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Chapter 1

Introduction

This volume gives a summary the major technical achievements or Con-
tract No. F33615-86-K-1023 for the period April 1986 to December 1989.
The overall goals of this contract are to study and determine solutions for
bistatic first order and higher order Uniform Geometrical Theory of Diffrac-
tion terms. that provide an accurate and efficient means to calculate high
frequency scattering from large complex geometries. Algorithms have been
developed to incorporate these techniques into a user oriented computer
code referred to as the RCS - Basic Scattering Code (RCS-BSC) [1].

This volume presents discussions of theoretical studies that have
b"en completed during this time frame. Chapter 2 discusses various meth-
ods for determining the first order scattering from flat plate structures.
It presents a newly developed far zone corner (vertex) diffraction coeffi-
cient. Complete details are given in References [2,3]. Chapter 3 presents
a discussion of a form of edge wave - vertex interaction. It is specificaiiy
formulated in this case for a source excitation. This is an intermediate step
for determining the far zone edge wave solution. More details are given
in References [4,5]. The extension of this work to the far zone edge wave
solution is presented in Chapter 4. Other higher order double diffraction
interactions across the flat plate faces are discussed in Chapter 5.



Chapter 2

Comparison of Methods for
Far Zone Scattering from a
Flat Plate and Cube

2.1 Introduction

The validity of various methods for determining the far zone bistatic scat-
tering from a flat plate and convex flat plate structure such as a cube is
presented in this chapter. This is accomplished by comparing the meth-
ods in various basic situations. The specific techniques to be compared
in this study are the classical equivalent currents with "stripping" [6], the
previous corner diffraction coefficient [6], the newly developed equivalent
currents by Michaeli [7], and an extension to this method cast in the form of
a Uniform Geometrical Theory of Diffraction (UTD) far zone corner diffrac-
tion coefficient [2]. In addition, the Method of Moments (MOM) using the
Electromagnetic Surface Patch (ESP) code (8] and measurements from The
Ohio State University ElectroScience Laboratories compact range are used
to further validate the results.

A recent paper by Ludwig 19] compares three methods for backscattering
from a cube, that is, the MOM using the Numerical Electromagnetics Code
(NEC-MOM), physical optics (PO), and the previous UTD corner diffrac-
tion solution. In this chapter, it will be shown that methods which give
comparable results for backscatter can differ for bistatic scattering. The
emphasis here is to present basic examples that can be used to validate
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existing codes and to suggest a numerically efficient and accurate method
for convex flat plate structures to first order.

An approximate expression for the far zone field scattered by the vertex
of a finite perfectly conducting wedge is presented in this regard. The solu-
tion is cast in the form of the UTD and is based on asymptotic equivalent
currents found using modified PTD concepts [7,2]. The faces of the wedge
must be flat (the normal to each individual face is a constant everywhere on
the face except at the edge) and the edges must be straight. For plane wave
incidence from an arbitrary direction, the first order contribution from each
vertex to the far zone scattered field is obtained.

Since diffraction is a local phenomena at high frequencies the results
obtained for a finite wedge may be applied to much more complex bodies
made up of simple shapes. The field scattered by a three-dimensional shape
constructed from flat plates may be approximated to first order as the sum
of the contributions from each individual corner. The first order solution
should be reasonably accurate in or near the specular regions as long as
the object is convex. A convex body is defined here as a closed surface
made up of flat plates such that all of the exterior wedge angles, taken
between faces and exterior to the surface, are greater than 180 degrees. A
simple example of an object that does not meet this requirement is a corner
reflector. In this case, the effect of the interaction between the faces must
be taken into account. Higher order effects such as double diffraction [10]
and edge waves [111 are not considered in this chapter.

Note that the results presented in this chapter are for a parallel ray
type solution, that is, for a radar cross section result. The NEC - Basic
Scattering Code (NEC-BSC)12] is a near zone formulated code, that is it
has a finite range involved. The UTD solutions are slightly different for this
non-parallel ray case. The capabilities of the NEC-BSC and a comparable
far zone code called the RCS-BSC are discussed in Reference [13].

2.2 Theoretical Background

There are many approximate solutions to the scattered field from a finite
perfectly conducting wedge. Physical Optics and its extension the Physical
Theory of Diffraction [14] is surface and edge current based. Geometri-
cal Optics (GO) and its extensions the Geometrical Theory of Diffraction

3



(GTD) [15] and the Uniform Geometrical Theory of Diffraction [16] are ray
based. The Method ' Equivalent Currents (MEC) [17] is an intermediate
type solution that was developed to handle caustic regions in the GTD.
This has been augmented with the concept of stripping to provide better
answers for flat plate problems 161. Recently, Michaeli [18] showed a more
rigorous approach in deriving equivalent currents. This was shown to be re-
lated to the incremental length method of Mitzner [19] by Knott [20]. These
equivalent currents still had singularity problems that have been remedied
by Michaeli [7] using a skewed coordinate system. Ufimtsev also derived a
similar solution [21,22].

The above solutions can be cast in a corner diffraction coefficient form.
These UTD ray type solutions have the advantage of being efficient for
far zone flat plate problems since only the fields scattered from the corners
need to be added. It also has the advantage that the results correlate to the
scattering centers seen in high resolution measurements. Just the corner
diffraction coefficient forms are outlined in this section.

A previous diffraction coefficient for a corner formed by the intersection
of two straight edges was derived by Burnuide and Pathak 161. It is based on
the asymptotic evaluation of the radiation integral containing the equivalent
currents of Ryan and Peters [17]. The result was then empirically modified
so that the diffraction coefficient would not change sign abruptly as it passes
through the false shadow boundaries. It was derived for spherical wave
incidence and remains valid for cases when the diffraction point is near the
corner since the integral was evaluated for a saddle point near an end point;
however, only the far zone result is shown here. The corner diffracted field
due to one corner and one edge in the case of plane wave incidence and a
far zone receiver is given by

[~ ~ ~" i ] -[E#(Q.) D~e(0,#,6' OWj6)3 (2.1)

[,,( = [ C. (Q.) 1 ina' V5 . a f. e (2.2)De] [Ch(Q.) (coo/& + coes.) V2wk

CotNO=Q-e) 2n1s~ {(DI(4 - 0') + D~c( - 0!)] (2.3)

F [D + 0') + Dn(O +4?)])
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Figure 2.1: Definition of angles for the Previous Corner Diffraction Coeffi-
cients.

[ =sin2 #,aT(-&)
0 = Do,,) F 2' ra(3 + -I)(2.4)

a(fl) = 2cos' a = 2cos 2  - (2.5)

where NT is the integer which most nearly satisfies 2n7rNT - -==r, and

= 2o (2.6)
7r + P2 - fl c (2.7)

2

F(m) = 2jlv/flei'4 - e v2d (2.8)

where the angles are shown in Figure 2.1. The sign on the diffraction co-
efficient may be plus or minus depending on which endpoint of the edge
is being considered. The correct sign in front of the C,,h terms in Equa-
tion (2.2) is chosen based on the direction of the edge vector shown in
Figure 2.1.

It is assumed that the incident field, and therefore the scattered field,
is a time harmonic field with time dependence given by e ' , which is sup-
pressed.
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The new far zone corner diffraction solution is based on the PTD and
cast into the form of the MEC and then into a UTD diffraction coefficient.
This is done as follows. The PO is first used to approximate the currents
resulting in a double integral over the surface. Stokes theorem is then ap-
plied to reduce the equation to a line integral (23,24]. The Michaeli currents
are added to produce a total first order MEC result. This integral is thcn
evaluated using the method of stationary phase to obtain the contribution
from each corner [25).

The new corner diffraction coefficients are given in a form similar to
previous expressions for diffraction coefficients:

[A 1 DC Dc2] E , 1 '"(2.9)

= :i: 4k (cost? cost) d +d'. -dI (2.10)

where the plus or minus sign is chosen depending on which endpoint con-
tribution is being calculated. The minus sign is used for the corner con-
tribution associated with the negative t-axis, while the plus sign is used
for the corner contribution associated with the positive t-axis. The edge
fixed coordinates shown in Figure 2.2 are chosen such that fi is the outward
normal of the O-face, i is tangent to the edge, the positive b-axis lies on
the O-face, and i= b x fa. The expressions for d', dU , and do 2 are
given by (0-face contribution only)
d LPO UiC , co (Vco-7 +(

h,2 2 h,2

T [cot (-r ( ')) -cot('1 4 (2.11)

'IT = CO(a,Wa0)[ot(W G )
h,2 n h,2 2n

colt 7- ('+ ')] (2.12)

-rU-cC' -, +'(

h,2 1 h2 II
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[cot (7r - (a 7 Cot + 4 (2.13)

c. (in (2.14)
sin3'

Ch( 6 ,E) Sin (2.15)
sin6

sinbc(,)- -n (cot~cos)±cot9'cose) (2.16)

sine cos4' (cosP - cos 9')2CO f=sn8Cs0+ (CS O 12(2.17)
cos7 = sin 3 + sin fl'(sinI Pcos 0 + sin 3 ' cos 4)')

COSa = SinPcos + (cosB-cos ') cos ' (2.18)
sin 3' sin2 2'

cos 1 u = -jIln(IL+ 1") (2.19)

- = I - -1 < (2.20)

Vr t , i>
i= 0 ,7r-o <0 (2.21)1 ,r-'- > 0

where the + sign is associated with d ° dfTD, d2TD, dh° , and d0
while the - sign is associated with the - dL. T , and d, ° terms. The
angles are defined in Figure 2.2. Since only convex structures are consid-
ered here proper shadowing of the rays is fairly simple. The shadowing of
the incident field is accounted for by E;, and 9,, which are the components
of the GO incident field. The shadowing of the diffracted ray is more com-
plicated. The contributions from the LPO and PO components, dzOo and
dh,, are present everywhere. The UTD components, < are shadowed
like diffracted fields. They do not contribute if the observation point is
inside the wedge (4 > nff).

For the special case of a flat plate (n = 2) the contribution from both
faces may be found using

dLSP = 1. 2c (") I [cot 7r 4 / Cot 7)- + Of -0')
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b t

t

Figure 2.2: Definition of the Angles used in the New Corner Diffraction

Coefficients.

~ cot (7! (-f+4) -cot (rw+ (-f+4)] (2.22)

dUs = 1 a_,- a c 7-+ r ( .

[Cot (7r - (t +a+')) + Cot (r + (at + io) (2.23)

euae sc a a,th cot (r i(0 i co t s +
h,2 2 -cot

S[Cot (7r-(Ct+ ")CotWr+ (Ct+4 )] (2.24)

= 1-1 7r - 4V~ <0 (.5

where -y, a, and the other variables have been defined previously.
It is interesting to note that by writing the equations for the Michaeli

equivalent currents and the new corner diffraction coefficients in cotangent
form provides more insight into the connection of the new solutions with

the previous methods. The new parameters separate out the optics currents

and diffraction currents. This separation manifests itself in new parameters

for the 4' angles. They arise from the asymptotic evaluation of the currents
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Figure 2.3: Two wavelength plate in the x-z plate.

in the skewed coordinate system chosen in physically meaningful directions.
The LPO factor (y) is related to the projection of the average of the incident
and diffraction planes on to the plane of the plate [2]. The PO and UTD
factor (a) relates to the projection of the Keller diffraction cone on to the
plane of the plate. It is easy to see in this form that in the Keller directions
the LPO and PO cancel, leaving the UTD result formally used in many
solutions.

2.3 Comparisons

The first example compares the Ryan and Peters equivalent currents, the
previous and new corner diffraction solutions. The simple example of
backscatter from a two wavelength square plate lying in the x-z plane,
as shown in Figure 2.3, is used. This illustrates that for backscatter these
different methods produce very similar results, except for the very low level
regions.

The co-polarized fields, in the principal plane, calculated using the three
different methods are shown in Figures 2.4 and 2.5. All three methods
give essentially the same results for the principal plane pattern cuts shown

9
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0 30 *I 110 so sO
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Figure 2.4: Backscatter from a 2 wavelength plate ( - 90 pattern).

here. This is not surprising since the major contributions to the fields
are the scattering from the two edges in their Keller cone directions. The
new corner diffraction solution reduces to the Ryan and Peters equivalent
current solution for points on the Keller cone [21, and the previous corner
diffraction solution is essentially the same as Ryan and Peters equivalent
current solution for most regions of space. The results in Figure 2.5 are for
the horizontal (oo) polarization. For a knife edged plate such as this, the
scattered field should be zero in the plane of the plate. Note that this is
not the case in these first order results. The higher order terms (i.e. the
double, triple etc. diffractions) produce the null for this polarization when
they are included.

For patterns away from the principal plane, the higher levels are the
same but the lower levels differ. This is illustrated by taking a conical cut
(8 = 600) for the two wavelength plate. The results for the same three
methods used previously are shown in Figures 2.6 and 2.7. In this case
the methods agree well for the main lobe, however, they differ in the lower
levels of the pattern.

The differences in the three methods mentioned earlier are greatly in-
creased for bistatic scattering problems. The bistatic scattering from a
square plate two wavelengths on a side is examined to illustrate this point.
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Figure 2.5: Backscatter from 2 wavelength plate (9 =900 pattern).
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Figure 2.6: Backscatter from 2 wavelength plate (6 60* pattern).
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Figure 2.7: Backscatter from a 2 wavelength plate (0 = 600 pattern).

The complete scattering matrix (all four values of o,) is found for a plate in
the x-y plane with a fixed source located at 0' = 450 and 0' = 00 as shown
in Figure 2.8. The results for the 4, = 600 pattern cut are compared with
the previous corner diffraction solution and Method of Moment calculations
for co-polarized fields in Figures 2.9 and 2.10. Similarly the results for the
cross-polarized fields are given in Figure 2.11 and Figure 2.12. Overall the
new solution agrees well with the Method of Moment calculations and does
not exhibit the discontinuities which appear near 0 = 2400 and 9 = 300°

in the previous corner diffraction solution. The discontinuities in the pre-
vious corner diffraction solution are caused by the so called false shadow
boundaries where the associated two-dimensional problem passes through
a shadow boundary, but the three-dimensional problem in reality does not.
The Ryan and Peters equivalent current results are not shown here, but
they behave differently for similar reasons; that is, the solution still con-
tains two dimension information in regions that it should not. In the region
from 9 - 600 to 1200 (i.e. near the plane of the plate) the new solution and
the Method of Moments solution differ by more than 10 dB. It is suspected
that most of these differences are due to the effects of higher order terms
(double and triple diffraction, edge waves) which are not included in the
new solution.
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Figure 2.10: Co-polarized RCS in the q6 600 plane of a 2A square plate
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Figure 2.12: Cross-polarized RCS in the 4 = 600 plane of a 2A square plate
with a 49 polarized fixed source at 0' = 450, 4' = 00.

In this example the new solution is compared to backscatter measure-
ments [261 made at 10 GHz on a 6" cube. The geometry of the cube,
tilted 450 in the x-z plane, is illustrated in Figure 2.13. The results for
the H-plane and E-plane patterns taken in the x-y plane are given in Fig-
ures 2.14 and 2.15, respectively. The results agree well to first order over
most regions of the pattern. The discrepancies are probably due to a com-
bination of higher order terms not being included in the analysis and in
measurements errors. The error in the measurements is likely two fold.
First the faces of the cube model were misaligned slightly so they did not
form edges as sharp as may be required. Secondly, it seems that there was
some deviation from the desired pattern cuts as can be seen from the lack of
symmetry in the measured patterns. In any case, they confirm the validity
of the new corner diffraction solution within first order accuracy for wedge
type structures.

2.4 Discussion

The new corner diffraction coefficient in the above examples has been shown
to provide improved results over other methods, especially in bistatic sit-
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Figure 2.13: 6" Cube tilted 450 in the x-z plane.
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Figure 2.14: H-plane pa,'.tern for 6" cube tilted 450 in the x-z plane.
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Figure 2.15: Eplane pattern for 6" cube tilted 450 in the x-z plane.
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Figure 2.16: RCS for the 0 = 890 cut of a 2A square plate with a ' polarized
fixed source at 0' = 450, Oi = 00.

uations. The Michaeli equivalent currents have not been shown since they
provide the same results as the new corner diffraction coefficient. Certain
properties of these new solutions, however, may still cause patterns taken
in some regions of space to be discontinuous.

It has been shown [7,2] that Dc and Dch do not tend to -lefinite limits
as S --+ a (i.e. the intersection of the associated half-plane and the Keller
cone), where & = i sin P' + b cos P', but they remain bounded. In practice,
this means that both Dc and De, and therefore E; and E,, are discontin-
uous at this point in the pattern. A simple example illustrates how this
discontinuity can affect a pattern. The bistatic RCS from the flat plate
shown earlier in Figure 2.8 is considered. The source, linearly polarized
in the 4i direction, remains fixed at 6i = 450 and 0' = 00 while the pat-
tern is taken near the x-y plane (0 = 89*). The bistatic RCS is given in
Figures 2.16 and 2.17 for the co-polarized and cross-polarized fields, re-
spectively. The abrupt null at 4' z 135* in the co-polarized pattern and
the spike at the same location in the cross-polarized pattern are due to
discontinuities in the contribution from edge 4 (indicated in Figur 2.8).
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Figure 2.17: RCS for the 0 = 890 cut of a 2A square plate with a polarized
fixed source at 0' = 450, 4,i = 0° .

The point 0 : : 1350 coincides with #4 = 84' and 4,4 : 0 where 04, P4', and 04

are the edge fixed coordinates for edge 4. Due to the geometry #4 t and
44 ; 6 so the discontinuity in o-r is due to the discontinuity in Dc and,
likewise, the discontinuity in 0-0 is due to the discontinuity in D[.

Therefore, the discontinuity in the new diffraction coefficients at the
intersection of the Keller cone and the infinite half plane associated with
the edge (/8 = 8' and 4, = 0) may be expected to cause discontinuities
or narrow spikes depending on the polarization and the pattern cut. As
the examples illustrate these disturbances only affect a typical pattern cut
for around 50 to 100. In addition, they are in the low level regions of the
returns.

It is easily seen that the diffraction coefficients Dc and Dc are discon-
tinuous as the source passes through the half plane 0' = r. In the general
case of bistatic scattering, these discontinuities in the sign of the field scat-
tered by a corner will result in discontinuities in the total scattered field.
However, the diffraction coefficients are continuous here ( r' -) for the
special case of backscatter.
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2.5 Conclusions

The objective of this chapter has been to compare different methods for
the analysis of the high frequency far zone scattering from flat plate and
convex flat plate type structures. Ryan and Peters equivalent currents and
the previous corner diffraction coefficient are compared with the Michaeli
equivalent currents and the new corner diffraction coefficient. The method
of moments and measurements are also used to validate the solutions.

It has been shown that for backscatter all the methods compare rea-
sonably within engineering accuracy. For bistatic scattering, however, the
two dimensional nature of the old methods lead to inaccuracies. The newer
methods, based on more rigorous three dimensional analysis, remove most
of these problems.

A new corner diffraction coefficient is presented that provides an efficient
and accurate solution to within first order. It provides the same level of
accuracy as the Michaeli equivalent currents with the added benefit of not
needing integrations for flat plates. All the optics and edge scattering
effects have been lumped into the corners of the plate with nice physical
interpretations.

20



Chapter 3

Diffraction of Dipole Excited
Edge Waves

3.1 Introduction

The diffraction of acoustical waves by a conducting elliptic cone and a
quarter plane were studied by Krauss and Levine 1271 and Radlow 128,29),
respectively. Satterwhite and Kouyoumjian [30] analyzed the vector elec-
tromagnetic problem and developed a Green's dyadic for a source radiating
in the presence of an angular sector. However, their solution, expressed
in terms of non-closed form Lami functions, is cumbersome for numerical
calculations. Furthermore, it has not so far appeared possible to asymp-
totically identify a "tip diffraction coefficient" from this eigenfunction rep-
resentation.

Burnside and Pathak proposed in [31] a corner diffraction coefficient
which successfully predicted the corer effect of several plate structures.
Their solution is based on the asymptotic evaluation of the radiation in-
tegral involving the equivalent currents that would exist in the absence of
the corner. A corner diffraction term is then established by empirically
modifying the final result. Sikta [11] applied a limiting process to identify
the wave diffracted by the corner and propagating along one of the edges
of a polygonal plate. Further, introducing an empirically established "re-
flection coefficient", he utilized his expression to the calculation of multiple
diffractions between adjacent corners of a flat plate.

In this Chapter, the vertex and edge diffraction of an electromagnetic
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wave guided along one of the edges of a semi-infinite wedge is studied
asymptotically. Explicit expressions of the edge wave are presented in Sec-
tion 3.2, deduced from the limiting behavior of the Green's dyadic for an
infinite wedge 132,331.

A first approximation of the vertex diffracted field is developed in Sec-
tion 3.4, based on the radiation of the surface current that would be induced
by the edge wave for an infinite wedge, which is subsequently truncated.
The asymptotic evaluation of the surface current's radiation integral ap-
propriately encounters the edge wave singularity, consistent with Meixner's
edge condition. To the field expressions thus derived, a fringe current effect,
which is asymptotically incorporated in the radiation integral of Michaeli's
fringe edge equivalent currents 17], is superimposed. Edge wave vertex and
edge diffraction coefficients can then be established from the asymptotic
field expressions. The pertinent analysis is developed in Section 3.5.

The validity of the approach is confirmed via comparison with Method
of Moments results and pattern measurements for a small dipole radiating
in the close vicinity of one of the edges of a polygonal plate.

3.2 Edge Waves
The term "edge waves" in the present work defines waves strongly coupled

with the edge of a wedge. The edge wave is a Maxwellian field guided by
the edge, exhibits the proper edge singularity and can be excited either
by a plane wave at grazing incidence, or by a dipole radiating in the dose
vicinity of the edge. The vertex of a polyhedron illuminated by a plane or
spherical field can also excite an edge wave. Independent of the excitation,
but sufficiently far from its source, the edge wave is and can be treated
as a ray optical field, i.e., its phase is proportional to the distance from
the source (reference) to the observation point and its amplitude varies in
such a way that the energy within a tube originated at the source point is
preserved. Further, its Poynting vector is radially directed. Application of
ray optical techniques is, however, not straightforward, mainly due to the
singular behavior of the paraxial fields.

Let us consider the canonical problem of a point electric source j =

p 6(f - r1) that radiates in the presence of a perfectly conducting infinite
wedge. The field produced by this dipole-wedge configuration is formally
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written
A( .= jpoor(,; ;1) (3.1)

where r(f ; r) is the Green's dyadic for the wedge [32). For convenience,

r
~DIPOLE

,, p

rFACE 2

Figure 3.1: Dipole excited edge wave.

the source point is located at r' = p', fl' = 7r/2 in the reference coordinates,
with the z-axis being coincident with the edge and the r-axis parallel to
face 1 of the wedge (Fig. 3.1). The related system of spherical coordinates
is (r, 0o, 0). The limiting form of the field in eq. (3.1) for small values of the
parameter e = kp'sinfl% is of interest here. Specifically, the Green's dyadic
assumes the power series expansion

00 00_

;', = , % , ; , - n, (3.2)
m=O n=O

where v = w/y and y is the external wedge angle. The dyadic terms

,,(i;, '), % m = 0,1,..., n = 0,1,..., can be derived in a straightfor-
ward manner, if one substitutes the series expansion of the Hankel functions

in the eigenfunction representation of T(f; P). At the limit e --* 0, one can
retain the leading term in eq. (3.2) to approximate the total field which,
for kr >> 1, is given by

E (F) = jZok"C(v)A,(p', 0') sin" - fo
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.(#o cos fo sin v + cos )exp(-jkr), (33)

where

C(u) = jvexp(jvur/2) (3.4)
w2t r(v)

and
A'(p', s) = (p)"- (p;, in vO' + p,' cos vO') (3.5)

is a constant source factor. Eq. (3.3) defines an edge guided wave, which
dominates in the paraxial region, revealing the strong coupling between the
dipole source and the edge. It is a spherical wave that satisfies Maxwell's
equations, the boundary conditions on the perfectly conducting surface, as
well as Meixner's edge condition.

In the case of a plane wave at grazing incidence, which is essentially
a quasi-two dimensional situation, one can implement a similar limiting
procedure on the cylindrical harmonic expansion of the total field [331 to
extract the edge wave. In particular, with 0?' --+ 0, the dominant term in
the series expansion of the total field in the neighborhood of the edge equals

e"-) = -4wC(v)S(fi',)')(kp)'- 1 (A sin YO + 4 cos v)exp(-jkz), (3.6)

where S(,8', 0') = sin - #'(E,,, sin vo'+ Eo#. cos vOb') is again an excitation
related factor.

Both forms (3.3) and (3.6), although derived from - limiting rather than
asymptotic estimation, agree in the paraxial region with the leading term
in the asymptotic analysis of Pearson [341.

3.3 Diffraction formulation

The study of edge guided waves at an infinite wedge, outlined in the previ-
ous section, is not adequate to describe the radiation of a dipole in the close
vicinity of one of the edges of a realistic flat plate structure. For instance,
regarding the simple trihedral configuration depicted in Fig. 3.2, in addi-
tion to a direct field associated with the interaction of the dipole and the
neighboring edge, diffracted rays initiated at the tip and the adjacent edges
should be introduced in an accurate high frequency solution. Namely, an
improved approximation of the total field can be expressed as

.91 T + E + e + . (3.7)
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In the above equation, Ell' . constitutes the dipole and guiding edge
interaction; in essence, it is a multiplicative correction of the edge wave
given by eq. (3.3) , by the transition dyadic T to be determined, thus
assuring a finite field when P : 0, i.e., at the paraxial region of the extension
uf the edge in free space. In addition, E1,2 denote edge diffracted fields,

while E designates the ray emanating from the tip.

FIELD POINT

~DIPOLE

(2)

FACE 1

Figure 3.2: Edge wave diffraction at a trihedron.

In principle, if 1(i;) is the total current flowing over the surface S of
the conducting trihedron, then the scattered field can be evaluated via the
radiation integral, which, in the Fresnel or Fraunhofer region of the surface,
has the form

=~~ ~ Akz . A . - -() exp(-jlR) (.)
E.S-) =ijkZoJf ,A x4x) 7rR ) da. (3.8)

Asymptotic expansion of the above integral by the method of stationary
phase [35], in terms of the large parameter k, should result in isolated
mechanisms associated with specific parts of the object and, in our case,
corsponding to the diffraction terms in the right hand side of eq. (3.7).
How.ver, use of the radiation integral in field calculations, requires a prior
knowledge (at least approximate) of the current f(';) on S.
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Two successive estimates of the current, resulting in different levels of
approximation are introduced. First, it is _.ostulated that, on the faces of
the trihedron grazed by the edge wave, j(r') can be satisfactorily approxi-
mated by the actual induced current (edge wave current) that would flow
if the wedge was infinite, while it is presumed zero at the shadowed face of
the structure. In particular, for face 1 (Fig. 3.3(a)), we presume

i(l) ( = ia xH r (3.9)

where e1v(r-) is the edge wave at an infinite wedge and ni is the unit vector
normal to face 1.

The asymptotic reduction of the surface integral in eq. (3.8) to a line
integral along edges (1) and (2) in Fig. 3.3(b) reveals an equivalence between
the radiation of the edge wave surface current (eq. (3.9)) and the Physical
Optics equivalent currents in [7], proportional at each point on the edge to
the incident edge wave (rather than a plane wave, for which they have been
originally developed). Based on this observation, to the truncation effect
which results from eq. (3.8), a non-uniform (fringe) current effect induced
by edges (1) and (2) is superimposed in a rather indirect way: via the
radiation of Michaeli's fringe equivalent currents for edge wave incidence.

In a consistent rationale, one should include a tip excited non-uniform
current. But the latter can not be extracted from existing representations
of the comer diffraction phenomenon and remains unknown. Numerical
results indicate, however, that the present depiction of the currents is suf-
ficient to approximate the diffracted edge waves at the vertex.

3.4 The radiation of the edge wave current

Let us consider the radiation of the edge wave current flowing over face
1 of the trihedron. The results for face 2 can be derived by means of a
simple transformation. One may introduce the oblique system of coordi-
nates (u, t) associated with edge (1) in Fig. 3.3(a) and defined by the unit
vectors

fi=i, it =& sinal -i cosaol,

with a, denoting the angle formed by the guiding edge and edge (1). Suf-
ficiently far from the dipole and employing the results of Section 3.2, one
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observes that

;(u, ti) V k C(v) A:(p', 0') sin - Oo

exp(-jko) (i sin Oo + i cos o), (3.10)
ro

in which
ro -tsin' a, I (u - t, cosa,+8s)2,

sino = t sin a/ro, cos6o = (U - t1 cos 1 + a'o)/ro,

a' is the distance of the dipole source from the vertex and the constant
C(v) is defined by eq. (3.4).

The vertex diffracted field of the wedge can be identified asymptoti-
cally as the end point contribution to the radiation integral in eq. (3.8).
Classically, employing a quadrature expansion of the phase function, one
obtains

S jk v Zo sin" a, C(v) A,(p', 0') F(2kLc sin 2)
4ws(s' " + ' 1- cos/6)

S{[a' sin/91*°(k) - (sini 0cos a, + sina, cos 0cos )1%_._(k)])6

+ sin a, sin 0I°._1 (k) }. (3.11)

In the above expression, I!_e(k) signifies the end point contribution to the
integral

L_(k) = j tP-' exp {-jk(R + ro)1.=-o} dt,

which is studied in Appendix A.
For the specific semi-infinite wedge geometry !,Q_(k) can be approxi-

mated by

IO,(k) ; r(p) k- exp (jpir/2) exp {-jk(as + ,' )}
F!-rlkae( V;s")] (3.12)

[sin a, sinf cos4, + coo a,(1 - cos/)]"

in which

a,(*-,; a,) = -sign(w - a, - 0) I ++(3.13)
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and a', a, are the distances of the dipole source point and the receiver from
the origin Qe of the Keller cone of diffracted rays initiated at edge (1). The
branch of the bracketed expression in the denominator of eq. (3.12) should
be chosen according to (-1)P - exp(jp7r). The factor F(.) is the familiar
edge transition function of the Uniform Theory of Diffraction (UTD) [16],
while the edge wave transition function F!P(j• -) is defined by

Fv(z) = exp(jpir/4) (2x) P/' exp(jz/2) 7_p[exp(jwr/4)V2_], (3.14)

with V..(.) denoting the parabolic cylinder function of order -p (eq. (A.4)).
For z > 0 small we have

F!'P(z) - Vf/r exp(jp~r/4) z v / ' exp(jx/2)

[1 2 exp(jw/4) j(p-/2) (3.15)

and for z large

F_!_(--) ;t: I1 p(p + 1) p(p + 1)(p + 2)(p + 3) +---(-6
4j( l3 2 )(P + . (3.16)

Retaining only the dominant term in the expression of the vertex dif-
fracted wave (dominant with respect to the parameter 2ksa.) and with the
approximation [36]

1,2 + 81,2 (, rj ,

for large values of the distance parameter L, = ac.s/(a=+sc), one obtains the
following expression for the vertex diffracted field, in terms of the edges (1)
and (2) fixed coordinate systems (as, 01, 01) and (s., 02, 0.), respectively:

exp (jvnr/2) r(,) c(z,) E',(Qc) sin v' + E,(Qe) cos,
C k sin '01

cot F(2kLc sin2 (osin' a, F [2Lcoa 2

2 (COS .j) (o 1 + COS6 1 )"

sin" 02 F%,2kLCcos2 
(a.+8 (-s.+ } IC *)# (3.17)+ (COB a2 + COS 02)L' so

In eq. (3.17), E@,,,(Qc) represent the components of the free space dipole
field at Q' in the guiding edge fixed coordinate system.
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3.5 An equivalent current approach

The surface radiation integral in eq. (3.8) asymptotically reduces to a line
integral along edges (1) and (2) of the trihedral structure. Thus, the high
frequency approximation of the edge and vertex diffracted fields can be
viewed as the stationary phase and end point contribution, respectively,
of the radiation integral of equivalent line sources "excited" by the im-
pinging edge wave. As far as the edge wave current effect developed in
Section 3.4 is concerned, the same expression for the field, excluding the
factor F[2kL, sin 2(fl/2)], can be obtained via the asymptotic approximation
of the line radiation integral of the physical optics components of Michaeli's
equivalent currents along edges (1) and (2) and being proportional at each
point to the tangential components of the incident redge wave. This ob-
servation suggests the addition of a fringe effect to the edge wave current
related diffracted field which is, analogously, described by the radiation in-
tegral of Michaeli's fringe currents. Although the latter have been derived
for plane wave incidence, reasonable results are obtained if one generalizes
the concept for arbitrary (non-uniform) ray optical wave fronts and, hence,
for an edge wave.

As before, our attention is restricted to face 1 of the wedge. The equiv-
alent edge currents presented in 17] for grazing edge wave incidence at the
point Qi of edge (1) may be expressed in tLe form

I,(Q,) = 2j ff (Q,) .l ,(Q), (3.18)
k 2

2jZo &hD(Ql) ii Mi(Q), (3.19)
M(Q) = "k 2

ii is the unit vector tangent to the edge at Q, and il, m, are known and
slowly varying functions of the obwrver's location and the distance of Q,
from the tip Qg of the tribedron. A fmter of 1/2 has been also introduced
due to grazing incidence.

It is presumed that the edge and vertex diffracted edge wave associated
with face 1 of the wedge can be approximated by the radiation integral of
the equivalent currents II(Qi), MI(Qj) "flowing" along edge (1), which, in
the Fresnel or the Fraunhofer region of the edge, can be explicitly written
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as

E*c(8-) ; jk" Zo sin' a, C(,) A,,(p', O') .;

[JA x A x 4 i1 (i; t) + A x ii MI(; tl)]

-1 exp{-jk(R + ,,)} dt1 , (3.20)
" -I  47rRr(+l

with R = 118C - tjj11 and A = (io - t1i 1)/R.

3.5.1 Edge wave vertex diffracted field

The phase of the integrand in (3.20) exhibits a stationary phase point in the
neighborhood of an end point, the latter being coincident with the branch
singularity of the integrand. Therefore, for large values of the parameter k
the asymptotic evaluation of the integral reveals a vertex contribution as
well as an edge diffracted term, if

cosa, (1 - cos 0) + sin a, sinS cos 0 > 0,

i.e., if QI lies on edge (1) itself rather than on its extension. From the
leading term in the asymptotic expansion of the integral in (3.20), one
obtains the following approximation of the vertex diffracted field (associated
with face 1):

Eckic) ::z exp{j(v + 1)7r/2} l(v) C(v) Zo A.(p', 0')

exp{-jk(,q + a')} G'o()) F![ka?(ic; a')]
4 [cot a1(1 - cos) + sin# cos#]v' (3.21)

in which we have substituted

(c) = S x &S x iji,(Q') + SC x im(Q). (3.22)

The previous discussion also suggests the decomposition
ii(Qc)I f iI(QC;A{) }+ { (Qc; A1)

(QC;;p IfI.Ii (3.23)rIQC I) r jPO(QC; APO))

ij(QC), mI(QC), ir'I(Qc; .tr), m "I(Qc; 1 '
I) can be found in [7] along

with the definitions (3.18), (3.19).
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The parameters po, involved in the expressions of the edge equivalent
currents depend on the choice of the edge fixed coordinate system and, in
particular, on the angle between the tangent to the edge at Q, and the
unit -rector & tangent to face 1 at Qi which may be chosen arbitrarily.
When the currents are truncated to reveal an end point effect, one should
be cautious about the choice of the parameters p1.', i.e., the choice of
the edge fixed coordi:ate system, so that the terminated equivalent edge
currents represent correctly the end point effect of the truncated, by the
edges of the trihedron, true surface induced currents. Within this context,
a correct choice of the parameter pw for the physical optics component of
the equivalent currents is

/ sinai sin# 1 cos 0 1 + cos a, cos fl + cos) (324)
sin --1

so that the unit vector & is parallel to the guiding edge, whereas for the
fringe currents the proper choice is

f sin a, sinfl, cos 1 - cos a,(cos% + cos,) (325)
sin G(i

and now & is parallel to the edge diffracted ray from Qe that grazes face 1.
Not surprisingly, using eq. (3.24) for the definition of the parameter ATO

in the expressions of the physical optics equivalent edge currents one finds

cot (3.26)

so that the vertex diffracted field assumes the approximation

l(gC) E;'--( S) + E' (a) (3.27)

in which Eje"(i2 ) is identical with the term associated with face I in (3.17),
while the fringe current related wave equals

( () - expfj(v + 1)ir/2}P(v)G(v)ZoA(p',q0') sin'a 1
,

exp{-jk(sc+ '%s)} f dI(i)F(2kLsin 2  F,[ka a(,;a)]

4 rs, (91)& (cosa I + cos A)Y
(3.28)
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The vector function Gf(i.) is related with Michaeli's equivalent currents
at QC via the equation

G,'(;'o) = if(QC; ti) SC X Sc x il + mi(Q';,) ic x il. (3.29)

The above expressions simplify considerably for the case of the plane
angular sector, with ct, = at2 = a , a, = a2 = a. Without presenting the
details of the derivation, which involves only elementary manipulations, for
the field related with the fringe currents one finds

- K1, (2(P 0') exp{-jk(ao + a')}
A;!n(" ') 47ra=vi=

Gc ( s4; a) F (2kL sin2  A) F -l/ 2[ka 2( 8i ; S,)] (3.30)

/cot a(1 - cosP) + sin Pcos0

where the function Gcf(8-) is given by

1 [0 + ep(I, sn) + (3 .(31, )1

',() = cos(2a) + cos b sin asin/01 cos(6/2) ' (3.31)

with
cos 6 = sin(2a) sin/3 cos - cos(2a) cos/3, (3.32)

ep(/, 0) = -(cos a + cos/ 1 ) (sin a cos/ Pcos + cos a sin/3)

-[sin a cos 01 (1 - cos a cos013) - cos2 asin31]
+ sin s a sin 0 sin 41, (3.33)

e#,8, 0) = sin a sin (cosa + cos,?1 )

-[sin a cos 41 (1 -cos a cos/#I) - cos2 a sin #]

+ sin 4 a sin 01 (sin, acos/ cos 0 + cos a sin/O). (3.34)

For the particular case of the right angle sector (a = 7r/2), it readily
follows that

G'f(i,; ir/2)= (cot - csc .) (3.35)
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and the total tip diffracted field assumes the simple representation
_-jZo exp{-k(. + e501

F(2kL, sin 2 ) F! 1/2(kLe(1- 1-sin2 /3cos2 )]
sin P-sn/ o

3.5.2 Edge wave edge diffracted field

It can be shown that the edge diffracted field, i.e., the stationary phase
contribution to the radiation integral of Michaeli's equivalent currents, is
the edge diffracted edge wave predicted by UTD, multiplicatively corrected
by the transition function

P L [2kL 02 cos i + f2

where
= [(3.37)

with the star denoting complex conjugate. The large parameter L., equals

L= hl - (3.38)81 + 8;"

The transition function F,-_(.) guarantees the finiteness of the edge dif-
fracted edge wave as Q-1 "- Q' and the uniformity (continuity) of the to-
tal field as the "shadow boundary" of the edge diffracted rays (the cone
[cot a,(1 - cos/P) + sin/3cos ] = 0) is crossed. It appears as a type of
caustic correction factor in the sense that it compensates the singularity of
the edge diffracted field at the extension of the guiding edge. However, in
our case the singularity arises from the behavior of the incident field on the
edge rather than the focusing of the diffracted rays into a caustic.

3.5.3 A heuristic correction factor for the direct edge
wave

As already pointed out, the rigorous solution of the radiation of a dipole
in the presence of an infinite wedge predicts a singular field at the edge
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of the wedge, in consistency with Meixner's edge condition. However, for
a semi-infinite structure (trihedron), the singularity of the edge wave at
the extension of the guiding edge (P ; 0) in free space is not physically
acceptable. To overcome this discrepancy, the multiplicative correction of
the edge wave associated with a semi-infinite or finite edge with the use
of a suitable transition function (in general a dyadic) has been suggested.
Such a transition function can be empirically derived by requiring the con-
tinuity of the total field at the shadow boundaries of the direct wave (edge
wave), namely at the planes 01,2 = r. This continuity was guaranteed by
the UTD evaluation of the edge diffracted field, but it is violated in the
paraxial region after the introduction of the function Fl-,, which assures
the uniformity of the total diffracted field. Obviously, the edge wave can
be multiplied by a similar transition function so that the total field re-
tains its continuity in the paraxial region as well as outside of it, where
the transition function approaches unity. In addition, such a multiplicative
correction would yield a finite total field along the extension of the edge in
free space.

In particular, for the plane angular sector, a convenient modification of
the edge wave, in the extension of the guiding edge, reads

f (gv) v V'kZo exp(jfr/4)

P12[k.sin' 2 ] exp(-jkso)
• [6o cosgo sin(4/2) + 0 cos(0/2)] idl 6 no p(o)

(3.39)

with so denoting the distance of the observation point from the dipole and
10 is the elevation angle of the observer in the guiding edge fixed coordinate
system centered at the point of the projection of the dipole onto the edge.

3.6 Discussion and numerical results

The edge wave vertex diffracted field is a higher order term with respect to
the large parameter k in the asymptotic solution of the radiation of a dipole
in the vicinity of the edge of a trihedron. Nonetheless, it contributes signif-
icantly to the A-directed component of the field, especially in the paraxial
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region of the guiding edge and along its extension. This is due to the ac-
cumulation of electric current flow lines in the vicinity of the guiding edge
excited by the ray optical edge wave.

The solution, based on Michaeli's equivalent currents, is essentially an
asymptotic PTD (Physical Theory of Diffraction) approach, in that a fringe
current effect due to the terminating edges is added to the edge wave cur-
rents, cast finally into a UTD form. Although, the derivation of the fringe
edge currents assume an infinite edge and uniform plane wave illumination,
the field is expected to retain its singular behavior in the vicinity of the
vertex, which, moreover, does not contradict the "tip condition" (i.e., the
behavior of the field in the neithborhood of a vertex) as investigated by sev-
eral authors. It should be emphasized that the approximations attempted
in Sections 3.4 and 3.5 by no means present a complete rigorous represen-
tation of the tip diffracted field, but it merely includes the information of
the truncation of known components of the currents flowing over the wedge
surface.

The patterns of the total diffracted field predicted from the edge wave
current radiation integral and the equivalent source approximation, for the
configuration shown in Fig. 3.4(b), are compared in Fig. 3.4(a). Clearly, the
tip effect of the edge wave currents does not compensate the discontinuity
of the edge wave edge diffracted field. On the other hand, the equivalent
currents result yields a continuous pattern across the shadow boundary cone
of the terminating edge diffracted rays, and appears as a more complete
representation of the diffraction effects.

Comparisons of the calculated field (which includes only the two edge
wave tip diffracted terms corresponding to the two adjacent corners added
to the modified direct edge wave) via Michaeli's equivalent currents (de-
noted as MEC on the graphs) and the edge wave current approach (EWC)
with Method of Moments results (MM) are made in Figs. 3.5-3.7, for a
4A square plate. The dipole has been placed in the close vicinity of one
of the edges (p' = 0.01k) of the plate and sufficiently far from its corners
(a ' = 2A). The direct edge wave (EW) (eq. (3.3)) is also plotted so that
the effect of the corner diffracted fields is better illustrated. Note that in
Fig. 3.7 (where 0 = 450) the edge wave edge diffracted fields should be also
added to the corner diffracted fields. The agreement is good, especially in
regions where contributions from other diffraction mechanisms other than
the corner adjacent to the guiding edge are known to be negligible. In fact,
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as shown in Figs. 3.5-3.7, the agreement between the Method of Moments
data and the calculated field progressively improves for larger values of the
4' angle. For 4, = 450 (Fig. 3.7), other mechanisms such as diffraction from
the remote corners of the square plate as well as double and triple edge
diffraction may contribute significantly to the pattern. Our approxima-
tion also improves when the paraxial region is approached (P -+ 00, 1800),
where, as a matter of fact, the total field is stronger. The latter justifies
the validity of the asymptotic analysis which resulted in the multiplication
of two transition functions as well as the choice of the correction factor for
the direct dipole field. Unfortunately, the 4-directed field does not exhibit
an analogous agreement (Fig. 3.8), at lower azimuthal cuts, mainly due
to the fact that other mechanisms contribute significantly to the pattern
of that polarization. However, the small angular variation of the pattern,
which is a typical 4, component pattern for 4, > 90', indicates that the
corner associated 4-directed fields are sufficiently weaker compared with
the 4 component of the direct edge wave and can be neglected in practical
calculations.

The results also reveal a small variation of the total field with respect
to the azimuthal coordinate (angle 0), in contrast with the relative large
changes of the calculated pattern in the elevation plane. The 4, dependence
becomes significant only at lower cuts where the contribution from the
opposite edge and its two adjacent corners is appreciable.

The second example examined also involves the radiation of a small
monopole in the close vicinity of one of the edges of a rectangular plate
(p' = 0.01A), but now with different distances from the two adjacent corners
(a', = 2A, a, = 3A). The calculated field, which again includes two tip
diffracted rays in addition to the direct edge wave, is compared with Method
of Moments results as well as measured data, as shown in Figs. 3.9 and 3.10
in the azimuthal planes 4 = 1800 and 4, = 150', respectively. The accuracy
of the measurement deteriorated at smaller azimuthal angles, where the
support structure influenced significantly the measured radiation pattern.
The measured data in Fig. 3.9 was obtained with an absorbing material
(RAM) around the remote corners and the opposite edge of the rectangular
plate, so that the pattern is more closely related to the calculated field,
which again includes two adjacent tip diffracted rays in addition to the
direct edge wave. Clearly, the agreement is better in this case, in contrast
with the results of Fig. 3.10 where the RAM has been removed.

37



It should be noted that neither the edge wave current solution nor the
equivalent source formulation are expected to yield accurate results for
small angular sector angles (a << 7r/2). In this case a strong coupling
between the two edges forming the sector occurs, which is not encountered
in the evaluation of the radiation integral of the currents flowing along the
edge (1). Moreover, when a --- 7r, the edge wave currents associated tip
diffracted field vanishes and the total solution reduces to the edge wave over
an infinite wedge, whereas the same property is not true for the equivalent
current formulation of the vertex diffracted field. The latter, therefore, fails
in cases of very wide angles, which require a more careful treatment.

It should be finally noted that the analysis related with a dipole excited
edge wave can be easily extended to treat the diffraction of an edge wave of
the form (3.6). However, the problem of a plane wave at grazing incidence
on an infinite or semi-infinite wedge is of rather less practical importance
than that of edge-on incidence for a finite structure.

3.7 Summary

Our major objective was to describe approximately the edge wave diffrac-
tion mechanisms associated with the interaction of an edge wave and the
vertex of a trihedron as a first step towards the study of more complex ge-
ometries. To approximate the vertex diffracted wave a UTD solution was
developed based on a PTD like approach to defining the currents. The addi-
tion of a fringe current component flowing in the vicinity of the terminating
edges yields a continuous radiation pattern across the shadow boundaries
of the edge diffracted waves. Although, the approach is neither rigorous
nor complete from a PTD point of view it yields comparable results with
the Method of Moments as well measured data and can be used as a first
approximation to the edge wave diffraction problem.

The extension of the results of this Chapter for the case of tip excited
edge waves and the study of the edge wave diffraction mechanisms associ-
ated with an edged body illuminated by a plane wave, which are of partic-
ular importance when edge-on incidence is approached, is investigated in
Chapter 4.
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Chapter 4

Edge Wave Mechanisms for
Polyhedral Structures

4.1 Introduction

Experimental evidence (e.g., impulse response of a square plate) indicates
that edge wave diffraction mechanisms become significant when edge on
incidence is approached and, in many circumstances, dominate the lower
level regions of the monostatic and bistatic cross secticn of edged struc-
tures. Therefore, the incorporation of this type of mechanisms in cross
section computations serve as an additive correction to the corner diffrac-
tion solution developed by Brinkley and Marhefka [2].

The edge wave diffraction phenomenon on flat plates has been recently
studied by Sikta [11]. His solution, although it provided reasonable agree-
ment in several cases, is based, as already pointed out, on an empirical cor-
ner diffraction expression, while his study of multiple interactions required
the heuristic introduction of a "reflection coefficient". A brief outline of his
formulation of the problem is presented in Section 4.2, so that comparisons
against the present development can be made.

In Section 4.3 the tip excited edge wave and the associated interactions
between two adjacent vertices of a polyhedral structure are examined, em-
ploying the more complete depiction of the corner effect developed in Chap-
ter 3, along with reciprocity, and based on plausible heuristic arguments.
Specifically, in high frequencies the vertex formed by the intersection of
three plates can be considered as the tip of an ideal trihedron (semi-infinite
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wedge). Hence, when a ray optical field impinges onto the tip, an edge
wave is excited that can be determined via reciprocity from the expressions
of the edge wave vertex diffracted field. The edge wave itself is ray optical
and hitting an adjacent corner it is rediffracted accordingly.

Figure 4.1: Corner excited edge wave.

4.2 Sikta's formulation

The edge wave excited by the tip Q'1 ad propagating along the edge of
the plate is as shown in Fig 4.1. According to Sikta, it is determined to be

in which the edge wave launching coefficients D °. are defined by

D,"'( 'c;L, k) - exp(-jlr/4) 1 + cosf'

.F (2IcL' sin -2  sin(4'/2) uin(b./2)~
2)1cos( '/2) co.( ./2)5} (4.2)
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In the above expressions

Cl' (4.3)
• ±5s,,

a' , , are the coordinates of a dipole source in the edge fixed coordinate
centered at Qci, while I is the length along the edge from the tip and 0" is
the azimuth angle of a point close to the edge. Note that Sikta's expression,
although it appears to have the correct 0, and I dependence characteristic
of an edge wave, it does not exhibit the proper edge singularity.

R S

Figure 4.2: Geometry of the corner-to-corner edge wave interaction.

Two adjacent corners of a flat plate, along with the involved geometric
quantities, are illustrated in Fig. 4.2. The source point is again located
at S(s,', ,') with respect to the guiding edge fixed spherical co-_ ,dinate
system centered at the tip Q,, while the location R(sc, 0, 4,) of the receiver
is defined in terms of an edge fixed coordinate system with its origin at
the point Qc2. The field Eel , produced by edge wave diffraction at Q3,
the edge wave being excited by the tip Qc, due to source illumination and
guided along the edge, is of interest here. It is noted that the total double
corner interaction should include also a ray L'3c2 along the path SQc3Qe' R.

The far field analysis of the edge wave mechanisms, always in the con-
text of Sikta's analysis, involves the multiplication of the incident field
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Es,, Es, with the diffraction coefficients in eq. (41) and a reflection coeffl-
cient, which, for a right angled corner, should read

R = exp(-jr/4) (44)

Specifically, the edge wave diffraction by two adjacent corners in a rectan-
gular plate becomes

-D(i'; 1, O)RD:'(7' ; 1, ) D'(S'; 1, O)RD,'(.'; 1, 0)

E,(Q ) exp[-jk(l +,,)] (45)

Explicitly,

{ exp(jr/4) exp(-jk(l + .)
E 'Ic 2 J (2wk)s /2 01

cos2(,0/2)F[2kl sin 2 (fl/2)] COS2 (#f/2)F[2ki sin'(,S'/2)]

sin(#/2) sin(#'/2)

v/cos(4i/2)sin(4O'/2) 2cos(0/2)cos(4'/2) E;

(4.6)

4.3 Edge wave interactions at a polyhedral
structure

Assuming that the point Qc' is the tip of a semi-infinite wedge, which
is justifiable as long as diffraction is a local phenomenon (i.e., when the
length of the edge is sufficiently large in terms of the wavelength), the
field excited by this corner and propagating along edge (1) can be obtained
via reciprocity from eq. (3.27) along with eqs. (3.17) and (3.28). Hence,
considering a point electric source with moment p located at the close
neighborhood of QC2, then it has been shown that the edge wave this dipole
excites is diffracted by the tip Qc' and is evaluated at S according to

ZE ' = Z 0 expU(v + 1)ir/2]r(v)C(v)
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p' sin(€,./2) + If cos(,./2)

Pi)

exp-jk(a +i-)] + c(s c; 1; ae, n.1 ; ac1 , n,1 ), (4.7)

C

where (pe, 0.) are the cylindrical coordinates of the point source at the

te2 - ae

Figure 4.3: Edge wave diffraction for a polyhedral structure.

guiding edge associated coordinate system, while

( ";1; a, , n.1 ; all , n/1 ) = F[2kL' sin 2(03/2))

sin'a., (cs a 1C - cos(a., -/l',)
o L (COS ,,., - COS#,,),,

sin 'k a j G'd(i °)F _% ( kL ' [1 + cos(a,, + ,8,)]}
+ (cosai+co3,)' (4.8)

and
de ) = - cot(#'/2)0' + ( ') (4.9)

with defined by eq. (3.29), adapted to the coordinate systems related
to edges (el) and (fl). It is reminded that v = 1/n, with n denoting the
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guiding wedge number. Further, n.1,11 and, later, nf2,.2 are used to denote
the wedge number associated with the adjacent edges (el), (ft) and (e2),
(f2), respectively. The parameter L' is defined by eq. (4.3). It should be
finally noted that the angles/3 1, I are the elevation angle of S in edges (el)
and (fl) fixed coordinate systems as shown in Fig. 4.3.

Considering a dipole source with moment 9 = p,#' + p,0' located at
S and applying the reciprocity theorem the corner excited edge wave at the
location of the point source If equals

' = Zo exp (z+ 1)w/2]1"(v) C(v) ,' sin(4./2) + 4. cos(4o./2)

exp[-j (#'o + 1)] -

-exp(jvwl/2)r(v)C(v) &. sin(v4'.) + j. cos(v4'.)

exp(-jkl) dr €l ~ ~/, ) Q'. (.0Sate pii '

It is reminded that the paraxial edge wave excited by a point source radi-
ating in the vicinity of the edge of a half plane and evaluated at the point
(p., 4, 1) with k >> 1 can be approximated by

S= jZok"C(v) A' 1 sin(v4'.) + 4. cos(v.) exp(-jkl)
pA Be- IV (4.11)

where A1q is a source related factor in view of eq. (3.5). Upon comparison
of eqs. (4.10) and (4.11) one readily obtains

A"  A A '; 1; a.,, n.1; cgli, nf 1)

=jYo exp(jvir/2)r(v) -G"(a',;1; a.,, n.1; a nl " -, ( e ),

(4.12)

thus, defining a fictitious equivalent point source located at the tip QC1
and exciting the edge wave given by eq. (4.10). One then considers the
diffraction of the edge wave produced by the equivalent point source at the
corner Qc2. Referring to eq. (3.21) one writes

P2 = Zo exp(v + 1)w/2J r(v) C(v) A"
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exp[-k(SC + 1)] 1(;la.a2 ,n.2 ; a,, nf 2 ), (4.13)
4wal""

Upon incorporation of eq. (4.12) into the above relation one derives the the
following expression for the edge wave diffracted field:

exp{-jk(l + ) (4.14)
E, = C°(+, 19; 1, a 1,,C,) • E'(Q ) (4.14 )

where the dyadic diffraction coefficient is given by

exp(jvw)[r(V)]2C(V)
D ~4rk(kl)&V

C(8c; 1; C.2,n.2; af,,nf2)&(S;lci.1,,n.1; af ,,nf1). (4.15)

In the case of a flat plate we have

dC(C1;C1. 2 , n.2; a/2, nf 2 ) =2&0(8c; 1, ct:)
= 2 [- cot(#/2)0 + dC,(i)]

'( c;;,., I .,; af1, n,1 ) = 2&0(4; 1, a,)

= 2 [- cot(#'/2)0'+ "-"(o,,)]

where G,! is defined by eq. (3.31)-(3.34), and

C(v) = C(1/2) = jexp(jw/4)

Hence, eq. (4.15) becomes

The above can be further simplified in the cae of two adjacent right angled
vertices. In particular, the corner-to-corner edge wave interaction becomes

exp(jwr/4) E,'g(Q" exp(-jk(l + as)

= (2wk),/ 2  ( ) v~oo

F[2klsin'(0/2)] F 1/2[2k1(1 - 1 sin 2 6 lco €]

sin(#/2) /sin e cos

F[2k1 sin2 (#'/2)] Ff._/22kl(1 - ¢1 - sin 2 ' cos 4]

sin(#'/2) sin I co
(4.17)
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Note that eq. (4.17) predicts a dominant 0 directed field which is physi-
cally justifiable, since the edge wave currents are accumulated in the vicin-
ity of the guiding edge. The same is not true with the corrected Sikta's
expression (4.6). The two equations indicate also a different azimuth depen-
dence and a different elevation angle variation approximately by a factor
of /c~sc371c~s~ c. As a matter of fact, eq. (4.17) is expected to predict a
stronger field when edge on incidence is approached. Further, the transi-
tional behavior of the two expressions is different.

It should be reminded that the corner diffracted edge wave is discon-
tinuous at the shadow boundary of the edge diffracted edge wave in such
a manner that the total field remains continuous. In the same context, in
addition to the tip-t,-tip edge wave diffraction demonstrated above, tip-
to-edge and, vice versa, edge-to-tip diffracted ray contributions may occur
at certain aspects of incidence and observation. The discontinuity of these
rays when the tip and the edge diffraction point coalesce should be normally
compensated by an analogous discontinuous behavior of double corner dif-
fracted edge wave. The analysis pertinent to this type of rays is similar and
it is not repeated here. It simply involves the multiplication of the edge
wave in eq. (4.11), excited by the equivalent point source by the proper edge
wave edge diffraction coefficient in view of the development in Section 3.5.

4.4 Discussion and numerical results

The diffraction by two adjacent comers of a polyhedral structure has been
studied as a second order additive correction to the corner diffracted fields
in a high frequency presentation of the scattering by conducting edged bod-
ies. A double corner-to-corner edge wave dyadic coefficient was deduced,
which can be used as a first engineering approximation in higher order
UTD computations. It involves the multiplication of two transition factors
expressed in terms of the parabolic cylinder function of order -v and the
ordinary FResnel integral, that appear in the first order theory, in an analo-
gous manner that the double edge diffraction is described via ordinary UTD
calculations. Outside its transition domains (i.e., when the source or the
observer are lined up with the edge), the edge wave diffraction coefficient
is proportional to k- /', while it decays with the inverse distance from the
tip along the edge. Therefore, it represents one of the next higher order
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mechanisms in a high frequency depiction of the fields, in addition to the
corner diffracted rays.

The effect of the introduction of edge waves as a higher order mecha-
nism has been evaluated via RCS computations of flat plates. The corner
diffraction is represented as the truncation effect of the Physical Optics
and non-uniform component of the currents on the plate. Two flat plate
examples, where the edge wave contribution have been expected to be of
particular importance have been investigated: (i) the off principal plane
RCS of a 2A square plate and (ii) Sikta's triangle. Specifically, Figs. 4.6-
4.9 demonstrate the effect of the superposition of edge wave mechanisms
in the echo of a 2A square plate. For comparison, the corner diffraction
solution [2] is also shown.

Sikta's triangle (Fig. 4.4 and 4.5) is another case where edge waves
become important, especially, at nose-on incidence. Indeed, incorporation
of the edge wave mechanisms appears to improve the calculated RCS at
regions where they are expected to be significant. It should be emphasized
that corner-to-edge (and vice versa) edge wave mechanisms which may
be important in certain aspects of observation have not incorporated in
the calculations. Therefore, a discontinuity may appear at observation
directions corresponding to the shadow boundaries of the corner-to-edge
diffracted rays. Further research should investigate these mechanisms and
their transitional behavior as well as their relation with the rays arising from
the asymptotic integration of the non-uniform components of the currents
studied in Chapter 5.

In general, due to the non-availability of a rigorously derived corner
diffraction coefficient, one is difficult to assess the contribution of higher or-
der mechanisms from RCS pattern studies. Therefore, time-domain mech-
anism extraction has been investigated [371 in the identification and quan-
titative analysis of the doubly diffracted ray contributions that constitute
the echo of a large edged body. It has thus been observed that the edge
waves, at least outside the transition regions where more than one mech-
anisms coalesce, are adequately predicted with the present solution. In
transitions regions, e.g. at edge on incidence or at the shadow boundaries
of corner-to-edge and edge-to-corner diffracted rays a more careful investi-
gation is required. Fig. 4.10 depicts the measured and calculated impulse
response of a diamond shape plate. Further investigation of the edge wave
mechanisms has been focused in the evaluation of the several mechanisms
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appearing in the impulse response of a 24" square plate for several aspects
of illumination, which are illustrated in Figs. 4.11-4.25. The corner dif-
fracted rays are denoted by CI-C4, while possible edge wave mechanisms
are indicated by El-E4 and double diffractions with D1-D4. The support
structure returns are Si and S2.
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Figure 4.12: Impulse response of a 24" square plate at 4) 45' and 9 300.
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Figure 4.18: Impulse response of a 24" square plate at 4~-450 and 9 450.
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Horizontal polarization. (a) Measured, (b) Calculated.
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Figure 4.23: Impulse response of a 24" square plate at 4. = 450 and 9 = 450.

Cross polarization. (a) Measured, (b) Calculated.
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Cross polarization. (a) Measured, (b) Calculated.
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Figure 4.25: Impulse response of a 24" square plate at 4' = 450 and 9 = 75' .

Cross polarization. (a) Measured, (b) Calculated.
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Chapter 5

A Uniform Ray Approximation
for the Interaction Between
Edges of Three-Dimensional
Polyhedral Structures

5.1 Introduction

A uniform ray representation of the interaction between edges of the three-
dimensional far field region scattering by a flat plate structure is investi-
gated. This is accomplished by (i) postulating an approximation of the
induced surface current on each face composing the object, and (ii) inte-
grating the approximate current, either in closed form, or asymptotically
in terms of the well tabulated edge transition function. Specifically, the
surface current on each plate composing the structure is approximated, in
addition to the usual Physical Optics surface current, by a non-uniform
current excited by each edge of the plate, which is derived from the canon-
ical solution (integral representation) to the infinite wedge problem, and
truncated at edges of the plate. The superposition of a secondary non-
uniform current, which can be asymptotically represented by a Michaeli's
fringe equivalent source, excited by doubly diffracted rays, is also studied
as an additive correction to the first order solution.
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5.2 A brief review of Michaeli's equivalent
currents

A plane wave illuminates the infinite conducting wedge of Fig. 5.1. For
convenience, we restrict our attention to face 1 of the wedge. The total
current is the superposition of the well known Physical Optics current

?(X, Z)= 24 x Hi'(xy,z)l,,=o (5.1)

and a non-uniform component, which is in essence the current excited by

n~r

O" r~ACE 2
0A I

Figure 5.1: Infinite wedge illuminated by a plane wave.

the diffracted fields; it is depicted in Fig. 5.2 and explicitly described by
the equations

.nu(zz) = jH'o exp(-jkz cos')
4wn

cot e+ (1)p' exp(-jkz sin 'cos )d,pq- \ 2nJ

(5.2)

ju( - j exp(-jkz cos 3')
(, z) 4rn
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. 3 JI ()" cscI'sin~ ± +H cot #'coo~
pq=l r'

-cot + (-l)Pu exp(-jkzsinl'cost)d. (5.3)

The various geometric parameters involved in the above expressions are

Figure 5.2: Non-uniform component of the current at the wedge.

shown in Fig. 5.1. The contours r., q = 1,2, are the steepest descent
SDP(±7w) paths through the sadle points at f = ±w (Fig. 5.3). Eqs. (5.2),
(5.3) in the case of the half plane, reduce to the expressions

=X Z 4exp(jw/4) expljk(zsin O'cos0' - zcoe')]
v (z sinen

{(YEo, sin 0' - H4, cosi'cos 0')

*F_ ( /2k- sn 'J cos : 1) sign(cos -)

(EO, sin _H cos 'cos)T /k sinT 2S 2"

* exp(-2jkz sin f' cos2 -)}, (5.4)
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jflA(Xz) 4 4exp(jir/4)H- expLjk(z sinfG'cos 0' - z coo#3')]

F_ (2kz sin Cos ) sign(cos -), (5.5)

that involve the ordinary Fresnel integral

F = exp(-jt)dt. (5.6)

jw COPE ( PLANE

ItI

-3 . 9. #li l V

SACN UT

Figure 5.3: Steepest descent paths in the complex plane (from [Pathak
and Kouyoumjian, 19711J).

Accordingly, one relates a non-uniform field with the above currents.
Provided that the smallest distance of the field point from the surface of the
wedge is sufficiently large, the field associated with " can be approximated
by

E jkZ lA exp(-j-R),, (57)
j R 4,rR

with S. denoting the area of face 1 of the wedge. It has been shown by
Michaeli (18,7] that the above surface integral can be reduced, via a linear
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phase approximation, to a line integral of line magnetic and electric equiv-
alent sources along the edge of the wedge. If one introduces the oblique
system of coordinates related with the diffracted rays that graze the wedge
surface, the electric and magnetic fringe edge currents evaluated at the
point Q of the edge equal

~U(Q) 32? [iflt(,, 4; /3', 4,';n,) YE (Q) + i' "(/3, 4;/3, 4,';n) H1 (Q)] (5.8)

and MU(Q) = 0m'U(,,; P', 4'; n) Z H.(Q), (5.9)

respectively, where

1 f sin 0'U(W -4')
ifU(,, 4,; ,', 4,'; n) sin23' JA + cos 4,

(5.10)

1 (cot 0 cos + ot 0' cos 4

i'€;P'P';")- = sin/' ,+cO 4,'

+ ACOt3' - Cot3CO ot 7 wr
+ 2n sin -y 2n
+ Cot (r- (+ ') cot/' (5.11)

2n n sin P"

0;,n) = sin 0 U(W - 0'),, ,"(, ¢tr,€'; ) sin # sin fl +Tc,,s 01

2n sin3' 2n

+ Cot (ii - (-Y+ 09)) (5.12)

The expressions for the edge currents pertinent to the other face of the
wedge are obtained by means of a simple transformation. The parameter
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it equals cosn ' - cos 2 /3'
= Cs2 (5.13)

with
cos =id .= sin'sin 0 cos + cos'cos P, (5.14)

and & is the unit vector in the direction of the grazing diffracted rays,
whereas the angle y is defined by

1A = cos Y, (5.15)

along with the (arbitrary) choice of the branch, e.g., of that depicted in
Fig. 5.4. This particular branch selection yields

7 = -jln(A + V4' 1) (5.16)

with

-- 71l ;IMl < 1(5.17)Jlv-='" I;IAlI< 1

1m7

7-plane

0 1n

Il<1 Rey

Figure 5.4: The complex - plane.

It becomes clear from eqs. (5.8), (5.9) and eqs. (5.10)-(5.12) that the
only circumstance under which the non-uniform edge equivalent currents
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become singular is when ,b = 0 (or p = 1), which imply that i = .
This singularity is integrable, unless simultaneously 0' = w, which occurs
at glancing incidence and forward scattering observation (Ufimtsev's sin-
gularity [14]). It should be noted, however, that Uflntsev's singularity is
eliminated when one integrates the non-uniform currents along a finite path
in the & direction.

Michaeli's total currents on the other hand exhibit discontinuities as a
result of the non-uniform asymptotic approximation of the physical optics
surface currents. In general, for an infinite wedge, it is impossible to obtain
uniform total edge currents if linear phase approximation is introduced
for the reduction of the surface radiation integral to a line integral along
the edges. Therefore, for the infinite wedge case one has to assume finite
distances of the observation point from the edge and introduce a quadrature
phase approximation, which will yield the expressions

JPO( 2jU(wr -4') [yE.(Q) sin 0'

k sin2' f'(p + cos 4')

- H(Q) sin 6'(cot 0 cos 4 + cot/3' cos 0')]

-[ ka sin" #3'(IA + cog 4 ')2

2 ( 2- sin2  (5.18)

M'(Q) = - siniFn[k sinsin3 (p + coo 4,'j (5.19)

where F(.) is the familiar edge transition function. Besides, in case of
finite bodies, one may integrate directly and efficiently the Physical Optics
surface currents [38].

5.3 Higher order terms using non-uniform
surface wedge currents

The total surface current on each plate of the structure is approximated, as
before, by the Physical Optics current and a non-uniform current excited by
each edge of a given plate. The approximation is, in some respects, similar
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with Michaeli's secondary equivalent current development [39]. However,
the latter is restricted in the definition of a secondary edge current, which
is then integrated numerically and, in addition, no explicit expression for
the corner effect is given. Here, an attempt is made to present the total
solution in terms of ray contributions, corresponding to tip, tip-to-edge and
edge-to-tip diffracted rays. These rays result from the asymptotic surface
current integration and, in general, do not satisfy Fermat's principle and,
further, radiate as if the body was not present and, therefore, they are not
shadowed. Nevertheless, the final solution is expected to be as efficient as
GTD in high frequency calculations.

0 13 0 3  SHADOWED REGION

Figure 5.5: Non-uniform current excited by an edge and associated ray
contributions at a polygonal structure illuminated by a plane wave.

Referring to Fig. 5.5, the exact non-uniform surface currents excited by
edge (1) are truncated by edge (2), provided that at least part of edge (2)
is illuminated by the diffracted rays emanating from edge (1) that graze
the surface of the plate. Our analysis is restricted to the study of the
non-uniform current emanating from edge (1) of the illustrated face of the
object; similar arguments apply for any other edge of this plate and for
any other plate of the body. The possible existence of shadow boundaries
of the non-uniform surface current associated with each edge should be
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emphasized. The discontinuities of the surface non-uniform current should
be normally (in a PTD sense) compensated by an analogous discontinuous
behavior of a tip excited current, which, however, remains unknown and it
is not included.

One establishes the oblique coordinate system (&r,+), with & pointing
to the direction of the grazing diffracted rays from edge (1) and i being
parallel to the edge vector. It is related with the edge (1) fixed cartesian
system of coordinates via the linear transformation

r, = asinP',, z= r + acos31. (5.20)

Note that subscript 1 in the angles should imply reference to edge (1) fixed
coordinate system. The field pertinent again to the non-uniform current
emanating from edge (1) over the shown face of the object, and consistent
with our postulate for the total current, is written as

-,jk si exp(-jko) ., x ,j
E' :t jkZsinI3ep(3k)Sxs x

4w.a
Of v u'( 0, ?") exp(jk' • r0)do'dr', (5.21)

since, in the far field,

R - a - Sd • (or' + -'+) =s - rcoso - "cospl, (5.22)

with a being the distance from a fixed reference point on edge (1). Hence,
one obtains

SjkZ infl exp(-jk) ( 6 cos# .1 - sin i 1.), (5.23)

- jkZsin#1 exp(-jka) sin I., (5.24)

4w a
in which

TO O j,".(or')exp[jk(7cos 0 + rcogsl)] ddr'd' (5.25)

or +00 +00-
,1 = J.,s - K.,8 = (I M

exp~jk(a cos 0S + r cos # )] dar'dr'. (5.26)
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The integrals J,, correspond to an edge (1) contribution to the non-
uniform field. The latter is the field radiated by the Michaeli's fringe equiv-
alent current and equals

- = El _ ), (5.27)

with

f(1)nu sin [ 1 ZI" (q,) - M n(q,)
M- 47r(cos 01 - cos,83)

exp[-jk(. - i Q. (5.2))aJ (5.28)
a

The edge currents I' u and M n" have been defined by eqs. (5.8)-(5.9) and

$,

S d  (2) SHADOWED REGION

do i

Figure 5.6: Geometry for the surface current integration.

(5.10)-(5.12). The field of eq. (5.28), when superimposed to the Physical
Optics contribution is equivalent to the GTD corner diffraction recently
developed by Brinkley and Marhefka [2].

On the other hand, the integrals K.,,, corresponding to a truncation
effect of the primary non-uniform current, with the use of eqs. (5.2) and
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(5.3), are written explicitly as

K. = H 2 . cot ( +() I K(e) d., (5.29)
4717L1 pq=-Jr 2n,

KS - 4.r.. csc j sin 4
47rn p,q= r

+H.'.cot#'~cose] cot t+(-i)p#'i) K(e)gd~, (5.30)

where K(4) denotes the simple integral

K(g) = exp k'r'(cosl - cosi)]

expik'in2''(p + cose)]&'dr', (5.31)

which can be trivially evaluated. It can be easily seen that

o'(T') = r' sin a/ sin(#' - ct) + B, (5.32)

where a is the angle between edge (2) and edge (1) in the counterclockwise
direction and B is a constant. Hence,

K(e) = K 2(e) - K(t), (5.33)

with

K sin(#' - a) exp[jks, sin'#,' cos2(e/2)I
Pm in sincasin4 /"' (A + cos e)(v + cosf)

• expLjk( . - sm + d • 'Q m = 1,2, (5.34)

where a,. = Iqm.,,,I, I has been defined by eq. (5.13), while

V = cos6=IA+ sin(8, -a) (cos#I - cosOw)sin a sin2 flif

sina sin 01 coo e 1 + cosa(cos~i -co/3) (5.35)
sin a sin #I

82



Incorporating eq. (5.34) into eqs. (5.29) and (5.30) one obtains

-2 sin(#' - a)J4(qm)
K(" k2 sin4 3

• expljkO.d -Q. )I, (5.36)

2 sin(,61 - a) [Y Ei(q.)W m()(#~,, 01;1 1011~)
K(m)z = sinss 01

+ H.(qm.) Cos l,W, w.)(, ; , ']

expjk(d . .- ]. (5.37)

In the above expressions:

W )(
m

,  ;/, ' 8nrj sin a

2 cot (2+(-, ) exp[2jks.. cos2 (t/2)]

P-- ,+r, (p + Cos)(V + cosC )

(5.38)

1 2P
8n, rj sin a,

.sin W cot -+(-)O exp[2jksm cos2(t/2)]

Jr1 +r2  (/t + cost)(V + cos)

(5.39)

and

W,(3)'; b;/3" €) 8ntwj sin a
2 cos cot (+(-)P¢ exp[2jksmcos2 (t/2)]=J Ir+r2  (+ cos )(v + cos)

(5.40)
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The pertinent field quantities related with the truncation effect read

E (2 ),u j sin(I-a) E(q,.) "in W.)(61,1;oi1 )2wk sin 3 sin
+ ZH;l(q.) Ncos 1 co 0w 1; 0', 0' )

+ sin 01 cot lW( )(,3 1 , 0 1; i, ')] }
exp[-jk(, + a. - r-. (5.41)

and
SjZH.(q.) sin(#' - a) sin W1

2wk sin/3

exp[-jk( + m, - - ')] (5.42)

It should be noted that the distance between q,. and Q,. -denoted by
a,.,- may be zero in case of adjacent edges or large when q,. and Q, k.o not
coalesce. Thus, the integrals W, ), W,( ) and W,?) can be evaluated in dosed
form when a. = 0 via the Cauchy's residue theorem and asymptotically
for large values of a, via the extended Pauli-Clemmow method of steepest
descent. In the former case, one obtains

= -U(W-)
sn a(p + cos 01)(v + cos 4')

sin2 2,'

ni sin(#' - a)(cos/9 - cos/')

csc7 sin ( ') csc6 s_ n (1L- )

cos. coo COS*- cog(-,,-)

(5.43)

U(r - 0') sin 4 4)
W,(nsin a(p + coo 0b')(v + cos 0')

sin 2 Y sin .£
+ ni

n, sin(/9' - a)(cos6 - coo#')
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[ sin ( n- j si(; 1cos L - Co Co *'-Cos (-
., (c(.) coNO . ,

(5.44)

U(7r - 0') cos 0'
W( , 0; IT, 0') sin a(IA + coo 0')(v + cos€')

+sin 2 Pt
n1 sin(#' - a)(cosf3 - cosl')

L co t - sin (-- ) o t s n - -'( )

(5.45)

whereas, a uniform asymptotic expansion of these integrals, with an error
that does not exceed 0(1/.,n), with Kn = k.. sin2 l, yields

exp(-jr/4)4n, 027 - sin a sin 0'

2 7r+ (1)P+9+101Ia,, , cot 2n ( i,+, ,'

F(.,napq) + F(K.,c)

lap(apq - c)(oa - d) c(c - ap,)(c - d)
F(Kmd) 1 (5.46)

+ d(d -- apq)(d - c)]

(n 0, (5.47)
W )O,€;f ,@)  -WO)O,@ff,4'),(5.48)

in which
c=1-p, d= -v, (5.49)

and

ap= 1 + cos[2nplNf - (-I)PO, 'J, (5.50)

where Npq integers most nearly satisfying the equations

2 n,N.7r - (-1)P , ' = (-),+l,,. (5.51)

One can, with no difficulty [401, obtain higher order terms of the asymptotic
expansion of the integrals (5.38) - (5.40).
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5.4 Secondary non-uniform edge equivalent
currents

The analysis of the radiation of the first order non-uniform currents by
edge (1) merely included the effect of truncation of these :arrents by the
other edges of the plate. Of equivalent significance is the contribution
from a secondary effect which arises from the non-uniform currents that
are excited by edge (2) due to the field diffracted by edge (1) that grazes
the plate and illuminates a section of edge (2), as illustrated in Fig. 5.7.

$,

Sd  (2) SHADOWED REGION

j nu

Figure 5.7: The secondary non-uniform current.

A similar approximation has been developed by Sikta [11], who consid-
ered a secondary edge current induced by the field diffracted by edge (1).
However, his development has been based on a modified version of Ryan
and Peters equivalent currents [171, and though it provided reasonable re-
suits for several flat plate geometries, it is questioned conceptually [39].
A natural modification of Sikta's idea, within the frame of an asymptotic
PTD approach, is the additive correction of the solution developed in Sec-
tion 3.1 by the radiation of secondary non-uniform equivalent sources along
edge (2), which at each point are proportional to the tangential component

86



(to edge (2)) magnetic field diffracted by edge (1) and evaluated via UTD.
Referring to Michaeli [7], the non-uniform current along edge (2) excited

by the UTD diffracted field from edge (1) can be written in the form

1 d,n(Z) = i2 -(j ,,0;0,0;n) Hd(Z 2 ) - (5.52)
k h 2

and
dmu(,2 ,,;,O;n2) H 2(Z2)" i2 (5.53)

where U''( ', 0; /2, 42) and Mru(A3, 0;•/32, 042) are determined from eqs. (5.11)
and (5.12), while the magnetic component Hd of the UTD diffracted field
from edge (1) equals

-jd -- YE;, exp(-jwr/4) r 7r -\ F46 u si 2 1~~
H - IV~ Lcot I42n 2 ) i #a(O)c Io, V2_-ik_

+ _cot p (2!L' Fksin-) a-(O')]3 Vj 01, (5.54)

where [16]
a'(0') = 1 + cos(2n, N* ± + ) (5.55)

and N integers most nearly satisfying

2nN*w ± 4, = 7r. (5.56)

It should be also noted that a factor of 1/2 has been introduced in eqs. (5.52)
and (5.53) due to grazing incidence.

Accordingly, the field associated with the secondary non-uniform equiv-
alent currents defined by eqs. (5.52), (5.53) is given by

E,.,u , jkZ sin,32 exp(-J ka)

4ira

• 12 [i = ZId 2)(z2 )- M"'"(z2 )] expjkd • i(z 2 )]dz2

(5.57)

where the integration takes place along the illuminated (by the rays dif-
fracted from edge (1)) section of edge (2). The above expression involves
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Figure 5.8: Non-parallel edges geometry.

integrals of the form

(2)

.JF /()n1 s#)expfjk[i' " iz 2) - T(Z2) + S' .(z 2 )])dz2 -.

(5.58)

Although the UTD diffracted field from edge (1) is not a valid approxi-
mation when a corner is approached, because either the edge itself is ap-
proached or, at the tip, the field structure is more involved than a simple
superposition of singly and multiply diffracted rays, the closed form inte-
gration of I is not expected to yield a different result from a numerical
integration along an interval that excludes a small region close to the tip,
due to the regularity of the integrands. Besides, closed form results provide
the necessary insight for the assesment of the solution and the possibility
of plausible heuristic modifications.

If the edges are parallel the integration in eq. (5.58) is trivial. Let us
considcr the interaction between two non-parallel edge as shown in Fig. 5.8
One can integrate along the direction P as shown in Fig. 5.6 by performing
a simple linear transformation of variables. Since o(,r) = Ar, where

A= sina
sin(#' - ct)'

88



and using the explicit definition of the F(.) function, as well as the fact

sin a sin 2#1r-'Jr) -o(r) + 'l'(r)= (V--' (-l

eq. (5.58) becomes

sin #2sin= -2j ksin2 ia(44)

T . exp{jkArsin'I3[a(O') - (1 - v)I}

+ exp(-jv2 ) dvdr, (5.59)

where cos 2' = -•"
The surface integral

t+00
J= exp(jqrl) Jr.. exp(-jv2 ) dvdr (5.60)

can be written as
j = J2, - JI, (5.61)

with

Jm = j exp(-jv2 ) f exp(jilr) drdv. (5.62)

The latter can be expressed in closed form in terms of the standard Fresnel
integral as follews:

J J =- 1/C I

- exp(jr'r,) f +0exp(-jv2)dv}, I - rl/C Z 0. (5.63)

Application of the above result into eq. (5.59) yields

I = 12 -11, (5.64)
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where

sin #24 jA sin'#',[a(0)) - (1 - v)

Ii - 11  /.-.-... exp (:zit)dL
Fa+jV Iexp(- ept')dt)d

-exp{jks, sin2 fl'la(01) - (1 - v)]} - exp(.- ,t)dt}

(5.65)

One can simplify the above expression in terms of the edge transition func-
tion, namely

, -isin( - a) Fd(K;a(04),1 - v), (5.66)
ksin c sin/9i sin #3(1 - v)V@

where ,. = ks,. sin 2 0' and

Fd(c; a,a, -) = a ,F(a) - a2F(Kai) (5.67)

Substituting the result (5.66) into eq. (5.57) one obtains two terms associ-
ated with the end points of the line radiation integral, namely

gdn= d,nu- An, (5.68)

in which
g,, exp(jwr/4) sin(0I - a) sin.3

2n,(2wrk)3/ 2 sin asinfi'(1 - v)

* [42i'"(P, 2,;i,0;n2) - ,,u -(,.,02;P2,0;.n)]

{cot T 0, (, ,.;a+(4,4), 1 - ,)• o( 2n, )

+cot (7r + 0' Fd(,; a-(01), V)2n, )/
e[_ik(.m - id. -,)]

0(5.69)
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When the points Q.. and q,, coalesce, as in the case of adjacent edges
one can repeat a similar analysis to identify a corner effect pertinent to
the secondary non-uniform current. However, since the integrals involve
regular functions one can simply take the limit of the field in eq. (5.69) as
,-- 0. It can thus be trivially shown that for a,,, = 0

= sin(G9' - a) sin,6 2  f 2 ~~3, 2 ~~~ 2
4V2n,7rk sin -(1 - v)

cot Tz + ca (0),1, v
+ 2n-, )FCa(l'-)

e p[-jk(,a, _ id. Jq.]
a (5.70)

where v -
Fc(a:,1 - v) = V + ' (5.71)

along with the following selection of the branch:

_~f { vi-' -- ; V- >0 (5.72)-jlvlv-f-Vl ;I-v <0

It should be noted that the apparent singularity in eqs. (5.69) and (5.70)
when v, --+ 1 is canceled by an analogous singularity of the second term

composing the total interaction between any pair of edges.

5.5 Numerical results and discussion

The effect of the truncation effect of the primary non-uniform current, out-
lined in Sec. 5.3, as well as the contribution of the secondary non-uniform
current, presented in Sec. 5.4, has been investigated in monostatic and
bistatic cross section computations of several plate geom'.iriec and they
have been compared against the corner diffraction solution [2] as well as
the Method of Moments. It should be emphasized that the approach is not
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complete in many aspects. For instance, from a PTD point of view particu-
lar components of the currents (e.g., a rigorous tip excited current, an edge
wave current, currents excited by multiply bouncing rays, etc.) have not
been included. Further, the predicted fields due to the inexact depiction
of the currents do not satisfy reciprocity. However, the present solution
appears as a computational efficient means to accurately approximate in
several cases the scattered fields.

The two levels of approximation of the currents and the associated fields
are indicated as "asymptotic solution" and "asymptotic solution +" at the
plots. In Figs. 5.9 and 5.10 the effect of the incorporation of the higher order
current effects is evident away from broadside. It should be noted that for
principal plane observation only a 4 polarized incident wave is expected to
excite higher order interactions between opposite edges of the square plate,
and, indeed, this is the case where the superposition of secondary effects
improve the pattern. On the contrary, the corner diffraction solution is
adequate in the 9 polarized case. The minor discrepancy when grazing
incidence is approached may be attributed to a slope effect which has not
been incorporated at the time.

The effect of the primary non-uniform wedge current is also clear in
bistatic pattern calculations for the same 5A square plate. The secondary
current appears of minor importance in this example, except in the case of
the a# cross-section. When the plate becomes smaller and the incident
field is closer to the plane of the plate, the contribution from doubly dif-
fracted rays predicted via the presented asymptotic analysis becomes more
significant as shown in Figs. 5.15-5.18 where the bistatic cross section of a
2A square plate is studied.

Sikta's triangle is another example where the method is outlined. Al-
though the solution has a remarkable effect in the sidelobes close to broad-
side and when nose-on incidence is approached, it fails to predict the ap-
preciable field at the vicinity of the 0) = 150' angle for the 4 polarization.
This discrepancy may arise either because of an inaccurate prediction of
the corner diffracted field from the back tip, or due to a strong tip-to-
edge diffracted ray (which is not included due to the two-dimensional and
non-reciprocal nature of our approximation), or, finally, by travelling waves
along the edges of the triangle.

Future work on the same level should focus on a more rigorous develop-
ment of the secondary noin-lmiform current ucing :-oncepts of the Spectral

92



Theory of Diffraction. This should enable the study of slope effects and
should lead into a more symmetric solution. The truncation of the sec-
ondary non-uniform by adjacent corner is also under investigation. Further,
careful study of the individual ray mechanisms constituting the total solu-
tion may enable heuristic modifications, based on empirical arguments, and
corrections in certain regions of deficiency. A more involved study should
concentrate in direct or indirect approaches towards the investigation of
the corner phenomenon.
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Figure 5.9: Principal plane RCS oo#' of a 5A square plate.
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Figure 5.11: Bistatic crors section ae'' of a 5A square plate for 0' =450 and
4=00 at 4=600.
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Figure 5.12: Bistatic cross section tro of a 5A square plate for 01' 450 and
01 = 00at ' 600.9
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Figure 5.13: Bistatic cross section o-# of a 5A square plate for W' 450 and
' at 4, 60".
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Figure 5.14: Bistatic, cross section o.#' of a 5A square plate for IV = 45o and
4,-00 at 4=600. 96
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Figure 5.15: Bistatic cross section c'**i of a 2A square plate for 6' 600 and
4Y45'at~ 600.
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Figure 5.16: Biutatic cross section olt of a 2A square plate for 9' = 600 and
0'=450 at 0 = 600. 9
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Figure 5.17: Bistatic cross section o#w of a 2A square plate for 0 600 and
=450 at 4'=600.

Its'
.... .. \

* 30.0 90.0 V5.0 216.0 270.0 33b.0
190

Figure 5.18: Bistatic cross section a## of a 2A square plate for 0' =600 and
45' at 4=600.
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Figure 5.19: RCS o,##, of Sikta's triangle with a 3A and a 300 at
0 =908.
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Figure 5.20: RCS ao,' of Sikta's triangle with a = 3A and a~ 300 at
9=900.
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Chapter 6

Summary

This report summarizes the major theoretical studies pertaining to the
scattering from flat plate structures. A new far zone corner diffraction co-
efficient has been developed and tested against existing solutions, method
of moments, and measurements. It has been shown to be very useful and
accurate for backscatter and especially for bistatic scattering where many
of the previous methods give less accurate results. A new method for de-
ternining an edge wave - vertex diffraction coefficient for dipole excitation
near an edge has also been developed. It is tested against method of mo-
ments and measurements with excellent results. This is an intermediate
step for determining a far zone edge wave solution. This edge wave solu-
tion for plane wave incidence has been approximately developed by relating
the first corner as if it is a source of the edge waves and the use of reci-
procity. It is tested against method of moments and high resolution time
domain measurements for a plate. The higher order diffractions across the
face of the plates has also been developed. It includes corner to edge, edge
to corner, and corner to corner type diffraction mechanisms. It is based on
the truncation of the edge generated currents at opposite edges making up
a plate structure.

The theories in this study have been developed in such a way as to be
useful for efficient algorithms to t used in user oriented computer codes.
They have been included in a simple user oriented code called the Radar
Cross Section - Basic Scattering Code (RCS-BSC Version 2). It allows the
use of multiple edged flat plate structures that can be put together to make
polyhedral shapes. It also allows composite elliptic cone frustum shapes
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and ellipsoids to model curved surfaces. Monostatic or bistatic results for
the complete scattering matrix are obtained. The input of the shapes is
based on a simple command word system.
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Appendix A

Asymptotic Evaluation of an
Integral for Edge Waves

We outline the uniform asymptotic approximation of the integral

l-Pk = j t" G(t) exp{jkg(t)}dt, (A.1)

for R(p) > 0, in terms of the large parameter k. (To assure convergence of
intermediate integrals, let the parameter k have a small negative imaginary
part.) In eq. (A.1), G(t) is a slowly varying regular function of t. For
our purposes, and without loss of generality, it is assumed that g'(0) =
sign(t.)Ig'(0)I, with g'(to) = 0, and g"(t) < 0, for every t. For t. > 0 the
major contribution to the integral arises from the vicinity of the stationary
phase point (t = t.) and the end point, which coincides with the branch
point singularity of the integrand.

In the particular case p = 1/2, one introduces the transformation =

and with H(4) = G(e 2 ), h(f) = g(f 2) rewrites eq. (A.1) as

I,/ 2(k) = 2 j H() exp{jkh()}, (A.2)

where, now, h(f) exhibits three collinear, equidistant saddle points at fo =

0, 61,2 = ±v/lt, This case is treated in detail in [41]. Specifically, intro-
ducing the transformation

h( =o - (a + ',(A.3)
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with
ao = h(,2)=

a = -sign(t.)jFh(6,,2) - h(O)i = -sign(t.)iV/g(t.) - g(0)j,
and from the definition of the parabolic cylinder function

D_() = exp(-Z 2 /4) cct- exp(-zt - t2 /2)dt, R(p) > 0, (A.4)
I.(p)

and the formula [42]

=(z) exp (jp7r) V-.(-z) + r7 exp {j(p - 1)7/2) D,.-,(jz), (A.5)

OF exp (-j~rl8)
L-112(k) ~fr(2k)1/ ) exp,{jk(a - a'/2)) 1/ji

G(O J 2_,/:I[exp (j '/4)jajl/2'k]

+7 0) IV'2exp(-jw/4)D_. 1/ 2[exp(-jr/4)lalv'2]; t.> 0
/{ (j*r/4)jaj-/2_k; t. < 0

(A.6)

It should be noted [41] that, when a is small,

2Fa) ; 21 a1 2 11/4
= Ig'(O)l I'.g"(.)l Ig"(0)lJ (

In the more general case of arbitrary p, a rather heuristic approach has
been implemented. For instance, the derivation of the end point contribu-
tion is obtained by introducing the expansion

g(t) -- g(0) + g'(O)t + -'()t 2  (A.8)
2

The resulting canonical integral can be expressed in terms of the parabolic
cylinder function of order -p. Thus,

/4P(k) .t. G(o) r(p) (2k) - '1 exp (-jpr/4) exp {jk[g(O) + a'/2])

1'(0)I ]'J exp(jpr) D.p[exp(j7r/4)jaiv-k]; t' > 0
21a1 Ji V._,[exp (jw/4)jajV1; t. < 0
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