
iTIC FiLE COPY'

AIR WAR COLLEGE

SOFTWARE METRICS

Ln USEFUL TOOLS OR WASTED MEASUREIMENTS?

g4 OTIC
N LECTE

LIEUTENANT COLONEL ROBERT A. AUSTIN

LIEUTENANT COLONEL JOHN M. CASE, JR

j IX " .10N STATEMENT A

1 - . pY;, role(S

7., 1990

w-i

"""RIOT

*41

AIR UNIVERSITY
UNITED STATES AIR FORCE I-

MAXWELL AIRFORCE BASE,AABMA

AIR WAR COLLEGE

AIR UNIVERSITY

Software Metrics

Useful Tools or Wasted Measurements?

by

Robert A. Austin

Lieutenant Colonel, USAF

and

John M. Case, Jr.
Lieutenant Colonel, USAF

A DEFENSE ANALYTICAL STUDY SUBMITTED TO THE FACULTY

IN

FULFILLMENT OF THE CURRICULUM

REQUIREMENT

Advisor: Mr. Robert 0. Dahl

MAXWELL AIR FORCE BASE, ALABAMA

May 1990

DISCLAIMER

This study represents the views of the authors and does

not necessarily reflect the official opinion of the Air War

College or the Department of the Air Force. In accordance with

Air Force Regulation 110-8, it is not copyrighted but is the

property of the United States government.

Loan copies of this document may be obtained through the

interlibrary loan desk of Air University Library, Maxwell Air

Force Base, Alabama 36112-5564 (telephone (205] 293-7223 or

AUTOVON 875-7223).

Accession For
NTIS GRAkI

DTIC TAB
Uwinnounced 0
Juctification-- -----

By--
Di stribution/

AvallabilitY Codes
Avall and/or

Dist Special .

ii

EXECUTIVE SUMMARY

TITLE: Software Metrics: Useful Tools or Wasted Measurements?

AUTHORS: Lieutenant Colonel Robert A. Austin

and

Lieutenant Colonel John M. Case, Jr.

A large number of Air Force programs require significant

software development during implementation. Unfortunately, the

software almost always takes longer than anticipated and

requires extensive manpower to remove latent defects from the

delivered product. Industry and academia are doing a great deal

of work in the developing field of software production and

quality metrics--tools designed to heln estimate project size

and assess software quality, thus alleviating this industry-wide

problem. This study examines the current state of these tools

to see if they provide useful measures which can improve the

software component of Air Force programs or if the effort used

to implement these metrics represents wasted manpower. The

study concludes with an assessment that the tools provide

valuable data which, when properly applied, can help software

managers set achievable schedules for quality software products

which can be completed on time and require significantly less

software maintenance manpower.

iii

d i | ., * * .- ..

BIOGRAPHICAL IKETCHES

Lieutenant Colonel Robert A. Austin (B.S. in Botany,

University of Maryland; M.S. Management, Troy State University)

has spent the majority of his career working with computers. He

spent a year in the Education with Industry program working on

the development of a personal computer. From there, he was

assigne. to Air Training Command where he managed a variety of

software development projects and pioneered the introduction of

personal computers throughout the Command. Subsequently, he

served as Chief, Systems Division, Office of the Administrative

Assistant to the Secretary of the Air Force, where he managed an

organization which provided computer and data communications

support to the Secretary of the Air Force and his staff.

Lieutenant Colonel John M. Case, Jr. (B.S. and M.S. in

Mathematics, University of Tennessee; M.S. Computer Science, The

Johns Hopkins University) has been actively involved with

computers since his college undergraduate days. In the first

half of his Air Force career, he designed numerous classified

intelligence processing systems for Electronic Security Cmmand

and the National Security Agency. Subsequently he served as

Deputy Director for Engineering in the Architecture Division of

the Air Force System Integration Office at Space Command, where

he oversaw the development of a major missile warning display

system, and served as Deputy Program Manager for Data Networks

with the NATO Communications and Information Systems Agency.

iv

TABLE OF CONTENTS

Title Page............................

Disclaimer..........................ii

Executive Summary........................ii

Biographical Sketches..................... iv

Table of Contents........................v

Chdpter One: Introduction...................1

The Growth of Computer Technology 1
Need for Computer Software...............2
Evolution of Software Metrics. 4
Problem Statement....................9
Study Limitations....................9
Study Methodology...................10

Chapter Two: Software Metric Overview............11

Why Do We Measure?..................11
What Do Soft,.rare Metrics Measure?. 13

Chapter Three: Predictive Metrics..............16

Introduction.....................16
Criteria......................17
Methods.......................21
Expert Judgment...................21
Algorithmic Models..................22
Source Lines of Code Measure.............23
Function Point Analysis 25
Summary.......................31

Chapter Four: Quality Metrics................32

Introduction.....................32
What is Software Quality' 34
Quality Factors. 35
Criteria for Measuring Quality Factors 40
Summary.......................48

Chapter Five: Application of Metrics 50

Introduction.....................50
Examples......................50
Costs.........................53

V

Chapter Six: Summary and Conclusions 55

Summary........................55
Conclusions......................57
Recommendations....................58

Bibliography....................... 60

vi

CHAPTR ONE

INTRODUCTION

The Growth of Computer Technology

Almost everyone in America is aware of the revolutionary

advances in computer technology that have occurred in the last

two decades. It is difficult to think of an area that has not

been touched by this revolution--microwave ovens, automobiles,

children's toys, cameras, stereo systems, etc., all use

computers to control at least some of their functions. Many of

us now have complete systems at home that rival the power of

mainframes in our college days.

Military weapon systems reflect this same trend towards

increased use of computers. Indeed, the military funded much of

the research and development which fueled the revolution. This

rapid technological growth has resulted in an exponential

increase in the computer software component of Air Force weapon

systems. As an example, the F-4 fighter used during the Vietnam

War contained no digital computers--and therefore no software.

The F-16A which replaced it in 1981 had seven computer systems

with fifty digital processors and 135,000 lines of code. When

the D model of the F-16 became operational in 1986 it had

fifteen computer systems and 236,000 lines of code.
1

1
James W. Canan, "The Software Crisis," Air Force Magazine, 69 (May 1986):49.

Software Metrics - Page 1

Need for Computer Software

Computers do not perform their functions just by

assembling the hardware into the appropriate boxes. All

computer-based systems need to be told what to do and when to do

it. This is the. function of the software--the set of

instructions which guide the computer in performing its tasks,

thus giving the computer its personality. Without software a

computer is just a collection of electronic parts that consume

electricity and accomplish nothing.

The design and development of computer software is a

complex task, and has grown even more so as the capabilities of

computer hardware have dramatically improved. Early computers

were programmed exclusively in assembly language--the

fundamental language of the computer. As the complexity of

programs grew, however, it soon became apparent that higher-

level languages were needed, and these were soon developed. The

rational for language development was to make it easier to

program the computers--resulting in easier-to-develop, more

reliable computer systems. Ada, the language developed by the

Department of Defense for embedded systems, represents the

state-of-the-art language for use in defense-oriented systems.

Despite over forty years of experience in the

development of computer systems, the services and defense

industry--indeed the computer industry in general--has a dismal

Software Metrics - Page 2

record of software production. Systems are rarely completed on

time and require excessive manpower to maintain after they are

delivered. A typical example of schedule overruns was reported

by the Software Development Integrity Program (SDIP) office at

the Air Force Aeronautical Systems Division at Wright-Patterson

Air Force Base in Ohio. None of the projects tracked in this

study were completed on time! Figure 1 illustrates their

disturbing findings.
2

SOFTWARE SCHEDULE

L °1

- r

I S S

Figure 1

A more recent example is the Peace Shield project. In

1985 the Air Force awarded an order for a $3.7 billion command,

control and communications system to Boeing Aerospace &

2
Philip S. Babel, "Software Development Integrity Program (SDIP)," Paper for Air Force

Aeronautical Systems Division, Wright-Patterson AFB, Ohio, 1988, pg. 2.

Software Metrics - Page 3

Electronics Corporation of Seattle. Boeing and several of its

partners on this program--Computer Sciences Corporation,

Westinghouse, ITT and General Electric--are among the most

prestigious computer systems houses in the United States. The

original software estimate of 223,000 lines of code has more

than tripled to 792,000. The delivery date has slipped by more

than four years (from 39 months to 92 months).3 Clearly, some

of the largest and most experienced firms in the industry are

unable to predict software costs and schedule with any degree of

accuracy--a disturbing fact that has caused the Air Force many

problems wi-.i a $3.7 billion contract.

Evolution of Software Metrics

The field of software metrics has evolved in an effort

to solve these software production and quality problems.

Software metrics are tools which have been developed to measure

various parameters of software, such as lines of code,

complexity, quality, and programmer productivity. The following

definitions are typical of those we encountered in the

literature:

A metric is a measurable indication of some
quantitative aspect of a system.

4

3 David Hughes,"Boeing ToLd to SoLve Peace ShieLd Problems," Aviation Week & Space Technology,
December 18, 1989, p. 114.

480. Lennselius, Ctaes Wohtin, and Ctirad Vrana, "Software Metrics: fault content estimation and
software process controL," Microprocessors and Microsystems, 11 (September 1987):365.

Software Metrics - Page 4

A software metric is a rule for assigning a
number or identifier to software in ordec to.
characterize the software.

5

... software metrics are used to characterize the
essential features of software quantitatively,
so that classification, comparison, and
mathematical analysis can be applied.6

Industry and academia have done extensive work in the

past two decades aimed at producing software metrics which can

do a better job of predicting project size--allowing more

accurate scheduling--and controlling software quality--enabling

software engineers to produce more reliable systems which will

require less maintenance. Have these efforts produced useful

tools, or are they simply intellectual exercises developed to

justify the researchers' jobs? To answer that, we need to

understand several trends which compel managers to seek tools

which can help control the software problem. These include:'

(1) Software costs are big and growing. The Department

of Defense expects to spend $30 billion on software in

1990. This figure has grown rapidly during the last ten

years. The figure in 1979 was only $3.3 billion.7 The

civilian sector shares the same trends - software costs

5H. E. Ounsmore, "Software Metrics: An overview of Evolving Methodology," Information Processing
and Management, 20 (1984):183.

6S. D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering Met-ics and Models, Mento Park,

California, Benamin/Cumings, 1986, pg. 3.

7avid J. Marcus, "Project Bold Stroke," Signal Magazine, April 1986, p. 100.

Software Metrics - Page 5

are growing an average of 12 percent per year and will

equal 13 percent of our Gross National Product by the

end of 1990.8 These costs are large enough to merit

serious efforts to understand and control them.

(2) The software portion of systems is growing. The

cost of systems is typically divided between hardware

and software costs. Over the last decade the cost of

software has increased dramatically as a percentage of

the overall project cost. Figure 2 illustrates this

trend.9 Clearly, software has become the major cost

factor for new systems, a fact which is particularly

true for weapon systems.

(3) There is a growing shortage of computer

professionals. The national sho-tfall of civilian and

military software professionals--engineers, managers and

programmers--is expected to apprrach 1,000,000 in

1990.10 This shortfall is not unique to the military,

but affects the civilian sector as well. This forces

the military to compete with private companies for scare

resources. Many companies are offering top dollar for

8Barry Boehm and Philip N. Papaccio, "Understanding and Controlling Software Costs," IEEE

Transactions on Software Enaineering, 14 (October 1988):1462.

9
Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, N.J., Prentice-mall, 1981, p.

18.

10
Canan, pg. 46.

Software Metrics - Page 6

experienced people and are luring away the best military

people.

L0

Harware

eVeloprient
Ba

40

cii

1955 19,0 1985

Hardware/Software Cost Trends
as percentage of Lnt.A -.yRtem coaL

Figure 2

(4) Many useful software products are not qettinQ

developed. Due to the rapid growth of software and the

shortage of qualified software engineers, many

development organizations are simply backlogged. For

example, the U.S. Air Force Data Systems Design Center

has a four year backlog of important data processing

software projects which cannot be developed because of

Software Metrics - Page 7

limited manpower and funding.11 A similar backlog

exists at other-software development organizations.

(5) Software cuality is a growing problem. The quality

of software suffers when the demand exceeds the

industry's ability to produce it. Poor quality software

wastes valuable resources and, in many military

applications, hampers mission accomplishment, or may

even endanger lives (it was, in fact, a sof ire error

that kept the British frigate SHEFFELD from detecting

the Argentine missile which destroyed the ship and cost

the lives of 20 British sailors during the Falkland

Islands conflict 12).

Clearly there is ample reason to believe the efforts to

develop software metrics are aimed at real industry problems and

are not job-preserving research efforts. The magnitude of the

problem--and the dramatic personnel shortage--ensures it cannot

be solved by merely increasing the number of programmers. Such

an increase is necessary, but it must be accompanied by gains in

productivity. To accomplish this the industry must have useful

tools to measure the software product--and this is the key

function metrics serve.

11Boehm and Papaccio, pg. 1462.

12P. E. Borkovitz, "Etiminating Bugs from Weapon System Computer Programs," Military TechnoLogy,
No. 5/88, May 1988, pg. 71.

Software Metrics - Page 8

Problem Statement

The central focus of this study is to evaluate whether

software metrics have evolved to a point where their application

outside the realm of academia produces real gains, and, if so,

whether they can be used to improve the software components of

Air Force acquisition programs.

Study Limitations

Software metrics have been designed to measure virtually

every aspect of software systems. We have limited this study to

a representative sampling of the available metrics, and have

divided those we have examined into two categories:

(1) predictive metrics, 'khich are designed to provide resource

requirement estimates to aid in project scheduling; and

(2) quality metrics, which provide guidelines to help improve

the quality of the delivered product. These categories are not

mutually exclusive, nor do they represent the only possible

categories for the available metrics, but they provide a

reasonable framework from which to view the benefits which can

be gained through currently available software metrics.

Software Metrics - Page 9

Study Methodology

The methodology we employed was to survey the

appropriate literature, interview personnel who have recent

experience in the development of large computer systems, and

combine this data with the relevant experiences of the authors.

Chapter Two discusses some of the attributes which software

metrics have been designed to measure and the basic rationale

for measuring those specific attributes. Chapter Three

discusses some of the predictive metrics we examined, and

Chapter Four does the same for the quality metrics. Although

these discussions necessarily include some details, they are

primarily targeted at the intended functions of the metrics

rather than the detailed specifics--these are adequately covered

in the references. Chapter Five provides a few examples of

programs where metrics have been applied and evaluates how well

the metrics have worked at achieving their objectives. Chapter

Six presents a summary of our results and the conclusions of the

study.

Software Metrics - Page 10

CHAPTER TWO

SOFTWARE METRIC OVERVIEW

Why Do We Measure?

The introductory remarks in Chapter One described

software metrics as a field which evolved in response to

software production and quality problems which were endemic to

the software industry. Is there any historical evidence that

developing measuring tools will help with these problems?

Before answering this question, we will briefly consider one of

the classics among computer science textbooks.

One of the classic works in computer science--studied by

almost any computer science student since the mid-1970's--is a

series of books by Donald Knuth collectively entitled The Art of

Computer Programming. Note the word "Art" in the title.

Professor Knuth is a highly respected computer scientist. One

of the key purposes of his reference books was to inject more

scientific discipline into the programming field13 . He

recognized, however, that programming was largely an art--and

that programmers behaved accordingly, "crafting" their programs

and considering the results their own personal possessions. The

need to evolve software development into a strict engineering

13 Knuth, DonaLd E. The Art of Computer Programming. VoLume 1. (Reading, Massachusetts: Addison-
WesLey PubLishing Company, 1973).

Software Metrics - Page 11

discipline was recognized, but was--and remains today--far from

reality.

Knuth's desire to advance software development into the

realm of science was shared by the developers of the field of

software metrics. Capers Jones, Chairman of Software

Productivity Research, Inc. and a noted pioneer in software

metrics, has stated:

Although it is not always appreciated, tjie great
advances in chemistry, physics, and other
scientific disciplines in the 19th and 20th
centuries were preceded by advances in the
measurement of physical attributes and the
development of accurate measuring instruments in
the 17th and 18th centuries. Indeed, it can
almost be said that scientific progress of any
kind is totally dependent on the ability to
measure quantities precisely.

14

Tom DeMarco, another noted computer scientist, has stated it

more succinctly: "You can't control what you can't measure. '15

This is perhaps the fundamental rationale for the development of

software measuring instruments--with the hope that, by

formalizing software development, the "art" will become a

science, and in the process eliminate the problems addressed in

Chapter One. As history proves, however, this can only happen

if appropriate measuring tools--or metrics--are developed and

applied to the software process.

14T.C. Jones, "Measuring Programing Quality and Productivity," IBM Systems Journat. VoL. 17, 1978,

pg 39.

15Tom DeMarco, Controtting Software Projects, (New York: Yourdon Press, 1982), pg 3.

Software Metrics - Page 12

What Do Software Metrics Measure?

Software metrics have been designed to measure virtually

every aspect of the software development and maintenance

process16 . Our survey of current literature in this area

produced a wide variety of metric classifications, including

such areas as code complexity, software entropy, number of

defects, function points, communications complexity, logical

stability, data complexity, interconnectivity, program

readability, control complexity, lines of code, documentation

adequacy, requirements execution, branch points, decision

points, and numerous other classifications. We could not

possibly address every metric--or even every metric category--in

this paper. Indeed, a single reference listed over 300

metrics!17 We have therefore divided the metrics into the two

general categories mentioned in Chapter One--predictive metrics

and quality metrics--and focused our research with these

categories in mind.

Predictive metrics are those metrics whose primary

purpose is to provide data which will quantify the scope of a

software effort. These metrics are sometimes referred to as

quantitative metrics, or simply cost estimation. Predictive

16V. C6td, P. Bourque, S. Oligny, and N. Rivard. "Software Metrics: An Overview of Recent

Results," The Journal of Systems and Software, Vol. 8, pp. 121-131.

17C6td, pp 123-126.

Software Metrics - Page 13

metrics are an attempt to quantify the resources needed to

complete a software project. There is no good way to manage a

software product without the capability to accurately predict

the costs. Without a good metric, it would be impossible to

develop a schedule or evaluate factors that could effect

productivity. Thus the bottom line for predictive metrics is

that they are tools to assist the manager in the realistic

scheduling of software development resources.

Quality metrics are metrics designed to improve the

quality of delivered software products. They are designed to be

applied throughout the software life cycle, from initial design

through the software maintenance phase. This category of

metrics is aimed at providing software managers with the tools

needed to maintain a high quality product throughout the

development cycle. As we will see in Chapter Four, there are

many different types of metrics in this category, but there is

no general agreement as to which are most important. Indeed, a

definition of software quality is not even universally agreed.

There is, however, a great deal of literature in this area, with

continuing research by both the academic community and the

software industry.

Predictive and quality metrics are not exclusive

categories. Indeed, several metrics fit both categories,

depending upon how they are applied. Metrics generally are

Software Metrics - Page 14

designed to measure specific parameters which can then be used

to assess factors which effect the desired measurement category.

For example, to measure reliability--a factor which impacts

software quality--we might employ metrics that measure code

complexity, number of defects, and control complexity. The code

and control complexity measures, however, can also be employed

as predictive metrics. The next two chapters focus on the

factors which impact the selected categories and some of the

metrics which are applicable in evaluating these factors.

Software Metrics - Page 15

CHPTZR TIRE

PREDICTIVE NETRICS

Introduction

Predictive metrics are important to any software

development effort constrained by resources. If an organization

has an infinite amount of resources, then predictive metrics are

not of much value. However, virtually every project has some

constraint - typically money and time. During the infancy of

software development, it was neither sufficiently large nor

complex enough to warrant much management attention. In recent

years however, as software development has matured, it has grown

in size and complexity and now demands serious attention from

management at all levels. Managers must be able to control

software development costs and accurately forecast the time and

resources required for each project. As stated in Chapter One,

the computer industry has not been very good at estimating the

size of software. A study done at the.Air Force Aeronautical

Systems Division illustrates the problem.18 Figure 3 shows the

software growth in five weapon system programs between the

estimate at project start and the final size at acceptance

testing. The average growth for these five projects is over

100%. It is difficult to manage a program that doubles in size

18 PhiLip S. Babel, "Software development integrity program (SDIP)," Paper for Air Force
Aeronauticat Systems Division, Wright-Patterson AFS, Ohio, p. 1.

Software Metrics - Page 16

during project development. In this era of declining Defense

budgets, cost overruns in software development can cause entire

projects to be canceled or scaled back.

SOFTWARE SiZE
400

350

I 320

300]

0
U 2,

5110

00

so 407

0

// -

A / 0 F

PF (R AKS

PROPOSED ACTUAL

Figure 3

Criteria

There are numerous methods for predicting or estimating

software development costs. Most of the methods have their

roots in the academic or industrial community or both. Due to

the largely mathematical nature of software, the academic

Software Metrics - Page 17

community has long been interested in software metrics. Their

interest tends toward very complete and very precise methods.

On the other hand, the work from the industrial side tends to

stress completeness and precision only to the extent needed to

make good management decisions. Both approaches have merit and

there is a good deal of overlapping between the two. Before

examining some of these methods, it is useful to establish some

criteria for evaluation. These criteria, derived from a

primarily industrial or managerial standpoint, are:

(1) Easy to use. A good software metric must be easy

to use. If a metric is complex and difficult to use,

then people will not use it. Long and complex methods

increase the chance for error, are difficult to verify,

and require considerable resources. As stated in

Chapter One, there is a shortage of computer programmers

and analysts. Because of this shortage, metrics must be

usable by fairly low level analysts.

(2) Consistent with different languages. A good metric

should be not be language dependent. In other words, it

would work as well for software written in Cobol or Ada.

This capability is important because of today's rapidly

changing software environment. Twenty years ago,

virtually every business applicatioi was written in

Cobol. The metrics available worked well on that code.

Software Metrics - Page 18

Then, with the introduction of third and fourth

generation languages, the situation changed. These new

languages gave the developer the to ability to write

code that was smaller and more efficient. The old Cobol

metrics, however, did not work very well on the new

languages. Today, it is not unusual to find

applications written in more than one language. With

the choice of several languages, often the decision of

which language to use may not be made until part way

through the development process. Likewise, in

responding to software requirement, different

contractors could elect to use different languages. It

would be difficult to compare these proposals without a

consistent metric.

(3) Not size constrained. - The ideal metric should

work on large and complex programs as well as small and

simple ones. If different metrics are needed for

different size programs, then the analyst runs the risk

of using the wrong metric and ending up with inaccurate

data. Using different metrics also forces the analyst

to make an additional determination - size. Will the

software program be small, medium, or large? If the

metric is used to predict project size, then one ends up

with circular reasoning. The analyst must know how big

Software Metrics - Page 19

the software project is before he can select the

appropriate software metric to estimate the size.

(4) Usable throughout the development lifecycle. In

order to be a truly useful metric, it must be useable

during all phases of the development process.

Predictive metrics implies the ability to predict what

software will cost. The metric must br useable before

the development process gets underway. Cost estimates

often provide the basis for canceling or going ahead

with a project. If the requirements change during the

development phase, the manager must be able to use the

same software metric to estimate the impact of the

changes.

(5) Accurate. A software metric must be accurate to be

useful. The Chief Scientist for TRW Defense Systems

Group, Barry Boehm, suggests a standard for accuracy.

He states that a model is doing well if it can estimate

software development costs within 20% of the actual

costs, 68 to 70% of the time.19 While this standard is

not as accurate as we might like, it is good enough for

decision making and trend analysis.

19Boehm, Software Engineering Economics, pg. 32.

Software Metrics - Page 20

(6) MeaninQful to manaQement. The metric should

produce information that is helpful to manager. The

most detailed and accurate software metric is useless

unless it provides the information the manager needs to

make decisions.

Methods

In his book on Software. Engineering Economics, Barry

Boehm suggests several broad methods of software cost

estimation.20 These methods include two categories: expert

judgment and algorithmic models.

Expert Judgment

Expert judgment involves using the judgment of one or

more experts, who use their experience to arrive at a cost

estimate. These experts often base their estimates on similar

projects or past experience. Sometimes the cost estimate is

driven by the available resources or by the cost estimate

believed to win the job. Expert judgment can be a good

estimating tool, but the expert may be biased, optimistic,

pessimistic, or unfamiliar with key aspects of the project.

These weaknesses can be overcome by using more than one expert.

However, the more experts involved, the longer it takes to

208oehm, pg. 329.

Software Metrics - Page 21

complete the estimate. It is difficult to obtain a quick

estimate based on group- consensus.

How well does expert judgment fit our criteria? First,

it is easy to use - for an expert. But, as previously stated,

there is a shortage of computer experts. That shortage limits

the usefulness of this model. Secondly, if would be difficult

to make expert judgment consistent with different languages.

Unless the expert was. equally familiar with all languages

(unlikely), then there would be a natural bias towards a

particular language. Additionally, the model tends to work

better for small projects. Larger projects require several

experts and more time to reach a consensus.

Generally, expert judgment does not satisfy our criteria

completely. It is a good model to use if there are experts

available, the projects are in one or two languages, and the

projects are not very large nor complex.

Algorithmic Models

Algorithmic models provide one or more mathematical

algorithms which produce a cost estimate as a function of a

number of variables considered to be the major cost drivers.21

Compared to the expert judgment model, algorithmic models have

2 1Boehm, pg. 330.

Software Metrics - Page 22

a number of strengths. They are objective and not subject to

the biases of an expert. They use mathematical relationships,

which make them repeatable. Given the same data, the model will

always provide the same estimate. There are many good

algorithmic models available. The majority are based, to one

degree or another, on the measurement of source lines of code

(SLOC). Some examples of this type of model are: Software Life

Cycle Model (SLIM), RCA PRICE-S Model, RCA PRICE-SL Model, and

Constructive Cost Model (COCOMO). All provide reasonable cost

estimates and each has its own strengths and weaknesses. Of the

ones listed, COCOMO is probably the most popular and complete

model in use today.

Although each model approaches cost estimation a little

differently, their reliance on-the SLOC is a weakness which

bears discussion.

Source Lines of Code Measure

The single most widespread method for measuring

programmer productivity is source lines of code. A programmer

writes lines of code to generate programs. The larger the

program, the more lines of code. As a programmer becomes more

skilled, he produces more lines of code per day. In addition,

lines of code are easy to count. A very simple program can

total the SLOC in most computer programs.

Software Metrics - Page 23

However, the advent of high-level languages has turned

the SLOC measure into a paradox. High-level languages enable

the programmer to write software using fewer lines of code. The

effect is directly proportional to the level of language. The

highest-level languages have the lowest production rates.

Lines of Code as a Productivity Indicator

Assembler PL/1 APL

Source lines 100,000 25,000 10,000

Person-Months for:
Requirements 10 10 10
Design 30 30 30
Coding 115 25 10
Documentation 20 20 20
Integration/testing 25 15 10

Total person-months: 200 100 80

Total cost: $1,000,000 $500,000 $400,000

Lines of source code
per person-month: 500 250 125

Cost per source line: $10 $20 $40

Figure 4

Figure 4 illustrates the impact of this paradox. The

same application was developed using a low level language

(Assembler) and two higher level languages (PL/1 and APL). As

you can see, the Assembler effort was the most productive in

terms of SLOC per person month and APL the least productive.

However, if you look at the total cost of the project, the APL

effort took less than half the time and half the cost of the

Software Metrics - Page 24

Assembler effort. In addition, the higher-level languages tend

to generate code that is easier to maintain and better

documented. Clearly, the SLOC measure of productivity is not

meaningful when comparing more that one computer language.

In general, the algorithmic models fit our criteria

nicely. They are accurate on both large and small projects,

most are fairly easy to use, and all provide meaningful

management information. The only weakness is their dependence

on a measurement of SLOC. As discussed, this dependency makes

high-level languages appear less productive - clearly a paradox.

This reliance on SLOC also makes these models not very useable

in estimating a project in the early stages. One needs, to

estimate the SLOC before using these models. That estimate is

subject to all the biases and preconceptions of the expert, and

can produce factually misleading cost data. Both of these

weaknesses limit the usefulness of this category of algorithmic

models. There is another algorithmic type model that does not

rely on SLOC, but on an abstract concept called Function Points.

Function Point Analysis

In 1979, Allen Albrecht of IBM, introduced the Function

Point Analysis (FPA) productivity measure. His original

objective was:

... to define a measure for applications
development and maintenance functions that

Software Metrics - Page 25

avoided the problems inherent in productivity
measures in use at that time. In effect, the
measure was intended to help managers analyze
applications development and maintenance work
and to highlight productivity improvement
opportunities. 22

Basically, FPA is an attempt to measure the degree of software

functionality provided to the end user. It tries to quantify

the system from the external user's point of view. The Function

point metric is derived by a weighted formula that consists of

five items:

(1) Number of inputs, multiplied by 4

(2) Number of outputs, multiplied by 5

(3) Number of inquires, multiplied by 4

(4) Number of logical data files, multiplied by 10

(5) Number of interfaces, multiplied by 7

These attributes are counted and totalled. That figure is then

adjusted either up or down given the presence or absence of 14

applications characteristics. This adjustment is within a range

of +/- 25 percent and reflects the estimator's assessment of the

complexity of the program. The result is the Adjusted Function

Point total. This total becomes the unit of measure for that

application. Figure 5 illustrates the steps involved in

Function Point Analysis.

22ALlen J. Albrecht, "Function Points helps managers assess applications, maintenance values,"
Computerwortd, 19 (August 26, 1985, Special Report): 20.

Software Metrics - Page 26

rxternal input. output. inquiry

&interface-file types

system

Figure 5

The result will be a quantifiable measure of what a

programming team must produce. For example, a particular

program may consist of 2,000 function points. There are two

ways to relate the function point total to productivity. The

first is to measure and track your own development efforts in

terms of function points. That will give you a basis for

measuring productivity. Capers Jones, chairman of Software

Productivity Research Inc., Cambridge, MA, advocates this

approach. His study of firms using Function Point Analysis

shows that a company is doing well to produce more than 15

Software Metrics - Page 27

t e rm s........ .t.... t s.....t.........e..ou s.s. .o r

function points per staff-month on major projects. 23 However,

to effectively use Function Point Analysis you must have one or

two years worth of data to establish a baseline. This requires

careful tracking and a strong commitment from management.

However, Function Point Analysis can be used without

such a historical record. Research has shown a strong degree of

equivalency between function points and "SLOC".24 This

relationship allows the user to use Function Point Analysis to

estimate SLOC and then use a model like COCOMO to estimate the

work effort. This technique can be very helpful in estimating

costs early in the development cycle. This two step approach

could be used until a base of knowledge is developed for

Function Point Analysis.

Another interesting dimension of Function Point Analysis

is its ability to measure the power of computer languages. The

relationship of Function Points to SLOC varies from language to

language. Studies conducted by the Software Productivity

Research Inc. indicate that it takes about 105 Cobol source

lines of code to produce one Function Point. Figure 6 lists

several languages and their function point levels. As you can

see from the figure, it takes 71 SLOC of Ada to produce a

23 Capers Jones, "Building a better metric," Computerworld Extra, 22 (June 20, 1988):39.

24 ALlen J. Albrecht and John E. Gaffney, Jr., "Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Vatidation," IEEE Transactions on Software Engineering,
SE-9 (November 1983):639.

Software Metrics - Page 28

function point and only 29 in a fourth generation language like

C++. This provides the manager a clear way to measure the

increase in productivity associated with higher-level languages.

Function Point Levels for Selected Languages

Source Statements
Language per Function Point

Assembler 320
C 128

COBOL 105
FORTRAN 105
Jovial 105
Pascal 91

PL/I 80
Ada 71
LISP 64

BASIC 64
PROLOG 64

LISP 64
FORTH 64

APL 32
C++ 29
SQL 11

Spreadsheet 6

Figure 6

One study found that Cobol applications using

traditional methods and unsophisticated tools seldom achieved

productivity rates greater than five function points per staff-

month--but when more sophisticated tools and languages were used

that rate climbed to over 15 function points per staff-month.25

25Jones, "Building a better metric," pg. 39.

Software Metrics - Page 29

Function Point Analysis offers several important

strengths. First, function points can be collected before

project start and anytime during the development life cycle.

Secondly, they are independent of software development

methodology and language used. Third, function points are easy

to use. An inexperienced systems analyst can be quickly taught

to provide accurate cost estimation using Function Point

Analysis. When the concept of Function Point Analysis was first

introduced, it was criticized because it lacked a way to

quantify the structural complexity of software.26 This lack of

a quantifier could make it less accurate in estimating software

requiring complex branching and loops. Subsequent testing has

not confirmed.this fault and has shown Function Point Analysis

accurate with a wide range of projects.

Over the last eleven years, Function Point Analysis has

gained rapid acceptance throughout the industry not only as a

productivity measurement program, but as an estimating tool.

Over 500 major corporations, including firms like IBM, Xerox and

Bank of America have adopted the function point method. Some of

these companies joined together to establish The International

Function Point Users Group (IFPUG) to promote the use of

Function Point Analysis and to exchange information. Both IBM

and Software Productivity Research offer one day courses on

Function Point Analysis. At the Seventh National Conference on

26 Capers Jones, Programming Productivity, (McGraw-Hill Inc., 1986), p. 76.

Software Metrics - Page 30

Measuring DP Quality and Productivity, held on March 15-17,

1989, in Orlando, Florida, Function Points Analysis emerged as

the clear winner as a tool for quantifying productivity.
27

Summary

None of the methods discussed totally satisfied the

criteria for a "perfect" predictive metric. Most worked well

and produced good results under certain conditions. Function

Point Analysis must be highlighted because it offers two unique

and important characteristics: the ability to collect function

points at any time during the system life cycle, and an

independence from software languages and methodology which

permit its use for virtually any software project. It also

offers the unique ability to evaluate the effect of high-level

languages and tools on productivity. In the words of Capers

Jones:

The function-point method is not perfect, but it
is the most effective metric yet developed for
information systems.28

27Mark Duncan, "What gets measured gets done," System Devetopment, 9 (June 1989):3.

28Capers Jones, "Function Point Metrics: Key to Improved Productivity," informationWEEK, February
23, 1987, p. 27.

Software Metrics - Page 31

CHAPTER FOUR

QUALITY METRICS

Introduction

The predictive metrics discussed in Chapter 3 are-useful

in determining the resources needed to implement a software

project, but do not specifically address the problem of software

quality. While it is indeed important to predict the scope of

a software product to enable proper allocation of resources, it

is equally important to control the quality of the resulting

software product. A project completed on time and within budget

is of little consequence if the product cannot be effectively

used.

The majority of the cost of major software projects has

historically been borne in the maintenance phase--typically at

least 40 percent and sometimes as much as 70 percent for major

systems.29 Much of this can be attributed to quality problems

in the software product--either in the delivered code or in the

underlying requirements specifications or design documentation.

A major side effect of this statistic is that much software is

so unreliable when completed that it is simply not used.

Figure 7 shows the results of a study which clearly indicates

29Grady Booch, Software Engineering with Ada, (MenLo Park, CaLifornia: Benjamin/Cummings, 1983),

Software Metrics - Page 32

the magnitude of this problem--note that less than two percent

of the software delivered on nine government contracts could be

used effectively!
30

Where the Money Went
Nine Contracts Totalling $6.8 Million

Not Delivered
1950000

H Used as Delivered
119000

Delivered, Not Used
3200000

Used then Abandoned
1300000

Used after Changes
198000

Fig r e 7

Consequently, there has been suhstantial interest in

both the academic and industrial communities in developing

measures which can be applied during the software life cycle to

improve the quality of software products--thus reducing the

maintenance cost and eliminating the waste exhibited by

Figure 7. This chapter examines metrics primarily targeted at

improving software quality and the attributes that they measure.

30 "Contracting for Computer Software Devetopment--Serious Problems Require Management Attention
to Avoid Wasting Additional Millions," GAO Report to the Congress of the United States. 9 November 1979,
p. 11.

Software Metrics - Page 33

What is Software Quality?

Software quality seems like an obvious concept, but when

we attempt to precisely define it we encounter some difficulty.

Definitions in the literature vary from author to author, and

indeed some authors carefully avoid trying to define it. Tom

DeMarco, a noted computer scientist, defines software quality as

...the absence of spoilage, ''31 where spoilage is defined as

...effort dedicated to diagnosis and removal of the faults that

were introduced during the development process."3 2 He presents

the data shown in Figure 8, based on industry averages, to show

how much effort could be saved by eliminating spoilage--which

can be accomplished by engineering quality software.

"Analysi

" '/Coding

Maintenance

Figure 8

31Dearco, pg. 200.

32De4arco, pg. ivY.

Software Metrics - Page 34

DeMarco's definition is not shared by all authors, but

the general concept--that quality software must be correct,

comprehensible, and reliable--is generally agreed. Many authors

share the ideas initially proposed by Barry Boehm, who defines

quality software as software which exhibits the following

general characteristics, or quality factors:
33

- Reliability
- Portability
- Efficiency
- Human Engineering
- Testability
- Understandability
- Modifiability

Almost every author agrees with this list of quality factors or

some variation on them. For purposes of this paper, we will

consider what is meant by each of these factors and briefly

discuss the metrics which can be used to measure them.

Quality Factors

As described above, most authors cite a set of quality

factors which are essentially supersets of those listed by Barry

Boehm. The lists generally contain between ten and fifteen

factors, and there are, understandably, many duplications in

various authors' lists. Rather than list all of the variations,

we have limited the following discussion to Boehm's original

seven, but have used definitions from various authors to make

338. W. Boehm, J.R. Brown, and M. Lipow. "Quantitative evaluation of software quality."
Proceedings of the Second International Conference on Software Engineering. (1976): 592-605.

Software Metrics - Page 35

each factor as clear as possible. The references given are to

the author whose definition most closely matches that we have

used for the specified factor.

(1) Reliability. Reliability refers to the degree that

the software operates without errors. This is different

than hardware reliability, since software does not break

like physical things do. Virtually all large software

systems contain errors. They can, however, still be

reliable, depending on the severity of the errors and

the probability of occurrence. A misspelled word in an

operator message, for example, is generally not a

significant error and would have no affect on system

performance. One of the best definitions of reliability

we encountered was:

Software reliability is the probability
that the software will execute for a
particular period of time without a
failure, weighted by the cost to the
user of each failure encountered.34

(2) Efficiency. Efficiency refers to the execution

efficiency and storage efficiency of the delivered code.

Simply stated, efficiency is "...the amount of computing

resources and code required by a program to perform a

function.
,35

34 GLenford J. Myers, Software Reliability, (New York: John WiLey and Sons, 1976), pg. 7.

35Jim A. McCaLL, PauL K. Richards, and Gene F. Watters, Factors in Software Quatity, VoLume 3,
RAOC Report TR-77-369, November 1977, pg. 2-3.

Software Metrics - Page 36

(3) Human Engineering. Human engineering represents

the design of the interfaces between the software and

the user. Quality human engineering refers

... collectively to all the attributes
that make this interface more palatable:
ease of use, error protectedness,
quality of documentation, uniform
syntax, etc.36

These interfaces should be fully specified in the

development specifications. Inputs and outputs should

be self-explanatory, easy to learn and understand,

unambiguous, and designed to avoid misinterpretation.

(4) Portability. Portability refers to the ease with

which software can be moved to a diffeu:ent computer.

This is important for software with a long anticipated

life cycle, or which must be used in many different

places which do not have the same computer hardware.

Portability is greatly enhanced by the use of higher

order languages. One of the fundamental reasons for the

development of Ada was module reusability, which is a

subset of portability (which generally refers to the

entire software system rather than its components), and

probably the most important aspect of portability as

applied to Air Force weapon systems.
37

36Jim A. McCall, Paul K. Richards, and Gene F. WaLters, Factors in Software Quaity, Volume 1.
RADC Report TR-77-369, November 1977, pg. A-9.

37Grady Booch, "Reusable Software Components." Defense Electronics. Volume 19, No. 5 (May 1987):
S58-S59.

Software Metrics - Page 37

(5) Testability. Testability refers to the ability of

the design and code to support evaluation of its

performance. In general, well-stated performance

requirements will result in testable software. One

point frequently noted throughout the literature is that

testability does not mean we can test to the point of

complete validation. All large software systems will

contain some "bugs," and we cannot expect to completely

verify correctness. The goal of testing is to

"...assure that the probability of failure due to

hibernating bugs is sufficiently low to be

acceptable. 38 Testability refers to the ability to

support tests which will allow this level of confidence,

and clearly varies based on the particular system--with

very high requirements for major Air Force weapons

systems.

(6) Understandability. Understandability is a

characteristic of the design and code that makes its

purpose and functions easy to learn and follow. It is

specified through programming standards which -include

such features as program commenting requirements, naming

38Boris Beizer, Software Testing Techniques, (New York: Van Nostrand ReinhoLd Company, 1983), pg.
14.

Software Metrics - Page 38

conventions, limited control structures, and the use of

high order languages.
39

(7) Modifiability. Modifiability is a characteristic

of the design and code that makes it easy to change. It

is a difficult characteristic to specify and evaluate

because objective measures of modifiability are not

available during the design and development stages.

However, this is a very important factor--"The first

requirement of a large system of software is that it be

built so that it is easy to change.''40 Fortunately,

structured programming techniques include features, such

as modularity and cohesiveness, which enhance

modifiability. Software modifiability is particularly

crucial in software intensive Air Force weapons systems.

Recent Air Force initiatives have placed strong emphasis

on this requirement, recognizig its importance in

quality software systems.
41

39George Neil and Harvey 1. Gold, Software Acquisition Management Guidebook: Software Quality
Assurance, ESD Report TR-77-255, August 1977, pg. 88.

40Joseph M. Fox, Software and Its Development, (Englewood Cliffs, New Jersey: Prentice-Halt, Inc.,
1982), pg. 75.

4 1Debra L. Haley, "Software Supportability--A Ouality Initiative," Air Force Journal of Logistics.
Vol XIII, No I (Winter 1989): 22-28.

Software Metrics - Page 39

Criteria for Measuring Quality Factors

The previous section described a set of factors which

will be exhibited by quality software. While some authors

propose metrics for direct measurement of these factors, most

consider the factors too general for direct measurement and

break them down into components which can then be measured.

Figure 9 shows the resulting hierarchy.
42

CRITERION CR ITER ION CRITERION

METHIC 1 MET IC METRIC

Figure 9

The individual criterion are not unique to specific quality

factors. For example, one criterion frequently mentioned is

structuredness, which impacts four of the seven listed factors.

The specific criteria applicable to the quality factors, like

42 MichaeL W. Evans and John J. Marciniak. Software Quality Assurance and Management, (New York:
John Witey and Sons, 1987), pg. 160.

Software Metrics - Page 40

the quality factors themselves, vary from author to author. In

the following paragraphs we discuss a representative set of

criteria for each of the quality factors, and briefly outline

the applicable metrics.

The criteria which apply to the r _-------------

reliability factor are shown in Figure 10. Reliability I

Correctness means the ability of the software

to produce the specified outputs when given

the specified inputs.43 This can be Consistency

objectively measured through software orrectness

compliance audits, defect measures (errors

per thousand lines of code and similar i Simplicity

measures) and the testing process. Note the Structuredness

distinction here between the use of testing
Figure 10

as a metric and the factor of testability,

which has a somewhat different context (and will be discussed

later). Consistency refers to uniform standards for notation,

symbology, terminology, and comments--in effect a measure of the

uniformity and cohesiveness of the software design. Software

exhibiting consistent design and documentation characteristics

is less likely to contain errors and is easier to maintain.

Several consistency metrics have been automated," and some of

the modern software development aids, particularly CASE tools,

4 3Evans, pg. 163.

44 Ct, pp. 125-126.

Software Metrics - Page 41

provide an automated enforcement of consistent development

practices. Simplicity refers to the use of straightforward

algorithms and software structures in the implementation.

Historically, reliability has correlated well with code

simplicity. Simplicity is the opposite of code complexity, and

is often measured by mathematical complexity measures, the most

popular of which are McCabe's cyclomatic complexity measure and

Halstead's volumetric quality measures.45 Structuredness refers

to the degree.to which the code exhibits a structured pattern of

organization of its elements. Several automated metrics have

been developed to measure the degree to which software conforms

to commonly accepted structured programming practices.46

Figure 11 shows some of the criteria

Efficie which can be used to measure efficiency.

Accessibility refers to the ability to

selectively--and intentionally--use specified

Accessibility parts of the software code or data elements.
7

This is not a performance.characteristic, but

Device is a design element which tends to be
"Eff iciency* Efin exhibited by efficient code. It also

Figure 11 facilitates the measurement of efficiency, as

it is difficult to assess the efficiency of a module if its

4 5Evans, pp. 158-160.

46 C6t, pp. 125-126.

47NeiL, pg. 86.

Software Metrics - Page 42

performance cannot be effectively isolated. Device efficiency

refers to the optimized use of the actual computer hardware--the

central processing unit, memory, and peripherals. This element

can be precisely measured, at the system level, with hardware

performance monitors, storage efficiency analysis techniques,

and other well-established tools. Other metrics used to assess

efficiency include similar software programs ("benchmarks"),

analysis of data requirements against actual storage used, and

several specialized metrics which measure such things as

floating point efficiency, looping efficiency, and other

specific code elements.

The elements which characterize the --- I

Human
human engineering factor are shown in Engineering

Figure 12. Accessibility is discussed

above, but, in the context of human ,Accessibility

engineering, also refers to the ease with
Communicativeness

which specific modules can be accessed from '

the external user interface. Usability
L----------------------- j

Communicativeness is a feature of software Figure 12

which enhances the understandability of its

functions--tne inputs and outputs. 48 Software with easily

understood inputs and outputs is easier for a user to understand

and use. Usability refers to the ease-of-use characteristics of

software. In some respects this is perhaps the most important

48
Nei, pg. 86.

Software Metrics - Page 43

feature of a software-based system. Clearly a difficult-to-use

system will not be well received, and may not be used. We

should not forget the lessons shown in Figure 7. A general

officer--or a fighter pilot who must use a system quickly and

efficiently--must not be expected to learn and use complicated

access procedures.

Figure 13 shows the

Portability criteria associated with the

factor of portability. Self-

containedness refers to the degree

to which individual software

Device-Independence modules are independent, i.e. the

S e omodules can perform all of theirLSelf -Containedness
L .. functions without using code in

Figure 13 other modules. This enhances

portability by allowing any

required redesign to be isolated to individual modules. Device

independence refers to the freedom of the code from dependence

on specific hardware elements. Device independent code is not

affected by changes to the computer hardware or peripheral

equipment. To maximize device independence, code that directly

relates to specific hardware devices should be minimized and

isolated to specifically identified code segments. Portability

Software Metrics - Page 44

measures include the implementation language, modularity

metrics, and machine independence.

Testability is a function
of

accessibility, self-containedness, Testability

self-descriptiveness, and

structuredness, as shown in

Figure 14. Accessibility, self-
Accessibility

containedness, and structuredness

are discussed above. It is clear Self-Containedness

that software with easy access to

the functioning of self-contained Self-Descriptiveness

modules which are well structured is
Structuredness

much easier to test than software -

which does not have these Figure 14

properties. The fourth property,

self-descriptiveness, refers to the degree to which the actual

program code, together with its program comments, allows a

software engineer to understand the structure, processing flow,

and design.49 This is a subjective judgment, but can be

reasonably well assessed by an experienced software engineer who

has had experience in the applications area appropriate for a

specific software system.

49Neit, pg. 88.

Software Metrics - Page 45

r -- -F g r 15 sow hFigure 15 shows the

Understandability criteria which relate to

understandability. These factors,

which have all been discussed

C above, combine to help makeCommunicativeness
software understandable. Some

Consistency authors include factors such as

conciseness (the absence of

Self-Descriptiveness Iredundant or excessive code) and

Simplicity readability (easily understood

comments which allow quick

Structuredness isolation of functional code
L --- J

segments), but we feel these
Figure 2.5 essentially duplicate the

simplicity and self-descriptiveness measures. Software that is

consistent in its design, communicates its functions well, is

self-descriptive and well structurea in its design, and that is

not overly complex in its structure will be understandable. The

metrics described above can be used for the individual factors,

and a reasonably objective evaluation of understandability can

then be made.

Figure 16 shows the criteria for the final factor--

modifiability. Self-containedness, simplicity, and

structuredness are important features of easily modified code,

and have all been discussed already. In addition to evaluating

Software Metrics - Page 46

modifiability based on measures of

the individual factors,- the function Modifiability
point metrics discussed in Chapter

Three are often used as a measure of

modifiability--by simply measuring
Self -Containedness

the number of maintenance function

points per month which the

maintenance programming team is able

to produce. Structuredness
L - ---- - - - -- - - - - -- - - - - -- - - - -- - - - - - -- -

F'gure 16

The criteria discussed above are not, as mentioned

previousl, all-inclusive. Different authors use varying

subsets or supersets to apply to their own particular list of

quality factors. The criteria we have listed do, however,

represent a good cross-section of the literature and should make

it obvious that certain criterion are more important than

others--most notably simplicity, structuredness, accessibility,

and self-containedness, each of which impact at least three of

the quality factors. Not surprisingly, these are also areas

where there are a reasonable number of automated metrics, which

are detailed in the references f(r the above paragraphs.

Software Metrics - Page 47

Summary

Throughout our research one point became increasingly

clear--quality metrics are almost universally subjective

measures. While the situation is not as bad as it was in the

late 1970's--when a study of quality metrics concluded "...the

state-of-the-art for determining software quality is ... through

subjective evaluation."50 --it is still largely so.

This clearly conflicts with the frequently stated tenet

that metrics must be "measurable, independent, accountable, and

precise.,51 It does not, however, mean that quality measures

cannot be useful. A metric can be measurable, independent, and

accountable--and at least somewhat precise--despite its

subjectivity. Further, some metrics which satisfy all four of

the above requirements have proven very useful in assessing

software quality--notably complexity measures, structuredness

tests, and the use of function point analysis for measuring

modifiability.

The specific metrics to use depend on which quality

factors are considered most important, which will vary depending

on the application for the target system. What is clear is that

quality must be considered throughout the development life

50 Nei(, pg. 88.

5 1O earco, pg. 50.

Software Metrics - Page 48

cycle, and that quality metrics provide the measurement tools

needed to ensure the software product is meeting quality goals.

It is important to recognize that quality metrics do not produce

quality--they measure it. Thus software managers must ensure

the development environment supports quality engineering

practices by providing adequate development tools, automated

configuration management support, and strong management support

for quality. In other words, the development environment must

be managed like any other engineering discipline, with quality

one of the key considerations. The quality metrics described in

this chapter can then be used to provide feedback to management

to let them know how well they have achieved the quality goals.

Software Metrics - Page 49

CHAPTER FIVE

APPLICATIONS OF NETRICS

Introduction

The predictive and quality metrics discussed in the

preceding chapters appear, in theory, to be very useful tools to

control software costs and improve productivity. How well have

they performed in actual practice? In this chapter we will

examine a few examples of systems which have used metrics to

control the software factor and see how well they have done.

Examples

One example of a software metrics application comes from

Alan Albrecht, the creator of the Function Point Analysis. His

original research on productivity at IBM involved 22 projects

completed over a five year period. By using the Function Point

Analysis metric, he reported a productivity gain of about

3 to 1. He cited several factors as the chief causes of the

improvements: the use of structured programming, the use of

high-level languages, the use of on-line development and the use

of a programming development library.52 We note that the

improvements were not attributed to the use of metrics; however,

without a measuring tool--e.g. the function point metrics--it

52Capers Jones, Programing Productivity, McGraw-Hikt Inc., 1986, p. 75.

Software Metrics - Page 50

would not have been possible to assess the productivity gains

noted in the study.

Software engineer Barry Boehm reported similar results

with projects he studied at TRW. He found that by using

software metrics:

most data processing installations can increase their
software development and maintenance productivity by an
additional 100% in three to four years and by and
additional 400% in six to eight years.

53

Here the productivity gain is directly attributed to the use of

metrics, although the reference does note that this is in

addition to other procedures a software development organization

should adopt--such as structured programming techniques.

A more recent example comes from Steve Drummond the

productivity coordinator for Hallmark Cards Inc. of Kansas City,

Missouri. Several years ago, he began to measure software

development efforts using function points. At first, the

results were discouraging. He found substantial differences in

the number of function points per man-day among different

projects. However, as he continued to collect and analyze data,

several trends emerged. The first trend was that lack of staff

experience greatly contributed to a lower output. Secondly,

projects that reused existing code were very productive. Third,

large projects using traditional techniques were less productive

53Boehm, Software Engineering Economics, pg. 61.

Software Metrics - Page 51

than smaller ad hoc projects produced by the information center.

He was able to use -these and other trends to identify

opportunities to improve productivity. The more data he

collected, the better his understanding of the factors that

influenced software development.54 Again we see that metrics

contributed to significant gains by allowing the manager to

understand and measure what was occurring.

The Software Engineering Laboratory at NASA's Goddard

Space Flight Center has conducted several experiments with

software measurements in the flight dynamics area. Their

conclusions have been overwhelmingly positive, including such

statements as "...has resulted in a major improvement to the

understanding and overall process of developing software in this

environment,",55 ". ..many valuable results can be produced via

the measurement process, ''56 and, perhaps most telling, "Without

software measurement, success or failure in developing software

systems may be random.".
57

54 Steve Orummond, "Measuring Applications Development Performance," Datamation, 31 (February
15,1985):108.

55Jon D. Vatett and Frank E. McGarry, "A Summary of Software Measurement Experiences in the
Software Engineering Laboratory," The Journal of Systems and Software, VoL. 9, Number 2 (February 1989):
146.

56VaLett, pg. 146.

57Vatett, pg. 147.

Software Metrics - Page 52

A precautionary note is in order, however. It must be

clear what the objective of the metric program is. An early

study of systems which emphasized hardware efficiency--which can

be easily measured objectively and was therefore perhaps over-

emphasized--demonstrated the results of improper application of

metrics. The result was a threefold increase in software

development cost because the developers were attempting to

maximize the hardware utilization.58 Errors of this magnitude

are not likely today, since the hardware/software cost tradeoffs

are much better understood--but the important lesson is not the

specific example, but the consequences of the misapplication of

a metric.

Costs

From these examples, we see that software metrics can be

useful tools to improve productivity. But, it costs rioney to

implement a software metric program, as this requires both the

collection and the analysis of the data being measured. How

much does this cost--and is it worth it?

Software expert Tom Demarco suggests that software

metrics should cost from five to ten percent of the manpower

58Rein Turn, Hardware-Software Tradeoffs in Re(iable Software Devetopment. TRW Systems Engineering
and Integration Division Paper TRW-SS-77-03, November 1977, pg. 2.

Software Metrics - Page 53

cost of the effort monitored.59 At the beginning, the cost will

be at the high end of that range because of initial training,

setting up procedures, and working by trial and error. Once

well established the cost should be closer to five percent.

The NASA Goddard Space Flight Center research mentioned

earlier anticipated a cost of 8 to 10 percent, but, after the

initial startup costs, has averaged less than 5 percent, a cost

that the researcher's contend "...has been well worth it." 60

As we have seen from the work of Albrecht and Boehm, the

cost savings of a good metric program is somewhere between 50 to

300 percent. If, as De Marco suggests and the NASA experience

confirms, the measurement program costs at most 10 percent, then

we expect a savings of between 40 and 290 percent. Clearly,

software metrics are a good investment.

5 9
Demarco, pg. 38.

0Vatett, pg. 146.

Software Metrics - Page 54

CHIPTER SIX

SUMMARY AND CONCLUSIONS

Summary

In his book, The Mythical Man-Month, Fred Brooks likens

the development of large software projects to the efforts of

prehistoric beasts trying to escape from the tar pits. He

concludes his analogy by noting that "Everyone seems to have

been surprised by the stickiness of the problem, and it is hard

to discern the nature of it."
'61

Software metrics have evolved in an effort to help

"discern the nature of it." This paper has briefly examined the

types of metrics that are available, the qualities they measure,

and what they can accomplish. As the application of computer

technology continues to expand in Department of Defense weapon

systems, it is imperative that managers understand the need to

better control software systems and the role that metrics can

play in the control process.

Chapter One focused on the root causes of the software

problem--the exponential growth of software-based systems and

6 1
Fred Brooks, Jr., The Mythical Man-Month, (Reading, Massachusetts: Addison-Wesley Publishing

Coffpany, 1978), pg. 4.

Software Metrics - Page 55

the lack of engineering controls on software development--and

the need for measurement tools.

Chapter Two provided an overview of current and evolving

software metrics--reiterating the need for measurement and

providing a brief look at what metrics can measure. The wide

variety of metric classifications was discussed, and the focus

for this study narrowed to two classes: predictive metrics and

quality metrics.

The next two chapters looked at predictive metrics

(Chapter Three' and quality metrics (Chapter Four), with a focus

on what they can do rather than how they do it. The

implementation details of the metrics are beyond the scope of

this study, but are amply discussed in the references. We

examined what the metrics are designed to do, how well they

accomplish these objectives, and the value these measurements

have in real-world applications. Two key points that emerged

were that lines-of-code is -not a good basis for metrics and

that, while many quality metrics are largely subjective, others

have been developed that provide useful objective measures.

Function point measurements stand out for their usefulness in

both predictive and quality-measurement applications.

Chapter Five provided a few examples of systems where

metrics have been applied. Here we saw that metrics have indeed

Software Metrics - Page 56

proven their usefulness when properly applied--and that when

imprudently applied they have little utility.

In summary, we explored software metrics from a broad

perspective to analyze their utility as productivity improvement

tools--to answer the question stated in the title of this study:

are they useful tools or wasted measurements?

Conclusions

It seems clear that software metrics are not wasted

measurements but are, indeed, useful tools. Like any other

tool, however, they must be handled carefully and applied

properly or they can do more harm than good. Software managers

must ensure that appropriate metrics are applied to their

programs and must pay attention to the results. Software

development is not going to get easier, but proper application

of the available tools--including metrics--can let us do a

better job. As Fred Brooks has said:

The tar pit of software engineering will
continue to be sticky for a long time to come...
The management of this complex craft will demand
our best use of new languages and systems, our
best adaptation of proven engineering management
methods, liberal doses of common sense, and a
God-given humility to recognize our fallibility
and limitations.6z

62Brooks, pg. I77.

Software Metrics - Page 57

Recommendations

The Air Force should fund continuing research and

development efforts aimed at further refinement and development

of metrics which will keep pace with the evolving hardware and

software. The most promising of the metrics tend to use

criteria other than lines-of-code measures and are consequently

less language-dependent than earlier metrics. While language-

independence is a desirable trait for a metric,, we have seen

that this is not always possible. Emphasis must, therefore, be

placed on metrics which work well with Ada, since virtually all

new Department of Defense weapons systems will be using this

language.

We also agree with Tom DeMarco, who suggests setting up

a separate "Metrics Group" to do measurements. While he

recognizes there is a cost associated with this, he notes that

this independence can result in much more useful measurement

data. In his words:

If you let one of the litigants be judge, you
won't have to waste much time explaining the
facts of the case.... But the judgment might
suffer. 63

Our national defense is too important to let the judgment

suffer!

63
De#arco, pg. 19.

Software Metrics - Page 58

As a footnote, it is interesting to note the close

correlation of the quality factors identified in Chapter Four

with the specified goals of the Ada language. The Ada

"Steelman" document identified eight criteria for design of the

language: generality, reliability, maintainability, efficiency,

simplicity, implementability, machine independence, and complete

definition.64 Whether Ada has achieved these goals--which a

previous Air War College study contends it has65--is beyond the

scope of this paper, but it seems clear that Ada was designed

with quality software in mind.

6Kenneth C. Shumate, Understanding Ada. New York: Harper and Row, 1984, pp. 14-15.

65Nichotas J. Babiak, Ada, The New DoD Weapon System Computer Language--Panacea or CaIamity, Air

War Defense Anatytical Study, May 1989, pp. 62-67.

Software Metrics - Page 59

BIBLIOGRAPHY

Albrecht, A. J. and J.E. Gaffney Jr. "Software Function, Source
Lines of Code and Development Effort Prediction," IEEE
Transactions on Software Engineerinq, November 1983, pp.
639-648.

Albrecht, A. J. "Function Points Helps Managers Assess
Applications, Maintenance Values," Computerworld, 19,
special report (26 August 1085) pp. 20-21.

Babel, Philip S. "Software Development Integrity Program
(SDIP)," Paper for Air Force Aeronautical Systems
Division, Wright-Patterson AFB, Ohio, 1988.

Babiak, Nicholas J. Ada, The New DoD Weapon System Computer
Lanauage--Panacea or Calamity, Air War College Defense
Analytical Study, May 1989.

Baker, Caleb and David Silverberg. "Boeing Scrambles To Correct
Flaws in P~ace Shield," Defense News, 4 (December 18,
1989):1,28.

Basili, V.R. and K. Freburger. "Programming Measurement and
Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, 2 (1981):47-57.

Behrens, Charles. "Measuriag Productivity of Computer Systems
Development Activities with Function Points," IEEE
Transactions on Software Engineering, SE-9, Number 6
(Nov 1983):648-652.

Beizer, Boris. Software Testing Techniques. New York: Van
Nostrand Reinhold Company, 1983.

Boehm, B.W., J.R. Brown, and M. Lipow. "Quantitative evaluation
of software quality." Proceedings of the Second
International Conference on Software Engineering.
(1976): 592-605.

Boehm, Barry W. and Philip N. Papaccio. "Understanding and
Controlling Software Costs, IEEE Transactions on
Software Engineering, 14 (Oct 1988):1462-78.

Boehm, Barry W. Software Engineering Economics, Englewood
Cliffs, N.J. Prentice-Hall, 1981.

Booch, Grady. "Reusable Software Components." Defense
Electronics. Volume 19, No. 5 (May 1987): S53-S59.

Software Metrics - Page 60

Booch, Grady. Software Engineering with Ada. Menlo Park, CA:
Benjamin/Cummings, 1983.

Borden, Andrew G. "The Impact of Advanced Computer Systems on
Avionics Reliability." Defense Electronics. Volume 19,
No. 5 (May 1987): S7-S21.

Borkovitz, P. E. "Eliminating Bugs from Weapon System Computer
Programs." Military Technology. Volume 5, No. 88 (May
1988): 71-72.

Boydston, R.E. "Programming Cost Estimate - Is it reasonable?,"
Proceedings 7th International Conference on Software
Engineering, 1984, pp. 153-159.

Brooks, Frederick P., Jr. The Mythical Man-Month. Reading,
Massachusetts.: Addison-Wesley Publishing Company, 1975.

Brown, B.R., H. Herlich, M.D. Emerson, C.L. Williamson, M.V.
Greco, W. Sherman. Productivity Measurement in Software
Engineering, SSA/STECS/PRODUCTIVITY-83, U.S. Social
Security Administration, Washington D.C., 1983.

Buckley, Fletcher J. "standard Set of Useful Software Metrics is
Urgently Needed," Computer, 22, (July 1989):88-90.

Bullen, Richard H. Jr. Engineering of Quality Software Systems:
Software First Concepts. Mitre Corporation report RADC-
TR-74-325, Volume III, Rome Air Development Center,
January 1975.

Canan, James W. "The Software Crisis," Air Force Magazine, 69
(May 1986):46-52.

Card, David N. "Major obstacles hinder successful measurement,"

IEEE Software, 5 (Nov 88):82-84.

Cheng, L. L. Engineering of Quality Software Systems: Some Case
Studies in Structured Programming. Mitre Corporation
report RADC-TR-74-325, Volume VI, Rome Air Development
Center, January 1975.

Clapp, Judith A., and Leonard J. LePadula. Engineering of
Quality Software Systems. Mitre Corporation rEport
RADC-TR-74-325, Volume I, Rome Air Development Center,
January 1975.

Clark, Gregory A. Software Cost Estimation Models - - Which One
to Use?, Air Command and Staff College student paper,
Air University, Maxwell AFB, Alabama, 1986.

Software Metrics - Page 61

Conte, S.D., H.E. Dunsmore, V.Y. Shen, Software Engineering
Metrics and Models, Menlo Park, Cal.ifornia,
Benjamin/Cummings, 1986.

C6te, V., P. Bourque, S. Oligny, and N. Rivard. "Software
Metrics: An Overview of Recent Results," The Journal of
Systems and Software. Volume 8 (1988): 121-131.

De Marco, Tom. Controlling Software Projects, New York, Yourdon
Press, 1982.

Doggett, R. B., M. P. Kress, and K. I. Mehrer. Measuring and
Reporting Software Status. Boeing Aerospace Company
Document ASD-TR-78-49, Aeronautical Systems Division,
August 1978.

Drummond, .Steve. "Measuring Applications Development
Performance," Datamation, 31 (February 15, 1985): 102-
108.

Durcan, Mark. "What Gets Measured Gets Done," Systems
Development, 9 (June 1989):1-4.

Dunn, Robert and Richard Ullman. Quality Assurance for Computer
Software. New York: McGraw-Hill Book Company, 1982.

Dunsmore, H.E. "Software Metrics: An overview of Evolving
Methodology," Information Processing and Management, 20
(1984):183-192.

Evans, Michael W. The Software Factory: A Fourth Generation
Software Engineering Environment. New York: John Wiley
and Sons, 1989.

Evans, Michael W. and John J. Marciniak. Software Quality
Assurance and Management. New York: John Wiley and
Sons, 1987.

Feuche, Mike. "Attention is being generated by complexity metric
tools," MIS Week, 9 (February 29, 1988): 27-29.

Firesmith, Donald G. "Should the DoD Mandate a Standard
Software Development Process?" Defense Science and
Electronics. Part 1: Volume 6, No. 4 (April 1987): 60-
64; Part 2: Volume 6, No. 7 (July 1987): 56-59.

Fleischer, R. J. Engineering of Quality Software Systems:
Effects of Manaement Philosophy on Software Production.
Mitre Corporation report RADC-TR-74-325, Volume II, Rome
Air Development Center, January 1975.

Software Metrics - Page 62

Fox, Joseph M. Software and Its Development. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1982.

Gaffney, J.R. Jr. "The Impact on Software Development Costs
Using HOL's," IEEE Transactions on Software Engineering,
SE-12 (1986):496-499.

Gear, C. William. Computer Organization and Programming. New
York: McGraw-Hill Book Company, 1980.

Gerhardt, Mark S. "Don't Blame Ada." Defense Science and
Electronics. Volume 6, No. 8 (August 1987): 53-68.

Glass, Robert L. "Software Metrics: Lightning Rods and Built Up
Tension," Systems Development, 9 (March 1989):10.

Grey, Baron 0. A. "Making SDI Software Reliable Through Fault-
Tolerant Techniques." Defense Electronics. Volume 19,
No. 8 (August 1987): 77-86.

Haley, Debra L. "Software Supportability--A Quality
Initiative," Air Force Journal of Logistics. Vol XIII,
No 1 (Winter 1989): 22-28.

Harrison, Warren. "Metrics Workshop Serves Practitioners,
Academics," IEEE Software, 6 (May 1989):98-100.

Harvey, David. "Computer Science Corporation's Star*Lab."
Defense Science and Electronics. Volume 6, No. 4
(April 1987) 69-71.

Hernandez, Capt Richard J. "Logistics Considerations of
Applications Software Testing," Logistics Spectrum.
Vol 22, Issue 4 (Winter 1988): 3-6.

Hughes, David. "Boeing Told To Solve Peace Shield Problems,"
Aviation Week & Space Technology, December 18, 1989, p.
114.

"Is Software Complexity Slowing the Computer Industry?" Byte.
Volume 13, No. 12 (November 1988): 11.

Johnson, James R. "The Eight Myths of Measuring Software
Development Performance," Mainframe, 4 (March 1989):29-
32.

Jones, Capers. "A New Look at Languages," Computerworld, 22
(November 7,1988):97-103.

Jones, Capers. "Building a Better Metric," Computerworld, 22
Extra (June 20, 1988):38-39.

Software Metrics - Page 63

Jones, Capers. "Function - Point Metrics: Key to Improved
Productivity," InformationWEEK, Issue 105, February 23,
1987, pp. 26-27.

Jones, Capers. "How not to Measure Programming Productivity,"
Computerworld, 20 (13 January 1986):65-66,70.

Jones, Capers. Programming Productivity, New York, McGraw-Hill
Inc, 1986.

Jones, T.C. "Measuring Programming Quality and Productivity,"
IBM Systems Journal, 17 (1978):39-63.

Kitchenham, B.A. and N.P. Taylor, "Software Project Development
Cost Estimates," Journal of Systems and Software, 5
(1985):267-278.

Kitchenham, Barbara. "An Evaluation of Software Structure
Metrics," IEEE Computer Software & Applications
Conference Proceedings, 1988, pp. 369-76.

Knaft, G.J. and J. Sacks, "Software development effort
prediction based on Function Points," Proceedings of the
Computer Software and Applications Conference, 1986, pp.
319-325.

Knuth, Donald E. The Art of Computer Programming, Volume 1.
Reading, Massachusetts: Addison-Wesley Publishing
Company, 1973.

Kress, M. P. Software Quality Assurance. Boeing Aerospace
Company Document ASD-TR-78-47, Aeronautical Systems
Division, January 1979.

Kulkarn, Anriudh, "A generic Technique for developing a Software
Sizing and Estimate Model," IEEE Computer Software &
Applications Conference Proceedings, 1988, pp. 155-61.

LaPadula, Leonard J. Engineering of Quality Software Systems:
Software Reliability Modeling and Measurement
Techniques. Mitre Corporation report RADC-TR-74-325,
Volume VIII, Rome Air Development Center, January 1975.

Lennselius, Bo., Claes Wohlin, Ctirad Vrana, "Software Metrics:
fault content estimation and software process control,"
Microprocessors and Microsystems, 11 (September
1987):365-376.

Linn, Randy K. and K. Vairavan. "An experimental investigation
of software metrics and their relationship to software
development effort," IEEE Tranactions oi. Software
Engineering, 15 (May 1989): 649-654.

Software Metrics - Page 64

Ludlum, David A. "Measuring DP Efficiency, Quality,"
Computerworld, 20 (11 August 1986):71,74.

Marcus, David J. "Project Bold Stroke," Signal Magazine, April
1986, pp. 100-101.

McCabe, T.J. "A Complexity Measure," IEEE Transactions on
Software Engineering, SE-2 (December 1976):308-320.

McCall, Jim A., Paul K. Richards, and Gene F. Walters. Factors
in Software Ouality. General Electric Company RADC-TR-
77-369, Rome Air Development Center, November 1977.

"Measuring DP quality and Productivity," Systems Development, 8
(July 1988):4-8.

Morrocco, John. "Coming Up Short in Software." Air Force
Magazine. Volume 70, No. 2 (Feb 1987): 64-69.

Musa, John D. "Faults, failures and a metrics revolution," IEEE
Software, 6 (March 1989):85-87.

Myers, Glenford J. Software Reliability: Principles and
Practices. New York: John Wiley and Sons, 1976.

Neil, George, and Harvey I. Gold. Software Acquisition
Management Guidebook: Software Ouality Assurance.
System Development Corporation Document ESD-TR-77-255,
Electronic Systems Division, August 1977.

Pollack, G.M. and S.Sheppard, A Design Methodology for the
Utilization of Metrics Within Various Phases of Software
Lifecycle Models, National Technical Information
Service, Springfield, VA, 1987.

Randolph, General Bernard P. Speech to Air War College Class of
1990, 13 Dec 1989.

Robach, H. Dieter and Bradford T. Ulery. "Improving Software
Maintenance Through Measurement," Proceedings of the
IEEE, 77 (April 1989):581-96.

Roman, David. "A measure of Programming," Computer Decisions, 19
(January 26, 1987):32-33.

Schneidewind, Norman F. Software Maintenance: Improvement
Through Better Development Standards and Documentation.
Naval Postgraduate School Report NPS-54-82-002, February
1982.

Schultz, Herman, P. Software Management Metrics, Technical
Report by Mitre, Bedford, MA, 1988.

Software Metrics - Page 65

Schumate, Kenneth C. Understanding Ada. New York: Harper and
Row, 1984.

Shepperd, Martin. "An evaluation of Software Product Metrics,"
Information Software, 30 (April 1988):177-88.

Smith, Maj. Gen. Monroe T. "Project Bold Stroke: A Plan to Cap
the Software Crisis." Government Executive. Volume 19,
No. 1 (January 1987): 29-30.

Software Metrics, National Technical Information Service,
Springfield, VA, November 1988.

Sullivan, J. E. Engineering of Quality Software Systems:
Measuring the Complexity of Computer Software. Mitre
Corporation report RADC-TR-74-325, Volume V, Rome Air
Development Center, January 1975.

Symons, Charles R. "Function Point Analysis: Difficulties and
Improvements," IEEE Transactions and Software
Engineering, 14 (January 1988):2-11.

Taylor, David A. The Software Crisis and a Senior Leader's
Awareness, Air Command and Staff College student paper,
Air University, Maxwell AFB, A]abama, 1987.

Thayer, Thomas A., Myron Lipow and Eldred C. Nelson. Software
Reliability: A Study of Large Project Reality. New
York: North-Holland Publishing Company, 1978.

Turn, Rein. Hardware-Software Tradeoffs in Reliable Software
Development. TRW Systems Engineering and Integration
Division Paper TRW-SS-77-03, November 1977.

Valett, Jon D. and Frank E. McGarry. "A Summary of Software
Measurement Experiences in the Software Engineering
Laboratory," Journal of Systems and Software, 9
(February 1989):137-48.

Van Scotter. "Software Estimation Factors and Techniques," Air
Force Journal of Logistics, 12:33-35.

Verner, June M. and Gramham Tate. " A Model for Software
Sizing," Journal of Systems and Software, 7 (June
1987):173-177.

Weyuker, Elaine. "Evaluating Software Complexity Measures,"
Software Enqineecing, 14 (September 1988):1357-65.

Woodfield, S.N., V.Y. Shen, H.E. Dunsmore. "A Study of Several
Metrics for Programming Effort," Journal of Systems and
Software, 2 (1981):97-103.

Software Metrics - Page 66

