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1.0 INTRODUCTION 

The ambitious operating envelopes desired for future fighter aircraft dictates an aircraft 
industry requirement to t~est integrated propulsion system components at a ground test facility. 
In response to this industry need, the Arnold Engineering Development Center (AEDC') is 
developing an extensive free-jet test capability for this application (Ref. 1). One factor that 
inhibits the utilization of free-jet testing capabih'ty at the AEDC is the reliance upon empirical 
techniques for the design of the forebody simulator used to tailor the flow field to the desired 
flight conditions. To alleviate this deficiency, the joint ASD/AEDC Aeropropulsion System 
Test Facility (ASTF) free-jet development technical steering committee proposed development 
of an aerodynamic design optimization capability applicable to the forebody simulator design 
problem. This capability, referred to as the "generation 6" design method within the joint 
ASD/AEDC ASTF free-jet development plan, was intended to combine nonlinear optimization 
methods with the powerful analysis capability afforded by computational fluid dynamics 
(C'FD). Application of Euler or Navier-Stokes CFD analysis codes within the design 
optimization is motivated by the aerodynamic complexity of typical free-jet test configurations. 
The objective of this report is to document the progress that has been made to date toward 
development of such an aerodynamic design optimization capability. 

A schematic of the forebody simulator design optimization problem is illustrated in Fig. 
1. This figure depicts a free-jet inlet-engine test configuration within a generic ground test 
facility designed to evaluate the performance of an integrated propulsion system. The design 
requirement is to produce a flow field across a specified inlet reference plane in the free-jet 
installation that is similar, within a predefined tolerance, to that which would be encountered 
in flight. One proposed way of achieving this is by appropriately designing a "fiow-taUoring" 
forebody simulator, and/or varying free-jet flow conditions (total pressure, total temperature, 
flow angle, and Mach number) to produce the desired flow field at the inlet reference plane 
(Ref. I). The plane where fluid dynamic similarity is required will hereafter be referred to 
as the inlet reference plane (IRP). The fundamental assumption of this free-jet test concept 
is that adequate similitude is attained whenever the fluid dynamic state at the indicated reference 
plane adequately matches that which is specified for a given operating condition. 

The task of designing such a flow-tailoring geometry and the corresponding test conditions 
is formidable. The test designer must specify a forebody simulator geometry and free-jet 
fluid properties that produce, within design tolerance, the desired fluid dynamic state at the 
region of interest. Current forebody simulator design methods rely heavily upon prior 
experience to guide a trial-and-error design approach using subscale testing and CFD analyses 
to evaluate the candidate designs. This process is inefficient and does not ensure an orderly 
progression toward an acceptable design. Thus, the specific purpose of the research reported 
herein was to develop a reliable method, based upon CFD analyses, for the specification 
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of an acceptable set of aerodynamic design parameters (both geometric and fluid dynamic) 
for complex designs typical of those encountered in an aerodynamic test facility. The ultimate 
goal of the research is to optimize the design of a complex three-dimensional (3-D) 
configuration, such as illustrated in Fig. I, in a timely and cost-effective manner. Development 
of such a design op "tunizafion method very obviously requires the ability to perform an accurate 
CFD analysis of the proposed design. However, the evaluation of various CFD techniques, 
relative to simulation of typical free-jet testing configurations, is not reported. The CFD 
evaluation effort is being conducted in parallel with the design optimization development 
and is reported in AEDC-TR-90-21 by M. D. McClure and J. R. Sirbaugh (to be published). 

As an optimization problem, a forebody simulator design possesses several interesting 
features in that (1) the flow-fieid constraints are imposed at a location away from the geometric 
surface that is being optimized; (2) both fluid dynamic and geometric design variables must 
be optimized; (3) discontinuous or localized high-gradient behavior may occur within the 
design space (e.g., shocks or onset of separated flow); and (4) an extensive history of prior, 
similar designs does not exist. Characteristics (1) and (2) do not constitute a well-posed inverse 
design problem; however, the imposition of flow-field data, in the described manner, does 
properly define a direct optimization problem. Since flow-field data are prescribed at a known 
reference plane, it is possible to define an objective function that measures a norm between 
the reference plane flow properties associated with a particular design point (set of independent 
design variable values) and the desired reference plane flow properties. Since the norm is 
a function of the given design variables, the optimization task is to determine the particular 
values of these variables that produce a minimum value for the objective function. This is 
accomplished by optimizing the selected design parameters through the minimization of a 
nonlinear least-squares objective function. Flexibility in the type of designs that can be 
considered is provided through the use of modern CFD codes to produce the function 
evaluations required by the optimization algorithm. The resulting direct optimization approach 
is applicable in both two and three dimensions, and in principle, any CFD technique 
appropriate to the flow regime of interest could be used. 

Using an Euler or Navier-Stokes CFD code to compute design space gradients within an 
optimization algorithm has received tittle prior attention in the literature. It is demonstrated 
that this can be accomplished by applying the developed design technique to a variety of 
aerodynamic design problems. The test problems were constructed to illustrate the applicability 
of this approach to realistic designs by deliberately selecting poor initial conditions for the 
optimization algorithm. The aerodynamic optimization examples presented include a 
NACA0012 airfoil, convergent/divergent nozzles, and a planar supersonic forebody simulator. 
Although the method applied is applicable to either viscous or inviscid flows, only one viscous 
example is presented because of the increased computational expense required for a viscous 
CFD analysis. 

8 
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This report is organized so that the design optimization technique is developed and 
presented in Section 2. The design technique is demonstrated by application to several 
aerodynamic examples in Section 3. Comments relevant to the application of this technique, 
in its present state of development, are presented in Section 4. Lastly, some conclusions relative 
to design optimization using the developed technique and some recommendations for future 
research are presented in Sections 5 and 6. 

2.0 NUMERICAL TECHNIQUE 

Using CFD to optimize aerodynamic designs is currently an active research topic in the 
applied mathematics and engineering disciplines. The motivation for developing and using 
these optimization methods in the design process is to reduce the overall computational effort 
needed to develop aerodynamic components and conf'tgurations, which will optimize a selected 
measure of aerodynamic performance. Several examples of aerodynamic design optimizatious 
exist in recent literature, such as the design of airfoils, turbomachinery cascades, ducts, and 
nozzles. A brief literature survey was provided by the author (Ref. 2) and is not repeated 
herein. However, it is noteworthy that similar direct optimization methods have previously 
been coupled with method-of-characteristics flow solvers at the AEDC by Yarner (Ref. 3) 
and F. L. Shope (unpublished work). Additionally, a similar development project has been 
proposed recently for application to the design of hypersonic nozzle contours by P. F. Hoffman 
(unpublished work). 

2.1 BACKGROUND 

The implementation of optimized aerodynamic design generally follows one of three 
approaches: (I) inverse design methods, (2) b.asis function optimization methods, and (3) 
direct function op "tunization methods. Generally, true inverse design methods are more efficient 
than either the basis function approach or direct optimization since the determination of 
the optimal design is made as an integral part of the CFD analysis. However, since many 
aerodynamic design problems cannot be cast in an inverse form, direct optimization methods 
and basis function methods are often applied. 

An application such as the free-jet forebody simulator illustrated in Fig. 1, is too general 
for successful application of either a classic inverse method or the basis function approach. 
However, almost any design problem can be cast as a direct function optimization if a tangible 
measure of the design's quality can be identified to define an objective function that is 
responsive to changes in the selected design parameters. Thus, the implementation of a direct 
aerodynamic optimization technique is investigated and reported herein as well as in Refs. 
2, 4, and 5. It is recognized that the penalty for this generality is a potentially less efficient 
optimization method for some of the simpler applications that may be of interest such as 
airfoils and supersonic nozzles. 
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With current computer technology and CFD algorithms, many complex two-dimensional 
(2-D) and some 3-D aerodynamic designs can be adequately analyzed, although the 
computational cost can be very high. Applying an optimization method that uses CFD to 
provide function evaluations will be computationally expensive since multiple CFD analyses 
are required. Even so, for problems such as the previously described forebody simulator, 
some form of design optimization is required because the cost of the available alternatives 
(e.g., experimental "cut and try" in a wind tunnel using an iniet/forebody simulator model) 
may be even more prohibitive. Additionally, investigation of a more general aerodynamic 
design optimization technique will help prepare the way for future enhancements as computer 
hardware, CFD algorithms, and optimization algorithms become more efficient. 

Within this research, the direct optimization problem was formulated as a nonlinear least- 
squares minimization using existing CFD analysis codes to provide the furiction evaluations 
required by the optimization algorithm. Both Gauss-Newton and quasi-Newton optimization 
algorithms were applied to minimize the least-squares objective function. The optimization 
algorithms were coupled with the CFD analysis code as illustrated in Fig. 2 to yield the desired 
interaction between the CFD analysis capability and the design optimization algorithm. The 
optimization code was kept distinct from the CFD analysis code to provide the analyst with 
the flexibility to select the most appropriate C I ~  analysis technique for a given design problem. 

Implementation of this optimization technique involved three primary problems, (1) method 
of function evaluation, (2) selection of the objective function and implementation of the 
optimization algorithm, and (3) specification of the design parameters. Each of these items 
is discussed in the remainder of this section. 

2.20IHECTIVE FUNCTION EVALUATION 

In selecting the type of CFD analysis to use in evaluating the objective function, the 
anticipated flow regime to be encountered computationally was identified (Ref. 1). A typical 
free-jet test envelope can range from low subsonic flow to moderately high supersonic flows, 
potentially with the free-jet nozzle inclined at high angies of attack relative to the test article. 
The appropriate aerodynamic analysis for the motivating problem requires a complex, 3-D, 
flow-field computation, necessitating the application of an Euler code or a Navier-Stokes 
code to produce an accurate simulation. However, during a preliminary design phase, less 
accurate but more efficient CFD techniques may be used. By formulating the optimization 
problem as a nonlinear least-squares minimization, the particular flow-field analysis technique 
applied is irrelevant to the construction of the optimization algorithm as long as consistent 
and repeatable function evaluations are obtained. The flow-field simulation must be consistent 
and repeatable in the sense that small perturbations to design parameters are accurately 
reflected in the flow-field solution. This is important because the implemented optimization 
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algorithm uses these function evaluations to compute design space gradients. If these gradients 
are inaccurate, then obviously the algorithm would not converge to the correct solution. 

Although the direct optimization design method can be coupled with any CFD technique 
appropriate to the problem of interest, the complexity of the forebody simulator design 
problem makes it necessary to demonstrate that the direct optimization technique can be 
coupled with an Euler or Navier-Stokes solver. Thus, within this report all of the CFD analyses 
were made using PARC, a general purpose, finite difference Euler/Navier-Stokes CFD code 
(Ref. 6). The version of this CFD code applicable to axisymmetric and 2-D configurations 
is referred to as PARC2D. The analogous 3-D CFD code is referred to as PARC3D. The 
PARC codes have been applied at the AEDC and elsewhere to analyze a variety of complex 
internal and external fluid mechanics problems (Refs. 7 through 10). This particular CFD 
code was selected because of its robustness, ease of use, and reliability. It produces consistent 
and repeatable flow simulations in the sense that small perturbations to design parameters 
are accurately reflected in the flow solution. All of the 2-D computational grids used were 
generated by the application of the INGRID code developed by Soni (Ref. 11). 

The purpose of this research was not to demonstrate how well the PARC Euler/Navier- 
Stokes code can simulate a particular aerodynamic phenomenon or to improve the CFD 
analysis capability per se, but to demonstrate that an Euler/Navier-Stokes code can be coupled 
with efficient optimization methods to produce a potentially viable technique for optimizing 
aerodynamic designs that may be too complex to design by other available means. In the 
aerodynamic examples presented, no effort was made to obtain the most accurate CFD 
simulation for the given configuration. Whenever possible, a minimum number of grid points 
were applied to reduce computation time. No studies were made, for example, to assess effects 
of grid distribution on the CFD simulation. However, it was necessary to monitor the level 
of convergence, particularly atthe reference plane, of each simulation used. It was necessary 
to reduce the temporal variation of flow variables at the reference plane, and this was 
accomplished by iterating on the flow field until the norm of the conservation variables at 
the reference plane was relatively stationary, typically to eight significant figures. To compute 
accurate design space gradients at the reference plane, the dominant change in the residual 
must be attributable to the change in the design parameters, and not transient effects. 
Demonstrating that CFD can be used, as desci'ibed, within an optimization algorithm for 
aerodynamically complex configurations will extend current capabilities in aerodynamic design 
optimization. 

2.3 OPTIMIZATION ALGORITHM 

In the motivating design problem, the desired fluid dynamic state is completely known 
at the reference plane, either from experiment or free-stream CFD computation. The design 

11 
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requirement is to minimize the error norm between these quantities and corresponding values 
computed for a particular design point. The norm was selected to be an L2 norm of the 
difference between the target flow-field variables and the values computed for a given design 
point. The nonlinear least-squares form was selected because (1) the method is very versatile; 
(2) extensive literature is available on general nonlinear least-squares minimization; and (3) 
efficient Gauss-Newton and quasi-Newton methods are well documented for the nonlinear 
least-squares problem. 

The nonlinear least-squares minimization was formulated as follows: Let the residuals 
ri(Pl,...,PM), i=  1,2,...,N, be functions of  M design parameters, 

ri(Pl,P2,...,PM) = Yi - fi(Pl,P2,...,PM) (I) 

where ri denotes the difference between the N specified reference plane cluantities, Yi, and 
the corresponding N quantities associated with the M parameters, fi. The design parameters 
may be geometric, fluid dynamic, or both. To minimize ri, in the least-squares sense, values 
for the parameters, Pj, are found that minimize 

N 
F(PI,P2,...PM) = E {ri(Pl,P2,...,PM)} 2 (2) 

i = l  

where F is the objective function. This sum can be written in vector form as R~__.)TR(.p_), 

where P_P_ denotes a vector with components Pi and _R(P) denotes a vector of functions with 
components ri(~). 

Three alternative sets of fluid dynamic variables were considered to specify the reference 
plane state including, (I) the Navier-Stokes dependent variables in conservation form, (2) 
the Navier-Stokes dependent variables in nonconservation form, and (3) RP total conditions 
and directional Mach number. Preliminary studies conducted in this research using a simple 
airfoil optimization problem detected no significant difference in results caused by the choice 
of dependent variables. 

Except when otherwise noted, the set of variables used herein to define the reference plane 
(RP) fluid state are (I) RP total pressure, PTrp, (2) RP total temperature, TTrp, and (3) RP 
directional Mach number, Mxrp, Myrp , and Mzrp- In two dimensions, one less Mach number 
component is required. Variable constraints, when applied, are imposed by adding a barrier 
function, such as the inverse function (Ref. 12) to the objective function. Thus, the expression 
RTR becomes 

Nr 
RTR -- i=El  {(PTrp -- PT) 2 + (TTrp -- TT) 2 + (Mxrp - Mx)i 2 

+ Ody~ -- My)~ + (Mxtrp - M ~ }  
(3) 
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where Nr is the number of reference plane points. Since each term in Eq. (3) contains five 
residual fluid dynamic components; in order to put this in the form of Eq. (2), N = 5Nr 
must hold. In Eq. (3) the subscript rp denotes the specified reference plane values, and 
unsubscripted values denote reference plane values computed for a particular trial design 
(set of design parameters). Quantities in Eq. (3) are normalized by appropriate reference 
quantities to produce target reference plane values of order one. 

A popular and efficient algorithm for minimizing the nonlinear least-squares form, Eq. 
(1), is the Gauss-Newton method (Ref. 12) or one of its variants such as Hartley's modified 
Gauss-Newton method (Ref. 13). An advantage of these algorithms as applied to the least- 
squares form is the elimination of the need for the Hessian matrix in the algorithm formulation. 
Formation of the Hessian matrix requires specification and evaluation of N × M × (M 
+ 1)/2 second derivative terms. For the motivating application, computation of the Hessian 
matrix is prohibitively expensive because these derivatives must be approximated by finite 
differences. Derivation of the Gauss-Newton method, applied to the least-squares problem, 
is available from several sources (Refs. 12 and 13) but is repeated in Appendix A. 

Applying the Ganss-Newton method to minimize Eq. (l) yields an optimization algorithm 
of the form 

JTjAp _- _ JT R (4) 

where J denotes the Jacobian of R with respect to P_ defined by 

j __ 

f 8r, 8r, 
8Pl "'" 8PM 

• I 

OrN 8rN 

8P1 ' "  OPM j 

(5) 

Equation (4) defines an M-by-M system of equations that was used to compute the change, 
~o_, in the design parameter solution vector, P_. To apply this algorithm, J was evaluated 
by finite difference approximation to obtain the partial derivative of each residual component 
with respect to each design parameter. This requires M + I function evaluations to compute 
the M partials for each residual. Since a CFD solution was used to obtain each function 
evaluation, approximation of this Jacobian was by far the most expensive part of the algorithm. 

An extension of this algorithm is Broyden's quasi-Newton method (Refs. 12 and 14). 
Broyden's extension modifies the standard Gauss-Newton method by approximating the 
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Jacobian, J, at the k + 1 iteration strictly from the Jacobian and other data available at 
iteration k rather than recomputing J directly. Since, in quasi-Newton algorithms, a finite 
difference approximation to J is made only for the initial iteration, the accuracy of this 
approximation is even more important than for the Gauss-Newton technique. If the quasi- 
Newton algorithm is to converge to the optimal solution, an accurate initial approximation 
to J must be made. Applying Broyden's quasi-Newton method yields an optimization algorithm 
identical in form with the Gauss-Newton method, Eq. (4), and is given by 

B T B A P  = - B  T R  (6) 

where the Jacobian approximation, lit at iteration k, is updated for iteration k + 1 according 
to 

(AR k - -  BkAP_.k)/XP T 
Bk+l = Bk 4- (7) 

(AP T 

where B0 is obtained by a finite difference approximation to the Jacobian. This modification 
to the Gauss-Newton algorithm is based upon the Jacobian approximation developed by 
Broyden (Ref. 14), the derivation of which is repeated in Appendix B. One of the key 
assumptions used to derive Eq. (7) is that the residual change in directions orthogonal to 
the direction ~Pk predicted by Bk +1 is identical to that predicted by Bk. The imposition of 
the quasi-Newton condition, which constrains Bk+l to hold exact derivative information in 
the direction of &P_k for linear _R, provides the other conditions necessary to uniquely 

determine Bk+ 1. Application of the Gauss-Newton algorithm requires M + 1 function 
evaluations for each iteration since the Jacobian is approximated by finite differences, whereas 
Broyden's extension requires M + 1 function evaluations for the first iteration but only one 
evaluation for subsequent iterations. Thus, if the quasi-Newton method can be applied, after 
the first iteration, M function evaluations are eliminated at each iteration. For typical 
aerodynamic optimization problems, the function evaluation is the dominant part of the cost, 
and a significant savings is realized whenever the quasi-Newton algorithm can be applied. 

It is well known that the Gauss-Newton method, using analytical derivatives, determines 
a search direction that guarantees a reduction in the objective function for some step size 
in that search direction (Ref. 13). Thus, a linear search technique is often employed once 
the search direction is determined by either the Gauss-Newton or quasi-Newton algorithm. 
The greatest benefit is derived from the linear search whenever the full correction computed 
by the optimization algorithm falls to produce a reduction in the objective function value. 
Because of the expense of function evaluations, a comparatively simple method, following 
Hartley (Ref. 13), was applied herein. When applying Hartley's technique, one function 
evaluation, in addition to the evaluation at the predicted optimum, was made in the determined 
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search direction. The base design point and the two new design points along the search direction 
were then used to define a quadratic interpolation function that was analytically solved to 
yield the optimal design parameters within the search interval. 

The linear search adds at least one additional function evaluation per iteration. Because 
of  the expense of function evaluations, the linear search was employed only when a full 
optimization step failed to produce a reduction in the objective function. The linear search 
strategy is described more fully in Appendix C. 

2.4 DESIGN PARAMETERS 

For the problem of interest, pertinent design variables are the free-jet fluid dynamic 
parameters and the variable forebody simulator geometry. The free-jet fluid dynamic 
parameters are specified as jet total pressure, jet total temperature, and jet Mach number. 
To produce an efficient optimization method, the forebody simulator geometry was described 
parametrically to reduce the total number of design variables. For two-dimensional 
applications, a parametric polynomial representation of 2-D curves as given by the Bernstein- 

• Bezier polynomial (Ref. 15) was applied as follows: 

n n! 
x.(U)  ---- r .  u i ( l  - -  U) ( n - i )  X_.i; 0 --~ u ~: 1 (8)  

i ffi 0 ( n  - -  i)!il 

where x_0, x_l, x_2, . . . ,  X_.n denote the position vectors of  the n + 1 geometric control points. 
In this form, the defined curve passes identically through the control points defined by vectors 
)Co and X_n but not through the remaining control points. This allows a high degree of 
variability for a given number of design parameters relative to other parametric representations 
with the penalty of making the influence of each parameter upon the total curve somewhat 
obscure. Application of the Bezier polynomials prevents the large oscillations encountered 
when using interpolating polynomials because of the "convex hull" property of  Bezier 
polynomials. This property ensures that the Bczier polynomial lies within the polygon formed 
by connecting the vertices of each of the Bczier control vectors. 

For 3-D applications, an extension of Eq. (8) def'ming Bczier surfaces (Ref. 15) was applied. 
The Bczier surfaces and interior were defined as follows: 

p q r 

x_.(u,v,w) = i __E 0 j •E o k E__ 0 gF (u) g~ (v) g[~ (w) X_.ijk (9) 

Here X_0k denotes the position vectors of  the control points, siP(u), g~(v), and g[c (w) are 
Bernstein basis functions of degree p,q, and r, respectively, and u,v, and w are parameters 
that range from 0 to 1. The Bernstein basis functions, gP(u), are defined by 
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P! 
g i  p ( U )  = U i (1 - u ) ( p - i ) ;  i = O,l,2,...p (10) 

(p  - i ) ! i !  

with the other basis functions analogously defined. 

The set of design variables are of diverse type, including both geometric parameters and 
fluid dynamic parameters. Thus, each variable was nondimensionalized by an appropriate 
reference quantity. The nondimensionalization was chosen to make each design variable 
nominally of order one. 

3.0 NUMERICAL EXAMPLF~ 

The aerodynamic design optimization technique was evaluated by optimizing a series of 
numerical examples including, (I) algebraic test functions, (2) a NACA0012 airfoil in inviscid 
flow, (3) a NACA0012 airfoil in viscous flow, (4) a planar inviscld flow in a 
convergent/divergent nozzle, (5) a 3-D inviscid flow in a nozzle, and (6) an inviscid supersonic 
flow past a planar, forebody simulator. In each of these examples, the optimization problem 
was formulated so that a global minimum exists within the solution space. The evaluation 
criterion was to quantify the number of function evaluations required to determine the 
optimum. 

The primary goal of this research was to demonstrate the feasibility of coupling CFD 
analyses capability with nonlinear optimization methods to produce an aerodynamic design 
technique. However, if the developed design method is to be successfully applied, it must 
also be efficient. For the subject application, efficiency can be equated with minimizing the 
total number of function evaluations required to isolate the optimum since this is where the 
preponderance of the computational cost is incurred. In fact, typical computer times required 
to evaluate the objective function, using an Euler or Navier-Stokes solver on a supercomputer, 
may range from several computer minutes for a simple 2-D design to many computer hours 
for a complex 3-D design with large amounts of computer memory required. The optimization 
algorithm applied, which used the function evaluations, typically executed in 5 to I0 sec on 
a CRAY* XMP supercomputer. The number of function evaluations was minimized by 
selecting an efficient optimization algorithm and applying an effective geometric 
parameterization to reduce the number of design variables. 

Madabhushi, Levy, and Pincus (Ref. 16) developed a coupled direct optimization/CFD 
design method in which an objective function, defined as the average duct total pressure 
loss, was minimized as a general nonlinear function. The function minimizations were made 
by applying the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. 
The selection of this quasi-Newton algorithm was based, in part, upon a comparison of the 
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relative performance of the BFGS algorithm, a conjugate gradient algorithm, and a gradient 
algorithm as applied to the minimization of ten algebraic test functions. The relative 
performance of the algorithms was measured by comparing the total number of function 
evaluations required for each method to converge to the gk)bal minimum. A disadvantage 
of the BFGS algorithm, relative to forebody ~mulator optimization, is the necessity to compute 
the design space Hessian matrix (matrix of second partial derivatives). Since these derivatives 
are not available analytically, computation of the Hessian represents both an expensive 
computation and a potentially unreliable computation because of potential inaccuracy in the 
objective function evaluation. 

Several analytic test functions were used by the author (Ref. 2) to compare the relative 
efficiency of the Gauss-Newton algorithm and Broyden's quasi-Newton algorithm, as applied 
to the nonlinear least-squares minimization problem, with the results of Madabhushi et al. 
The goal of this comparison was to demonstrate that the optimization technique applied is 
reasonably efficient relative to other available optimization algorithms. If the comparisons 
are favorable, then the ease of application and versatility afforded by the nonlinear least- 
squares formulation makes this an attractive technique for application to aerodynamic design 
optimization. Reiterating a further advantage of the least-squares form appfied herein is the 
elimination of the computation of the design space Hessian matrix. Generally, the results 
of the comparisons were favorable with the advantage of utilization of a less complex 
optimization algorithm. Specific details are given in Ref. 2. 

3.1 INVISCID FLOW ABOUT A PLANAR AIRFOIL 

Optimization of a planar airfoil in inviscid flow by specifying "reference plane" (RP) 
values at a station downstream of a NACA0012 airfoil (Fig. 3) provides an illustration of 
the design optimization technique. The RP was located at a vertical plane beginning at the 
airfoil trailing edge and extending five chord lengths into the computational domain. The 
NACA0012 airfoil is a well-known airfoil contour that has been extensively analyzed and 
is defined by 

y(x) = 5t(0.2969x i/2 - 0.126x - 0.3516x 2 + 0.2843x 3 - 0.1015x 4) (11) 

i 

where the parameter, t, specifies the airfoil thickness. For the NACA0012 airfoil, the thickness 
parameter is specified as 0.12 for a chord length of 1.0089. This airfoil contour provided 
a convenient definition of a one-parameter design optimization problem for which the CFD 
analysis was very simple. The purpose of this example was to provide an aerodynamically 
simple design problem to demonstrate that it is possible to optimize an aerodynamic surface 
by specifying the fluid dynamic state at an RP remote to that surface. 
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The PARC2D CFD code was used to define the target RP properties by computing the 
inviscid flow field about this airfoil, subject to the boundary conditions indicated in Fig. 
3. Nine thousand grid points were used to resolve the domain. Free-stream properties were 
held constant at a Mach number of  0.8 a distance of five to ten chord lengths away from 
the airfoil surface. Static pressure corresponding to the specified free-stream Mach number 
was specified at the indicated computational exit plane. The RP was located at the airfoil 
trailing edge and extended to the boundary of the computational domain. The influence of 
the body was shown to be minimal at approximately two chord lengths into the domain. 
The RP properties used to form the nonlinear least-squares objective function, as defined 
by Eq. (2), were minimized by application of Broyden's algorithm. 

No effort was made to obtain a highly accurate CFD simulation. However, each simulation 
was scrutinized to assure that the solution, particularly at the RP, was strongly converged. 
In this example, each PARC2D solution was converged until the norm of the RP conservation 
variables was constant to eight significant figures. For this simple problem, the CFD results 
were consistent with those obtained by Jameson and Mavriplis (Ref. 17), among others, as 
evidenced by the pressure coefficient distribution along the airfoil surface (Fig. 4). 

To initialize the optimization, the airfoil thickness was arbitrarily perturbed to 1/12 of 
its original value as an initial guess. This produced a very fiat airfoil, which was obviously 
distinct from the target profile and thus produced a significant perturbation at the RP. In 
fact, as seen from the surface pressure profile (Fig. 4), the target airfoil is mildly transonic 
with a weak shock appearing at approximately midchord on the airfoil surface. Conversely, 
the almost fiat profile used for an initial guess produced very little distortion of the free- 
stream with the flow field remaining subsonic throughout the domain. 

The optimal design parameter was derived by applying Broyden's quasi-Newton algorithm. 
For the first iteration, the Jacobian, J, was approximated by a one-sided finite difference 
of each of the N residuals. This difference approximation is illustrated in the following example 
for the partial derivative of the i th residual with respect to the design parameter, t, 

8r._...Li = ri(t + At) - r#) (12) 
~t At 

Since a quasi-Newton algorithm was applied, a good approximation to the design space 
Jacobian was required at the first iteration. This Jacobian was not recomputed at subsequent 
iterations but was updated approximately according to Eq. (7). 

To give an indication of the accuracy of this Jacobian, and to illustrate that stable 
computation of derivatives was possible for this problem, an investigation of derivative 
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accuracy versus the size of At used in Eq. (12) was performed. Figure 5 shows the variation 
of the normalized objective function derivative with respect to the design parameter versus 
the log of the parameter step size for first-order forward differences as given by Eq. (12). 
This gradient of the objective function was used to provide a crude assessment of the partial 
derivatives of the residual components that were used in the optimization algorithm. Although 
this does not provide detailed information about variation of individual residual derivatives, 
it does provide a means of measuring global variation at the RP. As can be seen, this derivative 
was sensitive to step size, but approached a constant value for step sizes less than 0.001. 
In fact, the actual data indicated that the derivative was constant within 0.5 of 1 percent 
for step sizes less than 0.001. Based upon this analysis, a step size of 0.001 was selected for 
the design parameter. 

Figure 6 compares the target geometric prof'de with the initial guess prof'fle, the first iteration 
profile, and the optimal profile as determined by Broyden's algorithm. The correct geometry 
was obtained in four iterations, which required five function evaluations (CTD solutions). 
Figure 7 shows typical variation of flow variables at the RP as evidenced by Mach number 
profiles. Figures 8 and 9 show the reduction of the objective function and the convergence 
history of the design parameter, t, versus iteration number, respectively. As evidenced by 
these figures, the Broyden's algorithm isolated the global minimum quite efficiently. The 
"data from which Fig. 9 was produced indicates that the optimum was located within I percent 
in 2 iterations and was isolated within 0.1 of 1 percent in 4 iterations. 

Airfoil optimization has been performed by several other researchers by prescribing a 
pressure distribution along the airfoil surface and solving a true inverse problem. As an 
interesting example of the versatility of the nonlinear least-squares approach, the previously 
described design problem was also solved by forming the least-squares objective function 
from the difference between the airfoil surface pressures for a given design point and a specified 
pressure distribution. The target pressure distribution was obtained as before by applying 
PARC2D to compute the inviscid flow field about this airfoil, subject to the previously 
described boundary conditions (Fig. 3). The airfoil surface pressure distribution was then 
used to form a nonlinear least-squares objective function, defined by 

N 
S TR = ~ (Prp - P)i 2 (13) 

i f f i l  

where Prp denotes the desired airfoil surface pressure at one of the N RP locations, and P 
denotes the airfoil surface pressure for a given design point. Optimization of the airfoil in 
this manner produced results very similar to those obtained by defming a trailing edge reference 
plane. This is illustrated in Fig. 10 by the reduction in the objective function and in Fig. 
11 by the convergence of the design parameter, t. For this formulation the optimum was 
located within 2 percent in 4 iterations and was isolated within 0.3 of I percent in 6 iterations. 
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3.2 VISCOUS FLOW ABOUT A PLANAR AIRFOIL 

Formulating the aerodynamic design problem as a nonlinear least-squares minimization 
allows flexibility in selecting the type of CTD simulation as well as allowing application to 
complex designs. For example, inclusion of viscous effects does not necessitate any changes 
to the applied optimization algorithm. The difference in the overall optimization process 
occurs only in the CFD analysis step. In other words, a more elaborate CFD simulation 
provides the various function evaluations, but the optimization algorithm does not recognize 
that the origin of the function evaluation assumed a more complex physics model. 

As a simple demonstration of a design problem in which viscous effects were included, 
the previously described NACA0012 airfoil was analyzed with function evaluations suppfied 
by viscous, Navier-Stokes simulations. As for the inviscid flow over the'airfoil, PARC2D 
was used to define the target RP properties by computing viscous flow about a NACA0012 
airfoil, subject to the indicated boundary conditions (Fig. 12). The imposed boundary 
conditions were identical to those used for the inviscid airfoil example, except the airfoil 
surface was modeled as a no-slip, adiabatic wall rather than an inviscid, slip-wall boundary. 
A free-stream Reynolds number of 106, based upon chord length, was specified, which 
produced an attached laminar boundary layer (Fig. 13) when analyzed with PARC2D. In 
this example, the RP was extended three chord lengths into the domain from the airfoil trailing 
edge. The design parameter (airfoil thickness) was perturbed to 1/12 its original value as 
an initial guess to begin the optimization. Broyden's quasi-Newton algorithm was then applied 
to derive the optimal value of the parameter. Because of the similarity to the inviscid problem, 
no sensitivity study of the design variable was performed. 

Figure 14 compares the target geometric profile with the initial guess profile, the first 
iteration profile, and the optimal profile as determined by Broyden's algorithm. The correct 
geometry was obtained in three iterations, which required five function evaluations (CFD 
solutions). Figures 15 and 16 show the reduction of the objective function and the cowJergence 
history of the design parameter, t, to the known optimum. Again, Broyden's algorithm isolated 
the global minimum very efficiently. The data from which Fig. 16 was produced indicates 
that the optimum was located within 1 percent in 2 iterations and was isolated within 0.1 
of 1 percent in 3 iterations. 

This viscous example was modified by choosing an initial guess for the design parameter 
that was double the correct value, producing a much thicker initial airfoil contour. This posed 
a more difficult optimization problem because the computed flow field about the initial guess 
airfoil was separated (Fig. 17), whereas the computed flow field about the target airfoil was 
attached for the prescribed boundary conditions (Fig. 13). The absence or presence of separated 
flow within the design space provided an abrupt change in the flow field for candidate designs 
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in very nearly a discontinuous fashion. To assess whether the optimization technique is robust 
enough to optimize designs for which flow separation may occur, this airfoil was analyzed 
with the RP deliberately placed within the region of separated flow. The RP was located 
at the trailing edge and extended from the airfoil surface to the edge of the computational 
domain. As with prior examples, PARC2D was used to provide function evaluations at the RP. 

Convergence for this example was similar to earlier results, although somewhat slower, 
with the optimum design variable located within 1 percent in 5 iterations and to within 0.1 
of I percent in 6 iterations requiring 7 function evaluations. Figure 18 illustrates the convergence 
to the target geometry by comparing the target geometric profile with the initial guess profile, 
the first iteration profile, and the optimal profile as determined by Broyden's algorithm. 
Figures 19 and 20 illustrate the reduction of the objective function and the convergence of 
the design parameter, t, to the known optimum, respectively. The promirient slope change 
in Fig. 19 coincides with the first candidate design for which minimal separated flow was 

present. 

3.3 INVISCID PLANAR CONVERGENT/DIVERGENT NOZZLE FLOW 

Optimization of multiple aerodynamic design parameters was illustrated by analyzing 
inviscid, planar, supersonic flow in a nozzle (Fig. 21). The design variables for this problem 
were inflow total pressure, inflow total temperature, and the nozzle wall contour defined 
as a three-parameter Bezier curve. The vectors used to define the Bezier curve were located 
axially at the inlet plane, the midpoint, and the exit plane as indicated in Fig. 21. The exit 
plane control vector was held constant during the optimization. The y coordinate of the other 
two vectors were allowed to vary as design parameters during the optimization (Fig. 21). 
In addition to these two geometric parameters, the nozzle inlet total temperature and the 
nozzle inlet total pressure were allowed to vary, yielding a total of four design parameters. 
Each parameter was nondimensionalized by an appropriate reference quantity. The Bezier 
parameters were normalized by the target nozzle inlet height, total pressure by the target 
total pressure, and total temperature by the target total temperature. 

The simultaneous variation of inlet total conditions and nozzle wall contour is not 
necessarily representative of a typical nozzle design problem, but this example was constructed 
because simultaneous variation of free-jet total conditions and a variable geometry occurs 
with the supersonic forebody simulator design problem that motivated the present research. 
The target solution was defined by selecting the Bezier parameters to produce a nominal 2:1 
area ratio nozzle and applying PARC2D to solve the Euler equations using 1,600 grid points 
to resolve the domain. To form an initial guess, the inflow height and the nozzle throat height 
were reduced so that the initial nozzle area ratio was approximately doubled and the nozzle 
throat was shifted forward. The initial guess inflow total temperature and total pressure values 
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were doubled. The disparity between the target design and the initial guess is illustrated by 
comparing the centerHne Mach number profiles for the target design and for the initial guess 
(Fig. 22). As can be seen, the exit target Mach number was nominally 50 percent below the 
initial guess with a corresponding variation within the rest of the nozzle. Again, no special 
effort was made to produce a highly accurate simulation, although results agree well with 
one-dimensional theory (Fig. 23). 

Broyden's quasi-Newton algorithm was again applied in this example. For the first iteration, 
the Jacobian was approximated by a one-sided finite difference of each of the N residuals, 
as illustrated in the following example for the partial derivative of the i th residual with respect 

to the jth parameter 

8ri _ ri(Pl,...,Pj + APj,...,PM) -- ri(Pl,...,Pj,...,Pb0 (14) 
8Pj A~Pj 

As with the airfoil example, the partial derivative of the objective function with respect 
to each of the geometric design parmneters was investigated by performing a sensitivity analysis 
based on comparing derivative accuracy versus the size of Apj used in Eq. (14). 

Figure 24 depicts the variation of the normalized objective function differences, as given 
by Eq. (14), with respect to one of the Bezier design parameters, Pl, versus the log of the 
parameter step size. As can be seen, this derivative is sensitive to step size, but attains a nearly 
constant value for step sizes between 0.0001 and 0.002. Between these limits, the partial 
derivative is constant within 0.5 percent. The inaccuracy observed for large step sizes reflects 
the nonlinearity of the problem and the inaccuracy introduced by neglecting higher order 
terms in the difference approximation. The inaccuracy for very small step sizes results from 
numerical errors in the function evaluations becoming of the same order as the true difference 
in functional value. From this data a step size of 0.001 was selected for the Bezier parameters. 
For an Euler simulation, the residuals vary linearly with total temperature and total pressure; 
thus, these parameter step sizes are not as critical in this example. A nondimensional step 
size of 0.001 was selected for the fluid dynamic parameters to be consistent with the geometric 

parameters. 

The optimization algorithm converged tO the global minimum in four iterations, which 
required nine function evaluations. Typical convergence of the reference plane properties 
is illustrated in Fig. 25, which shows reference plane Mach number profiles for the target 
solution, the initial guess, the first iteration, and the optimum. The reduction in the objective 
function is illustrated in Fig. 26. During the optimization, inflow total conditions converged 
to within 1 percent of the correct value in 1 iteration. This is because, for this example, RP 
pressures and temperatures scale linearly with the specified total conditions. Thus, the residuals 
vary linearly with these parameters, and rapid convergence was expected since a Gauss-Newton- 
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type algorithm was applied. In fact, for an optimization problem in which the residuals are 
linear in all of  the parameters, it is well known that a Gauss-Newton algorithm converges 

to the exact solution in one iteration. The geometric parameters converged more slowly but 
still at an acceptable rate. The convergence of the full geometry defined by the individual 

parameters is illustrated in Fig. 27, which shows the iterative variation of the nozzle wall 
contour. The convergence of the individual design parameters to the correct solution is 

illustrated by Figs. 28 through 31. 

3.4 INVISCID THREE-DIMENSIONAL NOZZLE FLOW 

A 3-D rectangular nozzle (Fig. 32) was used to demonstrate that the nonlinear least-squares 
optimization method is applicable in three dimensions. The nozzle geometry and interior 
grid were defined by 3-D Bezier polynomials, Eq. (9). Four control points were specified 
at each of five axial planes so that each axial cross section was rectangular. The entire volume 

was then defined using the coordinate vectors of these 20 control points to define the Bezier 

polynomials. Two design parameters were defined as coefficients, Pl and P2, that controlled 
the length and width of the rectangular cross section at the midplane (Fig. 32). The target 
geometry corresponded to values of unity for each parameter, which produced a nozzle with 
a nominal exit-to-throat area ratio of 2.5. Total conditions were specified at the nozzle inlet. 
A static pressure below second critical was selected at the nozzle exit. This allowed fully 
supersonic flow to develop in the divergent portion of the nozzle. These geometry and boundary 
conditions produced a flow field with a nominal exit Mach number of  2.5 when analyzed 
with the Euler version of the PARC3D code. 

For an initial guess, the design parameters Pl and P2 were set equal to 2.0 and 2.5, 
respectively. This produced a nozzle with a nominaI exit-to-throat area ratio of 64. A PARC3D 

analysis of  this geometry subject to the described boundary conditions produced a flow field 
with a nominal exit Mach number of 5.8 using 23,000 grid points in the simulation. Unlike 

the target nozzle, which was square at each axial cross section, the initial guess nozzle had 
a square cross section at the inflow plane, which transitioned to a rectangular cross section 
at the midplane, and then transitioned again to a square at the exit plane. The large differences 
in exit flow conditions for the initial guess nozzle compared to the target nozzle were selected 
to illustrate that the initial guess flow field does not necessarily need to closely resemble the 
desired optimum to obtain acceptable results. The differences in the flow fields for the target 
nozzle and the initial guess nozzle geometries are illustrated by comparing the centerline Mach 
number profiles for the two designs (Fig. 33). Also presented are the distributions for the 

first iteration and for the computed optimum. 

A sensitivity analysis was performed on design parameter P t that indicated that parameter 
step sizes ranging from 0.0001 to 0.01 produce nearly the same objective function derivative 
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(Fig. 34). The variation in Fig. 34 reflects the sensitivity to parameter step size attributable 
to nonlinear effects and numerical error inherent in the objective function evaluations. A 
value of 0.001 was selected for the design variable step size in this example. Application of 
Broyden's quasi-Newton algorithm did not converge to the correct optimum for this test case. 
It is suspected that the Jacobian computation was not accurate enough for reliable application 
of quasi-Newton algorithm. When the Gauss-Newton algorithm was applied, the RP properties 
converged in 6 iterations requiring 18 function evaluations. Figures 35 and 36 provide an 
example of the RP convergence by comparing y and z centerline Mach number profiles at 
the RP for the target solution, the initial guess, the first iteration, and the computed optimum. 
The achieved reduction in objective function and the design parameter convergence is depicted 
in Figures 37 and 38, respectively, which illustrate that the global minimum of the objective 
function was isolated. Convergence is further demonstrated by comparing the wall contours 
for constant y planes (Fig. 39) and constant z planes (Fig. 40). 

3.S INVISCID SUPERSONIC FLOW ABOUT A PLANAR FOREBODY SIMULATOR 

A 3-D analog to the motivating design problem was constructed and is shown in Fig. 
41. The configuration shown was used to define the target flow variables at the indicated 
reference plane. Thirteen thousand grid points were used to resolve the domain, which was 
analyzed inviscidly by the application of PARC2D in the Euler mode. In this example, the 
Mach number at the inflow plane was treated as a design variable to represent the variable 
free-jet Mach number that would be encountered in the motivating design problem. The 
forebody simulator geometry was defined as a Bezier curve with four variable parameters. 
The geometric design variables were normalized by the forebody simulator height, and the 
Mach number design variable was normalized by the target Mach number to make each design 
variable of the same order. The RP was located one inlet height in front of the inlet entrance. 

The target design was a relatively blunt forebody with an incoming Mach number of 3.0 
(Fig. 41). The reference plane was located downstream of the detached shock emanating from 
the leading edge of the forebody. Also within the flow field, weak shocks reflect from the 
cell wall boundary and from the nozzle walls. The simulation was run with an exit pressure 
low enough to maintain fully supersonic flow across the computational exit plane. The five 
design parameters shown in Fig. 41 were then perturbed to initialize the optimization. For 
the initial guesses, the Mach number was increased by 50 percent, and the geometric parameters 
were reduced by 10 to 70 percent to intentionally provide a poor initial guess. 

The disparity between the target design and the initial guess configuration is illustrated 
by comparison of the respective Mach number contours (Fig. 42 and 43). As can be seen, 
the shock structures in front of the reference plane are very different, leading to large 
discrepancies in RP flow variables. The forebody shock passes very close to the RP in the 
initial guess configuration, which further compficates the optimization task. 
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The RP objective function was minimized by the application of the Gauss-Newton 
algorithm. Analysis of the objective function gradients indicated that the minimum derivative 
variation was about 2 percent (Fig. 44) for nondimeusionai, geometric variable step sizes 
between 0.02 and 0.05. These derivatives were not accurate enough for successful application 
of the quasi-Newton algorithm. However, when the Gauss-Newton algorithm was applied, 
convergence was obtained in five iterations requiring 31 function evaluations. The maximum 
Mach number deviation, at the RP, was less than 1 percent after only two optimization steps 
requiring 13 function evaluations, which for many applications, may be adequate. A 
comparison of the reference plane Mach number profiles for the initial guess, the target 
solution, and the final converged solution is made in Fig. 45, which shows excellent agreement 
between the target and final solutions. Figure 46 plots the objective function versus design 
iteration number illustrating that the global minimum of the objective function was isolated. 
The convergence history for each of the five design parameters is illustrated in Fig. 47. 

3.6 INVISCID SUPERSONIC FLOW ABOUT A REDUCED LENGTH FOREBODY 
SIMULATOR 

The motivating design problem requires that RP properties be matched within design 
tolerance while significantly shortening the actual aircraft forebody. An example emulating 
this type of optimization problem was constructed by seeking a forebody half the length of 
the described target forebody as depicted in Fig. 41 and retain the RP target values defined 
in Section 3.5. This length restriction excluded an exact match of RP variables from the 
optimization design space. Each candidate design was analyzed as a full test cell configuration 
without using a plane of symmetry as with the target configuration. Each design was analyzed 
inviscidly by the application of the blocked version of PARC2D in the Euler mode using 
26,000 grid points to resolve the domain in each CFD simulation. 

The optimization problem was constructed using four design variables. The inflow plane 
Mach number (normalized by M = 3.0 as a reference Mach number) was used as a fluid 
dynamic design variable. The forebody simulator geometry was again defined as a Bezier 
curve with the vertical component of three of the Bezier control vectors used as design variables. 
These geometric design variables were normalized by a reference length equal to the height 
of the target forebody. As with the full-length forebody design, the Gauss-Newton algorithm 
was applied. In three iterations, requiring 16 function evaluations, the deviation from 
normalized RP objective function components of total pressure and axial Mach number was 
as indicated in Figs. 48 and 49. In these figures, each RP component was normalized by 
the corresponding target value to facilitate comparison of the various design iterations. The 
target values for the vertical Mach number component were very near zero; thus, comparison 
of the actual residual components is most meaningful and is presented in Fig. 50. The total 
temperature component of the objective function is not presented since total temperature 
remains constant, within numerical accuracy, for this inviscid computation. 
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As seen from Figs. 48 through 50, each component of the objective function was reduced 
from its initial value. The convergence and rate of reduction of the total objective function 
is further illustrated in Fig. 51. Further iterations failed to yield any appreciable reduction 
in the objective function. Additionally, the contribution from the total temperature components 
to the objective function sum became of the same order as the total pressure and Mach number 
components. This indicated that further reduction in the objective function was unlikely, 
since for the Euler simulations, any mismatch in total temperature could be attributed to 
numerical error. The comparison of the RP Mach number for various iterations, as shown 
in prior examples, is presented in Fig. 52. The variation of the geometric contour is illustrated 
in Fig. 53. In this two-dimensional example, the Gauss-Newton algorithm was able to 
substantially reduce the deviation of RP fluid dynamic parameters from the prescribed 
distributions leading to a substantially improved design. The number of required function 
evaluations is also within practical limits using current technology. 

4.0 USAGE CONCEPTS 

The computer program that was used to generate the previous results is available for 
application at the AEDC. Although it is still a developmental code, it is relatively easy to 
apply. This section is not intended to serve as a complete user's guide for the developmental 
code, but will serve to briefly describe information required to apply the design optimization 
code in its present form. 

Input variables required by the code are supplied through a namelist format. However, 
before defining the necessary input variables, an overall description of the design process 
is helpful. Examination of Fig. 2 reveals four key steps in the design optimization process, 
(I) definition of design variables, (2) analysis of the candidate design, (3) measure of the 
design quality, and (4) adjustment of the design variables. 

Design optimization methods are intended to assist the engineer in developing a quality 
design. They are not intended to eliminate the need for good engineering judgment. Defining 
the design variables and measuring the design quality are two areas where a thorough 
understanding of the design requirements and a recognition of the important design parameters 
is essential to developing a quality design. Within this research, a least-squares norm at the 
IRP was used as an objective function to measure the design quality. This objective function 
was assumed to be a function of the selected design variables. If the IRP objective function 
is not responsive to variation of the selected design variables, then the problem is not well 
defined. It must also be remembered that design variable specification defines the allowable 
design space that will be searched for the optimal design. If the defined design space is too 
restrictive, the resulting design may be unsatisfactory even though the optimal value, within 
the allowable design space, was properly located. This is one of the reasons that the Bezier 

26 



AEDC-TR-90-22 

surfaces were selected for geometric parameterization. They exhibit the desirable features 
of providing a wide range of geometric flexibility for a relatively small number of design 
variables. An increase in the number of design variables directly increases the number of 

function evaluations (CFD simulations) required to attain an optimum. 

As with any CFD simulation, all results should be carefully analyzed. For the coupled 
optimization method, multiple CFD simulations are combined to determine design space 

gradients that iteratively leads to an optimized design. If the results of the simulations are 
not consistent and reliable, then poor results are to be expected (garbage-in yields garbage- 
out). Some items to pay particular attention to include (1) large variations in grid quality 
between simulations, (2) temporal variations attributable to inherent unsteadiness or poor 

convergence, and (3) generally poor results near the IRP. 

For an N-dimensionai design problem, a CFD simulation is required for the base design 

and N perturbations to the base design. The perturbation value is specified by the user and 
should be consistent with the design variable. Typically, this value is determined by examining 

the design space as described in Section 3 of this report. The optimization code is executed 
as a postprocessor after each CFD simulation to evaluate the objective function and to compute 
the value of each design variable to be used for the next function evaluation. One initialization 
run is required to establish target IRP values. In this manner, the optimization code guides 

the engineer to the optimal design. 

4.1  F I L E  U S A G E  

The job control file must fetch necessary input files, compile, load, and execute the source 
code and dispose generated output files. The source code requires four input files as follows: 

1. Un i t  # 2 - -  a PARC format restart file corresponding to the current set of design 

variables. 

2. Unit # 3 - -  the optimization code restart file, which contains IRP flow variables 

and IRP grid coordinates for all prior design iterations. 

3. Unit # 5 - -  a nameHst input file that contains code variable definitions to control 

program execution. 

4. Unit # 9 - -  a design variable history file that is used to monitor the iterative 

behavior of the design variables and convergence toward the optimal design. 
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Two output flies are created containing 

1. Unit # 7 - -  the updated optimization code restart file. 

2. Unit # 10 - -  the updated optimization code design variable history file. 

Coupling the optimization code to an analysis code other than PARC would necessitate minor 
changes in the input subroutine. 

4.2 NONDIMENSIONALIZATION 

Since diverse flow properties are used to comprise the IRP residuals, each residual 
component is normalized by a user-seleeted reference value, as noted in' Section 2.3.2. A 
general recommendation is to make each residual term of order one, in which case each 
component of the residual will be driven to zero at approximately the same rate. However, 
there may be instances where the user wishes to bias the solution by weighting one set of 
residuals more heavily than other residuals. This can be accompfished by choosing an 
appropriate set of reference properties. 

4.3 NAMELIST CONTROL 

All user inputs to the design code are provided from Unit # 5 through the namelist titled 
"Control." These inputs are used to define (1) PARC nondimensionalization variables, (2) 
design code nondimensionalization variables, (3) IRP target value definition, (4) variable 
geometry indices, and (5) optimization code operation. Some variables contained within this 
namelist are strictly for code development and diagnostic use. Description of variables needed 
to execute the design optimization code are 

DTH Real vector specifying the perturbation value for each design variable 
during derivative computations 

IltACKUP Development and diagnostic use 

ICI Integer vector identifying the set of candidate designs to use within 
the current optimization step 

FMACH The reference Mach number used to normalize the directional Mach 
number residual components 

GAMMA PARC code specific heat ratio 
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Integer vector specifying the set of candidate designs needed to form 
quasi-Newton Jacoblan algorithm (Broyden's update formula) 

Beginning j-index for the variable design geometry. Used only for 
postproeessing of results. 

IRP j-index 

Variable design geometry ending j-index. Used only for postproeessins 
of results. 

Variable design geometry beginning k-index. Used only for 
postprocessing of results. 

Variable design geometry ending k-index. Used only for 
postproeessing of results. 

IRP ending k-index 

IRP starting k-index 

Skip factor to specify the frequency with which a full Gauss-Newton 
optimization step is performed. KSKIP = 1 implies all steps will be 
Gauss-Newton, KSKIP = 5 implies every fifth step is Gauss-Newton 
with all other steps quasi-Newtnn, etc. 

Variable design geometry beginning l-index. Used only for 
postproeessing of results. 

Variable design geometry ending l-index. Used only for postprocessing 
of results. 

IRP ending l-index 

IRP starting l-index 

The cumulative number of candidate designs 

Development and diagnostic use 
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NBROYSTP The number of designs used to execute the Broyden update formula 

NSTART Initialization parameter. If NSTART = 0 the code performs a first 
pass initialization to define IRP values 

PREF PARC code reference pressure 

PTNORMAL The reference pressure used to normalize the total pressure residual 
components 

TREF PARC code reference temperature 

TrNORMAL The reference temperature used to normalize the total temperature 
residual components 

5.0 SUMMARY AND CONCLUSIONS 

A direct aerodynamic design optimization technique that couples an existing Euler/Navier- 
Stokes solver with efficient nonlinear least-squares minimization algorithms has been developed 
and demonstrated by successfully applying the technique to representative aerodynamic design 
problems. This demonstrated that design space gradients, required by the Gauss-Newton- 
based optimization algorithms, could be reliably formed from Euler/Navier-Stokes CFD 
simulations. In fact, for two examples presented, a quasi-Newton algorithm was successfully 
applied to determine the optimal design variables. The examples were deliberately started 
from poor initial designs to assess the capability of the design technique to converge from 
poor initial conditions. Although this does not yet achieve the desired 3-D forebody simulator 
design capability, it does represent significant progress toward satisfaction of that goal. 

To date, this resea~'ch has evaluated the feasibility of coupling nonlinear optimization 
methods with CFD. Existing Gauss-Newton and quasi-Newton optimization algorithms were 
employed with minimal modifications with good results obtained for several representative 
aerodynamic design problems. The quasi-Newton algorithm was not successful for the more 
aerodynamically complex examples, but was significantly more efficient when applicable. 
This suggests that alternating between the two algorithms may produce a more efficient 
optimization strategy if reliable switching criteria can be determined. Because of the complexity 
of the motivating application, the optimization algorithms were coupled with an Euler/Navier- 
Stokes CFD code, which makes the function evaluations computationally expensive. However, 
the same method could be coupled with a less complex CFD technique for design problems 
in which an Euler or Navier-Stokes simulation is not required. 
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The approach presented provides the designer with a potentially powerful tool to assist 
in many designs for which a meuure of design quality (objective function) can be adequately 
defined. Because of the flexibility afforded by the current CFD codes, this technique can 
be applied to virtually any steady-state aerodynamic optimization problem for which the 
selected CFD code is capable of providing a reliable aerodynamic analysis. The design method 
is reliable in the sense that improvements to the initial design are achieved, and it is efficient 
in terms of minimizing the number of function evaluations required to determine the optimal 
design variables. For complex 2-D aerodynamic designs, the method requires on the order 
of 10 to 50 function evaluations, depending upon the quality of the initial design, number 
of optimization parameters, and RP simulation tolerances. This number of function 
evaluations is feasible with access to modern supercomputers and use of appropriate CFD 
codes that efficiently yield the desired flow physics. As demonstrated by one simple example, 
the design method is applicable in three dimensions. However, the efficiency of the optimization 
process must be enhanced before this technology can be considered a practical 3-D design tool. 

6.0 RECOMMENDATIONS 

Achieving the "generation 6" forebody simulator design capability, proposed by the 
ASD/AEDC ASTF free-jet development technical steering committee, requires continued 
development of aerodynamic design optimization techniques. Computational fluid dynamics 
is certainly not a mature science and the use of CFD within a design optimization framework 
is in its infancy. If continued development of a "generation 6" design capability is deemed 
a priority item at the AEDC, then the following topics need to be investigated. 

1. Investigate the application of design optimization via control theory as proposed 
by Jameson (Ref. 18). 

2. Investigate the application of genetic algorithms 0tef. 19) to minimize the number 
of required CFD simulations. 

. Improve the present direct optimization method by combining the efficiency 
characteristics of the quasi-Newton algorithm with the reliability characteristics 
of the Gauss-Newton algorithm. 

4. Develop a method of selecting the appropriate design variable step sizes that is 
more efficient than the standard sensitivity study. 

5. Develop a technique that relaxes the requirement that each CFD simulation must 
be fully convergent. 
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6. Reduce computational costs by using lower order CFD analysis techniques (MOC, 
PNS, etc.) in preliminary design phases. 

7. Reduce computational costs by improving the efficiency of the CFD analysis code. 

8. Reduce the labor required to perform each CFD simulation. 

Items I and 2 represent research in areas with tremendous potential. Both of these 
techniques have the potential to not only reduce the computational effort required to optimize 
a given design, but they could also extend the allowable design space without significant 
penalty. However, neither optimization method has been investigated or applied extensively 
to realistic design problems. Items 3 through 5 are ideas to improve the efficiency of the 
subject direct optimization method. Item 6 is a suggested engineering approach to reduce 
computational costs and total design time within the existing optimization framework. Items 
7 and 8 address the CFD analysis portion of the design process, which is where the 
preponderance of computational resources and manpower is expended. Again, CFD is not 
a mature science and we must continue to explore more efficient and more accurate means 
of analysis in addition to ongoing efforts to extend the application of CFD to more 
geometrically and aerodynamically complex configurations. 
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Figure 2. Design optimization strategy. 
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1.0 

0 
- 1 . 0  

t J .  

_> 
1:; - 2 . 0  
0 

0 
01  
o - 3 . 0  

m 

-4.0 

- 5.0 I I I I I ? 
0 1 2 3 4 5 6 

I t e r a t i o n  N u m b e r  

Figure 10. inviscid airfoil objective function reduction for specified surface pressure 
distribution. 

40 



' AEDC-TR-90-22 

0.150 

0.120 

E 
2 0.075 m 
o .  

C 

tJq 
U 

primal Value = 0.120 

I 0 I I I I I 
0 1 2 3 4 5 5 

Iteration Number 

figure U .  luviscid airfoil design parameter convergence for specified surfsce pressure 
distribution. 

Specified Free-Stream Conditions 

----ira. 
Specified Free-Stream 
Conditions 
Math Number = 0.8 

Y ~ 1 1 1 ~ _  Reference Plane 

DO 
#o 

NACA0012 Contour 
Re = 106 

Figure 12. Viscous airfoil optimization. 

Specified 
Static 
Pressure 

X 

41 



A E D C - T R - 9 0 - 2 2  

~ z z z  z - -  - - _ _ _ -  

Target Airfoil Contour 

Figure 13. Viscous airfoil target velocity field. 

0.2 

C 

~5 

o 
z 

0.1 

A - T a r g e t  Prof i le  
B - In i t ia l  Guess Prof i le  
C - First I t e ra t ion  Prof i le  
D -  Third  I te ra t ion  Prof i le  

f 
r . , 

0 

A t D 

B 
! | 

0.5 1.0 

Axia l  D is tance  

Figure 14. Viscous airfoil contour variation. 

42 



Iteration Number 

1.0 

0 

~o - 1.0 

~ -2.o 

~ -3.0 

-4.0 

- 5.0 
0 1 2 3 

0.150 

Figure IS. Viscous airfoil objective function reduction. 

0.120 

q) 

E 
¢1 

Q. 

C 
O~ 

0.075 

I 
0 1 

AEDC-TR-90-22 

Optimal Value = 0.120 

Iteration Number 

Figure 16. Viscous airfoil design parameter convergence. 

43 



AEOC-TR-90-22 

.,.,.,,41, 

, . . . . I ,  

,.,..,41. 

. . . - 4 "  , , . . . . I "  A . . . .P  

. . . , 41 ,  

. . , . 4 .  
- - - ~  . _ . . .  

m 

Initial Guess Airfml Contour 

0.2 

Figure 17. Sepmted viscous 8irfofl contour vsristton. 

8 

0.5 

o,1 

A - Target Profile 
B-  Initial Guess Profile 
C - First Iteration Profile 
D - Sixth Iteration Profile 

Axial Distance 

1.0 

Figure 18. Separated viscous 8irfofl initial guess velodty field. 

44 



5.0 

2 .5  
o 
e 
e- 

U .  

>. 
e 

O 
O1 
o 

- 2.5 

0.25 

0.20 

i 0.15 

o 0.12 

AEDC-TR-90-22 

-5 .0  I I I I i ! 
0 1 2 3 4 5 6 

I teration Number 

Figure 19. Separated viscous airfoil objective function reduction. 

,R 

~, O.lO 

0.05 Optimal Value = 0.120 

0 i I I .  I I I 
0 1 2 3 4 5 6 

I teration Number 

Figure 20. Separated viscous airfoil design parameter convergence. 

45 



AEDC-TR-90-22 

3-Parameter (PI, Pa, P3) 
' - "  Bezier Curve 

P l ~ . ~ ~ ~  PlaneReference 

Specified ~.. .................................... 
Total ~ x 
Conditions 

Supersonic 
Outflow 
Boundary 

Figure 21. Planar convergent/divergent nozzle optimization. 
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Figure 22. Planar convergent/divergent nozzle eenterline Macb number distribution. 
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Fik, ure 23. PIsnxr convergent/divergent nozzle centerline Mxch number compJurison to one- 
dimensions1 theory. 
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Figure 24. Planer convergent/divergent nozzle objective function derivative sensitivity. 
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Figure 26. Plsnsr convergent/diverHent nozzle objective function reduction. 
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Figure 27. Planar convergent/divergent nozzle wall contour variation. 
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Figure 28. Planar convergent/divergent nozzle Bezier design parameter, Pt, convergence. 
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Figure 29. Planar convergeut/divergent nozzle Bezier design parameter, P2, convergence. 
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Figure 30. Planar convergent/divergent nozzle total pressure design parameter, P3, 
convergence. 
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Figure 31. Planar convergent/divergent nozzle totsl temperature design parameter, 1'4, 
convergence. 
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Figure 32. 3-D convergent/divergent nozzle optimization. 
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Figure :33.3-D convergent/divergent nozzle centerline Maeh number distribution comparison. 
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Figure 34. 3-D convergent/divergent nozzle derivative sensitivity. 
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Figure 3'3. 3-1) conve~ent/diverBent nozzle RIP Mach number variation (Z = 0). 
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Figure 36. $-D converlent/divergent nozzle RIP Mach number variation (Y = 0). 
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Figure 37. 3-D convergent/divergent nozzle objective function reduction. 
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Figure 38. 3-D convergent/divergent nozzle design parameter convergence. 
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F i g m  :39. 3-D convergent/divergent nozzle wall contour convergence for constant Y plane. 
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Figure 40. 3-D convergent/divergent nozzle wall contour convergence for constant Z plane. 
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Figure 42. Target design Mach contours in the forebody simulator/inlet region. 
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Figure 43. Initial guess Mach contours in the forebody s~mulator/inlet region. 
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Figure 44. Planar supersonic forebody simulstor derivative sensitivity. 
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Figure 45. Plsnsr supersonic forebody simulator RP Msch number profiles. 
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Figure 46. Planar supersonic forebody simulator objective function reduction. 
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Figure 47. Piansr supersonic forebody simulator design parameter convergence. 
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figure 48. Compstrison of the tots/pressure component of the objective function for u 
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Figure 49. Comparison of the axial Mstch number component of the objective function for 
st shortened forebody simulsttor. 
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Figure 50. Comparison of the vertical Macb number component of the objective function 
for a shortened forebody simulator. 
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Figure Sl. Shortened supersonic forebody simulator objective function reduction. 
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Figure 52. Shortened supersonic forebody simulator RP Math number profiles. 
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Figure 53. Shortened supersonic forebody simulator variation in variable geometry. 
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A P P E N D I X  A 

GAUSS-NEWTON ALGORITHM 

To formulate the nonlinear least-squares minimization algorithm, let the residuals 
ri(Pl,...,PM), i = 1,2,...,N, be functions of  the M design parameters, P__. To minimize ri, in 
the least-squares sense, values for the parameters, P, are found that minimizes 

N N 
F(P_) = Z; { y i -  fiP(.p_)} 2 = E {riP(p_)} 2 (A-I) 

i ff i l  i ff i l  

where Yi denotes the N specified reference plane quantities, and fi denotes the computed M 
quantities for the associated design parameters, P. 

The Gauss-Newton minimization algorithm is derived by first substituting a first-order 
Taylor series expansion about p_0 into Eq. (A-l) for r|(]~). This yields 

F(P___.) - E ri(PO) + ~ A (A-2) 
i f  I j = I OPj 

with A_p_j defined as the jth component of  the vector 

Ap_ = p - p__o (A-3) 

Minimizing Eq. (A-2) requires 

0F(D 
OPk 

= 0 (A-4) 

for each k. Applying condition, Eq. (A-4), to Eq. (A-2) yields the following system of 
equations: 

N M 8ri(P__0) pj~ 0ri(P0) 
2 E ri(P °) + E A = 0 (A-5) 

i =  I j = i OPj J OPk 

for k ffi 1,2,3,...,M. Rearranging (A-5) 

m { M ori(~0) } 
~ aPj 

i ffi 1 j ffi I 8Pj 

N { ar+(]~o) 
Ori(~ °) = _  ~ ri(P °) 

OPk i ffi 1 OPk 
(A-6) 

Defining J as the Jacobian matrix of the residual vector, _R, with respect to the parameter 
vector, P, allows the M equations defined by Eq. (A-6) to be written more concisely in vector 
notation as 
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JT J A p  -- - JT R (A-7) 

where J is defined by Eq. (5). This M-by-M system of equations is then solved to determine 
the parameter corrections at each iteration. 
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.APPENDIX B 

BROYDEN'S 3ACOBIAN UPDATE FORMULA 

Application of the Gauss-Newton optimization algorithm requires solution of the system 
of equations, 

JTJAp = _ JT_R (B-l) 

where _R denotes the residual vector of length N, P denotes the parameter vector of length 
M, AP_ denotes the computed change in parameters, and J denotes the Jacobian matrix of 
_R with respect to P. Equation (B-I) then determines a search vector, AP_, and a linear search 
can be carried out so that 

Pk+l = Pk 4" pAP_. k (B-2) 

where v is selected to reduce the norm of _Rk + t sufficiently below the norm of _Rk. Eliminating 
the linear search is equivalent to specifying v = 1 in Eq. (B-2). 

A quasi-Newton method is derived by assuming at the k m iteration a current design point, 
Pk, and an approximation, Bk, to Jk has been obtained. The Jacobian initial value, B0, can 
be computed by a finite difference approximation. The first-order Taylor series expansion 
of _Rk+ ! gives 

Rk+l = R k + JkAV__k (B-3) 

or in terms of the Jacobian approximation, Bk, 

B k ~  = ARk (B-4) 

A method is sought to approximate Bk+l without reapplying a finite difference 
representation. The method introduced by Broyden (Refs. 12 and 14), requires that Bk+l 
satisfy the quasi-Newton condition, 

Bk+IAPk = ARk (B-5) 

which provides N equations for the N × M unknown elements of Bk +1 in Eq. (B-5). This 
is motivated by examining the behavior when _R is linear. For linear _R Eq. (B-5) constrains 
Bk +i to hold exact derivative information in the direction of APk. This is apparent from 
Eq. (B-3), which is exact for linear _R. The additional N × (M - 1) equations are obtained by 
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requiring the change in R predicted by Bk +I in all directions orthogonal to &P_k, to be the 
same as would be predicted by Bk. Symbolically, that provides 

Bk+lqi = Bkqi (B-b) 

where the qi form a basis in the ( M -  1) dimensional subspace orthogonal to AP k. Thus, 

ApIq  i = 0 (]]-7) 

for each of  the M -  1 directions, q i. Define Q to be a matrix of  vectors so that 

Q = (~Pk q l  q2 ..o q0~l-l)) (B-8) 

For convenience select the length of  q i as 

Now 

which yields 

qT qi ---- AP__.kTAp__.k 

QTQ = (apTap_k)i 

(B-9) 

(Bol0) 

Q-I  = QT (B-I I) 

Combining Eq. (B-8) with Eq. (B-6) gives 

Bk+lQ = BkQ + (Bk+IAPk - B~AP_k)M (B-12) 

where 

_M = (l 0 0 ... O) (B-13) 

Combining Eq. (B-5) with Eq. (B-12) gives 

Bk+IQ = BkQ + (ARk - BkAP_k)_M (B-14) 
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Post multiplying by Q - l  gives 

Bk+l = Bk + (A~k -- BkAEk)_MQ - I  

Substituting from Eq. (B-I 1) gives 

Bk+l. = Bk + 
(ARk -- Bk~LPk)MQ T 

~PkTAPk 

which upon simplification gives 

Bk+l = Bk + 
(ARk -- Bk~Pk)AE T 

AP_.T+,p_.k 

(B-15) 

(B-16) 

(a-iv) 
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APPENDIX C 

QUADRATIC INTERPOLATION LINEAR SEARCH 

Following Hartley (Ref. 13), let Fo denote the objective function value for the initial value 

of the solution vector, p0 of a Gauss-Newton or quasi-Newton iteration. Let FI denote the P 

objective function value at the updated value of the solution vector, p t where p l is given by 

P~ = po + AE (C-l) 

with AP_ denoting the computed correction to the solution vector for the optimization 

iteration. Let p def'me a variable so that p = 0 at p_0 and p = I at p_l. The objective function 

can now be approximated in the interval (0,1) by an interpolation function with the 

optimization value analytically determined. In particular, if the objective function is evaluated 

at !, ffi m, within the interval, then F(P ° + j, Ap_) can be approximated by a quadratic 

function of  the form 

f(p) = pp2 + q~ + r (C-2) 

If Fm satisfies the criterion 

Fm < F0 (C-13) 

and 

Fm< Ft (C-4) 

then a minimum of f(p) must exist in the interval (0,1). Differentiating Eq. (C-2) with respect 

to p* and setting the result equal to zero yields 

• q 
= (C-5 )  

2p 

with v* denoting the location of the minimum of F(p) in the interval. The system of equations 

l0 0:1(  
mZ m I ~Fm/ 
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is solved to determine the coefficients p, q, and f of the quadratic. Substituting these coefficients 
into Eq. (C-5) yields 

I (I  - m 2) Fo  + m a F l  - Fm p* ffi - -  (C-7) 
2 (I - m) Fo + mFl - Fm 

The functional value f(p') should then be a better approximation to the minimum than FI, 
which resulted from the optimization algorithm. Because of the expense of function evaluations 
within this research, the described line search was only used when the optimization algorithm 
failed to produce a reduction in functional value. Symbolically, if F1 > Fo, then the line 
search was used. A similar quadratic line search method can be derived for the interval by 
using F0, FI, and the f'(0). Since f'(0) is computed to implement the optimization algorithm, 
this approach eliminates the need for the evaluation of Fro. This implementation was not 
evaluated herein. 
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C2 
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Mx 

My 

Mz 

N 

N, 

N¢ 

P 

Pi 

PT 

rj 

R 

RP 

NOMENCLATURE 

Jacobian approximation 

First algebraic test function convergence criterion 

Second algebraic test function convergence criterion 

Least-squares objective function 

Bernstein basis function defined by Eq. (I0) 

Jacobian matrix of _R with respect to P defined by Eq. (5) 

Total number of design parameters 

Mach number component along the x axis 

Mach number component along the y axis 

Mach number component along the z axis 

Total number of residual components 

Number of reference plane points 

Number of parameter constraints 

Design parameter vector 

Individual design parameter 

Total pressure 

Least-squares residual component 

Residual component vector 

Aerodynamic optimization reference plane 
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TT 

U 

W 

X 

x_.i 

X__ijk 

x_(u) 

x__(u,v,w) 

y(x) 

Ap 

NACA0012 airfoil thickness parameter [See Eq. (11)] 

Total temperature 

Bernstein-Bezier interpolation parameter [See Eqs. (8) and (9)] 

Bernstein-Bezier interpolation parameter [See Eq. (9)] 

Bernstein-Bezier interpolation parameter [See Eq. (9)] 

NACA0012 airfoil axial coordinate [See Eq. (11)] 

Position vectors of Bezier control points [See Eq. (8)] 

Position vectors of 3-D Bezier control points [See Eq. (9)] 

Bernstein-Bezier polynomial [See Eq. (8)] 

3-D Bezier polynomial [See Eq. (9)] 

Function used to define NACA0012 airfoil [See Eq. (11)] 

Computed change in design parameter vector P 
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