x-cells on the Patch of Interface 3b, Antenna #1 (data from six node
quadrature)
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components vary significantly. The disagreement between results is best

shown by a comparison of plot (c) in Figures 5-7 and 5-8. This disagree-

ment could be caused by an inaccuracy of the Green's function approxima-

tions. Tests of the approximations showed the approximations were

accurate for R > 0.0008. For six node quadrature with source and

observer located in the same cell, the values of R can go well below

this limit, so there are some errors in the Green's function for this

case. Since the self-terms of the impedance matrix are dominant, the

error in the Green's functions has a pronounced impact on the results.

5.2.2 Surface Currents on Antenna #2. Figure 5-9 shows the x-

directed currents for the first three rows of x-cells on the patch of

interface 3b for -- nna #2. Comparisons with Figure 5-4 show the

current distr-t -ion are generally the same, but the current magnitudes

on antenn. #2 are larger than those of antenna #1. This increase in

current magnitude is most likely due to the fact that the larger patch

of antenna #2 results in stronger coupling with the sources of the

antenna. Comparisons of tabulated current distributions data show the

surface current magnitudes on the patch of interface 2b in antenna #2

are about 10% smaller than the same currents in antenna #1. This

finding also supports the idea that the larger patch on interface 3b

results in stronger electromagnetic coupling with the sources in the

antenna.

Figure 5-10 shows the y-directed currents in rows five and six on

the patch of interface 3b in antenna #2. Compared to the same y-

directed currents on antenna #1, these currents are slightly greater in
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Figure 5-9 Plots of the x-directed Currents for the First Three Rows of
x-cells on the Patch of Interface 3b, Antenna #2 (data from four node
quadrature)
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Figure 5-10 Plots of the y-directed currents for Rows Five and Six of

y-cells on the patch of Interface 3b, Antenna #2 (data from four node

quadrature)

magnitude, but essentially identical. Comparing plots (a) and (b) of

Figure 5-10 also shows the y-directed currents of antenna #2 have the

same symmnetry and phase shift characteristics as antenna #1.
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5.3 Surface Current Expansion Coefficients

A listing of the surface current/charge density expansion coeffi-

cients obtained with four node Gaussian numerical integration for the

patch on interface 2b of antenna #1 is given in Table 5-1 and for

interface 3b is given in Table 5-2. Several observations concerning the

coefficients can be made,which are valid for both the four node and six

node solutions.

As illustrated by the surface current plots of section 5.2, the

expansion coefficients for the x-directed surface currents are symmetric

about the center of the cell. An examination of x-directed coefficients

1 through 9 on either patch shows the symmetry in x, and comparing

coefficients 1 through 9 with coefficients 37 through 45 shows the

symmetry in y.

As expected, the imaginary component of the coefficients are

dominant over the real component on both patches. On interface 2b the

magnitude of the imaginary components are 100 to 104 times larger than

those of the real components. On the patch of interface 3b, the

imaginary components are 10 to 100 times larger than the real compo-

nents.
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Table 5-1 Surface Current Coefficients for the Patch of Interface 2b

X-D =D URRNT CLLS
INDEX COEFFICIEFT INDEX COEFFICIENT
1 (0.144930D-05,0.313567D-02) 24 (-.704937D-04,--.152963D-0l)
2 (-.588259D-04,-.lllQ0lD-0l) 25 (-.490389D-04,0.55093D-02)
3 (-.277699D--04,O.389851D-0l) 26 (-.844589D-04,--.622061D-02)
4 (-.447774D--04,-.226170D-0l) 27 (-.197880D-04,0.243996D-O1)
5 (-. 390199D-04,O.234268D-02) 28 (-.180006D-04,O.733650D-02)
6 (-.447774D-04,-.226170D-Ol) 29 (-.788197D-04,0.165448D-Ol)
7 (-.277699D-04,O.389851D-Ol) 30 (-.448388D--04,-.886093D-02)
8 (-.588259D-04,-.111OOID-01) 31 (-.655276D--04,-.583216D-02)
9 (0.144930D-05,0.313567D-02) 32 (-.588050D-04,0.156866D+OO)
10 (-. 180006D-04,O.733650D-02) 33 (-.655276D-04,-. 583216D-02)
11 (-.788197D-04,O.165448D-01) 34 (-.448388D-04,-.886093D-02)
12 -.448388D-04,-.886093D-02) 35 (-.788197D-04,O.165448D-0l)
13 (-.655276D--04,-.583216D-02) 36 (-. 180006D-04,O.73365D-02)
14 (-.588050D-04,O.156866D+00) 37 (0.144930D-05,0.313567D-02)
15 (-. 655276D-04,-.583216D-02) 38 (-.588259D-04,-.111001D-01)
16 (-.448388D-04,-.886093D-02) 39 (-.277699D-04,0.389851D-0l)
17 (-.788197D-04,0.165448D-01) 40 (-.447774D-04,-.226170D-0l)
18 (-.180006D-04,0.733650D-02) 41 (-.390199D-04,0.234268D-02)
19 (-.197880D-04,0.243996D-01) 42 (-.447774D-04,-.226170D-0l)
20 (-.844589D-04,-.622061D-02) 43 (-.277699D-04,0.389851D-O1)
21 (-.490389D-04,0.550930D-02) 44 (-.588259D-04,-. illO0lD-Ol)
22 (-.704937D-04,-.152963D-01) 45 (0.144930D-05,0.313567D-02)
23 (-. 635182D-04,O.410874D+0O)

Y-DIRECTED CURRENT CELLS
1 (0.309850D-05,-.126455D-04) 21 (0.314528D-06,,-.271924D-04)
2 (-.434617D-06,-.600874D-04) 22 (-.484581D-06,0.302674D-03)
3 (-.276181D-05,-.872770D-04) 23 (0.650785D-06,0.377249D-03)
4 (0.398818D-05,0.101381D-04) 24 (-.155509D-06,-.774813D-04)
5 (-.292500D-06,-.674216D-04) 25 (0.152025D-06,-.136765D-04)
6 (-.186479D-05,-.365742D-04) 26 (-.630530D-07,0.314760D-03)
7 (0.989116D-06,-.577124D-04) 27 (0.717857D-06,0.389302D-03)
8 (-. 143753D-05,-.688197D-04) 28 (-. 174532D-06,-. 195733D-04)
9 (-.893336D-07,-.306283D-04) 29 (O.119948D-06,O.233631D-04)
10 (-.389707D-06,-.12403)8D-03) 30 (O.346488D-06,O.174468D-03)
11 (-.346438D-06,-.174468D-03) 31 (O.389658D-06,0.124038D-03)
12 (-.119989D--06,-.233631D-04) 32 (0.893715D-07,0.306283D-04)
13 (O.174509D-06,0.195733D-04) 33 (0.143755D-05,0.688197D-04)
14 (-.717827D-06,-.389302D-03) 34 (-.989152D--06,0.577124D-04)
15 (O.630119D-07,-.314761Y-03) 35 (0.186483D-05,0.365742D-04)
16 (-.151986D-06,0.136765D-04) 36 (0.292481D-06,0.674216D-04)
17 (0.155539D-06,O.774813D-04) 37 (-.398819D-05,-.101381D-04)
18 (-.650930D-06,-.377249D-03) 38 (0.276182D-05,0.872770D-04)
19 (0.484737D-06,-.302674D-03) 39 (0.434610D-06,0.600874D-04)
20 (-.314572D-06,O.271924D-04) 40 (-.309850D-05,0.126455D-04)
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Table 5-2 Surface Current Coefficients for the Patch of Interface 3b

X-DIRECTED CURRENT CELLS
INDEX COEFFICIENT INDEX COEFFICIENT
1 (O.502501D-03,-.920439D-03) 24 (O.292374D-03,0.157864D-Ol)
2 (O.202992D-03,O.983445D-03) 25 (O.330107D-03,0.853381D-02)
3 (O.306094D-03,-.160172D-Ol) 26 (O.211369D-03,O.170281D-02)
4 (O.271213D-03,O.219468D-02) 27 (O.56671ID-03,-. 865155D-02)
5 (O.290519D-03,-.56316D-02) 28 (O.531274D-03,,-.344992D-02)
6 (O.271213D-03,O.219468D-02) 29 (O.194061D-03,-.675561D-02)
7 (O.306094D-03,-.160172D-Ol) 30 (O.306734D-03,0.587638D-02)
8 (O.202992D-03,O.983445D-03) 31 (O.272054D-03,-.180131D-02)
9 (O.502501D-03,-.920439D-03) 32 (O.288759D-03.,-.236412D-O1)
10 (0.531274D-03,-.344992D-02) 33 (0.272054D-03,-.180131D-02)
11 (O.194061D-03,-.675561D-02) 34 (0.306734D-03,0.587638D-02)
12 (0.306734D-03,O.587638D-02) 35 (O.194061D-03,--.675561D-02)
13 (0.272054D-03,-.180131D-02) 36 (0.531274D-03,--.344992D-02)
14 (0.288759D-03,-.236412D-Ql) 37 (0.502501D-03,-.920439D-03)
15 (Q.272054D-03,-.180131D-02) 38 (0.202992D-03,0.983445D-03)
16 (0.306734D-03,0.587638D-02) 39 (0.306094D-03,-.160172D-0l)
17 (0.194061D-03,-.675561D-02) 40 (0.271213D-03,0.219468D-02)
18 (0.531274D-03,-.344992D-02) 41 (0.290519D-03,-.563160D-02)
19 (0.566711D.-03,-.865155D-02) 42 (0.271213D-03,0.219468D-02)
20 (0.211369D-03,0.170281D-02) 43 (0.306094D-03,--,160172D-01)
21 (O.330107D-03,0.853381D-02) 44 (O.202992D-03,O.983445D-03)
22 (0.292374D-03,0.157864D-01) 45 (0.502501D-03,-.920439D-03)
23 (0.310082D-03,0.228847D-01)

Y-DIRECTED CURRENT CELLS
1 (O.288394D-04,0.480673D-03) 21 (-.195355D-05,-. 177182D-03)
2 (-.484272D-05,O.450811D-04) 22 (0.521850D-07,-.201216D-02)
3 C-. 116127D-04,-. 158249D-03) 23 (O.141238D-05,-. 216219D-02)
4 (0.315246D-04,0.555294D-03) 24 (-.248727D-05,-.360807D-03)
5 (O.157141D-04,O.599795D-03) 25 (-.581689D-05,-.101351D-02)
6 (-.805477D-05,-.232144D-05) 26 (0.106620D-05,-.151859D-02)
7 (-.125982D-05,-.456065D-04) 27 (0.312257D-05,-. 107837D-02)
8 (0.128715D-04,O.646055D-03) 28 (-.661839D--05,-.106295D-02)
9 (Q.107619D-04,0.886621D-03) 29 (-.102565D-04,-.979207D-03)

10 (-.400550D-05,0.173890D-03) 30 (0.274035D-05,--.178920D-03)
11 (-.274037D--05,0.178920D-03) 31 (0.400551D-05,-.173890D-03)
12 (0.102565D-04,0.979207D-03) 32 (-.107619D-04,-.886621D-03)
13 (0.661841D-05,0.106295D-02) 33 (-.128715D-04,-.646055D-03)
14 (-.312259D-05,0.107837D-02) 34 (0.125983D-05,0.456065D-04)
15 (-.106618D-05,0.151859D-02) 35 (0.805476D-05.,0.232144D-0S)
16 (0.581689D-05,0.101351D-02) 36 (-.157140D-04,-.599795D-03)
17 (0.248729D-05,0.360807D-03) 37 (-.315246D-04,-.555294D-03)
18 (-.141244D-05,O.216219D-02) 38 (0.116127D-04,0.158249D-03)
19 (-.521166D-07,0.201216D-02) 39 (0.484272D-05,-.45081ID-04)
20 (0.195351D-05,0.177182D-03) 40 (-.288394D-04,-.480673D-03)
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5.4 MoM Impedance Matrix Properties

Due to space limitations, the complete MoM impedance matrix cannot

be included as part of this document, however the matrix elements were

examined and this section reports some of the observed properties of the

matrix.

As discussed in section 3.3.4, the MoM impedance matrix is

expected to be diagonally dominant, and the matrix produced by the MoM

software did show the dominance of the diagonal elements. Additionally,

as is the case at resonance [20:428], the imaginary components of the

elements were dominant over the real components. Also, the elements

describing x-directed fields created by x-directed sources were at least

one order of magnitude larger than the remaining elements - i.e those

describing y-directed fields created by x-directed sources. This

dominance manifests itself in the relatively large values of the

coefficients for the x-directed cells as compared with the coefficients

for the y-directed cells.

Each impedance sub-matrix is composed of four smaller impedance

sub-sub-matrices arranged as shown

-1 9 ] [Zb
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where the first letter of the superscript is the observer orientation

and the second is the source orientation. The number of rows in the

sub-sub-matrix are determined by the number cells with the observer

orientation and the number of columns is determined by the number of

cells with the source orientation. For instance, consider antenna #1

with 45 x-current cells and 40 y-current cells on the patch of interface

2b. Therefore, the sub-sub-matrix with superscript xy will have the

dimension 45 x 40.

A study of the first 45 x 45 block of the impedance matrix,

representing the elements describing x-directed fields created by x-

directed sources on interface 2b, also shows several useful symmetry

characteristics. First, the entire 45 x 45 block consists of five,

basic 9 x 9 sub-sub-matrices rearranged in a simple pattern. There are

five basic sub-sub-matrices because there are five rows of x-directed

cells on the patch. The dimension of each basic sub-sub-matrix is equal

to the number of x-directed current cells on the patch. If the elements

in rows 1 through 9 and columns 1 through 9 are designated as sub-sub-

matrix z11 , and the elements in rows 1 through 9 and columns 10 through

18 are designated as z12, and so forth so that the last sub-sub-matrix

comprised by elements in rows 1 through 9 and columns 37 through 45 is

designated z15, the remaining twenty 9 x 9 blocks of the 45 x 45 block

can be filled according to the formula

ZMn - Z 1 . 1M-n1 (5-2)
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where

m - the row index for the sub-sub-matrix

n - the column for the sub-sub-matrix

This pattern is the same as that of the toeplitz MoM impedance

matrix for a wire-scatterer, except 9 x 9 sub-sub-matrices are rear-

ranged instead of individual matrix elements. Each 9 x 9 sub-sub-matrix

is toeplitz, and the element arrangement pattern is given by equation

(5-2) with the z's being the individual matrix elements in the sub-sub-

matrix.

Since the symmetry of the matrix elements is a due to the fact

that the Green's functions are dependent only upon the argument kR, it

is sensible to believe the three remaining sub-sub-matrices of Zb
22 are

symmetric and toeplitz. This symmetry is important because it can be

used to reduce the computer processor time needed to fill the MoM

impedance matrix. For instance, with the symmetry explained for the

first 45 x 45 matrix, the block could be filled by first calculating and

then rearranging the 45 elements of the first row. Based on this

observation, it is sensible to expect that the complete MoM matrix can

be filled by calculating only four rows from the matrix. Calculating

the first row would provide the elements needed to fill the sub-sub-

matrices for x-directed fields on interface 2b that are created by

sources on both patches. Calculating the row with an index of (N2x + 1)

would provide the elements needed to fill the sub-sub-matrices describ-

ing y-directed fields on interface 2b created by sources on both
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patches. Data for the row with index (N2 + 1) would provide the ele-

ments needed to fill the sub-sub-matrices describing x-directed fields

on interface 3b created by sources on both patches. Finally, elements

with a row index equal to (N2 + N3. + 1) can be used to fill the sub-

sub-matrices describing the y-directed fields on interface 3b created by

the sources on both patches.

Modifying the MoM solution software to exploit the toeplitz nature

and symmetry of the impedance matrix would be very easy to do and would

save considerable computer processor time. While the exact savings is

hard to guess without performing the modifications and running the

software, estimates can be made. For instance, consider the solution

for antenna #1 which has a 170 x 170 impedance matrix or 28,900 imped-

ance elements. Calculating only four rows of the impedance matrix would

require finding only 680 elements. Since each element calculation

involves the execution of a three-layer, nested do-loop, - one loop for

the line integration and two for the surface integration - it is

reasonable to believe most of the processor time for the program is

dedicated to filling the impedance matrix. Since reducing the number of

element calculations from 28,900 to 680 is a 97% reduction, a similar

reduction in the processor time should be obtained.
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VI. Recommendations and Conclusions

This chapter contains conclusions about the accuracy of the MoM

solution developed in this effort and recommendations for improving the

MoM software's flexibility and capabilities.

6.1 Conclusions

Based on data presented in Chapter V, the data obtained from the

MoM solution software is correct, as best as can be told at this point.

As discussed in Section 5.2.1, the data from the MoM software predicts

the antennas are near resonance at 3.7 GHz, and this result matches

measurements. The solution predicts the strongest currents occur in the

center of the patches which is expected since both patches are aligned

directly over the aperture of the antenna. Also, The MoM solution

predicts a dominance of the x-directed surface currents over the y-

directed currents, and this result is expected since the magnetic

surface currents of the aperture are in the y-direction only.
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Unfortunately, at the present time the ability to derive impedance

information and field patterns using data from the MoM software has not

been developed. Since this data is the standard by which solution

accuracy is judged, the final measure of the accuracy of the data from

MoM software cannot be made.

6.2 Expanding the MoM Software

Microstrip antenna analysis software is most commonly used for

predicting the antenna impedance and radiation characteristics. At

present, the MoM solution software is not capable of providing data for

either predictions. This section outlines the modifications and

additions that could be made to use the MoM software for impedance and

field pattern predictions.

6.1.1 Incorporating a Feed System Model. Before any antenna

impedance data can be calculated, the MoM software must have access to

data describing the feed system operation. With this data, the complete

antenna model of Sections 3.2 and 3.3 can be completed, thus providing a

means to completely calculate the scattered and excitation fields on the

feedline. Once the excitation and scattered fields are known, the input

impedance can be calculated from the relationship [20:428]
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zn- - ft (E(), E(). dz (6-1)

where

I - the input current

h - the distance between the ground plane and the feedline

, the scattered fields on the feedline

- the excitation fields on the feedline

Once input impedance can be calculated, VSWR and other performance

data can be obtained. Additionally, the MoM impedance matrix can be

analyzed to obtain data on resonant frequencies of the antenna.

It should also be noted that the completion of the MoM solution

for the full model would require only minor modifications to the MoM

software, however the computer memory and processor time requirements

would increase appreciably.

6.1.2 Calculations for Bandwidth Characteristics. Calculating

the antenna characteristics over a bandwidth requires the ability to

evaluate the Green's functions for various frequencies. There are

several ways this capability might be incorporated into the MoM soft-

ware.

The simplest option would require creating Green's function

polynomial coefficient files for selected sampling frequencies over the

bandwidth of interest. As the frequency of the excitation is varied,

the MoM software would read the polynomial coefficients for the present
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frequency, and then complete the MoM solution for the frequency.

However, incorporating this option would require all Green's functions

polynomials to have the same general form for all frequencies of

interest which is probably not the case.

Other ways to enable bandwidth studies are using Green's functions

polynomials that are a function of both R and frequency, incorporating

the Green's functions evaluation code into the MoM software, or imple-

menting an interpolation procedure using tabulated data.

These three options would all result in increased processor time

for the MoM solution. Using frequency dependent polynomial coefficient

data is the most efficient means in terms of computer memory. Using an

interpolation scheme would significantly increase memory requirements

due to storage for the tabulated Green's function data. Incorporating

the code to calculate the Green's functions would produce the most

accurate results, but the accuracy improvement would most likely be

offset by an enormous increase in computation time. However, the

additional computer time would be almost identical to the time needed to

produce the data needed for interpolation tables or to produce polynomi-

al approximations.

6.1.3 Modifications for Field Pattern Calculations. Calculating

the field patterns of the antenna could easily be incorporated into the

MoM solution software. The major obstacle to this capability is

obtaining the closed form expressions for the gradient of the Gq Green's

functions. Without these expressions, the fields created by the surface
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charge distributions cannot be evaluated numerically, and therefore the

fields on the antenna interfaces cannot be calculated.

With the gradient of the Gq functions known, a subroutine to

establish the observer location and calculate the contributions from the

aperture and patches of the antenna would need to be written. The

functions performed by the field calculation subroutine would be exactly

like those performed by subroutine EVALSUB, with the exception that the

integration along the observer test segment would not be performed.

Once the fields of the antenna interface can be calculated, the software

to complete the calculations of the aperture model as explained in

Section 3.7 would need to be written and incorporated into the MoM

solution software. With these additions, the field patterns of the

antenna could be calculated.

6.3 Improving Computation Efficiency

As mentioned in Section 5.4, the 3-plane MoM impedance matrix is

toeplitz and symmetrical. While the symmetry -s complex, the reduction

in the number of impedance elements obtained by taking advantage of the

symmetry and toeplitz nature of the matrix would make the study of the

symmetry worthwhile.
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Appendix A. Green's Functions Sommerfeld Integrals and
Polynomial Approximations

This appendix lists the Sommerfeld integrals, as derived by Nazar,

that define the Green's functions for the aperture-fed, stacked patch

antenna. For the case when the observer and source plane coincide, the

asymptotic representation of the integral for R - 0 is also given.

These integrals are taken directly from Nazar's thesis [23:112-122].

Additionally, the coefficients for the Green's function polynomial

models, as derived by Erwert and used in the MoM solution, are tabulat-

ed.

A.1 Definitions of Constants and Variables and Polynomial Model Forms

In all of the Sommerfeld integrals the path of integration C is

along the real axis in the complex A-plane, except for deformations

around any integrand singularities. The deformations around the poles

must be made in the half-plane such that Im(A) > 0 [21:50]. Following

are the definitions of the constants used in the Green's function

Sommerfeld integrals.
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Alb, P2b, P3b - the permeability of the dielectric between inter-

face lb and 2b, interface 2b and 3b, and above interface 3b,

respectively; P3b is actually po

Pb23 - the ratio Pa/,03b, all other subscripted p with two numbers

in the subscript are defined in the same way

bib, bzb - the distance between interfaces lb and 2b, and interfac-

es 2b and 3b, respectively

H 0c2)(AR) - the Hankel function of the second kind of order 0 with

argument AR

Other variables in the integrals are defined as follows:

R - p-p' I

" sin-i[psinp
- P/sin/]

ulb, 2b, 3b - k2  2b. 3b

klb,2b, 3b - 1 Elb,2b, 3b lb,2b.3b (A-l)

b J[Mb1 3 U 3b+Ulbcoth(blbUlb)]u 2 bcosh[U2 b(b 2 b-blb)]+1D*b(A) -M 2 ub~cttlubfl

Pbl2U2b+ uucoth bu sinh[U2 b(b2 b -b) I

. [ Cb l 3 u 3b + u l b t a n h ( b l b u l b ) Iu 2 b c O s h Iu 2 b ( b 2 b - b l b ) ] +

D1() b{t::U2+b3ibU3btanh~bilub>])IsinhtU2b(b2bbib)] I
The polynomial models for the Green's functions consists of

separate models for the real and imaginary components. For the GA
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Green's functions and the Ir, I', and It components of the GE Green's

functions, the real component is represented by an eighth ardc:7 iyno-

mial for 0.001 < R < 0.01. When R > 0.01, the real component is modeled

as follows:

Imag{f(R)) - _ +i + C 2 + C 3 R + c
4 R2 + c

5 R3 +

R7 -Y(A-2)

c6R& + c7R
5 + c 8 R6 + cR 7 + Ce0 R8

where the function f(R) is either one of the GA functions or one of the

components of the GE functions.

The imaginary components of the GA functions and the components of

the GE functions are represented by a sixth order polynomial valid for

all values of R.

The real components of the Gq functions are modeled by a sixth

order polynomial valid for all R. The imaginary components are modeled

by an eighth order polynomial for 0.001 < R < 0.01, and by a polynomial

as given in equation (A-2) for values of R > 0.01.

The coefficients for each polynomial model are tabulated along

with the Sommerfeld integral defining the Green's functions. In the

cases where a component of the function is represented by two different

polynomials, the coefficients listed under the column heading "Real #1,"

for example, would indicate the coefficients for the polynomial model.

when R e [0.001, 0.001) and the column heading "Real #2" would indicate

the coefficients for the polynomial model when R > 0.001.
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A.2 Green's Functions Describing Fields Generated by Sources on
Interface lb.

A.2.1 Green's Functions for Fields on Interface 2b.

GE21(R, - -sin(2 )77-b1()-Il(R

E2 b[I2 l(R) -cos ()I j(R) +cos(2 )Ibz() (A-3)

-y R -sin(2 ) i'2(R

where

r ~ H (2) (AR) sech(blbul );k3

,:2()- Ic0 Db(, ~o)1 r2(.X) dA

HC (2)(A ~A

I~21(I -rH
2 (Rsech (bbull a 2 

2 ( . (A-4)
Ibl() J C RD*.() D1 (A)

It H (J2)(AR) sech (bbu) A bi3 U3bcosh(u2b (b2b -bib))
b 1(R c 0 o) Aa) AI b1 2 U2bSi(u2b (b2b -bib)) j

and

- (1-pb13b13 )b

+ [(:Ei+23b 3  2si~nhU2b b2bbb (A-5)

+ P~bA3b A b23-Pb 13 "b 1 U2b3b sih[ 2 U2b (b 2bb1b

Pb12'b13A+t2



Table A-i Coefficients for I'b21 Polynomial Model

Coefficient # Real #1 Real #2 Imaginary

0 -2.3690010E+04 -2.7567323E-01 7.3622798E+02

1 -5.1497773E+03 4.1969248E+01 1.6413327E+02

2 2.0098000E+09 -1.7263071E+03 -9.4660002E+05

3 l.1664054E+ll 6.7013484E-04 -5.5624401E+06

4 -2.4628222E+14 2.5393666E+06 6.6599743E+08

5 6.0581647E+16 -1.0559782E+00 -8 2O57805E+09

6 -6.9634200E+18 -3.8054523E+09 2.9878758E+10

7 4.0033536E+20 1.0860188E+ll

8 -9.2918335E+21 -1.3359528E+12

9 -7.9367587E+12

10 - 1-.8720567E+13

Table A-2 Coefficients for I'b21 Polynomial Model

ICoefficient # Real #1 Real #2 Imaginary

0 -1.1845706E+04 -1.4338001E-01 3.6839408E+02

I -1.1244172E+03 -8.8320753E+00 -1.0565021E+02

2 4.8720618E+08 4.8974870E+02 -2.1992704E+05

3 3.5107918E+10 -1.9777346E-04 -1.7804531E+06

4 -4.5628645E+13 -1.6920208E+05 1.2335704E+08

5 9.6364022E+15 3.2111913E-01 -1.2791397E+09

6 -9.8801478E+17 2.6480174E+08 4.0846293E+09

7 5.1850820E+19 -9.6649951E+09

8 -1.1172704E+20 1.4729755E+ll

9 - 1-.0371150E+12

10 -2.7871008E+12
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Table A-3 Coefficients for 'tb2l Polynomial Model

Coefficient # Real #1 Real #2 Imaginary

0 8.3730489E+05O 1.0488087E+00 -1.2618585E+03

1 1.8548911E+07 -9.7803738E+01 -1.1645510E+01

2 -6.9596640E+l1 3.8139458E+03 1.2324177E+06

3 4.9585244E+14 -1.1916493E-03 7.8552878E+06

4 -1.6509095E+17 -4.5203333E+06 -8..1658149E+08

5 3.0643030E+19 1..8826109E+e00 9.7146319E+09

6 -3.2457653E+21. 6.2316114E+09 -3.4550352E+10

7 l.8334913E+23 -1.7672322E+ll ________

8 -4.2836938E+24 2.1844777E+i12

9 -- 1.3111428E+s13

10 -3.1297587E+13
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A.2.2 Green's Function for Fields on Interface 3b.

-x R -sin(2 ) [I 3 (r) 'Ii31(R)]

GE31 (R, bI~l(R) - cos2 (0 )I' 3 1 (R) - cos (2 C)Ib 3 l(R)] (-6

E3 b-Il(R) +sin ()I 3 l(R) + cos (2 lb~i()

-y R -sin(2 ) [Ii(R).I3 1(R)]

where

Ib3 l(R) r 3~~R r(,X) dA
D b.(A) D~b(A)

lb 3 l(R) - rb2
2 (A) A r3(),) dA (A-7)

Jc TD.3(A) D, (A)

it(R 0 H 2 (AR) '\U 2b [uehu~d
b 31 (R D['E b 3 3b c lb b )d

and

r30A) - ~ lcl)~sehbbl~ohI~~~-l) (A-8)

+ ( Ebl2 - Ib23 Eb13) ulbu2bcsch (blbulb) ]ihI~~~-l)
V(-Ipbl 2ebl 3 +'Eb23 )u 2bU 3bsech~blbuib)J
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Table A-4 Coefficients for 1 b1Plyoiloe

Coefficient # Real #2 Real #2 Imaginary

0-7. 1631702E+04 -3. 9145822E-01 1. 4578382E+03

1-1.6126649E+06 6.0771449E+01 3.2605113E+02

2l.6138582E+10 -2.4640424E+03 -1.8752160E+06

3-4. 6090776E+12 1. 0734826E-03 -1 .1014941E+07

42. 0514025E+14 4. 2372332E+06 1. 3194275E+09

5 .1322934E+17 -1.6926680E+00 -1.6258111E+10

6-2.2354787E+19 -6.5280178E+09 5.9202168E+10

7l.6596165E+21 1.8569636E+ll

8-4.5322535E+22 -2.2676061E+12

9 1.3351982E+13

10 -3.1213003E+13

Table A-5 Coefficients for 1%31 Polynomial Model

Coefficient # Real #2 Real #2 Imaginary

0 -3.5845677E+04 -3.2220387E-01 7.2947448E+02

1 -1.8303401E+05 -1.1195931E+01 -2.0927389E+02

2 3.3506986F,09 6.7963919E+02 -4.3564658E+05

3 -4.0133292~.+ll -2.7539833E-04 -3.5273908E+06

4 -1.6475295E+14 -7.0817217E+04 2.4440619E+08

5 5.8048203E+16 4.4877070E-01 -2.5345126E+09

6-7.7186016E+18 1.6953818E+08 8.0937999E+09

74.8748677E+20 -8.6162929E+09

8-1 .2131994E+22 1. 5436197E+ll

9 -1.1848456E+12

10 3.3469197E+12
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Table A-6 Coefficients for I'b3I Polynomial Model

Coefficient #Real #1 Real #2 Imaginary

0 2.8114574E+05 1.5538455E+00 -2.4949310E+03

1 5.9078765E+06 -1.2252199E+02 -2.4719206E+01

2 -5.9241731E+10 4.5582187E+03 2.4398514E+06

3 1.6899417E+13 -1.4436500E-03 1.5547730E+07

4 -7.7355313E+14 -6.4603264E+06 -1.6171597E+09

5 -4.0848676E+17 2.2647814E+00 1.9242115E+10

6 8.1118069E+19 9.1346088E+09 -6.8442981E+10

7 -6.0339466E+21 -2.5611943E-.-ll

8 1.6495873E+23 3.1131480E+12

9 - 1-.8348861E+13

10 -4.3053899E+13
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A.3 Green's Functions Describing Fields Generated by Sources on
Interface 2b.

A.3.1 Green's Functions for Fields on Interface 2b.

bz (2 ) ubcosh[ub (b2 bb b)I) IG~b2 (R) - 1A lb H (A)JdA

G.(R) - GAb2 (A-9)

G 22 - I o(A() r d

where

rq 22 - fb 2 3 u2bu 3 bcosh2( U2b (b 2b -bib))

[ 2 U2
Pb23U~b (iUb12 uZb+pb13Cb23U3b) sinh 2[u 2 b(bzb-blb)]

+ [b3U2bU3b + *Ulbtanh(blbulb) .J (A-10)

" uU22b + Ab23 b23U3b +uab sinh[2 u2b (b 2 b -bb) I
[Ab13 Pb12 fb 2 3 UbU3btanh( bibUlb

+ Pbi3 b2 3 UlbUbtanh( bibuib)

A.3.1.1 Asymptotic Forms for R - 0.

b 11 CR,a Jo(X) dx rA (A-11)

GA2 (R) -7r I AC 2 (RX)dA C -0~ d A (
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where

1 + Ub23 (A-12)
7
A2 + /APb12 + #b23 + Ab13

C Ib ~ .J0 xW dx + Tq2 (A-1 3)
b22 (R) " 2q 22 (R, ) dA - 1 q2J -

where

1 + Cb23 (A-14)
q2 +- +b12 

+ b23 
+ tb13

and the integrals IbA22(AR) and Ibq22(AR) are the integrands of the

original Sommerfeld integrals with Ho(2)(AR) replaced by Jo(XR).
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Table A-7 Coefficients for GbA 2 Polynomial Model

Coefficient # Real #1 Real #2 Imaginary

0 2.8271357E-04 1.1336337E-10 -8.2697879E-08

I -3.9846556E-01 -7.7506745E-0 3.0039534E-08

2 2.7285907E+02 2.8775042E-07 4.4481533E-05

3 -1.0962870E+05 -7.9761966E-14 3.7821366E-04

4 -4.2391776E+09 -2.8113896E-04 -2.3998044E-02

5 3.9943857E+11 1.2917902E-10 2.3993749E-01

6 -2.0833405E+13 3.4524106E-01 -7.4304513E-01

7 2.7278577E+07 -9.6808158E+00 -

8 4.6074276E+14 1.2043431E+02 -

9 -7.3386638E+02 -

10 1.7830531E+03 -

Table A-8 Coefficients for Gbqz2 Polynomial Model

Coefficient # Real Imaginary #1 Imaginary #2

0 2.4690865E-01 -5.0295804E+02 -3.0506451E-04

1 8.1564715E-02 6.9944277E+05 3.7573808E-02

2 -3.1310965E+02 -4.7773874E+08 -1.5014618E+00

3 -1.7501311E+03 1.9210580E+ll 3.1525211E-07

4 2.1602490E+05 -4.7861591E+13 7.9630909E+02

5 -2.6605711E+06 7.4454262E+15 -5.0947594E-04

6 9.6760956E+06 -7.0205947E+17 -7.9604799E+05

7 3.6635682E+19 2.3725931E+07

8 -8.1050716E+20 -3.2364262E+08

9 - 2.1545771E+u9

10 - -5.6293092E+09
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A.3.2 Green's Functions for Fields on interface 3b.

G bxx( Alb H (2) (AR) ANU~ dX

A3 R 7r- ~c 0 ' Db(A)

G.(R) - Gbxx (R) 
(-5

Gb 1 l HO (AR) Aub

Gq32C(R) - wzbCD)D(,\) rq32 d)

where

rq32 - [U3b* + bl 3 ulbtanh~( bibuib) ]u2bcoshlU2b (b 2 b- bib))

E2 +[U '23/b3b1)1 (A-i16)

+ tP13( b2 Ub b(A23-Abl(bl)lsinhU 2b (bzb-blb)]

V/b12Uib u3 btanh(blbUIb) J
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Table A-9 Coefficients for Gb . 3 2 Polynomial Model

Coefficient # Real #1 Real #2 Imaginary

0 4.360569BE-05 1.7029449E-10 -1.6312406E-07

1 1.6428591E-03 -8.1399245E-09 4.7418351E-08

2 -1.9408505E-01 2.6622157E-07 8.8848203E-05

3 1.0921513E+04 -4.1338561E-14 7.1341936E-04

4 -3.0476872E+06 -2.9963275E-04 -4.6862616E-02

5 4.9365870E+.08 6.3114878E-ll 4.6971581E-01

6 -4.6983776E+10 3.4697986E-01 -1.4547107E+00

7 2.4369181E+12 -9.2439916E+00

8 -5.3137854E+13 1.0942193E+02

9 -6. 3847649E+02

10 1. 4970486E+03

Table A-10 Coefficients for Cbq 3 2 Polynomial Model

Coefficient # Real Imaginary #1 Imaginary #2

0 4.8908078E-01 -1.0079854E+02 -4.6056133E-04

1 9.7940015E-02 -3.9690570E+03 5.4394079E-02

2 -6.1506941E-02 4.6810550E+07 -2.1168582E+00

3 -3.6456986E+03 -2.6387382E+10 2.8577567E-07

4 4.3101735E+05 7.3656913E+12 8.4397927E+02

5 -5.2961144E+06 -1.1930563E+15 -4.4687389E-04

6 1.9249510E+07 1.1354126E+17 -6.1246793E+05

7 -5.8887562E+18 1.8533381E+07

8 1.2840182E+20 -2.7071295E+08

9 1 .9286742E+09

10 -- 5.3094692E+09
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A.4 Green's Functions Describing Fields Generated by Sources on

Interface 3b

A.4.1 Green's Functions for Fields on Interface 2b.

bxx byq( R ) _ b-fp

G (R) - GO(R - G (R)
(2) (A-17)

( - rq23 dA

2b DO(A) D,(A)

where

rq23 - [U3 b'/pbl 3 ulbtanh(blbUlb)I"b23UZbCOsh[Uzb(b2b-blb)I

2 [- +U2(A-i18)
+ +

+ b12 Eb23 UlbU3btanh 
(blbb 2b)J

G b3 G, b R)(A-19)

32()- Gq23 (R)

The coefficients for GbA32(R) are the same as those listed in

Table A-9.

The coefficients for Gbq32 (R) are the same as those listed in

Table A-lO.
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A.4.2 Green's Functions for Fields on interface 3b.

Gb- R - 102b fH 121(A R) A A3~.r33  dAr

G~b3Y(R) - G~b-(R) (A-20)

Gq33 (R) - ___ -~ARAr 3 d
7rE 3bJC D.A x) q33

where

FA33 - Pb12 U2 bCOShIU 2 b(b 2 b-blb)]

+ UflbCOth (blbuib) Siflh[U2 b (b 2 b - blb)I

rq3 3 -{ 3 b Ioh 2b (b 2 b-blb)Mb13 Ulbta lbUlb)}u2b

(U2 + 2.,UUh 1
lb AbVb '~)3 sinh2 IUzb (bzb - bb) I (A-21)

IUb23 Eb12UlbU~bcoth (bibUb

Pb23Ulb +Ab13 ebl2U2b1

ebl 2 coth(blbUlb) U~ sinh[2U2 b (bzb-blb)]
4.~l U 1b 3b

+ Pbl 2 tanh( bibuib)
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A.4.2.1 Asymptotic Forms for R -. 0.

bxx IAzb ffc Ib ,RAc Jo (X) d r.3 }(A-22)

GM (R) - ;IA3 3 (R, ) d), TA 3 JRf 0 x)d + T3(-2

where

?A31 + Ab1 (A-23)
3 + b12 + Ab23 + Ab13

Gq33 (R) - jw21r C fl33 (R,A) _ .. _.2.. dx + (A-24)

where

- + eb12 (A-25)

q " + 'b12 + 6b23 + Eb13

and the integrals IbA33 (AR) and Ibq3 3 (XR) are the integrands of the

original Sommerfeld integrals with Ho(2)(AR) replaced by Jo(XR).
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Table A-il Coefficients for G bA3 3 Polynomial Model

Coefficient # Real Imaginary #1 Imaginary #2

0 2.9895392E-04 2.6798747E-10 -3.2193755E-07

1 -3,9713808E-01 -7.5940224E-09 1.1728108E-07

2 2.7003667E+02 1.8608318E-07 1.7359691E-04

3 -1.0882422E+05 1.5038343E-14 1.4780323E-03

4 -4..2349631E+09 -3.2242885E-04 -9.3812439E-02

5 3.9979300E+11 -3.1416726E-11 9'.3841354E-01

6 -2.0878692E+13 3.4534456E-01 -2.9073252E+00

7 2.7177121E+07 -8.3578282E+00 -

8 4.6215527E+14 8.8658536E+01 -

9 -- 4.6285555E+02 -

L10 -9.7745550E+02 -

Table A-12 Coefficients for G bq3 3 Polynomial Model

Coefficient # Real Imaginary #1 Imaginary #2

0 9.6785892E-01 -7.1240104E+02 -7.3279954E-04

1 3.2169259E-01 9.5940154E+05 8.4236082E-02

2 -1.2286658E+03 -6.5262043E+e08 -3.2371602E+00

3 --6.8608196E+03 2.6293123E+11 3.4357684E-07

4 8.4780207E+05 -6.5657068E+13 9.1330452E+02

5 -1.0443582E+07 1.0231241E+16 -5.4107447E-04

6 3.7986523E+07 -9.6588315E+17 -2.6362783E+05

7 -5.0443342E+19 9.1863973E+06

8 -- 1.1166002E+21 -1.8340614E+08

9 1 .6197594E+09

10 -- 5.0799782E+09
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Appendix B. Evaluation of the Analytic Asymptotic Green's Function Term

This Appendix presents details of evaluating the integrals of

equation (3-36) which is

I (R) - J x' x 1Idsd (3-36)

where the contour Cj is defined by x e [-a/2, a/2] and the surface S,,

is defined by x' c [-a, a] and y' e [-b/2 , b/2]. In this instance, the

variable R - [(x - x!) 2 + (yj - y') 2]". Over a y-directed current cell

the integration is defined as follows:

I1(R) - jJ 2 1 1 - 1  ] dsl dy (B-1)

where Cyj is defined by y e [-b/2, b/2] and the surface Syj is defined by

x' e [-a/2, a/2] and y' e [-b, b] and R - [(Xj - x') 2 + (y - y,)2]%.
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Equations (3-36) and (B-i) are identical with the exchange of

variables a and b except for the constants xi and yj which will drop out

of the equations after an exchange of variables. Since the expressions

over both x-directed and y-directed cells are equivalent, only the

integration of (3-36) will be detailed.

The first step of the integration is to complete the integration

with respect to y', to do so let u - y. - y' therefore du - -dy', and

equation (3-36) then becomes

I(R) - 2 j'a b/ [+ -][ dudx'dx (B-2)

where the fact that the integrand is even with respect to u has been

used to half the integration interval and double the result.

Completing the integration with respect to u produces

I(R) - 2j [ia IXj CIlntu + V(X-XI)2 + J0  dx'd (B-3)

After evaluating the integrand for the limits of u, the expression

for I(R) can be written

2(R) - 2 1 - xl - I f(x) dx (B-4)
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where the function f(x) is defined by the integral

xi-a/ + (x-x') + b1(BS
f(x)- In 7dx (B-5)

,j af I (x )I

To alleviate the difficulties of the absolute value argument in

the denominator of equation (B-5), the interval of integration can be

broken into two separate sections such that x' < x, and x' > x.

Therefore the integral of equation (B-5) can be written as follows:

f(x) - f/ 2  ] -

(B-6)

xj -a/2 b (X-Xl )2 +.]

+ J in . (x-x) dx

Let the first integral of (B-6) be designated f1(x) and the second

as fz(x). To evaluate these integrals, the change of variables

(x' - x) - bu/2 is used in f1(x), and (x - x') - bu/2 is used in f2 (x).

With this substitution, the integrands become the logarithmic identity

for the inverse hyperbolic cosecant of u, and the integrals have the

form
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5 (X) - b A csch 1 (u) du (B-7)

where

5 7)s- (B-8)

2. [X/ +x a ; s -2

The result for the integration of equation (B-7) is obtained from

an integration table [7:375], and then evaluated for the interval of

integration producing the results

f1 (x) - b4[.\ cschA1 (A1,) + sinhl(.\)]

(B-9)

f2(X) - b .\ csch' (A\2) +Sinh-lA\)]

Substituting equation (B-9) into (B-4) the expression for I(R) is

now given by

1(R) bf X*, [ + I X Xi X1 ] csch '(Ai,) + sirl(A)] dx4l (B-10)
a + A2 cschf1 (A2) + sinhvl(.\2 )J I
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Now, consider the terms with arguments of A,, and define the

integral with the csch-l(Al) term as I(x'), the integral with the

sinh-1 (A1 ) as 12 (x'), the csch-(A 2 ) term as 3 (x'), and the integral with

the sinh-1(A 2) as 1,(x'). Let u x- xj, then the components of I(R)

become

a~u 
(u+a-p

12(u) - 42b[1l-u + a1-)'[.su+ [25

I LJLI.UJJ(B-11)

13(U1) -4u]cc [5 ujd

I,,(u) - 2 b 1[l- ia I]sinih-1[T(~-)d

where the fact that all four integrals are even with respect to u has

been used to half the interval of integration and double the result. In

the first and third integral, the 2/b factor has been combined with the

b outside the integral in equation (B-10). Now the original integral is

given by I(R) - 41,(u) + 2b1 2 (u) + 41 3 (u) + 2bI 4 (u).

To find Il(u), let v - 2(u + a/2)/b, then I(u) - 11(v) where

IJ(V) - (.j f1 _ 1 ]vcschIv)dv (B-12)
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Breaking 11(v) into two parts, the integration results for the

parts are found in the integral tables [7:3751, and 11(v) can be written

as follows:

V-3

3[V2csch1(v)-+sinhvx(v)]4

I~(v 7 - [v csch-'(v)(B3

M 4+ sinh1(v) - 3 V2 I

where

r - a/b

and the absolute value signs in the integration formulas from the tables

can be ignored since v is always positive for v c [r, 3r].

For 12(u), use the same change of variables u to v and obtain

12(v) " 3,] ( -+)sinh
1 (v)dv (B-14)

12(v) can be separated into two integrals and the formulas from

the integral table [7:374] give

For 13(u) and 14(u), the substitution v - 2(a/2 - u)/b is used and

the interval of integration is given by v e [-r, r]. Since v can be
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v-3tr

[v2 +l

+ [ )sih-(v.)-7- T 4- V-It

value of v must be retained in the integral formulas and the results are

3 fV2csch1(v)+ 1 --- 1(v)

-v (b] V3  (-6

+ b -
+ V sinh_ 1(v) V

TT7V V 2 +l J

I ( _) 11 (]{ [sinhf'(v) - vv-2 + 1] (B-17)

14 V 7) - b V2 in -1 v - v F +

Evaluating equations (B-14) through (B-17) at the defined limits,

combining the results, and using the identities sinh-l(-x) - -sinh-l(x)

and csch-l'(-x) - -csch-l(x) the expression given in equation (3-37) is

obtained.
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