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Foreword

The Navy's mission and the performance of its weapons systems rely heavily
upon knowledge of the environment in which they must operate. The amount
of data available to describe the world's oceans is expanding, due primarily
to the increase of remotely sensed information; but the ocean is still under-
sampled. Thus, to provide an accurate depiction of the three-dimensional ocean
thermal structure, we are challenged to make the best use of available
observations. Satellite measurements of the ocean's surface provide us with
a way to resolve mesoscale features, such as ocean fronts and eddies.
Sophisticated objective analyses, such as the Optimum Thermal Interpolation
System (OTIS), have been developed and implemented at the Navy's Fleet
Numerical Oceanography Center. These products assure us that such
information is intelligently combined with in situ data from ships, buoys, and
bathythermographs. Automated quality control of these data is a key element
in producing an accurate analysis product. This report focuses on those
procedures, and describes the techniques used to assure that erroneous data
are not negatively influencing .he final product. Since OTIS results and other
associated model outputs are regularly disseminated to the Fleet, improve-
ment in the quality control of the environmental data provides the Fleet with
better guidance for operational decision-making.

W. B. Moseley J. 1. Tupaz, Captain, USN
Technical Director Commanding'Officer
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Executive Summary

The Fleet Numerical Oceanography Center (FNOC) provides daily analyses
of the three-dimensional ocean thermal structure both to the Fleet and to
regional oceanography centers around the world. These analyses are performed
on both hemispheric and regional scale grids, with resolutions as fine as 20 km
in some areas. The Remote Sensing Branch of the Naval Ocean Research and
Development Activity (NORDA) has been involved in assessing the impact
of multichannel sea surface temperatures (MCSSTs) on these ocean thermal
analyses. Specifically, NORDA has worked closely with FNOC in developing
the Optimum Thermal Interpolation System (OTIS). NORDA's primary
interest was to assure that the MCSSTs were properly utilized to detect and
analyze mesoscale ocean fronts and eddies, with particular attention paid to
how the MCSSTs were assimilated with other types of data. Through this joint
effort, FNOC has successfully implemented OTIS as the operational ocean
thermal analysis system for the global analysis and the Gulf Stream regional
analysis.,

In addition to processing and assimilating data from various sources, OTIS
include algorithms to automatically make decisions about the quality of the
observations and to ignore data that are apparently erroneous1There are two
basic methods of quality controlling data in OTIS. The first is the gross-error
check, where observations are compared to the climatological first-guess field
to assure that the data fall within reasonable ranges of the expected values.
Then, groups of observations are subjected to a check for horizontal
consistency, often called a "buddy check." Thus, if a particular observation
cannot be corroborated by other nearby data, it is generally excluded from
the analysis. This report describes the details of the automated quality control
procedures in OTIS, and provides an account of the fine tuning that is necessary
to optimize these techniques. The end result is a system that eliminates most of
the bad data while retaining most of the valid observations, thus contributing
to an improved ocean thermal analysis product.
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Quality Control Algorithms for Ocean Temperature Data

I. Introduction The initial implementation of OTIS was for
Over the last two decades, we have seen dramatic hemispheric-scale (200- to 400-km resolution) analyses

improvements in our ability to describe the environ- only, and is referred to as OTIS 1.0. The Naval Ocean
ment in which we live. With the advent of remotely Research and Development Activity (NORDA) assisted
sensed data, in particular, the world's air-ocean data FNOC in the development of a regional-scale version
base has continued to expand. As a result, we now of OTIS 1.0 that can be run ir various areas on a 20- to
require some of the most powerful computers in the 40-km resolution grid. The regional analysis uses a
world to process and interpret the vast amounts of feature model approach, where front and eddy
available environmental data. Nevertheless, large positions obtained from satellite infrared and altimetry
regions of the globe remain undersampled. Not only data are used to embed physically realistic fronts and
are environmental data irregularly distributed in space eddies into the three-dimensional temperature fields
and time, but they come from a variety of sensors, each (Bennett et al., 1989).
with different error characteristics. Thus, increasingly Additionally, NORDA developed another regional
sophisticated algorithms have been developed to version of OTIS 1.0 that is capable of analyzing only
provide objective analysis systems that can intelligently sea surface temperature (SST) at even higher
assimilate the available data. Automated error resolutions. This system, called SST-OTIS, can fully
detection, while often overlooked, must be an inherent utilize the abundant multichannel sea surface
part of any such system: it is a key element in producing temperature (MCSST) data from the polar-orbiting
accurate and physically realistic analyses. satellites. Because of the large a:rounts of data that

The most common analysis technique used today is must be processed and the nut ,er of grid points
the statistical method known as optimum interpolation, that must be analyzed, the SST-OTIS was designed to
It was first applied to the multivariate analysis of envi- run on FNOC's supercomputer-the Control Data
ronmental variables by Gandin (1963). Over the years, Corporation's Cyber 205. The SST-OTIS contains all
it has been adapted for use in operational the features of the regional OTIS 1.0 plus some
meteorological analyses by the National Meteorological additional capabilities. Physically, OTIS 1.0 does not
Center (McPherson et al., 1979), the Air Force Global need high-resolution (up to 4 km) data to resolve
Weather Center, the Canadian Recherche en Prevision features on the hemispheric scale. Also, from a
Numerique (Rutherford, 1976), the European Center practical standpoint, the computer resources available
for Medium Range Weather Forecasts (Lorenc, 1981), to OTIS 1.0 are limited. Therefore, OTIS 1.0 averages
the United Kingdom Meteorological Office (Lorenc, the MCSST data to form an MCSST "superob" at
1986), the Navy's Fleet Numerical Oceanography each grid point prior to performing the data analysis.
Center (Barker et al., 1988), and others. While This procedure is neither necessary nor desirable in the
optimum interpolation has also been utilized for high-resolution SST-OTIS. To analyze mesoscale
oceanographic experiments (Bretherton et al., 1976; featresoluch s t analye meo
Freeland and Gould, 1976; White, 1977; Roemmich, features, such as fronts and eddies, we wanted to
1983; Robinson and Leslie, 1985), its use has not been consider the input of each available observation.
widespread for this particular type of application. While SST-OTIS is not a separate operational
However, the Navy has recently implemented the first product, the ideas presented here on data quality
operational three-dimensional ocean thermal analysis control apply to other analysis systems, as well, and
that uses the optimum interpolation methodology. That many of the suggested changes in quality control have
software, the Optimum Thermal Interpolation been directly incorporated in OTIS 1.0. SST-OTIS can
System (OTIS), replaced the previous analysis system, be executed in either hemispheric or regional mode,
the Expanded Ocean Thermal Structure (EOTS) with the option to superob MCSST data included, so
analysis (Clancy and Pollak, 1983), as the Navy's the SST-OTIS was used for all the experiments
operational product at the Fleet Numerical described in this paper. Hereafter, the generic OTIS
Oceanography Center (FNOC) in Monterey, is frequently referred to, unless a distinction needs to
California. be made between the various versions of the software.
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The evaluation of a data analysis scheme can take II. Background Theory
several forms. One method is to perform an objective The application of optimum inyerpolation to data
statistical evaluation of the results. This validation is analysis is described in detail by Bergman (1979) and
generally accomplished by comparing the analysis Lorenc (1981). The particular equations and notations
results at a particular point to recently obtained data used in OTIS are given by Clancy et al. (1989). In
that were not included in the previous assimilation optimum interpolation, the analyzed variable is
(Clancy et al., 1990). Given many such comparisons, obtained from a linear combination of the available
statistics can be generated to describe the accuracy of data, with weights assigned to each observation in such
the analysis scheme. But if our goal is to somehow a way as to minimize the analysis error in a least-squares
replicate the decisions that a human analyst would sense. In OTIS, the observations are converted to
make given the same information, we should also anomalies 'rrom the first-guess field, so that the
subjectively evaluatehowwell the individual algorithms analyzed temperature is actually computed as a
are meeting this goal. For example, the human analyst correction to the first-guess field (usually climatology).

Thus, given a group of N observations, the analyzed
would look at several things-the data available near
the grid point, the observations that were rejected as
erroneous, the observations that were actually included
in the analysis, and the observations having the most T, = Tkc + a,k(T ° -T;c), (I)
influence on the outcome.

The SST-OTIS was developed primarily to assure
that the MCSST data were receiving the appropriate where T, is the first-guess temperature at the grid
weight relative to the other data types, and that their point, T,' is the first guess interpolated to the location
impact on the analysis was a positive one. However, of the ith observation, T, is the observed temper-
when the OTIS data-handling algorithms were ature of the ith observation, and the weight assigned
scrutinized, many shortcomings were identified in the to the ith observation is given by a,k.
data selection and quality control procedures- The set of weights is chosen to minimize the analysis
shortcomings that detrimentally affected all data error, and is obtained by solving the set of linear
sources. The end result was that many good equations

observations were actually being ignored by the
analysis, and the data selected were often not the most = I (77Y + d A0) al,
appropriate. J

Quality control of the available data is a crucial step
in any analysis procedure. The choice to include or for i = 1, 2, .... N, (2)
exclude even one piece of information can result in
significant changes to an analysis (Thiebaux, 1980; where is the correlation between the observation
Phoebus, 1983; Hollingsworth et al., 1985), especially and the analyzed temperature at the grid point, the
if that observation is in a data-sparse region. Since an are the autocorrelations between observationai
much of the world's oceans are sparsely sampled, and every other observationj, A., is the noise-to-signal
particularly at the subsurface, it is crucial that data ratio for observation i, and 6U is the Kronecker Delta

not be discarded unnecessarily. While no objective function, defined as

quality control system is perfect, we strive for a system d = 1, for i
that will eliminate most of the bad observations without o
rejecting too many of the useful ones.

This report emphasizes the automated quality control ,, = 0, for i j. (3)
procedures used in OTIS. A brief background of
optimum interpolation is presented in Section I. The correlation function used in OTIS is the
Section III describes the original techniques used to Gaussian function
objectively quality control the data in OTIS; Section IV
discusses some of the problems with these methods. [ AxAtiAy \ /_At, :1
Section V shows experimental results that illustrate how 1i,7 = exp ( ) (
changes in the quality control algorithms greatly \AXk / \BY,/ \CT,/
decrease the incidence of data rejection. Section VI
suggests areas where further improvements in quality (4)
control can still be made. The problems with the data
selection algorithms have been discussed in a separate where Ax,, Ay, are the east-west and north-south
report (Phoebus, 1988). distances between the two locations, At,1 is the time
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difference between the two observations, and AX,, total correlation rlk is evaluated for each observation
BYk, and CT, are the E-W, N-S, and time correlation within a certain distance of the grid point-a distance
scales appropiiate to the region of interest. The that is also a function of AXk and BY,. The 15 most
correlation rl,,, can be evaluated using the same highly correlated observations are retained for input
equation, where locationj becomes the location of grid into the analysis. If fewer than 15 are available, then
point k, and At,k is the age of the observation, the entire set is used.
Figure 1 illustrates how the correlation changes with To assure that the selected observations contain valid
distance from the grid point, assuming At,k = 0 and information, some means of quality controlling the
.4 XA is twice as :arge as BY,. Figure 2 shows how the data must be provided. Before the days of

currelatioin decreases as the observations age, for computerized analyses, the human analyst would
various values of CTk. The total correlation can be survey the data and, based on his or her experience
thought of as the product of these two separate and knowledge of the physical variables beingfunctions. analyzed, would decide to reject or ignore certain

The set of N observations influencing the analysis information. This decision was usually made by

at a particular point are those observations that are the comparing an observation to other nearby data or to
mst hpatighlar coired w tose bsvatn d tal at values considered "reasonable" for that particularmost highly correlated with the analyzed value at prmtr eas ftelrevlm fgoaparameter. Because of the large volume of global
the grid point. The details of the data selection environmental data being processed today, it has
algorithms are given by Phoebus (1988). Ba--cally, the become necessary to automate almost all of the data

quality control procedures.
45ON I I I I At FNOC and other operational centers, most of the

quality control is left to the individual user. That is,
the data receive very little checking before being placed
in the data archive files. The argument for this
approach is that the validity of a certain piece of data
is somewhat dependent upon the particular application.
For example, an expendable bathythermograph (XBT)
deployed in an oceanographic eddy provides very useful

= 400 information for a mesoscale analysis. However, for
.4 a hemispheric-scale analysis, such an observation

represents a feature that cannot be resolved and is
essentially noise. For the latter product, the observation
should be rejected. The observation is not erroneous,
but neither is it applicable to the particular problem.
Therefore, each operational product must have its own

3501 I I I I rather intensive quality control procedures.
700 650 60OW

LONGITUDE
Figure 1. Spatial correlation function for AXk = 200km and III. Original Quality Control
BYk = 100 km. Contours are plotted from 0.1 to 0.9 at inter- Algorithms in OTIS
vats of O.1. The grid point is located at the center of thefigure. The quality control procedures in OTIS are

composed of three separate steps. First, obsei vations
1 0 with physically unrealistic values are ignored. Next,
0 9" Z ,. each observation is subjected to a "gross-error check,"
08- , \NN . where it is compared to climatology (the first-guess
0 7\ \ N~ N field). Finally, each observation is compared to other

--. 6 - ', '. " I "N nearby observations in a procedure known as a
0.6N.. 05 > o horizontal consistency check, or "buddy check." These0 5 - \ " "o6

0 4 ,3, ' . procedures are not unique to OTIS. They have been
1P. N ' used successfully in the meteorology community for

N " Nmany years (Daly et al., 1985).
0 " . Observations that are outside the range of normal
01-. " - ocean temperatures are rejected as the data files ace

00 12 2436 48 60 72 84 96 108 120 initially read into OTIS. Thus, reports of less than -2°C
AGE (hrs) or greater than 40 0C are screened from the analysis.

Figure 2. Time correlation function for various values of CTk, Such values often occur due to transmission or
given in hours. recording errors.
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The gross-error check is performed at the time the 1.0 SET TOSS FLAGS
anomalies are formed. If any observation deviates from THIS SIDE OF LINE
climatology by more than a fixed amount, then it is 0.9 T
excluded from the data set. Presently in OTIS, this
tolerance is constant everywhere on the grid. Data 0.8
anomalies that exceed the predefined tolerance are -=0.7 -
eliminated and never used in the analysis.

The buddy check is more an integral part of the :z 0.6 0

analysis, because it is performed at each point only o
after the (up to) 15 most highly correlated observed L, 0.5 ,
anomalies have been selected. Based upon the work c
of Bergman (1979), the buddy check compares the C 0.4 -
temperature difference between two anomalies to some C

tolerance that is a function of the autocorrelation of < 0.3 -
the two observations. in mathematical terms, the 0.
relationship that must be satisfied is 0.2

0.1
(T,0 - Tc) - (TJO - TJ )i j (a - bylJ) o', 5

k0

0 0.5 1.0 1.5 2.0 2.5 3.0
where a and b are empirical constants, r7, is the ABSOLUTE TEMPERATURE DIFFERENCE
autocorrelation computed from equation (4), and ol IT,- TI (CC)
is the sample standard deviation from the previous Figure 3. Functional illustration of the division between setting
analysis. If the absolute temperature difference between or not setting toss flags on a pair of observations being
the anomalies Ti - 7, and 17 - T is greater than the considered by the buddy check.
expression on the right-hand side of equation (5), then
a toss flag is set against each of the two observations particular autocorrelation (in other words, to the right
to indicate that they are not in agreement. The value of the line), then toss flags are set on both anomalies.
of this toss flag is 1.0. The diagram also makes it easy to see that as the corre-

After each possible pair of observations at the grid lation between the observations increases, the allowed

point has been compared in this way, the total number temperature difference between them decreases. Thus,
of toss flags set against each observation is checked. in general, data that are closer together in space and
Any observation with less than 2.0 toss flags is time are expected to agree in value more than
automatically saved. Otherwise, the observed anomaly observations that are farther apart.
with the greatest number of toss flags is removed from The particular values chosen for a, b, and o affect
the set of data selected for this grid point; it is not the slope and intercept of the dividing line. Since o
removed from the data set as a whole. Subsequently, represents the mean departure of the observations from
any flags that were set on other observations by the climatology in the previous analysis, a larger value of
rejected observation are also removed. Each remain- or reflects the fact that a higher variance is expected
ing pair of observations is then compared again using in the data anomalies. For example, an increase in o
equation (5), and the next observation receiving the from 0.30 to 0.80 moves the entire dividing line to the
most toss flags is rejected. right, thus increasing the overall tolerance for •

This iterative process continues until no observation temperature deviations between neighboring
has a total of 2.0 or more toss flags, or until only two observations (Fig. 4), with more of an increase evident
observations remain. Because only observed anomalies for the less correlated data. Similarly, adjusting the
with 2.0 or more toss flags can be rejected, at least values of a and b from 2.0 and 1.0 to 3.0 and 1.5,
two other observations must disagree with the respectively, while holding ok constant, also results in
questionable report before it can be rejected. Thus, fewer toss flags being accessed (Fig. 5). Since a and
one bad report cannot cause good data to be b are empirical constants, they can be thought of as
eliminated, tuning parameters whose values can be adjusted to

The buddy check is described schematically in further restrict or loosen the tolerance on flagging data.
Figure 3. The abscissa is the absolute temperature
difference between two observed anomalies. The
ordinate is the autocorrelation between the same two IV. Discussion of Quality
data points. The plotted line represents the dividing
line between a "toss" or "no toss" situation. If the Control Problems
two observations in question have a temperature The specific quality control algorithms that were
difference that is greater than the tolerance for that initially utilized in OTIS have been described. During
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control algorithms was undertaken, and several
1.0 SET TOSS FLAGS modifications were made as a result.
0.9THIS SIDE OF LINE First, the gross-error check was rejecting all

temperature anomalies greater than 5°C, which proved
0.8 excessive. The purpose of the gross-error check should

be to reject observations that are obviously erroneous,
_0.7 - that is, those observations outside the range of

z 06 - reasonable values for a specific location at a given time
T of the year. Since mesoscale events are sampled, even

U 05 -\ though they may not bc analyzed, deviations of 5z
0 from climatology would not be at all unusual in the

0.4 - vicinity of fronts and eddies. Therefore, it is premature
0 to reject such observations in the gross-error check.

< 0.3 -
0 It would be preferable to leave them in and allow them

0.2 to be interrogated by the buddy check. At NORDA's
suggestion, FNOC agreed to increase the tolerance

0.1 from 5' to 7°C for the hemispheric analysis.
01 IA recent occurrence of very cold water in the eastern

0 0.5 1.0 1.5 2.0 2.5 3.0 equatorial Pacific made even the 7'C tolerance seem
ABSOLUTE TEMPERATURE DIFFERENCE too restrictive for some events. For example, MCSST

T. - T,I (OC) data from May and June 1988 in the region from 100'
Figure 4. Illustration of how a larger value of o in Equa- to 160'W indicated anomalies that approached the
tion (5) increases the temperature difference allowed between limits of the gross-error checks. Figures 6a and 6b
two observations before toss flags are set by the buddy check. compare the first-guess SSTs to the values of the

MCSST superobs at the same locations for May 9,
1.0 - SET TOSS FLAGS 1988. Differences of more than 6°C can be seen near

THIS SIDE OF LINE 0.5°N and 134.0°W. The strengths of these anomalies
were verified by other independent sources of

0.8 -information. This extremely cold upwelling event,
0.8 -coupled with NORDA's observation of gaps in the

-_! 0.7 - MCSST data along the equator, resulted in changes
in the methods used to quality control MCSSTs at the

00.6- 0 National Environmental Satellite Data and
<Information Service (NESDIS). NESDIS increasedU10.5 -.-

"' their gross-error check tolerance from 70 to IO°C to
O 0.4 - assure that they were not disregarding valid MCSSTs

in this area. NORDA recommended that FNOC
< 0.3 - consider similar changes in the hemispheric OTIS gross-

0 - 0 error check, at least in certain regions.
0.2 - For regional analyses such as the SST-OTIS, a case
0.1 -can be made for allowing larger anomalies to pass

the gross-error check. For example, a slight shift in the
00 0.5 1.0 1.5 2.0 2.5 3.0 position of an eddy or the north wall of the Gulf

ABSOLUTE TEMPERATURE DIFFERENCE Stream can result in extremely large, but nevertheless
IT - TI (0C) valid, anomalies. In SST-OTIS, the gross-error

Figure 5. Illustration of how larger values of a and b in Equa- tolerance was set initially at 7*C, but has been increased
tion (5) increase the temperature difference allowed between two even more, based on data from the 30 March 1988
observations before toss flags are set by the buddy check. analysis. Figure 7 indicates the position of the north

wall in the first-guess field on that day. A large number
the development of the SST-OTIS at NORDA, it of MCSSTs are available in the outlined area off Cape
became apparent that large amounts of data were being Hatteras (Figs. 8 and 9). The 15°C isotherm, which
rejected, and the resulting analysis closely resembled is often indicative of the surface position of the north
climatology. Further investigation showed similar wall, is sketched from this data. Notice the two
problems in the global three-dimensional OTIS 1.0, meanders in this isotherm. Judging from the MCSST
as well. Therefore, an extensive study of the quality data, the north wall in the first-guess field was displaced
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Figure 6. (a) Climatological first-guess SSTs for May 9, 1988, at grid points in the eastern equatorial Pacific. (b) MCSST superob
temperatures for May 9, 1988, at grid points in the eastern equatorial Pacific.

610

199

Figure 7. Climatological first-guess SST field for March 30, 1988, with the Gulf
Stream front and eddies embedded.
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Figure 8. MCSST observations for March 30, 1988, just off the (b) ,KN
coast of Cape Hatteras. The 15 'C hand-analyzed isotherm is
shown.
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Figure 9. Hand-drawn analysis of the lCSST data shown in 37'N 1Figure 8. Note the position of the Gulf Stream as indicated by 37N

the large gradient in the MCSST data.

too far to the southeast. Although the climatology in i
the area just northwest of the first-guess position of the
Gulf Stream was approximately 14*C, the data 360 . /
indicated that the true temperature in the region was
more like 22' or 230C. However, the gross-error check '
rejected these observations because their anomalies _
were too large. Figure 10. Position of the Gulf Stream front just off Cape

Figure 10a provides a closer look at the position of Hatteras on March 30, 1988. Contours are every I C.
the north wall of the Gulf Stream in the first-guess SST (a) Climatological first-guess. (bi SSTanalysis with gross-error
field just off Cape Hatteras. The 15'C isotherm is tolerance of 7*C. (c) SST analysis with gross-error tolerance
highlighted. Two separate analyses were run; both used of 10°C.
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Figure 11. Shaded areas represent grid points where the buddy check was
rejecting at least one-third of the selected observations.

the same buddy check algorithms. The only difference and buddy check in the late 1970s. Since that time, they
was the value assigned to the gross-error tolerance. In have made many modifications to the original
the original analysis, many of the 80 and 9°C anomalies algorithms (Kistler and Parrish, 1982; Phocbus, 1983;
were eliminated by the gross error check, resulting n Dey and Morone, 1985; DiMego et al., 1985). The
the analyzed front shown in Figure 10b. When the gr ,s result is a buddy check with more nuances and details
error tolerance was increased from 7° to 10°C, most than the original, but one that rejects fewer good
of these MCSST observations were retained. Further- observations. Many of these ideas were easily
more, the buddy ch( k did not reject them, since each incorporated into OTIS for testing and evaluation.
group had numerous supporting observations. The For example, rather than set only toss flags when
resulting analysis repositioned the front more two observations disagree, keep flags can also be set
effectively (Fig. 10c), better reflecting the true position for a pair of observations that corroborate one another
of the north wall that is readily seen in the raw MCSST (Kistler and Parrish, 1982). Schematically, this would
data (Fig. 9). be represented by the area left of the plotted line in

Second, the original buddy check, as described, was Fgr .Oc l aapisaecmae n l lg
also rejecting far too much data. In the hemispheric Figure 3. Once all data pairs are compared and all flags
analysis, it was not uncommon for more than 30% of set, the iterative procedure that rejects data is designed
the selected observations to be rejected. In other words, to always keep any anomaly that has atlast 2.0 keep
15 observations would be selected for the analysis at flags, regardless of the number of toss flags it received.
a particular grid point, but of those 15, five or more In this way, any observation that disagrees with two
would be rejected. Figure 11 illustrates just how or more other observations can only be tossed if there
widespread the problem was. The shaded areas are the are not at least two observations that support it. Such
grid regions where at least one-third of the data points a system obviously rejects fewer observations, but fails
were rejected for the case of August 3, 1987. There were to achieve the desired result in one situation. If two
obviously not that many bad observations, so the fault groups of observations within the data search area are
was clearly with the buddy check algorithms, not in agreement (one group of data is erroneous), but

The National Meteorological Center (NMC) had each group contains at least three observation that
similar problems when they first implemented corroborate one another, no data will be rejected. Such
Bergman's optimum interpolation analysis scheme a situation could occur, for example, given co-located
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day and tright swaths of satellite data, or given a swath more than 1.5 toss flags and fewer than 1.5 keep qags.
of satellite data in the vicinity of a frequently reporting These numbers may be altered to find the particular
buoy or ship. • values that work best for each application.

To prevent the scenario described above, the flagging
procedure can be further modified. Thus, when two
observations disagree, rather than set toss flags on both V. Experimental Results
of them, other information can be used to determine The ideas suggested were applied to the OTIS buddy
which of the two is more likely in error. The typical check in an attempt to retain more data in the analysis.
instrument error for each type of observation is The results of five experiments made with the
available as normal input to the optimum interpolation hemispheric SST-OTIS are presented in the form of
scheme. These errors can be used to assign a flagging histograms in Figures 12 and 13. The first set
hierarchy to the various data types (Phoebus, 1983). of histograms, shown in Figure 12a-12e, portray how
Then, when two observations disagree, only the lowerquality observation is flagged. If the two observations many of the (up to) 15 selected observations areare of the same type, then the one that is less correlated rejected, and at how many grid points each situationwith the grid point value is flagged. The relative quality occurs. The hemispheric OTIS grid contains 3969 gridassigned to each data type is given in Table 1. Keep points, 2754 of which are over water. Thus, when OTIS
flags are still set on both observations if they used the original buddy check to quality control the
corroborate one another. data for August 3, 1987, 308 grid points tossed 5 of

A further refinement has been made to the flagging the original 15 data points, while 277 grid points
procedure at NMC (DiMego, pers. comm.). Rather rejected 6 of the selected observations, and so on
than use a value of 1.0 for each toss and keep flag, (Fig. 12a). All totaled, there were 1417 grid points that
the autocorrelation of the two points being compared eliminated 5 or more observations. Thus, 51 Go of the
is used. This value would be equal to 1.0 for two analysis points rejected at least 330 of the data that
observations that are co-located and taken at the same normally would have been included in the analysis. It
time. Normally, the flag value would be less than 1.0. is especially disturbing that a significant number of grid
This use of the autocorrelation is very appealing, for points ignored more data than they used.
it essentially gives greater weight to flags set by obser- To add another perspective to the extent of the
vations that are closer in space and time to the problem, for this particular SST analysis there were
observation being checked. Because it would normally 374 XBTs, 5261 ship/buoy reports, and 1862 MCSST
take more than two observations to accumulate a total superobs. Thus, less than 7500 total observations were
of 2.0 flags, the limits placed on the number of toss available to describe the surface temperature of the
and keep flags should probably be reduced. For world's oceans. Yet, th, original buddy check rejected
example, retain all observations that received at least 3951 of these observations (Table 2) at least once. This
1.5 keep flags and reject observations that received is more than half of the data.

Table 1. Instrument error assigned to each data type.

RELATIVE HEMISPHERIC REGIONAL HEMISPHERIC
WEIGHT DATA TYPE SST-OTIS SST-OTIS OTIS 1.0

1 XBT 0.2°C 0.2"C 0.2"C
2 MCSST 0.7°C 0.7°C 0,7"C
3 DRIFTING BUOY 1.0°C 1.0°C 2.3"C 1

4 FIXED BUOY 1.0"C 1.0"C 2.3"C
5 COASTAL MARINE 1.0C 1.0°C 2.3"C
6 SHIP 2.3"C 2.3°C 2.3"C

'OTIS 1.0 does not distinguish between ship and buoy reports.

Table 2. Total number of observations tossed
by the buddy check.

HEMISPHERIC REGIONAL
SST-OTIS SST-OTIS

CASE 1 3951 2544
CASE 2 2996 1352
CASE 3 634 223
CASE 4 562 209
CASE 5 773 193
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The first modification made to the buddy check was seems to produce worse results than the preious case.
simply to increase the difference that would be allowed While the basic idea of using the autocorrelation is a
between two temperature anomalies before toss flags sensible one, the choice of the limiting value of 1.5 k
would be set. This change is easily accomplished by arbitrary, and may not be the most suitable.
increasing the values of the constants a and b in Figure 13 shows another set of results from the five
Equation (5). Initially set at 2.0 and 1.0, respectively, hemispheric buddy check experiments. Since the data
the values of a and b were increased by 50076 to 3.0 search radii generally encompass several grid intervals,
and 1.5, resulting in the tolerance illustrated in each observation is included in the search area for more
Figure 5. The decrease in the number of observations than one grid point, and is thus interrogated by the
rejected by the buddy check is illustrated in Figure 12b. buddy check numerous times. If an observation is in
Notice, in particular, the shift toward lower numbers error, then we would expect it to be tossed by nearly
of rejected observations, even though there are still grid every grid point that selects it. Figure 13a illustrates
points that are tossing the majority of the selected the number of data anomalies that are rejected in the
observations, original buddy check by i, 2, 3 .... 50 grid points.

The next step was to include the use of keep flags Notice the large number of observations that are
as well as toss flags when the data were compared. rejected only once. This rate is a strong indicator that
Thus, when two anomalies disagreed, by the standards the buddy check is not performing as desired.
of Equation (5), toss flags of value 1.0 were set on both The modified buddy check algorithms used in cases
data points. Similarly, when the two anomalies were 2-4 result in both a reduction of the total number of
in agreement, keep flags of value 1.0 were set on both observations rejected (Table 2) and of the number
observations. Furthermore, any observation cor- of observations rejected only once or twice (Fig. 13b-d).
roborated by at least two other observations in the The improvement is especially noticeable between
group could not be rejected under any circumstances. experiment 2 and 3, due to the addition of keep flags
Observations with more than 2.0 toss flags and less in the buddy check process. Again, case 5 results 0
than 2.0 keep flags were removed, following the (Fig. 13e) are not as favorable as the preceding
iterative procedure described in the previous section. experiment.
The results were fairly dramatic, as illustrated in In addition to summarizing the results at all grid
Figure 12c. With the addition of keep flags, very few points, each experiment also tracked the performance
grid points tossed as many as five observations, with of the buddy check at specified diagnostic grid points.
most grid points only rejecting 1 or 2 data points. This Each of the diagnostic points selected 15 observations,
situation appears to be much more realistic, in the form of anomalies or residuals, for input to their
Furthermore, the total number of observations rejected respective analyses. The number of these residuals
has been reduced from 3951 originally to 634 in this rejected at each diagnostic point for each of the 5 cases
case. is shown in Table 3. The largest gains are made between

The fourth experiment involved modifying the case 2 and case 3, due to the addition of keep flags.
flagging procedure so that while keep flags were set on Special attention was paid to which particular residu-
both observations, a toss flag would be set on only one als were rejected at each point. For example, consider
of the conflicting data pair. Thus, we are assuming that the first diagnostic point, located in the equatorial
if two observations disagree, one of them is likely to be Pacific at 1.00 N, 151.01W. The selected temperature
correct and only one of them is in error. We further residuals are plotted in Figure 14a. None of the values
assume that the observation in error is the one from the appear particularly out of place, but the original buddy
source with traditionally the highest instrument error. check rejected five of these data points (Table 4). 0
If the data pair come from the same instrument type, Perhaps the most anomalous of the group is the 1.7°C
then the observation that is the least correlated with residual at 2. IN, 148.6 0 W. But the 1.7°C residual is
the grid point is assumed to be the erroneous one. This computed from an MCSST superob, while the nearby
change results in fewer observations rejected in each 2.20 and 2.9 0C residuals are from XBTs. Since the data
numerical category (Fig. 12d). are from different sources, we would not necessarily

The final case makes the same assumptions as the expect extremely close agreement. If all these residuals
previous experiment. The only difference is that the flag are allowed to remain in the analysis, as they are in
values are reduced from a value of 1.0 to the value cases 3-5, then the optimum interpolation scheme will
of the autocorrelation between the pair of observations weight the different data types appropriately. Notice
being compared, while the maximum tolerances on in Table 4 that the analyzed anomaly changes only
keep and toss flags are reduced from a total of 2.0 to slightly from case to case, regardless of which data are
a total of 1.5. Thus, any anomaly receiving at least rejected.
1.5 keep flags is always retained, while anomalies The diagnostic point located at 45.9°N, 61.6°W,
receiving 1.5 or more toss flags and less than 1.5 keep however, presents a more complex situation. This grid
flags are removed. This modification (Fig. 12e) actually point is located in a dynamically active region, which
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Table 3. Number of residuals rejected at diagnostic points.

NORTHERN HEMISPHERE OTIS ANALYSIS 3 AUG 87
1.0°N 11.2°N 13.3°N 42.9*N 45.9°N

151.0°W 118.7°W 228.2°W 26.0°W 61 5°W

CASE 1 5 8 6 8 10
CASE 2 2 5 6 5 9
CASE 3 0 1 0 0 3
CASE 4 0 1 0 0 2
CASE 5 0 1 0 0 5

Table 4. Quality control of residuals at 1.0N. 151.0°W.

LAT LON RESID DATA REJECTED
(N) (°W) (IC) TYPE CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

0.98 150.97 2.18 MCSST
1.56 152.76 1.82 MCSST
0.35 149.23 2.18 MCSST
2.10 148.55 1.72 MCSST

-0.21 153.30 2.87 MCSST
-0.76 151.57 2.89 MCSST
2.77 150.35 2.11 MCSST
0.22 151.72 2.66 XBT
2.28 147.55 2.90 XBT
1.38 146.80 2.03 MCSST
0.29 155.07 2.87 MCSST

-0.33 147.52 2.28 MCSST
-1.36 149.86 3.28 MCSST
2.44 148.70 2.19 XBT
2.10 155.90 1.27 SHIP

ANALYZED RESIDUAL CORRECTION (°C) 2.19 2.14 2.20 2.20 2.20

(a) 48-N (b)
40 N

2. 1 470
2.2 .92"

20 3.7 52
I.e 2..

2.2 460 -

0 2.9 2.7 2.2

2.9 2.3 1 3

-J 2.9 450 -. 9

3.3

-20 -147 0.2
3.0

440 2.2

_40

430 . L. I__ ___ __ ,_ ._ ._ .

1560 1540 1520 1500 1480 146W 630 620 610 600 580 56OW
LONGITUDE LONGITUDE

Figure 14. Temperature anomalies selected by the OTIS hemispheric analysis (a) for the grid point located at 1.00.N. 131.0 W.
and (b) for the grid point located at 45.9°N. 61.6 0 W.
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Table 5. Quality control of residuals at 45.90N, 61.6°W.

LAT LON RESID DATA REJECTED
(°N) (0W) (*C) TYPE CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

45.87 61 .57 2.65 MCSST
45.10 60.70 6.89 SHIP
4490 61.00 1.08 SHIP
46.60 60.00 4.76 SHIP
44.60 61.40 1.41 SHIP
44.50 61 30 -1.72 SHIP
45.40 59.70 1.30 SHIP
44.50 60.80 0.22 SHIP
46.50 59.50 5.26 SHIP
44.30 60.60 2.95 SHIP
46.70 59.30 2.05 SHIP
45.30 58.70 1.50 SHIP
43.90 62.60 2.23 SHIP
43.80 60.70 -0.48 SHIP 0

47.90 63.00 6.09 SHIP

ANALYZED RESIDUAL CORRECTION (°C) 0.30 0.36 1.15 1.35 0.94

results in a widely disparate group of observed anom- by their correlation with the analysis point and
alies (Fig. 14b). Surveying this set of data, not much according to their respective instrument errors. Table 5
agreement appears between any of the residuals. The displays the outcome of the five buddy check cases.
approach taken by the original buddy check is just to Note that case 3 removes the apparently erroneous
throw the majority of the data away (Table 5). 6.9°C residual, while analyzing one of the largest cor-
However, the analysis should be able to smooth this rections at the grid point. Considering the input data.
information intelligently, weighting the observations this case appears to be the most suitable of the five.
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Figure 15- (a) Analyzed anomalies for August 3, 1987, analysis using original
buddy check. Contours are every 0. 50c. (b) Analyzed anomalies for same analysis.
using buddy check where both keep and ross flags are set on both observations.
(c) Difference between the analyses produced in (a) and (b).
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Because of these results and other considerations, the were discarding an excessively large number of
buddy check implemented in OTIS 1.0 is the buddy observations. The gross-error check: which determines
check used in experiment 3. Since the hemispheric the allowed dcviation an observation can ha~e from
OTIS 1.0 creates superobs from the MCSST data and climatology, was too restrictive and rejected all
does not distinguish between ship and buoy data (as anomalies larger than 50C. This criterion almost
these tests do), we were concerned that the flagging guarantees that the analyzed fields will look % ery much
hierarchy would not work especially well, and that the like climatology. Based on several case studies, the
relatively few MCSST superobs would reject too many gross-error checks have been relaxed to 7:C in
of the ship and buoy reports, which are assigned larger OTIS 1.0 and 10"C in the regional SST-OTIS,
errors. The different values for hemispheric versus regional

The impact of the quality control changes on the analyses reflect the fact that the acceptable anomaly
hemispheric SST analysis are revealed in Figure 15, must be a function of the scales to be analyzed.
which shows the analyzed SST anomalies from both Furthermore, in the ideal situation, the gross-error
the original buddy check case (Fig. 15a) and the buddy check should also be a function of the particular
check later implemented in OTIS 1.0 (Fig. 15b). The location of the observation. This variation %ould allo%%
difference between the two analyzed fields is shown in less restrictive criteria to be used in areas of extremely
Figure 15c. Notice that the largest differences are cold upwelling and dynamically active regions of the
in the regions where the original buddy check rejected oceans, without permitting bad data to pass through
a large percentage of the data (Fig. 11), and that some in areas where little deviation from climatology
temperature differences are as large as 2°C. would be expected. FNOC is pursuing this idea and

The same five experiments were repeated for should implement it in the future.
a regional Gulf Stream analysis using data from Relaxing the gross-error check makes it even more
March 30, 1988. With 2 days of surface data and important to apply the buddy check properly if
without creating MCSST superobs, there were 9 XBTs, erroneous observations are to be identified and
306 ship/buoy observations, and 12,443 MCSSTs removed. Experiments with both regional and hemi-
within the grid area. The buddy check results are again spheric analyses clearly demonstrated that the original
represented by histograms, as shown in Figures 16 buddy check design was far too intolerant. Altering
and 17. The results from the Gulf Stream OTIS buddy the values of some of the empirical constants and
check were similar to the hemispheric case, with the adding the use of keep flags for corroborating
largest improvement stemming from the addition of observations greatly reduced the incidence of data
keep flags. The total number of observations rejected rejection. Other, more subtle, refinements in the buddy
in each case is given in Table 2. Note that for the check were not implemented in OTIS 1.0, but probably
regional application, case 5 results show an have merit for regional analyses, especially if the

improvement over case 4. This difference between the MCSST data are not superobed.

hemispheric and regional results is likely due to the fact One further problem with the buddy check remains.

that the MCSSTs are superobs created in the former, The buddy check implemented in OTIS 1.0 and 0
but not in the latter. Thus, for regional analyses, the described by Bergman (1979) is a point-by-point

ouddy check algorithm used in case 5 appears to be procedure; that is, only the data selected for the

the best choice. analysis at each point are actually screened. Such a

This conclusion is further substantiated by the procedure has the advantage of being fast, since it
checks only the data input to the analysis and thereforechanges in the Gulf Stream SST analyses made from hst erhtedt nyoc e rdpit

the March 30, 1988 data. Figure 18a is a plot of the hov t alh the un e pailit
analsismad wih te oiginl bddychek i plce; However, it also has the undesirable capability of

analysis made with the original buddy check in place; excluding an observation at one point while accepting
Figue 1b istheanalsisprodcedin te ffth and using it at the next. Because this is a potential

experiment. The latter case not only retains more of sourcsofgnisea i the n a s NMC la coseto
theobsrvaion, bt i alo esuts n amor relisic source of noise in the analysis, NMC later chose to

the observations, but it also results in a more realistic perform all data screening prior to beginning the actual
analysis of the south wall of the Gulf Stream. analysis, and to design the system in such a way that •
Furthermore, the analysis in the Sargasso Sea is each observation was guaranteed to be included in

smoother, again reflecting the more consistent data ea s o er ou (Kstg eran d Parr ish, u1982).
at least one group (Kistler and Parrish, 1982).

handling algorithm. During discussions with FNOC, NORDA suggested

that all quality control of the data in OTIS be done
prior to the actual analysis. This way, the rejected

V1. Conclusions observations are permanently removed from the data
During the course of NORDA's work integrating set and are not included in the analysis at any point.

MCSSTs into the various versions of OTIS, it was However, because of the major software changes
observed that the automated quality control procedures required to accomplish such a task, no action has been
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Figure 16. Histograms illustrating how many of the 15 selected observations were rejected by the buddy
check, and at how many grid points this situation occurred for the r-"ional Gulf Stream analysis on
March 30, 1988. (a) Original buddy check; (b) constants a and b increased by 50%; (c) keep flags, as well
as toss flags, set on both observations; (d) keep flags set on both observations, but toss flags set on only
one; (e) autocorrelation used as flag value and flag limits reduced to 1.5.
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Figure 17. Histograms illustrating how many times a particular observation was rejected, and the number of
observations in each of these categories for the regional Gulf Stream analysis on March 30, 1988. (a) Original buddy
check; (b) constants a and b increased by 50%l; (c) keep flags, as well as toss flags, set on both observations;
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Figure 18. OTIS 20-km Gulf Stream SST analyses. (a) Original buddy check,
(b) modified buddy check, including all case 5 options.

19



taken along these lines in OTIS 1.0. Also, at the time, Vil. Recommendations
the point-by-point buddy check did serve a useful In summary, the changes made tQ the quality control
purpose. At grid points near the boundaries of and data selection procedures in OTIS 1.0 resulted in
mesoscale features, where strong gradients exist, the an analysis that was faster, more accurate, and 'erified
buddy check could effectively decorrelate data across better against independent data sources (R. M. Clancy,
those boundaries by rejecting the large anomalies that Fleet Numerical Oceanography Center, pers. comm..
would be present in the other water mass. 1989). These experiments have further demonstrated

Several later changes make this idea much less that quality control of the available data is extremely
effective. First, the anomalies on the other side of the important. Additionally, more sophisticated,
mesoscale boundaries were large because at the time, automated procedures should be developed to
all anomalies were formed relative to the analysis grid intelligently handle the vast amounts of data that must
point. That is, once the 15 observations were selected, be checked. Since the analysis is a reflection of the input
the first guess valid at the grid point was subtracted data, it is crucial that erroneous observations are not
from each temperature observation. This oversight allowed to have an undue influence on the final
results in an observation with a different anomaly value product.
for every analysis point using that observation. Such
a definition directly contradicis the theory of
optimum interpolation, which requires that the first ViII. References
guess be interpolated from the gridded field to the Barker, E. H., J. Goerss, and N. Baker (1988).
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