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1.0 INTRODUCTION

The ambitious operating envelopes desired for future fighter aircraft dictates an aircraft
industry requirement to test integrated propulsion system components at a ground test facility.
In response to this industry need, the Arnold Engineering Development Center (AEDC) is
developing an extensive free-jet test capability for this application (Ref. 1). One factor that
inhibits the utilization of free-jet testing capability at the AEDC is the reliance upon empirical
techniques for the design of the forebody simulator used to tailor the flow field to the desired
flight conditions. To alleviate this deficiency, the joint ASD/AEDC Aeropropulsion System
Test Facility (ASTF) free-jet development technical steering committee proposed development
of an acrodynamic design optimization capability applicable to the forebody simulator design
problem. This capability, referred to as the *“‘generation 6°° design method within the joint
ASD/AEDC ASTF free-jet development plan, was intended to combine nonlinear optimization
methods with the powerful analysis capability afforded by computational fluid dynamics
(CFD). Application of Euler or Navier-Stokes CFD analysis codes within the design
optimization is motivated by the aerodynamic complexity of typical free-jet test configurations.
The objective of this report is to document the progress that has been made to date toward
development of such an aerodynamic design optimization capability.

A schematic of the forebody simulator design optimization problem is illustrated in Fig.
1. This figure depicts a free-jet inlet-engine test configuration within a generic ground test
facility designed to evaluate the performance of an integrated propulsion system. The design
requirement is to produce a flow field across a specified inlet reference plane in the free-jet
installation that is similar, within a predefined tolerance, to that which would be encountered
in flight. One proposed way of achieving this is by appropriately designing a *“‘flow-tailoring""
forebody simulator, and/or varying free-jet flow conditions (total pressure, total temperature,
flow angle, and Mach number) to preduce the desired flow field at the inlet reference plane
(Ref. 1). The plane where fluid dynamic similarity is required will hereafter be referred to
as the inlet reference plane (IRP). The fundamental assumption of this free-jet test concept
is that adequate similitude is attained whenever the fluid dynamic state at the indicated reference
plane adequately matches that which is specified for a given operating condition.

The task of designing such a flow-tailoring geometry and the corresponding test conditions
is formidable. The test designer must specify a forebody simulator geometry and free-jet
fluid properties that produce, within design tolerance, the desired fluid dynamic state at the
region of interest. Current forebody simulator design methods rely heavily upon prior
experience to guide a trial-and-error design approach using subscale testing and CFD analyses
to evalnate the candidate designs. This process is inefficient and does not ensure an orderly
progression toward an acceptable design. Thus, the specific purpose of the research reported
herein was to develop a reliable method, based upon CFD analyses, for the specification



AEDC-TR-90-22

of an acceptable set of aerodynamic design parameters (both geometric and fluid dynamic)
for complex designs typical of those encountered in an aeredynamic test facility. The ultimate
goal of the research is to optimize the design of a complex three-dimensional (3-D)
configuration, such as illustrated in Fig. 1, in a timely and cost-effective manner. Development
of such a design optimization method very obviously requires the ability to perform an accurate
CFD analysis of the proposed design. However, the evaluation of various CFD techniques,
relative to simulation of typical free-jet testing configurations, is not reported. The CFD
evaluation effort is being conducted in parallel with the design optimization development
and is reported in AEDC-TR-90-21 by M. D, McClure and J. R. Sirbaugh (to be published).

As an optimization problem, a forebody simulator design possesses several interesting
features in that (1) the flow-field constraints are imposed at a location away from the geometric
surface that is being aptimized; (2) both fluid dynamic and geometric design variables must
be optimized; (3) discontinuous or localized high-gradient behavior may occur within the
design space (e.g., shocks or onset of scparated flow); and (4) an extensive history of prior,
similar designs does not exist. Characteristics (1) and (2) do not constitute a well-posed inverse
design problem; however, the imposition of flow-field data, in the described manner, does
properly define a direct optimization problem. Since flow-field data are prescribed at a known
reference plane, it is possible to define an objective function that measures a norm between
the reference plane flow properties associated with a particular design point (set of independent
design variable values) and the desired reference plane flow properties. Since the norm is
a function of the given design variables, the optimization task is to determine the particular
values of these variables that produce a minimum value for the objective function. This is
accomplished by optimizing the selected design parameters through the minimization of a
nonlinear least-squares objective function. Flexibility in the type of designs that can be
considered is provided through the use of modern CFD codes to produce the function
evaluations required by the optimization algorithm. The resulting direct optimization approach
is applicable in both two and three dimensions, and in principle, any CFD technique
appropriate to the flow regime of interest could be used.

Using an Euler or Navier-Stokes CFD code to compute design space gradients within an
optimization algorithm has received little prior attention in the literature. It is demonstrated
that this can be accomplished by applying the developed design technique to a variety of
aerodynamic design problems. The test problems were constructed to illustrate the applicability
of this approach to realistic designs by deliberately selecting poor initial conditions for the
optimization algorithm. The aerodynamic optimization examples presented include a
NACAQ012 airfoil, convergent/divergent nozzles, and a planar supersonic forebody simulator.
Although the method applied is applicable to either viscous or inviscid flows, only one viscous
example is presented because of the increased computational expense required for a viscous
CFD analysis.
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This report is organized so that the design optimization technique is developed and
presented in Section 2. The design technique is demonstrated by application to several
aerodynamic examples in Section 3. Comments relevant to the application of this technique,
in its present state of development, are presented in Section 4. Lastly, some conclusions relative
to design optimization using the developed technique and some recommendations for future
research are presented in Sections 5 and 6.

2.0 NUMERICAL TECHNIQUE

Using CFD to optimize aerodynamic designs is currently an active research topic in the
applied mathematics and engineering disciplines. The motivation for developing and using
these optimization methods in the design process is to reduce the overall computational effort
needed to develop acrodynamic components and configurations, which will optimize a selected
measure of aerodynamic performance. Several examples of aerodynamic design optimizations
exist in recent literature, such as the design of airfoils, turbomachinery cascades, ducts, and
nozzles. A brief literature survey was provided by the author (Ref. 2) and is not repeated
herein. However, it is noteworthy that similar direct optimization methods have previously
been coupled with method-of-characteristics flow solvers at the AEDC by Varner (Ref. 3}
and F. L. Shope (unpublished work). Additionally, a similar development project has been
proposed recently for application to the design of hypersonic nozzle contours by P. F. Hoffman
(unpublished work).

2.1 BACKGROUND

The implementation of optimized aerodynamic design generally follows one of three
approaches: (1) inverse design methods, (2) basis function optimization methods, and (3)
direct function optimization methods. Generally, true inverse design methods are more efficient
than either the basis function approach or direct optimization since the determination of
the optimal design is made as an integral part of the CFD analysis. However, since many
aerodynamic design problems cannot be cast in an inverse form, direct optimization methods
and basis function methods are often applied.

An application such as the free-jet forebody simulator illustrated in Fig. 1, is too general
for successful application of either a classic inverse method or the basis function approach.
However, almost any design problem can be cast as a direct function optimization if a tangible
measure of the design’s quality can be identified to define an objective function that is
responsive to changes in the selected design parameters. Thus, the implementation of a direct
aerodynamic optimization technique is investigated and reported herein as well as in Refs.
2, 4, and 5. It is recognized that the penalty for this generality is a potentially less efficient
optimization method for some of the simpler applications that may be of interest such as
airfoils and supersonic nozzles.



AEDC-TR-80-22

With current computer technology and CFD algorithms, many complex two-dimensional
(2-D} and some 3-D aerodynamic designs can be adequately analyzed, although the
computational cost can be very high. Applying an optimization method that uses CFD to
provide function evaluations will be computationally expensive since multiple CFD analyses
are required. Even so, for problems such as the previously described forebody simulator,
some form of design optimization is required because the cost of the available alternatives
(e.g., experimental ‘‘cut and try*’ in a wind tunnel using an inlet/forebody simulator model)
may be even more prohibitive. Additionally, investigation of a more general aerodynamic
design optimization technique will help prepare the way for future enhancements as computer
hardware, CFD algorithms, and optimization algorithms become more efficient.

Within this research, the direct optimization problem was formulated as a nonlinear least-
squares minimization using existing CFD analysis codes to provide the function evaluations
required by the optimization algorithm. Both Gauss-Newton and quasi-Newton optimization
algorithms were applied to minimize the least-squares objective function. The optimization
algorithms were coupled with the CFD analysis code as illustrated in Fig. 2 to yield the desired
interaction between the CFD analysis capability and the design optimization algoritbm. The
optimization code was kept distinct from the CFD analysis code to provide the analyst with
the flexibility to select the most appropriate CFD analysis technique for a given design problem.

Implementation of this optimization technique involved three primary problems, (1) method
of function evaluation, (2) selection of the abjective function and implementation of the
optimization algorithm, and (3) specification of the design parameters. Each of these items

. is discussed in the remainder of this section.

2.2 OBJECTIVE FUNCTION EVALUATION

In selecting the type of CFD analysis to use in evaluating the objective function, the
anticipated flow regime to be encountered computationally was identified (Ref. 1). A typical
free-jet test envelope can range from low subsonic flow to moderately high supersonic flows,
potentially with the free-jet nozzle inclined at high angles of attack relative to the test article.
The appropriate aerodynamic analysis for the motivating problem requires a complex, 3-D,
flow-field computation, necessitating the application of an Euler code or a Navier-Stokes
code to produce an accurate simulation. However, during a preliminary design phase, less
accurate but more efficient CFD techniques may be used. By formulating the optimization
problem as a nonlinear least-squares minimization, the particular flow-field analysis technique
applied is irrelevant to the construction of the optimization algorithm as long as consistent
and repeatable function evaluations are obtained. The flow-field simulation must be consistent
and repeatable in the sense that small perturbations to design parameters are accurately
reflected in the flow-field solution. This is important because the implemented optimization

10
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algorithm uses these function evaluations to compute design space gradients. If these gradients
are inaccurate, then obviously the algorithm would not converge to the correct solution.

Although the direct optimization design method can be coupled with any CFD technique
appropriate to the problem of interest, the complexity of the forebody simulator design
problem makes it necessary to demonstrate that the direct optimization technique can be
coupled with an Euler or Navier-Stokes solver. Thus, within this report all of the CFD analyses
were made using PARC, a general purpose, finite difference Euler/Navier-Stokes CFD code
(Ref. 6). The version of this CFD code applicable to axisymmetric and 2-D configurations
is referred to as PARC2D. The analogous 3-D CFD code is referred to as PARC3D. The
PARC codes have been applied at the AEDC and elsewhere to analyze a variety of complex
internal and external fluid mechanics problems (Refs. 7 through 10). This particular CFD
code was selected because of its robustness, ease of use, and reliability. It produces consistent
and repeatable flow simulations in the sense that small perturbations to design parameters
are accurately reflected in the flow solution. All of the 2-D computational grids used were
generated by the application of the INGRID code developed by Soni (Ref. 11).

The purpose of this research was not to demonstrate how well the PARC Euler/Navier-
Stokes code can simulate a particular acrodynamic phenomenon or to improve the CFD
analysis capability per se, but to demonstrate that an Euler/Navier-Stokes code can be coupled
with efficient optimization methods to produce a potentially viable technique for optimizing
aerodynamic designs that may be too complex to design by other available means. In the
acrodynamic examples presented, no effort was made to obtain the most accurate CFD
simulation for the given configuration. Whenever possible, 2 minimum number of grid points
were applied to reduce computation time. No studies were made, for example, to assess effects
of grid distribution on the CFD simulation. However, it was necessary to monitor the level
of convergence, particularly at the reference plane, of each simulation used. It was necessary
to reduce the temporal variation of flow variables at the reference plane, and this was
accomplished by iterating on the flow field until the norm of the conservation variables at
the reference plane was relatively stationary, typically to eight significant figures. To compute
accurate design space gradients at the reference plane, the dominant change in the residual
must be attributable to the change in the design parameters, and not transient effects.
Demonstrating that CFD can be used, as described, within an optimization algorithm for
aerodynamically complex configurations will extend current capabilities in acrodynamic design
optimization.

2.3 OPTIMIZATION ALGORITHM
In the motivating design problem, the desired fluid dynamic state is completely known

at the reference plane, either from experiment or free-stream CFD computation. The design

11
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requirement is to minimize the error norm between these quantities and corresponding values
computed for a particular design point. The norm was selected to be an L, norm of the
difference between the target flow-field variables and the values computed for a given design
point. The nonlinear least-squares form was selected because (1) the method is very versatile;
(2) extensive literature is available on general nonlinear least-squares minimization; and (3)
efficient Gauss-Newton and quasi-Newton methods are well documented for the nonlinear
least-squares problem.

The nonlinear least-squares minimization was formulated as follows: Let the residuals
5P oPy i=1,2,...,N, be functions of M design parameters,

ri(PhPZP'-nPM.) =¥ - fi(PlsPh---!PM) (l)

where r; denotes the difference between the N specified reference plane quantities, y;, and
the corresponding N quantities associated with the M parameters, f;. The design parameters
may be geometric, fluid dynamic, or both. To minimize r;, in the least-squares sense, values
for the parameters, P;, are found that minimize
N
F(PIDPZI-"PM) = ; El {ri(P],Pz,...,PM)}; {2)
where F is the objective function. This sum can be written in vector form as R(P)"R(P),

where P denotes a vector with components P; and R(P) denotes a vector of functions with
components r;(P).

Three alternative sets of fluid dynamic variables were considered to specify the reference
plane state including, (1) the Navier-Stokes dependent variables in conservation form, (2)
the Navier-Stokes dependent variables in nonconservation form, and (3) RP total conditions
and directional Mach number. Preliminary studies conducted in this research using a simple
airfoil optimization problem detected no significant difference in results caused by the choice
of dependent variables.

Except when otherwise noted, the set of variables used herein to define the reference plane
(RP) fluid state are (_1) RP total pressure, P'r,p, (2) RP total temperature, TTm, and (3) RP
directional Mach number, M"rp’ M!rrp= and M,m. In two dimensions, one less Mach number
component is required. Variable constraints, when applied, are imposed by adding a barrier
function, such as the inverse function (Ref. 12) to the objective function. Thus, the expression

RTR becomes
Ny
RR = T {(Pr, — PD} + (T, — Trk + My, — My}

€))
+ Oy, — M+ My, — M)
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where N; i5 the number of reference plane points. Since each term in Eq. (3) contains five
residual fluid dynamic components; in order to put this in the form of Eq. (2), N = 5N,
must bold, In Eq. (3) the subscript rp denotes the specified reference plane values, and
unsubscripted values denote reference plane values computed for a particular trial design
(set of design parameters). Quantities in Eq. (3) are normalized by appropriate reference
quantities to produce target reference plane values of order one.

A popular and efficient algorithm for minimizing the nonlinear least-squares form, Eq.
(1), is the Gauss-Newton method (Ref. 12) or one of its variants such as Hartley’s modified
Gauss-Newton method (Ref. 13). An advantage of these algorithms as applied to the least-
squares form is the elimination of the need for the Hessian matrix in the algorithm formulation.
Formation of the Hessian matrix requires specification and evaluation of N x M x (M
+ 1)/2 second derivative terms. For the motivating application, computation of the Hessian
matrix is prohibitively expensive because these derivatives must be approximated by finite
differences. Derivation of the Gauss-Newton method, applied to the least-squares problem,
is available from several sources (Refs. 12 and 13) but is repeated in Appendix A.

Applying the Gauss-Newton method to minimize Eq. (1) yields an optimization algorithm
of the form

JTIAP = -T'R @

where J denotes the Jacobian of R with respect to P defined by

/ ar| 61'.
0P, T Py

) [ . (%)
a!'N aI.'N
\BP1 " T3Py

Equation (4) defines an M-by-M system of equations that was used to compute the change,
AP, in the design parameter solution vector, P. To apply this algorithm, J was evaluated
by finite difference approximation to obtain the partial derivative of each residual component
with respect to each design parameter. This requires M + 1 function evaluations to compute
the M partials for each residual. Since a CFD solution was used to obtain each function
evaluation, approximation of this Jacobian was by far the most expensive part of the algorithm.

An extension of this algorithm is Broyden's quasi-Newton method (Refs. 12 and 14).
Broyden’s extension modifies the standard Gauss-Newton method by approximating the

13
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Jacobian, J, at the k + 1 iteration strictly from the Jacobian and other data available at
iteration k rather than recomputing J directly. Since, in quasi-Newton algorithms, a finite
difference approximation to J is made only for the initial iteration, the accuracy of this
approximation is even more important than for the Gauss-Newton technique. If the quasi-
Newton algorithm is to converge to the optimal solution, an accurate initial approximation
to J must be made. Applying Broyden’s quasi-Newton method yields an optimization algorithm
identical in form with the Gauss-Newton method, Eq. (4), and is given by

BT BAP = —BTR ©6)

’

where the Jacobian approximation, By at iteration k, is updated for iteration k + 1 according
to

(ARy — By APy) APx

By+1 = By + =
(APy APy)

)

where By is obtained by a finite difference approximation to the Jacobian. This modification
to the Gauss-Newton algorithm is based upon the Jacobian approximation developed by
Broyden (Ref. 14), the derivation of which is repeated in Appendix B. One of the key
assumptions used to derive Eq. (7) is that the residual change in directions orthogonal to
the direction AP, predicted by B, . is identical to that predicted by B,. The imposition of
the quasi-Newton condition, which constrains By, ; to hold exact derivative information in
the direction of AP, for linear R, provides the other conditions necessary to uniquely
determine By, ,. Application of the Gauss-Newton algorithm requires M+ 1 function
evaluations for each iteration since the Jacobian is approximated by finite differences, whereas
Broyden’s extension requires M + 1 function evaluations for the first iteration but only one
evaluation for subsequent iterations. Thus, if the quasi-Newton method can be applied, after
the first iteration, M function evaluations are eliminated at each iteration. For typical
aerodynamic optimization problems, the function evaluation is the dominant part of the cost,
and a significant savings is realized whenever the quasi-Newton algerithm can be applied.

It is well known that the Gauss-Newton method, using analytical derivatives, determines
a search direction that guarantees a reduction in the objective function for some step size
in that search direction (Ref. 13). Thus, a linear search technique is often employed once
the search direction is determined by either the Gauss-Newton or quasi-Newton algorithm.
The greatest benefit is derived from the linear search whenever the full correction computed
by the optimization algorithm fails to produce a reduction in the objective function value.
Because of the expense of function evaluations, a comparatively simple method, following
Hartley (Ref. 13), was applied herein. When applying Hartley’s technique, one function
evaluation, in addition to the evaluation at the predicted optimum, was made in the determined
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search direction. The base design point and the two new design points along the search direction
were then used to define a quadratic interpolation function that was analytically solved to
yield the optimal design parameters within the search interval.

The linear search adds at least one additional function evaluation per iteration. Because
of the expense of function evaluations, the linear search was employed only when a full
optimization step failed to produce a reduction in the objective function. The linear search
strategy is described more fully in Appendix C,

2.4 DESIGN PARAMETERS

For the problem of interest, pertinent design variables are the free-jet fluid dynamic
parameters and the variable forebody simulator geometry. The free-jet fluid dynamic
parameters are specified as jet total pressure, jet total temperature, and jet Mach number.
To produce an efficient optimization method, the forebody simulator geemetry was described
parametrically to reduce the total number of design variables. For two-dimensional
applications, a parametric polynomial representation of 2-D curves as given by the Bernstein-

. Bezier polynomial (Ref. 15} was applied as follows:
n!

x(u) = £ —————ui(l —wrPx;0=su=xl ®
i=o (o — il

where X g, X |, X3, ... , X, denote the position vectors of the n+1 geometric control points.
In this form, the defined curve passes identically through the control points defined by vectors
Xo and X, but not through the remaining control points. This allows a high degree of
variability for a given number of design parameters relative to other parametric representations
with the penalty of making the influence of each parameter upon the total curve somewhat
obscure. Application of the Bezier polynomials prevents the large oscillations encounteréd
when using interpolating polynomials because of the ‘‘convex hull’’ property of Bezier
polynomials. This property ensures that the Bezier polynomial lies within the polygon formed
by connecling the vertices of each of the Bezier control vectors.

For 3-D applications, an extension of Eq. (8) defining Bezier surfaces (Ref. 15) was applied.
The Bezier surfaces and interior were defined as follows:

q T

= Ly ;Bo (Eo H el )8k W) Xk ®

E
g
=
g

|
M=

Here x yjx denotes the position vectors of the control points, gP(u), g(v), and gj (w) are
Bernstein basis functions of degree p,q, and r, respectively, and u,v, and w are parameters
that range from 0 to 1. The Bernstein basis functions, gP(u), are defined by
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gr () = (p_p—'lilui (1 — ue-2;i =0,1,2,...p (10)

i)
with the other basis functions analogously defined.

The set of design variables are of diverse type, including both geometric parameters and
fluid dynamic parameters. Thus, each variable was nondimensionalized by an appropriate
reference quantity. The nondimensionalization was chosen to make each design variable
nominally of order one.

3.0 NUMERICAL EXAMPLES

The aerodynamic design optimization technique was evaluated by optimizing a series of
numerical examples including, (1) algebraic test functions, (2} a NACA0Q12 airfoil in inviscid
flow, (3) a NACAO0012 airfoil in viscous flow, (4) a planar inviscid flow in a
convergent/divergent nozzle, (5) a 3-D inviscid flow in a nozzle, and (6) an inviscid supersonic
flow past a planar, forebody simulator. In each of these examples, the optimization problem
was formulated so that a global minimum exists within the solution space. The evaluation
criterion was to quantify the number of function evaluations required to determine the
optimum,

The primary goal of this research was to demonstrate the feasibility of coupling CFD
analyses capability with nonlinear optimization methods to produce an aerodynamic design
technique. However, if the developed design method is to be successfully applied, it must
also be efficient. For the subject application, efficiency can be equated with minimizing the
total number of function evaluations required to isolate the oplimum since this is where the
preponderance of the computational cost is incurred. In fact, typical computer times required
to evaluate the objective function, using an Euler or Navier-Stokes solver on a supercomputer,
may range from several computer minutes for a simple 2-D design to many computer hours
for a complex 3-D design with large amounts of computer memory required. The optimization
algorithm applied, which used the function evaluations, typically executed in 5 to 10 sec on
a CRAY® XMP supercomputer. The number of function evaluations was minimized by
selecting an efficient optimization algorithm and applying an effective geometric
parameterization to reduce the number of design variables.

Madabhushi, Levy, and Pincus (Ref. 16) developed a coupled direct optimization/CFD
design method in which an objective function, defined as the average duct total pressure
loss, was minimized as a general nonlinear function. The function minimizations were made
by applying the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm.
The selection of this quasi-Newton algorithm was based, in part, upon a comparison of the
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relative performance of the BFGS algorithm, a conjugate gradient algorithm, and a gradient
algorithm as applied to the minimization of ten algebraic test functions. The relative
performance of the algorithms was measured by comparing the total number of function
evaluations required for each method to converge to the global minimum. A disadvantage
of the BFGS algorithm, relative to forebody simulator optimization, is the necessity to compute
the design space Hessian matrix (matrix of second partial derivatives). Since these derivatives
are not available analytically, computation of the Hessian represents both an expensive
computation and a potentially unreliable computation because of potential inaccuracy in the
objective function evaluation.

Several analytic test functions were used by the author (Ref. 2) to compare the relative
efficiency of the Gauss-Newton algorithm and Broyden’s quasi-Newton algorithm, as applied
to the nonlinear least-squares minimization prablem, with the results of Madabhushi et al.
The goal of this comparison was to demonstrate that the optimization technique applied is
reasonably efficient relative to other available optimization algorithms. If the comparisons
are favorable, then the ease of application and versatility afforded by the nonlinear least-
squares formulation makes this an attractive technique for application to aerodynamic design
optimization. Reiterating a further advantage of the least-squares form applied herein is the
elimination of the computation of the design space Hessian matrix. Generally, the results
of the comparisons were favorable with the advantage of utilization of a less complex
optimization algorithm. Specific details are given in Ref. 2.

3.1 INVISCID FLOW ABOUT A PLANAR AIRFOIL

Optimization of a planar airfoil in inviscid flow by specifying ‘‘reference plane” (RP)
values at a station downstream of a NACAO0012 airfoil (Fig. 3) provides an illustration of
the design optimization technique. The RP was located at a vertical plane beginning at the
airfoil trailing edge and extending five chord lengths into the computational domain. The
NACAQ0012 airfoil is a well-known airfoil contour that has been extensively analyzed and
is defined by

y(x) = 5t(0.2969x1/2 — 0.126x — 0.3516x2 + 0.2843x — 0.1015x%) 1)

where the parameter, t, specifies the airfoil thickness. For the NACAO0012 airfoil, the thickness
parameter is specified as 0.12 for a chord length of 1.0089. This airfoil contour provided
a convenient definition of a one-parameter design optimization problem for which the CFD
analysis was very simple. The purpose of this example was to provide an aerodynamically
simple design problem to demonstrate that it is possible to optimize an aerodynamic surface
by specifying the fluid dynamic state at an RP remote to that surface.
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The PARC2D CFD code was used to define the target RP properties by computing the
inviscid flow field about this airfoil, subject to the boundary conditions indicated in Fig.
3. Nine thousand grid points were used to resolve the domain. Free-stream properties were
held constant at a Mach number of 0.8 a distance of five to ten chord lengths away from
the airfoil surface, Static pressure corresponding to the specified free-stream Mach number
was specified at the indicated computational exit plane. The RP was located at the airfoil
trailing edge and extended to the boundary of the computational domain. The influence of
the body was shown to be minimal at approximately two chord lengths into the domain.
The RP properties used to form the nonlinear least-squares objective function, as defined
by Eq. (2), were minimized by application of Broyden's algorithm.

No effort was made to obtain a highly accurate CFD simulation. However, each simulation
was scrutinized to assure that the solution, particularly at the RP, was strongly converged.
In this example, each PARC2D solution was converged until the norm of the RP conservation
variables was constant to eight significant figures. For this simple problem, the CFD results
were consistent with those obtained by Jameson and Mavriplis {(Ref. 17), among others, as
evidenced by the pressure coefficient distribution along the airfoil surface (Fig. 4).

To initialize the optimization, the airfoil thickness was arbitrarily perturbed to 1/12 of
its original value as an initial guess. This produced a very flat airfoil, which was obviously
distinct from the target profile and thus produced a significant perturbation at the RP. In
fact, as seen from the surface pressure profile (Fig. 4), the target airfoil is mildly transonic
with a2 weak shock appearing at approximately midchord on the airfoil surface. Conversely,
the almost flat profile used for an initial guess produced very little distortion of the free-
stream with the flow field remaining subsonic throughout the domain.

The optimal design parameter was derived by applying Broyden’s quasi-Newton algorithm.
For the first iteration, the Jacobian, J, was approximated by a one-sided finite difference
of each of the N residuals. This difference approximation is illustrated in the following example
for the partial derivative of the it* residual with respect to the design parameter, t,

ar; _ r{t+At) — 1i(t)

ot At (12)

Since a quasi-Newton algorithm was applied, a good approximation to the design space
Jacobian was required at the first iteration. This Jacobian was not recomputed at subsequent
iterations but was updated approximately according to Eq. (7).

To give an indication of the accuracy of this Jacobian, and to illustrate that stable
computation of derivatives was possible for this problem, an investigation of derivative
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accuracy versus the size of At used in Eq. (12) was performed. Figure 5 shows the variation
of the normalized objective function derivative with respect to the design parameter versus
the log of the parameter step size for first-order forward differences as given by Eq. (12).
This gradient of the objective function was used to provide a crude assessment of the partial
derivatives of the residual components that were used in the optimization algorithm. Although
this does not provide detailed information about variation of individual residual derivatives,
it does provide a means of measuring global variation at the RP. As can be seen, this derivative
was sensitive to step size, but approached a constant value for step sizes less than 0.001.
In fact, the actual data indicated that the derivative was constant within 0.5 of 1 percent
for step sizes less than 0.001. Based upon this analysis, a step size of 0.001 was selected for
the design parameter.

Figure 6 compares the target geometric profile with the initial guess profile, the first iteration
profile, and the optimal profile as determined by Brovden’s algorithm. The correct geometry
was obtained in four iterations, which required five function evaluations (CFD solutions).
Figure 7 shows typical variation of flow variables at the RP as evidenced by Mach number
profiles. Figures 8 and 9 show the reduction of the objective function and the convergence
history of the design parameter, t, versus iteration number, respectively. As evidenced by
these figures, the Broyden’s algorithm isolated the global minimum quite efficiently. The
‘data from which Fig. 9 was produced indicates that the optimum was located within 1 percent
in 2 iterations and was isolated within 0.1 of 1 percent in 4 iterations.

Airfoi] optimization has been performed by several other researchers by prescribing a
pressure distribution along the airfoil surface and solving a true inverse problem. As an
interesting example of the versatility of the nonlinear least-squares approach, the previously
described design problem was also solved by forming the least-squares objective function
from the difference between the airfoil surface pressures for a given design point and a specified
pressure distribution. The target pressure distribution was obtained as before by applying
PARC2D to compute the inviscid flow field about this airfoil, subject to the previously
described boundary conditions (Fig. 3). The airfoil surface pressure distribution was then
used to form & nonlinear least-squares objective function, defined by

R™R = _E, (P — P (13

where P, denotes the desired airfoil surface pressure at one of the N RP locations, and P
denotes the airfoil surface pressure for a given design point. Optimization of the airfoil in
this manner produced results very similar to those obtained by defining a trailing edge reference
plane. This is illustrated in Fig. 10 by the reduction in the objective function and in Fig.
11 by the convergence of the design parameter, t. For this formulation the optimum was
located within 2 percent in 4 iterations and was isolated within 0.3 of 1 percent in 6 iterations.
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3.2 VISCOUS FLOW ABOUT A PLANAR AIRFOIL

Formulating the aerodynamic design problem as a nonlinear least-squares minimization
allows flexibility in selecting the type of CFD simulation as well as allowing application to
complex designs. For example, inclusion of viscous effects does not necessitate any changes
to the applied optimization algorithm. The difference in the overall optimization process
occurs only in the CFD analysis step. In other words, a more elaborate CFD simulation
provides the various function evaluations, but the optimization algorithm does not recognize
that the origin of the function evaluation assumed a more complex physics model.

As a simple demonstration of a design problem in which viscous effects were included,
the previoucly described NACAQ012 airfoil was analyzed with function evaluations supplied
by viscous, Navier-Stokes simulations. As for the inviscid flow over the airfoil, PARC2D
was used to define the target RP properties by computing viscous flow about a NACAQ0012
airfoil, subject to the indicated boundary conditions (Fig. 12). The imposed boundary
conditions were identical to those used for the inviscid airfoil example, except the airfoil
surface was modeled as a no-slip, adiabatic wall rather than an inviscid, slip-wall boundary.
A free-stream Reynclds number of 106, based upon chord length, was specified, which
produced an attached laminar boundary layer (Fig. 13) when analyzed with PARC2D. In
this example, the RP was extended three chord lengths into the domain from the airfoil trailing
edge. The design parameter (airfoil thickness) was perturbed to 1/12 its original value as
an initial guess to begin the optimization. Broyden’s quasi-Newton algorithm was then applied
to derive the optimal value of the parameter. Because of the similarity to the inviscid problem,
no sensitivity study of the design variable was performed.

Figure 14 compares the target geometric profile with the initial guess profile, the first
iteration profile, and the optimal profile as determined by Broyden’s algorithm. The correct
geometry was obtained in three iterations, which required five function evaluations (CFD
solutions). Figures 15 and 16 show the reduction of the objective function and the convergence
history of the design parameter, t, to the known optimum, Again, Broyden’s algorithm isolated
the global minimum very efficiently. The data from which Fig. 16 was produced indicates
that the optimum was located within 1 percent in 2 iterations and was isolated within 0.1
of 1 percent in 3 iterations.

This viscous example was modified by choosing an initial guess for the design parameter
that was double the correct value, producing a much thicker initial airfoil contour. This posed
a more difficult optimization problem because the computed flow field about the initial guess
airfoil was separated (Fig. 17), whereas the computed flow field about the target airfoil was
attached for the prescribed boundary conditions (Fig. 13). The absence or presence of separated
flow within the design space provided an abrupt change in the flow field for candidate designs
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in very nearly a discontinuous fashion. To assess whether the optimization technique is robust
enough to optimize designs for which flow separation may occur, this airfoil was analyzed -
with the RP deliberately placed within the region of separated flow. The RP was located
at the trailing edge and extended from the airfoil surface to the edge of the computational
domain, As with prior examples, PARC2D was used to provide function evaluations at the RP.

Convergence for this example was similar to earlier results, although somewhat slower,
with the optimum design variable located within 1 percent in 5 iterations and to within 0.1
of 1 percent in 6 iterations requiring 7 function evaluations. Figure 18 illustrates the convergence
to the target geometry by comparing the target geometric profile with the initial guess profile,
the first iteration profile, and the optimal profile as determined by Broyden’s algorithm.
Figures 19 and 20 {llustrate the reduction of the objective function and the convergence of
the design parameter, t, to the known optimum, respectively. The prominent slope change
in Fig. 19 coincides with the first candidate design for which minimal separated flow was
present.

3.3 INVISCID PLANAR CONVERGENT/DIVERGENT NOZZLE FLOW

Optimization of multiple acrodynamic design parameters was illustrated by analyzing
inviscid, planar, supersonic flow in a nozzle (Fig. 21). The design variables for this problem
were inflow total pressure, inflow total temperature, and the nozzle wall contour defined
as a three-parameter Bezier curve. The vectors used to define the Bezier curve were located
axially at the inlet plane, the midpoint, and the exit plane as indicated in Fig. 21. The exit
plane control vector was held constant during the optimization. The y coordinate of the other
two vectors were allowed to vary as design parameters during the optimization (Fig. 21).
In addition to these two geometric parameters, the nozzle inlet total temperature and the
nozzle inlet total pressure were allowed to vary, yielding a total of four design parameters.
Each parameter was nondimensionalized by an appropriate reference quantity. The Bezier
parameters were normalized by the target nozzle inlet height, total pressure by the target
total pressure, and total temperature by the target total temperature.

The simultaneous variation of inlet total conditions and nozzle wall contour is not
necessarily representative of a typical nozzle design problem, but this example was constructed
because simultaneous variation of free-jet total conditions and a variable geometry occurs
with the supersonic forebody simulator design problem that motivated the present research,
The target solution was defined by selecting the Bezier parameters to produce a nominal 2:1
area ratio nozzle and applying PARC2D to solve the Euler equations using 1,600 grid points
to resolve the domain. To form an initial guess, the inflow height and the nozzle throat height
were reduced so that the initial nozzle area ratio was approximately doubled and the nozzle
throat was shifted forward. The initial guess inflow total temperature and total pressure values
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were doubled. The disparity between the target design and the initial guess is illustrated by
comparing the centerline Mach number profiles for the target design and for the initial guess
(Fig. 22). As can be seen, the exit target Mach number was nominally 50 percent below the
initial guess with a corresponding variation within the rest of the nozzle. Again, no special
effort was made to produce a highly accurate simulation, although results agree well with
one-dimensional theory (Fig. 23).

Broyden’s quasi-Newton algorithm was again applied in this example. For the first iteration,
the Jacobian was approximated by a one-sided finite difference of each of the N residuals,
as illustrated in the following example for the partial derivative of the ith residual with respect
to the jit parameter

ar; _ 1i(P1,...Pj + APj,....PM) = Li(P1eesPyyee o, PM)

aP; AP, 14

As with the airfoil example, the partial derivative of the objective function with respect
to each of the geometric design parameters was investigated by performing a sensitivity analysis
based on comparing derivative accuracy versus the size of APj used in Eq. (14).

Figure 24 depicts the variation of the normalized objective function differences, as given
by Eq. (14), with respect to one of the Bezier design parameters, P;, versus the log of the
parameter step size. As can be seen, this derivative is sensitive to step size, but attains a nearly
constant value for step sizes between 0.0001 and 0.002. Between these limits, the partial
derivative is constant within 0.5 percent. The inaccuracy observed for large step sizes reflects
the nonlinearity of the problem and the inaccuracy introduced by neglecting higher order
terms in the difference approximation. The inaccuracy for very small step sizes results from
numerical errors in the function evaluations becoming of the same order as the true difference
in functional value. From this data a step size of 0.001 was selected for the Bezier parameters.
For an Buler simulation, the residuals vary linearly with total temperature am total pressure;
thus, these parameter step sizes are not as critical in this example. A nondimensional step
size of 0.001 was selected for the fluid dynamic parameters to be consistent with the geometric
parameters.

The optimization algorithm converged to the global minimum in four iterations, which
required nine function evaluations. Typical convergence of the reference plane properties
is illustrated in Fig. 25, which shows reference plane Mach number profiles for the target
solution, the initial guess, the first iteration, and the optimum. The reduction in the objective
function is illustrated in Fig. 26. During the optimization, inflow total conditions converged
to within 1 percent of the correct value in 1 iteration. This is because, for this example, RP
pressures and temperatures scale linearly with the specified total conditions. Thus, the residuals
vary linearly with these parameters, and rapid convergence was expected since a Gauss-Newton-
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type algorithm was applied. In fact, for an optimization problem in which the residuals are
linear in all of the parameters, it is well known that a Gauss-Newton algorithm converges
to the exact solution in one iteration. The geometric parameters converged more slowly but
still at an acceptable rate. The convergence of the full geometry defined by the individual
parameters is illustrated in Fig. 27, which shows the iterative variation of the nozzle wall
contour. The convergence of the individual design parameters to the correct solution is
illustrated by Figs. 28 through 31.

3.4 INVISCID THREE-DIMENSIONAL NOZZLE FLOW

A 3-D rectangular nozzle (Fig. 32) was used to demonstrate that the nonlinear least-squares
optimization method is applicable in three dimensions. The nozzle geometry and interior
grid were defined by 3-D Bezier polynomials, Eq. (9). Four control points were specified
at each of five axial planes so that each axial ¢cross section was rectangular. The entire volume
was then defined using the coordinate vectors of these 20 control points to define the Bezier
polynomials. Two design parameters were defined as coefficients, Py and P;, that controlled
the length and width of the rectangular cross section at the midplane (Fig. 32). The target
geometry corresponded to values of unity for each parameter, which produced a nozzle with
a nominal exit-to-throat area ratio of 2.5. Total conditions were specified at the nozzle inlet.
A static pressure below second critical was selected at the nozzle exit. This allowed fully
supersonic flow to develop in the divergent portion of the nozzle. These geometry and boundary
conditions produced a flow field with a nominal exit Mach number of 2.5 when analyzed
with the Euler version of the PARC3D code.

For an initial guess, the design parameters P; and P, were set equal to 2.0 and 2.5,
respectively. This produced a nozzle with a nominal exit-io-throat area ratio of 64. A PARC3D
analysis of this geometry subject to the described boundary conditions produced a flow field
with a nominal exit Mach number of 5.8 using 23,000 grid points in the simulation. Unlike
the target nozzle, which was square at each axial cross section, the initial gness nozzle had
a square cross section at the inflow plane, which transitioned to a rectangular cross section
at the midplane, and then transitioned again to a square at the exit plane. The large differences
in exit flow conditions for the initial guess nozzle compared to the target nozzle were selected
to illustrate that the initial guess flow field does not necessarily need to closely resemble the
desired optimum to obtain acceptable results. The differences in the flow fields for the target
nozzle and the initial guess nozzle geometries are illustrated by comparing the centerline Mach
number profiles for the two designs (Fig. 33). Also presented are the distributions for the
first iteration and for the computed optimum.

A sensitivity analysis was performed on design parameter P that indicated that parameter
step sizes ranging from 0.0001 to 0.01 produce nearly the same objective function derivative
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(Fig. 34). The variation in Fig. 34 reflects the sensitivity to parameter step size attributable
to nonlinear effects and numerical error inherent in the objective function evaluations, A
value of 0.001 was selected for the design variable step size in this example, Application of
Broyden's quasi-Newton algorithm did not converge to the correct optimum for this test case.
It is suspected that the Jacobian computation was not accurate enough for reliable application
of quasi-Newton algorithm. When the Gauss-Newton algorithm was applied, the RP properties
converged in 6 iterations requiring 18 function evaluations. Figures 35 and 36 provide an
example of the RP convergence by comparing y and z centerline Mach number profiles at
the RP for the target solution, the initial guess, the first iteration, and the computed optimum.
The achieved reduction in objective function and the design parameter convergence is depicted
in Figures 37 and 38, respectively, which illustrate that the global minimum of the objective
function was isolated. Convergence is further demonstrated by comparing the wall contours
for constant y planes (Fig. 39) and constant z planes (Fig. 40).

3.5 INVISCID SUPERSONIC FLOW ABOUT A PLANAR FOREBODY SIMULATOR

A 3-D analog to the motivating design problem was constructed and is shown in Fig.
41. The configuration shown was used to define the target flow variables at the indicated
reference plane. Thirteen thousand grid points were used to resolve the domain, which was
analyzed inviscidly by the application of PARC2D in the Euler mode. In this example, the
Mach number at the inflow plane was treated as a design variable to represent the variable
free-jet Mach number that would be encountered in the motivating design problem. The
forebody simulator geometry was defined as a Bezier curve with four variable parameters.
The geometric design variables were normalized by the forebody simulator height, and the
Mach number design variable was normalized by the target Mach number to make each design
variable of the same order. The RP was located one inlet height in front of the inlet entrance.

The target design was a relatively blunt forebody with an incoming Mach number of 3.0
{Fig. 41). The reference plane was located downstream of the detached shock emanating from
the leading edge of the forebody. Also within the flow field, weak shocks reflect from the
cell wall boundary and from the nozzle walls. The simulation was run with an exit pressure
low enough to maintain fully supersonic flow across the computational exit plane. The five
design parameters shown in Fig. 41 were then perturbed to initialize the optimization. For
the initial guesses, the Mach number was increased by 50 percent, and the geometric parameters
were reduced by 10 to 70 percent to intentionally provide a poor initial guess.

The disparity between the target design and the initial guess configuration is illustrated
by comparison of the respective Mach number contours {Fig. 42 and 43). As can be seen,
the shock structures in front of the reference plane are very different, leading to large
discrepancies in RP flow variables. The forebody shock passes very close to the RP in the
initial guess configuration, which further complicates the optimization task,
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The RP objective function was minimized by the application of the Gauss-Newton
algorithm, Analysis of the objective function gradients indicated that the minimum derivative
variation was about 2 percent (Fig. 44) for nondimensional, geometric variable step sizes
between 0.02 and 0.05. These derivatives were not accurate enough for successful application
of the quasi-Newton algorithm. However, when the Gauss-Newton algorithm was applied,
convergence was obtained in five iterations requiring 31 function evaluations. The maximum
Mach number deviation, at the RP, was less than 1 percent after only two optimization steps
requiring 13 function evaluations, which for many applications, may be adequate. A
comparison of the reference plane Mach number profiles for the initial guess, the target
solution, and the final converged solution is made in Fig. 45, which shows excellent agreement
between the target and final solutions. Figure 46 plots the objective function versus design
iteration number illustrating that the global minimum of the objective function was isolated.
The convergence history for each of the five design parameters is illustrated in Fig. 47.

3.6 INVISCID SUPERSONIC FLOW ABOUT A REDUCED LENGTH FOREBODY
SIMULATOR

The motivating design problem requires that RP properties be matched within design
tolerance while significantly shortening the actual aircraft forebody. An example emulating
this type of optimization problem was constructed by seeking a forebody half the length of
the described target forebody as depicted in Fig. 41 and retain the RP target values defined
in Section 3.5. This length restriction excluded an exact match of RP variables from the
optimization design space. Each candidate design was analyzed as a full test cell configuration
without using a plane of symmetry as with the target configuration. Each design was analyzed
inviscidly by the application of the blocked version of PARC2D in the Euler mode using
26,000 grid points to resolve the domain in each CFD simulation.

The optimization problem was constructed using four design variables. The inflow plane
Mach number (normalized by M = 3.0 as a reference Mach number) was used as a fluid
dynamic design variable. The forebody simulator geometry was again defined as a Bezier
curve with the vertical component of three of the Bezier control vectors used as design variables.
These geometric design variables were normalized by a reference length equal to the height
of the target forebody. As with the full-length forebody design, the Gauss-Newton algorithm
was applied. In three iterations, requiring 16 function evaluations, the deviation from
normalized RP objective function components of total pressure and axial Mach number was
as indicated in Figs. 48 and 49. In these figures, each RP component was normalized by
the corresponding target value to facilitate comparison of the various design iterations. The
target values for the vertical Mach number component were very near zero; thus, comparison
of the actual residual components is most meaningful and is presented in Fig. 50. The total
temperature component of the objective function is not presented since total temperature
remains constant, within numerical accuracy, for this inviscid computation.
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As seen from Figs, 48 through 50, each component of the objective function was reduced
from its initial value. The convergence and rate of reduction of the total objective function
is further illustrated in Fig. 51. Further iterations failed to yield any appreciable reduction
in the objective function. Additionally, the contribution from the total temperature components
to the objective function sum became of the same order as the total pressure and Mach number
components. This indicated that further reduction in the objective function was unlikely,
since for the Euler simulations, any mismatch in total temperature could be attributed to
numerical error. The comparison of the RP Mach number for various iterations, as shown
in prior examples, is presented in Fig. 52. The variation of the geometric contour is illustrated
in Fig. 53. In this two-dimensional example, the Gauss-Newton algorithm was able to
substantially reduce the deviation of RP fluid dynamic parameters from the prescribed
distributions leading to a substantially improved design. The number of required function
evaluations is also within practical limits using current technology. )

4.0 USAGE CONCEPTS

The computer program that was used to generate the previous results is available for
application at the AEDC. Although it is still a developmental code, it is relatively easy to
apply. This section is not intended to serve as a complete user’s guide for the developmental
code, but will serve to briefly describe information required to apply the design optimization
code in its present form.

Input variables required by the code are supplied through a namelist format. However,
before defining the necessary input variables, an overall description of the design process
is helpful. Examination of Fig. 2 reveals four key steps in the design optimization process,
(1) definition of design variables, (2) analysis of the candidate design, (3) measure of the
design quality, and (4) adjustment of the design variables.

Design optimization methods are intended to assist the engineer in developing a quality
design. They are not intended to eliminate the need for good engineering judgment. Defining
the design variables and measuring the design quality are two areas where a thorough
understanding of the design requirements and a recognition of the important design parameters
is essential to developing a quality design. Within this research, a least-squares norm at the
IRP was used as an objective function to measure the design quality. This objective function
was assumed to be a function of the selected design variables. If the IRP objective function
is not responsive to variation of the selected design variables, then the problem is not well
defined. It must also be remembered that design variable specification defines the allowable
design space that will be searched for the optimal design, If the defined design space is too
restrictive, the resulting design may be unsatisfactory even though the optimal value, within
the allowable design space, was properly located. This is one of the reasons that the Bezier
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surfaces were selected for geometric parameterization. They exhibit the desirable features
of providing a wide range of geometric flexibility for a relatively small number of design
variables. An increase in the number of design variables directly increases the number of
function evaluations (CFD simulations) required to attain an optimum.

As with any CFD simulation, all results should be carefully analyzed. For the coupled
optimization method, multiple CFD simulations are combined to determine design space
gradients that iteratively leads to an optimized design. If the results of the simulations are
not consistent and reliable, then poor results are to be expected (garbage-in yields garbage-
out). Some items to pay particular attention to include (1) large variations in grid quality
between simulations, (2) temporal variations attributable to inherent unsteadiness or poor
convergence, and (3) generally poor results near the IRP.

For an N-dimensional design problem, a CFD simulation is required for the base design
and N perturbations to the base design. The perturbation value is specified by the user and
should be consistent with the design variable. Typically, this value is determined by examining
the design space as described in Section 3 of this report. The optimization code is executed
as a postprocessor after each CFD simulation to evaluate the objective function and to compute
the value of each design variable to be used for the next function evaluation. One initialization
run is required to establish target IRP values. In this manner, the optimization code guides
the engineer to the optimal design.

4.1 FILE USAGE

The job control file must fetch necessary input files, compile, load, and execute the source
code and dispose generated output files. The source code requires four input files as follows:

1. Unit#2— s PARC format restart file corresponding to the current set of design
variables.

2. Unit # 3 — the optimization code restart file, which contains JRP flow variables
and IRP grid coordinates for all prior design iterations.

3. Unit#5 — a namelist input file that contains code variable definitions to control
program execution.

4. Unit # 9 — a design variable history file that is used to monitor the iterative
behavior of the design variables and convergence toward the optimal design.
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Two ountput files are created containing
1. Unit # 7 — the updated optimization code restart file.
2, Unit # 10 — the updated optimization code design variable history file,

Coupling the optimization code to an analysis code other than PARC would necessitate minor
changes in the input subroutine.

4.2 NONDIMENSIONALIZATION

Since diverse flow properties are used to comprise the IRP residuals, cach residual
component is normalized by a user-selected reference value, as noted in Section 2.3.2. A
general recommendation is to make each residual term of order one, in which case each
component of the residual will be driven to zero at approximately the same rate. However,
there may be instances where the user wishes to bias the solution by weighting one set of
residuals more heavily than other residuals. This can be accomplished by choosing an
appropriate set of reference properties.

4.3 NAMELIST CONTROL

All user inputs to the design code are provided from Unit # 5 through the namelist titled
“Control.’” These inputs are used to define (1) PARC nondimensionalization variables, (2)
design code nondimensionalization variables, (3) IRP target value definition, (4) variable
geometry indices, and (5) optimization code operation. Some variables contained within this
pamelist are strictly for code development and diagnostic use. Description of variables needed
to execute the design optimization code are

DTH Real vector specifying the perturbation value for each design variable
during derivative computations

IBACKUP Development and diagnostic use

IC1 Integer vector identifying the set of candidate designs to usc within
the current optimization step

FMACH The reference Mach number used to normalize the directional Mach
number residual components

" GAMMA PARC code specific heat ratio
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IBPATH Integer vector specifying the set of candidate designs needed to form
: quasi-Newton Jacobian algorithm {Broyden’s update formula)

L]
JEGEO Beginning j-index for the variable design geometry. Used only for
postprocessing of resuls.

JIRP IRP j-index

JSGEO Variable design geometry ending j-index. Used only for postprocessing
of results.

KEGEO Variable design geometry beginning k-index. Used only for

postprocessing of resulis.

KSGEO Variable design geometry ending k-index. Used only for
postprocessing of resulis.

KEIRP IRP ending k-index
KSIRP IRP starting k-index
KSKIP Skip factor to specify the frequency with which a full Gauss-Newton

optimization step is performed. KSKIP =1 implies all steps will be
Gauss-Newton, KSKIP = 5 implies every fifth step is Gauss-Newton
with all other steps quasi-Newton, etc.

LEGEO Variable design geometry begioming l-index. Used only for
postprocessing of results.

LSGEO Variable design geometry ending l-index. Used only for postprocessing
of results.

LEIRP IRP ending l-index

LSIRP IRP starting l-index

NCASES The cumulative _number of candidate designs

NCYCBACK Development and diagnostic use
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NBROYSTPF The number of designs used to execute the Broyden update formula

NSTART Initialization parameter. If NSTART =0 the code performs a first
pass initialization to define IRP values

PREF PARC code reference pressure

PTNORMAL The reference pressure used to normalize the total pressure residual
components

TREF PARC code reference temperature

TTNORMAL The reference temperature used to normalize the total temperature
residual components

5.0 SUMMARY AND CONCLUSIONS

A direct aerodynamic design optimization technique that couples an existing Euler/Navier-
Stokes solver with efficient nonlinear least-squares minimization algorithms has been developed
and demonstrated by successfully applying the technique to representative aerodynamic design
problems. This demonstrated that design space gradients, required by the Gauss-Newton-
based optimization algorithms, could be reliably formed from Euler/Navier-Stokes CFD
simulations. In fact, for two examples presented, a quasi-Newton algorithm was successfully
applied to determine the optimal design variables. The examples were deliberately started
from poor initial designs to assess the capability of the design technigue to converge from
poor initial conditions. Although this does not vet achieve the desired 3-D forebody simulator
design capability, it does represent significant progress toward satisfaction of that goal.

To date, this research has evaluated the feasibility of coupling nonlinear optimization
methods with CFD. Existing Gauss-Newton and quasi-Newton optimization algorithms were
employed with minimal modifications with good results obtained for several representative
aerodynamic design problems. The quasi-Newton algorithm was not successful for the more
aerodynamically complex examples, but was significantly more efficient when applicable.
This suggests that alternating between the two algorithms may produce 2 more efficient
optimization strategy if reliable switching criteria can be determined. Because of the complexity
of the motivating application, the optimization algorithms were coupled with an Euler/Navier-
Stokes CFD code, which makes the function evaluations computationally expensive. However,
the same method could be coupled with a less complex CFD technique for design problems
in which an Euler or Navier-Stokes simulation is not required.
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The approach presented provides the designer with a potentially powerful tool to assist
in many designs for which a maeasure of design quality (objective function) can be adequatcly
defined. Because of the flexibility afforded by the current CFD codes, this technique can
be applied to virtually any steady-state aerodynamic optimization problem for which the
selected CFD code is capable of providing a reliable acrodynamic analysis. The design method
is reliable in the sense that improvements to the initial design are achieved, and it is efficient
in terms of minimizing the number of function evaluations required to determine the optimal
design variables. For complex 2-D aerodynamic designs, the method requires on the order
of 10 to 50 function evaluations, depending upon the quality of the initial design, number
of optimization parameters, and RP simulation tolerances. This number of function
evaluations is feasible with access to modern supercomputers and use of appropriate CFD
codes that efficiently yield the desired flow physics. As demonstrated by one simple example,
the design method is applicable in three dimensions. However, the efficiency of the optimization
process must be enhanced before this technology can be considered a practical 3-D» design tool.

6.0 RECOMMENDATIONS

Achieving the ‘‘generation 6' forebody simulator design capability, proposed by the
ASD/AEDC ASTF free-jet development technical steering committee, requires continued
development of aerodynamic design optimization techniques. Computational fluid dynamics
is certainly not a mature science and the use of CFD within a design optimization framework
is in its infancy. If continued development of a ‘‘generation 6°° design capability is deemed
a priority item at the AEDC, then the following topics need to be investigated.

1. Investigate the application of design optimization via control theory as proposed
by Jameson (Ref. 18).

2. Investigate the application of genetic algorithms (Ref. 19) to minimize the number
of required CFD simulations.

3. Improve the present direct optimization method by combining the efficiency
characteristics of the quasi-Newton algorithm with the reliability characteristics
of the Gauss-Newton algorithm.

4. Develop a method of selecting the appropriate design variable step sizes that is
more efficient than the standard sensitivity study.

5. Develop a technique that relaxes the requirement that each CFD simulation must
be fully convergent.
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6. Reduce computational costs by using lower order CFD analysis techniques (MOC,
: PNS, etc.) in preliminary design phases.

7. Reduce computational costs by improving the efficiency of the CFD analysis code.
8. Reduce the labor required to perform each CFD simulation.

Items 1 and 2 represent research in areas with tremendous potential. Both of these
techniques have the potential to not only reduce the computational effort required to optimize
a given design, but they could also extend the allowable design space without significant
penalty. However, neither optimization method has been investigated or applied extensively
to realistic design problems. Items 3 through 5 are ideas to improve the efficiency of the
subject direct optimization method. Item 6 is a suggested engineering approach to reduce
computational costs and total design time within the existing optimization framework, [tems
7 and 8 address the CFD analysis portion of the design process, which is where the
preponderance of computational resources and manpower is expended. Again, CFD is not
a mature science and we must continue to explore more efficient and more accurate means
of analysis in addition to ongoing efforts to extend the application of CFD to more
geomeirically and aerodynamically complex configurations.
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Figure 34. 3-D convergent/divergent nozzle derivative sensitivity.
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Figure 35. 3-D convergent/divergent nozzie RP Mach number variation (Z = 0).
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Figure 36_. 3D c_:onvergent/divergent nozzle RP Mach number variation (Y = 0).
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Figure 38. 3-D convergent/divergent nozzle design parameter convergence.
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Figure 39. 3-D convergent/divergent nozzle wall contour convergence for constant Y plane,
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Figure 40. 3-D convergent/divergent nozzle wall contour convergence for constant Z plane.
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Figure 41. Planar supersonic forebody simulator optimization.
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Figure 42. Target design Mach contours in the forebody simulator/inlet region.
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Figure 43. Initial guess Mach contours in the forebody simulator/inlet region.
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Figure 44. Planar supersonic forebody simulator derivative sensitivity.
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Figure 45. Planar supersonic forebody simulator RP Mach number profiles.
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Figure 47. Planar supersonic forebody simulator design parameter convergence.
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Figure 48. Comparison of the total pressure component of the objective function for a
shoriened forebody simulator.
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Figure 49. Comparison of the axial Mach number component of the objective function for
a shortened forebody simulator.
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Figure 50. Comparison of the vertical Mach number component of the objective function
for a shortened forebody simulator.
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Figure 52. Shortened supersonic forebody simulator RP Mach number profiles.
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Figure 53. Shortened supersonic forebody simulator variation in variable geometry.
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APPENDIX A
GAUSS-NEWTON ALGORITHM

To formulate the nonlinear least-squares minimization algorithm, let the residuals
1i{Py,....PMm), 1= 1,2,...,N, be functions of the M design parameters, P. To minimize r;, in
the least-squares sense, values for the parameters, P, are found that minimizes

N N
F® = I {n-i@®P= L @Y (a-n

where y; denotes the N specified reference plane quantities, and f; denotes the computed M
quantities for the associated design parameters, P.

The Gauss-Newton minimization algorithm is derived by first substituting a first-order
Taylor series expansion about P? into Eq. (A-1) for ry(P). This yields
N

2
FE) ~ I {,i@o, . Boae9 A2
im] j=1 an

with AP; defined as the jh component of the vector
AP = P - P° (A-3)
Minimizing Eq. (A-2)} requires

F®)
- = C (A4)

for each k. Applying condition, Eq. (A-4), to Eq. (A-2) yields the following system of
equations:

N _ M _in(PY 1 @9 )
2 iEl {r,{lj°)+ jfl_'aTAP’} 2Py =0 (A-5)
for k=1,2,3,...,M. Rearranging (A-5)
s M (P9 @y _ N | a0 )
2 { = aP; AP’] P, = {r‘@) 3P, } a6

Defining J as the Jacobian matrix of the residual vector, R, with respect to the parameter

vector, P, allows the M equations defined by Eq. (A-6) to be written more concisely in vector
notation as
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JTJAR = - JTIR (A7)

where J is defined by Eq. (5). This M-by-M system of equations is then solved to determine
the parameter corrections at each iteration.
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APPENDIX B
BROYDEN’S JACOBIAN UPDATE FORMULA

Application of the Gauss-Newton optimization algorithm requires solution of the system
of equations,

JTIAP = - JTR (B-1)

where R denotes the residual vector of length N, P denotes the parameter vector of length
M, AP denotes the computed change in parameters, and J denotes the Jacobian matrix of
R with respect to P. Equation (B-1) then determines a search vector, AP, and a linear search
can be carried out so that '

Pri1 = By + »APR, (B-2)

where » is selected to reduce the norm of Ry ;.4 sufficiently below the norm of Ry. Eliminating
the linear search is equivalent to specifying » = 1 in Eq. (B-2).

A quasi-Newton method is derived by assuming at the kth iteration a current design point,
Py, and an approximation, By, to J has been obtained. The Jacobian initial value, By, can
be computed by a finite difference approximation. The first-order Taylor series expansion
of Ry, gives

Ryt = Ry + JxAPx (B-3)
or in terms of the Jacobian approximation, By,
B APy = ARy (B-4)

A method is sought to approximate By,; without reapplying a finite difference
representation, The method introduced by Broyden (Refs. 12 and 14), requires that By,
satisfy the quasi-Newton condition,

By+1AP; = ARy (B-5)

which provides N equations for the N x M unknown elements of B: .. ; in Eq. (B-5). This
is motivated by examining the behavior when R is linear. For linear R Eq. (B-5) constrains
By, 1 to hold exact derivative information in the direction of AP, This is apparent from
Eq. (B-3), which is exact for linear R. The additional N x (M — 1) equations are obtained by
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requiring the change in R predicted by By, in all directions orthogonal to APy, to be the
same as would be predicted by B,. Symbolically, that provides

By+1q; = Bigy (B-6)
where the q; form a basis in the (M — 1) dimensional subspace orthogonal to APy. Thus,
APq; = 0 (8-7)

for each of the M —1 directions, qi- Define Q to be a matrix of vectors so that
Q=@ 41 9z2..Q00m-1) ‘ (B-8)

For convenience select the length of q; as

af a; = APfaPx (B-9)
Now
QTQ = (APFAPYI (B-10)
which yields
Q-t = & (B-11)
AP{APy

Combining Eq. (B-8) with Eq. (B-6) gives
By+1Q = BQ + (Biy14Px — B APIM (B-12)
where
M=(100..0) (B-13)
Combining Eq. (B-5) with Eq. (B-12) gives

Bx+1Q = BQ + (AR — BdPY M (B-14)
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Post multiplying by Q! gives
Byy1 = By + (ARx — BLAPYM Q-1 (B-15)

Substituting from Eq. (B-11) gives
(8R; — B, APYMQT

B . B i B-].G
which upon Simpliﬁcaﬁﬂn gives

AP{AP,
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APPENDIX C
QUADRATIC INTERPOLATION LINEAR SEARCH

Following Hartley (Ref. 13), let Fp denote the objective function value for the initial value
of the solution vector, P9, of a Gauss-Newton or quasi-Newton iteration. Let F, denote the
objective function value at the updated value of the solution vector, P}, where P! is given by

P! = PO + AP C-h

with AP denoting the computed correction to the solution vector for the optimization
iteration. Let » define a variable so that » = 0 at P%and » = 1 at P!, The objective function
can now be approximated in the interval (0,1) by an interpolation function with the
optimization value analytically determined. In particular, if the objective function is evaluated

_at » = m, within the interval, then F(P? + »AP) can be approximated by a quadratic
function of the form

fGy =pr + qv + r (C-2)
If Fy, satisfies the criterion
Fn < Fyg (C-13)
and
Fn < Fy (C-4)

then a minimum of f(») must exist in the interval (0,1). Differentiating Eq. (C-2) with respect
to »* and setting the result equal to zero yields

= — 3 (C-9)

with »* denoting the location of the minimum of F(») in the interval. The system of equations
0 0 1 P 0
1 1 1]llgl=|F
m m 14 \r Fm
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is solved to determine the coefficients p, g, and r of the quadratic, Substituting these coefficients
into Eq. (C-5) vields

1 (1 - m)Fp + m¥F; ~ Fy
2 {l —m)Fo+mF|—Fm

L]
p -

\oor)

The functional value f(+*) should then be a better approximation to the minimum than F,,
which resulted from the optimization algorithm. Because of the expense of function evaluations
within this research, the described line search was only used when the optimization algorithm
failed to produce a reduction in functional value. Symbolically, if F, > Fy, then the line
search was used. A similar quadratic line search method can be derived for the interval by
using Fy, F1, and the f’(0). Since f’{0) is computed to implement the optimization algorithm,
this approach eliminates the need for the evaluation of F,,. This implementation was not
evaluated herein.
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C

gl (u)

2 £ =

2

NOMENCLATURE
Jacobian approximation
First algebraic test function convergence criterion
Second algebraic test function convergence criterion
Least-squares objective function
Bernstein basis function defined by Eq. (10)
Jacobian matrix of R with respect to P defined by Eq. (5)
Total number of design parameters
Mach number component along the x axis
Mach nﬁmber component along the y axis
Mach number component along the z axis
Total number of residual components
Number of reference plane points
Number of parameter constraints
Design parameter vector
Individual design parameter
Total pressure
Least-squares residual component
Residual component vector

Aerodynamic optimization reference plane
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X (u,v,w)

¥(x)

AEDC-TR-90-22
NACAOQ012 airfoil thickness parameter [See Eq. (11)]
Total temperature
Bernstein-Bezier interpolation parameter [See Eqs. (8) and (9)]
Bernstein-Bezier interpolation parameter [See Eq. (9)]
Bernstein-Bezier interpolation parameter [See Eq. (9)]
NACAQDI2 airfoil axial coordinate [See Eq. (11)]
Position vectors of Bezier control points [See Eq. (8)]
Position vectors of 3-D Bezier contrel points [See Eq. (9)]
Bernstein-Bezier polynemial [See Eq. (B)]
3-D Bezier polynomial [See Eq. (9)]
Function used to define NACA0012 airfoil [See Eq. (11)]

Computed change in design parameter vector P
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