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INTRODUCTION

When a slender poia1ed body is placed at a large angle cf incidence, t:e

boundary layers on its sides separate, and the resulting free shear layers roll

up L,Zo iortices, which lie above the ,body in a direction between those of the

body axis and the free stream. These vortices have an important influence c, the

aerodynamics of many combat aircraft and manoeuvring weapons.

It has been known for many years that the vortex flows of this kind that

take place over sharp-edged wings can be represented successfully by inviscid

models and there is evidence that the same is true for flows over round-edged

wings and bodies, provided the location of the lines on the surface at which

separation occurs can be specified. Since the noses of pointed bodies are

approximately conical, knowledge of the vortex flow over cones is not only valu-

able in itself but also essential for understanding or calculating the develop-

ment of the vortical flow along the body. The consideration of cones leads to an

important simplification, since the supersonic inviscid flow over a cone is coni-

cal, in the sense that the velocity and pressure are constant along each ray

through the apex. Moreover, if the apex angle is small enough for slender-body

theory to apply, the lifting component of the flow field is conical at all Mach

numbers.

Use of the slender-body approximation reduces the calculation of the lift-

ing behaviour to the solution of a quasi-planar problem of incompressible flow in

cross-flow planes normal to the flow direction or the body axis. The vortices

formed by the rolled-up shear layers can then be represented most simply by the

line (or point) vortices of planar, incompressible potential flow. A model of

this kind was formulated by Bryson for flow past bodies of revolution, and he

presented numerical results for circular cones with a particular angular position

of the separation line typical of turbulent flow. Additionally he showed that, as

the angle of incidence, a , is reduced, the vortices reach the surface of the

cone when

= 1.5 cosec e , (1)
6 s

where is the semi-apex-angle of the cone and e defines the positions of thes

symmetric separation lines OS, and OS '" i.

Moore re-examined the behaviour of this model for circular cones. She

found that, if 0 is smaller than a critical angle of about 460, there are two

solutions for a range of values of a/6 smaller than those given by (I). For

these values of - . the model predicts that the initial movement of the vortices
S
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away from the surface of the cone is associated with a decreasing angle of inci-

dence, which is implausible in a model of the real flow. It emerges from recent

calculations by Pidd 3 that solutions for values of a/6 less than 1.5 cosec s

are unstable to non-conical asymmetric disturbances, so equation (1) does, in

some sense, provide a lower bound to the values of a/5 for which solutions of

physical interest exist.

It iq therefore of interest to apply this model to obtain a generalization

of (1) to cones of elliptic cross-section. Before presenting the derivation of

this generalization, we explain briefly why we believe the behaviour of so crude

a flow model is relevant to present-day aercdynamics.

Much more representative models exist and their properties can be deter-

mined computationally, so what r6le remains for simple models? The more complete

models that can be applied to problems of vortex flow are:

(a) the vortex-sheet model, which retains the framework of slender-body

theory bi~t provides a realistic representation of the shedding of circulation and

of its subsequent convection, in the limit of infinite Reynolds number;

(b) the discretized Euler equation model, which more correctly represents

effects of three-dimensionality and compressibility, but includes unreal effects

of numerical diffusion, while excluding the effects of molecular or turbulent

shear stresses; and

(c) the discretized Navier-Stokes equation model, with or without a model

of turbulent stresses, which includes all the relevant physical effects (subject

to the limitations of the turbulence model), perhaps masked by non-physical

effects of numerical diffusion. A dramatic justification for the use of the

simplest model, the one used in the present work, is provided by the way in which

it has contributed to the understanding of asymmetric vortex flow past slender

pointed bodies at incidence. The existence of asymmetric separated flow solutioLIs

of this model applied to a circular cone with specified symmetrically placed
4separation lines was demonstrated in 1981 . These solutions were used in the

5
construction of asymmetric vortex sheet solutions, reported in 1982 . Solutions

of the discretized Euler equations for conical supersonic flow, exhibiting pro-
6

perties like those of the vortex sheet solutions, appeared in 1988 Early

attempts to find Navier-Stokes solutions exhibiting gross asymmetry failed, but

quasi-conical, grossly asymmetric solutions for supersonic speeds appeared in
71989 All these solutions are consistent with a bifurcation of the symmetric

solutions from the symmetric solution branch at a critical value of the parameter



a/6 , but the identification of the bifurcation locus has cnly been Dossibie
3

using the present simple model . moreover, the simple model has allowed the

stability of the conicai solutions to three-dimensional spatial disturbances to
be determined 3 . With the vortex-sheet model, both stable and unstable solutions

can be found, but so far it has not been possible to distinguish between them.

The only solutions that can be obtained with the discretized models are those for

which the numerical algorithm is stable, a condition which may or may not corres-

pond with either physical stability or the mathematical stability of the solution.

Finally, only the simple model gives a clear indication of its behaviour near the

value of a/3 for which separation first arises, the particular aspect con-

sidered in the present work.

2 THE MODEL

2.1 Description

We list the assumptions made to obtain the highly-simplified model used in

Refs I and 2 and herein. Firstly we assume that the body is sufficiently smooth

and slender, and the angle of incidence is sufficiently small, for slender-body

theory to apply to the flow outside the viscous regions at the free-stream Mach

number of interest. Secondly, we assume that the Reynolds number is high enough

for the displacement effects of the boundary layers and free shear layers to be

negligible and for the rotational effects of the free shear layers which originate

at separation to be represented adequately by vortex sheets. Finally we assume

that each vortex sheet can be replaced by a combination of a line-vortex and

feeding sheet, as described below. There is evidence from solutions for wing

3,4
flows , that this assumption is reasonable when the vortices are small and weak.

According to slender-body theory, the disturbance velocity potential has two

components, one of which is not relevant to the present model since it affects only

the screamwise disturbance velocity. The other component is obtained as a solu-

tion of the two-dimensional form of Laplace's equation in the cross-flow plane,

satisfying appropriate boundary conditions at infinity and the condition of no

flow through the body surface. This component is itself the sum of two parts, one

arising from the attached flow around the body and the other representing the

effects of separation. The simplest representation of the effects of separation

is chosen, in which the axial component of the rotation in each vortex sheet is

concentrated into a single line-vortex, shown as OV and OV in Figs I and 2.
1 2

The strength of the vortices is determined by applying a generalization of the
Kutta condition, namely, that the flow at the separation line OS or OS is

directed along the separation line. A proper inviscid model would involve vortex



sheets, rather than line vortices, and the pressure would be continuous across

each sheet. in our simpler model we retain an integral form ot this condition,

that the cross-flow component of the total force acting on every elementary

streamwise length ot each 'vortex system' vanishes. The vortex system is the

line vortex, OV , and the cut, or feeding sheet, OSV , which joins the line-

vortex to the separation line. The cut is an essential part of the model since

the strength of the vortex alters along its length in apparent violation of

Kelvin's theorem. We can regard the cut as a feeding vortex sheet, conveying

rotation from the body to the line-vortex. The vorticity vector in the cut lies

in the cross-flow plane, so the divergence-free character of the vorticity field

is maintained without affecting the cross-flow velocity.

2.2 Construction of velocity field

The body, an elliptic cone, is shown in Fig 2. We use the right-handed

rectangular Cartesian axes shown, origin 0 at the cone vertex, Ox along its

axis, Oy to starboard and Oz completing the system. The semi-axes of the

elliptic cross-section are a(x) = a'x and b(x) = b'x parallel to the y and

z axes respectively, where primes denote derivatives, constant in the present

case. The onset flow has speed U and is inclined at an angle a to Ox

Since a is small, we can take its components as U parallel to Ox and aU

parallel to Oz

Let

Z = y + iz (2)

be a complex variable in the cross-flow plane x = const . Then, if W is an

analytic function of Z , its real part ?{W} is a solution of the two-dimensional

form of Laplace's equation. We therefore seek a disturbance potential in the form

of the real part of an analytic function which satisfies appropriate boundary

conditions. We note that the cross-flow velocity components v parallel to Oy

and w parallel to Oz are given by

v - iw -dW (3)
dZ

The representation of the onset velocity then requires that

W - -iaUZ as Z- " (4)



If the equation of the body surface is S(x,y,z) = 0 , the condition o: no i

through the surface is
US + V3 +WS = 0 WS,

x v z

assuming, as turns out to be the case, that u , the component of the ciaturn-

anca velocity parallel to Ox , is small compared with U . The equation of the

surface can be written conveniently as

S b-(x)y + a-(x)z - a (x)b(x) = 0

and so (5) becomes

2 2 _ 2 2 2
U(bb'y + aa'z a bb' - b aa') + byv + a zw = 0 (6)

Using ¢ , the eccentric angle, as a parameter on the elliptic cross-section, so

that

y = a cos , z = b sin , (7)

we find the body boundary condition (6) becomes

bv cos + aw sin = U(ab' sin s + a'b cos-.) ()

The normal direction to the ellipse in the cross-flow plane is b cos : a sin

so that v n the component of the cross-flow velocity normal to the ellipticn

cross-section, directed into the fluid, is

v = (by cos p + aw sin 0)/D (9)
n

D = (a sin 2 + b- cos>) > 0 (10)

Hence by (8) and (9)

v U(ab' sin - + a'b cos 2)/D (11)n

The attached flow is now given by the real part of the complex potential

which satisfies (4) and (I I). This is found by mapping the region of the

z-- Z-plane external to the ellipse on to the region of a -plane external to a

circle. If the circle is centred at the origin and has radius R , a general

point on it is
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Re = R(cos + i sin:) 12

so that cos = (;/R + R/,) and sin = i(R/ - ,/R) Hence, if

a + b + a - b R
2 R 2

the general point (12) on the circle corresponds to the general point (7) on the

ellipse. We now choose

R = (a + b) 03)

so that Z - at a large distance, and obtain the mapping

Z = + (a2 - b 2)/41

The normal velocity required on the circle in the --plane is

dZ'
v = v -n n.d

so that, by (9) to (14),

v = U(ab' + a'b + (a'b - ab') cos 2 -)/(a + b) (15)
n

Since the body is a cone, we can write

b(x) = Ta(x) , (16)

where 7 is a constant, the thickness ratio of the cross-sections. Then (15)

reduces to
v
n - Taa'

U R

This uniform normal velocity can be generated by a source at the origin of the

--plane of strength 27Rv = 2-TL-aa' The appropriate behaviour (4) at a largen

distance requires, by (14), that

W -iaU4 >

and a complex potential with this behaviour, generating no normal velocity on the

circle, is



- iaU(- Ri

Henc the complex potential of the attached flow, W , is obtained by addinoa

these contributions:

W a= aa'U log - iaU(Z - R/;)
a

To represent the effects of separation, we require the complex potential

to behave like that of a line vortex of strength F near V, , -e near Z = Z

and like that of a vortex of strength -7 near V._ ,ze near Z = -ZI , where

the overbar denotes the complex conjugate. The leading term in the behaviour of

tne flow at a large distance aid the normal velocity on the body surface must -t

be affected. This is achieved by the introduction of line-vo:tices of strength

at and -7 at , together with image vortices of strenth --

at = 12/- and : at = -R_/ I , where g is related to Z through the

mapping (14). Adding the appropriate complex potentials to (17) produces

9

= aa'U log - ia( R 2 o -_

Positive circulation is anti-clockw~se looking upstream. Symmetry precludes the

introduction of a vortex at the centre of the circle.

2.3 Implementing, the conditions

We now wish to express the conditions at the separation lines and the con-

ditions o- zero overall force on each vortex system, as described in subsection 2.i,

in equation form. By syrimetrv it is enough to consider the starboard half of the

flow field. We have not so far specified how the vortex position Z and circu-

lation are to depend on x , nor the shape of the separation line on the sur-

face, though in Fig 2 both the vortex and the -.'laration line are drawn as

straight. This is the simplest possibility and cc .... o ds to an inviscid flow

which is conical and a quasi-conical boundary laver development. It agrees quite

closely with observations of laterally symmetric flow on conical bodies provided

(a) the state of the boundary laver at separation does not change along the length

and (b) either the flow is supersonic or we are not too near the base of the cone

if the flow is subsonic. For simplicity, we assume the lines are straight and

the flow is conical, so that

I I

S and d - (19)

dx x dx x
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The condition imposed by Brvson at the -ec iration iine is that t'e

there sh,1ld be parallel to it. A rather more representative condition was

investigated by Moore- and shown to affect the solution. However, it compica. -<

the analysis, so, since our object is to find the effect of non-circular cross-

sections, we retain the simple form of the separation condition. Since the

separation line is straight, it can be specified by a constant value of

= s , v = a cos s , z b sins 20)

The direction ratios of the separation line are then

I : a' cos s : b' sin s

Hence, for the velocity vector to be parallel to this line

v - iw = Ua (cos s - i . sin s) , (2'

since the streanwise component of the disturbance velocity is small compared

with U The velocity is found from (18). Differentiating, we have

W aa'U" Ri + + + o(21\"" i I 2- V + - 1 R'/"I

From (3) and (14)

dW (v- iw) dZ (23)

dZ a_ -_b-
= a- a( cos s + i sin s) (.d 4-,

at tne separation Line. Hence by (21), (23) and (24)

dW ?
= Uaa'(- + i(I - T) cos s sin s) (25)

Introducing Re into (22) and substituting the result into (25) gives an -

equit-on which reduces to

+ ( )U( - R
1 I

c is is - -s~ -eis - = + a'(] - T) sin s (26)
"-C~ - .il~ -- )(Re + ) 'e

, Rewmm + ~ mmkim



The final condition on which the model depends is L,.a: the system of the

line-vortex and cut experiences no net force in the cross-flow plane. Wc cCn-

sider the transverse forces acting on an Element of length of each component of

the starboard system, and represent them by coiplex quantities

= F + iF , (27)y z

where F and F are the components parallel to the y- and z-axes.
y z

The magnitude of the force per unit length on the line-vortex is given by

the product of the density, the circulation, and th fluid speed normal to the

vortex. Its direction is normal to the vortex and normal to the fluid velocity,

in the sense towards the side on which the speed is higher. The velocity com-

ponent normal to the vortex arises partly from the small inclination of the vor-

tex to the free stream, giving a contribution to the complex velocity of

UZ!
U , (28)
x

and partly from the velocity of the cross-flow at the position of the vortex.

The complex conjugate of this velocity is given by

lim - ; i log(Z - Z1)

since the self-induced velocity of the vortex is zero. The only term in W

which is singular at Z = Z is (/27i) log(; - r ) Using a Taylor series for

Z - Z in terms of - - we find

2' dd

Hence if the complex cross-flow velocity at the starboard vortex is V , we have

dt a I dZ d- + 1R1I (29)
d;dZ -2 2dZ d 2 I 2 d,-, 1-1 R 

+  +I R

evaluated .:it -= The complex force in the cross-flow plane per unit length2

of the starboard vortex is now

F = - iil(V - UZ /x) (30)
v
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The jump in velocity potential across the starboard cut is 7 . This gives

rise to a jump in the iongitudinal component of velocity of d7/dx = 7/x , and so.

through Bernoulli's equation, to a jump in pressure of -zU-/x , since the cross-

flow component of velocity is continuous across the cut. The complex cross-flow

force per unit streamwise length of the cut is therefore given by

F = i(Z - a cos s - ib sin s)pUr/x , (31)
c

since the starboard separation line is at Z = a cos s + ib sin s . The con-

dition of zero net force on the vortex and cut is just

F + F = 0 . (32)
V c

Introducing (30) and (31) into (32) leads directly to

V = (22 - a cos s - ib sin s)/x , (33)
U

and the required condition follows by combining this with (29). The terms in (29)

follow from (14)

dZ a -b d2Z a 2 b 2

4 , 2 23

and from (17)

dWa _ Taa'U- i'(U I + R

d

Hence, after a little simplification, the condition is:

(2Z - a cos s + ib sin s) (4; - a + a R

R2; (;I - )

S+ +

...... (34)
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With Z related to - through the mapping (14), this is a complex equation

connecting I and F to the shape and incidence of the cone. Together with the

real equadtion (26), it determines the vortex position and strength.

Before proceeding, we introduce non-dimensional variables and tidy up the

notation. We extend the definition of 5 used in section I so that it relates

to the elliptic cone:

= (35)
x

and introduce non-dimensional variables for the vortex position and strength:

! F
W R ' 2 F (36)

We note that, by (13) and (16)

2R b 2RTa= +T , b -I + T I + T

so that

a' a 126
x 1 + -r

Then the condition (26) at the separation line becomes

i i I) (w + W) - + 2 T sin s (37)
(e - w)(e + J) (e + w)(e - W)

and the condition (34) of zero net force becomes

2 2 + :) + cos s + i: sin s 1 + T)w

(I + )

4T i a t + + iY T + W(W + 2 + w

+ )+ T) -[ ( + T (W (W + I) W

...... (38)

These equations, equivalent to three real equations, determine the position w

and strength y of the starboard vortex in terms of the axis ratio r , the inci-

Z dence parameter i/S , and the pnsition, s , of the starboard separation line.

can readily be eliminated, but numerical solution is required in general.



3 ANALYSIS FOR SMALL-SCALE SEPARATION

We now seek a solution of equations (37) and (38), assuming that the vorti-

ces are close to the separation lines, expecting to find that the vortices are

weak. We follow the procedure used by Moore2 for the circular cone. The first

step is to rotate the axis system in the transformed plane, 7- , so that the

starboard separation line lies on the real axis of the new plane. Then, if t is

a non-dimensional complex coordinate of the starboard vortex in the new plane, we

have

-Is /R = we (39)
t = e

and we seek a solution for t near unity. Following Moore, we choose the

imaginary part of t as the small parameter E , and assume the existence of a

solution of the form

t = I + Ae + BE2 
+ ... + iE , (40)

where the omitted terms are real and o(E )

We eliminate -( between (37) and (38) to give

2 Tl : + 1 - (1 '
2 + cos s + iT sin s [ I + T)w

(1 + 7)

4- - i + + i [ + 2 T sin s]
+ )02 0i 1 + T(l

(eis - ,)(eis + W)(e -is + w)(eis - ) F
(WW- )(w + W) L( + ) - I + r

+ W(W + W) + w ]
(WW - M)w

2 + ) Wo +JW

...... (41)

Instead of regarding (41) as two real equations for the real and imaginary parts

of . for given T and a/ , we regard the equations as determining the real

part of t and a/6 , for given Im{t} = E and T . So, in addition to the

expansion (40), we assume an expansion of the form

= p + qE + o(E) (42)
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We note that E may be negative, but AE in (40) is positive because the vortex

lies outside the circle. Moore obtained a solution of this form for = ;

so it is reasonable to seek one for general values of r

0
Most of the factors appearing in (41) are of order E , but some are

smaller. From (39) and (40)

is B2 +..

W = e (; + (A + i)E +BE 2 +

and so
2 2

w- - I = 2AE + (2B + A + )E 2 +

(43)
is is .

e - w = - e E(A + i + BE +

-is - is
e -w = - e E(A - i + BE +

Hence, in order to obtain the expansion of (41) to order E , we need to consider

the terms O(E- ) and 0(E 0 ) in the final square bracket. We write these as

I -

X = X + iX. = I T

(I + r)e -lI + r

is
cos s + c(A cos s - sin s) + e

2 cos s
E(2A + (2B + A" + l)c)(cos s + (iA - 1)E sin s)

Some manipulation yields

A2

I + A - 2B-1 (44)r = A 2(T co s +(44)) A

r -2 2 2 (44A2 )
= (r- 1) cos sn s (45)s

I" 2 .2 s

2(T" cos s + sin s)

The factor multiplying the final square bracket in (41) is purely imaginary, say

iY , and we need the terms O(E) and O(E ) in it. Introducing (42) and (43)

we find, to this order,

y,-= c - o + 2 _I - sns+q 1_ +2B(1 -

A + T A2)

...... (46)
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The first term on the right-hand side of (41) is real and independent of .

The second term is, to the required order,

i +) = 2ip cos s - 2E(Ap sin s + ip sin s - iq cos s) (47)

2

The left-hand side of (41) can be written as 2L/(I + r) , where L = L + iL.r

and, after some manipulation, we find

L =2T + 2AE(1 - sin 2 + T (1 + cos s)) , (48)
r

L. = (1- T 2 ) sin 2s + 2(cos2 2 sin 2  
+ 

2 (sin 2s 2S)) (49)

to this order in c . So, with (41) written as

2 4_____

( 2 2 (Lr +iL.) = 2ip cos s+2E(Ap sin s+ ip sin s-iq cos s)

+iY(X + ix.)
r

its real and imaginary parts are

2)2 L = (1 ) 2 ' 2EAp sin s - YX. , (50)

(+ 2r (+ T)21

2 L. = -2p cos s + 2E(p sin s - q cos s) + YX r (51)
( + ) i r

Inspection of (50) with (48), (46) and (45) shows the 0(e ) term vanishes

identically. The 0(c 0 ) terms in (51) with (49), (46) and (44) give, after some

re-arrangement:

- 1 -+ sin s cos s = 0 (52)(3A - _ I) ( + P)

The O(E) terms in (50) give, making use of the previous equations:

4A 2 2 2 A22 ( +1' -t .i s

S+sinS + T (I + cos s)) = 2Ap sin s + p + 2 1 + sin s

- 2 .
(1 -T") cos s sin s

2 2 .2
T cos s+ sin s

...... (53)

L. --'-Imm mlmlm u
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The left-hand side of (52) consists of three factors, one of which must vanish.

We are not concerined with the possibility that cos s = 0 , that is to say that

the separation lines lie in the plane of symmetry. If we suppose the middle fac-

tor vanishes, je

p = - sin s
+ T

we find that (5-3) reduces to

2 2 .2

T cos s + sin s + = 0

which is impossible. Hence we must choose the remaining possibility:

A2 1
A = (54)

This agrees with Moore's result. Introducing it inLo (53) gives

2 2 2 2 i2s 2
+ T) p sin s =2T + 4( cos S + sin S) (55)

For the circular cone, T = I , (55) reduces to

p = 1.5 cosec s

which agrees with Moore's result, and is Bryson's lower bound (1).

The 0(E) terms in (51) are

2 (c - 2s 2 + 2 - 2 2 C2) = 2(ps - qc) + A 2 + cp + 2 1
(I+ T)

A2 - 2B - I
2(T2 C + S) 4A 2

IA' c T

A + A cq ---. 2 p++ T -2A1

(A 2 + 1)2 + 2B(1 - A 2) (56)
2A

where c and s have been written for cos s and sin s. We see at once that

when (54) is introduced, the term in q disappears from (56), so that q is not

determined to this order. (56) is then a linear equation for B . Manipulation
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is helped by introducing

22 2 2 2 5

E = T 2 C + S = T cos s + sin s (57)

so that, from (55),

ps= 2 (  + , p + 2 1 - T S 2E(2E + I)(I+ ) +2E--- ,

+ -) 1+ T k) + T) S

while

(1 - 2 )s 2 E - 7 2 ( - 22 = I - E

The solution emerges as

2 35 3A tan s (2E 2 + - I (58)B = 9 - 3 + E(2E + I) )

When 7 = I , E = I and (58) reduces to

4
B = 4(2A tan s - 1)

9

which agrees with Moore's result for the circular cone.

We find y , to first order in E , from (37) and the equations of this

section, as

= 2E(2E I) Ac cot s , (59)

(1+ r)

where E is given by (57). As remarked above, AE > 0 , since the vortex is

outside the body. Hence, since E > 0 , y has the sign of s , and, from (55),

p and therefore a/5 have the sign of s . This means that the model represents

weak vortices on the upper surface only, and the starboard vortex then induces

anti-clockwise rotation when viewed from downstream.

At this stage it appears there are solutions for both positive and negative

values of . However, there is a further condition to be applied to the solu-

tions found so far. The condition which has been applied at the separation line

is just that the velocity there is parallel to it. This condition is equally

appropriate to an attachment line. The distinction between the two is that the

surface flow converges onto a separation line and diverges away fcom an attach-

ment line by continuity. This definition is deceptively simple anda more complete
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discussion is planned for a subsequent report by the second and third authors.

Fortunately, when the vortex lies close to the surface, the divergence or converg-

ence is very strong, so that an intuitive approach gives the correct result.

Define v as the component of the velocity in the cross-flow plane and tangen-t

tial to the body cross-section, positive in the direction of increasing, ;

anti-clockwise as viewed from downstream. Then, considering the neighbourhood of

an attachment or separation line, on which the velocity vector is directed along

the line, we see that if v is increasing with 0 the surface streamlines are
t

diverging, while if v is decreasing as 0 increases the surface streamlinest

are converging.

If we write the real part of the complex potential W on the surface of

the cone as the disturbance potential D , then dl/d will be related to the

tangential velocity, and a negative value of d 2/dp2 will be associated with a

separation line. Differentiating (18) we have

dW -aa'L'*U h- __-__ ___-___dW iaa a i,( + R2)+ 2 --- 1 (60)

d- 2/ 2-ri C, 2 2 60
+ + R/I R/r1

On thc 6urtace of the cone we write r - Re' t 
, with C= Rw and F = 27rLv

as before, giving:

I dW - :aa' iL(I + e2 -2 it (.- +

Ud: Reit ie - i-Re(i- w e I  + W we + l we

On the surface, d = iRe dic , and so

i d , = J W R f d W d
U d lU d~ )U d dJ

e e W
2aR cos * + ,R K ip i - + - -

e - w + e w -e

Hence, differentiating again,

I d' sin + i we W ie W + le w + ie w
S2 i -2 ? ()2UR dt2  -en_ ( W) (e + W) (w + e 2 ( - e- !) 2

. ....... (61)
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We now write s , for the separation (or attachment) line in (61), and note

that when the vortex is close to this line the dominant behaviour is that of the

first and last terms in the large bracket. Hence, as c - 0

2 / - is is)
I d~ 'PIS___w we

6 UR do2 (- e )2  e 2
s

k . 2 2 .22 by (43)(A-i)2 2  (A +i i /

4Ay

(A 2 I) 
2 E 2

23E(2E+ 1) cot by (54) and (59).

2(1 + T) 2

By (57) E > 0 , so = s is a separation line if e has the sign of s

and an attachment line otherwise. Taking a/6 > 0 without loss of generality,

so that the previous argument shows s > 0 , we find separation corresponds to

E 0 . This means the vortex lies to leeward of the separation line, as would

be expected.

In the hope of clarifying the roles of the solutions with c positive and

negative, we use the formal solution to express, for a given separation line,

= s , first the nearby vortex position corresponding to a small positive value

of E , and then the nearby attachment line associated with the presence of the

vortex. Suppose the attachment line is at D = a . Then, regarding (43) as

relating the vortex position w to the separation line, we have

= e (i + (A + i)E + + ... ) ,

where, since c > 0 A > 0 and A = IAI . Now, regarding (43) as relating the

same vortex position to the attachment line, with a small parameter E < 0

we have
ia -2

- e (I + (A + i)E + BE + >

where, since e < 0 A < 0 and A = - .A. Hence, equating the expressions

for . :
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i- - -2 is
e (I - IAjE + i + B + ..) = e (I + + i + B;- +

Taking logarithms of both sides and expanding log(! + x) for small x , Te have

ia-I A +i +BE 2  (Aj + i) +... = is + AlE + iE +BE 2  '('AE + iI)

The real part of this equation shows that

E = - (] + 0(c2 (62)

and the imaginary part shows that

a = s + 2c(] - JAlt) , (63)

where 1A, = 1/ 3

This situation is sketched in the plane of w in Fig 3a for E = 0.1

To graphical accuracy the term BE2  is negligible for the separation position

s = 300 shown. The positions of the separation line, attachment line and vortex

are indicated by the letters S, A and V, and lengths e and AE are marked.

The corresponding configuration in the physical cross-flow plane Z is sketched

in Fig 3b for 7 = 0.5 . The points S, A and V are in their calculated

positions, but the separating conical streamline SV and attaching conical

streamline meeting the surface at A are guessed. The arrows show the converg-

ence of the surface flow onto S and divergence from A

4 ANGLE OF INCIDENCE FOR VORTEX FORMATION

As explained in the Introduction, for circular cones the value of a for

which vortices first appear at the surface of the cone provides a lower bound to

the angles of incidence for which the model has solutions, as long as the

0
separation line is to leeward of a critical position, e c 46 . For separationc
positions further to windward, there are unstable solutions for lower angles of

incidence, but the incidence for which vortices first appear at the surface is

still of interest.

For elliptic cones equations (42) and (55) show that this angle of incidence

is given by:
o ' 2 2)

2 2= + 4(-2 cos s + sin s (64)

(I + T) sin s
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where T = b/a , S = R/x = !(a + b)/x = A(I + T)a' , and the separation line

is y = a cos s , z = b sin s In this section we discuss the dependence of

a on r and s . The elliptic cones include the circular cone, 7 = I , and

the flat-plate delta wing, r = 0 . For a slender circular cone, - is just the

semi-angle at the apex, so that a/3 is a natural ratio to consider for cones

not too far from circular. For a flat-plate wing, it is more natural to relate

the angle of incidence to the semi-angle of the wing apex, which is a' if the

wing is slender, so we also consider the behaviour of

22 2 . )
a a + 72 + 2(T cos s + sin s

a' 5 2 ( + ) sin s

Fig 4 shows the variation of a/a' with separation position for the circu-

lar cone and the flat plate. The variations, given by 1.5 cosec s and 2 sin3s ,

respectively, could hardly be more different. The curve for the circular cone is

familiar, showing the angle of incidence needed for vortex formation increases as

the separation line moves to windward. The curve for the flat-plate delta is

believed to be new. It shows there are solutions for all angles of incidence for

separation at the leading edge, s = 0 , as is well-known, though for very small

values of ala' their behaviour is unphysical 8 . Since separation will take

place at a sharp leading edge, there seems little reason to consider other

values of s . However, Wood and Roberts have shown that blowing tangentially

to the upper surface of a thin delta wing from a slot near the rounded leading

edge, in an inboard direction, delays the onset of separation and vortex forma-

tion to larger angles of incidence. Since the effect of blowing is to move the

separation line inboard, the behaviour of this simple model, as illustrated in

Fig 4, is consistent with their observations.

The most dramatic difference betwecn the curves in Fig 4 is at the small

values of s . Equation (64) shows that, as s - 0 , a/8 increases without

limit unless 7 is zero, when a/5 - 0 . It is not surprising that the behaviour

is non-uniform near the point s = - 0 of the parameter space, since the

inclination of the surface at the leading edge changes abruptly through 900 as

- reaches zero. Fig 5 shows how the variation of a/a' with s changes as

increases from zero to unity. For the lower values of T (T2 < 2/3) , the
,0

curves have a minimum at a value of s less than 90° , with a local maximum at
900. For larger values of r there is a minimum at s = 900

The bunching together of the curves for s near 900 is resolved in Fig 6,

by plotting A/' instead of a/a' . Each curve retains its shape, but its
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relation to the others changes. Also included in Fig 6 are curves f- 'alues Of

7 greater than unity, that is to say, for cones deeper than they are wide. T.

particular values of 7 chosen correspond to the same cones as before, b,:I e

through 900. As T increases above unity, the angle of incidence needed far

vortex formation increases steadily, except for values of s near 90°  The =en-

eral trend exhibited in Figs 4 to 6 is for the region in which solutions exist tc

become confined to the larger angles of incidence as the thickness ratio increases.

except for separation positions well to leeward, where the tendency can be

reversed to a limited extent.

No attempt is made to discuss Lhe results in terms of the typical positions

of separation observed in laminar or turbulent flow. The reason for not doing so

emerges from a consideration of Fig 7. This compares vortex sheet and line-vorte:

solutions for a circular cone at a/S = 3 . The vortex sheet solution is calcu-
10

lated bv the method of Fiddes . The separation line for the sheet, S , is at
S

s = 00 , a convenient value typical of laminar boundary layer separation. The

sheet extends to E , and is joined to the core C by a feeding sheet represented

by a broken line. The arc labelled '400 to 49°0 represents the vortex positions
00

in the line-vortex model for separation positions 40 4 s < 49 . It is apparent

that, with s = 450 , the line-vortex model gives almost the same vortex position

as the vortex sheet model gives with s = 0 . The non-dimensional circulation,

of the line-vortex for s = 450 is 1.299, and the point B on the vortex sheet

has been chosen so that the circulation of the combination of the vortex core at

C and the sheet between 2 and E is also 1.299. The initial behaviour of the

conical streamline separating from S , at s = 450 , is sketched.

This suggests that the line-vortex model can produce solutions resembling

those of the vortex-sheet model if the separation position is displaced to leeward.

We plan to present more evidence for this later. A partial explanation for this

is the different behaviou: of the two models near the separation line. For the

sheet model the flow leaves the surface tangentially, the sheet remaining close to

the body for some distance before turning away from it and beginning to wrap around

the core. For the line-vortex model the separation stream surface (or conical

streamline) leaves the surface at right angles. Thus similar global flow patterns

are produced by the two models if the separation line in the line-vortex model is

displaced to leeward. There is evidence that the vortex-sheet model gives vortex

positions in reasonable agreement with experiment (the occurrence of secondary

separation prevents close agreement) whea observed separation positions are used,

So it would not be appropriate to use observed separation positions in the line-

vortex model.

It _ ___
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5 CONCLUSIONS

The single line-vortex model of laterally symmetric separation froma cir-

cular cone at incidence has been extended to elliptic cones. Analytical solutions

have been obtained for the case in which the vortices are weak and lie close

the surface of the cone. In particular, the well-known result of Br':son far Lhe

angle of incidence at which the vortices first appear adjacent to specified sep-

aration lines on a circular cone has been extended to elliptic cones.

This shows that, for separation lines not too close to the leeward generator,

the effect cf reducing the vertical axis of the cross-section, that is, of makinz

the hod'- mare wing-like, is to reduce the angle of incidence at which the vortices

first appear. If the separation lines are close to the leeward generator, :he

thinner bodies require large angles of incidence to produce vortices. If -he

vertical axis is made larger than the horizontal axis, the angle of incidence fcr

the appearance of vortices increases, unless the separation lines are well to

leeward,

In the limit of zero thickness ratio, when the body becomes a flat-plate

leira wing, the familiar behaviour of the wing solution is recovered, but the limit

,s not approached uniformly.

>

2©
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LIST OF SYMBOLS

a horizontal semi-axis of elliptic cross-section

a value of : at attachment line

A coefficient in expansion (40)

b vertical semi-axis of elliptic cross-section

B coefficient in expansion (40)

D see equation (10)

E see equation (57)

F complex force

Im' " imaginary part

L group of terms in equation (41), see (48) and (49)

p,q coefficients in expansion (42)

R j(a + b) , radius of circle

real part

value of at starboard separation line

S function defining body surface

complex variable, equation (39)

U free-stream speed

components of velocity parallel to y,z axes

component of velocity in cross-flow plane, normal to body cross-secticn
n

V-1. component of velocity normal to circle in --plane

* complex velocity, v + iw

complex potential

x,vz Cartesian coordinates, see Figs I and 2

XY groups of terms in (41), see (44) to (46)

Z complex variable in cross-flow plane

angle of incidence

non-dimensional circulation, equation (36)

circulation of starboard vortex

semi-apex-angle of circular cone, more generally, R/x

Imrt:, small

value of c for attachment line

complex variable in circle plane

position of separation line on circular cone, see Fig I
S

density

-a/b, axis ratio of elliptic cross-section
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LIST OF SYMBOLS (concluded)

angular coordinate on ellipse

disturbance potential on surface

non-dimensional position of vortex in r-plane

suffixes

a attached flow

c cut

i imaginary part

r real part

v vortex

I starboard vortex
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Fig 7

Fig 7 Relation between vortex-sheet and line-vortex solutions, o~6=3
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