vt

*J

R
\

i

I o LUb
it

ival Research Laboratory

hington, DC 20375-5000

NRL Memorandum Report 6768

Software Interface for the Touch-Sensitive Menu
of the Technician’s Assister System

JOSEPH A. MOLNAR

Communication System Branch
Information Technology Division

SONIA FALETTI*
*Svynertech Associates, Inc.

1600 Wilson Blvd.,
Arlington, VA 22209

AD-A230 246

December 20, 1990

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

rorm Approved
OME8 No 0704-0188

Pybiic reporting buragen tar this coliection of In10rMaion 13 esIMa1ed 10 average | hour per respanse. including the time for reviewing INSt7uUCTIONs, 3€3rChing earsting datd sources
gathening and maintaining the data nesded. and compieting and reviewing the ¢oliection of information Send comments r

2rginG this Durden esTimate Of any Other aspect Of thiy
collection ot intormauon, including suggesnions for reducing this burden. to Washington Headguarters Services. Directorate for information Operations and Reports, 1215 Jetterson

Davis Highway. Suite 1204 Arlington, VA 22202-4302. and 10 the Office of Management and Budget. Paperwark Reduction Project (0704.0188), Wasnington, OC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1990 December 20 Final (1989 to present)

4. TITLE AND SUBTITLE

Software Interface for the Touch-Sensitive Menu of
the Technician’s Assister System

5. FUNDING NUMBERS

PE - 25620N

6. AUTHOR(S)

Joseph A. Molnar and Sonia Faletti*

WU - DN157139

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Code 5524
Washington, DC 20375-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL Memorandum
Report 6768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Oceanographic and Atmospheric Research Laboratory
Stennis Space Center, MS 39529-5004

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

*Synertech Associates, Inc.
1600 Wilson Blvd., Arlington, VA 22209

12a. DISTRIBUTION / AVAILABILITY STATEMENT

' Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

- A technician’s assister expert system was developed using the Fault Isolation System (FIS) shell.

The environment for the proposed application is the cramped irregular spaces of a ship’s sonar room.
A hardware interface for the software system, incorporating a touch screen, was developed and
demonstrated. The interface allows touch entry of all commands, using a portable terminal attached
directly to the host computer, or indirectly through the auxiliary port of a VT320 terminal. Both
single-display and dual-display configurations are available through software control. This interface
was developed to replace a standard terminal interface with command menus. Software was con-
structed to parse the standard command structure for the terminal, and supply the appropriate com-
mand structure to provide the touch interface. The software drivers for the touch screen were written
in the C language and interfaced to SUN Command LISP through the use of foreign function calls
made from the original software interface. The changes to the original FIS software and the drivers
for the touch screen are presented. Results indicate a successful implementation. A restructuring of
the interface is planned in the final customized software.

14. SUBJECT TERMS

15. NUMBER OF PAGES

Expert system Touch screen

Human interface
Fault isolation

Networking
Maintenance

16. PRICE CODE

17. SECURITY CLASSIFICATION [8. SECURITY CLASSIFICATION |19 SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500

1 Prescribed by ANSI Std 739.18
298 102

Standard Form 298 (Rev 2-89)

CONTENTS
1.0 INTRODUCTION Lo e et 1
2.0 APPROACH .o e 1
3.0 DESCRIPTION OF THE DEECO TOUCH SCREEN ..., 2
4.0 SOFTWARE DEVELOPMENT ...t 3
4.1 Alterations to FIL Menu ... 3
4.2 Software for Operating the Touch Screenc.cooiiiiiiiiiiiiiiii e, 5
5.0 RESUL TS L e e 6
6.0 CONCLUSIONS AND SUMMARY ... 7
7.0 REFERENCES ..o 7
APPENDIX A — Summary and Listing of LISP Functionsc..i 9
A.1 DETAILED SUMMARY OF FIL SOFTWARE MODIFICATIONS 9
A.1.1 FIL Modifications from the File “‘utility.lisp™” ... 9
A.1.2 FIL Modifications from the File ‘*norda.lisp™”c....coooiiiiit. 10
A.2 LISTING OF FIL SOFTWARE MODIFICATIONS 11
APPENDIX B — Summary and Listing of C Functionscocociiiiiiiiin, 19
B.1 DETAILED SUMMARY OF THE C FUNCTIONS WHICH OPERATE THE
TOUCH SCREEN ... 19
B.2 LISTING OF THE C FUNCTIONS WHICH OPERATE THE TOUCH SCREEN 21
Aq?ession Yor
NTIS GRA&I
DTIC TaAB
Unannounced
Justification
Y fbistributions
. Avallability Codes
“es ('o P-————--.-.“- : T i D
11 Avall andfor
Diat Speotal !
!
P\/ ‘1 { /
1
L |

st R e L

SOFTWARE INTERFACE FOR THE TOUCH-SENSITIVE MENU
OF THE TECHNICIAN’S ASSISTER SYSTEM

1.0 INTRODUCTION

This report presents the details and evaluation of efforts to provide a touch screen interface as an option t0
the Technician Assister System/Fault Isolation Layer (TAS/FIL), a version of the more general Fault Isolation
System software package[1]. It is intended for users of the software package. Others may find this report useful in
establishing dual-display or touch capabilities, for a terminal with more than one bi-directional serial port. For users
of the software package, the report provides details of the software used in providing a touch-sensitive interface. It
should be used to maintain the software functionality during subsequent modifications. The technique should
interest those seeking 10 add a similar capability to existing software. The areas of general interest describe the
various configurations provided with a touch screen. Primarily, two displays were configured independently to
display information. Commands were entered with either device. The hardware [2] involved facilitates th. cuncept
of independent input/output (1/O).

LISP was the primary language used for the TAS sofiware. The C language was used for the software that
added the touch screen capability. Development was performed on a SUN workstation. The expert system, when
completed, had acceptable execution performance. Since a goal of the project was to make the TAS accessible to
technicians, the concept of adding the portable touch-sensitive interface was conceived. The device is suitable
because it weighs less than 10 Ibs. and does not require a keyboard. Technicians often perform maintenance in areas
that have irregular surfaces and minimal space, so portability issues were important. The disadvantage of this
concept is that it requires a serial connection.

The concept addresses the following scenarios for the software implementation. First, the interface must be
convenient for a technician performing a maintenance action. The work area will generally be the cramped
equipment compartment on a ship. Second, most maintenance actions are initiated at the console of the warfare
system, and the technician maintaining a warfare system is often also the operator. Therefore, the TAS system
interface should be capable of extending beyond a console environment. Third, the TAS system interface should be
suitable for interaction with the software training features. The interface should be suitable for application in a depot
maintenance environment, where space is not critical.

The TAS is an expert system 10 aid a technician in isolating faults within the AN/SQS-53B sonar system. It
was developed utilizing the FIS expert system shell. FIS is still in development and subject to change. FIS formed
the core of the model based portion of the TAS system. The TAS design incorporated a strategy that left FIS intact,
allowing for ease of FIS system upgrades. All new functionality or enhancements were to exist in software
functions external to the body of FIS. The standard interface for FIS was a terminal that displayed a menu of
selections. The software described integrates the touch screen as an alternative I/O device for TAS control. Infrared
sensors in the bezel of the electroluminescent display (DeeCO M3 SealTouch), registered touch activity. Software
controls the presentation of active touch-sensitive areas on the touch screen. The hardware registers the selection of
commands. Both text and graphics may be displayed on the screen.

2.0 APPROACH

Various display configurations were required to meet the implementation strategy. Software presented the
user with options to change the hardware configuration at any time using the main demonstration menu. There were
three configurations: the terminal connecicd direcilv to the computer, the touch screen connected directly 1o the
computer and the touch screen connected through the VT320 terminal to the computer. The first configuration
would apply to stationary scenarios such as training. The maintenance scenario required portability. Tie remaining
two configurations provide the necessary portability. The last configuration is achieved by using the VT320

Manuscript approved October 17, 1990.

terminal in the first configuration and attaching the touch screen to the VT320 printer port. This allows information
to be sent to both displays independently. In this configuration the input capabilities of both devices remain
functional, e.g., keyboard or touch entry of commands. This configuration was intended for a depot maintenance
environment or the initial phases of fault isolation that would be encountered in the vicinity of the operator's
console. :

FIS is continually being upgraded. This constrained the development of the touch screen interface. All of
the software written for the interface, therefore, had minimal interactions with the bulk of the FIS software. The
software controlled output to the terminal based on the user's hardware configuration selection. Based on this
selection, the software parsed the normal output for terminal and added appropriate control commands to display on
the touch screen. The software module that parsed the output and controlied display was written in C. These
functions were invoked from LISP as foreign functions. C was chosen because the programmer was more
proficient with this language and could write and debug the software more quickly. The software function for
interface control examined whether a FIL command menu was being sent to the display (see Fig. 1). The software,
then, identified the commands and created touch buttons for each. The software organizes the buttons onto pages.
Each page corresponded to a different column of menu commands, as seen in Figs. 2, 3 and 4. Additional buttons
were created to change command button pages. Buttons were also used to provide descriptive titles for each set of
command buttons. These buttons are not associated with any response command. The most frequently used
command column, for each menu list, was determined and displayed as the primary display page. The less
frequently used command columns were selected by the user through a touch button. The commands from each
menu column were placed on different pages to prevent button crowding; the intent was to reduce miskeying.
During the evaluation period, none of the commonly encountered touch screen problems, such as miskeying, were
encountered. However, this was reasonable since quiic large buttons were used. The object of using the touch
screen was not to press the state-of-the-art in touch screen precision, but simply to offer a reliable interface, suitable
for work in irregular or confined areas. Because large buttons were used, some commands used in development
were removed from the meau. Only the commands essential for troubleshooting maintenance were retained.

3.0 DESCRIPTION OF THE DEECO TOUCH SCREEN

The touch screen display can be implemented as a VT100 terminal (e.g., connected directly to a computer),
or it can be operated from the printer port of a Digital Equipment Corporation (DEC) VT320 terminal. A separ: «&
report [2] describes the hardware interface. Keyboard entry is accomplished in one of three ways: through the
touch-sensitive, on-screen keyboard, through an attached IBM PC compatible keyboard, or if connected to a VT320
terminal, through that keyboard. For compactness and portability, the on-screen keyboard was most suitable.

In addition to the standard text capabilities of a VT100 terminal, the touch screen has some special graphics
capabilities. Lines, arcs, circles and polygons may be drawn, and polygons may be filled. In this project the
graphics capabilities of the touch screen were used to display bar graphs.

The touch sensor provides three options for reporting user touch interactions. A touch-sensitive keyboard
was a standard default capability. When activated the keyboard displayed in the lower half of the screen. Touching
the lower right comer of the screen acts as a toggle function to activate/deactivate the keyboard. Another option
allows software defined, touch-sensitive buttons (e.g., rectangles with labels) to be displayed. When any button is
touched, the controller transmits the software definition for the button. As a third option, software could be used to
activate a mode that tracks the coordinates of a single touch or trace. The interface software implemented only the
first two options.

The touch sensor option facilitates the development of a user friendly interface. Each button was presented
as a rectangle surrounding a standard text label. Each button may also possess a response, that is, a message which
is sent to either the host computer or the touch screen controller upon button activation. A group of buttons
displayed on the screen is called a page. Multiple pages of buttons may be defined, with each page possessing at
least one button to allow the user to switch between pages. A button, once defined, may be used on several pages.
Button pages are stored in the memory of the infrared controller. There is a limit of 100 pages and 100 buttons.

4.0 SOFTWARE DEVELOPMENT

FIL was written in LISP. The standard interface for FIL is a VT100 terminal, with a textual menu
presentation. Developing the touch-sensitive interface for FIL required two main steps. First, the original FIL menu
was altered to allow recognition of the touch screen. Second, software was written to execute the touch screen
control.

4.1 Alierations to FIL Menu

A FIL function called "menu” was used to execute menu display. This function displays up to four
columns of menu choices, with a heading for each column {See Fig. 1). Each menu option appears under a column
heading and in the format "mo: menu-option.” The first few characters preceding the colon are an abbreviation of
the full name of the menu option. The abbreviation shortens the typing needed when using the original menu with
the standard terminal interface. The "menu” function also controls the display format.

INSPECTION TROUBLESHOOTING CONTROL

sh: show-history bt: best-test co: change-output-device
al: active-list fa: forget-all m: return-to-expert

as: amb-set fl: forget-last

sp: show-probs mt: make-test

bg: bar-graph mtn: make-test-num

Enter command or ? -->

Fig. 1 - FIL Menu as Displayed on a Terminal

Each menu option displays as a rectangular button on the touch screen. Separate pages display menu
options for each of the column headings. Displaying all the menu options on one page would clutter the screen with
many small buttons. thus promoting miskeying. The actual size of the button facilitated unambiguous button
selection. Each screen displays a heading (the column title), the menu options, and paging buttons to allow viewing
other screens, see Figs. 2-4 where each page displays information for one column of the menu.

The value of a global variable indicates the output device selection. This variable was initialized to the
value for the standard terminal. The user changes the interface by selecting the appropriate option from the menu.
When choosing the DeeCO display as the output device, the user specifies the type of connection, either directly to
the host computer or through the printer port of a VT320 terminal.

The revised "menu” function replaces the original "menu” function. The display is dependent upon the
output device flag. When the flag was equal to DeeCO, the function categorized text as menu text or plain text.
Plain text used the original display format. The function parsed the menu text, then passed the resulting string to the
C button functions.

Meny Options INSPECTION

J

show-history

active-hist

amp-set

hew z7ebs

bar-graph

Touch 3 butlon to see more optigns

TROUBLESHOOTING CONTROL returr
Fig. 2 -Touch Screen Menu--Page 0
Menu Options TROUBLESHOOTING]
best-test forget-all forget~last
make-test make-test-num
Touch a button to see more options l
INSPECTION CONTROL return
Fig. 3 - Touch Screen Menu--Page 1
Menu Options CONTROL 1
change-autpyt-device return-to-expert
Touch a button to see more options j
INSPECTION TROUBLESHOOTING rewrn

Fig. 4 - Touch Screen Menu--Page 2

4.2 Software for Operating the Touch Screen

A package of C functions accepts the parsed FIL menu as a string and produces pages of buttons. The use
of C functions required the foreign language interface provided by the Lucid Common LISP compiler. In LISP
each menu is in lists, one list for each column. However, in order to pass the menu to a C function, these lists were
converted to a single string. Figure 5 indicates the functionality of the software.

FIL
request for
menu display

Y

Deccde Original
Format

v

Recode in DeeCO Format

display

Fig. 5 - Functional flow to achieve touch-sensitive display for TAS on DeeCO display

The C function defines arrays for the column headings, button labels and button responses. It also clears
the screen and erases previous buttons from memory. Another function is then called to produce pages of buttons,
one page for each column of menu selections. If the menu does not fit the regular format and can not be converted
to buttons, the button program stops and retumns a signal to FIL. The data in the original format is then displayed.

The commands for operating the touch screen are in ANSI format. Commands in ANSI format begin with
a sequence initiator, followed by parameters and then a final character or a terminator. The sequence initiator may
be "ESC" (escape) or "CSI" (control sequence initiator). "CSI,” equivalent to "ESC [," may only be used in § bit
mode. "ESC" and "ESC {" may be used in both 7 and 8 bit modes. The parameters are usually numbers separated
by semi-colons. Final characters are usually letters, and indicate which command is performed. A terminator, like
"ESC \" is used with device-specific commands. Commands in this format are "escape sequences” or "control
sequences.”

An example of a touch sensor command is the command to turn on the on-screen keyboard: "ESC [32 h."
(Spaces between the characters are included here for readability, but are not included when sending the control
sequence). In this command, "ESC (" is the sequence initiator, "32" refers to the keyboard, and the final character
"h,” means wrn on. The command to turn off the keyboard is "ESC [32 1" with the letter "1" meaning "turn off™(3].

There are two steps used to create a touch-sensitive button. The first step is to define the size and position
of the button. This is done by specifying the button number and the coordinates for its bottom, left, top, and right
sides. The coordinates of a button are defined once and stay the same for all pages on which they appear. However,
all of the buttons do not have to appear on all pages. A button will not appear unless it also has a response assigned
to it. A button may have different responses on different pages(3]. This software allows the button size to be
changed through altering the definitions at the beginning of the program. Changing the button size required

software modification and recompilation. The portion of software which defines the button locations is adaptable to
different sizes of buttons. If the buttons will not fit on the screen an error flag is set and the menn is displayed in the
original menu format.

Defining the button response is the second step. When a response is assigned to a button several aspects of
a button are specified. The label and response may be the same or different. The label is the word or words which
appear in the button. The response is the message sent to the host when the button is touched. A button may also
have a local response. A local response is a command sent to the touch screen. This was used to switch from one
page to another, or for any other touch sensor command. The font size and video state may also be specified. The
video state may be either dark buttons (with bright border and text) which become highlighted when touched (the
default state) or highlighted buttons which become dark when touched. If a response appeared on muliiple pages
(e.g., "help” button), it was duplicated with the "copy" command. This command acts as a pointer, and decreases the
memory required to store the button information by referring to the first instance of the response instead of restoring
on multiple occasions(3].

If only one page of buttons is defined, there is no need to specify a page number. The default page is "page
zero.” However if multiple pages are desired, it is necessary to indicate the page number before defining the button
responses for that page. That page remains the "definition page” until a new page is defined. While the buttons are
being defined during the initialization process, either the definition page or another page is displayed. The page
being displayed is the "current page.” The command "select current page” chooses the page display and also sets
that page as the definition page. Buttons defined after that command are immediately displayed. 1If several pages
are defined with this command, each page is shown briefly as the buttons are defined. This means that the user sees
all of the pages flash on the screen of the touch screen. The command "select current and definition page" has two
parameters: one for selecting the current page and another for selecting the definition page. Buttons defined after
that command are not displaye until their page becomes the current page. This technique allows the display to
show one page (like an introductory page, the first page, or a blank page) while all the other page definitions are
being sent to the infrared controller board[3).

A button is chosen by placing one's finger (or a narrow object like the eraser end of a pencil) within the
boundaries of the button. The screen must be touched at only one place at a time. If the screen is touched in several
places simultaneously, or if the finger is not entirely within the boundaries of the button, there is no response. It is
possible, but difficult, 1o block the beams without actually touching the screen, as the beams are close to the screen.
By using the default button modes the sensor records the coordinates of where the beams are tirst blocked, so sliding
the finger into the button will not work. When a button is properly chosen, it highlights the button. The touch
screen beeps and the response is sent. Each of these button modes can be changed - the sensor can register the point
where the finger exits the screen instead of where it enters, and the buttons can be set so that they do not highlight or
beep(3].

The SealTouch touch screen lacks the capability to add text to a page of buttons. Headings and instructions
must therefore be displayed in buttons. In this application, headings were defined as buttons with no response.
They were also highlighted, to distinguish them from regular buttons.

The software used several commands 1o initialize the touch screen before sending pages of butions to
replace the command menu. One command erased all buttons, responses and labels, from the touch screen memory
and from the screen. Another command cleared the screen. The on-screen keyboard was switched off to prevent it
from interfering with the display of buttons. Also, the mode "clear page on page change mode” was set. This
ensures that the current page was erased from the screen before displaying the new page.

5.0 RES''LTS

The result of this effort was that a touch screen was integrated to provide a touch-sensitive interface for a
technician to use the TAS software. The touch screen was demonstrated as a stand-alone terminal connected
directly to the host computer, and as an additional display connected via the printer port of the VT320 terminal. The
stand-alone configuration performed all of the normal display functions of the terminal, but added the capability of
providing touch command entry. In the dual-display configuration, information was displayed to both screens
independently. This was particularly useful when presenting both text and graphics.

When using FIL, the first menu currently displays as text. The user may then select the DeeCO touch
screen as the output device. Subsequently, all menus display as pages of buttons. The user makes selections by
touching buttons. If the selection calls for a new menu, it also displays the commands as buttons. If the selection
requires text or graphic display, the display appears as it would on a regular terminal. The menu buttons are large
enough to touch easily, and are clearly defined.

Several improvements are suggested for the final implementation of the touch screen. For example, it
would be more convenient if the user could designate the touch screen as the output device before the first menu
displays. This would be done either by default or by polling the terminal's capabilities. Also, there are currently
several points at which the user needs to type a "return.” This requires either an auxiliary keyboard, or turning on
the on-screen keyboard. A “"return” should be included as a mandatory button function on all pages. There are
several points in the program where the user is offered several options without calling the menu function. This
requires typing one or two characters. The program could be adapted to create buttons for these options as well.
The touch screen interface was considered as an alternative output device for the project The menu data structure
was maintained and parsed for display as touch-sensitive buttons. Future efforts should restructure the /O to
address the availability of other interfaces for user interaction.

6.0 CONCLUSIONS AND SUMMARY

It was demonstrated that a touch-sensitive menu could be added to FIL. This created an interface that
meets the various requirements of operational maintenance and training scenarios. The touch screen interface is
portable and suited for operation in irregular work environments. When incorporated with the VT320 terminal, the
software could configure the terminals to display independently. This permitted more information to display on an
increased display area. Redundancy was provided by having the VT320 keyboard and the touch screen auxiliary
keyboard available for command entry, as well as the touch keyboard and touch defined interface. Such redundancy
would be unnecessary in real applications. However, it allows two technicians working in separated areas, such as
the console and a equipment rack, to have access to the output display and control functions. One obvious difficulty
would be inadvertent command entry.

Since the actual commands required to drive the software are short, generally two character commands, the
amount of typing saved by this method is small. The advantage resided solely in its portability. The terminal was
light weight and the touch capability allows users the limited selection of single touch commands. The focus of
adding the touch display was to minimize the interaction and to make those interactions simple. As such, the touch
screen and the TAS software function on a level more suitable for troubleshooting. It becomes a tool much like a
voltmeter or oscilloscope. As a tool, it can be integrated into the act of maintenance.

7.0 REFERENCES

1 F. Pipitone, K.A. DeJong, and W. Spears, "An Artificial Intelligence Approach to Analog Systems Diagnosis,”
NRL Report 9219.

2. S.G. Faletti and J.A. Molnar, "The Hardware Interface for a DeeCO Touch Screen Terminal in a Technician
Maintenance Application,” NRL Memorandum Report 6659, May, 1990.

3. Digital Electronics Corporation, M3 Module Applications Manual, (Digital Electronics Corporation, Hayward,
CA, 1989)

APPENDIX A
SUMMARY AND LISTING OF LISP FUNCTIONS

A.1 DETAILED SUMMARY OF FIL SOFTWARE MODIFICATIONS

In this section each LISP function altered or added to FIL is explained. The first set of functions is in the
file "utility.lisp.” The secon set of functions is in the file "norda.lisp.” All functions hsted are either new functions,
modifications to existing functions, or functions which where unaltered but renamcd for integration purposes. The
function names appear italicized between quotation marks. They are explained sequentially, although some of the
functions are nested within other functions.

A.1.l1 FIL Modifications from the File "utility.lisp"

The general flow and interconnection relationships of the functions are shown in Fig. Al. A description of
the functions and their relationship follows:

'menu” - (Appendix A.2, - lines 1-23) This LISP function is called by FIL any time menu options or information
are to be displayed. It receives as input the lists (up to a maximum of four) to display. It uses the gicbal variable
"pportp” to determine whether the information should display on a terminal or on the touch screen. It also tests
whether the information is a simple string, since all menus are simple strings. If the information should display on a
terminal, or if it is not a menu, "menu” passes the information to "vimenu" to display. If the information should
display on the touch screen, "menu" calls "menu-string." This converts the list or lists to one string. The C function
"bution” then produces buttons for the touch screen. "Button” returns true if it successfully produces button
commands. if "button” is unsuccessful, it returns false and "vimenu” is called.

"vtmenu" - (Appendix A.2 - lines 24-56) This is FIL's original menu function, with a new name. It is called by
"menu” if the information should display on a terminal or if the information is not a set of menu options. 1t accepts
up to four lists of information and displays them in co'umns, with a heading for each column and a line of dashes
below each heading.

"menu-string” - (Appendix A.2, - lines 57-118) This LIS} function accepts up to four lists from "menu” and
converts them to one single string. The string is in the same format as the display produced by "vimenw.” It uses the
functions "initstr,” "addstr,” "tabstr," and "endline" 10 set up the string. The string is contained in a global variable
called "*menu-string*."

"initstr” - (Appendix A.2, - lines 120-126) This LISP function initializes the variable "*menu-string*.”

"addsir" - (Appendix A.2, - lines 128-132) Given a string, this LISP function appends it to "*menu-string*." It also
advances the counter ("*string-lengl,*") which holds the length of the current line of the stning.

"tabstr" - (Appendix A.2, - lines 134-137) Given a number indicating a position on a line, this LISP function fills
the "*menu-string*" with spaces from ihe current position up to the position indicated by the input number. This
serves as a tab function and places the menu options in columns.

"endline” - (Appendix A.2, - iines 139-142) This places a carriage return . the end of each line of "*meny-string*."

A.1.2 FIL Maodifications from the File "norda.lisp"

The general flow and interconnection relationships of the functions are shown in Fig. A2. A description of the
functions and their relationship follows:

"norda-demo-interface” and "norda-display-demo-options" - (Appendix A.2, - lines 1432-201) These functions
display the options for the main demonstration inenu and implement the options chosen. "Change-output-device”
was added to this menu to allow the user to change the current output device. Choosing the menu option “change-
output-device” causes the function "norc~ ~han-e-device” to execute.

FIL
request for
menu display

touch screen
available

text .
- vimenu | display

button
[l

erase-buttons

button display

error
eld-clear

menustring | button

utilities

tabstr [initstr addstr [endline

Fig. A1 - General flow relationship of enhanced display functions for FIL output

"norda-change-device” - (Appendix A.2, - lines 258-275) This function produces a secondary menu to allow the
user to select a new output device. It uses the function "display-device-options™ o display the menu. The options
are:

1. A regular terminal (the default option)

2. The DeeCO touch screen connected to the printer port of a VT320 terminal

3. The DeeCO touch screen connected directly to the host computer

10

If one of the three options is chosen, it calls the appropriate function to change the settings for that option. The three
functions are: "norda-cmd-term,” "norda-cmd-vt," and "norda-cmd-dd."

"display-device-options” - (Appendix A.2, - lines 276-280) This function calls the function "menu” to display the
three device options and a "quit" option.

"norda-cmd-term" - (Appendix A.2, - lines 281-284) This function calls the function "eld-end" to direct the output
to the terminal and sets the variable "pportp” to 0. The command "finish-output” is used to ensure that the terminal
command is sent before proceeding to other commands.

“norda-cmd-vt" - (Appendix A.2, - lines 285-288) This function calls the function "eld-start” to direct the output to
the printer port of the VT320 terminal and sets the variable "pportp” to 1.

"norda-cmd-dd" - (Appendix A.2, - lines 289-293) This function calls the function "eld-end" to direct the output to
the terminal (which in this case is the touch screen) and sets the variable "pportp” to 2.

The following functions ("eld-start,” "eld-end," and "eld-clear") all use the function "print-seq” to print a device
command that includes an "ESC" character. "Eld-start" and "eld-end"” also use tie function "print-seq2” to print a
device command that includes both an "ESC” character and a double quote. "Eld-start” and "eld-end" are also used
by the functions that produce a bar graph on the touch screen.

“eld-start” - (Appendix A.2, - lines 224-232) This function sets the VT320 modes needed to operate the touch
screen from the printer port of the VT320. The order of the commands is important. First, the terminal is set to
VT300 mode. This allows it to be next set to "printer to host mode.” "Printer to host mode” enables the VT320 to
receive data (e.g., menu choices) from the touch screen. The third command puts the VT320 in "printer controller”
mode. In this mode all information from the host is sent to the printer port of the VT320, and not displayed on the
screen of the terminal. The last command, "finish-output,” ensures that all the preceding commands execute before
continuing.

"eld-end” - (Appendix A.2, - lines 233-237) This function sends 2 command to the VT320 terminal to turn off both
the "printer controller” and "printer to host” modes. This causes information, from the host, to display on the
terminal screen. Then, the terminal is reset to VT 100 mode.

"eld-clear” - (Appendix A.2, - lines 239-242) This function clears the display of the touch screen.

“erase-buttons” - (Appendix A.2, - lines 243-249) This function sends a command to the touch screen to erase all
pages of buttons from the memory and display of the touch screen.

“prini-seq” - (Appendix A.2, - lines 251-254) Given a string that is a device command, this function replaces the
tilde (~) with "ESC" and prints the string.

"print-seq2" - (Appendix A.2, - lines 255-257) Given a string that is a device command, this function replaces the
"Q" with a double quote, tilde with "ESC,” and prints the string.

"norda-definecfunctions” - (Appendix A.2, - lines 202-222) This function executes automatically when FIL is
invoked. It defines and loads C functions used by FIL. Two lines were added to this function. They define and
load the C function "button.” A line was added to set the variable "pportp” equal to zero. This means that FIL
expects the output device to be a terminal until another output device is selected

A2 Listing of FIL Software Modifications

;:; This menu function allows the use of the touch screen. If the output is

;s going to a terminal, it calls "vtmenu” (the original menu function).

;:» If the output is going to a DeeCo touch screen and there are menu options
;33 in the first column (as tested by “simple-string-p”), it calls menu-string

;;; 10 put the menu in a string, then passes the string to "button,” a

;:: C function. If the string contains menu options, “button” sends them

;11 1o the touch screen as pages of touch-sensitive buttons. If the string

;;; contains only text, “bunton" returns a 0 and “vimenu” is called.

NN L LN

11

user
selects
option

FIL
request for
menu display

l menu opiions

norda-demo-interface I norda-display-demo-options

selection of

output device quit from

device change

Y

-] norda-change-device I display-device-options
[terminal touch touch
control screen screen
only connected connected
to printer directly
port of to computer
VT320
norda-cmd-term
pport=0 y A

norda-cmd-vt

norda-cmd-dd

pport=1 ‘

eld-end

eld-start

#

#

utiliies | print-seq

eld-end

print-seq2

Cgisplay control)

Fig. A2 - FIL functional flow for output device control

12

56.

;»: “"erase-buttons” and “eld-clear” are defined in norda.lisp.

. 5;: added July 26, 1989, by Sonia Goen Faletti

. 3; “eld-clear” was replaced with "erase-buttons” in the next to last
. 3 line. 9008.22 sgf

. (defun menu (11 &optional 12 13 14)

. (cond ’

((= pportp 0) ; output on a VT100 or other terminal
(vtmenu 11 12 13 14))
((or (= pportp 1) (= pportp 2)) ; output on a DeeCo touch screen
(cond
((simple-string-p (cadr 11))
(menu-string 11 12 13 14)
(cond
((zerop (button *menu-string*)) (erase-buttons) (vtmenu 11 12 13 14)
(t (erase-buttons) (vtmenu 11 12 13 14))))))

+1 vimenu is the original menu function. Now it is only used for displays
+1; on a terminal or for text displays on the touch screen. sgf, July 26,1989

(defun vtmenu (11 &optional 12 13 14)

- (let ((menu (list 11 12 13 14)))

(cons-clear-home) (mark-upper-screen)
(terpri)
(do ((m menu (cdr m))
(col 5 (+ col 20)))
((null m))
(when (car m)
(1ab col)
(princ (caar m))))
(terpri)
(do ((m menu (cdr m))
(col § (+ col 20)))
((null m))
(when (car m)
(tab col)
(princ (fill (princ-to-string (caar m)) #\-))))
(terpri)

(do ()
((null (position-if #identity menu)))
(do ((m menu (cdr m))
(col § (+ col 20)))
((null m))
(pop (car m))
(do ()
((or (null (car m)) (optionp (caar m))))
(pop (car m)))
(when (car m)
(tab col)
(princ (caar m))))
(terpri))))

;:: This function converts a FIS menu
:;; 10 a string which can be passed to the C function "button.”
+is added July 26, 1989, sgf

(defun menu-string (11 12 13 4)

. (progn()
62.
63.
64.
65.
66.
67.

(initstr)

(cond (11 (addstr (princ-to-string (car 11))))
(tnil))

(cond (12 (tabstr 20) (addstr (princ-to-string (car 12))))
(t nil))

(cond (13 (tabstr 40) (addstr (princ-to-string (car 13))))

13

129,

(t nil))
(cond (14 (tabstr 60) (addstr (princ-to-string (car 14))))
(tnil))
(endline)
(cond (11 (addstr (make-string
(length (prinl-to-string (car 11)))
:initial-element #\-)))
(t nil))
(cond (12 (tabstr 20) (addstr (make-string
(length (prinl-to-string (car 12)))
:initial-element #\-)))
(tnil))
(cond (13 (tabstr 40) (addstr (make-string
(length (prin]-to-string (car 13)))
:initial-element #\-)))
(tnil))
(cond (14 (1abstr 60) (addstr (make-string
(length (prinl-to-string (car 14)))
:initial-element #\-)))
(tnil))
(endline)
(do ((menul (cdr 11) (cdr menul))
(menu2 (cdr 12) (cdr menu2))
(menu3 (cdr 13) (cdr menu3))
(menu4 (cdr 14) (cdr menud)))
((and (null menul) (null menu2) (null menu3) (null menud)) (endline))
(do ()
{(null menul) nil)
(cond ((optionp (car menul))
(addstr (princ-to-string (car menul)))
(return))
(t (setq menul (cdr menul)))))
(do ()
((null menu2) nil)
(cond ((optionp (car menu2)) (tabstr 20)
(addstr (princ-to-string (car menu2)))
(rewrn))
(t (setq menu2 (cdr menu2)))))
(do O
((null menu3) nil)
(cond ((optionp (car menu3)) (tabstr 40)
(addstr (princ-to-string (car menu3)))
(return))
(t (setq menu3 (cdr menu3)))))
(do ()
((null menu4) nil)
(cond ((optionp (car menud)) (tabstr 60)
(addstr (princ-to-string (car menu4)))
(return))
(t (setq menud (cdr menud)))))
(endline))))

;s The following four functions are called by menu-string.

; initstr is the first function that menu-string calls. It sets up a global

; variable *menu-string® that contains the entire multi-line string. There
; is only one string. It is not a list of strings. If it were, special C

; code would have to be written to understand it.

(defun initstr()

. (progn()

(setq *menu-string® ""Xsetq *string-length* 0)))

; addstr duplicates the function of a princ, except puts output in a string.
; it also adds the string length independently, in case another line

14

130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.

143.
144,
145.
146.

; is printed (endline).
(defun addstr(str)(setq *menu-string* (format () "~a~a" *menu-string® str))

(setq *string-length* (+ *string-length* (length str))))

; tabstr takes as its argument the same value that would be given to a tab

; function. It adds spaces according to where the tab is, and uses addstr to

; do this in order to add to the length.

(defun tabstr(num)(addstr (make-string (- num *string-length*) :initial-element #ASpace)))

endline replicates a terpri function. This can be done without calling
; addstr because the length is reset to zero.
(defun endline()(setq *menu-string* (format () "~a~%" *menu-string*))

(setq *string-length* 0))

(defun norda-demo-interface ()

(cons-clear-home)

;1; the next function will be the same because it will use
++; norda-display-demo-option

147. (mike-help)

149.
150.
151.
152.
153.

;17 Removed following cond - init-probs-and-f-rates done in cmd-load-uut.
33 Creates trouble if one uses demo-interface to start up after an error

;s because the build-property-lists function won't work (assoc lists have
+; been compressed). WMS 8709.29

W (cond

i (load-uut-p (forget-all) (init-probs-and-f-rates)))

154. (do ((command)

155.
156.
157.
158.
159.
160.
161.
162.
163.

165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.

186.

187

188.
189.

(done nil))
(done)
(prompt 1)
(setq command (read))
(cons-clear-line)
(case command
((sh show-history) (cmd-show-history))
((al active-list) (cmd-show-active-list))
((sf set-fault) (cmd-set-fault))
i ((s sim-fault) (cmd-sim-fault))
((bt best-test) (cmd-best-test))
((as amb-set) (cmd-show-amb-set))
((sp show-probs) (cmd-show-probs))
((bg bar-graph) (norda-cmd-bar-graph))
((fa forget-all) (cmd-forget-all))
((fl forget-last) (cmd-forget-last))
((h lisp) (cmd-lisp-command))
((lu load-uut) (cmd-load-uut))
((mt make-test) (cmd-make-test))
((mt make-test-no) (cmd-make-test-no))
((qt q quit) (setq done (cmd-quit)))
({(co change-output-device) (norda-change-device)) ;sgf
((m retumn-to-expert) (norda-cmd-expert 1)) ;cfs 8910.26 writes valids
.dat on user exit
((un unix) (cmd-unix))
(? (mike-help))
(t (errmsg "~A: command not found.” command)))
(princ "Press <returm> 1o continue...")
(read-line)
(mike-help)
»
(defun norda-display-demo-options ()
. (menu
s '("INITIALIZATION" "lu: load-uut”) deleted (empty), sgf, July 26,1989
("INSPECTION" "sh: show-history”

15

190. "al: active-list” ;"cs: change-setup”

191. "as: amb-set"

192 “sp: show-probs”

193. "bg: bar-graph")

194. ‘("TROUBLESHOOTING"

195. 0w "s: sim-fault” "sf: set-fault”

196. "bt: best-test” “fa: forget-all”

197. "fl: forget-last" “mt: make-test”

198. "mtn: make-test-num")

199. ("CONTROL"

200. “co: change-output-device” "m: retumn-to-expert”)

201. nil))

202. +»; This function loads the foreign

203. ;7 C files into lisp. the call 10

204. ;3; this function is in fis-configure.

205. (defun norda-definecfunctions()

206. (progn()

207. (system:define-c-function nordacalreplace(fn) :result-type :integer)

208. (system:load-foreign-files '("/usr/aic/norda/demo-revised/src/nordacalreplace.o™))
209. (system:define-c-function get_uut_string(} :result-type :integer)

210. (system:load-foreign-files '(“/usr/aic/norda/demo-revised/src/get_uut_string.o"))
211, ;1; These two lines define and load the C function "modulemaker.”

212. 3;: It is an option in the "module-editor” menu. sgfJuly 17,1989

213. i (system:define-c-function modulemaker () :result-type :procedure)
214. i (system:load-foreign-files '("/usr/aic/norda/demo-revised/src/modulemaker.o™))
215. ;these were commented out for the lisp version of the function cbb 7/30/89
216. ;;» These lines define and load the C function "button.”

217. +; It is used to send a menu as buttons to the touch screen. sgf,July 26,1989
218. (system:define-c-function button ((str :string)) :result-type :integer)

219. (system:load-foreign-files '("/usr/aic/norda/demo-revised/src/Sonia/menuf.o”))
220. +1; pportp is initialized to O (the terminal)

221. (seiq pportp 0)

.))

223, i

224. : These are the new versions of eld-start and eld-end. Besides urning the
225. ;11 printer port on and off, they set (and reset) the appropriate VT320

226. ;55 settings for using the touch screen menu. sgf, 4/19/90

227. W

228. (defun eld-start ()

229. (print-seq2 "~[63Qp") ;set vi300 mode, 8 bits

230. (print-seq "~[79i") ;set printer o host mode

231. (print-seq "~[5i") ;set printer controller mode

232. (finish-output))

233. (defun eld-end ()

234. (print-seq “~[4i") ;turn off controller mode

235. (print-seq "~[?8i") ;turn off printer to host mode

236. (print-seq2 "~[61Qp") ;set vi100 mode

237. (finish-output))

238. :

239. ; eld-clear -- Clears the screen

240. ;

241, (defun eld-clear ()

242, (print-seq "~{2J"))

16

243,
245.

246.
247.
248.
249.

250.
251.
252.

254,
255.

256.
257.

258.
259.
260.

261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272
273.
274,
275.

276.
277.

279.
280.

281.
282
283.
284,

285.
286.
287.
288.

289.
290.
291.
292
293.

; erase-butions -- Erases all buttons, responses, and pages on DeeCo.
; Aug. 3, 1989, sgf
; altered (inserted first two commands) 9008.22, sgf

(defun erase-buttons ()
(print-seq "~[2]1") ;erase screen
(print-seq "~[>5D") ;tells sensor that screen has been cleared
(print-seq "~{>B")) ;erase all pages of buttons

; print-seq -- prints an escape sequence onto the terminal.

zdefun print-seq(str)
(write-string (substitute fesc #~ str)))

; print-seq2 -- prints an escape sequence with a double quote sgf
(defun print-seq2(str)
(write-string (substitute #\" #\Q (substitute fesc #\~ str))))

s These functions were added to allow the user to choose the DeeCo touch
1 screen as an output device. This option is added to the demo menu.
3 sgf, july26.1989

(defun norda-change-device ()
(cons-clear-home)
(display-device-options)

(do ((command)
(done nil))
(done)
(prompt "Enter command or quit -->")
(setq command (read))
(case command
{(tn terminal) (norda-cmd-term))
((dv deeco-from-vt) (norda-cmd-vt))
((dd deeco-direct) (norda-cmd-dd))
((q qt quit) (setq done 1))
{ (errmsg "~A: command not found.” command
m)
(defun display-device-options ()

(menu '("DEVICE-OPTIONS" "t terminal” "dv: deeco-from-vt”
278. deeco-direct”)
'("MISC" "qt: quit™)

nil nil))

(defun norda-cmd-term () ;set terminal as output device
(eld-end)
(finish-output)
(setq pportp 0)) ;pportp 0 is terminal

(defun norda-cmd-vi () ;set DeeCo from vt320 as output device
(eld-start)
(finish-output)
(setq pportp 1)) ;pportp 1 is DeeCo from vi320

(defun norda-cmd-dd () ;set DeeCo as output device
(eld-end)
(finish-output)
(setq pportp 2)) spportp 2 is DeeCo directly connected

;to mainframe

17

18

APPENDIX B
SUMMARY AND LISTING OF C FUNCTIONS

B.1 DETAILED SUMMARY OF THE C FUNCTIONS WHICH OPERATE THE TOUCH SCREEN

In this section each of the C functions added to the FIL package for touch screen control is explained.
Functions are again noted by being italicized between quotation marks. The source code for these functions are
contained in a single file that has been compiled into an object file. The object file is loaded by a LISP instruction
in the FIL function "norda-definecfunctions." The functions "button" and "buttonpages" are the major functions.
"Button” defines the arrays of information for the menu and calls "buttonpages,” which produces the pages of
buttons. Other functions are utilities used by "button™ and "buttonpages.” The flow and interrelationship of
functions are shown in Fig. B1.

"button" - (Appendix B.2, - lines 1-176) This is the main function of this software file. It is called by the LISP
function "menu.” The input to the function is a string which contains a table of menu options. This function
processes the menu information of the string and sorts the information into arrays. The function analyzes the string
line by line using the functions "get_string" (to access each line) and "getword" (1o look at each word in the line).

The function "findcolumns" sets up an array of numbers based on the locations of the column headings. This array

of column numbers is used to define the columns and allocate the menu options to the appropriate column. The
column headings are placed in an array called "head," the button labels into an array called "label,” and the button
responses into aa array called "resp.” "Label” and "resp” are effectively two-dimensional arrays to store the menu
options by columns. (Actually, the information is not placed in the arrays, but rather the arrays are arrays of pointers
10 the labels and responses. Storage space is allocated and pointers assigned by the function "readin.”) The second
part of this function checks whether the information in the string is a menu. If it is, then the function "buttonpages”
is called to produce the pages of buttons for the touch screen. If that function returns true (1), the function "bution”
returns true. This indicates that the menu has been successfully converted to a touch screen menu. If "buttonpages”
returns false (0) or the information in the string is not a menu, then "button” returns false. This signifies that a touch
screen menu was not produced. This results in the function "menu” displaying the information as text, using the
LISP function "vtmenu.”

"buttonpages” - (Appendix B.2, - lines 177-277) This function is called by "button.” The input to the function
includes the addresses of the heading, response, and label arrays, an array containing the number of menu options in
each column, the number of columns, and the maximum number of buttons. The function i itializes the touch
screen by turning off the on-screen keyboard, erasing all buttons from memory, setting "clear page on page change
mode," and clearing the screen. For each page, it produces a label button with the heading for that page, a button for
each menu option, a label for the paging buttons, the paging buttons, and a "return” button. The menu buttons are
displayed in rows, filling each row, then going to the next row. If they do not fit, an error message is printed and
false is returned. The parameters for the dimensions of the buttons are predefined in the package of C functions.
They may be altered. A function exists to produce each type of button:

"makebutton” - for the menu option buttons

"makeswitch" - for the paging buttons

"makelabel” - for the labels (called from "maketoplabel” and "makelowerlabel™)
"Buttonpages” will return true if all the buttons fit on each page.

19

FIL
request for
menu display

2

menu
‘ Tcrror
: utilities
button findcolumns readinj get_string J getword
utilities
buttonpages j«———»] makebutton
makeswitch
touch screen maketoplabel
e — makelabel
makelowerlabel

display

Fig. B1 - Flow diagram of C functions used in display of the button menu

"readin” - (Appendix B.2, - lines 359-374) This function is called by "button™ to assign a pointer to a string. It
returns the pointer.

"get_string" - (Appendix B.2, - lines 278-301) This function is called by "button” to get one line of the menu string.

It uses the pointer "menu_string," which is global and points to the current position in "string_block™ (containing the

menu string). It finds the next line (with the end marked by a carriage returm), copies it into a new, null-terminated
string, and advances the pointer. It retumns the new string, or else a null string if the end of the menu string was
reached.

"getword” - (Appendix B.2, - lines 395-407) This function is called by "bution" to get the next word from the

current line of the menu. A word is defined here to mean a set of characters with no spaces, tabs, returns, or null
characters. The input for "gerword” is a pointer to the next character in the string and a pointer to the location where
it will put the word it obtains from the string. After copying the word from the string, it advances the pointer to the
first character in the next word and returns the new pointer.

“findcolumns” - (Appendix B.2, - lines 302-330) This function is called by "button” to set up an array of numbers
corresponding to the columns of the menu. The input to the function is the string containing the headings and the
array ("columns”) to fill with numbers. This array is filled with 1's up to the end of the first heading, O's until the
second heading, 2's where the second heading is, etc. For example:

headingl heading2 heading3 heading4
1111111111100022222220003333333000444444400

It returns the number of columns.

20

"makebution” - (Appendix B.2, - lines 331-341) This function is called by "buttonpages” to produce ore touch-
sensitive button for a menu option. The input to the function includes the button number, response, label and the
coordinates for the bottom, left, top, and right sides of the button. The function consists of two print statements -
one to define the button's location and the other to define the button’s label and response. It does not return a value.

"makeswitch" - (Appendix B.2, - lines 342-350) This function is called by "buttonpages” 1o produce one paging
button. The input to the function includes the button number and label (the heading of the new page), the number of
the new page to display, and the coordinates of the button’s location. The function consists of two print statements
defining the button’s location and response. This button is defined to have a local response (changing the page). No
response is sent to the host. It does not return a value.

"maketoplabel” - (Appendix B.2, - lines 375-384) This function is called by "butionpages” to produce the label at
the top of the screen that includes the heading for the menu options for its page. The input to the function is the page
heading. The function sets up the text and coordinates for this button, then calls "makelabel” to produce the button.
It does not return a value. .

"makelowerlabel” - (Appendix B.2, - lines 385-394) This function is called by "buttonpages” 10 produce the label
for the paging buttons. The input to the function includes the button number and page number. The function sets up
the text ("Touch a button to see more options") and coordinates for this button. If this is the first page (page 0), it
calls "makelabel” 10 produce the button. Otherwise, it copies the lower label from the first page (to save memory).
It does not return a value.

"makelabel” - (Appendix B.2, - lines 351-358) This function is called by both "maketoplabel” and
"makelowerlabel” to produce explanatory labels. The input to the function includes the button number, label, and
coordinates. The function produces a button in reverse video with text, but no response. It does not return a value.

B2 LISTING OF THE C FUNCTIONS WHICH OPERATE THE TOUCH SCREEN

1_ /‘“"‘#ttt"tt.“t‘..t‘.“".“t‘.“'.‘t‘.t‘..““‘.‘t“..‘.t.l.t‘.“.“‘.-it‘
2. 0* *
3. = TOUCH SCREEN MENU FOR FIL *
4_ * *
5. * The purpose of this collection of C functions is to take a FIL menu d
6. * and produce touch-sensitive buttons for it on a DeeCo touch screen. When *
7. * the Lisp function "menu” calls the C function "button,” it passes a *
8. * string. This string is in the format in which FIL prints menus on the *
9. * screen of a VT100. The first line has column headings, the second line *
10. * has hyphens under the column headings, and the rest have hd
11.* menu options in columns under the headings. “Button” creates one page of .
12.* buttons for each column of selections. The botiom row of buttons on each he
13.* page enables the user to access the other pages of buttons or o return .
14.* 1o the main menu. Each button for 2 menu option has a "label” that *
15.* the user sees, and a "response,” that the FIL program *
16. * expects. hd
17.+ *
18.* This program was writien by Sonia Faletti . .
19.* .
20.* --Sonia Faletti, 18 July, 1989 *
21 .““‘t‘.#.t“..“t-t‘.“t.‘t‘#“‘.“t.‘t.“.t“.tt““t‘t“t-it‘t“‘t‘..“t‘/
22. #include <stdio.h>

23. #define MAX_LENGTH 500 /* The maximum number of characters in a line */

24. #define TRUE 1

25. #define FALSE 0

26. #define ESC 27 /*ASCII for ESC*/

21. #define TILDA 126 /*ASCII for TILDA®*/

28. #define RETURN 13 /*ASCII for carriage return*/

29. #define NUMOPT 5 /*maximum number of columns in menu*/

30. #define BLENGTH 19 /*button length*/

3L #define BHEIGHT 5 /*button height*/

32. #define SLENGTH 15 /*length of switching buttons*/

21

. positions */

#define SHEIGHT 5 /*height of switching and help buttons*/

#define RETURNLEN 8 /*length of retumn button*/

#define LLENGTH 50 /*length of label buttons*/

#define LHEIGHT 2 /*height of label buttons*/

#define HSPACE 2 /*horizontal spacing of buttons*/

#define VSPACE 1 /*vertical spacing of buttons®/

#define BOTTOM 1 /*vertical position of bottom row*/

#define MAXBUTTONS 9 /*maximum number of menu option buttons*/
#define SCREENWIDTH 64

#define SCREENHEIGHT 32

char *menu_string; /* the pointer to string_block */

char string_block[1920}; /* 1920=24*80, a screen full of menu choices */
/* this block is modified by get_string, and */
/* referenced by button. string_block is also */
[* created by button, in the beginning. */

char *get_sming(); /* forwad declaration of this function */

/.".“t.“t‘ttt““".““.t“““tt.‘t.t“t-tt‘t"‘ttt..‘tt‘t‘ttt'ttt‘ttt“
*

* bunon is passed & menu string that is decoded into bution commands and
hd printed on the DeeCo. This function used to be 8 main program. It is
. the entry point for FIL. The firs: part of the function reads in

hd information from menu_string into arrays. The last part makes

* buttons from the information in the arrays.

*

.t‘.‘...‘..'t.t.‘t-‘t"..‘#‘t#"#‘*‘i.‘t‘#'tt&.t““.tt‘.“t‘i‘tt‘ﬁttttt‘.tt/

int button(passed_menu_string)
char passed_menu_string[];

{
. char temp[MAX_LENGTH], temp1{80); /*for temporary storage of str1-gs*/
. char *string; [*pointer for current line*/
. int columns{MAX_LENGTH]; f*array: numbers indicate columns®*/
. char *resp[NUMOFT][MAXBUTTONS]. /*2-dim array of pointers to responses*/
. char *1abel[NUMOPT]{MAXBUTTONS]; /*2-dim array of pointers to labels*/
. char *infolNUMOPT]{100}; /*2-dim array of pointers to info*/
. char *head{NUMOPT], *readin(); /*column headings; function declaration*/
. int num{NUMOPT); [*array: number of options for each column®*/
. intnm, k, k1, ¢c; /*counters*/

int nmeols; /*number of columns®*/

. int error; [*error flag*/

int col; /*number of current column*/

. int buttonmax; /*highest number of menu choices in a column*/
. intlen; /*length of a string®/

. ntpos; /*position of "' in a menu option*/

. int commands, text; [*these are flags to determine whether the

menustring contains commands, text, or both*/
/*initializations®/

. commands = FALSE;

text = FALSE;

. for (k = 0; k < NUMOPT; k++) numlk] =0;
. error = FALSE;

. sucpy(string_block,passed_menu_stning);

. menu_string=string_block;

/* In this section, the column headings are found and stored in an array of
strings. Also, an array of numbers is set up to label the heading

143.

145.
146.

. mmncols = findcolumns((string=get_string()), columns);

for (k=0; *(string+k) == "'l ®*(sting+k) == \'; k++);
for (¢ = 0; c <nmcols ; c++) |
k1=0;
while (*(stri.g+k) ="' && *(string+k) !=\0') {
temp[k1++] = */string+k); ‘
94 .+;

}
temp{ki] ="\0';
head!.] = readin(temp);
while (*(string+k) =="") k++;
]

string=ge*_string();

/* In this section, each line of menu selections is read and the responses and
. labels are placed in their respective two-dimensional arrays. Commands
. always have a colon between the response and the label. They may be in one

of these formats:
rsp: label
rsp : label or rsp :label
rsp:label

while(*(string=get_string()) = NULL) {

nm=0; /* nm points to the current position in the string */

do {

. Otherwise, the word is assumed to be text (not a menu option). */

while (*(string+nm) == "'l *(string+nm) = \t') nm++;

if (*(sming+nm) !'=\0") {
col = columns{nm] - 1;
nm += getword(temp, string-+nmy);
len = strlen(temp);

if (*(temp+len-1) == ") { /* tsp: label */

*(t~mp+len-1) = \D’;
resp[col}[nwin[col]] = readin(temp);
nm += getword(temp, string+nm);
label[col][num([col]] = readin(temp);
commands = TRUE;

)

else if (*(string+nm+1) ="") { /* 1sp : label */

resp[col][num[col]] = readin(temp),
nm += 2;

nm += getword(temp, string+nm);
label{col]{num(col]] = readin(temp);
commands = TRUE;

)

else if ((pos=strespn(lemp, ":")) < len) { /* rsp:label */

stnepy(templ, temp, pos);
*(templ+pos) = \0';
respfcol][num[col]] = readin(temp1);
strcpy(templ, temp+pos+1);
label|col]{num(col]] = readin(templ);
commands = TRUE;

J

else | /* must be text */

infof{col]{num|col]] = readin{temp);
text = TRUE;

numjcol)++;

} while (*(string+nm) '=\0');
)

23

147.
148.
149.
150.

151.
152.
153.
154.
155.
156.

157.
158.
159.
160.
161.
162.
163.

165.
166.
167.
168.

169.
170.
171.
172.
173.
174.
175.
176.

177.
178.

179.
180.
181.
182.
183.

184.
185.
186.
187.

188.

189.
190.
191
192.
193.
194.
195.
196.
197.
198.
199.
200.

/* This is to find the maximum number of menu choices in a column. */
buttonmax = num{0];
for (c = 1; ¢ < nmcols ; c++)
if (num{c) > buttonmax) buttonmax = num{c};

/* If the menustring contains:
only text--make no buttons, return 0
only commands--make buttons, return 1
both text and commands--make no buttons, return 0
(future improvement: put both on the same page)
neither--make no buttons, rerum 0 */

if (text == TRUE && commands = FALSE) {
printf("%c[>B\n", ESC);
fflush(stdout);
printf("%c[2]\n", ESC);
fflush(stdout);
return 0;
)
if (text == FALSE && commands == FALSE) return 0;
if (text = FALSE & & commands == TRUE) {
k = buttonpages(head, resp, label, num, nmcois, buttonmax);
return k;

)

if (text == TRUE && commands = TRUE) {
printf("%c{>B\n", ESC);
fflush(stdout);
printf("%c{2\n", ESC);
fflush(stdout);
return 0;

}

/* This function makes pages of buttons for the touch screen. */
buttonpages(head, resp, label, num, nmcols, buttonmax)

int num(], nmcols, buttonmax;
char *head[], *resp{}[MAXBUTTONS], *label{}{MAXBUTTONS];
{

int ¢, k, k1, row, bottom, left, top, right, oldbutton, oldpage, error;
char temp1({20], temp2[20];

printf("%c[>321", ESC); /* wrmns off keyboard */

printf("%c[2]", ESC); /* ciears scieen */

printf("%c[>5D", ESC); /* tells sensor that screen has been cleared */
printf("%c(>B",ESC); /* erases all buttons, responses, and labels */

/* Each case represents one column (and one page). */

for (c = 0; c <nmcols ; c++) {
swich (¢) {
case 0:
printf("%c[>0P\n", ESC);
ruaketoplabel(head|c]);
fflush(stdout);
break;
case |:
printf("%c{>0;1P", ESC);
maketoplabel(head{c)),
fflush(stdout);
break;

24

case 2:
printf("%c[>0;2P", ESC);
maketoplabel(head(c]);
fflush(swdout);
break;
case 3:
printf("%c[>0;3P", ESC);
maketoplabel(head[c]);
fllush(stdout);
break;
default:
return O;
}
/* This section creates one button for each menu selection on a page. */
for k =0, row = 1, k1l = 0; k < num|[c]; k++) {
if (kK1+1)*(HSPACE+BLENGTH) > SCREENWIDTH) (
row++; /*If the current row of buttons is full, begin a new one.*/
k1=0;
)
bottom = SCREENHEIGHT - LHEIGHT - row * (VSPACE + BHEIGHT);
if (bottom < BOTTOM + SHEIGHT + 2 * VSPACE + LHEIGHT) {
printf("The buttons will not fit on the screen\n");
return 0;
)
Jeft = HSPACE + k1 * (HSPACE+BLENGTH);
top = SCREENHEIGHT - LHEIGHT - VSPACE - (row-1) * (VSPACE + BHEIGHT),
right = (k1+1) * (HSPACE + BLENGTH);
makebutton(k+1, resp{c][k], label{c]{k}, bottom, left, top, right);
fflush(stdout);
kl++;
}
. /* This section makes the buttons which allow switching from one page to
. another. */
makelowerlabel(buttonmax + 1, ¢);
fflush(stdout);
for (k =0, k1 = 0; k <nmcols ; k++) {
ifk!=c) |
bottom = BOTTOM;
left = HSPACE + k1 * (SLENGTH + HSPACE);
top = BOTTOM + SHEIGHT;
right = (k1 + 1) * (HSPACE + SLENGTH);
if (right > SCREENWIDTH - (RETURNLEN + HSPACE)) {
printf("“The switching buttons will not fit\n");
teturn O;
)
ifc=0l{c=1&&k=0))
makeswitch(buttonmax+k1+2, head[k], k, bottom, left, top, right);
else {
if(k'=0) {
oldbutton = buttonmax + k + 1;
oldpage = 0;
)
else {
oldbution = buttonmax + 2;
oldpage = 1;
printf(“Foc[>%d;%d;%dC", ESC, butonmax+k1+2, oldbution, oldpage);
}

25

259.
260.

261.
262.

263.

264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274
27s.
276.
2717.

278.

279.

280.

281.
282.
283.

285.
286.

287.
288.
289.
290.

291.
292.
293.

294.
295.
296.
297.
298.
299.

300.

301.

fflush(stdout);
kl++;
}

)

* This section makes the "return” button. */

strepy(templ, "AM");
strepy(temp2, "return”);
bottom = BOTTOM;
left = SCREENWIDTH - (HSPACE + RETURNLEN);
top = BOTTOM + SHEIGHT;
right = SCREENWIDTH - HSPACE;
if (c=0)
makebutton(buttonmax+1-+nmcols, templ, temp2, bottom, left, top, right);
else
printf(“%c[>%d;%d,0C", ESC, buttonmax+1+nmcols, buttonmax+1+nmcols);
fflush(stdout);
)

return 1;

)

,t- ERBEERRRREPEERR SRR REB RS R RO RRE SRR RS
L

* get_string: This function returns the next line of text from menu_string.
* It replaced a function which returned input from a file.

. That function's name was gets_1. If there is no more string,

* it returns the null string. The string it returns will be

* null terminated.

.

ey “‘““‘lt‘tt‘.‘t‘##t“ttt‘*ttt"t“‘#‘tt‘.t‘tt““t*tt/

char *get_string()
{

char return_string{MAX_LENGTH];

int len;

len=strespn(menu_string,"\n");
*(menu_string+len)=NULL;
strncpy(return_string menu_string,len+1);
menu_string+=len;

if (*(menu_string+1)!=NULL) menu_string-++;

/* If another string is present, advance to it. Otherwise, keep the menu_string
pointer in the same place so that next time a NULL will be returned. The
significance of this is that the last character in the string before the
null terminator must be a carriage return. */

return(return_string);

* FINDCOLUMNS(STRING,COLUMNS)

This routine receives STRING, the lowest row in a colurnn header, as input.

. It computes COLUMNS, an array in which each element contains a number
. comresponding to the appropriate column that is located there. Columns are
. given increasing numbers starting at one, and those locations between

. columns are filled with 0's. For example, the following column header

. (STRING) generates COLUMNS as shown:

STRING =" Header! H2 Header3 Head4 "
COLUMNS = "1111111111002200000333333300444440"

311. Note that leading spaces are filled with 1's. */

312 findcolumns(string,columns)
313. char *string;
314. int columns(};
31s. {
316. intk=0,num=0;
317. while (string[k] =="") columns[k++] = 1;
318. if(k=0) {
319. columns[k++]=1;
320. num=1;
321, }
322. while (string[k] !="\0") {
323. if (string[k} ="") columns[k] = 0;
324. else if (string[k-1] !="") columns[k] = num;
325. else columns[k] = ++num;
326.+;
327.)
328. while (k < 200) columns[k++] = 0;
329. remum(num);
330. }
331. /* This furction produces one button for e touch screen, with a label and a
332. respon-e. */
333. makebutton(number, response, label, bottom, left, top, right)
334. char *response, *label;
33s. int number, bottom, left, top, right;
336. {
337. /*This section defines the button location.*/
338. printf("%c[>%d;%d;%d; %d;%dB ", ESC, number, bottom, left, top, right);
339. /* This section defines the button response. */
340. printf("%cP%c%d;/Fes M:%s%c\", ESC, TILDA, number, response, label, ESC);
341,)
342. /* This function makes a button for switching pages, using the "local response”
343. capability of the touch screen. */
344, makeswitch(number, heading, newpage, bottom, left, top, right)
345. char *heading;
346. int number, newpage, botiom, left, top, right;
347. {
348. printf("%c[>%d;%d;%d;%d;%dB", ESC, number, bottom, left, top. right);

349.
350.

351.
352.

353.
354

printf("%cPP%c%d/NIB>%dP:%s%c\', ESC, TILDA, number, newpage,heading ESC);
}

* This function produces one label button with no response. */
makelabel(number, label, bottom, left, top, right)

char *label;
int number, bottom, left, top, right;

27

355,

{
printf(“%oc[>%d; %od;%d; %d;%dB " ESC, number, bottom, left, top, right);

356.
357. printf("%cPYocPed;16/:%s%c\', ESC, TILDA, number, label, ESC);
358. }
359. /*This function returns a pointer to a string.*/
360. #include <stdioh>
361. char *readin(string)
362. char *string;
363. {
364. intlen;
365. char *malloc(), *ptr;
366. len = stien(string);
367. ptr=malloc(len+ 1);
368. if ('ptr) {
369. printf("memory request failed\n”);
370. exit(l);
3.)
372. strepy(ptr, string);
373. rewumn(ptr);
374.
375. /* This function prints a non-sensitive button labeling the menu options. */
376. maketoplabel(string)
377. char *string;
378. {
379. char line[80);
380. strepy(line, "MENU OPTIONS\W: ")
381. strcat(line, string);
382. makelabel(0, line, SCREENHEIGHT-LHEIGHT, HSPACE, SCREENHEIGHT,
383. HSPACE+LLENGTH);
384. }
385S. /* This function prints a non-sensitive button labeling the switching buttons.*/
386. makelowerlabel(buttonnumber, page)
387. int buttonnumber, page;
388. {
389. char line[80];
390. strcpy(line, "Touch a button to see more options.");
391. if (page ==0) makelabel(buttonnumber, line, BOTTOM+SHEIGHT+VSPACE, HSPACE,
392. BOTTOM+SHEIGHT+VSPACE+LHEIGHT, HSPACE+LLENGTH);
393. else printf("%c{>%d;%d;0C", ESC, buttonnumber, buttonnumber);
394. }
395. /* This function gets the next "word” from “string.” */
396. getword(word, string)
397. char *word, *string;
398. {
399. intk=0;
400. while (*(string+k) == "' Il *(string+k) == \') k++;
401. while (*(string+k) != "' && *(string+k) = \t' && *(string+k) != \0") {
402. *word++ = *(string+k);
403.+;
404. |}
405. *word ="\0';
406. rewrnk; /* k points to the next character in string */
407. }

28

