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CHAPTER 1

INTRODUCTION

The current trend in microwave and millimeter-wave integrated circuits (MICs) is

towards higher operating frequencies, higher packing densities, and more stringent

performance requirements. As a result, earlier models based on approximate analysis

techniques are becoming insufficiently accurate for use in computer-aided design (CAD)

packages. In particular, simplifying assumptions, such as the quasi-static approximation

and the magnetic wall approximation, are becoming inappropriate in the analysis of

microstrip discontinuities such as bends, steps, and stubs. Instead, a rigorous full-wave

analysis is needed to obtain a more accurate characterization of these passive circuits. Such

an analysis captures the increasingly significant effects of coupling, dispersion, and

radiation.

One of the full-wave analysis techniques that has received considerable attention

recently is the spectral domain approach. This is an integral equation approach that is

solved numerically in the spectral domain by applying the method of moments. The open-

end and gap discontinuities have been analyzed with this technique in [1] and [2], and the

analysis of the step junction has been treated in [3]. In a recent work by Jackson [4], the

analyses of the step, stub, and bent stub were presented.

Although the spectral domain approach has been successfully employed in a variety

of problems, there is a definite need for improvement. This approach is computationally

expensive for even the simplest geometries and quickly becomes intractable for larger

problems. The primary source of difficulty is the evaluation of the inner products arising

from the moment method. In the spectral domain approach, these inner products are two-

dimensional integrals with infinite limits of integration. Since these integrals are too

complicated to be evaluated analytically, we must resort to numerical techniques.

Unfortunately, performing the integrations numerically is complicated by the fact that the



2 I
integrands will have one or more singularities and are often highly oscillatory. The most

troubling and time-consuming aspect of these integrations, however, is the fact that the

integrands decay quite slowly.

The major portion of this thesis is therefore devoted to the efficient evaluation of the

inner products. In particular, an asymptotic acceleration technique is applied to the

numerical integrations to enhance their rate of convergence. In this technique, the I
asymptotic form of the integrand is derived and then subtracted from the original integrand. 3
The resulting integral will then converge more rapidly. In order to recover the original

inner product, the asymptotic form is integrated separately and added back. An overall 3
speedup in the computation is realized only if the asymptotic form can be integrated

efficiently. In our work, the integral of the asymptotic form has been derived analytically

in closed form. In this way, the maximal speedup from the asymptotic extraction is

achieved, and more importantly, the technique is exact in the sense that no simplifying I
approximations were made.

In Chapter 2, the general microstrip discontinuity problem is formulated in the

spectral domain. The moment method is then applied in Chapter 3, resulting in a system of

equations with the inner products described above. In Chapter 4, the difficulties involved

in the computation of these inner products is discussed in detail. In addition, symmetry 3
relations are presented that allow a reduction in the range of integration. The asymptotic

acceleration technique is presented in Chapter 5. In Chapter 6, comparisons are made I
between an algorithm that utilizes the acceleration technique and one that does not. Finally,

conclusions and directions for future work are given in Chapter 7.

I
I
I
I
I



3
CHAPTER 2

THEORETICAL DEVELOPMENT

With the increase in the operating frequencies of microwave integrated circuits,

previous models of passive circuits based on approximate analysis techniques are becoming

insufficiently accurate. With this in mind, a full-wave analysis in the spectral domain is

developed in this work to derive more accurate models for a variety of microstrip

discontinuities. The analysis developed herein is rigorous, one that incorporates wave

phenomena including radiation, dispersion, coupling, and surface wave propagation. In

this approach, the microstrip discontinuity is characterized by solving for the reflection and

transmission coefficients. From these coefficients, a suitable circuit model can be obtained

for use in circuit simulation programs.

In this chapter, the conventional spatial domain analysis is presented first. The

electric field is represented in terms of the currents on the microstrip through a dyadic

Green's function. Since the Green's function is unavailable in closed form in the spatial

domain, the formulation is continued in the spectral domain wherein the Green's function is

known. After obtaining the general spectral domain equations, these equations are applied

to the microstrip discontinuity.

The microstrip discontinuity is analyzed as a two-port network that is excited by a

precomputed incident current density. This sinusoidally varying current is determined by

solving for the fundamental mode on a uniform microstrip line. The forms of the reflected

and transmitted currents on the input and output microstrip lines are also assumed to be the

same as for the current on a uniform microstrip line. Therefore, the reflected and the

transmitted currents are precomputed to within a multiplicative constant, namely, the

reflection or transmission coefficient. In the process of solving for the unknown

coefficients, the currents within the discontinuity are also obtained.
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2.1 The Dyadic Green's Function

The open microstrip structure considered is shown in Fig. 2.1. (Figures and tables

appear at the end of each chapter.) The conducting strip is located on a substrate of relative

dielectric permittivity Er and of thickness d. In conventional spatial domain analysis, the

electric field is represented in terms of the currents on a conducting body through a dyadic I
Green's function. Assuming time harmonic fields with the eJO t time convention, the 3
electric field on the substrate can be represented as

E(x,z) = ffG(x - x',z - z') J(x',z') dx'dz' (2.1) I
where J is the current density, and G is the dyadic Green's function. The dyadic Green's

function G(x,z) represents the electric field at the point (x,z) due to an infinitesimal dipole

of unit strength located at the origin. The integration in (2.1) is performed over the strip 3
where the current exists.

When Equation (2.1) is enforced on the strip, the tangential electric field I
components Ex and Ez must be zero to satisfy the boundary condition. This leads to a set

of coupled homogeneous integral equations I

JJ'[Gx,,(x - x',z - z')J(x', z')I

+ Gxz(x - x',z - z')Jz (x',z')] dx'dz' = 0

ff[Gzx (x - x',z - z')Jx (x',z')

+ Gzz(x - x',z - z')Jz(x',z')] dx'dz' = 0 I

where the vector equation has been broken into its scalar components. If the Green's I
function were known in the spatial domain, Equation (2.2) could be used to solve for the

I
I
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currents on the microstrip. Unfortunately, for the microstrip structure, a closed-form

expression for the Green's function is not known.

A parallel analysis may be carried out in the spectral domain where the Green's

function for a grounded dielectric slab can be obtained using a transmission line approach

[5]. Taking the Fourier transform of (2.1) converts the convolution-type equations to the

following algebraic equations

Gxx (XD)J,(o,) + Gxz(a,)Jz (a,) = 2x(a,3) (2.3)
Gzx(cc,)Jx(c,)+ Gz(a,)Jz(a,4) = tz(a:,)

where the tilde denotes the Fourier transform operator. The definition of the Fourier

transform and its inverse transform have been taken to be

00 0

f(,) = f f(x,z)e - j( x +Oz) dxdz (2.4)

and
10 77

f(x,z) = f- J J f(a,3)ei(ax+Pz) dad3, (2.5)

respectively.

Note that Equation (2.1) was transformed instead of Equation (2.2). This is

necessary since the transform is taken over the entire spatial domain and (2.2) is defined

only on the strip. As a result, the transform of the electric field in (2.3) is nonzero. This

electric field is unknown, but can be eliminated when the moment method is applied (this is

discussed further in Chapter 3).

The spectral domain Green's function for the open microstrip structure is derived in

detail by Itoh and Menzel [6]; therefore, only the result is presented here. In the derivation,

the strip is considered to be infinitesimally thin, and both the ground plane and the strip are
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treated as perfect electric conductors. An equivalent, more compact form of the Green's

function is given by [7]

Gxx(c,[3) = c 2D3 -k2D 1  (2.6) 1
OXoD 1 D2

Gxz(O,[) = °c[D 3  (2.7)
OoD 1D2

d Gzx(ap) = 6xz(XP) (2.8)

S = 2 D3 - k2 D2
dzap 0 1(2.9)wE°D1D2I

where

27c

s= rk2 -o2 _- 2

D1 = s'- js~ r cot(s'd) I
D2 = s- js'cot(s'd)

D3 = s'- jscot(s'd) 3
and where the positive real or negative imaginary root is taken in the evaluation of s and s. I

2.2 Spectral Equations Describing the Microstrip Discontinuity 3
The geometry of a general microstrip discontinuity is shown in Fig. 2.2, where the 3

particular discontinuity is defined within a discrete mesh region. The discontinuity is

analyzed as a two-port network where the reference planes are defined at z=O and z=L. 3
The network is excited at z=O by an incident current density which is assumed to have the

same form as the current density on a uniform microstrip line. The reference planes are I
I
I
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assumed to be sufficiently far from the discontinuity so that the reflected and the transmitted

currents can be approximated by currents on a uniform microstrip line. The currents within

the mesh region are entirely unknown. The spectral current density appearing in Equation

(2.3) is then the superposition of the boundary currents and the mesh region currents,

given by

J(a,P) = jI(a,[P) + lj R (c, P) + T(T ((XP) + jmr(c, 2. 10)

where J1 is the incident current density, jR and jT are the reflected and transmitted

currents, and jmr is the unknown current density within the mesh region. The reflection

and transmission coefficients are given by F and T, respectively.

The boundary current densities in (2.10) may be represented in the spatial domain

as

J'(x,z) = [i fx1(x,z) +i fzi(x,z)] e- jPo1z (2.11)

jR(xz) = [_j fxl(x,z)+ i fzl(x,z)] eJPOiz (2.12)

jT (x, z) = [X fx2 (x, z) + i fz2 (x, z)] e- j[o2z (2.13)

where the functions fxl,fz1,fx2, and fz2 represent the transverse distribution of currents,

and 13oj and r302 are the propagation constants. The propagation constants and the

transverse distributions are precomputed by solving for the fundamental mode of a uniform

microstrip line [5]. Specifically, Equation (2.3) is solved numerically for the case in which

the microstrip is invariant in the z-direction and there is no source excitation. The

numerical technique is essentially a simplification of the technique to be described in

Chapter 3.

The only remaining unknowns in (2.10) are jmr, F and T. These are found by

solving (2.3). Substitution of (2.10) into (2.3) yields



8I
6XK r+6 + + 6 R+T T(,i~T + 6"Jj) (6,0 + 6"j") 4

x -mr - mr + 1-R

ZArn + +zz + 6zJ ) + T(6 xJ + -z - + z Jx -. I
I

where for simplicity the arguments of the functions have been dropped. The numerical

solution of (2.14) is discussed in Chapter 3. I

y

sr E Id

ground plane

Figure 2.1. Cross section of an open microstrip line.

I
I
I
I
I
I

I
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x Tj T
jMrJ;

z mesh region

j R - - - - - -

Z--O z--L

Figure 2.2. Geometry of a general microstrip discontinuity.
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CHAPTER 3

NUMERICAL PROCEDURE

In Chapter 2, the general microstrip discontinuity problem was formulated in the

spectral domain, and the electric field was represented in terms of the current densities on

the strip. In this chapter, the moment method is applied to the spectral domain Equation

(2.14) to generate a system of equations that can be solved numerically. The first section

of this chapter introduces the moment method procedure. In the following section, the I
procedure is applied to the discontinuity problem, and the current densities in (2.14) are

expanded in terms of basis functions. The final section provides the criteria for selecting a 

suitable set of basis functions and presents the basis functions used in this work.

3.1 Overview of the Moment Method 3
The moment method is a mathematical technique used to reduce functional

equations to matrix equations [8]. Consider the linear equation I

L(f) = s (3.1) 1
I

In this equation, L is a linear operator, s represents a source, and f is an unknown function

such as a field or current. The problem is to determine the function f when the inverse

linear operator L-1 is unknown.

The function f is first expanded into a series of basis functions f1,f...fN defined I
over the domain of L

N
f = Xaifi (3.2) 3

i= I

I

I



The basis functions should be linearly independent and chosen so that a weighted sum of

these functions can represent f reasonably well. Depending on the choice of basis

functions, the series representation will be approximate or exact. The basis functions used

in this work are subsectional basis functions where each fi is defined over only a

subsection of the domain of f. In this case, Equation (3.2) will most likely be an

approximate representation of f, given a finite N.

Equation (3.2) is then substituted into the linear Equation (3.1) to give

N

I "aiL(fj) = s (3.3)
i=l

A set of N equations is needed to solve for the unknown coefficients a1. These

equations are obtained by choosing N weighting or testing functions wl,w2 ..... wN and

taking a suitable inner product of (3.3) with each testing function. When the basis and

testing functions are the same, the procedure is known as Galerkin's method. The final set

of equations is expressed in matrix form as

(w 1 ,L(f,)) (w 1 ,L(f2)) .. (wx,L(fN)) - a, (wls)

(w2,L(fl)) (w2 ,L(f 2 )) .. (w2 ,L(fN)) a2  (w2 ,s) (34)

.(wN,L(fl)) (wN,L(f 2 )) (WN,L(fN))J LN i

These equations can be solved numerically using a number of techniques. Since the

iimiting factor in this method is the computation time required to evaluate the inner

products, the size of the matrix in (3.4) must be kept small. Consequently, the matrix

inversion is not a problem.
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3.2 Application of the Moment Method to the Microstrip Discontinuity

The moment method is now applied to the spectral domain Equation (2.14)

describing the microstrip problem. Here, the Green's function is the linear operator and the

unknown function is the current density in the discontinuity region. Two additional I
unknowns are the reflection and transmission coefficients r and T. The source function is

the incident current density JI. I
To apply the moment method, the spectral current densities in the mesh region are

first expanded in terms of basis functions

N I
rr(a,1)=X~x~c3

M (3.5)

J mr(,3) = Xbi-zj(,3)

where ai and bi are the weight coefficients and Jx and Jzi are the basis functions. The

boundary currents jI, jR, and jT are also expanded in terms of basis functions such that

I
iQ ) =(3.6) U

JQ(a,3) = d d.  z(a, P)z I z
where

Q =I,R, orT

All of the constants c? and d? are known, since the boundary currents are precomputed. I
The boundary current densities are actually represented in terms of basis functions for 3
reasons that are not associated with the moment method. The main reason is that the

transverse current distribution is calculated numerically and therefore must be

I
I
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approximated. Also, the boundary currents are semiinfinite, but they are truncated to

simplify the computation.

The current expansions (3.5) and (3.6) are then substituted into (2.14), and the

inner product of this equation is taken with testing functions. The inner product definition

adopted in this work is

cc CO

(f(z,3),g(cc,3)) = Jf f*(a, 3)g(a, 3) dadp3 (3.7)
-00-00

where the function f is the testing function, and the function g is the Green's function

multiplied by a current basis function. Physically this type of testing will give the

integrated electric field over the area of the testing function due to a current element

radiating over the grounded dielectric slab.

The testing procedure is almost Galerkin. The first row in (2.14) is tested N times

with J7xi(c,3), and the second row is tested M times with Jzi(,3). However, this will

yield only (N+M) equations to solve for the (N+M+2) unknowns. The last two equations

are obtained by testing at the junctions between the mesh region and the input and output

reference planes. Since the z-directed current will be dominant, the inner product testing is

taken with the second row of (2.14). The boundary testing functions are denoted as

W1 (cp3) and WV2(cD3). The final matrix form is then

LXX Zxz ZwIR ZWIT ai X
zz ZZ R ZzT bi Vzi(38

Zw2x Zw2z: Zw2R Zw2T _ .Vw2J

where the matrix elements shown are submatrices.
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The upper left block of submatrices in (3.8) results from the testing between basis

functions within the mesh region. These are the largest submatrices and increase in size as

the square of the number of basis functions. The upper right block consists of inner

products where the testing is between the mesh region basis functions and the reflected or I
transmitted currents. Each of these submatrices are column vectors. The last two rows in

(3.8) are the two additional equations needed to solve for r" and T. Finally, the vector on

the right-hand side results from taking the inner product between each of the testing

functions and the incident current.

The similarities between different submatrices are readily seen when the

submatrices are written in compact form. The general term in each submatrix is given by

(Zpq)ji = (Jpj,GpqJqi) (matrix)

(ZpQ)j-- (Jpj(Gpx Q + GpzjQ)> (column vector)

(Zwnq)i = (nlb',zqjqi) (row vector)

(Z~Q) jQ (scalar)

(VpI)j  (Jpj, (GpxJI + G pz1z (column vector)

(VwnI) =Vn(6x' + +GZZ) (scalar)

where

p = x or z

q = x or z

Q= RorT

n =1 or 2

Note that the unknown electric field in the right-hand side of (2.14) was eliminated U
in the testing process and does not appear in the blocks Vpl or VwnI. This is explained by

applying Parseval's theorem to the inner products. As an example, consider the inner I
I
I
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product <Jxj,Gxxxi>, which is equivalent to <Jxj,Ex>. After applying Parseval's

theorem, the inner product becomes

-00 00

The inner product is zero, because in the spatial domain the current density and the electric

field on the substrate are zero in complementary regions. For instance, the current is zero

everywhere except on the conducting strip where the electric field is zero. Therefore, the

integrand in the second integral is identically zero.

3.3 Basis Functions

As mentioned in Section 3.1, the choice of basis functions can affect the accuracy

of the current representation. A good choice can also reduce the number of basis functions

needed to obtain adequate results. When choosing basis functions, there are several issues

that must be considered. These are the geometry of the problem, the current behavior, and

the inner product evaluation.

The geometry of the problem will dictate the use of either entire domain or

subdomain basis functions. In this work, subdomiain basis functions are used so that a

variety of microstrip discontinuities may be analyzed. The geometry of the discontinuity is

actually defined by the location of the current basis functions, since the basis functions are

placed only on the conducting strip where current exists. For complicated geometries, the

subdomain basis functions also offer the advantage that no prior knowledge of the current

behavior is ne~ded. This is contrasted with the patch antenna problem where entire domain
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basis functions may be used, because the geometry is fixed and there is some knowledge of

the modal distribution of current.

In order to model the currents efficiently, some important aspects of the current

behavior should be built into the basis functions. One such characteristic is the well-known I
edge condition. This refers to the fact that for current traveling along an edge, the current

distribution will tend towards infinity near the edge. Another characteristic is that currents

traveling towards an edge of a conductor should go to zero by current continuity. The 3
basis functions are chosen to exhibit these properties.

The final consideration in choosing the basis functions is to ensure that the 3
integration in the inner product evaluation is convergent. A careful look at Equations (2.6)-

(2.9) will show that the Green's function increases without bound for large cc and P. If the I
two-dimensional integration is converted into polar coordinates by making the substitutions

c=p sine and P=pcosO, it can be shown that for large p the components of the asymptotic

Green's function tend to 15xx = psin 2 e, Gxz =psin~cos0, and Gzz = pcos 20 . Since the 3
coordinate transformation introduces another p as a metric coefficient, the spectral domain

basis and testing functions must introduce a factor of at least p'P, p>3, to guarantee

convergence.

In the spatial domain, the "rooftop" expansion functions depicted in Fig. 3.1 are I
used as basis functions in the mesh region. These basis functions are composed of a

triangle function in the direction of current flow and a pulse function in the other direction.

The pulse and triangle functions are defined as 3
T1, It-

2
fIT(t) ={T (3.10)I

I
I
I



17
Aw~)  1- ]tl :5w

Aw(={w (3.11)

0O, Itl > w

where the corresponding Fourier transforms with respect to the spectral variable co are

T sin(coT/2)

(oT/2) (3.12)

L(CO) w si / 2) 2 (3.13)

Combining these two functions in the spatial domain, the mesh region basis

functions for the x and z-directed currents become

Jxi(x,z) = Awx(X - xi) Itx (Z - z i ) (3.14)

Jzi(x,z) = rItz (x - xi)Awz(Z - zi) (3.15)

For each component of current, the widths and thicknesses of all the "rooftop" basis

functions are assumed to be equal. The center of the ith basis function is (xi,zi), and the

basis functions are positioned so that the triangle functions of neighboring "rooftops"

overlap and the pulse functions are edge to edge. The current represented by these basis

functions goes to zero in the direction of current flow, and the basis functions are suited to

model the edge condition.

The spectral domain basis functions are obtained by taking the Fourier transform of

(3.14) and (3.15)

Jxi(a,p) = A Wx(Ct)rI tx (P) e- j( t x i+ zi) (3.16)

= lI z()A Wz(P3) e- j( a x i+Pzi) (3.17)
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Each of these basis functions introduces a p-3 term in polar coordinates; therefore, the inner

product integrals are convergent when the testing procedure is Galerkin.

The boundary currents are modeled in a manner consistent with the mesh region

basis functions. The transverse current distribution is approximated as a weighted sum of

pulse functions for the z-directed currents and triangle functions for the x-directed currents. 3
The weighting coefficients are found by sampling the precomputed current distribution at

the center of each basis function. The x-directed current is truncated at the mesh region as a

pulse function while the z-directed current terminates in the mesh region as a triangle

function. These basis functions are multiplied by the propagation factor e-IJ~oz and are

truncated at a distance tb from the mesh. The boundary currents in the spatial domain are

represented as I

JQ(x,z) = cQ Ax- xi)ftb(Z + tb /2) e±J o1z

(3.18)
JQ(x,z) = dQ fIt(x- xi)P(z + tb/2) e jo5 lz 3

i

Jx (x,z) = cT Aw, (x - xi)l'Ptb(z- tb / 2) e- j ()2z

T(x,z) = XdT -it(x - xi)P(z_ L - tb / 2) eJo2 z

where I
Q = I or R

and where

P(t) = {[(tb/2+Wz)-Itl]' tb/2 tl < (tb/2+wz)

1, Itl -- tb / 2 I
In (3.18) the negative sign is taken for the incident current and the positive sign for the

reflected current. Figures 3.2-3.5 illustrate how the input boundary currents JI and jR are

represented in terms of these basis functions.

I
I
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The boundary testing functions are also chosen to be compatible with both the mesh

region basis functions and the boundary current basis functions. These testing functions

are a weighted sum of z-directed "rooftop" basis functions, where the weights are chosen

to be consistent with the z-directed boundary currents. The testing function WI straddles

the z=O reference plane at the junction between the mesh region and the boundary currents.

Similarly, the testing function W2 straddles the reference plane at z=L. These boundary

testing functions are represented in the spatial domain as

W1(X,Z) = Xd fltz(X - xi)Awz(Z) (3.20)
i

W2 (x,z) = ldTFIt (x - xi)Aw (z -L) (3.21)

Finally, the basis and testing functions presented in this section are combined with

the moment method procedure in Section 3.2 to construct the set of Equations (3.8). The

numerical evaluation of the inner products is discussed next in Chapter 4.
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Fig~ure 3.2. Transverse distribution of z-dli-ected boundary currents represented by 8 basis

functions.
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Figure 3.3. Representation of Jzor Jzwith 3 basis functions.
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Figure 3 4. Transverse distribution of x-directed boundary currents represented by 7 basis

functions.I

basis functions

.... .......

I R transverse, -. .

or J curr n

Z=O
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Figure 3.5. Representation of JIor JRwith 3 basis functions.3
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CHAPTER 4

INNER PRODUCT EVALUATION

The formulation of the microstrip discontinuity problem is quite elegant and simple;

implementing the numerical procedure is considerably more difficult. At first glance,

constructing the set of matrix equations in (3.8) appears relatively straightforward. The

only requirement is to compute the inner products between a testing function and the

Green's function multiplied by a basis function. However, it is the evaluation of these

inner products that is the primary source of difficulty in applying this method.

There are certain problems associated with the inner product evaluation that are

apparent immediately. For instance, the required integrals are too complicated to be

evaluated analytically; therefore, the integrations must be performed numerically. These

integrals are doubly infinite which creates an additional problem. Since the infinite

integrations must eventually be truncated, the rate of convergence is extremely important.

Another problem is that the Green's function introduces singularities in the integrand,

further complic-ting the integration.

With these problems in mind, an algorithm was developed to perform the analysis

described in Chapters 2 and 3. This program was written to construct the matrix equations

in (3.8) efficiently. All of the inner products were computed in parallel, reducing the

number of times the functions were evaluated. Essentially, the program integrated the

entire matrix and column vector in (3.8) at the same time. In the algorithm, the

convergence problem was handled by choosing higher-order basis functions than those

described in Chapter 3 in order to increase the rate of decay in the spectral domain. After

running the program, it was found that the rate of convergence was insufficient. It wa-

also discovered that the singularity in the integrand was treated unsuccessfully by adding

los; to the permittivity of the dielectric substrate.
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These findings warrant a more careful look into the evaluation of the inner

products. Since the sizes of the four upper left blocks in (3.8) increase as the number of 3
basis functions squared, these inner products are considered in particular. In this chapter,

the symmetry in the integrand is examined and exploited to reduce the overall computation I
time. Then the nature of the singularities and possible methods to integrate them accurately 3
are discussed. Finally, the convergence rate of the inner product integrals is discussed. I
4.1 Symmetry in the Integrands

Since the number of inner products that need to be evaluated in a particular problem 3
may become large, it is important to study methods to compute the inner product integrals

more efficiently. If the symmetry in the integrands is taken into account, the numerical I
computation time of each inner product can be reduced by a factor of 4. This is

accomplished by changing the limits of integration from the entire (ct,P) plane to only the

first quadrant. In this work, the numerical integrations are actually performed in the polar 3
coordinate system, since the doubly infinite limits are then reduced to an infinite limit on

only the p variable. 3
Although the integrations are performed in polar coordinates, it is easier to

investigate the symmetry of the integrand in the Cartesian coordinate system. The I
symmetry of each function in the integrand is first analyzed, and then the entire integrand is

considered. The Green's function (2.6)-(2.9) exhibits the following symmetry:

Gxx(a,= Gxx(-a,) = Gxx(-a,-) = Gxx(ca,-3) U
Gxz (a,) = -Gxz(-a,3) = G,(-a,-P3) = -6z (cc,-3) (4.1)

G(zz (cc,3) = Gz (-a,3) = Gzz(-a,-03) = Gzz((x,--3)

The components (G.x and Gzz are symmetric in all four quadrants, while GXZ is asymmetric U
in the 2nd and 4th quadrants. 3

I
I
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The symmetry of the basis and testing functions is determined by examining each

function in Equations (3.16) and (3.17). The triangle and pulse functions are even

j functions with respect to cx and 3. The function that complicates the symmetry is the

complex exponential that results from the shift of the basis functions from the origin in the

I spatial domain. For simplicity, the exponentials from the testing function and the basis

function are grouped together and denoted byI d

Z(ap) = e- j( a x' + Pz ') (4.2)

where
X' = (xi - xi)

z' = (zi - zj)

The location of the testing function, or field point, is (xj,zj) and the location of the current

basis function, or source point, is (xi,zi). Note that the change of sign on the xj and zj of

the testing function results from the conjugation in the inner product definition. The

complex exponential function has the following symmetry

-,)= Z*(c,) (4.3)

Z(c,-P) = z*(-,3)

I
Using the symmetries in (4.1) and (4.3), the inner product Jxj,GxxJxi> can be

Iwritten as

I J~ (a)fl (J3)G (a13)[Z(a13P) + Z(XO

I 
oo

I
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where the integration is now over only the first quadrant. Each of the exponential terms

corresponds to one quadrant in the (a,3) plane. These terms can be combined by grouping

complex conjugate pairs to obtain twice the real part. The resulting cosine functions are

then combined using a trigonometric identity. The final form of the inner product is then

= 4 f I Aw (() rI(P)Gxx (a, 13)cos(x x') cos(13 z') dad3 (4.5)
00

The limits of integration for the other inner products are reduced to one quadrant in

a similar fashion and are given by

~oo(j~,6Z!i)= -4 f fJAw(aX) flt(3) fltZ(a)A-WZ(P)
00I

X Gxz(a,13)sin(x')sin(3z') da d3 (4.6)

(+jzi = 4 f 2 (a), z ( ),(3)cos(ax')cos(Pz') dadfd (4.7)
00

Since the components xz and Gzx of the Green's function are identical, the inner product

<1zGzxJxi> is also given by Equation (4.7).

As previously mentioned, all of the numerical integrations arc performed in polar

coordinates. In this case, the limits of the integration are (0,nt/2) in e and (0,o) in p. One

final observation is that when x' or z' is zero in Equation (4.7), the inner product is

identically zero. This agrees with the physical intuition gained from studying a dipole 3
radiating in free space. For instance, a z-directed dipole located at the origin will produce a

radiation pattern that has no x-directed electric field along either the x-axis or the z-axis. I
This property apparently remains true for a dipole radiating over a grounded dielectric slab. 3

I
I
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4.2 Singularities

One of the major difficulties in the evaluation of the inner products is the numerical

integration of the singularities. The singularities in the integrand are introduced by the

terms D1 and D2 in the denominator of the Green's function (2.6)-(2.9). Each of the poles

of the Green's function corresponds to a resonance condition, namely, a source-free

solution to Maxwell's equations for the grounded dielectric slab. Phys;cally, the zeros of

D1 and D2 represent the TM and TE surface wave poles, respectively.

These surface wave poles are determined by solving for the roots of the equations

s - js'cot(s'd) = 0 (TE) (4.8)

S'- jsEr cot(s'd) = 0 (TM) (4.9)

where
2 :7_2s = k-p

S'= 8rk2-P 2

These equations are functions of only the variable p in polar coordinates, and therefore the

singularities are encountered only in the p integration.

A careful examination of Equations (4.8) and (4.9) will show that in the case of a

lossless dielectric (Er real), the singularities occur for real values of p in the region

k0<p<7rko. The number of singularities within this region can be shown to be [9]

= 0, t<ir/2
NTE 0 <i/ (4.10)N n. (n - 1/2)ir < t < (n + 1/2)it, n = 1,2,3,-..

and

NTM ={n+1, nit < r < (n+l)n, n = 0,1,2,-.- (4.11)

where

,r = kod;r - 1
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Since the first TM surface wave has a zero cutoff frequency, there is at least one singularity

in the integration. Additional surface wave poles are introduced as the electrical thickness 3
of the dielectric increases. In most applications, these higher-order surface waves are

avoided. I
Since there will always be at least one singularity present, it is necessary to develop

a suitable technique to numerically evaluate the singular integrals. There are a couple of

simple techniques that could be attempted. One is to add loss to the dielectric, thereby 3
shifting the poles slightly off the path of integration. Another possibility is to deform the

path of integration around the singularity by applying the Cauchy-Goursat theorem. 3
However, it will be shown that the first method is inadequate, and the second method is not

theoretically justified for the inner product definition (3.7). 3
The simplest technique to implement is adding loss to the dielectric substrate. The

dielectric loss is easily included in the analysis by replacing Er in (2.6)-(2.9) by e.r(l-jtan5).

where tan5 is the loss tangent of the dielectric substrate. This loss will move the poles off 3
the real p axis so that the poles will occur at p=p'-jp", p">O. Since the path of integration

is on the real p axis, the integral is theoretically nonsingular. 3
For realistic problems, however, the integrand is still poorly behaved for values of

p near p=p', because the poles do not move far off the real p axis unless the dielectric I
substrate is unrealistically lossy and/or thick. For example, consider a typical microstrip

substrate of alumina (e=9.6, tan8=10-4) that is 25 mils thick. An actual microstrip circuit

designed on this substrate might operate at frequencies between 0 and 20 GHz. For this 3
case, the location of the first TM surface wave pole is plotted in Fig. 4.1 for various

substrate thicknesses and dielectric losses. The substrate thicknesses d/o=0.02, 0.04, and 3
0.08 correspond to the operating frequencies of 9.5, 18.9, and 37.8 GHz, respectively.

For each of these thicknesses, the real and imaginary parts of the pole are shown for the I
dielectric loss tangents of 10-6, 10-4 and 10-2. The figure shows that the imaginary part of

the pole p" increases when the electrical thickness or the loss tangent of the substrate is

I
I
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increased. However, for a realistic case where d/X<0. 1 and tan=10 4 , "p' is small and

the pole remains essentially real. In this case, the Green's function is still sharply peaked

near the singularity. In Figs. 4.2-4.4, the component 6xx of the Green's function is

plotted for values of p near the singularity. Even for the thickest substrate in Fig. 4.4, the

Green's function is not smooth enough to numerically integrate without an adaptive

routine. Therefore, adding loss to the dielectric is not a viable technique.

Instead of integrating along the real p axis, an alternate integration path might be

taken around the pole by applying the Cauchy-Goursat theorem [10]. This theorem states

that if a function f(z) is analytic at all points interior to and on a simple closed contour C,

then the contour integration of f(z) on C is zero. Expressed in another way, a line integral

of f(z) is independent of path. In Fig. 4.5, the integration path b,c,d in the complex p

plane is then equivalent to the original path a, provided the integrand is analytic and the

dielectric is slightly lossy.

When this procedure was implemented in the evaluation of the inner products, it

was found that the results obtained were incorrect. For instance, all of the inner products

in which the testing function is identical to the basis function should be equal. However,

all of these inner products, known as self-terms, were different when the integration path

was deformed.

The problem with the contour deformation is better understood by first examining

the moment method procedure in the spatial domain, and then determining how this relates

to the spectral domain approach. In the spatial domain, the inner product is defined without

the conjugation. As an example, the inner product for the x component is

00 00

(b, Ea) b aJ( zE(x, z) dxdz (.2

-00 00



I
30

where Ea is the electric field due to the current source a. The inner product integral in

(4.12) is equivalent to a reaction [11]. The reaction concept is useful, since it is consistent 3
with the reciprocity theorem. For instance, the reaction of field a on source b is equal to the

reaction of field b on source a. The resulting symmetries in the testing procedure can be I
used to reduce the number of inner products that need to be evaluated.

The physical insight gained from the spatial domain approach is directly applicable

in the spectral domain, because these two approaches are actually equivalent. This 3
equivalence is shown by applying Parseval's theorem to Equation (4.12) to give

(b' ta) f 4 jb*(cJ")Ea("3)dctdP (4.14)

where

x (ax )= Gx(ca,3)Jx(x,3) (4.15) 3
Here, the spatial domain testing function Jb was assumed to be real, and the conjugation of I
Jx is a result of Parseval's theorem. Except for the constant, the testing process in (4.14) is 3
the same as for the inner product definition (3.7) adopted in this work. Therefore, the

spectral and spatial domain approaches are analogous with this inner product definition.

Unfortunately, if the inner product definition is taken exactly as given in (3.7), it

can be shown that the integrand is not analytic. The problem arises from the conjugation of I
the testing function in the inner product definition. When the integration variables are

considered complex, the conjugated testing functions fail to satisfy the Cauchy-Riemann

equations [12], a necessary condition for a function to be analytic. Since the integrand is 3
not analytic, the contour deformation technique car-not be applied.

Although the contour deformation technique might be valid with a different inner 3
product definition, we chose to integrate the singularity with an adaptive routine. In this

way, the relationship between the spectral domain approach and the spatial domain I
I
I
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approach is definitely preserved. The numerical integrator used in the region near the

singularity was an adaptive quadrature routine designed specifically for singularities.

4.3 Convergence Rate

When the basis functions described in Chapter 3 are used, the convergence rate of

the inner product integrals is extremely slow. The primary reason for this is that the

integrations over the p variable converge slowly near the a and P axes. Each of the basis

functions 1xi and Jzi in Equations (3.16) and (3.17) contain a p-3 term in polar coordinates,

but their actual rate of decay is much less than p-3 for some e. For instance, the triangle

function in Jxi will tend to a constant near e--0* (the P axis) resulting in a rate of decay only

slightly greater than p-1. Another reason for the slow rate of convergence is that the basis

functions are typically small in the spatial domain. The corresponding spectral domain

basis functions are very broad and slowly decaying.

In an effort to increase the rate of convergence, higher-order basis functions were

considered. The pulse function of (3.12) was replaced by a pulse convolved with a

triangle, and the triangle function of (3.13) was replaced by a triangle convolved with a

triangle. Each of the resulting basis functions contributed a p-7 term to the integrand, and

the inner product computation time was reduced.

However, this method of increasing the rate of convergence suffers from the same

problems associated with the original basis functions. The integrations over the p variable

still converge more slowly near the a and P axes, and inner products with small basis

functions tend to converge slowly. Since the rate of convergence with higher-order basis

functions is still inadequate, a different method of accelerating the integrations is discussed

in detail in Chapter 5. This method is based on extracting the asymptotic behavior of the

integrand.
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CHAPTER 5

ASYMPTOTIC ACCELERATION TECHNIQUE

The most serious limitation of the spectral domain approach is the computation time

required to evaluate the inner products. As discussed earlier, the inner products are doubly

infinite integrals that are usually very slowly convergent. The convergence problem is not

unique to the analysis of microstrip discontinuities, and work has been done to reduce the

computation time in the analysis of periodic problems [2], such as arrays of scatterers and

arrays of antennas. Although the inner products in these periodic problems are infinite

sums rather than integrals, the general idea is the same. A suitable function is first

subtracted from the integrand so that the integral will converge more rapidly. The function

is then integrated separately and added back so that the original integral remains unchanged.

In this chapter, the acceleration technique is applied to the inner product integrals in

order to increase their rate of convergence for the infinite rho integrations. In Section 5.1,

the asymptotic form of the integrand is derived and then subtracted from the original

integrand. As a consequence, the resulting integral will converge more rapidly. In order to

recover the original inner product, the asymptotic form is integrated separately and added

back. In Section 5.2, the integral of the asymptotic form is evaluated in closed form by

deriving an equivalent integral in the spatial domain.

5.1 Asymptotic Form in the Spectral Domain

In applying the asymptotic acceleration technique, it is important to realize that any

asymptotic expression can be subtracted from the integrand and added back on, without

changing the original integral. However, a speedup in the overall computation is achieved

only if the expression that is added back can be integrated efficiently. With this in mind,

the asymptotic form of the integrand is derived by determining the asymptotic behavior of

the Green's function and then multiplying this by the basis and testing functions. In this
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way, the asymptotic form is simplified, and the integral of the asymptotic form may be

evaluated in closed form.

The derivation of the asymptotic form of the Green's function is relatively straight-

forward. The behavior of each term of the Green's function in (2.6)-(2.9) is determined I
first, and then the overall asymptotic behavior of the Green's function is deduced. For

large p, the terms s and s' are, to first order,

-jp -2 k (5.1)
s -- j ip

Inserting (5.1) and (5.2) into the terms D1, D2 and D3 yields I

D2 - -2jp (5.4)

D3 = -2jp (5.5)

With the substitution, the term cot(s'd) in DI , D2 , and D3 becomes jcoth(pd). The I
hyperbolic cotangent is then approximated as 1 for large p. Finally, Equations (5.3)-(5.4)

are substituted into the expressions for the Green's function in (2.6)-(2.9), resulting in the

asymptotic Green's function denoted as

6axj(p,8) (p 2 sin 2 (O) k(25XOXo (P, 0) arr (5.6)I

6 P2 sin()cos()(5.7)I
(]zax(Pi,) = %p,0) (5.7)I

I
I
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(z (cs( -k + e, (5.9)

The asymptotic form of the integand is derived by multiplying the asymptotic

Green's function in (5.6)-(5.9) by the appropriate basis and testing functions in the inner

product. This asymptotic form is then subtracted from the original inner product integrals

and added back to give

2to 2iroo

(3xj'GXXjXi) = f f 3* (6xx a) xi pdpdO + f f J* 6 a,,x jxi pdpdO (5.10)

00 00
21r-, 2n -

S *( pdpd+ f f J jz pdpdO (5.11)

00 00
2ro- 27t -(J z '( z~ z ) =  f j- J z ( G zzz zi d d 6 aI -

= U Z z pdpdO+ f J jGzzJzi pdpdO (5.12)

00 00

where the arguments of the functions have been dropped for brevity. The inner product

<Jzj,GzxJxi> will no longer be discussed, since it is identical in form to (5.11). Although

the limits of integration shown in (5.10)-(5.12) encompass the entire plane, these limits can

be reduced to only the first quadrant. The results of Section 4.1 can be applied directly to

the integrals, since the symmetries in the integrands are unchanged.

By subtracting the asymptotic form, the rate of convergence for the first integral in

(5.10)-(5.12) is accelerated. As the Green's function approaches its asymptotic limit for

large p, the entire integrand will go to zero. The second integral in each inner product is

the asymptotic form that has been added back. In order to substantially reduce the overall

computation time, the second integral must be computed efficiently. In the following

section, these integrals are evaluated in closed form in the spatial domain.

It is important to note that the asymptotic form derived in this section is a first-order

expression. For instance, the radicals in (5.1) and (5.2) and the term coth(pd) were
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approximated by only the first term in the series expansions for these functions. Although

an asymptotic form containing higher-order terms will increase the rate of convergence of

the first integral in (5.10)-(5.12), a price is paid since the second integral will be

considerably more complicated. If the second integral must be evaluated numerically, little

or no speedup in the overall computation may be realized.

Even with a first-order approximation, the Green's function approaches its

asymptotic form fairly rapidly. As an example, the component xx of the Green's function

is plotted along with Gxx-G'x for different theta cuts in Figs. 5.1-5.3. It is apparent from

these plots that the asymptotic acceleration technique will increase the rate of convergence

for the rho integrations for all values of theta. This is a substantial improvement over the

technique discussed in Section 4.3 in which higher-order basis functions are used to

accelerate the rate of convergence. With that technique, the rate of convergence was not

improved significantly for values of theta near 0* or 90". Another advantage of the

asymptotic acceleration technique is that the acceleration is dependent on the Green's

function and not on the basis functions. Therefore, the inner product integrations with

small spatial domain basis functions will also converge rapidly, even though the

corresponding spectral domain basis functions are very broad.

5.2 Analytic Integration of the Asymptotic Form

The most difficult step in applying the asymptotic acceleration technique is

evaluating the integral of the asymptotic form. This integral is the second integral in

Equations (5.10)-(5.12). The procedure used to evaluate the integrals is summarized as

follows. The terms in the integrand are first grouped into two functions, and then

Parseval's theorem is applied to derive an equivalent integral in the spatial domain. The

advantage of evaluating the integral in the spatial domain is that the limits of integration are

then finite. At this point, the integrals might be computed numerically. However, these

spatial domain integrals are evaluated analytically in closed form. In this way, the

I
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computation time is reduced to a minimum and no additicnal error is introduced in adding

back the asymptotic form.

In order to develop the notation for the following discussion, Parseval's theorem is

first stated: If U(cz,P3) and V(a,3) are Fourier transforms of u(x,z) and v(x,z),

respectively, then

I cc u* (x,z)v(x,z) dxdz=4--{ J U*(o1,)V(ct,3)dcd (5.13)

In the analysis, the integrals in (5.10)-(5.12) will be considered in Cartesian coordinates so

that Parseval's theorem and other Fourier transform properties may be applied.

The terms in each integrand are now grouped to form two functions corresponding

to the functions 0*(c,3) and V(ca,p3) in (5.13). When grouping the terms, particular

attention must be paid to insure that each of the resulting functions has an inverse transform

that exists. With this in mind, the asymptotic integrals in (5.10)-(5.12) are rewritten as

-xj2oax~x = o I _a[ Wx ( )itx(()e-J(cLx'+Pz'))dccdp54
0- 0" (5.14)

xk Aw (P ) ( )e-j(ax' Pz') )dadp

Izz (GZ )-WEO(l + Er) f Icc 2j 1 +PT ~ lt~a (5.15)

0I0
XINW(~t'Pe-('P' dd
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(jzGz~zi= OEo~+E) a2c+ 2 " )2 2(13) lz(ce)e-j( tx+[3z' ))dctd-00 00(5.16)

____ a2 +ii) ((p(a e~i - j(a"'+Pz'))da3 (516
f0 f _ a2 +P 2 ]( ( _Ez-e dd

where
X' = (xi -Xj)

Z' = (z i - zj)

and where the functions corresponding to C*(a,p) and V(a,3) in (5.13) are separated by

parentheses. The terms a2,p2 , and ap from the asymptotic Green's function have been

grouped with the basis and testing functions to form the function V(ac,3). The terms were

grouped in this manner, because the inverse transform of the entire asymptotic Green's

function does not exist. The remaining function lf cL+132 corresponds to the function

C*(a,3). Since this function is real, the conjugation is dropped to simplify the notation. I
The functions u(x,z) and v(x,z), the inverse transforms of the functions C(a, ) 3

and V(a,3), are needed to continue the derivation of the equivalent spatial domain integral.

The inverse transform of C is considered first and is given by

u(x,z) = 412 ± ff j 1 ej(x+Pz) dadp (5.17)

The integral in (5.17) is then converted into polar coordinates in both the spectral and

spatial domain variables (13]. Making the substitutions cc=psinO, P=pcos0, x=rsinQ, and I
z=rcoso leads to

I27c-a
u(r,2) = 12 f f eJprcos(O-0)dpde (5.18)u~,)=4n- 0 0 I

I
I
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where a trigonometric identity was used to simplify the argument of the exponent. The

integral over the variable 0 in (5.18) is recognized as the Bessel function Jo(pr). Making

this substitution and using the fact that fJo(t)dt=1 yield the inverse transform
0

1

u(x,z) = 27T 2 (5.19)

Determining the inverse transforms of the functions corresponding to V(a,3) is

considerably more tedious. In the spectral domain, these functions are denoted as

V1 (a ,) -2  -  (5.20)
92(, ) = 2 x(Ot) I2tm,,-j(ax'+ z') (5.21)

V3(ap) = awX f x(a) Iltz (a)Wz()U"tx(p)e(+) (5.22)

V4 (a, 3) = J32 Aw z )(a) e- x z') (5.23)

- Aw Z (P) H=12 () e- (5.24)

After applying several Fourier transform properties, the inverse transforms of the functions

in Equations (5 20)-(5.24) can be represented as

a2

vl(x,z) = - -[Awx (x- x')* Awx (x- x') ntx (z -z')* 1Itx (z -z')] (5.25)

v2 (x,z) = [Aw(x - x')*Awx(x - x') ltx (z - Z')* rItx(z - z')] (5.26)

v3 (x,z) = - 2[Aw x(x -x')*fntz(x-x') Awz (z -z')* rItX(z -z')] (5.27)a2

v4 (x,z) = -azT[Aw (x -x')* lItz (x -x') Awz (z- z')* A't (z - z')] (5.28)

v5 (x,z) = [r-t(X- x')*-tz (x - x') Aw(Z - z')*Aw (z - z')] (5.29)
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In (5.25)-(5.26), the partial derivatives in the spatial domain correspond to the

multiplication by ax or 5 in the spectral domain. The convolutions of pulse and triangle 3
functions result from the multiplication of their transforms in the spectral domain. Each of

these convolutions is performed over only one spatial variable, because the functions are I
separable. Finally, the arguments of these functions are shifted in the spatial domain due to 3
the exponential term in the spectral domain.

At this point, deriving the final expressions for the inverse transforms is primarily 3
an exercise in algebra. The various convolutions between the triangle and pulse functions

that are required are given in Table 5.1. Inserting these convolutions into equations (5.25)- 3
(5.29) and performing the indicated differentiations will lead to the final expressions for the

inverse transforms of vi(x,z). Since these expressions are fairly lengthy, they are not

presented here explicitly.

Once the functions corresponding to u(x,z) and v(x,z) are determined, the

equivalent asymptotic integrals in the spatial domain are known from (5.13). These spatial 3
domain integrals have finite limits of the integration that are determined by the convolutions

of the pulse and triangle functions. Since these convolutions result in piecewise continuous

functions, the integrals are actually broken up into a sum of integrals with limits over

smaller rectangular regions. I
The types of integrals that need to be evaluated are polynomials in x and z divided

by the function !/i x2+z2. The polynomials are a result of the convolutions in the

functions vi, and the radical comes from the function u in Equation (5.19). Most of these 3
integrals can be found in standard integral tables, but several of these integrals required

considerable effort to evaluate. All of the general integral types needed are listed in 3
Table 5.2 in the form of definite integrals. In this table, Ii(xl,x2,zl,z 2) denotes the ith

integral type, where (x1,x2 ) and (zl,z 2) are the limits of the x and z integrations. I
When Equations (5.19) and (5.25)-(5.29) are combined together with (5.13) and 3

the integrals in Tables 5.1 and 5.2, a closed-form expression for the integral of the

U
I
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asymptotic form is obtained. The asymptotic integral for the inner product <Jxj,GxxJxi> is

expressed in compact form as

(=xjGaxx 47c2{ Io+r)- - 2ok o } (5.30)

where the integrals I and I are given in Table 5.3. The expression for the asymptotic

integral <jzj,GzJzi> is obtained from (5.30) by replacing x by z and z by x. Finally, the

asymptotic integral for the inner product <Jxj,GxzJzi> is

(j'Ga = 47t2{cL o (i ) r  } (5.31)

where the integral i is given in Table 5.4. For this integral, there are six different cases

depending on the relative widths and thicknesses of the basis and testing functions.

Since the derivation of these expressions was rather involved, the final expressions

for the asymptotic integrals were verified by direct numerical evaluation of the spectral

domain integrals in Equations (5.14) and (5.15). As a test case, the substrate was chosen

to be 1.57 mm thick with a relative dielectric constant of 4. The operating frequency is

1GHz, and the relative position (x',z') of the basis and testing functions is (0.3,0.4). For

this test case, the results obtained from the analytic expressions and the numerical

integrations are shown in Table 5.5. All of the analytic and numerical results are seen to

agree within 2 percent. The difference is easily accounted for by the error in the numerical

integration, because the integrand of the asymptotic form is poorly behaved. Therefore, the

analytic expressions for the asymptotic integrals appear to be correct.

In Chapter 6, the performance of the asymptotic acceleration technique is evaluated

by comparing the results of a routine that uses the technique and one that does not.



44I
Table 5. 1. Various convolutions of the pulse function and the triangle function.

Convolution of a Pulse with a Pulse:

rIT(t)*rIT(t) = {T2: -T:5 t < 0
T-t,0:5t:5T3

Convolution of a Triangle with a Triangle:

(2w +t)' -2w 5t <-wI
6w 2  I

02t2 2w -:

Aw(t)*Aw(t)= 2w2  w 3~<
0 t 2 +2w0:t<w

2w2  w 3
(2w _t) 3  5 t 52w

Convolution of a Triangle with a Pulse:I

Case 1: T<w

(T+2w+ 2  -(w +T 2):5t <-(w -T/2)
8wI

T +1 t, -(w - T2) 5t <-T /2

4w

Wt)F T - T t w2 T/2 :5t<(wT /2 )

w

(T +2w -2t) 2  (w- T /2) 5t 5(w + T/2)
8w
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Table 5.1 (Cont.)

Case 2: w <T!2w

(T +2w +2t) 2  -(w+ TI/2) 5t <-TI/2
8w

T+w +t(T /2 + t)-'- : <-w-T/2
2 2w

Aw(t)*FIT(t)= T- T2--2 -(w-T/2) <t<(w-T/-))
T w wT12 )2

2 2w

(T+2w-2t)2  T/2< t<(w+T/2-)
8w

Case 3: T>2w

(T +2w +2t)2  -(w +T /2) <-t <-T/ 2
8w

T+w +-(T / 2 +t) 2  - 2 -t<-T/2-w
2 2w

Aw(t)*rIT(t) w, -(T/2 -w)<t < (T /2 - w)

T+w-t (T /2 -t) 2  ( )<
2 2w (/-)tz/

(T +2w -2t) 2  T/2 <-t <(w+T /2)
8w
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Table 5.2 Definite integrals needed in the integration of the asymptotic form.

I 1(x1 ,x2 ,z1,z2 ) = ~f2. 2 1 dxdz

= Z In x + x 2 +z21]+x In z + x2+z2) X2 
5

1Z X2 x x

I12(xi,x 2 ,zl,z 2 ) = + dxdz

7x + Z2 lnz+I7'] i

13 (x 1,x2, z1, z2) = jz1 jx2 7 dxdz

-X x2 +z 2  _-x+3 n x2 +z2) Z3~ x x +z,) -

=6 9 +3 nZ+6I(x,2z)

14 (X,x 2 ,zl,z 2 ) I z1  x j2 +z 2 dd

= ~~ +z2)f +1 I 4 ~~+T7 X2- -z2

15(x 1x2 ,z1 z 2 Jx 2 ~ xd

3 x2 Z2
1(X2 + Z2)2

3xl

X1 ZI
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Table 5.2 (Cont.)

fz f x  2  X2

I6 (x1,x 2 ,z,z 2 )J2 f" 2 xz  dxdz
4 X2 z2

2 2 z .- z V- -T2+ ') Z2
8 8

xl z1

17 (Xlx2,,zlz 2 ) fZx 2 x___z dxdz
Z1 x1 7x2+Z 2

4x 2 X2 Z2

~x~~( 2_2z2 )(x2 + Z2 )x2
Xl z



Table 5.3 Expressions for the integrals I and I in Equation (5.30). The definite integrals 4

Ii appearing in this table are defined in Table 5.2.3

I -(a +b)
2%c

where

a = ai[j(xi,xi+,z,z 2 )- 5 (xi,xi+,z 2 ,z 3 )+t 2 (xi,xi+,z,z 2 )+CI 2 (xi,xi+,z 2 ,z3 )

i=1

4

a i1(ixilz~2 =1(ix~~2z) T1(ix~lz~2 +g1(ix~~2z

4

c aXi[5 (xi,xi+,zl,z-))- 5(xi,xi+,z 2,z 3) + TI2(xi,xi+,zl,z2 ) + cI 2 (xi,xi+,z-,z 3)]

4

dail,'- (z,z 2 ,xi,xi+) - 2 (z2,z 3 ,xi,xi+i) +cl(z,z 2 ,xi,x+) + cl(z 2 ,z3 ,x,x~il)]

a n d w h e r e 3 X - Z fK t z

xi =x'- 2w,, Iz,-t

x2 =x, -wx Z=' I
x3 =x .z 3 z',+ t

X4 = X'+ Wx

x5= x' + 2w,
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Table 5.3 (Cont.)

2 x'
a- w2  Wx W

-3 -2 3x"
a2 = wx72 -- 2

wx wx wx
-2 3x'

a3 =-a 2  b3 = wwx wx

S 1 2 x'a4  + T2 4

wx 2w,
W Wx

-1 -1 3x'

a1 = 6 2  b2 W 2w2x.- 2w2 -wx 3x

= -a2 -1 3x'
wx 2w2

1 X"
= -a,= +9

2

x' 2  4w x 2 x 2  ,

2x' '
a, = 2 2x 4 x62 = -2x'+ 4w .2 1

wx 2w2  3 wx 6w'
2 X2 '3c 2x' 3x"2 2w x"C2 w- x2 d2 = - + ---2

2 3 w. 2wx

2x" 3x' 2  2w x  x' 2  x' 3
C3 = -- 2"-' d3 = 2

wx 2w- 3 wx 2 2

2x' x'2 4w. x' 2  x 3

64 =-2- 2 d4 = 2x'+ - + -+
w 2w 3 w. 6wx



Table 5.4 Expression for the integral 1 in Equation (5.3 1). The definite integrals Ii 5

appearing in this table are definied in Table 5.2.3

2- j~1 i~ I
+ biz {izljx5( j, I'z~z) bjXI(zi~i+i jx j(j+i I~l

where the variables xj zi,aj~bx iz and bi are listed below for each of the six different

cases.

Cae1 tz:5wx and tx: wz

x, = X' -(wX + tz/2) Z, Z' -(wZ + tx/2)I

x2  X -tz/2) z -\" xI2)

x= x-tz/2 z3 z- t.(/2I

X4 = X'+ tz/2 Z4 Z'+ / 2

X= X'+ (wx - tz/2) z5 z' +(WZ tx/2)

x= x'+ (w, + tz/2) z6 z'+ (w. + t,/2)3

1t K' 1X t

wX 2w, wX wz 2wz w2

a2,x 0 b 2x L- a2z 0 bz= XN

-2xb~ 2x' az -2 bz 2z'

a4x 0 b4x -I- a4z 0 b. z -tX

_ I-tz X+1t z'
WX 2w, W wx _wz w
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Table 5.4 (Cont.)

Case 2: wx<tz<2wx and wz<tx<2wz

=,X - (WX + tz/2) zi=Z' - (WZ + tx/2)

=, X - tz/2 z2z - tx/ 2

X3 x'- (wx - tz/2) z3 z'- -(WZ tx/2)

X4 X'+ (wx tz/2) Z4 Z'+ +(WZ tx /2)

x5 x'+ tz/2 z5 z'+ +t/2

x6 x'+ (W. + t,/2) z6 z' + (WZ + tx/2)

a,, ~L bIx Z.... .+1 aiz b I z-Z
wx2wx wx wz 2w. wz

aix + b + +1 a2z - bi
Z 2w 1) w~ w b 2w + w~

-2) 2x' -2)1)Z
a3x -= b- a3z - bix

wx wx wz wz

a 4 x 5 = b ~ t ' 1 t a5Z=- b4 z= ---- 1
wx2wx w xw 2wz w z

Case 3: 2wx:5tz and 2wz~ax

XX x- (WX + tz/2) zi= z' - (w, + t,/2)

x2x - tz/2 z2= z- t,/2

x3 x'+ (WX - tz/2) z3= z' +(wz + tx/2)
S'+ (tz/2 -wx) '+ +(tx/w

X4 X Z4= /2 -5 = +tz,

6 X'+ (wx + tz/2) z6= z'+ +(W + [,x/2)
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Table 5.4 (Cont.)

1 ~ tl z-X + ~ x -Z'
bix 2 wx wx i z - w wZ 3

-1z + x' + ~ -tx +Z,

a2Z== b~x+2z
wx2w, wx w 2wz wz

a3,,=O0 b3x 0 a3z 0 b3z= 3
wx2wx wx wz 2wz wz

a~ bxLz '1 a5z - 1 ~ t, z

wx2w,~ wx Vz ~ 2w wz

Case 4: a) wx<tZ<2wx and tX:5wz

Take ajjx from Case 2, and take aiz 1z from Case 1.

b) wz<tx<2wz and tz: wx

Take aj~ xx from Case 1, and take a iz~bzz from Case 2.

Cae5 a) 2wx:5tz and tx:5wz

Take ajxo ~x from Case 3, and take a z 1z ffrm Case 1.

b) 2wz:5tx and tz: wx

Take aj.(,bjXxx from Case 1, and take a1z,b1z,zi from Case 3

Cae6 a) 2wx!5tz and wz<tx<2wz

Take ajjx from Case 3, and take aizbiz,zi from Case 2.3

b) 2wz:5tx and wx<tz<2wx

Take aj x,bj~x from Case 2 , and take a iz 1z from Case 3.
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Table 5.5. Numerical verification of the analytic expressions for the integral of the

asymptotic form. The numerical result is calculated by numerically integrating

the spectral domain integrals in (5.14) and (5.15). The analytic result is

obtained from the expressions (5.30) and (5.31). The relative position (x',z')
of the basis and testing functions is (0.3,0.4). (f=l GHz, d=1.57 mm, and

r=4.0)

Inner Product ___Wx__ tx Wz Analytic Numerical

<JxjGaxxxi>: 3x10-2  4x10-2  - _7.150x10 2  -7.148x10"2

a

Case 1 3x10"2  4x10 "2  5x10-2  2x10-2  -3.145x 10-  -3.202x0 "

Case 2 " 8x10 -2  " 4x10 - 2  -1.265x 10-3  -1.250x10 -3

Case 3 " 11x10 -2  6x10 - 2  -2.625x10 - 3 -2.638x10 -3

Case 4 " 4x10 -2  4x10 - 2  -6.288x10I 4  -6.268x10 -4

Case 5 4x10-2  " 6x10- 2  -9.425x10-4 -9.434x 10-4

i Case 6 8x10-2 T " I 6x10 - 2  -1.896x10 - 3  -1.890x10- 3

i
I
I
I
I
I
I
I
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Figure 5.1. Magnitude of the Green's function at 6=00 (er=4.0, d=1.57 mm, f=l GHz).
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Figure 5.2. Magnitude of the Green's function at 0--450 (Er= 4 O0 d=1.57 mm,3

f=l GHz).
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Figure 5.3 . Magnitude of the Green's function at 0=9 0 (Fr-4.O, d=1.57 mm~f,

f= 1 GHz).
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CHAPTER 6

PERFORMANCE 3
In this chapter, the asymptotic acceleration technique discussed in Chapter 5 is 3

evaluated by comparing the results of two different algorithms. One algorithm computes

the inner products by direct numerical integration, and the other employs the asymptotic 3
acceleration technique in the numerical integration. The direct integration algorithm is used

as the standard for determining the accuracy of the acceleration technique. It also provides I
a basis for a comparison of the execution speeds. 3

Before comparing the results, it is necessary to understand the numerical integration

routines used to compute the inner product integrals. Both algorithms perform the two- 3
dimensional integrations in polar coordinates, and by taking advantage of the symmetry in

the integrands, the limits of integration have been reduced to the first quadrant. The 3
integration is implemented numerically by stepping in the theta variable and integrating in

rho at each step until convergence. The rho integrations are then summed up over the theta I
steps with a basic Gaussian quadrature integration routine. For the rho integrations, a 3
general adaptive quadrature routine is used everywhere, except in the region of the

singularity. In this region, an adaptive routine !-signed specifically for singular functions 3
is used.

Defining a good convergence criterion for numerical integrations is a difficult task 3
in general. In this work, the criterion chosen for truncating the infinite rho integrations is

based on a relative convergence test. After each step in the rho integration, the most recent I
approximation to the integral is compared with the approximation from the previous step. 3
If the relative difference is less than a user-specified tolerance, the integration is terminated.

The actual procedure implemented requires the integration to satisfy this convergence 3
criterion two consecutive times before terminating. 3

3
I
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Although the asymptotic acceleration technique was designed to increase the rate of

convergence of the rho integrations, the technique actually accomplishes more than this. In

some cases, the inner product evaluation is not possible without the acceleration technique.

The reason for this is that the integrand becomes highly oscillatory with respect to theta for

large rho. Since the rho integrations are truncated sooner with the acceleration technique,

this highly oscillatory region of the irtegrand may be avoided. It is important to note that

the poor asymptotic behavior has been captured analytically in the asymptotic acceleration

technique. Therefore, the results obtained with this technique are possibly more reliable

than those obtained by direct numerical integration.

As an example of the integrand's poor behavior, the integrand of the inner product

<jXjGxx1Xi> is plotted with respect to theta in Figures 6.1 and 6.2 for rho at 1000 and

3000. These values of rho are reasonable, since most of the rho integrations cannot be

truncated before 3000 for these inner products. From the plots it is apparent that the

integrand becomes more oscillatory as rho increases. The behavior of the integrand will

also become worse as the separation between the basis and testing functions increases. In

Figure 6.1, the separation is approximately a quarter of a wavelength in free space. The

behavior of the integrand in Figure 6.2 is substantially worse, where the separation is about

a half wavelength. This poor behavior arises from the complex exponential term associated

with the basis and testing functions. As a result of this term, the direct integration routine

often converges slowly in the theta integration. When the separation is too large, the direct

numerical integration completely fails to converge before numerical error dominates.

Since the direct integration of the inner products fails for large separations, the

comparison of the algorithms is limited to inner products with relatively small separations.

When a comparison is possible, the agreement between the direct and the accelerated

evaluations of the inner products is excellent. As an example, consider the case in which

the operating frequency is I GHz and the dielectric substrate is 1.57 mm thick with a

relative dielectric constant of 4. The width and thickness of the basis functions were
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chosen to be approximately a twentieth of a free-space wavelength. Several inner products

were computed for this case, and the results are given in Table 6.1. The results from the

two algorithms are seen to agree very well for the various separations of the source and

field points considered. For all of the cases, the complex relative difference is within 31

percent. The largest separation listed is approximately a quarter wavelength. Beyond this

distance, the direct integration algorithm did not converge with a reasonable number of

points in the theta integration.

Note that the real parts of the inner products in Table 6.1 are identical for the two

algorithms, because the asymptotic form only contributes to the imaginary part of the inner

product. This brings up the question of the true accuracy of either algorithm. Although the

results of the two algorithms are consistent, it is possible that both results may be in error,

since the algorithms are based on similar numerical integration routines. However, from

the results presented, it is safe to conclude that the asymptotic acceleration technique does

not introduce any new error in the evaluation of the inner products.

Finally, the asymptotic acceleration technique is evaluated in terms of its effect on

reducing the computation time. For the cases listed in Table 6.1, the acceleration technique

provided a speedup that varied between two and four. However, the time saved will

increase as the limit of the direct integration is pushed with larger separation distances. The

acceleration technique will also be more effective for thicker substrates, since the

approximation for the hyperbolic cotangent in the asymptotic form is then better.

The effectiveness of the acceleration technique can also be examined by comparing

the maximum rho reached before the convergence criterion is satisfied. In Figure 6.3, an

actual path of integration in the first quadrant of the (p,e) plane is plotted for both

algorithms. Each radial line represents a rho integration for a particular theta step. For the

direct integration, there are a few rho integrations that do not converge until after 5000. In

comparison, all of the rho integrations for the accelerated algorithm are seen to converge 3
before 1800. For this example, it appears as though the acceleration technique should

I
I



59

provide a speedup of more than the observed factor of two. The actual reduction in

computation time is more modest, because a significant portion of the computation time in

each rho integration is spent integrating the singularity adaptively.

Table 6.1 Comparison of the inner products computed using a direct integration
algorithm and an accelerated algorithm. The widths and thicknesses of the
rooftop" basis functions are each 0.05 X09 and the separation (x',z') is given

in terms of wavelengths (d= 1.57 mm, er=4 .O, f=1 GHz).

Inner Product (x, "Z') I Direct Evaluation IIAccelerated Evaluation

_______________ (0.0) -2.88x 10-5 +j384x10- 1 -2.88x 10-5-+j3.84x 10- 1

________(0.05,0.05) -2.80x 10-J9-6 1 x10-3 -2.80x 10-5 -9.5 1 x 10-3

_________ (0.1,0.1) -2.59x 10-5-j 1.43x 10-4 -2.59x 10-5-j 1 .44x 10-4

________ (0.2,0.2) -1. 83x 10-5-j 1-05x 10-5  -1.83x 10-5 -j 1.06x 10-5

Jx,.xz zP (0.05,0.05) 1.88xl0-7 -j6.66xl0-2 l.88xl0-7 -j6.66xl0-2

________ (0.1,0.1) 7.21x10-7 +j5.19xl0-6 7. -21xl0-7 +ij5.17x1o-6

___________ (0.2,0.2) 2.43xl106±jl1.30x 10-5 2.43xl0-6+j 1.34x 10-5
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(a) Magnitude of the integrand with respect to 0 at p=1000. I
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(b) Magnitude of the integrand with respect to 0 at p=3000.

Figure 6.1 Behavior of the integrand for <Jxj,GxJxi> with separation variables x' and z' 3
equal to 0.2 ko (d=1.57 mm, Er=4, f=1 GHz,wx=tx=0.05 Xo). I

I
I
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(a) Magnitude of the integrand with respect to 0 at p=1O00.
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(b) Magnitude of the integrand with respect to 0 at o=3000.

Figure 6.2 Behavior of the integrand for <.xj,(xxJxi> with separation variables x' and z'

equal to 0.4 -o (d=1.57 mm, er=4 , f=l GHz, wx=tx=0.05 Xo).
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0=90"

(a) Direct integration algorithm.

I

I

(b) Accelerated algorithm. i
Figure 6.3 Integration path in the first quadrant of the (p,e) plane for the inner product

<Jxj,GxxJxi> with separation variables x' and z' equal to 0.2 X0 (d=1.57 mm,

E=--4, f=l GHz,wx=tx--0.05 X).

I



63

CHAPTER 7

CONCLUSIONS

In this thesis the general microstrip discontinuity problem was formulated in the

spectral domain. The moment method was then used to generate a set of algebraic

equations that could be solved numerically. When this procedure was implemented, it was

found that there were numerical difficulties associated with the evaluation of the inner

products. One such difficulty was the numerical integration of the singularities

corresponding to the surface wave poles. The nature of these singularities and possible

methods to integrate them were discussed. Another difficulty encountered was the slow

convergence rate of the inner product integrals. The convergence rate of these integrals

was improved by applying an asymptotic acceleration technique. In this work, the integral

of the asymptotic form was derived analytically in closed form; therefore, the maximum

speedup was achieved for the asymptotic extraction. Also, no additional error was

introduced in the computation.

In order to evaluate the effectiveness of the asymptotic acceleration technique, two

different algorithms were developed. One algorithm employed the acceleration technique in

the evaluation of the inner products, and the other computed the inner products by direct

numerical integration. Both routines took advantage of symmetry in the integrands to

obtain an initial speedup. The results from the two algorithms were in close agreement,

confirming the fact that the acceleration technique does not compromise the accuracy. For

the cases considered, the acceleration technique reduced the overall computation time by a

factor that varied between two and four. It was also found that the acceleration technique

allowed certain inner products to be evaluated numerically that appeared to be unattainable

with the direct integration routine.

Although the asymptotic acceleration technique was developed for the microstrip

discontinuity problem, it should be noted that the technique is also useful in the spectral
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domain analysis of other grounded dielectric slab structures. In particular, patch antennas, 6

printed dipoles, and disk resonators can be analyzed using this technique. 3
The work to improve the efficiency of the inner product evaluation is far from

complete. Several potential improvements on the technique should be investigated in the

future. For instance, the acceleration technique could easily be implemented in conjunction

with higher-order basis functions to further enhance the convergence rate of the inner I
product integrals. In addition, the use of higher-order asymptotic forms in the acceleration

technique should be considered. In the latter case, an analytic evaluation of the resulting

asymptotic integrals may not be possible, but approximations may exist (i.e., series 3
expansions) for which the tradeoffs between computation time and accuracy are acceptable.

Finally, the computation time could be reduced significantly if a more efficient method of 3
integrating the singularities were implemented.

I
3
I
I
I
I
I
I
I
I
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