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Abstract

This thesis demonstrated that an intensity pattern out of a short piece of op-

tical fiber could be used to determine the angle of arrival (AOA), to within 0.1deg,

of the incident laser energy on the front of the optical fiber. The optical fiber was

a one-inch-long, 3mm-diameter, multimode, step-index, plastic fiber. The optical

fiber was mounted to the front end of a charge injection device (CID) camera. The

CID camera's angle with respect to the incident laser energy, a uniform amplitude

plan wave, could be varied by a computer controlled rotational stage. The output of

the CID camera was captured by Spiricon software. Captured outputs representing

various AOAs were processed to provide template or test feature vectors. The pro-

cessing method used a fast Fourier transform routine to create a 24 component low

frequency feature vector. Two classification .jhodologies were used: a Euclideanme oa anetwork.
distance method and a radial basis functionf M neural network

Vil

el.VII

I

viii



ANGLE OF ARRIVAL DETECTION

THROUGH

ARTIFICIAL NEURAL NETWORK

ANALYSIS OF

OPTICAL FIBER INTENSITY PATTERNS

L Introduction

The optical sensors of United States Air Force reconnaissance vehicles, such as

satellites, are subject to temporary or permanent blinding from hostile (or threat)

laser radiation. By detecting and determining the angle of arrival (AOA) of the

hostile radiation, the reconnaissance vehicle may be able to protect its optical sensors

by taking evasive maneuvers or by shutting down the optical sensors (such as closing

a shutter) until the threat has passed. In addition, the vehicle can relay information

to its ground terminal allowing the intelligence community to determine the source

of the hostile laser radiation--), .--

1.1 Background

The farther away a reconnaissance vehicle is from a threat source the harder

it is for the vehicle to determine the relative angle of the threat laser radiation since

the laser radiation spreads out. Therefore, to provide any useful AOA information,

the reconnaissance vehicle must to be able to determine the angle of arrival of the

incident laser energy to less than one degree (3:7).

Accuracy is not the only requirement of AOA detectors used on reconnaissance

vehicles. Reconnaissance vehicles, such as satellites, operate in the harsh environ-

ment of space where maintaining the stability of mechanical detection .ystems is
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Figure 1. Structure of an Insect Eye (2:111)

difficult. Thus, detection systems for use on satellites should avoid mechanical sen-

sors (3:i).

One such nonmechanical laser detection system is based on the structure of

the compound eye of an insect (3:i). A compound eye is made up of many individual

photoreceptors called ommatidia, in which each ommatidium points in a different

direction. The ommatidia of the compound eye are spread out over a hemispheric

dome, giving the insect a 180 degree field of view (FOV) around each eye. Each

ommatidium focuses the light down to a common light-sensitive organ called the

rhabdom (2:108). The structure of the compound eye of an insect is shown in

Figure 1.

Two systems using the compound eye type of AOA sensor are the Staring

2



Optical Sensor and the Common Opto-Electronic Laser Detection System (both of

these systems are explained in detail in Chapter II). Although both of these systems

use different types of individual photoreceptors and different processing methods to

determine the AOA of incident laser energy, they both use photoreceptors spread

across a hemispheric dome to provide the required FOV.

The above systems demonstrate that a system built on the compound eye

concept can be used to determine the AOA. This thesis will concentrate on one par-

ticular method of processing the information taken from one type of photoreceptor.

The method used in this thesis is the AOA detection through the analysis of optical

fiber intensity patterns. The photoreceptor used in this thesis is a one-inch-long,

3mm-diameter optical fiber.

The method of AOA detection through the analysis of optical fiber intensity

patterns was first proposed by Capt Cole in his patent application for an AOA

detector (15:5). Capt Welker, using Capt Cole's proposal, showed that the AOA (on a

single one-inch-long, 3mm-diameter optical fiber) could be determined to within one

degree by using pattern recognition techniques. Capt Welker's method is explained

in more detail in Chapter II.

1.2 Problem Statement

To react and minimize optical damage to United States Air Force reconnais-

sance vehicles from a laser attack, the angle of arrival of the laser's energy must

be determined to less than one degree. This research will determine how well an

artificial neural network can determine the angle of arrival of incident laser energy

from the analysis of the intensity pattern out of an optical fiber photoreceptor.

1.3 Definitions

Feature Vector A group of numbers characterizing a certain AOA. For this thesis

effort, the feature vector will be a portion of the Fourier transformed intensity

3



pattern out of the optical fiber.

Template Vector A feature vector which represents a known AOA intensity pat-

tern out of the optical fiber. Template vectors form the basis set of feature

vectors.

Test Vector A feature vector used to test the accuracy of the AOA determination

method.

Artificial Neural Network The grouping of simple computational elements (for

this thesis radial basis functions) into a network that performs parallel process-

ing to solve a problem (7:4). For this thesis effort, the problem is determining

the AOA of a given laser threat.

1.4 Assumptions

Two assumptions are made in this thesis: 1) the one inch optical fiber provides

the best intensity patterns to work from and 2) the results of doing AOA determi-

nation on a single fiber could be expanded to a compound eye made up of many

fibers. The first assumption is based on Capt Welker's work that showed the one

inch fiber provided a worst case accuracy of one degree whereas a two inch fiber

provided a worst case accuracy of seven degrees. The second assumption is based on

the fact that the Staring Optical Sensor System and the Common Opto-Electronic

Laser Detection System both used similar individual photoreceptors for their optical

sensors. Assumption two allows this research to be extended to a system having a

FOV of 180 degrees.

1.5 Scope

As explained in Section 1.1, the structure of the compound eye has two main

parts: the ommatidium (the individual photoreceptor) and the rhabdom (the com-

mon light sensitive organ). Many theories exist on what is the best way to simulate

the parts of the compound eye. The theories on simulating the ommatidium range

4



from trying to copy the structure of the ommatidium with a small lens and an op-

tical fiber to just using a hollow tube with a highly polished interior. Theories on

simulating the rhabdom vary with the type of incident laser energy the system is

trying to detect. This research will not determine what is the best way to simulate

the compound eye; but, rather this research is going to concentrate on what is the

best way to handle the data gained from one type of photoreceptor (the one-inch-

long, 3mm-diameter optical fiber) and one type of light sensitive device (the charge

injection device (CID) camera).

The main questions this thesis will address are; can improvements be made

to Capt Welker's AOA detection method and how well can a radial basis function

(RBF) neural network classify feature vectors. These feature vectors will be rep-

resenting the various angles of arrival of incident laser energy on an optical fiber.

Multiple template vectors, representing only a small portion of the FOV of the opti-

cal fiber photoreceptor, will be generated and used to train the RBF neural network.

The RBF network will be setup to classify the separate training AOAs. Then ten

randomly selected AOAs will be used to generate ten test vectors. These test vec-

tors will be used to determine the accuracy of the RBF neural network at classifying

previously unseen feature vectors. The classification accuracy of the neural network

will be compared to the one degree accuracy baseline set by Capt Welker's work.

1.6 Approach

This section summarizes the sequence of events in this research. This research

will be done in two phases. Phase I involves automating and reproducing Capt

Welker's research to provide a baseline for phase II of this thesis. Phase II involves

taking the data gathered in phase I and applying it to a radial basis function (RBF)

artificial neural network to investigate how well the RBF neural network can classify

the AOA data.

The first step of phase I will be to gather images produced by various angles

5
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Figure 2. AOA Detection System

of arrival. The images will, be obtained by moving the optical fiber (attached to

the front of the CID camera, reference Figure 2) in relation to the fixed laser beam

and capturing the images with the Spiricon 2250 Laser Beam Diagnostic System.

The CID camera will be moved to each of the required AOAs with an automated

rotational stage. The automated stage shall have an accuracy of 0.001 degree and

will be stepped to any angle setting by a personal computer (PC) interface.

Each AOA image plus overhead Spiricon file information will be stored as a

Spiricon picture file by the Spiricon software. Refer to Appendix C for the complete

makeup of the Spiricon file. The center of each Spiricon file represents the image out

of the CID camera's 512-by-512 pixel array. The center of the Spiricon file will be

extracted and processed into a feature vector representing the image's AOA.

Three different versions of the AOA image will be compared to determine which

version provides the best feature vector for classifying AOAs. The three versions to

be compared are: 1) the entire 512-by-512 square array, 2) just the center 256-by-256

6



of the entire 512-by-512 square array, and 3) a reduced image using Capt Welker's

PREPROC program.

The feature vector out of the Fourier transform routine will-be a 49 component

vector made up of the magnitude of the dc and lower three harmonic components

of the Fourier transform of the intensity image out of the optical fiber. Different

portions of the 49 component feature vector will be compared to determine which

components pr(Aide the best feature vector for AOA classification.

Previous work by Capt Welker did most of the processing of the Spiricon files

on the PC, which required transferring data to the Micro VAX and then back to the

PC. This research will simply the processing of the Spiricon files down into feature

vectors by only using the PC to grab the intensity images out of the fiber and then

perform all processing of the images on the Micro VAX III. Using the VAX to perform

all processing will decrease data transfer time and speed data processing time.

Various FOVs of the optical fiber will be studied to determine how accurate

the Euclidean distance algorithm is at classifying AOAs. Initially the approximate

30 degree FOV of the optical fiber will be studied and then the FOV will be reduced

so as to allow more data sets to be repeated. Multiple data sets will show how

reproducible the AOA classification methodology is. Multiple data sets wili also be

required for the training and testing of the RBF neural network of phase II.

Phase II will take the feature vectors of phase I and apply them to a three

layer RBF neural network. The multiple run files, of a series, will allow many

feature vectors to train the RBF neural network. The remaining feature vectors, of

a series, will be used to test the RBF neural network's ability to classify previously

unseen feature vectors. The network's accuracy will then be compared to the results

of phase I.

1.7 Organization

This thesis is organized as follows:

7



9 Chapter II presents a literature review of current research in angle of arrival

of incident laser energy on an object.

* Chapter III covers the methodology used to gather the test data.

a Chapter IV presents the analysis for the test runs in the data gathering phase

of this thesis effort.

* Chapter V presents the conclusions drawn from the analysis of the data and

presents recommendations for further research.

* Appendix A provides information on how to setup and align the optic's of the

AOA detection system.

* Appendix B provides information on the collimator use in the AOA detection

system.

* Appendix C provides break down of the Spiricon picture file.

9 Appendix D provides the source code for the program XFM. The XFM program

was the final version of the program written to process the Spiricon files down

into 49 component feature vectors.

• Appendix E provides the source code for the subroutine FOURN. The subrou-

tine FOURN is used by the XFM program to Fourier transform a two-dimensional

image array.

* Appendix F provides the source code for the program NACDIS. The program

NAODIS was the final version of the program written to compute the Euclidean

distance between various template and test feature vectors.

o Appendix G provides the source code for the program MZNET. The MZNET

program converted the output of the XFM program into a format readable by

the program used in phase II of this research.

8



1.8 Summary

An AOA detection system is required to protect USAF reconnaissance vehicles

from damage due to threat laser radiation. This thesis effort will concentrate oil ways

to improve an AOA detection system using the intensity patterns out of a short piece

of optical fiber. An unique intensity pattern is generated for each AOA of the laser

radiation on the front of the optical fiber. This research will first try to answer

how small of an AOA is detectable by using the Euclidean distance methodology to

classify AOAs. Then will see if the classification can be improved by using the RBF

neural network to classify AOAs.

9



II. Summary of Current Knowledge

Most of the research into angle of arrival (AOA) of incident laser radiation

has been generated out of the military's need to detect, counter, and evade laser

radars, laser fire control systems, and target illuminating lasers. Angle of arrival

detectors fall within one of two main classes: imaging and non-imaging systems.

The imaging methodology is'simplest and gives a direct method of determining the

AOA. The non-imaging methodology provides for a rugged simple front-end receiver,

but requires a more elaborate processing scheme to determine the AOA. The non-

imaging processing schemes determine the AOA by analyzing the intensity profile

from an array of detectors.

The selected method, whether it is imaging or non-imaging, is "usually the

result of maximizing one or more design parameters, such as sensitivity, the field-of-

view or angle accuracy" (3:1). Sensitivity relates to the dynamic range of the system.

For example, can the system detect low levels of laser radiation while not being

blinded by higher levels? The field of view (FOV) specification of the system indicates

how many degrees of azimuth or elevation the detector can monitor. Usually the

accuracy of the monitor varies in azimuth verses elevation.

The above parameters are dictated by the type of threat laser radiation the

AOA system is supposed to detect. For example, in the battle field environment

the types of lasers encountered would be the most diverse; therefore, the hardest to

design for. Where as in the scenario where the system is trying to prevent optical

blinding, then sensitivity isn't an important parameter (since high levels of laser

radiation would be required to harm the optics of an imaging system), but the field

of view parameter would be important.

The FOV parameter is usually the parameter that increases the complexity

of the system, since increasing the FOV increases the number of detectors in AOA

10



detection systems and increase the complexity of the AOA processing scheme. The

FOV parameter is one that makes the imaging system stand out, since with one

fisheye lens the system can monitor 180 degrees.

The basic imaging system measures the AOA directly from the difference be-

tween the focused image of the incident laser energy and the center of the focal plane

of the image. Capt Robert D. Kaiser used a more sophisticated version of the above

system, by combining the -basic imaging properties of a fisheye lens and a spectrom-

eter. Capt Kaiser states: "Fisheye lenses, unlike other lenses, have a linear relation

between angle of arrival (AOA) and location of the image in the focal plane" (5:10).

The AOA equals the distance from center of the focal plane divided by the focal

length of the fisheye lens (5:10).

The combining of the imaging system with a spectrometer allowed not only

the measuring of the AOA, but also the measuring of the incident laser's wavelength

and energy. The basic system, refer to Figure 3, consisted of a fisheye lens (giving

the system 180 degree field of view), imaging lenses, spectrometer, image detector,

and detector controller (5:78). The imaging lenses focused the incident image/laser

radiation onto the input of the spectrometer. The spectrometer breaks the incident

image up into its spectra. The controller allowed for the freezing of a given image

spectra for wavelength and AOA determination. The spectra of the different incident

image sources will be separated in height on the output of the spectrometer. So, the

laser's spectra will be separated in height on the output from the other incident

energy in the scene, such as the sun's energy (5:5).

Capt Kaiser showed that the height of the spectra of the laser is directly related

to its AOA; and that by using this method the AOA could be determined to one

degree of accuracy

11
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Figure 3. Simplified Spectrometer System (5:4)

2.1 Non-Imaging Systems

The research using non-image systems is by far the most extensive. The non-

imaging system, although more complex electronically, offers the ruggedness required

for military and space operations. Four such systems will be reviewed: 1)the angle

of arrival meter by Herbert B. Holl, 2)the Common Opto-Electronic Laser Detection

Systems (COLDS), 3)the optical sensor with high directional resolution, and 4)angle

of arrival detection through analysis of optical fiber intensity patterns.

2.2 The Angle of Arrival Meter

The basic system invented by Herbert B. Holl consists of triangular reflector

cube (with integral detector arrays) and an external AOA processor (1:1-2). As

shown in Figure 4, the incident laser radiation enters the cube and then is reflected

towards the detector arrays located on the three edges of the triangular reflector. The

12
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Incident Laser Energy

Detector Array (1 of 3)

This figure only shows one of the three

axis of the Angle of Arrival Meter System.

Figure 4. Simplified Angle of Arrival Meter System (1:14)

detectors send the measured incident energy onto the processor, which determines

the horizontal and vertical components of the AOA, to an estimated fraction of a

degree (1:10).

2.3 The Common Opto-Electronic Laser Detection Systems

The Common Opto-Electronic Laser Detection Systems (COLDS) system was

developed by the Messerschitt-Bolkow-Blon (MBB) Corporation and was tested by

the Air Force in the summer of 1985. The system could measure the pulse repetition

frequency and the angle of arrival of incident laser energy (12:6).

The system, reference Figure 5, consisted of a hemispheric optical head, a fiber

optic interconnect, an optical detector system, and an AOA determination algorithm.

The design of the optical head provided an AOA detector system with a theoretical

FOV of 180 degrees in azimuth and 190 degrees in elevation (12:6).

The optical head contain two different types of lens: four large FOV lenses

13
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Figure 5. Simplified COLD System (12:3)
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(one per quadrant) and many small FOV lenses (each small lens provided for a 22.5

degree overlapping FOV in azimuth). The light energy received by each lens was

transferred to the optical detector system by fiber optic cables.

The optical detector system consisted of two different detectors, one for each

type of lens. The fiber optic cable from the large FOV lenses terminated on the start

detector, and the optical cable from the small FOV lenses terminated on the stop

detectors. The start and stop signals from the detector system in conjunction with

the AOA algorithm determined the AOA with a plus or minus five degree azimuth

accuracy, the elevation accuracy was not tested (12:40).

2.4 The Optical Sensor with High Directional Resolution

The optical sensor with high directional resolution extends the concepts used by

radar warning receivers to the problem of determining the angle of arrival of incident

laser energy on an array of optical detectors. The system, the Staring Optical Sensor,

was designed and built by the Interactive Intelligent Imagery Corporation. The

following information is from the final report for phase 1 feasibility demonstration,

dated march 1989. The basic system, reference Figure 6, consists of a hemispheric

dome (with 225 apertures), a fiber optic interconnect, detector array, and an angle

processor (3:i-ii). The hemispheric dome is fabricated in such a way as to allow

each fiber of the fiber optic interconnect to view part of the 180 degree field of

view of the dome (3:4). The fiber optic interconnect transfers the intensity of the

incident laser energy on the dome to the detector array. The angle processor scans the

detector array for the resulting intensity (amplitude) pattern and by using amplitude

comparison techniques determines the AOA (3:33). Test results show that the system

could determine the AOA "to better then one degree" (3:23).
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Figure 7. Simplified Intensity AOA Detection System (15:4)

2.5 AOA Detection through Analysis of Optical Fiber Intensity Patterns

This research was accomplished by Capt John Wallace Welker in 1989 as part

of his master's degree program. Capt Welker showed that the angle of arrival could

be determined within one degree by using pattern recognition techniques. The basic

system, reference Figure 7, used consisted of a short piece of 3mm fiber optic cable

(1, 2, and 3 inch lengths were tested), a CID camera, and a personal computer (PC)

with frame grabber software.

One end of the optical fiber was illuminated by a laser beam at various angles

to the optical center of the fiber. Due to the light transfer characteristics of the

fiber used an unique intensity profile was produced on the camera end of the fiber,

with each change in the AOA of the incident laser on the other end of the fiber.

The intensity profile was captured by the CID camera in conjunction with the frame

grabber software running on the PC.

The captured data was reduced, by using Fourier transfer techniques, down

into a feature vector representing a given captured intensity pattern. The feature

vector was then compared with the know AOA intensity patterns using an Euclidian
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distance measurement between the given and known feature vectors. The comparison

which resulted in the least difference indicated the AOA (15:1-17).

2.6 Summary

This chapter summarized five different angle of arrival detectors (one imaging

and four non-imaging). The imaging system (by Capt Kaiser) provided not only the

AOA of the incident laser radiation, but also its wavelength and energy level. The

system easily provided AOA accuracy to one degree (azimuth), without intensive

processing algorithms.

The four non-imaging AOA detection systems are diverse and all use different

methods to determine the AOA. It should be noted that the Angle of Arrival Meter

information is from a patent application. The last three AOA detector systems have

been prototyped giving AOA accuracy figures from one degree to five degrees. Since

the accuracy figures given in the researched data is from prototypes an in-depth

comparison of the systems can not be made. Each system seems to be capable of

highly accurate angle of arrival detection, if the lessons learned from the prototypes

were incorporated into a production product.
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III. Methodology

This research was based on pattern recognition techniques to determine the

AOA of laser energy on a photoreceptor (one-inch-long, 3mm-diameter optical fiber).

The idea is to "match some measurement to an internal description, template, of the

quantities of interest." (4:4) The measurement in this research is a portion of the

Fourier transform of the intensity pattern out of the optical fiber. The basic idea is

to recognize a pattern or a group of patterns which uniquely classify each possible

AOA. In the first phase of this research the methodology is to generate a template

file containing one template for each AOA. Each unknown or test measurement is

then compared to the template file and the closest match classifies the unknown

AOA. In the second phase of this research the methodology is to combine multiple

measurements of each AOA along with a radial Gaussian probability function to

create a network capable of classifying unknown AOAs.

3.1 Optical fiber

Due to the light transfer characteristics of the one-inch-long, 3mm-diameter

optical fiber an unique intensity pattern was generated on the camera end of the

fiber for each AOA of the laser energy. This unique pattern is caused by meridional

and to a greater extent skew rays traveling down the fiber. Meridional rays follow a

zig-zag path along the fiber and always stay within a~symmetrical plane containing

the axis of the fiber. The skew rays do not travel down the fiber in just one plane

but follow a helical type path through the fiber (6:23-24).

The optical fiber used in this research is a multimode step-index fiber. The

multimode step-index fiber has an uniform refractive index core surrounded by a

lower refractive index cladding. The refractive index of the core was ncor, 1.492.

The refractive index of the cladding was ncladding = 1.416.
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Figure 8. Ray Optics (6:24)

As light energy enters the fiber it bends towards the axis of the fiber due to

the higher refractive index of the fiber verses the air. As the light energy propagates

down the fiber, the lower index of refractive of the cladding causes the light energy

propagating towards the cladding to bend towards the high refractive index of the

core. At a certain angle of incidence the light energy no longer is completely reflected

but some of the light energy is refracted into the cladding (6:23-25). Refer to Figure 8.

Figure 9 shows how the intensity out of the fiber varies as the AOA. The graph shown

was created by taking the dc components of the Fourier transform of the template

AOAs from 0 to 29 degrees. At approximately 28 degrees the intensity patterns out

of the fiber become to weak for the AOA detection methods used in this research

to work effectively. This research also indicated that between 0 and 1 degrees the

intensity patten would change erratically. Therefore, based on the intensity level

used in this research, the best angular range or FOV for a single fiber is approximate

1 through 26 degrees.

3.2 Data Reduction

In this research the quantities of interest are the values of the 512-by-512 un-

signed bytes of picture information out of the Spiricon picture file (refer to Appendix
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C for the makeup of the Spiricon file). The 512-by-512 bytes of picture information

is the intensity pattern out of the optical fiber. By thinking of the 512-by-512 pic-

ture file as an 262144 component array a Euclidean distance measurement could be

made between each of the template picture files and the unknown picture file. The

comparison with the lowest distance would then be considered the correct AOA.

Although theoretically simple, the comparison of 262144 components of an unknown

AOA picture with each other 262144 components of each of the templates pictures

would be computationally slow.

In practical pattern recognition problems it is often useful to restrict the
dimensionality of the decision space because of constraints on compu-
tational resources or available power. To solve any of these practical
problems in "real-time" the number of features must be limited. (4:6)

One method of reducing the dimensionality of the decision space is by taking the

Fourier transform of the pattern and then comparing the lower frequency components
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Figure 10. Before Reduction

of the transform (4:9). Capt Welker used the lower 49 components of the Fourier

transform of an array representing the picture and showed that these 49 components

were adequate for determining the AOA to within one degree. This research starts

with the 49 component baseline.

Capt Welker also reduced down the 512-by-512 Spiricon file by pulling out the

center 256-by-256 components. This was a valid reduction since the light intensity

out of the fiber only excites approximately the center 200-by-200 pixels of the cam-

era, which corresponds to the center 200-by-200 components of the Spiricon picture

file (reference Appendix C). Figure 10 shows the 3-dimensional intensity plot of a

complete Spiricon picture file. Figure 11 shows the plot of just the center portion of

the complete file. It can be seen that no useful (at least to this method of AOA de-

tection) information is lost, only small intensity values outside the 256-by-256 center

are lost. In fact the results latter will show it is beneficial to reduce the file before

Fourier transforming the file.

Figure 11 was produced by taking the original file (shown in Figure 10), pulling

out the 256-by-256 center of the file, adding zeros tb expand the file back to the 512-

by-512 Spiricon picture size, and then putting the file back into the Spiricon file
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Figure 11. After Reduction

formate to print out.

3.3 Laboratory Setup

The laboratory setup used for the AOA detection system used in this research

is shown in Figure 12. The source laser (Helium-Neon 50mW continuous wave laser)

sends its laser beam through a variable attenuator towards a beam steering instru-

ment which angles the laser beam 90 degrees towards a collimator. The collimator

expands the beam and removes high frequency noise from the laser beam. Refer to

Appendix B for details on the collimator. The expanded beam goes through the

neutral density (ND) filter, with an optical density of 2 (10-2), and hits the front

of the 1-inch-long, 3mm-diameter optical fiber mounted on the face of the camera.

The optical fiber was pushed up tight against the protective glass over the camera's

CID array.

The laser energy travels through the optical fiber resulting in an intensity image

on the camera end of the fiber. The Spiricon software (version 5.0) running on the

PC, containiDg the Spiricon control board, captures the resulting intensity image

and stores the intensity in a Spiricon picture file. The angle at which the laser hits

the optical fiber can be adjusted by moving the rotational stage to which the camera
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is mounted. The rotational stage is controlled by the WARP software running on the

PC containing the PMC300 control board.

For initial setup and alignment of the AOA detection system refer to Appendix

A.

3.4 Phase I

Phase I was to baseline the research of this thesis. The baseline chosen was

that of the work done by Capt Welker. Before changing any of the equipment setup

various template and test pictures were taken and processed using Capt Welker's

methodology of determining the AOA. The steps of the baseline methodology is as

follows:

9 Align system in accordance with Appendix A.

* Manually set the camera to a certain AOA and record the intensity pattern

(picture).

9 Repeat the above step for each of the required template anigles in sequential

order.

* Randomly set the camera to a certain AOA and record the intensity pattern

(picture).

* Repeat the above step for each of the required test angles.

* Process the template and test picture files through the PREPROC program.

• Transfer the preprocessed picture files to the VAX computer.

* Fourier transform the preprocessed picture files using the 2DFFT program.

9 Transfer the resulting transform files back to the PC.

* Run the transforms of the template files through the TEMPLATE program to

create an overall template file.
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* Run the transforms of the test files through the TEMPLATE program to create

an overall test file.

* Run the DISTANCE program to compute the Euclidean distance to determine

the correct AOAs of the test pictures.

Various template and test pictures were gathered to verify that Capt Welker's work

could be reproduced. After Capt Welker's work was verified, the rotational stage

was added to the optics bench setup and another set of data was taken. Template

pictures were taken from 0 to 15 degrees in 1 degree increments. Template pictures

(0,1,2,3,4,5,6,10,11,15,11, and 5 degrees) were taken in a random fashion. This set

of data was used to first assure that the rotational stage-did not change the system's

ability to detect the AOA and secondly to provide a baseline set of data to see how

changes to the phase one computational processing effected the detection mcthod.

3.5 Simplifying the Methodology

Capt Welker's method required transferring the data files back and forth be-

tween the Spiricon PC and the VAX. Since the PC is limited in'the size of data files it

can handle at one time, this research effort wanted all of the processing accomplished

on a single computer. Since the VAX could easily handle the size files required and

the 2DFFT routine was already running on the VAX, the VAX seemed to be the

logical choice. First the TEMPLATE and the DISTANCE routines were modified to run

on the VAX leaving only the preprocessing routine still on the PC.

Since the data was cutoff at the maximum intensity level out of the camera

it was theorized that the preprocessing program written by Capt Welker had little

effect on the results of the AOA detection method. To test this theory a simple

REDUCE program was written that pulled out the center 256-by-256 picture out of

the Spiricon 512-by-512 picture. The resulting files were then run through the 2DFFT,

TEMPLATE, and DISTANCE routines on the VAX computer. The end distance results

were then compared to the prior results using the PREPROC program. The PREPROC
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program normalized, mean filtered, and reduced the Spiricon file prior to performing

a Fourier transform on the file.

The next simplifying step was to combine programs together so that multiple

template and test pictures could be run through without user intervention. The first

thought was to combine the programs together, using a batch routine on the VAX.

The trouble was that the 2DFFT routine was written to perform more than just a

2DFFT and would have to be modified to work in a batch file with the rest of the

programs required. Since the 2DFFT routine was written in the ADA language and

the rest of the programs were written in the 'C' language, it was determined to find

a 2DFFT routine written in 'C'. The routine found was the FOURN subroutine and is

given in Appendix E. Going to a 'C' 2-dimensional Fourier transform routine allowed

the reduction of the number of programs required for reducing the intensity pattern

into a feature vector that could be used to determine AOA.

3.6 Data Collection

Data collection required setting up two PCs. The PC containing the Spiricon

system and the PC containing the PMC300 system. The PMC300 system was setup

by bringing up the WARP program on the computer containing the PMC300 system.

Upon turning on the PMC300 the rotational stage and software must be zeroed.

First the incremental positioning routine of the WARP software was used to adjust

the rotational stage to zero. Once the stage is on zero the software must be zeroed,

refer to PMC300's operators manual (9:11-20). During actual data collection the

absolute positioning routine of the WARP software was used to set the AOA.

The Spiricon system was setup to capture a single frame of data per AOA. The

Spiricon program was started by typing cq3d from the spir directory on the Spiricon

PC. Once the cQ3D program was running the system was setup to capture a single

frame by the following key sequence from the main menu.

* F7 (setup menu)
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* F2 (beamlink 2250 menu)

* Alt F2 (set number of frames to be-capture)

0 1 (set to single frame)

* F10 (setup menu)

* F10 (main menu)

The data was collected by first setting the required AOA on the PMC300 PC and

then capturing the data on the Spiricon PC by the following key sequence.

* F7 (setup menu)

* F2 (beamlink menu)

* Alt F4 (capture frame of data)

* F10 (setup menu)

* F10 (main menu)

e F4 (save menu)

The files were saved by the following conventions: %up%udeg or %up%utst. The

first %u in the filename referred to the whole portion of the AOA, and the second

%u referred to the fractional portion of the AOA. For example, 15p20deg referred

to a template file with an AOA of 15.20 degrees. The tst file was used to designate

a test file.

Once all required files were collected or the available disk space on the Spiricon

PC was full the template and test files were transferred to the VAX computer for

processing.

The file transfer program (FTP) was used to transfer data files over the AFIT

computer network to the VAX computer. The VAX computer used was called milo.

From the directory on the PC containing the Spiricon data files the following sequence

was typed to send the data files to milo.
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0 ftp milo

* Login sequence

• binary

* input .

* y for each file to transfer

9 bye to end ftp session

In the above sequence the binary command was important since the Spiricon files

were binary. Without the binary command the FTP program defaulted to an ASCII

transfer which resulted in faulty data transfers.

Phase II required transferring the feature vectors geiierated on the VAX com-

puter back to the PC and then onto the Sun computer. Due to the configuration of

the AFIT network, a direct transfer from the VAX to the Sun was not possible. The

reason for going to the Sun computer for phase II was because the RBF software

was written to run on the Sun computer. Although the RBF software was written

in 'C', the time was not available to get the software configured correctly to run on

the VAX computer.

Once the required conversion program, MZNET, was run on the results from

the XFM program the file containing the feature vectors for a certain series could be

transferred to the Sun computer by the following sequence, using any PC computer

on the AFIT network.

* ftp milo

" Login sequence

" get (filename)

* bye

• ftp thomas
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e Login sequence

* put (filename)

9 bye

In the above sequence the VAX computer was called milo and the Sun computer was

called thomas. Also, note that the binary command was not used because the files

were ASCII.

3.7 Phase Il

In this research the measurement of a class (AOA) is a 24 component feature

vector of the lower harmonics of the Fourier transform of the intensity pattern out

of the optical fiber. However, due to noise, no two feature vectors for the same AOA

will ever be exactly a like (reference Figure 13). The question is what is the best way

to set that feature vector for a given AOA so that the set feature vector (template)

can be used to find all other feature vectors of the same AOA, or in reference to

Figure 13 all vectors falling with in the error cloud around each feature vector.
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In the first phase of this research the first intensity pattern taken was used

as the template measurement. Using the first measurement as the template showed

that the AOA could be determined to within 1/2 degree using the Euclidean distance

measurement technique. Since the data showed that the system only had trouble

around zero and 27 degrees (that is no misclassifications between 1 and 26 degrees),

it was determined to restrict the test AOAs to the area between 26 and 27 degrees

to allow more data exemplars to be taken at smaller separations between AOAs.

Time did not allow taking a full set of data for angles less than half a degree over

the whole 27 degree range of the np.;,l fiha, Quaf,-

Restricting the AOA to two degrees allowed for many more exemplars per AOA

to be taken. The question then arose what is really a template verses a test vector

sense they both are taken under the same conditions. In reality none, since each

feature vector varies sightly from the others of the same AOA due to noise. So how

is the best template feature vector chosen? For example Figure 14 shows six feature

vectors: three each of two classes or AOAs. If vectors 1 and 2 where the first vectors

taken then they would be designated as the template vectors. The remaining vectors

would be classified as test vectors. It can easily be seen from the example that using

a Euclidean distance measurement to determine the class of vector 5 would fail and
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label vector 5 as belonging to class two since the template for class two (vector

2) is closer than the template for class one (vector 1). But, it can easily be seen

that if vectors 3 and 4 were chosen as the template vectors the Euclidean distance

measurement method would correctly classify all of the test vectors. What is needed

is a system that could learn from all of the examples give it from one class so that

the system is not dependent on a single feature vector (a vector which may or may

not be the best class example) as representative of a class of vectors.,,

3.8 Radial Basis Function

A radial basis function (RBF) system was being developed concurrently by

Capt Zahirniak. Capt Zahirniak's (16) system was based on a three layer hybrid RBF

artificial neural network. The system was hybrid in the sense that the hidden layer

is set by the exemplars contained in the training set (unsupervised) and the output

layer is trained by a matrix inversion method (supervised). The supervised output

layer speeds the network's learning time because the output layer's interconnection

weigh.ts are set through the matrix inversion method and do not have to be learned.

The three layer RBF network consists of an input, hidden, and output layer.

The RBF architecture is shown in Figure 15. The nodes of the input layer take the

input feature vector and fans the vector out to the hidden layer. Fanning the input

vector into a higher level increases the ability of the network to classify the feature

vector (14:461). The hidden layer consists of units made up of localized receptive

fields and the output nodes are linear.

The nodes of the hidden layer consists of RBFs. A RBF is "a radially-

symmetric function with a single maximum at its origin and which drops off rapidly

to zero at large radii" (8:282). The origin or center of each RBF was preset to match

an exemplar from the training set. That is if there were 40 training exemplars given

to the net; there would be 40 RBF nodes in the hidden layer. Figure 16 shows a

two-dimensional RBF.
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Since in this research the input to the network was a 24 component feature

vector, the RBF actually used was 24-dimensional. Capt Zahirniak's network used

the Gaussian function as the RBF for each of the nodes in the hidden layer. The

output of each node in the hidden layer would be of the form:

Hhp = P(I ,, - Lh11) (1)

where the input vector xp, is the p th exemplar applied to the input layer, and vector

ch represents the center of the hth RBF node. Since D is a Gaussian function, D is

defined as:

D(Ilx - cll) = exp[- Z(x. - Ch)2/2O.nh] (2)
n

where n is the number of components of the input vector and anh is the variance

or the width of the hth Gaussian RBF node along the nth dimension (14:462-463).

In this research effort the variance was initially set to four on all nodes. Then each

node's width was adjusted down individually until the individual node's response to

an out of class feature vector was less than the given sigma threshold value.
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The output of the hidden layer nodes were connected to each of the linear

output layer nodes. The connection weights between the output and hidden layer

were trained using the matrix inversion method (14:461).

3.8.1 Matrix Inversion The output layer of the RBF network was a linear

layer connected to the hidden layer by connection weights. The connection weights

could be determined by using a back-propagation algorithm or by a matrix inver-

sion algorithm. The matrix inversion method was used and "produces the exact

minimum" (14:463).

Referring to Figure 15, the input (yip) to the ith output node for the ph exem-

plar is given by the equation:

Yip = wihHhp (3)
h

where Wih is the connection weight between the i"output node and the h" hidden

layer node and Ihp is the output of the hih hidden layer node for the p input

exemplar. In the matrix inversion method the weights are selected as to minimize
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the error equation:
E /2 '(y PYi) 2  (4)

i P

where Yp is the desired output of the ith output node for the ph exemplar. As shown

by equation 4, error (E) by definition is the summation over all exemplars (p), given

to the network, of the summation of the square of the difference between the output

at a given ith node, of the output layer, and the desired output of the same node.

Minimizing error implies that the partial derivative of the error with respect

to any weight equals zero. For example, taking the partial derivative of both sides

of equation 4 with respect to the weight Wkl yields:

9EI9wkl = Z Wkh(E Hhpylp) - E YkPy1P. (5)
h p p

Forcing the partial derivative to zero allows the equation to be written as:

EWkh(F HhpHp) = _YkpYlp. (6)
h p P

The second term of the left side of this equation (Ep HjpHp) is a correlation matrix

(M) of the outputs of the nodes of the hidden layer. That is how much the output of

any node j of the hidden layer is like the output of any node I of the hidden layer for

the pth input. If the other terms of equation 6 are expanded to account for all values

of k and h then these terms also can be written as matrixes. The term Wkh would

yield a weight matrix W as k and h are varied. The term Ep Ykpylpwould also yield

a matrix (Y) as k and h are varied. Therefore, dividing both sides of equation 6 by

M gives the equation for the weight matrix that would yield the minimum error:

W = YM - 1 . (7)

Since Y and M are known, W can be directly computed. Once the weight matrix

is computed the RBF network can classify a given input exemplar by picking the
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output node with the highest value since each output node represents one of the

possible classes. In the data supplied to the network there were 10 possible AOAs

so there were 10 output nodes, one per AOA.

3.9 Software

Throughout this research each program change was checked for accuracy. The

main program, XFM,'was the result of combining five independent programs: RE-

DUCE, FLOAT, FOURN, ORGANIZE, and TEMPLATE. All of the independent program

results were checked before the programs were combined into one. The combining

of the five programs into the one, XFM program, allowed multiple Spiricon template

or test picture files to be processed down into a template or a test vector file in one

step. The five sections of the XFM program are explained below.

The REDUCE section takes in a Spiricon file and pulls out the center of the

picture information. The center contains the real intensity pattern information. To

this real 256-by-256 picture information file the program adds a zero valued imagi-

nary portion resulting in a 256-by-512 matrix. The imaginary portion is required by

the FOURN routine. The FOURN routine also requires the input data to be floating-

point numbers. The float section changes the Spiricon unsigned byte characters

into floating-point numbers. The program FOURN is then called to perform a two-

dimensional Fourier transform on the matrix. The FOURN routine writes over the

original matrix with the Fourier transform of the original matrix.

The ORGANIZE section takes the magnitude of the Fourier transform and then

flips the resulting 256-by-256 around so that the dc term is in the center of the

matrix, and the higher order harmonic are symmetrically located about the dc term.

This organization of the magnitude of the transform allows the TEMPLATE section

to pull out the required harmonics to produce a template or test vector. When the

program is first started the program requires the following information:

* A run number
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" Whether the program is to process template or test files

* The angle of the first picture file.

" The angle of the last picture file.

" How many sub-angles per degree.

Note the input files must be sequentially numbered and each file requires about
20 seconds of run time on the VAX computer. The actual run time depends on

the number of users on the VAX. The resulting output file will contain the lower

49 Fourier transform components of each of the sequential picture files processed

by the program. The number of sequential picture files determines the number

of template or test vectors there are in the resulting template or test file. The

resulting file is labeled template(run number).vec/.doc for template files and test(run

number).vec/doc for test files. The .doc file can be printed out. The .vec file is used

by the NACDIS and the MZNET programs.

The NAODIS program takes a template file and a test file and computes the

distance between each of the vectors of the two files. The distance between each test

vector and template vector is printed out. The program also prints out the estimate

AOA of the test vector based on the smallest distance between a given test vector

and template vectors. The program prints out to the screen the estimated AOA for

each of the test vectors. The program also prints the complete distance information

to a file labeled as follows: (test run number) -nacdis_(template run number).doc.

For example if testl.vec was run against templatel.vec the resulting saved file would

be named 1.nacdis-l.doc.

The MZNET program takes in a ten class binary output file from the XFM

program and produces a class labeled ASCII file out. The ASCII output file is

readable by the Radial Basis Function (RBF) Deural network software written by

Captain Zahirniak. The program's output file is also printable, to the screen or to a

printer.
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3.10 Summary

This chapter provided a road map of how the research for this thesis was

accomplished. The chapter started out with an overview of the iight transfer charac-

teristics of the optical fiber used in this research. Next, data reduction was discussed

in relation to the producing of a feature vector from the intensity image out of the

optical fiber. The third area of this chapter explained the laboratory setup used to

gather the data of this research. The chapter then explained phase I of the research

effort, which was to set a baseline to compare system changes to. System changes

were then discussed in the following section on simplifying the AOA detection sys-

tem. The simplifying section explained how the processing of the information was

handled exclusively by the VAX computer. The next section went into the sequence

of events required to take data for this research. The data gathered was baselined in

phase I and applied to a RBF artificial neural network in phase II which was covered

in the last sections of this chapter. The next chapter will show the results of the

work described in this chapter.
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IV. Findings

This chapter presents the findings of using the Euclidean distance measurement

and the radial basis function (RBF) neural network as classifiers in an AOA detection

system. The first section covers the results of repeating Capt Welker's previous AOA

methodology.

The next three sections (Sections 4.2, 4.3, and 4.4) cover the results of modifi-

cations made to Capt Welker's methodology. The best of the modifications were then

applied to classify fifth of a degree AOAs, and the results are presented in Section

4.5. The chapter then covers phase II results. Phase II of the research effort was to

classify AOAs using the RBF neural network. The results of using the RBF neural

network as a classify are presented in Section 4.6. The work done with RBF network

as a classifier gave new insight into the exemplars of the AOAs. Section 4.7 presents

the results of applying this new insight to the Euclidean distance methodology for

classifying one-tenth of a degree AOAs.

4.1 Baseline

The first step was to baseline this research effort to the work done, in 1989, by

Capt Welker. Before changing Capt Welker's laboratory setup various template and

test AOA intensity pictures were taken and processed using Capt Welker's method-

ology of determining the AOA. The steps of the baseline methodology are given in

Chapter III. Template pictures were taken from 1 degree to 8 degrees. Test pictures

were taken at 4, 5, 6, 7, and again at 4 degrees. The baseline results, as shown in

Table 1, show that all of the test AOAs were correctly identified. The results showed

that Capt Welker's one degree of accuracy was reproducible and gave this research

a starting point on which to see if improvements to the system could be made.
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Table 1. Baseline Results
Actual Identified
Angle Angle

4 4

5 5
6 6
7 7
4 4

4.2 Rotational Stage

The first improvemcnt to the system was the addition to the laboratory setup

of the rotational stage. The rotational stage allowed pinpoint accuracy in the setting

of the AOA of the laser beam on the front of the optical fiber. The stage's accuracy

of 0.001 degree removed from the AOA detection system the inaccuracies of manually

setting the AOA. The stage allowed the AOA classification methodology to be the

limiting factor verses being limited by how well the AOA could be manually set and

reseto to various angles.

To insure that the rotational stage was working properly and that adding the

stage to the laboratory setup did not have adverse effects on the detection system,

another set of data was taken. Template pictures were taken from 0 to 15 degrees in

one degree increments. Then test pictures (0,1,2,3,4,5,6,10,11,15,11, and 5 degrees)

were taken in a random fashion. Again the data was processed using the baseline

processing methodology and perfect results were obtained (all AOAs correctly identi-

fied), showing that the rotational stage did not change the system's ability to detect

the AOA.

4.3 Processing Simplification

The baseline processing methodology, in order to process and classify Spiricon

intensity pictures, required the following programs: PREPROC, 2DFFT (written in

40



Ada), PROCDATA, and DISTANCE. This baseline processing method was slow due to

four main reasons: 1) the data had to be transferred twice over the AFIT network,

2) the Ada 2DFFT routine required each picture file to be processed individually, 3)

the PC could not handle the size files required as efficiently as the VAX computer,

and 4) unnecessary preprocessing of the Spiricon data files. In order to speed up

processing time for phase I, this research only used the PC to gather Spiricon picture

files; the files were then transferred over the AFIT network to the VAX computer

for processing and classification.

Various steps were taken to assure that changes to the baseline processing

method did not alter the reliability of the system to determine AOA. The first step

of changing over to a 'C' routine to take the 2DFFT was checked. Initially the

VAX constantly did memory dumps when processing the results of the 'C' 2DFFT

(subroutine FOURN). It was found that the results were causing arithmetic overflows

in the Euclidean distance routine. The problem turned out to be incorrect data

transfers to the FOURN subroutine. The FOURN subroutine required the data to be

passed as an array and initially the data was being transferred as a matrix resulting in

faulty Fourier transform results. Once the transfer problem was corrected, the initial

results from the FOURN subroutine were extremely high and needed to be scaled by

a factor of 5122 to give results comparable to the Ada 2DFFT routine results. Next

the DISTANCE routine was modified and tested on the VAX and showed that the

VAX DISTANCE routine gave the same results as the PC version. The final step was

to assure that leaving out the PREPROC program did not degrade the AOA detection

system.

Three methodologies were compared: 1) processing the data with PREPROC,

2) processing just the reduced 2562 byte data field of the Spiricon picture file, and

3) processing the entire 5122 byte data field of the Spiricon picture file. All three

methods were able to determine the one degree test angles of arrival. But, did any

of the three methods show more promise of determining smaller increments of AOA?
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Table 2. Comparison of Processing Methods
By Distance to Next Nearest Neighbor
Angle Procdata 256x256 512x512

Spiricon Spiricon
0 4.8 4.7 1.4
1 6.6 6.9 2.5
2 11.8 11.9 3.9
3 12.6 12.8 3.4
4 9.2 10.1 2.4
5 9.8 9.7 2.5
6 8.8 8.9 2.8

To answer this question a figure of merit (FOM) was chosen. The FOM chosen was

the distance to the next nearest neighbor to the test vector. The nearest neighbor

to the test vector was always the corresponding template vector. The next nearest

neighbor, in all methods, was the template vector representing a plus or minus one

degree from the correct angle.

Table 2 shows the distance, for each of the three methods, to the next nearest

neighbor for the angles 0 to 6 degrees. Table 2 lists three columns. Column one

gives the results using the PREPROC program. Column two gives the results using

only the center 2562 byte center of the Spiricon picture file. Column three gives the

results of using the entire 5122 byte data field of the Spiricon picture file. It can

be seen from Table 2 that the PREPROC program does not significantly improve the

distance to the next nearest neighbor, in fact in 4 out of the 7 angles the distance is

actually less then that of the next nearest neighbor using just the REDUCE routine.

It can also be seen from Table 2 that using the entire Spiricon data field significantly

decreases the distance to the next nearest neighbor.

In pattern recognition the greater the distance between feature vectors the

easier it is to identify the feature vectors; therefore, the method using the entire

Spiricon picture file was not continued. Since just using the reduced version was just
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Table 3. Results 49 Component Feature Vector
Missed 1 AOAs

Actual Indicated
AOA AOA

0.5 1.0
6.5 6.0

18.5 18.0
19.5 19.0
22.5 22.0
23.5 23.0
26.0 25.5
26.5 26.0
27.5 27.0
29.5 29.0

as good if not better than the PREPROC, the REDUCE method was selected for this

research. Not only did the REDUCE method give the best overall FOMs, but it also

allowed for quicker processing time over the other two methods.

Since the AOA detection method showed that detection of the AOA to one

degree was possible, the next step was to reduce the data gathered to angles of less

than one degree. A set of Spiricon picture files were taken covering every half degree

from 0.0 to 29.5 degrees. The results using the Euclidean distance methodology with

the 49 component feature vector resulted an accuracy of 83 percent or 10 misses out

of the 60 test vectors. The angles missed are showed in Table 3. The results show

that the system was accurate to within one-half plus or minus a half degree.

The 49 component feature vector was the dc and the lower three harmonic

components of the Fourier transform of the intensity picture out of the optical fiber

for a given AOA. In actuality the magnitude of the harmonic components are being

used; therefore, the feature vector is composed of symmetrical data about the dc

component, as shown in Figure 17. Which means there are two sets of identical 24

components in each 49 component feature vector. Since the data is identical why
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keep it?

The Euclidean distance computation was modified so that it would compute

the Euclidean distance on just 25 components. Table 4 shows the angles missed

using the 25 component feature vector. Table 4 shows that the miss rate increased

by the deletion of the repeated data. Not only did the detection system miss all of

the angles missed using 49 component feature vector, but the system also missed

three more angles resulting in a lower classification rate of only 78 percent. This

result is not unexpected when looking at the components of the feature vector.

Referring to Figure 17 it can be seen that the typical dc component can be two

to forty times greater than the other components of the feature vector; therefore,

throwing out half of the symmetrical data just increases the dc components effect

on the results of the distance measurement. The level of the dc component washes

out the smaller component levels of the lower three harmonics.

Since the dc component dominates the Euclidean distance measurement, what

would happen if the dc component was disregarded? Table 5 shows the results of just
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Table 4. Results 25 Component Feature Vector
Missed I AOAs

Actual Indicated
AOA AOA

0.5 1.0
6.5 6.0
9.5 10.0

10.5 11.0
18.5 18.0
19.5 19.0
22.5 22.0
23.5 23.0
24.5 24.0
26.0 25.5
26.5 26.0
27.5 27.0
29.5 29.0

Table 5. Results 24 Component Feature Vector
Missed AOAs

Actual Indicated
AOA AOA
0.5 1.0

using a 24 component feature vector (no dc, just the lower 3 harmonic components).

Table 5 shows that using only 24 components greatly decreases the error rate. The

detection system only missed one angle giving a detection rate of 98 percent.

While all three feature vectors used (49, 25, and 24) allowed classification of

AOA to within one-half plus or minus half of a degree, the 24 component feature

vector seemed to have the best classification ability.

45



4.4 Quarter Degree Results

Decreasing the AOA to quarter degree steps required significant number of

measurements to be taken; therefore not all angles were tested. Three sample sections

were chosen (5.0 to 6.75 degrees, 15.0 to 16.75 degrees, and 25.0 to 26.75 degrees) to

determine the ability of the system to detect quarter degree AOAs. For the angles

tested, Table 6 indicates that the system can classify angles of arrival as low as

a quarter of a degree when using the 24 component feature vector. Again the 24

component feature vector out performed the 25 and the 49 component; therefore,

the 25 and the 49 component vectors were not tested further in this research.

4.5 Fifth of a Degree Results

Decreasing the incremental step between AOAs to a fifth degree again required

to many measurements to test the entire FOV of the optical fiber. Also many

repeated measurements were desired, to see if the system stayed stable through

many measurements. The area between 26.0 and 27.80 degrees was chosen because

in the quarter degree tests this area showed a weakness in the system's ability to

classify the AOA (at least with the 25 and 49 component feature vectors).

Table 7 shows multiple fifth of a degree data sets compared against each other.

Five data sets were taken for the test angles 26.0 to 27.8 degrees. The data sets

were labeled 30 through 34 referring to the run numbers assigned to the data sets

when the data was processed through the XFM program. The first column of the

table shows which data set was being used as the template set. Each row shows

the accuracy rate of a given data set when it was being used as a template, and

a Euclidean distance measurement was made to each of the remaining data sets.

Table 7 shows the fallacy of always choosing the first data set as the template set. In

the 30 series data the first data set (run 30) turned out to be the poorest template.

Another data set (series 50) was taken to see if the results would be comparable

to the series 30 data. The series 50 data, as shown in Table 8, showed the that the
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Table 6. Quarter Degree Results
Actual Indicated AOA

AOA per # of components
49 25 24

5.0 5.0 5.0 5.0
5.25 5.25 5.25 5.25
5.50 5.50 5.50 5.50
5.75 5.75 5.75 5.75

6.0 6.0 6.0 6.0
6.25 6.25 6.25 6.25
6.50 6.50 6.50 6.50
6.75 6.75 6.75 6.75
15.0 15.0 15.0 15.0

15.25 15.25 15.25 15.25
15.50 15.50 15.50 15.5
15.75 15.75 15.75 15.75

16.0 16.0 16.0 16.0
16.25 16.25 16.25 16.25
16.50 16.50 16.50 16.50
16.75 16.75 16.75 16.75
25.0 25.0 25.0 25.0

25.25 25.25 25.25 25.25
25.50 25.50 25.50 25.50
25.75 25.75 26.0 25.75
26.0 26.0 26.0 26.0

26.25 26.0 26.0 26.25
26.50 26.50 26.50 26.50
26.75 26.75 26.75 26.75

#Wrong 1 2 0
Error (deg) 0.25 0.25 0

% Right 90 80 100
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Table 7. Series 30 (0.2deg) Results
Euclidean Distance Methodology

Template Test
30 31 32 33 34

30 - 100% 40% 50% 60%
31 50% -- 100% 100% 100%
32 50% 100% - 100% 100%
33 50% 100% 100% - 100%
34 90% 100% 100% 100% -

All Errors ±0.2deg

Table 8. Series 50 (0.2deg) Results
Euclidean Distance Methodology

Template Test
50 51 52 53

50 - 80% 30% 60%
51 80% - 50% 60%
52 30% 40% - 60%
53 60% 70% 50% -

Max Error ±0.4deg
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Table 9. Series 90 (0.2deg) Results
Euclidean Distance Methodology

Template Test
90 91 92 93

90 - 80% 90% 80%
91 80% - 100% 100%
92 80% 90% - 90%
93 100% 90% 90% -

Max Error ±0.2deg

system could get out of alignment. Upon going back and checking the alignment

of the system it was found to be out of alignment. The collimator was no longer

aligned parallel to the beam which resulted in a lower intensity level into the front

of the optical fiber.

The system was realigned and series 90 data was taken. The results of the

series 90 runs are shown in Table 9. Just before taking the data, between each data

set, and after the last data set was taken the camera was zeroed and the zero degree

intensity picture was compared to that shown in Appendix A to assure that the

system was still in alignment. This reverifies the system's ability to determine the

AOA to one-fifth plus or minus a fifth of a degree when the system is stable. As

can be seen from series 30 and 90 runs, selection of the template set determines how

well the system performs. Which leads to phase II to see if the RBF network would

learn from all the data given it to increase its accuracy at determining the AOA.

4.6 Phase II Results

Capt Zahirniak's RBF neural network had many options. Initially the RBF

network gave accuracies around 90 percent. Which could be matched by the Eu-

clidean distance methodology if the right run, like run 34, was used as the template.

The greatest improvement in the RBF neural network's ability to determent
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the correct AOA came when Capt Zahirniak suggested normalizing the feature vector

into the RBF neural network. Using the normalization option of the RBF network

software immediately improved the results of the series 50 runs. Prior Euclidean

distance results with the 50 series gave errors as high as 0.4deg with over half of the

AOAs miss classified. Normalizing the 24 component feature vector into the RBF

network immediately jumped the accuracy up to 100 percent.

Initially the RBF network was setup to take the first 30 or 40 exemplars (de-

pending on the number of runs in a series) as the training exemplars and then take

the last ten exemplars of the run as the test exemplars. This gave excellent re-

sults; but, this required the first exemplars of the series to contain the best template

exemplars. To avoid this favoritism and make the results more meaningful, the

randomizing option of the RBF network was used.

Selecting the randomizing option allowed the network to pick various exemplars

from each class to train the network. By varying the data seed the network software

would randomly select a different group of training exemplars from the data file. As

expected, the accuracy of the network varied (approximately 10 percent) as different

exemplars were chosen.

However, it was also found that the accuracy could be brought back up to 100

percent by decreasing the sigma interference factor of the RBF network. The RBF

network software would automatically keep scaling down the size of individual RBFs

until they would respond with a value less than the interference factor. For example

if the sigma interference factor was set to 0.5, a given RBF node's width would be

scaled down until the node's output was less than 0.5 for an adjacent out of class

training exemplar.

The results of running the 0.2deg data through the RBF network are given in

Tables 10. Ten different data seeds were used to give various input exemplars to the

RBF network to train the network. The sigma threshold was set to 0.5 unless the

network failed to-correctly classify the test exemplars. In those two cases, using data
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Table 10. RBF 0.2deg Data Results
RBF Network Methodology

Series Data Seed % Correct
30 1-10 100%
50 1-10 100%
90 1-10 100%

Table 11. RBF 0.1deg Data Results
RBF Network Methodology

Series Data Seed % Correct
200 1-10 100%

Sigma Threshold = 0.1

seed four in series 30 and using data seed five in the series 50, the sigma threshold

was decreased to 0.1 to give perfect results.

4.6.1 RBF and 0.1deg AOA Increments Since the results using the RBF

network to classify AOAs to one-fifth of a degree was 100 percent; the next step was

to try the network on one-tenth degree AOAs. A set of data was taken in one-tenth of

a degree increments between 27.0 and 27.9 degrees. The results of the classification

ability of the RBF network are shown in Table 11. In order to correctly classify

the AOAs a sigma threshold of 0.1 was required. A few tests were conducted with

the one-tenth of a degree data to see what was the effect of decreasing the number

of training exemplars on the network's ability to classify test exemplars. Table 12

shows that as the number of training exemplars decreases so does the RBF network's

ability to classify.
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Table 12. Accuracy vs Varying # of Training Exemplars
RBF Network Methodology

Data # of Training Sets
Seed 1 2 3

1 90% 93.3% 100%
2 77.5% 96.7% 100%
3 90% 96.7% 100%
4 80% 93.3% 95%
5 75% 90% 95%

Sigma Threshold = 0.1

Table 13. Normalized Series 30 (0.2deg) Results
Euclidean Distance Methodology

Template Test
30 31 32 33 34

30 - 100% 100% 100% 100%
31 100% - 100% 100% 100%
32 100% 100% - 100% 100%
33 100% 100% 100% - 100%
34 100% 100% 100% 100% -

4.7 Normalized Data

After seeing the improved results with the RBF neural network after normal-

izing the results of the Fourier transform, it was decided to go back and normalized

the data into the Euclidean distance methodology.

Table 13 shows that normalizing the data increased the accuracy rate to 100

percent and removed the ambiguity of using run 30 as a template.

Table 14 shows the results of normalizing the series 50 run. Normalizing the

data in the series 50 runs brought the accuracy rate up to 100 percent for most

templates and brought the totally unclassifiable (at least unclassifiable previously

by the Euclidean distance methodology) data to a worst case error of plus one-fifth
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Table 14. Normalized Series 50 (0.2deg) Results
[ Euclidean Distance Methodology

Template Test
50 51 52 53

50 - 100% 100% 100%
51 *90% - 100% 100%
52 100% 100% - 100%
53 100% 100% 100% -

* 1 miss of +0.2deg

Table 15. Normalized Series 90 (0.2deg) Results
[ Euclidean Distance Methodology

Template Test
90 91 92 93

90 - 100% 100% 100%
91 100% - 100% 100%
92 100% 100% - 100%
93 100% 100% 100% -

of a degree.

Table 15 shows that normalizing the series 90 data increased the accuracy from

the 90 and 80's percentile to a perfect 100 percentile run.

One series's accuracy decreased when the input feature vectors were normal-

ized. The half-angle series actually decreased in accuracy from 98 percent to 96 per-

cent due to the miss-classification of one more angle than with the non-normalized

data. The non-normalized run (reference Table 5) only missed the 0.5 degree AOA

where as the normalized run missed AOAs of 0.5 and 1.0 degrees. The miss on both

AOAs was plus one-half degree.
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Table 16. Non-Normalized 0.1deg AOA Results
[ 7Euclidean Distance Methodology

Template Test
220 221 222 223 224

220 - 40% 40% 10% 50%
221 40% - 20% 10% 30%
222 30% 20% - 30% 60%
223 20% 10% 20% - 20%
224 60% 40% 80% 70% -

worse case error +0.6deg

Table 17. Normalized 0.1deg AOA Results
[ Euclidean Distance Methodology

Template Test
220 221 222 223 224

220 - 100% 100% 90% 100%
221 100% - 100% 80% 100%
222 100% 100% - 100% 100%
223 90% 90% 100% - 80%
224 90% 90% 80% 80% -

all errors :0.1deg

4.8 One Tenth of a Degree AOA

Originally one fifth of a degree was though to be the limit because early at-

tempts to detect lower AOA's proved haphazard at best, refer to Table 16. But

normalizing the data, as shown in Table 17, brings the previous data up in some

cases as high as 80 percent over previous attempts to classify the AOA data using

the Euclidean distance methodology. The non-normalized data had missed AOAs as

high as plus 0.6deg. The normalized data results had misses of only plus or minus

0.1deg and if the 222 run was used as the template the accuracy rate for classifying

the exemplars was a 100 percent.
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4.9 Summary

This chapter presented the findings of using the Euclidean distance measure-

ment and the RBF neural network as classifiers in an AOA detection system. The

first sections (Sections 4.1 through 4.5) showed that Capt Welker's previous AOA

classification work was repeatable and showed the results of improvements made to

the system. Improvements such as the automated rotational stage and the reduction

in the feature vector which allowed the Euclidean distance methodology to classify

AOAs as low as one-fifth of a degree. The next section (Section 4.6) gave the results

of using the RBF neural network to classify AOAs. The section showed how decreas-

ing the sigma threshold value and normalizing the feature vector allowed classifying

AOAs down to one-tenth of a degree with a hundred percent accuracy. The final data

presentation section (Section 4.7) goes back to the Euclidean distance methodology

and with the insight of normalizing the input feature vector, gained from the RBF

section, showed how normalizing the data improved the results. Improvements as

high as eighty percent as was shown in the one-tenth of a degree data.
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V. Conclusions and Recommendations

This chapter presents the conclusions that can be drawn from this research

effort and presents some areas in which this research could be expanded. The main

accomplishment of this research effort wa to setup a AOA detection system that

could classify AOAs to one-tenth of a degree. This is an improvement of ten times

the previous work using a similar laboratory setup.

5.1 Baseline Conclusions

The baseline system of this research was that of Capt Welker's AOA detection

system which showed that the AOA of incident laser energy on the front of an

optical fiber could be determined to with in one degree. The baseline system lack

of resolution greater than one degree was mainly due to the lack of repeatability of

intensity measurements. Since each AOA was set by hand, angular resolution of the

baseline system was limited to approximately one degree. This lack of repeatability

of an intensity measurement was over come in this research by the addition of the

automated rotational stage. The rotational stage, due to its accuracy of 0.001 degree,

gave the baseline system repeatability of measurement and allowed the reproducing

of Capt Welker's one degree of AOA classification.

5.2 Phase I Conclusions

Phase I of this research effort centered around the Euclidean distance methodol-

ogy to classify AOAs. Euclidean distance measurements were made between various

template and test feature vectors. The smallest distance between a template feature

vector and that of the test feature vector classified the test vector.

The feature vector consisted of magnitude components of the lower harmonics

of the Fourier transform of the intensity pattern out of the optical fiber due to the

incident laser energy on the front of the optical fiber. This research concluded that
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using only the lower three harmonics with no dc term made the best feature vector.

Using a 24 component feature vector allowed the system to achieve a 100 percent

accuracy on quarter degree AOAs. Where as only 80 percent accuracy was obtained

when the dc component was included. Also, normalizing the 24 component feature

vector before computing the Euclidean distance allowed the classification of AOAs

down to 0.1 4 0.1deg.

The normalizing of the feature vectors removed small intensity variations from

the data. This conclusion can be drawn from the 50 series data. Initial results of

performing classification on the 50 series data was dismal, and it was found that

the intensity level out of the collimator had dropped from the intensity level noted

during the 30 series run, due to the collimator falling out of alignment with the

laser's path on the optics bench. Without normalization the 50 series results showed

correctly classified AOAs as low as 30 percent and angular errors as high as ±0.4deg.

With normalization of the feature vectors the lowest accuracy was a 90 percent with

one miss of +0.2deg when using run 51 as the template file. All other runs of the 50

series gave perfect results when used as the template file.

Without normalization one-fifth of a degree accuracy was the limit with the

Euclidean distance methodology and feature vector used in this research. Without

normalization one-tenth of degree results were worthless. With normalization the

Euclidean distance methodology could classify the AOAs down to 0.1 ± 0.1deg. One

run (the 222 file) classified all test runs perfectly indicating that picking the right

template file is very important to the results in the Euclidean distance methodology.

5.3 Phase II Conclusions

Phase II of this research centered around using a radial basis function (RBF)

neural network as an AOA classifier. Using the same 24 component feature vec-

tor from phase I and various template exemplars from each series, the RBF could

classify AOAs to 0.1 degree with a 100 percent accuracy. The Euclidean distance
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methodology could only match the RBF network's accuracy if the correct run of a

given series was chosen as the template. For example, in the 220 series the Euclidean

distance methodology was only a hundred percent when the 222 run was used as the

template. The ability of the RBF network to use more than one run of a series as

a template allowed the RBF to automatically gain in accuracy over the Euclidean

distance methodology of phase I.

5.4 Recommendations for Further Research

Further automation of the data gathering portion of this research is needed.

In this research two PCs were required. One PC ran the Spiricon software to gather

the intensity measurements out of the optical fiber, and the other PC ran the WARP

program to control the automated rotational stage. What is desired is a system

controlled by a single program with the ability to measure the intensity profile of an

AOA, move to the next AOA, and repeat the sequence until all required AOAs are

measured without operator intervention.

The rotational stage does provide 'C' source code so that a control program

could be written to control the rotational stage instead of using the WARP program.

The present Spiricon system does not give the user the option of writing control

code. What is needed is a system like the Spiricon system, but one that allows the

user to write 'C' control code for it. Then a single data gathering program could be

written to allow many small AOAs to be repeatedly measured.

A totally automated system could be configured if the present Spiricon system

was to be replaced with the Spiricon LBA-100 laser beam analyzer unit. The LBA-

100 is a stand-alone unit capable of being controlled though a serial port on a PC

computer. So if the LBA-100 was connected to a serial port on the PC containing

the PMC-300 control board, then a single 'C' program could be written to control

the setting of the AOA and capturing of the associated AOA intensity pattern.

In this research, each measurement required approximately five minuets, most
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of which was use by the Spiricon software to store the intensity image. Also due to

only having ten megabytes free on the hard disk for storage required the measurement

process to be stopped periodically to move data over to the VAX so as to allow

more data to be taken. A minimum of a 80 megabyte hard drive is required for

an automated system. The 80 megabytes would allow approximately 300 intensity

images to be stored. Three hundred images could handle the entire FOV of the

optical fiber with an angle spacing of 0.1deg.

Along with the automation of data gathering goes the requirement to have the

laboratory setup in an area that can be kept dark during data gathering. This could

be accomplished by-moving the optics bench to its own room or enclosing the bench

within an enclosure (such as, Newport's TE2406 lightweight table enclosure).

This research shows that AOA can be determined down to 0.5 degree over the

entire FOV of a 3mm-diameter optical fiber. The next research needs to prove that

the classification accuracy of 0.1 degree, as seen from 27.0-27.9deg can be shown

to hold true over the entire 26 degree FOV of the optical fiber. To accomplish this

accuracy of 0.1deg will require approximately 1300 images to be taken (26deg times

10deg/AOA time 5 repetitions). The five repetitions are required to give the RBF

neural network the accuracy down to 0.1deg. With 1300 measurements it is easy

to see why a totally automated data gathering system is recommended for future

research.

Along with the area stated above, the following areas should also be investi-

gated:

* Increasing FOV of the AOA detection system through the addition of more

optical fibers to form a compound eye type of system.

* Using a non-linear filter to allow the system to handle varying laser beam

intensities.
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* Performing the Fourier transform in optics; verses the using of a computer

routine.

* Check system accuracy with different laser sources.

Hopefully the AOA detection accuracy of 0,1deg will provide incentive for the

continuation of research into AOA detection using the intensity patterns out of an

optical. fiber.
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Appendix A. Alignment Procedure

The purpose of the following alignment procedure is to initially setup the angle

of arrival detection system. The first section explains how to build an alignment tool.

The next section explains how to assure that the laser beam is parallel to the top

of the optics bench and centered on the optical fiber mounted on the front of the

camera. The final section explains how the initial power lever is set.

A.1 Alignment Tool

To aid in aligning the system a simple alignment tool was built out of some

common optics equipment and a clear plastic square. The following items were used:

* Clear plastic square (10in)

• Optical rail

* Adapter plate with mounting screws

* Two long screws

* White correction fluid

Assemble the tool as shown in Figure 18. The following steps will align the tool to

the center of the optical fiber.

* Remove the collimator from its mounting base.

* Remove the neutral density filters.

* Caution never look into the laser's path and be careful of laser reflections off

of metal surfaces!

* Turn on the laser.
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Square ................ ....... L ong Screw s

Optical Rail / / "

Adapter -"
Plate "

Figure 18. Alignment Tool

e Adjust the laser beam by using the adjustments on the beam steering instru-

ment so that the beam hits the front of the optical fiber dead on (note the

camera should be set to zero degrees).

9 Place the alignment tool in front of the camera and square it up.

The alignment tool is squared up by forcing the two protruding screws against the

edge of the optics bench. For good alignment, it is important that the vertical section

of the clear plastic square be as close to the edge of the rotational stage as possible.

Mark the point at which the laser beam passes through the square with a small dot

(approximately the size of the laser beam) of white correction fluid.

The alignment tool is now aligned to the center of the optical fiber mounted

on the camera.

62



A.2 Laser Beam Alignment

The laser beam must be parallel to the top of the optics bench. The direction

of the laser beam is controlled by the beam steering instrument. The following

steps are to align the beam. Move the alignment tool up close to the beam steering

equipment. Now there are two points (the dot on the alignment tool and the center

of the fiber on the camera) in line on the optics bench. Adjust the controls on the

beam steering equipment until the beam illuminates the white dot brightly and the

center of the fiber on the camera. Next the collimator must be aligned to the laser

beam. Refer to the laser collimator instruction manual for this alignment (10:10-13).

A.5 Attenuator Adjustment

The final step in the alignment process is to adjust the variable attenuator for

approximately -30dBm of power into the fiber.

* Place the neutral density filters (optical density of 2) between the collimator

and the camera and in ine with the laser beam.

* Place the power meter probe in front of the camera and assure that it is placed

for maximum dBm reading.

9 Adjust the variable attenuator until the power meter reads approximately

-30dbm.

* Remove the power meter's probe from the laser's path.

The system is now aligned and should give a zero degree picture on the Spiricon

monitor with no visible areas of saturation. There will be some pixels saturated

randomly through out the pattern.

A.4 Zero Degree Baseline

After the above alignment has been accomplished the zero degree intensity

pattern, as shown on the Spiricon's real time monitor, should be similar to the
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~BLUE

Figure 19. Zero Degree Intensity Pattern

Figure 20. Zero Degree Intensity Slice

pattern shown in Figure 19. (Note: this pattern was based on the default Spiricon

color scheme.) The intensity pattern shows a thin ring of medium intensity (orange),

followed by a higher intensity ring (red), dropping off to blue and green intensity

levels in the center. Varying center intensity levels were observed at the zero degree

position of the optical fiber.

A sliced view of the intensity pattern represented in Figure 19 is shown in

Figure 20. The picture shown in Figure 20 was made by the Spiricon system after

the above alignment was accomplished and with the AOA at zero degrees.
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Appendix B. Collimator

The laboratory setup was devised by Captain Welker to simulate a laser source

located on the ground hitting a sensor located on a satellite. Since a laser traveling

from the ground to a satellite would spread out and appear to the sensor as a uniform

amplitude'plane wave, a collimator is required in the setup.

The collimator expands the beam so that the beam hitting the optical fiber

(sensor in this research) is approximately a uniform amplitude plane wave. The

output of the collimator is a 2.5cm diameter Gaussian profile intensity beam. Also,

collimator provides for removing extraneous noise from the beam.

Extraneous noise is filtered out from the beam by optically Fourier transform-

ing the incoming laser beam, only allowing the low frequency components of the

Fourier transform to pass, and then inverse Fourier transforming the beam . This

filtering is accomplished by having two lenses with a common focal point between

the lenses. At the common focal point a 10 micron pinhole is placed which performs

spatial filtering of the beam. Noise energy (such as dust on the beam steering in-

strument's mirrors) will usually fall outside of the pinhole resulting in only a smooth

beam passing through the pinhole and out of the collimator (10:3-4). Refer to Fig-

ure 21.
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f focal length for lens 1

f focal length for lens 2

Figure 21. Collimator

66



Appendix C. Spiricon File

The output of the Spiricon system is a 263,052 unsigned byte (8 bits) file per

picture. Figure 22 shows the layout of a Spiricon file. The break down of the file is

as follows:

* 2 bytes of Spiricon header (3039 hex)

e 262144 unsigned bytes of picture information representing the 512-by-512 pixel

output of the camera

* 906 bytes of Spiricon software data

The first two bytes of a Spiricon file contains a header. The header signifies to

the Spiricon software that the following file is a Spiricon file.

The next 262144 bytes contain the picture information. Each byte of picture

information represents the intensity of light hitting the corresponding pixel element

of the camera. The value of each pixel can range from 0 to 255. The pixel elements

are spaced 0.015mm apart. The fiber is 3mm in diameter; so, the intensity pattern

out of the fiber excites approximately 200-by-200 of the pixels in the center of the

camera's 512-by-512 pixel array. Therefore the Spiricon file can be reduced to a

256-by-256 file without losing any information. In fact decreasing the file size also

decreases the noise into the system and aids in the AOA recognition method.

The last 906 bytes of the Spiricon file gives an area to store file information.

The area can be used to store information such as the owner of the Spiricon software,

date, time and other information pertaining to the setup of the Spiricon software at

the time of picture storage. Sixty-eight characters of this 906 bytes is user definable.
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Two bytes of header

30 31

(0,0) (0,1) ................. (0,512)

262144 bytes of
picture info.

(512,0) ......................................... (512,512)

906 bytes of software info.
(i.e. Software owner)

Figure 22. Spiricon File
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Appendix D. Program XFM

This appendix provides the 'C' source code for the XFM program. The, XFM

program takes in sequentially numbered Spiricon files, reduces the files down, floats

the data of each file, performs a Fourier transform on each file, and puts the dc

component and the lower three harmonics of each transform in two files.

The two files allow for further processing of the data and for the viewing or

printing of the lower three harmonics of each of the input files. The directly viewable

(as in on screen viewing) or printable file ASCII has the suffix .doc. The other file has

a suffix .vec which stands for feature vector file. The feature vector file is readable

by the NACDIS program (refer to Appendix F) and by the MZNET program (refer to

Appendix G). The files are also labeled to as which type of data was read in and

what run number the operator wishes to assign to the data file.

There are two types of sequentially numbered data files the XFM program will

accept: template or test files. Both files are physically the same; but, allow the

operator to create template or test files to submit to the NACDIS program or other

follow on programs. The template files are labeled %up%udeg. and the test files are

labeled %up%utst. Where the first %u stands for the whole portion of the AOA, the

p stands for the decimal point, and the second %u stands for the fractional portion

of the AOA.

The output file is labeled as a template or test file depending on whether or

not deg or tst files have been submitted. An example of a printable template run

output file would be: template%u.doc. An example of a printable test run output

file would be: test%u.doc. The %u in either of the output files stands for an operator

set run number.
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D.1 Running the Program

The XFM program is started by typing xfm. The program is driven by questions

asked of the operator.

The program first asks for a run number. This number is an arbitrary decimal

number created by the operator to keep track of different sets of data files.

Next the program asks "Are these files template... y/n?" If the answer is yes

then the program will look for %up%udeg. files. If answered no then the program

will look for %up%utst. files. The yes also sets the output file as a template file.

The no sets the output file as a test file.

Third the program wants to know the first whole angle of the sequential data

files to process. For example, if the operator wishes to process a set of data files

representing angles between 0 and 10, the operator would enter 0 in response to this

question.

Fourth the program wants to know the last whole angle of the sequential data

files to process. For example, if the operator wishes to process a set of data files

representing the angles between 0.0 and 0.80, the operator would enter 0 in response

to this question.

The last question asked is "How many sub-angles per angle?" For example 1

for no sub-angles, 2 for 1/2 degree angles, 4 for 1/4 degree angles, or 5 for 1/5 degree

angles.

Once the questions have been answered the program reads and processes the

files sequentially. The resultant feature vectors made up of the dc component and

the lower three harmonics of the Fourier transform of each input file are put in the

output files.
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D.2 Example Run

,In this example the operator wishes to process the following test files: 26p0tst.,

26p25tst., 26p5Otst., 26p75tst., 27p0tst., 27p25tst., 27p5Otst., 27p75tst. Further the

operator wishes to assign the run number 20 to the resultant test files. The sequence

of questions and answers to the XFM program would be:

0 "Enter run number" 20

* "Are these files template ... y/n?" y

* "Whole angle of first test file?" 26

* "Whole angle of the last file?" 27

* "How many sub-angles per angle?" 4

The XFM program would print out to the screen that the resultant test vectors

will be stored in files test20.vec and test20.doc. The resultant test vectors can be

viewed by printing or sending to the screen the test20.doc file. The program also

prints to the screen the test or template file name as the program processes the

individual file.
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*XFM. C

This program is to be used with Spiricon files (i.e. ideg. or
1p5deg.)

INPUT - %udeg.256 or %utst.256 where 'Au is the angleI
- number of sub-angles per deg

OUTPUT templateIu.vec/.doc or test%u.vec/.doc where %u
is the run number.

#include math
#include string
#include stdio

#define size 512
#define nsize 256
#define hsize 128
#define bsize 124
#define esize 132
#define vsize 125

char filename..in[80], filenane-.vec[80], filename-.doc[80];
char template;
unsigned outer, inner;
unsigned char data..in[size] [size];
float array[nsize*nsize*2], real, imag, magn[nsize][nsize];
float matrix-.outrnbize] [nsize), mag;
float array.in risize] Ensize) , vector [7] [7];
mnt i, j, nn[3], angle-.b, angle..e, num..files, cnt, run, cnt-.b;
mnt itch, itcha;
unsigned run-.num;

main()

FILE *infile, *outfile, *docfile;

/* SET UP FOR NUMBER OF FILES TO READ IN *

printf("\n\n\nXFM.C )
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printf("\n\nEnter run number >")
scanf C" %d", &run);
run-num. = (unsigned)run;

printf("\n\nAre these files template yin? ");
scanf(" %c", &template);
if Ctemplate'y'){

printfC"\n\nWhole angle of first template file? >")

else{
printfC"\n\nWhole angle of first test file? >")

scanf C" %d", &angle..b);
printf("\n\nWhole angle of last file? > )
scanf (1 %d", &angle-.e);

printf("\n\nHow many sub-angles per angle? >")
scanf C"%d", &itcha);
itch =100/itcha;

num-files = itcha*(angle-.e - angle.b +1);

printfC"\n\nNumber of files to process %d ",num..files);

if Ctemplate'y'){
sprintfCf ilenaine~vec, "template%u .vec", run..num);
sprintf (filename.doc, "template%u. doc", run..num);
printfC"\n\nTemplate vectors will be stored in ... %"

filename-.vec);
printf("\nTemplate vectors will also be stored in ... %o

filename.doc);

else{
sprintfCf ilenane.vec, "test%u .vec", run..num);
sprintfCf ilename..doc, "t est%u .doc", run-.num);
printf("\n\nTest vectors will be stored in ... %"

filename..vec);
printf("\nTest vectors will also be stored in ... %"

filename-.doc);

/* OPEN OUTPUT FILE FOR RESULTANT VECTORS *
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/*Open output .vec file *
if((outfile =fopen(filename.vec, "w")) ==NULL) J
printf("\n\nError in opening output vector file %s "

f ilename.vec);
exit(1);

1* Open output .doc file *
if((docfile = fopen(filename.doc, "IwI)) ==NULL){
printf(IF\n\nError in opening output vector file %s "

filename..doc);
exit(l);

/* Print .doc title *

fprintf(docfile, "\n filename %s", filename.doc);

f or (cnt=angle..b; cnt<angle-.e+l; cnt++) {
for(cnt..b=O; cnt-.b<itcha; cnt..b++) {

1* SET UP INPUT FILE NAME *

outer = (unsigned)cnt;
inner =((unsigned) (cnt..b*itch));

if(template=='y'){
sprintf(filename.in, "%up%udeg.", outer, inner);

I
else{

sprintfCf ilename..in, "1%up'/utst.", outer, inner);

printf("\nProcessing file %s 11, filename-.in);

/* READ IN DATA *

if((infile = fopen(filename.in, "rb")) ==NULL){
printf("\nError in opening input file %s ", filenane..in);
exit(1);

fseek(infile, 2, 0); /* skip over spricon header *
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/* READ IN 512x512 BINARY FILE *
fread(data-.in, 1, size*size, infile);

/* PULL OUT CENTER OF 512X512 FILE and FLOAT IT *

for (i0O; i<size; i++){
for(j=0; j<size; j++){

if (i>127 && i<384 && j>127 && j<384){
array-.in~i-128] j-i28] = (float)data-.in[i] [j];

fclose(infile);

/* printf("\nFinished reading and floating the data"); *

1* Fill Array *

for(i=0; i<nsize; i++){
for( j0O; j<nsize*2; j++, j++){

array Ei*2*nsize+j+1] = array-in~i] [j/2];
array[i*2*nsize+j+2] = 0.0; 1* add imag array *

/* printf("\nFinished adding imag array"); *

/* FOURIER TRANSFORM ARRAY *

nn[l] = nnE2] = nsize;
fourn(array,nn,2,i);
/* printf ("\nFinished f ourier transform"); *

/* COMPUTE MAGNITUDE OF THE FET *

for(i=0; i<nsize; i++){
for(j0O; j<nsize*2; j++,j++){

real = array~i*2*nsize+j+1];
imag = array~i*2*nsize+j+2];
mag = sqrt((real*real + imag*imag));
magn~i][j/2] = mag/(nsize*nsize);

1* FLIP MATRIX SO THAT THE DC COMPONENT IS AT THE CENTER OF THE
MATRIX *
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/* 112

413

/* FLIP 1TO 3*
for(i=O; i<hsize; i++){

for(j0O; j<hsize; j++){
matrix-.out[i+hsize] [j+hsize] magn~ili ;

/* FLIP 2 TO 4 *
for(i0O; i<hsize; i++){

for(j=hsize; j<nsize; j++){
matrix-.out[i+hsize] [j-hsize) magn [ii [j];

/* FLIP 3 TO 1 *
for(i0O; i<hsize; i++){

for(j0O; j<heize; j++){
matrix-out [ii [j] =magn[i+hsize] [j+hsize];

/* FLIP 4 TO 2*
for(i=O; i<hsize; i++){

for(jhsize; j<nsize; j++){
matrix-.outL'i] [j] = magni+hsize] [j-hsize];

11
1* PULL OUT THE CENTER OF THE 2-DFFT *

for(i0O; i<nsize; i++){
for(j0O; j<nsize; j++){

if(i>bsize && i<esize && jPbsize && j<esize){
vector [i-vsize]Ej -vsize) =matrix-.out Ei] [ji;

1* SAVE THE VECTOR *

/* Save to filename..doc *

fprintf(docfile, "\n\n Vector Number %u.%u\n", outer,
inner);

f or (i0O; W<; i++) f fprintf(docfile, "\n 1)

for (j0O; j<7; j++){
fprintf(docfile, "%f ",vector[i] [j]);
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fwrite(vector, 4, 49, outfile); /* Save to filename.out *

fclose (outfile); /* close the vector file *
fclose (docfile);
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Appendix E. Subroutine FOURN

This appendix provides the source code for FOURN subroutine. The subroutine
FOURtN, when called by another routine, takes a-real, 2n , multi-dimensional array and

performs a Fourier transform on the array. The input array must contain zeros in

the imaginary elements (refer to Figure 23). Figure 24 shows the structure of the
Fourier transform output array. The Fourier transform output is saved back to the

same filename. In other words, the output is written over the input.

Input Array Sample

1) real
- (2) - imag t0

L3) real t
(4) imag

2-3l t=(N-2)
2N-2) imag

(2N-i. real t=(N-1)
(2N) ima .

Figure 23. Input Array (13:411)

The original source of this subroutine is from the book NUMERICAL RECIPES

in C The Art of Scientific Computing (13:407-412). The version given here was mod-

ified for n-dimensional arrays by Captain Gregory Tarr.
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Output aHarmonic
Array Frequency

(39---real
f=1/

(2) iag

(N-) real
f=(N1N

(4+) imag Ng

(N+3 rea f=-(N/2-1)/N
(N+) imag

__ _ _ _ _ f=-1/2N..........

FN2)igue2. upt ra(341
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FOURN.C
/* Replaces data by its complex dft

From the "NUMERICAL RECIPES in C The Art of Scientific
Computing" ISBN 0-521-35465-X
Modified for n-dimensional arrays by
Captain Gregory Tarr

inputs
data - address to array
nn - nn[3] = {O, nsize, nsize}
ndim - dimension of Fourier transform required
isign - +1 or -1

+1 = FFT
-1 = inverse FFT (must multiply result

by 11N) ref eqn 12.1.9

data format
in out

1 real to 1 real fo (dc term)
2 imag to 2 imag fo

2N-1 real to 2N-1 real
2N imag to 2N imag

#include <math.h>
#define SWAP(a,b) tempr=(a) ;(a)=(b) ;(b)=tempr

void fourn(data,nn,ndim,isign)
float data[];
mnt nnE] ,ndim,isign;

mnt il~i2 ,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2;
mnt ibit,idim,kl,k2,n,nprev,nrem,ntot;
float tempi,tempr;
double theta,wi,wpiwpr,wr,wtemp;
ntot=1;
for (idiml; idim<=ndim; idim++)

ntot *= nn[idim];
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nprev=1;
for (idim=ndim;idim>=i;idim--){

nnn[idim];
nrem=ntot/ (n*nprev);
iplnprev << 1;
ip2=ipl*n;
ip3=ip2*nrem;
i2rev"!;
for (i2=1; i2<=ip2; i2+=ipl) \{

if (i2 < i2rev){
for (iIi2;i1c=i2+ip1-2;il+=2){

for (i3=i1;i3<=ip3;i3+=ip2){
i3rev=i2rev+i3-i2;
SWAP(data[i3] ,data[i-3rev]);
SWAP(data[i3+1,data[i3rev+i]);

ibit=ip2 >> 1;
while (ibit >= ipi. \&\& i2rev > ibit) W{

i2rev - ibit;

ibit >>= 1;

i2rev += ibit;

ifplipl;
while (ifpl < ip2){

ifp2=ifpi << 1;
thetaisign*6 .28318530717959/(ifp2/ipl);
wtempsin(0.5*theta);
wpr = -2.O*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (i3=1;i3<=ifpI;i3+=ipI){

for (iIi3;iI<=i3+ipl-2;iI+=2){
for (i2=ii;i2<=ip3;i2+=ifp2){

kli2;
k2=k+ifpl;
temprwr*datajk2] -wi*data~k2+1];
tempiwr*data [k2+1] lwi*data [k2];
data [N2 =data [ki] -tempr;
data[k2+1] =data[kl+1] -tenipi;
data~kl] += tempr;
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data[kl+1] += tempi;

wr= (wtempwr) *wpr-wi*wpi+wr;
wi~wi*wpr+wtemp*wpi~wi;}

i'fpl=ifp2;}
nprev n;

#undef SWAP
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Appendix F. Program NACDIS

This appendix provides the 'C' source code for the program NACDIS. The

NACDIS program reads in template and test files generated by the XFM program

and performs a 24 component Euclidean distance measurement on each test feature

vector verses each template feature vector. The distance measurements are stored

in the file labeled %u.nacdis_%u.doc. The first %u corresponds to the run number

of the template%u.vec file, and the second %u corresponds to the run number of the

test%u.vec file.

Only 24 of the 49 component feature vector from the XFM program is used by

this program. Since the input data is symmetrical about the dc component of the

feature vector the last 24 components are ignored so as to speed processing time.

The dc component is ignored since leaving it out improved the distance measurement

results. The NACDIS program normalizes each 24 component feature vector before

computing the Euclidean distance between vectors.

F.1 Running the Program

The program is started by typing nacdis. The program is driven by questions

asked of the operator.

The first the program asks for the run number of the template file. Next, the

program asks for the run number of the test file.

Both inputs must be decimal numbers corresponding to the run numbers of the

two files. Tii:d the program requests the first and last whole angles of the original

deg files used to produce the template file. The fourth request is for the first and last

whole angles of the original tst files used to produce the test file. The last request is

for the number of sub-angles per degree.
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The number of sub-angles per degree and the number of whole angles allows

the program to compute how many test files it will have to process. The program

prints to the screen how many test file it has to process, and the file to which the

output will be written to. The program then computes the distances between each of

the template vectors and each of the angles. The resultant lowest distance between

each test and template vector is printed to the screen. All distances between each of

the template vectors are stored in the output file. The output file is in ASCII format

so it can be printed or view directly on the screen.

F.2 Example Run

In this example the operator wishes to process the following template and test

files: template20.vec and test20.vec. For this example the template20.vec file was

created by the XFM program for the following template files: OpOdeg., Op5Odeg.,

lpOdeg., and lp5deg. And the test20.vec file was created by the XFM program for

the following test files: Op0tst., Op50tst., lp0tst., and lp50tst. The sequence of

questions and answers to the NACDIS program would be:

* "What is the run number of the template file?" 20

" "What is the run number of the test file?" 20

" "The results will be stored as 20_nacdis20.doc".

• "What is the 1st whole template AOA?" 0

* "What is the Last whole AOA?" 1

• "What is the 1st whole test AOA?" 0

" "What is the Last whole AOA?" 1

* "How many sub-angles per AOA?" 2

* The program will print out "Number of test files to process = 4".
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* The program will process the data and print out "Vector %u indicates AOA

of %u deg" four times (once for each test vector).

The first %u of the above statement is the test vector number, and the second %u

is the angle of the closest template vector. If the above template and test vectors

matched their respective angles with the smallest Euclidean distance measurement ]
then the output would be as follows:

* "Vector 0. 0 indicates an AOA of 0. 0 deg"

* "Vector 0.50 indicates an AOA of 0.50 deg"

" "Vector 1. 0 indicates an AOA of 1. 0 deg"

• "Vector 1.50 indicates an AOA of 1.50 deg"

A complete listing of distances would be given in the 20_nacdis_20.doc file along

with the closest match (smallest distance).
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/* NACDIS.C
This program compares the test to the template
vectors of the XFM program.]

Input vectors are normalized before being compared.
The distance is computed on only '24 components ... no dc.

INPUTS The program wants to know what is the run numbers of the
test and template vectors you wish to compare.
Input files are template%u.vec and test%u.vec where the
%u is the file run number.
Output file is %u..nacdis..%u.doc where the first %u is the
template run number and the second %u is the test

- run number.

#icue ti

#include stdiog

#include math

char file-.template[80], file-.test [80], file..doc[80];
mnt num-.test, num-.template, test.b, test-.e, template.b, template-e;
mnt i, template-.run, test-.run;
mnt tst-.cnt, temp..cnt; tst-.cnt..frac, temp-nt-.frac;
mnt num..frac-.degs, frac-.tst, frac..temp, min-.whole-vec,
min..frac..vec;
float test-.vector[49], template-.vector[49];

float norm-.test-.vec[49], norm-.template..vec[49];
double sum, min-.distance, distance, mag.sum, mag-.sum-.temp;
double mag.vec, mag.vec-.temp;
unsigned temp-.run, tst~run;

main()

FILE *intemplate, *intest, *outdoc;

1* READ IN NUMBER OF FILES TO PROCESS *

printfQ'\nNACDIS.C 11);

printf("\n\nWhat is the run number of the template file? >")
scanf C"%d", ftemplate.run);
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temp-.run =(unsigned)template-.run;
sprintf (file-template, "template%u.vec", temp-.run);

printf("\n\nWhat is the run number of the test file? >")
scanf (" %d", &test..run);
tst..xun = (unsigned)test..run;
sprintf (file..test, "test%u vec", tst..run);

sprintf(file.doc, "%u..nacdis..%u.doc", temp..run, tst-.run);
printf("\n\nThe results will be stored as %s ", file.doc);

printf("\n\nWhat is the 1st whole template AOA? >")
scanf(" %d", &template.b);

printf("\n\nWhat is the Last whole AQA? > )

scanf( %d", &template-.e);

printf("\n\nWhat is the 1st whole test AOA? > )

scanf(" %d", &test-.b);

printf("\n\nWhat is the Last whole test ADA? >")
scanf(" %d", &test-.e);

Pkintf("\n\nHow many sub-angles per ADA? >")
scanf C" %d", &num..frac..degs);
num-.template = num-.frac-.degs*(template-.e-template-.b);
num-.test = num-.frac..degs*(test.e - test.b + 1);
printf("\n\nNumber of test files to process =%d ",num-.test);

/* OPEN TEMPLATE, TEST, AND DOC FILES *

if((intemplate = fopen(file.template, "r")) =NULL){
printf("\nError in opening input file %s ", file-.template);
exit(1);

if((intest = fopen(file..test, "r")) ==NULL){
printf("\nError in opening input file %s ",file-.test);

exit (1)

if((outdoc = fopen(file.Aoc, "w")) =NULL){
printf("\nError in opening output file %s ",file..doc);
exit(1);
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fprintf(outdoc, "\n File name Ys ",file.doc);

fprintf(outdoc, "\n\n Template run file number %u "
temp..run);
fprintf(outdoc, "\n Test run file number = %u "tst-.run);

/* BEGIN COMPARE *

/* BEGIN 1111111111111111111111111*

for(tst.cnttest.b; tst~cnt<(test-.e+l); tst-.cnt++){
for(tst.cnt..frac=0; tst.cnt..frac<num-.frac-.degs; tst..cnt..frac++)

frac..tst =tst-.cnt-.frac * 100 / num.frac..degs;
fread(test-vector, 4, 49, intest);

/* Normalize test-.vector*1:
mag.sum = 0.0;
for(i0O; i<49; i++){

mag-.sum+ = pow((double)test-.vector~i], 2);

mag-.vec = sqrt(mag-sum);
for(i0O; i<49; i++){

norm-.test-vec[iJ = test..yector[i] /mag-.vec;

/* reset for next test vector' */
fseek(intemplate,0,0); /* reset to start of template file *
min-.distance =1000000.0;

/* fprintf(outdoc, "\n\n
Template Test Distance ";*

/* BEGIN 22222222222222222222222222222222222222222222222222 *

for(temp-.cnt=template.b; temp..cnt<(template..e+1); temp.cnt++){
for(temp-.cnt..frac0O; temp-.cnt..frac

<num-.frac..degs; temp-nt.frac++){
frac-.temp = temp-.cnt-.frac * 100 / num..frac...degs;
fread(template.vector, 4, 49, intemplate);
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/* Normalize template-.vector *
mag-.sum-.temp, = 0.0;
for(i0O; i<49; i++){
mag-sum-temp+ = pow((double)template-.vec-tor[i], 2);

mag-vec-temp = sqrt(mag-sum-.temp);
for(i0O; i<49; i++){

norm-.template.vec [i] =template.vector [ii mag-ec.temp;

sum =0.0;
distance = 0.0;

for(i=0; i<24; i++){
sum+ = pow( ((double)norm-tst-.vec [ii-

(double) norm-.template..vec [i]), 2);

distance = sqrt(sum);

fprintf(outdoc, 11\n %2.2d.%2.2d
%2.2d.%2.2d

temp-.cnt, frac-.temp, tst..cnt, frac..tst, distance);

if (distance!06.0)
min-.distance = (min-.distance<distance) ? min-.distance
distance;

if (tin-.distancedistance){
min-.whole..yec = temp-.cnt;
min-.frac-.vec = temp-.cnt-~frac * 100 / num-.frac-.degs;

} * END 22222222222222222222222222222222222222222222222222 */

printf("\n\nTest vector %2.2d.%2.2d indicates Angle of Arrival
of %2.2d.%2.2d degrees",
tst..cnt, frac..tst, min.yhole-.vec, min-.frac-.vec);

fprintf(outdoc, "\n\n Vector %d.%d indicates AOA of
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tst..cnt, frac..tst, min _whole~vc mi-.fracjec);

fprintf(outdoc, '\n\n");

}*EN

fclose(intemplate);
fclose(intest);
fclose(outdoc);

}J
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Appendix G. Program MZNET

This appendix provides the source code for the MZNET program. The MZNET

program takes in a ten class binary output file from the XFM program- and produces

a class labeled ASCII file out. The ASCII output file is readable by the Radial

Basis Function (RBF) neural network software written by Captain Zahirniak. The

program's output is also printable, to the screen or to a printer, because the ASCII

output is limited to eight characters across before a hard carriage return is added to

the output file.

G.1 Running the Program

The MZNET program is started by typing mznet. The program is driven by

questions asked of the operator.

First the program asks for a file to store the resulting ASCII file to. The

program will automatically add the suffix .doc to the entered output file name.

Next the program asks for the name of the binary input file. The program will

automatically add the .vec suffix to the entered input file name.

The program will open a new file if the file given does not exist or will append

to a previously opened file. The appending to previous files allows multiple runs to

i'e combined into a single file to be read by the RBF neural network software. For

example, all of the 50 series runs were combined into a file called run50.doc after

running the MZNET program four times for runs: 50, 51, 52, and 53.
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/* MZNET.C

This program converts the output of the xfm program
(.vec file) into a format readable by the Zahirniak RBF
neural network program. The output file is also printable.

The program requests the input and output file names. The

program opens a new output file or appends to a previously
opened file.

./

#include math
#include stdio

#include string

char filename-in[80], filename-out[80];

float array[3] [8];
int i, j, jj;

main()

{

FILE *infile, *outfile;

/* Request file to output to */

printf("\nEnter file to output processed file to > ");
scanf("%,s", filenameout);
strcat (filename-out,".doc");

if ((outfile = fopen(filename.out, "a")) == NULL) {
printf("\n problem writing to Y.s", filenameout);

exit (i);
}

printf("\nMNetZ file will be stored on disk as Y.s ", filenameout);

/* Request file to process */

printf("\nEnter file name to process to Znet > ");
scanf("%s" ,filenamein);

strcat(filenamein, ".vec");

printf("\nInput file name is %s ", filename.in);
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if ((infile =fopen(filename..in, Ilrb")) ==NULL){
printf("\n problem reading Ulf, filename-in);
exit (1);

for(i=1; i<11; i++){
fread(array, 4, 49, infile);
for(j0O; j<3; j++){

for(jj=O; jj<8; jj++){
fprintf(outfile, % /f", array[j][jj]);

I
fprintf(outfile, "\n");

fprintf(outfile, "%u\n ",i);

fclose (infile);
fclose (outfile);
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