
FIT.,,"

HDL-TM-90-23
November 1990

The Fast Hartley Transform

by Mark Hyosun Mar

DTIC
0ELECTE

N D

U.S. Army Laboratory Command
Harry Diamond Laboratories

Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.



The findings in this report are not to be construed as an official Department
of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when i4 is no longer needed. Do not return it to the
originator.



REPORT DOCUMENTATION PAGE Fo.m A704o0e
I OMB No. 0704-0188

PJc, upown bunorthi oolecson of irdomn'aon is est med to h , hur par respns, ncludng the s.. or raaeng inatrudb,, eme % ialin, data scm,
feng an mmtdening the data needed. and eo--na and ,ing t coledon cd infwm.on Sand cn. regarding this lurden umat. or any . aspect of t's

Sof m on sncluding suggestne for rduing he burden. to W N et S , Osre-toral fo I o Operuona and Reports. 1215 Jefferson
Davis 1 , Suit 1204, ArinftoN VA 22202-4302. and to the Office of Man t and Pd eport' d (P0o4-o16). Waatenton r D; 20503.

1. AGENCY USE ONLY (Leave bhi*) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1990 Final, 1 Nov 88 to 30 Jan 89

4. TITLE A SUBTITLE $. FUNDING NLUMERS

The Fast Hartley Transform

PE: 6.21.20.A
6. AtR(oS)

Mark Hyosun Mar

".PERFORMING ORGANIZATION NAME(S) AND ADDRESWES) L PERFORMNO ORGANIZATION
REPORT UMBER

Harry Diamond Laboratories HDL-TM-90-23
2800 Powder Mill Road
Adelphi, MD 20783-1197

S. SPONSORINOMOUTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORNGAAOITOING
AGENCY REPORT NUMBER

U.S. Army Laboratory Command
2800 Powder Mill Road
Adelphi, MD 20783-1145

11. SUPPLEMENTARY NOTES

AMS code: 612120.H250011
HDL PR: XE79E3

12. WDsTRImONIAVLAILITY STATEMENT 12h. "TRIBU1ON CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (A&WMnm 200 wod)

This report describes the Fast Hartley Transform (FHT), which is twice as fast as the Fast Fourier Transform
(FFT), uses only half the computer memory, and is somewhat better for applications such as spectral analy-
sis, signal processing, and convolution. The FHT output is generated with a Fortran computer code and
compared to the results of a typical FFT algorithm.

14, UMECT TERMS 1s. NUMBER OF PAGES
27

FIT (fast Hartley transform), FFT (fast Fourier transform), EMP (electromagnetic COD. P E COD
pulse)

17. SECURITY CLASSIFICATION I SECURITY CLASSIFCATION 17. SECUP'7 •LAESIFICATION 20. UMATION OF ASSTRACT
OREOTOF THE6 PAGE Of RMC

Unclassified Unclassified Unclassified UL
NSN 7540.01 -200-50 Standard Form 298 (Rev 2-89)

PR - byANSISId Z3,18
291-102



Contents

Page

Background......................................................................................... 5

1. Introduction...................................................................................... 5

2. General Description of FHT..................................................................... 5

3. Comparison....................................................................................... 7

4. Performance ....................................................................................... 9

5. Conclusions...................................................................................... 13

Acknowledgments ................................................................................. 14

References......................................................................................... 14

Distribution........................................................................................ 25

Appendices

A.-Fortran Program FH-T.FOR.................................................................. 15
B.-Fortran Program BODE.FOR ................................................................. 21

Figures

1. Generalized EMP waveform.................................................................... 10
2. Fast Hartley transform of EMP waveform ................................................... 11
3. Fast Fourier transform of EMP waveform.................................................... 11
4. Calculated double exponential EMP spectrum.............................................. 12
5. Comparison of figure 4 with figures 2 and 3 ................................................ 12

DT A TAB 0 >./Or

Dist spacial

IF"' 1



Backgrounid

The purpose of this paper is to report the results of testing the Fast
Hartley Transform (FHT) and comparing it with the Fast Fourier
Transform (FF1). All the definitions and equations in this paper are
quoted and cited from the series of references. The author of this report
developed a Fortran program which computes the Hartley transform.
He tested the program with a generalized electromagnetic pulse
waveform and verified the result with the known value.

1. Introduction

Fourier analysis is an essential tool to obtain frequency domain
information from transient time domain signals. The FFT is a popular
tool to process many of today's audio and electromagnetic signals.
System frequency response, digital filtering of signals, and signal
power spectrum are the most practical applications of the FFT.
However, the Fourier integral transform or the FFT requires the
computer resources appropriate to the complex arithmetic opera-
tions. On the other hand, the FHT can accomplish the same results
faster and requires fewer computer resources,*lzThe FHT is twice as
fast as the FFT, uses only half the computer resources, and so could be
more useful than the FFT in typical applications such as spectral
analysis, signal processing, and convolution[2] This paper presents
a Fortran computer program for the FHT algorithm along with a brief
description and compares the results and performance of the FHT and
the FFT algorithms.

2. General Description of FHT

Equation (1) defines the analytic form of the Hartley transform, and (2)
shows its inverse transform, which switches the frequency function
back into the time domain [1]:

H(t) = X(t) cas (2nft)dt , (1)

X(t) = H() cas (2nrft)df, (2)

where cas (2 nrft) = cos (2 nrft) + sin (2 icft).
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The cas function was introduced by R. V. L. Hartley, who first
proposed the Hartley transform in 1942 [3].

The above equations are very similar to the Fourier transform, equa-
tion (3), and its inverse, equation (4) [1].

FOD=1 X(t)e-J2nft dt .(3)

X(t) = f F()eJ2ltf df (4)

where ePlft = cos (2 7Kft) +jsin (2 irft) and e-2-f = cos (2 itft) -jsin (2 nft).
(These are known as Euler's formulas.)

Note the electrical engineering convention of labeling the imaginary
unit i as j (i equals the square root of -1).

These four equations deal only with continuous time variables. In the
real world, however, signals are sampled at discrete intervals of time.
So there are discrete transforms that approximate the Fourier integral
and the Hartley integral. The discrete forms of the Hartley transform
(DHT) pairs are [1

N-1

(f)1 I X(t) cas (2 ift/N) , (5)
Nt=0

and N-1

X(t) = I H(f) cas (2 ntft/N) . (6)
f= 0

The discrete Fourier transform (DFT) pairs are very similar to the DHT
[1].

N-I
F(/) = , X(t)e-J2nf1IN, (7)

N =0
and N-1

X(t) = F(1)e2nf1IN (8)
f= 0

As can be seen in equation (7), the DFT requires (N - 1) complex
multiplications and (N- 1) complex additions to compute each output
point (the first term in the sum involves exp (j * 0) = 1 and therefore
does not require a multiplication). Thus, to compute N output points,
N(N - 1) complex multiplications and the same number of complex
additions are required. Now each complex multiplication requires
four real multiplications and two real additions. Hence, for computa-
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tion of all the output points for N-point data, the DFT requires 4N(N
-1) real multiplications and 4N(N-1) real additions. To overcome this
computational requirement, the FFT algorithm (Cooley and Tukey
algorithm) was developed for the machine computation of a complex
Fourier transform [4]. The FFT uses a permutation process to bisect the
data sequence until data pairs are reached. The fundamental concept
for the permutation process is that it is faster to divide the data set into
pairs, compute the transform of the pairs individually, and recombine
them to make the entire transform rather than to compute the trans-
form as a whole data set. The Fourier transform of the time domain
data set can be obtained by superimposing all permutated data pairs.
An N-point FFT, where N is a power of 2, requires 2N log 2 N real
multiplications and 3N log 2 N real additions, which means a factor of
about 200 times less multiplication for N equals 1024 time data points
[5]. Similarly, Bracewell developed a fast algorithm for the Hartley
transform. However, to use the algorithm, the decomposition formula
that expresses a complete DHT in terms of its half-length subse-
quences is required. Bracewell has shown the following decomposi-
tion formula by application of the shift and the similarity theorems for
the DHT [6]. Using an equivalent concept for the Fourier transform,
the similar decomposition formula can be defined [1].

H(]) = H1(j + H2(0) cos (2 7fINs) (9)
+ H2 QVs-J) sin (2 itf/Ns)

F() = FI(f) + F2()ei2ltfINs , (10)

where N is the number of elements in the half-length sequence, and
thus N = N12 for a data set of N elements

As can be seen, there is one important difference between equations
(9) and (10). While the FFT decomposition formula is symmetric, the
FIT decomposition formula is asymmetric because of the sine coeffi-
cients on both HQ) and H(N. -f). This aysmmetric matrix processing
requires special handling such as retrograde indexing for computer
implementation. The retrograde indexing behavior can be described
by "using an independent variable as an index for the elements
multiplied by the sine coefficients. This index decreases while the
other indexes increase [1]."

3. Comparison

The major difference between the two transform algorithms is the real
function cas in the Hartley transform and the complex exponential
term in the Fourier transform. Since real arithmetic is much simpler
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than complex computation, the FHT is faster than the FFT and requires
fewer computer resources. Furthermore, the complex Fourier spec-
Tum can be obtained from the Hartley transform. It is faster to
generate the Fourier transform and power spectrum with the FHT
than with the FF1, because the FHT algorithm uses real rather than
complex quantities and so requires fewer floating-point operations.

If a function can be expressed uniquely into even and odd parts, then
from the even and odd parts the original function can be uniquely
reconstructed. Based upon the symmetrical property for the even
function and the asymmetrical property for the odd function, the
following relationships can be established [6].

Let H(f) = E(P) + O(), where E(f) and 0(f) are the even and odd parts of
H(j), respectively. Then

E() _H(t) + H(-)i V(t) cos 2nftdt (11)2 j-

and

0H) -H(- ) V(t) sin 2 nftdt . (12)2 = -0

According to equations (11) and (12), the Fourier transform can be
obtained from the Hartley transform simply by reflections and addi-
tions of the even and odd parts. Since the real part of the FFT is equal
to the even part of the FHT, and the imaginary part of the FFT equals
the negative odd part of the FHT, the real and imaginary parts of the
FFT can be obtained from the FHT according to the following equa-
tions [1]:

Fr HO + H(N -.) (13)
Fim H()- H(N-J), (14)

where F is the real portion of the complex Fourier transform, F. is the
imaginery portion, and N is the number of elements in the data set.

The power spectrum can be obtained directly from the FlIT using the
following equation [1]:

P,(t) =[U 2 + H(N- ]/2 ,(15)
where P. is the power spectrum.

While the FFT computes the square of the real and imaginary parts
and sums the two values at a given frequency, the FHT squares and
sums the two values of the Hartley transform at the positive and
negative frequencies. Since the FHT computes the energy content in
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the positive and negative frequency domain, a factor of two is required
in the above equation.

The convolution theorem is almost identical between the Hartley and
the Fourier transforms. Equation (16) summarizes the convolution
theorem for the Hartley transform, corresponding to equation (17) for
the Fourier transform [1].

f 1(t) ®f2(t) = Hi() H2(j) + H(-f)HH2j) , (16)

where H2,(f) is the even part of -12(f) and H2/f) is the odd part of H 2(f).

f 1(t) ®f 2(t) = FI(J) F2(f) (17)

The G symbol denotes the convolution operation.

Note that if one of the functions being convolved is either even or odd,
then the convolution theorem for the Hartley transform reduces to the
particularly simple form indicated below [1]:

f, (t) G f2(t) = H, ) H2V) . (18)

4. Performance

The Fortran program, FHT.FOR, is presented in appendix A as devel-
oped from the basic program presented by Bracewell [2]. Using the
generalized double exponential waveform as a typical electromag-
netic pulse (EMP) electric field, a time domain data file is generated.
The generalized double exponential EMP electric field time behavior
is given by

E(t)= 5.25*104[exp(-4*106t) - exp (-4.76108)] , (19)

in volts per meter, where t is in seconds. This pulse has a peak value
of 50 kV/m, a 10- to 90-percent risetime of about 5 ns, and a time to
half-value of about 200 ns [7]. Figure 1 plots the time waveform of this
constructed high-altitude EMP electric field. The time domain wave-
form has 1024 equally spaced points with a time increment of 1 ns. The
user can choose any number of data points consistent with the
available computer memory size, but must be a power of 2 for
algorithm simplicity and additional execution speed. The sample data
have to be equally spaced for the FHT algorithm. If more than 1024
data points are required, the FHT.FOR program has to be modified to
expand the size of the arrays. The time increment can be controlled
also, and 1 ns is used as an example. As the FHT.FOR program
executes, the user has an option to choose a format for the transformed
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output data. One format has frequency and magnitude only while the
other one includes frequency and the real and imaginary parts of the
FFT spectrum. Figure 2 shows the FHT.FOR output, and figure 3
shows the FFT output as generated with the HOBOII signal-process-
ing software package [8]. As can be seen from figures 2 and 3, the FFT
and FHT results appear to be identical. If drawn on one graph, they
would overlay. The real and imaginary parts of the frequency spec-
trum obtained from the FHT algorithm were verified with the FFT
output from HOBOII. An inverse FFT applied to the FHT results
reproduces the input waveform which verifies the accuracy of the
FHT algorithm.

As can be noticed in figures 2 and 3, both transform algorithms
produce a nonphysical behavior at higher frequencies. To explore this
deviation and compare these transforms with the original double
exponential EMP spectrum, another Fortran program, BODE.FOR,
was developed. This program is included in appendix B. The
BODE.FOR program computes the double exponential frequency
spectrum using the analytic form of Fourier transform for the differ-
ences of two exponentials [7]. The calculated spectrum is shown in
figure 4, according to the output of BODE.FOR. In figure 5, the FHT
and FFT are superimposed on the analytic spectrum. Both transforms
trace the calculated spectrum, except for discrepancies at the high

Figure 1. Genveralized 5.0o - -1--.- ;+ia..4-- , , 4
EP waveform. /
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frequency as previously mentioned. Since the double exponential
pulse has a risetime of about 5 ns, there is an early time slope
discontinuity between the origin and the first sample data point for a
1-ns sample time increment. This situation can be improved if we take

Figure 2. Fast Hartley 0.01 : : ::':q : : : : " : ::::i 1 -++1 LL
transform of A .
waveform.
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Fit I4. Calculated 0.10 1411,

EMP spectrum.
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more data points in the early time, which requires a smaller time
increment. Another difference between the analytic frequency spec-
trum and that obtained with the FHT and FFT transforms is that the
low frequency limit is undetermined. In order to obtain the low
frequency value of the transformed data, the time domain data set has
to have a much larger time window, which would require more time
to process the transform. The time increment could also be increased,
but would lead to a -is of the high-frequency content. According to
the Nyquist sampling theorem, 200,000 time domain data points are
required with a time increment of 0.5 ns to generate a double exponen-
tial frequency spectrum with the FHT or FF, which would be similar
to figure 4. The Nyquist sampling theorem requires that the sampling
rate must be at least twice the highest frequency of interest in the
waveform being sampled [9].

When the speed of two transforms is compared, theoretically, the FHT
is faster than the FF; however, it is hard to compare the run time of
these two programs for the transform process itself because the
programs used in this effort, FHT.FOR and HOBOII, are implemented
differently. Also, for all practical purposes both codes process the
transform within a few seconds.

5. Conclusions

Since the FHT uses only real valued functions, there is no need for
complex calculations, which implies faster run-times and less com-
puter memory to process a signal in comparison to a typical FF1
algorithm. Finally, the FHT uses fewer operations to transform a given
signal, so there are fewer round-off errors.

The example illustrated does not prove that the FHT is superior to the
FFT, although it demonstrates that the FHT is fully compatible with
the FFT. However, if large amounts of data are being manipulated,
there could be a significant difference in speed and the amount of
memory required. The FHT offers better performance us" ;g fewer
computational resources.

The FHT.FOR program can be further developed to perform a convo-
lution that requires only real arithmetic. An FHT convolution algo-
rithm would be faster and easier to implement than a similar algo-
rithm developed for the FFT.
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APPENDIX A

$LARGE

C This routine generates the fast Hartley transform (Fl-T)
C and the complex form of fast Fourier transform (FF1)
C according to a given time domain function.

REAL 12
INTEGER P7,T,US2,QD,E,SSSO,P,OPTION
DIMENSION F(1 0,1 024),R(1 024),X(1 024),FR(1 024),RMAG( 1024) DIMENSION
S(I 024),C(1 024),M(ll),RR(1 024),XX(1 024) CHARACTER*20 FILNAM,FILENAM

C Opening the output files.

WRITE(*,*) TYPE OUTPUT FILENAME FOR THE TIME DOMAIN' READ(*,*)
FILNAM
OPEN(3,FILE=FILNAM,STATUS='NEW')
WRITE(*,*) 'TYPE OUTPUT FILENAME FOR THE FREQUENCY SPECTRUM'
READ(*,*) FILENAM
OPEN(IO,FILE=FILENAM,STATUS='NEW')

C Initialization.

WRITE(*,*) 'HOW MANY DATA POINTS.#'
WRITE(*,*) TOWER OF 2 BUT LESS OR EQUAL TO 1024' READ(*,*) NU4T
P=0

1 NUM =NU/2
P=P+1
NU = NUM
IF (NUM. GE.2) GOTO 1
N4 = 2**(P-2)
N2 = N4 + N4
N =N2 +N2

N7 = N - 1

WRITE(*,*) 'WHAT IS YOUR TIME INCREMENT?' READ(*,*) DTM
WRITE(*,*) 'WHAT ARE YOUR PARAMETERS ?' WRITE(*,*) 'E(t) =EO*(EXP(-

AP*t)-EXP(-BT*t)' WRITE(*,*) 'EO-?, AP=?, BT=?'
READ(*,*) EO,AP,BT
TM = 0.0
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APPENDIX A

C Generating the time domain waveform.

DO 10 1 = O,N7
FNF = EO*(EXP(-AP*TM)-EXP(-BT*TM)) WRITE(3,*) TM,FNF
TM = TM + DTM
DF = I.O/((N-1)*DTM)
FR(I) = I*DF
F(O,I) = FNF
F(l,I) = FNF

10 CONTINUE

C Generating the power of 2 numbers.

I1=
M(O) = 1
M(1) =2

20 M(I+1) = M(I) + M(I)
1=1+1
IF (I. LT .P) GOTO 20

C Get the sin and cos coefficients.

PI = 4*ATAN(1O)
W = 2*PI/N
A=0
DO 301= 1,N

A=A+W
S(I) = SIN(A)
C(I) = COS(A)

30 CONTINUE

C Start permutation.

J=-I

I=-1
50 I-I+1

T=P
40 T=T-1

J = J - M(T)
IF (J. GE .-1) GOTO 40
J = J + M(T+I)
IF (I. LE .J) GOTO 50
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APPENDIX A

T = F(0,I+1)
F(O,I+1) = F(OJ+1)
F(O,J+1) = T

IF (L. LT .N-3) GOTO 50

C First stage.

DO 601 = 0,N-2,2
F(1,I) = F(O,I) + F(0,1+1) F(1,I+1) =F(0,1) - F(O,I+1)

60 CONTINUE

C Second stage.

U =P7

SS =4
DO 90 L = 2,P7

S2 = SS+ SS
U=U-1
so = M(U-1)
DO 100 Q = ON7,S2

I=Q
D = I + SS
F(L+1,I) = F(LI) + F(LD) F(L+1,D) =F(LI) - F(LD) K =D - 1
DO 110 J = SON4,SO

1=1+1
D =I + SS
E =K + SS
Y =F(L,D)*C(J) + F(LE)*S(J) Z = F(LD)*S(J) - F(L,E)*CcJ) F(L+1,I) =F(L,I)

F(L+1,D) =F(L,I) - Y
F(L+1,K) =F(L,I) + Z
F(L+1,E) =F(L,K) - Z

K=K+l
110 CONTINUE

E = K + SS
100 CONTINUE

SS =5S2
90 CONTINUE

C Normalizing the fast Hartley transform's magnitude.

RMAG(O) =F(L,O)/(DP*N)
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APPENDIX A

RR(O) = F(LO)/(DP*N)
XX(O) = 0

C Select either ma#nit#de of the FHT
C or the real and #mag#nary part of the FFT.

WRITE(*,,*) 'SELECT THE DESIRED OUTPUT' WRITE(*,,*) '1 MAGNITUDE, 2=
REAL & IMAGINARY' READ(*,*) OPTION
IF (OPTION. EQ .1) THEN

C The fast Hartley transform's magnitude is derived from the
C power spectrum

DO 1201 = N-l,(N/2)+1,-l
F(L,I) = F(L,D)/(N*DF)
F(L,N-I) = F(L,N-I)/(N*DF)
RMAG(I) = SQRT((F(LI)**2 + F(LN-I)**2)/2) WRITE (10,*) FR(N-I), RMAG(I)

120 CONTINUE

C Get the real and imaginary parts of the fast Fourier
C transform from the fast Hartley transform.

ELSE
DO 130 I1 N-I,(N/2)+l,-l

B = F(L,N-I)
RR(I) =F(LI) + B
XX(I) =F(L,I) - B
IF QI. LE .N-I) THEN

J=I
ELSE

J =N-1
RR(J) = RR(J)
XX(J) = -XX(J)

ENDIF
R(I) = RR(I)/(2*N*DF)
X(I) = XX(I)/(2*N*DF)
WRITE(lO,*) FR(N-I),R(I),X(I)

130 CONTINUE

ENDIF
END
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Appendix B.-Fortran Program BODEFOR
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APPENDIX B

C This is a program to compute the analytic frequency spectrum
C of a double exponential pulse.
C Use COMPLEX constants, variables, operations, and functions.

C Input variables (all real):
C First: Starting frequency
C Last • Stopping frequency
C INC : Additive frequency increment

C Intermediate variables, all complex
C DI : First factor in denominator
C D2 : Second factor in denominator
C These factors are set up for using the CMPLX function, which
C converts from the form of two REAL values, representing the
C real and imaginary parts of the complex numbers, to the form
C of one Fortran COMPLEX number.

REAL*8 K, FIRST, LAST, INC, OMEGA, ABSVAL, FRE COMPLEX*16 E, D1,D2
CHARACTER*20 FILNAM

C Opening the output file.

WRITE(*,*) 'TYPE OUTPUT FILENAME'
READ(*,*) FILNAM
OPEN (3,FILE=FILNAM,STATUS=' NEW')

C Read parameters, validate.

WRITE(*,*) 'FIRST = ?, LAST ?, INC = ?' READ(*,*) FIRST, LAST, INC
IF (FIRST. GE .LAST) THEN
WRITE(*,*) 'INVALID DATA; PROGRAM ABORTED' STOP
END IF

C Set frequency to starting value.

OMEGA = FIRST*8*ATAN(1.O)

C While OMEGA <= LAST

10 CONTINUE
IF (OMEGA. LE .LAST) THEN
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APPENDIX B

DI = CMPLX(4.0D6,OMEGA)
D2 = CMPLX(4.76D8,OMEGA)
E = 2.47Dl3/(D*D2)

C Get complex absolute value, = magnitude of output.

ABSBAL = CDABS(E)
FRE =OMEGA/8*ATAN(1.O)) WRITE(3,*) FRE,ABSVAL

C Incrementing frequency.

FRE = NC +FRE
OMEGA = FRE*8*ATAN(1.O)
GOTO 10
END IF
END
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