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Theory of linear optical properties of fractal clusters is developed.f The theory is
based upon the exact properties of dipole polarizability and assumption of the existence
of scaling for the dipole excitations (eigenstates) of the fractal. This assumption is self-
consistently validated by the results of the theory and is also confirmed by numerical
stimulation in the framework of the Monte-Carlo method. Using exact relations and the
scaling requirements. It is shown that the fractal absorption and density of eigenstates scale
with the same exponent d, —1.. The index d,, which is called the optical spectral dimension.
is the counterpart of the Alexander-Orbach fracton dimension ; The dispersion law for
the fractal eigenstates is found: it is governed by d, and the Hausdorff dimension D. Using
this law. the condition of the scaling is determined. According to this. the scaling region
occupies the center of the absorption band. of the fractal. The spectral dimension d, is
found for three tvpes of the fractals studied from the results of the numerical simulation.
The wings of the fractal absorption contour are described by introducing the model of
diluted fractals with the use of the binary approximation. The general conclusion is that

large fluctuations of local fields dominate in determining the fractal optical spectra.
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1. Introduction

- Fractals. as introduced by Benoit Mandelbrot over ten vears ago. are scale self-
similar mathematical objects possessing nontrivial geometrical properties,i1.2).~There exist
various physical realizations of fractals\[3.4};"ﬂand here we shall consider what we believe
to be one of the most important such realizations. namely. fractal clusters. Attention will

be paid mainly to their optical properties.

T A fractal cluster is a system of interacting material particles called monomers. )

This system is self-similar (in a statistical sense) with respect to scale transformations in

an intermediate region of sizes r. R, « » « R.. where R is a characteristic separation

between nearest monomers. and [2. is the cluster total size. For the sake of brevity, such .

'

clusters will simply be called fractals. since other realizations of fractals will not be used

in this paper.

Fractals are widespread in nature [4.5]. Products of a broad class of diffusion-
controlled aggregation reactions in solutions and gases can be labelled as fractals. Accord-
ingly. fractals are particles in colloidal solutions. sols and gels. and soot and smoke, and
most macromolecules are fractals. Rough surfaces. disordered layers on surfaces. porous
objects (microfilters including activated coal. porous glasses. aerogels. many heterogeneous

catalysts. etc.) also possess fractal structure in an intermediate range of sizes.

A consequence of the scale self-similarity of fractals is a power dependence of
correlation functions on coordinates. In particular. the pair (density-density) correlation
function in the intermediate region has the scaling form

D r\ P73
gir) = R <72-(;> (1)

where the index D i crlled the fractal (external Haussdorff) dimension. Equation (1) is

also a definition of the constant Ry. A consequence of (1) is the scaliug behavior of the

number .V of monomers in a fractal and its mean density :
N ~(R./R0)? . p~iR/RyPT (2)

A fractal is called nontrivial if D is less than the dimension of the space it is embedded

in. ur in our case of a cluster. if D < 3. As one can see from (2). the mean density of a

’ -
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nontrivial fractal is asyvmptotically 1for R. 3> Ra) zero. This feature. together with strong
pair correlation (1). is the reason for the great role that fuctuations play in a nontrivial

iractal.

Among the physical properties of fractals. the optical properties have been the
least studied. For example. in a set of proceedings [4] several vears ago devoted to the
physical properties of fractals. there are no papers on the optical properties. The linear
optical (dipole) polarizabilities of fractals have been studied theoretically [6-9]. However.
in Refs. [6.7] based on various modifications of the mean-field method. strong fluctuations
(of density, local fields. etc.) in fractals are not completely taken into account. In later
napers 3.9], Huctuations in the immediate surroundings of a monomer are seen to play a
.iecisive role. There. the binary approximation was employed: the interaction of a monomer
with only its nearest neighbor was accurately taken into account. while the etfect of other

monomers was simulated by the Lorentz field.

If monomers are high-quality optical resonators. for example. particles of coinage
le.g.. Ag and Au) metals or other metals possessing strong luster. strongly-fluctuating lo-
cal fields in a fractal can significantly exceed the exciting external field. This very feature
brings about a giant enhancement of Raman scattering from fractals {8.9]. Nonlinearities.
as usual. increase the effect of fluctuations and related to this are the huge magnitudes
of noniinear polarizabilities of fractals predicted in {10.11]. This prediction was then con-
firmed experimentally {12] for optical phase conjugation in a degenerate four-wave mixing
process in fractal silver clusters. Photomodification of such clusters. which is selective in
‘he wavelength and polarization of the radiation. was later observed {13]. These estab-

lished effects are rich in physics and promisc intcresting applications. Therefore. they are

worthwhile for more detailea theoretical study.

The aim of this paper is to develop a theory of optical properties of fractals. taking
full account of their fluctuation nature without the restriction of the binary approximalicu.
The theory is based on a scale-invariant approach. In Sec. 2 we present the basic equations.
and in Sec. 3 we examine the polarizability in the collective region. The fractal optical
response at the wings of the absorption contour is addressed in Sec. 4. results of numerical

simulation are given in Sec. 5. and Sec. 6 provides a concluding discussion.




2. Basic equations and exact properties of solutions

Let us consider a model of a ciuster as a systemn consisting of .\’ nolarizable particle
tcalled monomers) located at the points r;. ¢ = 1...N. The total size of the cluster
is supposed to be much less than the wavelength. Therefore. the interactica between
monomers at optical frequencies is principally the interaction of their transitional multipole
moments. The main part of this work deals with interactions at distances which are much
greater than the monomer size. which is valid for both the collective region (see Sec. 3)
and diluted fractals in the binary region (see Sec. 4). In this case the most important part
of the multipole interaction 1s the dipole one. However. if the monomers are conducting
particles. the charge rransfer between them ohmic current) should also be considered. In
Maxwell's equations. the dipole interaction in a continuous medium is described by the
displacement current j; = 1e/c)(OE/0t) = 1e{w/c)E. where € is the dielectric constant. E
is electric field. « is the optical frequency. The ohmic current jo = oE. where 1s o is the
conductivity. The ratio |)q/j4| shows us how important the ohmic coupling is with respect
to the dipolar one. Using the above expressions. in which € is taken to be the dielectric
permittivity of the monomer material. to describe the pair interaction between nearest
monomers. we can obtain the upper estimate for |)g/j4|. The reason why this estimate is
the upper one i1s that the ohmic contact between monomers may have high resistance due
ro its small area. surface oxidation. spatial separation. etc.. while the dipole interaction is
determined by geometrical factors and. therefore. is the same order of magnitude as in the
continuous medium. Using the familiar relation ¢ = (w/47)lme. we obtain the estimate
‘Ja/Jal < |lme/Reel. In fact. in the visible portion of spectrum this ratio is small for most
metals since —Ree is large. and for semiconductors and dielectrics since Ime is small. For
example., for \ = 650 nm. |jq/j4| = 0.07 and 0.02 for Ag and Si. respectively (the optical
data are taken from Ref. [14]). We shall consider materials of the types indicated above

and. therefore. shall neglect the ohmic coupling.

The dipole (transition) moments induced on monomers obey the well-known sys-
tem of equations

N

din = \OE:Z) - Y0 Z' {603 - an;j)n(;j)]! rf}z(l]-d . 13)

-

=1




where the Greek subscripts stand for tensor components ( summation over repeated indices
is implied). and the Latin indices stand for ordinal numbers of monomers: \g 1s the dipolar
polarizability of an individual (isolated ) monomer. taken to be isotropic to avoid inessential
complications; E'%) is the electric tfield of the external (exciting) radiation at the site of

the :'"® monomer: r,; = r; — r,. and n'¥’ =r,,/r;,.

In the electrodvnamics of continuous media. Eq. 13} is treated in the mean-field
approximation. in which it is reduced to the integral equation for the mean dipole mo-
mentum d. d = \LGE' =\ [ rd - 3r(rd)/r3}r’3g(r}dr. Taking (1) into account. one
can easily see that for the nontrivial fractal the right-hand side of this equation diverges
at smail distances as r2~*. It means rhat the most important is rhe contribution of the
nearest monomers. Lhis feature was exploited in recent work (3-11} in which the binary
approximation has been developed to exactly take into account the field of the closest
monomer. with the rest of monomers treated by the mean field. Due to the divergence at
r — 0. this approach is sensitive to the small-scale structure of the fractal. and the po-
larizability found does not obey scaling in the general case. In the present paper (Sec. 4),
we introduce the model of diluted fractals. which have the simplest possible small-scale
structure and obey scaling both at intermediate and small scales. In this model. the binary

approximation is shown to correctly describe the wings of the absorption contour of the

‘ractals.

Ve show below (Sec. 3) that the central part of the spectra can self-consistently be
described as scale-invariant. This means that the polarizability is determined by collective
(long-scale correlated) fluctuations of the local dipole momenta d,. Since these fluctuations
dominate. the the mean-field approach is not applicable. In this respect. the fractals
resemble systems near the phase transition point. In the collective region. the fractal
optical properties are not sensitive to the small-scale structure. scaling takes place. and

the diluted fractals has the same polarizabilities as the original ones.

To develop the general theory of the optical properties of fractals. we shall use the
approach based on the expansion of polarizability in terms of the exact eigenvectors and
cigenstates of the interaction operator (this is similar to the Lehman expansion in field

theory). Also. such an expansion turns out to be the most efficient computing method for




carrying out our numerical sirnulations in Sec. 3.

To perform the above indicated expansion. lct us represent (3) in the form of an

operator equation by introducing the matrix 1¥” with elements

Y (1) )y -3 .
(ZG“‘V'j) = [003—3710 nj }rlj - $.]v (4)
I A] 0 1 _ J

which operates in a 3.V-dimensional vector space of the vectors d and E with components
(iald) = dia . (ialE) = E\a - (3)

Then the basic system of equations (3) acquires the form

' Z+W)d=E" (6)
where the complex variable Z with real (—X) and imaginary (—¢) parts is introduced.
Z=—(X+wW) =" . (7)
The symmetric real matrix 1} is diagonalized by the orthogonal transformation
CWTT = diag(w,) . [TT =1 . (8)

where diag(w,), is the diagonalized matrix consisting of eigenvalues w,, and the super-
script T denotes the rranspose. The formal solution of the basic equation (6) has the

form

- 1 ) -
J:URMg?——ﬂfW. (9)

+ wy
Expressing the required quantities d,o in terms of the eigenvalues w, and components of

the corresponding eigenvectors {n|ia). one obtains from (9)

dia =) (n|Ulia) (n|U]j3)(Z + wa) T E3 (10)

jn

We consider below the clusters whose size R. is much smaller than the radiation

wavelength A. Then the external field E;g) may be considered homoeencous. 1.e.. not




Jdepending on J. In this case the dipole moment induced on rhe :'" monomer is expressed

in terms of the corresponding linear poiarizability \, as

7 ) ()
da = LEY ' 11)

[t is clear from (10) that \l:; is given by

= S (illia) (rfU1 N Z + e 12)

n

The polarizability as an analyvtical function of Z differs from that expressed in terms of fre-
. . . . - - - Ix o y- (1) -

quency . In particular. this function is not “real” in the sense that \! [ X)) =\ ,{-X).

Nevertheless. it can be shown directly from the solution +12) rthat rthe conventional

Kramers-IKronig formula in .Y is valid.

X' -X

"

20
" 1 LY’
Rey 'L (X = ~P/Im\ (.\"\—‘—. (13)
—20

where P denotes the principal value of the integral. We shall obtain also some other exact
relations for \’(q'; which are a consequence of the fact that the eigenvalues w, are real. the
matrix {7 1s orthogonal. and ¢ is positive corresponding to normal absorption (we assume

uo population inversion).

From the form of the solution 1 12). the exact sum rules follow:
< e
1- 1 - - (I3 - -
- / Im\t';(.\ X =e,y . P / Re\q;(,\ WX =1 . (14)
e e

From (14) it can be seen that the absorption integral is conserved: it is the same as for an
isolated monomer. The absorption cross section differs from Im\i,'(), only by a trivial factor

{ )
irk. where & is the wave vector. As a characteristic of absorption we shall use ImYaa

We now obtain an exact relation which is a counterpart of the optical theorem.
For this purpose. from (12) and taking (8) into account. we find a quadratic form of the

polarizabilities:

SN =S et 0 (2T w7 Z e T 15

1 1r'n




[V ]

Performing 1n (13) an elementary decomposition into simple fractions.
- -1 -1 —i
2N = a0 Z = wen = --ImiZ - ImZ 116)

and introducing the mean polarizability of a monomer in the cluster.
1 Z ')
1t) pq
1

we obtain the required relation
L (e 1) 1 I 18
¥ Ve \ay = TiMYay - (18)
- [
1

With the aid of 1 18). let us tind the average (over a cluster) of the squared electric field E
which acts upen a monomer. This tield determines the enhanced Raman scattering from
the cluster. and also its photomodification (see Sec. 4). The acting (local) field is coupled

to the solution of the system (6) in an obvious manner:
- - 0)
E: = \o ldi . Eia= Xo 1\,(;‘)3Ef3 - (19)

For definiteness. let us suppose that the external fleld E is directed along the z-axis. From

118) and (19) we obtain

1 | 2, 2 - -0 2
¥ BB =0 (1 X I (20)

This relation resembles the Callen-Welton formula. Earlier a result had been obtained
with the use of the binary approximation (see Eq. (45) in Ref. [9]) which differs from (20)
only by some notations. This result was the basis to develop a theory of enhanced Raman

scattering from fractals.

We emphasize that the above relations (13). (14). (18) and (20) are exact. They are
valid for an arbitrary cluster (fractal or not) without any averaging over cluster ensemble or
orientation. It is only essential that the cluster consists of monomers with pair interactions
between them which give a linear response to an external field and possess normal (not

population-inverted) absorption.




Let us now invoke rotational symmetryv. .After averaging over the orientation ot

a cluster as a whole (denoted below us ..., ). the polarizability tensor s reduced to a

scalar,

\aa - 121)

Lo +—

\ad/ =\Cag - \ =

For the first moment of y. we can find directly from (12)

P / XImy XWdX =P / Rey(X)dX + %%,:(hgl'?ia)u',,(nil'fja). (22)

Accordingly to 1145 the first t rm1 on the right side of 122) equals zero. The second
“erm with the help of 131 1s reduced ro the form 2 vdarlt ! ja). Using the fact that the
mnteraction tensor (4 becomes zero when convoluted over the indices a and .J. one comes
ro the conclusion that rhe second term is also equal to zero. [.: such a way. we obtain the

exact sum rule
Pl

p / NImy X)X =0 . (23)

—C

meaning that the absorntion center of a cluster is at X = 0.

The universality of the above obtained relations is. in particular. aue to the use of
natural variables X and ¢ for rhe present problem. These variables. indeed. depend upon
rhe frequency «. but nor in a universal way. In wha* follows. it is important to establish
the region in which the spectral varable \' 1s chaneineg. Let us consider the dependence

X in two different models.

First. let a monomer possess a single 1solated resonance with frequency wy. relax-
ation rate (homogeneous width. I and transition dipole matrix element dy2. In this case

we have

el ,,')
2| vo M o (24)

AT Iy 1,1]2]"

ldyg)

where {1 = & —.g. One can see that X is a relative detuning and ¢ is a relative width of the
resonance in an isolated monomer. We point out that the first of the relations (14) together
with (23) reproduces the well-known dipole sum rule for the polarizability. ~Note that the

)

minimum value of [ is equal to the natural (radiative) linewidth [, = 4k3‘d,2{'/3h.




Substituting I = U, into Eq. 241, we obtain for the resonance 1) = ) rhe upper estimate
Imyy ~ \*. which is much g¢reater than the volumne of the monomer. i acrord with the
quantum-mechanical Breit-Wigner tormula. In real clusters. rhe width 1' is determined
by radiauveless dissipation and devhasing, and T > [,,. Thus. the magnitude of Imvyg 15
much smaller than A\, though it may still be much erearer than the monomer size due to

resonant enhancement (cf. the cxamnle below ).

The second model. which is realistic. in particular. for clusters obtained by aggre-

zation in colloidal solutions. considers the monomer us a macroscopic sphere with radius

£, . consisting of rhe material with a complex dielectric permittivity = = 2/ - 2. The
Dolarizability of sucha splhiere 1s wiven by the weil-known expression
3. - oyl :
=R -1+ (25)

For rhe waetallic sphere. the permittivity is well described by the Drude formula

c=z0 —wi/[wlw +y)] 7 (26

where sy =const 15 the contributior. of the interband transitions (e.g.. for silver 25 = 3). w,
.~ the clectron plasma trequency. and =~ is the electron collision frequency. For most metals.
tn particular. for rhe noble metals. +~ « «, and. consequently. " -« /. In this case. from
t7) and 125). one can see that X(w) turns to zero at the point of the surface plasmon
resonance. « = w,. where ' = —2. From (26) it follows that ~, ~ wpldn + 2)~12 In the
vicinity of the surface plasmon resonance. the dependence X(w) reduces to (24) with the
following parameter values: Q@ = o — |, i(ilgil = 3R} hwp/ i?(c’r) - 2)3/3T. [ =~/2. Also.
it follows from (23) and 12¢) that for w < o,. the variable X' tends to -1. In the vicir,

of the frequercy <4 = wyi20 — 11717 the varialle Z (7) experiences strong dispersion

7 =

[N O]

R>(z0 =DV il — g +1702] (27)

[t follows from (27} that in a small vicinity of w, the variable .\’ changes sign. acquiring a

large absolute value limited by X\na; = 3R 0p/ 7.




3. Polarizability of a fractal in the collective region

To obtain the above exact results we did not use any specificity of fractals. Those
resuits. however. will now be emploved to obtain a description of the coilcctive polarizabil-
ity of fractals. Self-similarity. which is a fundamental property of fractality. means that
a fractal reproduces itself when the spatial scale is changed. Since in general a fractal
is a random object. this reproduction has statistical meaning. A change of length scale
brings about a simultaneous change of the scale of eigenvalues uw, and the variable X. As
a consequence of this. intermediate asymptotic values of observed quantities as functions

of 1 and X should be power-like (scaling).

We shall describe first Imy(.\') rabsorption) and later consider Rey(.X') with the
aid of 113). From (12) and taking (7) into account. we see that the universal scaling

behavior of Imy(.\') may exist only if X' >» ¢. Then

ImyX) = = Z<(n.U[ia)(n|U|ja)6(_\' —wn)) (28)
tn
where ..., denotes an average over the ensemble of fractals. From (28) it follows that

absorption is determined by those eigenstates for which w, = X.

The eigenstates of any large system. including the fractal. are characterized by a
coherence length (which turns out to be the wavelength in the trivial case D = 3). within
which the excitations of monomers are strongly correlated. This coherence length is a
function of the generalized frequency .X. which we shall denote as L v. The eigenstates are
rollective. i.e.. delocalized over many monomers. if Ly 3> Ry. The scaling should exist in
rhe intermediate region

Ry Ly < R, . (29)

Our basic assumption is that the dependence of Ly on X allows the existence of a finite
interval of " in which (29) is satisfied. Assuming so. we shall develop the scale-invariant
theory of the collective excitations of fractals. This theory will eventually allow us to find
rhe dependence of L y from the scaling properties of relevant quantities and. in such a way.
to seif-consistently contirm the basic assumption. It is also supported by the results of the

numerical sinulation {Sec. 3).




In the scaling region (29). the form of the absorption contour Imy(.Y) should
be power-like. The exact symmetry of the eigenstate problem of the 1} operator with
respect to a sign change of u', is absent. Consequently. parity in .\’ is not held. suggesting
that the indices for X > 0 and X < 0 could be different. However. the sum rule (23)
rogether with the self-similarity of a fractal guarantees that these indices coincide. and the
corresponding coefficients also coincide. Thus. in the region (29) (provided !.\'! > 0), a
svmmetric scaling dependence of Imy is valid. with coefficients which are determined by

Ry and can be estimated from dimensionality arguments.

Imy X ~ RS (R xS (30)

where d, is an index which we call the optical spectral dimension. From the convergency
requirement for the first of the sum rules (14), it follows that d, > 0. We should emphasize
that the symmetry of absorption in .\ is not an exact property, but is valid only in the

collective region. and is violated in the binary region (see Sec. %)

Let us consider the transformation properties with respect to a change in the
minimum size Ry (renorm-transformation). We take the initial value as Ry = 1. 1.e.. we
measure lengths in the unit of the initial size Ry . Increasing R, means coarsing of the
spatial precision with which a fractal is viewed. Such coarsing can be achieved in the
following manner [13]. We first isolate in a fractal fluctuations with sizes on the scale of
[ >> 1. We then consider monomers. which form such a fluctuation. as a new composite
| renormalized ) monomer. From the property of self-similarity. it follows that the obtained
cluster. consisting of renormalized monomers. is a fractal with the same critical exponents.
and Ry ~ [. The renorm-transformation conserves the form of the absorption contour (30).

provided the collectivity criterion (29) is met.

We now determine the renormalization law for X' and find the coherence length
Ly . The renorm-transformation should conserve the total absorption of a fractal. This

requirement. taken together with (2) and (30). reduces to

R b dy—1
( ) B (RIXD" T <1 . 31)
Ry




13

where the proportionality is understood in the sense of the dependence on %y {and not on

R.). From (31) it 1s cicar that .\ transforms in the following way:

X! x Ry DV m (32)

We note that in the case of a trivial fractal (D = 3), |Y1 x Ry’ independently of the index
d,. 1.e.. we have the well-known result Reyg x R3, which demonstrates the proportionality
of the polarizability of a composite monomer to its volume. We should point out that the
rransformation law 132) is derived from general principles. and the single condition of its

validity is the existence of the scaling behavior of absorption isee below .

For strongiy-disordered svstems such as fractals. Alexander '15i has assumed that
collective states with a given frequency (whose role in this case 1s plaved by the variable
X). are characterized by a single coherence length which is an analog of. simultaneously,
the wavelength and localization radius. This property. called strong localization. is a
consequence of the self-similarity of a fractal and its collective states. For a trivial (three-
Jdimensional) system. this property in the general case can obviously be violated: the
excitation localization radius can essentially exceed the wavelength. which is the situation

of Anderson localization.

The coherence length L. as other observable quantities in the scaling regime.
should net depend on both the maximum R. and minimum length Ry. The latter require-
ment means that Ly should be an invariant of the renorm-transformation. Taking into
account Eq. (32). one can make sure that it possible to construct only one quantity which

possesses the above indicated properties and has the dimensionality of length.
Ly x Ry(R3|X|)\ ™10 (33)

Thus. for the present problem. Alexander’s strong localization follows from scaling. The

relation reciprocal to (33) is the dispersion law for the excitations of the fractal:
IX(Lx)| x Ry*(Ly/Rg) PV demtl (34)

This dispersion law for the collective dipole excitations of the fractal can be considered as

a theorem based upon the general relations and the scaling assumption.
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For the trivial system 1 D = 3). the expression (33) is singular. which is not sur-
prising (see above). Nevertheless. this singularity has simple physical meaning, and to see
this. we consider the dispersion law (34). For D = 3. it follows from (34) that X(Lx)
does not depend on Ly. i.e.. on the excitation wavelength. \\l ~ RO“3. This estimate
exactly corresponds to the dispersion law (existence of a spectral gap) of long-wave surface
plasmons. Note that in the trivial limit (D — 3) the dipole excitations of a fractal, which
give contribution to the optical absorption. tend exactly to the surface plasmons since the
radius of the fractal R. is assumed to be much less than the radiation wavelength . To
lemonstrate this. consider an averaged trivial cluster as a microscopic sphere. for which
rhe surface plasmon resonance condition is ¢ = —2 (cf. discussion of Egs. (25)-(27)), where
¢ is the dielectric permittivity of the sphere material. Recailing that € = 1 + 47 Ry *\q
and taking (7) into account. we obtain for the resonance X\’ = —%RO‘}. in accord with the

above estimate.

For a normal dispersion law. the "frequency” X should decrease with the wave
vector. i.e., with an increase of Lx. Taking into account (34), this leads to the limitation
d, < 1. which we accept (as will be confirmed later by numerical simulations). We shall
not use the renorm-transformations below and shall return to the original value Ry = 1.
Then the condition (29). which determines the scaling region. together with (2) and (33)

acquires the form

NB/D-D/(1=do) o Yy o] (35)

Hence, this region is spread to small |X| and. consequently, occupies the center of the

absorption band (cf. (24)). Obviously, the necessary condition for scaling, \l > b.is

compatible with (33) only if the Q-factor of the resonance in a monomer is high:
R=1/6>1 . (36)

As follows from (35). when a fractal tends to a trivial one (D — 3). the region of collective
behavior in X' degenerates to a point corresponding to the frequency of surface plasmons
(see above). Thus. a finite size of the band of collective states of a fractal is entirely due

to its nontriviality.
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The scaling region 133} can be physically realizable oniy if the interval of values of
the function X(w) (7) includes it. This interval depends on which monomers the cluster is
built with. Let us discuss in this connection the above considered model of the spherical
monomer (see (25)-(27) and the corresponding text). The monomer radius R, is supposed
to be on the order of Ry = 1 {in the present units). There exist small values of X. including
zero. near the frequency « = w,, if the surface plasmon resonance is well pronounced. the
condition of which v <« =, coincides with (36). In practice. it is well met for many metals,
e.g.. for silver v/w, < 1/30. with the resonant frequency w, corresponding to the near-UV
wavelength of approximately 300 nm. From the discussion of Egs. (25)-{27). it follows that
in the most interesting band of \ > 300 (i.e.. soft-UV. visible and IR light) the variable
X belongs to the interval from -1 to 0. which includes the whole scaling region (35). The
variable .X is in the interval from 0 to a large value of ~ wp,/+ when w is from w, to = wy

1far-UV band). and large negative values of .\ occur for « > .

To summarize the above obtain results. let us point out that we have initially
assumed there to exist the region (29) of the collective fractal excitations. Starting from
this point and using exact relations. we have shown that the absorption is given by the
scaling law (30). found the scaling properties (34) of the variable .\'. and determined the
Jdispersion law for the fractal excitations (33) (or (34)). From this law. we have determined
he scaling conditions (33). which predict the final interval (in .Y or in <) of the scaling.
Thus. the initial assumption is self-consistently validated. Taking into account divergence
at small r in the mean-field equations (see the discussion after Eq. (3)). the existence of the
scaling mcans that in the region (33) the large-scale fluctuations dominate in determining
the polarizability and cause failure of the mean-field approach. This situation is similar to
the phase transition with X as the transition parameter. X' = 0 being the transition point

and the polarizability playing its usual role.

We now proceed to find the relation between the absorption of a fractal. Imy(.X).

and density of its eigenstates. v(.X). which is introduced in the conventional way as

X)) = %Z<5(X—wn)> . (37)

The density v is normalized to one monomecr. and the mean value of .\ weighted by v(.Y')




is equal to zero since the interaction tensor (4) is traceless:
oC >
/ v X)dY =3 . / Xv X dX =Tl =0 . (38)
o e

The value of the first integral in (38) is due to the vector character of the interaction

between monomers.

Isolating in Eq. (28) the terms with : = j using the orthogonality property of the

matrix {". from Eq. {(8) and comparing the obtained results with Eq. (37). we obtain

, '——z/ —“_T_‘—_.. r/ Ty "“\\: (
ImyX) = 31t.\)+ IV \\(n!L!za)(nll !_]0)/} . (39)

tE)n

It follows from (38) that the first term in this expression i 39) satisfies both sum rules for
Imy, (14) and (23). Correspondingly, the zeroth and first moments in .\" of the second term
in (39) are exaciuly equal to zero. Since this term should also have a scaling dependence

on X (provided (35) is satisfied). it then equals zero. Hence. in the collective region

do—1

(40)

Imy(X) = %V(X) x |X

i.e. both the absorption and eigenstate density scale with the same index d, (the optical

spectral dimension).

We emphasize that the relation {40) between the fractal optical absorption and
the eigenstate density of its dipolar excitations has also the character of the theorem based
upon exact sum rules and the scaling assumption. The physical meaning of Eq. (40) 1s
clear. In a strongly-disordered system such as a fractal. all collective eigenstates with
equal statistical weights contribute to the optical absorption. The relation (40), how=ver.
should only hold for nontrivial fractals in the spectral region (35). Note that at the wings
of the absorption contour. which are described in the binary approximation (Sec. 4), it is
violated In ordered systems. selection rules are valid. and only few states of corresponding

svmmetry contribute to the absorption.

The scaling behavior of the density of fractal eigenstates as a function of frequency

was introduced by Alexander and Orbach [16] for the problem of mechanical vibrations
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of fractals (“fractons™ ). where the index d. corresponding to «, in (40). was called the
spectral (fracton) dimension. In the general case. the value of the spectral dimension is
determined by the internal fractal geometry, and. for a vector problem. also by the manner
in which the fractal is embedded into the three-dimensional space. In principle. the spectral
dimension may also depend on the interaction between monomers. Thus. the value of the
optical spectral dimension d should not necessarily coincide with the vibrational spectral

dimension in Ref. [16].

In Refs. {13-17] different ways are provided for finding an expression for the dis-

persion relation of fractal vibrations. which in our notation has the form

Xix L3P 41)
which obviously differs from (34). In particular. for a trivial fractal (D = 3). the relation
(41) predicts a gapless dispersion law. which is linear for ;= 3. An inspection of the
treatments of Refs. {15-17) shows Eq. (41) to be valid only for excitations of the Goldstone-
type (acoustic phonons. magnons and so on), whose corresponding creation-annihilation
operators in the long-wavelength limit turn to generators of symmetry groups of the given
svstem | translations. rotations. etc.). The dipolar excitations are not of the Goldstone-
rvpe. but rather tend to surface plasmons. which do have a gap in the spectrum. In such
a way. for the plasmon-like excitations considered in present paper the dispersion relation

(34) 1s valid. and not (41). which holds for phonon-like excitations.

Finally, we briefly consider Rex(.Y). Since the kernel of the integral (Gilbert)
rransform (13) by itself does not provide convergence. both the collective region (X < 1)
and wings of the absorption contour (.X' > 1) give rise to Rey(.\'). Therefore. Rex(.Y) 1s
not described by a scaling dependence even for X in the region (33). This conclusion can

also be reached by starting directly from (12).

4. Wings of the absorption contour and model of diluted fractals

In the previous section the collective region was considered in which the eigenstates

of a fractal are determined by interactions on large scales and spread over many monomers.
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The observable quantities governed by such excitations are insensitive to small-scale details
of fractal structure and the form of the interaction of monomers at small distances. The
behavior of such quantities should be universal and scaling. Below we shall describe the
wings of the fractal spectrum (the region (X] > 1). In this case the external field interacts
with those fractal excitations which. in accord with (33). are localized on a few monomers.

Therefore. small-scale details are essential.

It follows from the above arguments that it is in principle impossible to formulate
a universal description of the wings of a fractal spectrum. It thus seems appropriate to
employ a model of a fractal with extremely simple structure on a small scale. For such
a model we introduce dilute fractals which could be obtained by coarsing a structure of
original fractals. Instead of the renorm-transformation described in Sec. 3. we shall use
a simple and numerically efficient algorithm for the structure coarsing, called dilution.
which consists of the following. Each monomer of an original fractal is randomly left at its
position with some small probability 3 < 1. or is removed with the probability 1—3. Then
the fractal as a whole is reduced in size (1/3)"/? times. After that. we obtain a fractal
which is characterized by unchanged critical exponents governing the collective region. with
the pair correlation function (1) (Ry = 1) being valid up to small distances on order of
ry = 1.3)!/P <« 1. The dilution. indeed. does not change the polarizability of a monomer.
i.e.. it conserves the variable Z. and the total size of the fractal is diminished by a factor
of ry. The dilution (random decimation. in other words) eliminates the local structure of a
fractal. such as connectivity. separation between nearest monomers. coordination numbers.

ete.. without affecting the collective region (Sec. 3).

The diluted fractals do not only provide a convenient theoretical model. needed. in
particular. to check the numerical simulation in the spectral wings (see below). They also
can be considered as an idealization for a rather wide class of fractal clusters in nature,
which are formed by random binding of impurities to an original (nondiluted) fractal. with
a small fraction of occupied binding sites. As examples. we may mention dye molecules or
metallic microparticles in complexes with macromolecules. or in pores of glasses, and so

on. Hence. the description of spectral wings in the model of diluted fractals is interesting

by itseif.
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To describe the interaction at small distances. which is important for | X| > 1. we
shall use the binary approximation developed earlier {3-11]. For each monomer we shall
exactly take into account its interaction with its nearest monomer neighbor. neglecting the
eifect of other monomers. The polarizability of a monomer in such a pair is given by the

rensor \ 'f} (8].

Cod T l(Z —Qr:;)—l —(Z+ r—x)_”n,,ng . (42)
L J

n

Nad = (Z BRI )
where r, is the radius vector of the nearest neighbor. n = r,,r,. and the superscript (p)
stands for “pair”. After averaging over r . we obtain the mean polarizability of a monomer

nn the fractal as

x

1 - L ‘ T
\:5/ 20Z +r)7) 1*,-(2-—'2r;‘) ljp(r,l)dr,, . (43)

b

where p(ry) is the density of the distribution in distances between nearest neighbors. For

\| > ¢ it follows from (43) that (cf. (28))

-

Imy = =1} [2(r)O(X) + 213 (213, 10(= X))

5 (44)

-1/3

rn = !X'
where O(.X) is the Heaviside unit step function.

At ’\! > 1 the main contribution to (44) occurs at small distances r, . Here the

following asymptotic form. derived from (1), is valid.
p(rn)zDrnD_1 . (45)

which is universal for diluted fractals. Substitution of (43) into (44) vields the following

expression for the far-wing absorption contour:

2

xD -
5 {_\-! (1+D/3) 6(‘\—)+,20/3_1(_)(__\—x

Imy =

(46)

As one can see, this is a scaling form but. in contrast to the collective region. the exponent
is greater than unity, and the spectrum is asymmetric with respect to the sign of .X' (cf.

(40) and the discussion of it). One can show by adding a third monomer to a pair of
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nearest neighbors that the form of the absorption wing is given correctly by the binary
approximation (46) in the leading term in |.X'| (the reiative magnitude ot corrections i1s on

the order of !.\'l_z 7.

For the case r, ~ 1. the distribution p(r, ) cannot be found in a universal form
since it is determined not only by (1) but also by higher correlation functions. To derive
a rough estimate, let us neglect higher correlations. Then the number of monomers in a

fixed vicinity of a given monomer obeys the Poisson distribution and. consequently,
-1 D>
pirn) = Dry~texp(=ry) (47)

Substitution of (47) into (43) results in the expression
1 [ 1 1

V=3 Lfsn(—z) - 550(52) - (48)
where the function Sp of the complex variable Z is defined by means of the integral
representation

Sp(Z) = _Q/y—(uu/s)exp(_y—o/a)_d._y (49)
3 Z -y

0
and its analytic continuation. The function Sp(Z) is analytic in the complex plane with

the branch cut from 0 to B along the real axis: Z = 0 is a second-order branch point. The

polarizability (48) satisfies all the exact relations obtained above.

The form of the expression 148) coincides with that previously derived [8.9], al-
though the function Sp(Z) is different. The difference is due to an incorrect averaging in
(8.9} over configurations of a monomer pair in a fractal (see the text between Eqgs. (14)
and (13) in Ref. [9}). We emphasize that all the results of Refs. [3-11] remain valid. except

that now the form (49) of the Sp-function should be used.

It can easily be shown that in the binary approximation the eigenstate density is

symmetric in .X and has the form

>0

1 el
v(X) = 5/{2&(‘“ —r?) + o
0
The relation (40) between Imy(.X) and v(.X) in the binary region ¢oes not hold unless the

- Qr;B)]p(rn)drn ) (50)

Pi

X

polarizability (43) is symmetrized in X. Hence, the contribution from the binary region

does not interfere with the normalization of the relation (40) in the collective region.




5. Resuits of numerical simulation

Three types of fractals were studied as obtained by the Monte-Carlo method with

rhe use of a program generator of random numbers:

(i) Random walks (D = ?2) were built on a cubic lattice with monomers placed
at visited sites and subjected to 1000-fold (J = 0.001) dilution (random decimation - see
Sec. 4). The fractais obtained after the dilution contained a mean number of monomers

of (V) = 30 (for the control. (V) = 13).

(i) Self-avoiding random walks [18] were generated with fixed length and random
<tep direction using a trial-and-error method. \Monomers were placed at nodes and taken
ro be hard spheres of diameter equal to the step. If any step brought about an intersection
of spheres. then such a step was rejected and repeated. A 20-fold dilution (.3 = 0.03) was
performed. The clusters thus obtained contain a mean number of monomer of (N) = 25.
Their fractal dimension D = 1.8 found with the use of Eq. (1) agreed reasonably with the
published value of D = 1.7 (18].

(iii) The Witten-Sander clusters [19] were built by the simulation of a diffusion-
controlled aggregation of monomers on a cubic lattice and were 20-fold diluted (3 = 0.03)
ro obtain (.V) = 23. The fractal dimension was found as D = 2.5. in close agreement with

the known value of D = 2.51 [19].

As the control. a gas of monomers (D = 3) was also used. The dilution for cases
1ii) and (iii) above was not very high. nor was the number of monomers in the clusters
studied very large due to limitations of existing computing facilities. However. as will be
shown below. even for such fractals the polarizability per a monomer \ does not depend

significantly on the number of monomers.

The polarizability was computed from (12) by diagonalization of the matrix (4)
using the Jacobi method [20]. The principal advantage of this approach is that the relations
(13). (14) and (18) are met exactly. Its merits as a computation method are due to the
fact that upon performing the diagonalization once. one finds the solution for any .X' and
& by simple summation. For the sake of control we also used a direct solution of the

original system by the Gauss and square-root methods. For all cases the three indicated




methods agreed pertectly. The caiculated individual polarizabilities were averaged over a
large ensemble or fractals (75 clusters for *\) = 30 and .V} = 23. or 130 for (V) = 13).

The statistical error achieved was less than one percent of the maximum magnitude.

The major portion of our results will be demonstrated for the random-walk fractals.
since in this case the theoretical values of the parameters are exactly known: D = 2
and Ry = R((63)"1/%. where R, is the lattice period. Besides. such fractals can easily
be generated and diluted. and thus not limited by computer capabilities. Therefore. a
high degree of dilution 1.3 = 0.001) can be achieved. Other tvpes of fractals will also be

considered. but only to examine dependences on D for the cases indicated explicitly.

The linear polarizabilitv \ as a function of X is shown in Fig. 1 for different values
of the parameter ¢. One can see that the absorption contour Imy(.\') has the form of a wide
peak. with its width decreasing and height growing with increase of ) = 1/¢. In accord
with the results obtained. the dependence on ¢ for iX! > ¢ i1s weak. Thie obvious increase
of statistical noise with diminishing ¢ is in agreement with Eq. (18) (the optical theorem).
The width of the fractal absorption contour greatly exceeds that of an individual monomer
i~ o). The qualitative behavior of the polarizability for fractals of the other types studied

is close to that shown in Fig. 1.

The absorption contours caiculated for the fractals with significantly different mean
numbers of monomers are shown in Fig. 2. It can be seen that for (\) > 15 the depen-
dence of y on (V) has practically leveled off. This behavior supports the idea of using a

characteristic such as the polarizability of a fractal per one monomer.

The fundamental prediction of the theory is the universal scaling behavior of the
absorption (30) and the eigenstate density (40) in the collective region (33). This prediction
is tested in Fig. 3. From this figure it follows that the absorption and density of states. in

fact. obey Eq. (40) with good accuracy expected from an estimate obtained with the aid

of Eq. (18).

The values of the optical spectral dimension found from Fig. 3 and similar data
for the other tyvpes of fractals together with corresponding statistical uncertainties and

values of D are shown in Table 1. It follows from this table that for fractals of a given
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tvpe. the indices of Im\1.\') and 1\ differ by less than two standard deviations. which
's statistically insignificant. For ail the cases. the magnitudes of «, deviate significantly
‘on the level of five to twenty standard deviations) from the limiting values of d, = 1 and
and d, = 0. The fact that d, = 1 is evident directly from Figs. 1 and 2: if d, = 1 then
rhe central portion of the absorption contour would be nct a peak but constant. whicn
is cleariv not the case. We note the absence of a significant correlation between d, and
D. For the trivial (D = 3) fractal studied. no pronounced scaling behavior is observed. in

corresnpondence with the theory (see. in particular. the collectivity criterion (33)).

It is shown above that for diluted fractals. the wings of the absorption contour

X = 1 should correctly iin the icading order in X'i) be reproduced by the binary
approximation. Regular computation of \(.Y'j in the framework of this approximation was
arried out according to the following procedure. For each monomer the ciosest neighbor
was found. the quantity \ -2’ (X'} 142} was calculated. then averaging over all the monomers
of the given cluster and the ensemble of clusters was carried out. The absorption found
*his way is compared in Fig. 4 with the result computed by the Monte Carlo method
nsing the accurate formula 112) (¢ = 0.33) One can see that the agreement is. indeed. very
good for +.X'{ > 2. Even at the center of the contour the differences are not large. which is
Jdue to the fact that ¢ is not very large. In fact. the maximal radius of coherence for the
“bove indicated dimensions. which can Le estimated from (33) by substituting [.X] = o.
s Ly x~ 2. and this does not strongly exceed Ry = 1. Thus. in this case the universal
<caling behavior is not developed. even at the center of the contour. as a consequence of

the vioiation of the condition : 36).

In Fig. 4 the result is also presented ( dashed curve) for a calculation of the estimate
brovided by the analvtic formula (48). Its agreement with the result obtained from (12) in
the wings of contour is reasonably good. although at the center it is worse than the regular

hinary approximation (dotted curve).

Similar data for & = 0.03 are shown in Fig. 5. Companng this with Fig. 4.
we conclude that the agreement between the three shown curves at the wings (}.\'l > 2)
remains good. However. the central peak can no longer be described by any version of the

binary approximation. This .eak is svmmetric. whereas the binary approximation yields
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an asymmetric contour. and given that it is scalable (cf. Fig. 3). it i1s certainly collective.

Lastly. let us describe one of the most important properties of fractals. namely
rhe existence of high local fields which can significantly exceed the external field. Such
fuctuations bring about giant enhancement of the Raman and nonlinear parametric scat-
tering of light from fractals. which has earlier been predicted based on the use of the binary

approximation [3-111.

From the optical theorem 120) and Eqs. (40) and (46). for the enhancement fac-
‘or of the local field acting upon a monomer. one can derive the estimates. which are
asymptotically exact in the sense of the dependence on i\ and ¢ in the collective region

~ Xt (51)

and for the diluted fractals in the binary region as

1-D/3 (52)

1
G~ —_iX'

0
We recall that the existencr »f a nonvanishing collective region is the property of nontrivial
fractals. From the estimates (31) and (32). it follows that for nontrivial fractals in both the

collective and binary regions. the fluctuations of the local field are streng: the dispersion

ot this rield 1s proportional to a large parameter. the ()-factor of an isolated mc nomer {36).

The enhancement factor G as a function of .\ for the tractals of the three types
studied 1s shown in Fig. 6. In accord with the above presented theory, the curves in their
central part. corresponding to the collective region. are svmmetric and are described by
the scaling formula (51). The factor G increases with |X|. in agreement with (51) and
t532). reaching values on the order of 10 (for 6 = 0).1) at the wings. We point out that there
eXists no prouourced correlation between G and the fractal type. in accord with the fact

rhat nearly the same values of d, are found above for different “ractals (see Table 1).

[n such a way. the present theory and numerical simulation results show that large
Huctuations of the local flelds. and hence siant enhancement of the Raman and parametric
scatter:ng, zre not a result of using the binary approximation in {§-11] but the general

property of nontrivial fractai.. whose monomers possess high-Q optical resonances.




6. Concluding discussion

[n this paper we described the optical (dipole} polarizability of fractal clusters. The
principal question investigated is how the self-similarity of a nontrivial fractal in coordinate
space is transferred to the self-similarity of its dipole excitations and optical polarizability.
Our approach to the problem of the fractal optical properties consists in using the exa“t
relations (sum rules for the polarizability obtained in Sec. 2) and consequences of the
scaling. The scaling of the optical polarizability is first introduced as an assumption. then
rhe scale-invariant theory is developed (Sec. 3). Finally, the results of the theory determine
ronditions of the scaling and confirm its validity. Namely. the scaling behavior is shown to
»xist 1n the center of the absorption contour of the fractal. The wings of this contour are
described in the binary anproximation (Sec. 4). The numerical simulation results (Sec. 3)
confirm the analytical theory. The new index. optical spectral dimension. governing the
scaling of optical absorption and. also. the dispersion law and the density of eigenstates of

the dipole excitations. is numerically determined for three tvpes of the fractals studied.

Let us discuss the principal points of the present theory and main results obtained
in some more detail. starting with the basic system of equation (3). The interaction
between constituents of the fractal (called monomers) is described by the dipole-dipole
interaction (see (3,i. In the scaling region. where the polarizabilities are determined by the
interacticn on distances much greater than the monomer size. the dipole-dipole interaction

is universal and asvmptotically exact.

Instead of frequency .. we have introduced the new variable X' (7). in terms
of which the problem of the optical responses is expressed in the universal way. The
analytical properties and sum rules for the polarizability as a function of .X' differ from
those with & as the variable. To develop the theory. we introduce the decomposition (see
Eq. (12)) of the polarizability in the terms of the exact eigenvectors and eigenvalues of
the interaction operator. Using the analytical behavior of the polarizability given by this
decomposition. tensor properties of the interaction and positiveness of absorption (absence

of the population inversion). the exact sum rules (14),(18) and (23) are established.

At this point. the assumption about existence of the scaling behavior (see Egs.
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:29) and (30)) is invoked. Using the above indicated sum rules and the requirement of
the scale invariance. the forms of the fractal absorption 130) and density of the eigenstates
140) are established. It is rigorously shown that both these quantities scale with the same
index. which i1s denoted as d, — 1. where d, is called the optical spectral dimension. The
index d, is similar. though 1t differs in magnitude from the fracton spectral dimension (7
introduced by Alexander and Orbach [16] (cf.: both these indices determine the density of

eigenstates in the same manner. but d, € (0. 1]. while normally de [1.3]).

To make the theory closed. using the found scaling properties (32) of X. we derive
rhe dispersion law for the fractal dipole excitations (34). For this derivation. we have
formally invoked Alexander’s strong localization hypothesis that there exists a single co-
hierence radius of the collective excitation. However. the validity of this hypothesis for the
present problem follows directly from the assumption of scaling: only one quantity with the
dimension of length. which obeys the required scaling properties. can be constructed from
all parameters of the problem. With the aid of the dispersion law obtained. the condition
of the scaling for the fractal absorption is found (Egs. (35) and (36)). It is shown that this
condition can be physically met for the realistic model of the monomer as a macroscopic
sphere. Thus. the existence of the scaling is established in the self-consistent manner.

More exactly. the scaling assumption is shown to be non-self-contradictive.

At the wings of the absorption contour (|.X| > 1). the fractal excitations are
primarily two-particle. and the binary approximation {8.9] is applicable. These excitations
are sensitive to small-scale details of fractal structure and. therefore. cannot be described
in a universal form. In connection with this. a model for a diluted fractal is introduced
which is characterized by an extremely simple structure at small distances. completely
defined by the pair correlation (1). and thus by the Haussdorff dimension D. Though in
the binary region there is no scaling in the general case (cf. Eq.(44)), the far wings of
absorption (see Eq. (146)) scales with the index 1 + D/3. which is completely different from
the index do — 1 in the collective region (35). We should emphasize that the behavior in
the binary region is not universal and is characteristic of the diluted fractals (for other
fractals. there may be no scaling at all). The scaling behavior in the collective region (35)

is completely universal and is the same for the diluted fractals as for the initial (before




Jdilution) ones.

To compiement the theory. we have carried out a numerical solution of the basic
equations. including averaging over an ensemble of fractals. The polarizabilities of fractals
over a wide spectral range have been computed (see Fig. 1). The central portions of the
absorption contour and the eigenstate density obey scaling with the accuracy, which is
expected from the calculation of dispersion (with the use of Egs. (18).(19) and Fig. 6),
thus confirming the theory. The values of the index d, are found for the three types of the
fractals studied (see Table 1). The indices for a given fractal found from the absorption
and eigenstate density do not deviate significantly, in accord with Eq. (40). The values
‘ound for d, differ strongly ton the level of many standard deviations) from the limiting
values d, = 0. 1. Hence. the optical spectral dimension d, proves to be a new nontrivial

index.

Lastly, fluctuations of the local fields (dipole momenta) have been computed
tFig. 6). These fluctuations proves to be large. much greater than the mean values of
the corresponding quantities. This result is in accord with our understanding of the op-
tical properties of fractals as determined by strong fluctuations. The scaling law and
magnitude of the fluctuations in the collective region are universal in the sense that they
are defined by d, and do not depend on the small-scale structure of the fractal. The large
ductuations. in accord with [8-11]. should bring about giant enhancement of the Raman
and nonlinear parametric scattering of light from fractal clusters. which will be considered

elsewnere.
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Table 1

The spectral dimensions d, and estimates of their statistical uncertainty (on the
level of one standard deviation) found from the absorption contour Imy (.Y} and eigenstate

density v(.X') for Jifferent (ractals as indicated. The vaiues ot L) are given for convenience.

Fractal type: Self-avoiding walks Random walks Witten-Sander’s clusters

d, from absorption contour: 0.43 + 0.03 0.38 = 0.03 0.49 + 0.02
d, from eigenstate density: 0.54 = 0.08 0.33 £ 0.05 0.51 = 0.06
D found: 1.8 2.0 2.3
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Fig.
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. Fractal polarizability 1 D = 2. N = 30) for different parameters.

. Fractal absorption ( D = 2) for different values of the mean number of monomers.

Fractal absorption as a function of X' ifor X' > 0) on a double logarithmic scale: 1
- found from the exact formula (12): 2 - expressed via the state density according
to (40). The corresponding lines are obtained by linear regression. The values of

the optical dimension obtained see in Table 1.

Fractal absorption at ¢ = 0.33: 1 - calculated from the exact formula (12): 2 - in
the binary approximation using (42) and numerical averaging: 3 - in the binary

approximation from the estimate formula (48).

. Same as Fig. 4 but for ¢ = 0.03.

Enhancement factor G (normalized by ¢) of the local field intensity plotted against

X for the three types of fractals studied (D = 1.8. 2.0. 2.53) with 6 = 0.1.
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