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I. Research Summary

This final report summarizes research activities performed by the Center
for Accelerator Science and Technology of the University of Texas at Arlington
di ring the period of July 1, 1987 and June 30, 1990 under Grant No. AFOSR-
8-(528?" The main goals of the successful research program are to provide
theoretical basis to analyze the wake-fields in the elliptically shaped wake-field
cavity, and to examine the feasibility of applying the new idea of wake-field
acceleration to beams of lasers. The theorectical research is very important
due to the world-wide interest in finding new acceleration principles with
higher accelerating gradients suitable for future particle accelerators. In par-
ticular, very exciting and -new experimental rgsgltb from Argonne National
Laboratory seems to indicaté that wake field acceleration is indeed a very vi-
able alternative for this endeavor.

Although our own experimental work has not been completed in the
period due to primarily an inadequate experimental support for the 20 MeV
electron linac as noted on the technical report of July, 1990, a great deal was
accomplished in the theoretical analysis. We hereby report the research ac-
tivities undertaken during this period. ‘The research performed under this con-
tract’is divided into six categories:and main achievements in each category are
as follows.

(1) Investigation of wake-field acceleration using the elliptical wake-field
cavity | R

Our theoretical works on this subject were very successful and major
progress has been made. An analytical method was developed to calculate the
wake-fields in a meta'lic elliptical pillbox cavity. Bv solving sets of the

Maxwell’'s equations in the transformed plane, we were able to express the




wake-fields analytically. This analytic method simplifies the wake-fields calcula-
tion significantly, and we can readily optimize the cavity design without much
computational efforts. Our analysis was shown to agree extremely well with
data of existing 3-D computer ccde as well as with experimental data
presented recently by the Argonne _roup. This work was well recognized and
published in the refereed journal (Particle Accelerators). Modal analysis has
been extended to include the effects of arbitrary sized beam aperture in a
cavity. Excellent agreement between the experimental data and our analysis was
demonstrated. The second work was also published in refereed journal (J. of

Applied Physics, in progress).

' (2) Theoretical study of dielectric wake-field cavity
It is found that the dielectric-lined elliptical wake-field cavity will yield
an acceleration gradient of the same order of magnitude that can be obtain
with a metallic cavity, and the deflection modes are supressed if the energy
of the driving beam is sufficiently high. This new acceleration scheme provides
a simple solution to the transverse instability problem in the wake-field ac-
celeration.

>

(3) Computer code development for a wake-field cavity analysis,
Based on the theoretical analyses developed here, very efficient and time

saving computer codes are developed.

(4) Development of wake-field measurement system EI “,
A novel electrostatic probe to measure the wake-fields directly was

developed. It was shown that we can measure with reasonable accuracy the




strength of the wake potentials in a cavity without using an expensive energy

analyzing magnet and beam manipulating equipments.

(5? Applicat.on of Wake field cavities: Study of a soft x-’?ay laser scheme .

This work dzals with an application of the elliptical wake-field cavity. We
have performed pioneering analysis for applying the wake- fields generated in
an elliptical cavity as an electric wiggler in free electron lasers. Theoretical
study of a soft x-ray EFEL scheme using two-beam elliptical pillbox wake-field
cavity has been conducted. [t is found ihat the scheme provides sufficient gain
as a coherent radiation source down to the x-ray regime. Our work was

presented in a number of published and refereed articles.

- '(6) Development of a laser photocathode
The design and construction of a laser photocathode was conducted for
a use as an intense, short electron beam source for the wake-field acceleration
study. Numerical study of optimal cathode geometry was conducted and beam
currents were measured. It was demonstrated that this type of photoemitter
can be used as an efficient short, intense electron beam source for a cornpact'

linac design. -




I1. Research Performed by Category

In the following, we describe in detail the six research tasks we ac-
complished. First we list the publications in which the results were presented

in detail. A summany of the results is then givern.

Task 1:

I C ¢ wake-field lerati ine the ellipticalwake-field :
Purpose: to develop a rigorous and theoretical basis to calculate the wake-fields
in an elliptical cavity.

Publications to-date:

1. J. S. Yang and K. W. Chen, An analytical solution of wake-fields in
an elliptical pillbox cavity, will appear on Particle Accelerators, Vol 23, 1990.

2. S. H. Kim, K. W. Chen and J. S. Yang, Madal analysis of wake- fields
and its application to elliptical pillbox cavity with finite aperture, will appear
on Nov. 1, 1990 issue of J. of Applied Physics.

3. J. S. Yang and K. W. Chen, Wake potential in a semi-elliptic pillbox
cavity, on Advanced Accelerator Concepts, AIP conference proceedings 193,
Lake Arrowhead, CA 1989.

4. K. W. Chen and S. H. Kim, Wake-field acceleration and compact ac-
celerator considerations, SPIE Vol. 875 (SPIE, Bellingham, WA 1988), pp. 223-
233.

Resnlts

Theoretical study on the wake-field generation using the elliptical cavity
has been conducted. Major progre-s has been made in this study: development
of an analytical method, and analysis of cavity with arbitrary sized aperture. It

was known from theoretical and experimental works that the impedance, which




is the Fourier transformation of the wake-fields, of a closed cavity and that
of a cavity with finite aperture are practically the same at the low frequencies.
Therefore, the long range wake-fields of a short bunch or the wake-fields of
a very long bunch are almost ti'e same for these two different structures. Since
the wake-field acceleration scheine requires a very short, intense driving bunch
to excite acceleration fields of the order of 100 MeV/m and, furthermore,
delay distance between the driving and trailing beam is very large compared
to the bunch length, we can estimate with good accuracy the wake potentials
of the most practical cavities by neglecting aperture effects. Under this as-
sumption and using the coordinates transformation, we were able to express
the wake-fields and wake potentials of an elliptical cavity analytically. With this
analytical method, we can easily estimate maximum energy gain of the ac-
celerated particles, and si.nplify the optimization of the cavity design without
time consuming 3-dimensional computation. It is demonstrated that our analysis
agrees extremely well with that of existing computer code WELL.

Although aperture effects are not serious for the long range wake- fields
as long as aperture is small compared to the cavity cross section, we have to
consider its effects to calculate the short range wake-fields or to estimate the
energy loss of the driving beam and to consider the beam dynamics calculation.
For this purpose, the theoretical analysis was expanded significantly to extend
the modal analysis methods to include the effects of arbitrary apertures in the
cavity. A complete modal analysis was carried out by using the Floquet’s
theorem and an obvious requirement that the energy gain over all acceleration
cavity of repeating structure must be proportional to the number of pillboxes.
In addition, by assigning proper boundary conditions on the apertures and con-

sidering the parity and continuity of the fields at the aperture, the formalism




to determine the Fourier coefficients for the repeating stricture consisting of
many pillbox cavities with arbitrary aperture was derived. The results of this
analysis were compared with experiments done by the Argonne Group. An
excellent agreement between the experiment data and o''r analysis was

demonstrated as in publication 2.

Task 2
Study of wake-Field ited_in_the dielectri
Purpose: to investigate the effects of dielectric material in the
elliptical cavity for a use as a wake-field device.
Publications:

1. J. S. Yang and K. W. Chen, Wake-ficlds in a dielectric-loaded elliptic
waveguide, -submitted to Particle Accelerators for publication, July, 1990.

Results |

The wake-field acceleration scheme using dielectric-lined elliptical cavity
was conducted. It is well known that the electron beam loses energy and excite
slow EM waves (Cerenkov radiation) behind when it passes through a
dielectric-lined structures. The dielectric structure can be used as a wake-field
device as well as other applications such as storage cell, energy modulator,
etc. It was shown experimentally by Argonne group that the dielectric-lined
circular cavity has great advantages over other wake-field schemes; acceleration
gradient is of the same order of magnitude that can be achieved with metallic
cavity and the transverse wake potential can be made quite small for the ultra-
relativistic driving beam. The proof-of-principle of acceleration by the wake-
fields generated in the circular dielectric structure has been experimentally

demonstrated by the Argonne group. However, it was not clear whether the




transverse modes are also supressed in the elliptical dielectric cavity as in the
circular cavity. Extraction and re-acceleration of driving beam can be simplified
significantly if the driving beam and accelerated beam pass through different
paths. Here, we extend the idea of acceleiation using dielectric-lined elliptical
cavity to supress the transverse deflection modes and still provide staging
capability. The investigation of the wake-fie'ds excited in the elliptical dielectric
cavity was carried out. Sets of the Maxwell’s egs. are solved analytically in the
transformed plane. It was shown that only fundamental modes are excited in
the dielectric structure, and all the higher modes and transverse deflecting
modes are inversely proportional to the square of the driving beam energy.
This property of lack of the transverse modes is a unique feature of a
dielectric structures. The model calculation showed that this cavity can be used
as a wake-field acceleration device which has a large acceleration gradient of
the order of 100 MeV/m, no appreciable transverse forces, and still provides
the easy staging capability. Excellent agreement with the Argonne wake-field

experiment was demonstrated.

Task 3
C Codes Devel ; Elliptical Pill Cavi
Publications: J. S. Yang, Results of a PC-based wake-field code, CAST internal
report CAST-89-0115

Resnlts

As a result of the theoretical works developed here, a simple and effi-
cient numerical code was developed to calculate all the resonant modes and
loss parameters of an elliptical pillbox cavity. Excellent agreements with the

3-dimensional numerical code WELL as well as with experimental data were




wemonstrated in publication 1.

Task 4
Deyelopment of a Wake-Field Measurement System
Purpose: to deyelope a method to measure the intensity of the wake- fie ds
directly in an elliptical cavity.
Publications:

1. S. H. Kim and K. W. Chen, An electrostatic probe system for the
measurement of wake-field in a two-beam elliptical pillbox cavity, submitted to

Review of Scientific Instrumentation

A unique system to measure the wake-fields generated in an elliptical
cavity was developed. Utilizing the facts that wake-fields are predomunated by
a few lower order modes and the wavelength of the fundamental mode is of
the order of the cavity size, an electrostatic probe with two conducting
spheres can measure the longitudinal and transverse wake-fields of an elliptical
cavity. The sailent advantage of this probe system is deduced from the ex-
perimental result that the voltage amplitude at the oscilloscope is proportional
to the wake-field amplitude. The wake-field is about S KV for 3 nC of driving
charge for a cavity used in the Argonne group experiment. Since we can easily
measure a 50 V pulse, which is the expected signal level from the probe for
0.03 nC driving charge of our linac, easily by an oscilloscope, this alleviates
the need that a powerful buncher be installed to a system using a low-current
injector or the need of a system using a witness bunch. This measurement
procedure will simplify greatly the measurement and test system of the wake-

field experiment.
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Task §

Theoretical Study of a Soft X-Ray Free Electron Laser Scheme
Purpose: to develop a soft x-ray laser
Publications:

1. S. H. Kim and K. W. Chen, Scft x-ray free elec .on laser using a two
beam elliptical pill-box wake-field cavity, SPIE Vol. 875 (1988)

2. S. fI. Kua, Free electron lasing in a longitudinal electric wave, Phys.
Lett. 135A, 39 (1989)

3. S. H. Kim, Stimulated bremsstrahlung of soft x-ray in a two beam
wake-field cavity, Proc. of International Conf. on Phenomena in Ionized Gases
(ICPIG) XIX, Yugoslavia, 10-14 July (1989)

4. S. H. Kim, Free electron lasing in transverse undulating magnetic field,
Phys. Lett. 135A, 44 (1989)

Results

The lasing by stimulated bremsstruhlung of a relativistic dilute electron
beam passing through a spatially periodic longitudinal electrostatic field (static
electric wiggler) or a traveling undulating longitudinal electric field (traveling
electric wiggler) was investigated. We found that the elliptical pillbox cavity is
suitable to generate the traveling wiggler fields. If we inject the lasing electrons
in the opposite direction of the driving beams which excite the wake- fields
along the foci of the elliptic cavity, the lasing electrons are forced to emit
the laser radiation by both the longitudinal and transverse wake-fields. This
scheme is based on the fact that we can produce the longitudinal and
transverse wake-fields whose amplitudes are more than 100 MeV/m in the el-
liptical pillbox cavity. Until the strength of the laser wave arrives that of the

transverse wake-field excited by the driving beafn, the transverse motion of the

11




lasing electrons is confined by the transverse wake-field, and both stimulated
and unstimulated bremsstrahlung take place similar to the radiation in the con-
ventional magnetic wiggler. It was shown that a laser using a traveling electric
wiggler provides sufficiznt gain to be used as a coherent radiation source down
to the soft x-ray regime. The gain increases with the inverse of the laser
wavelength, while that of a conventional free electron laser using a transverse
undulating magnetic field operating in the Compton regime decreases with the
laser wavelength. This lasing scheme is entirely new and is quite important for

workers in this field.

Task 6
Development of a laser photocathode for the generation of high current. short
electron bunch
Purpose: To use in the wake-field acceleration and compact accelerator design
study
Publications:

1. K. W. Chen, Y. C. Chae and J. Choi, Development of a laser
photocathode for use in wake-field acceleration and compact accelerator design
studies, SPIE Conf. on Innovative Science and Technology, Los Angeles, CA,
SPIE Vol. 875 (SPIE, Bellingham, WA 1988)

Results

Experimental study of a back-illuminating short-pulse photocathode for a
use as a short, intense electron source has been conducted. Thin films of Cs3iSb
was deposited on the cathode using laser ablation method. The performance
test of the constructed cathode was made with the Q- switched Nd-YAG laser

pulse (532 nm) directed from the rear of the cathode surface. It was observed

12




that a current of 2.5 mA/cm® is obtained at 6 KV/cm potential in a modest
vacuum of 107 torr. With subsequent improvements and refinements in design,
it was demonstrated that use of this type can be extended to other ciympact

linac designs for commertial applications.
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III. Personel Participating in the AFOSR Program

Participants of the wake-field research program include: Dr. K. W. Chen,
PI, and Dr. S. H. Kim, senior scientist and graduate students, Mr. J. S. Yang
Y. C. Chae and J. Choi. Other research students involved in this program are
T. Pham and N. Nguyen. Mr. Yang completed his Ph.D. degree in Mechanical
Engineering in August 1990 with the support from this grant. Mr. J. Choi
obtained a M.S. degree in Mechanical Engineering in 1988 and subsequently
moved to the University of Wisconsin to pursue a Ph.D. degree. Mr. Chae
has subsequently received a M.S. degree and has since moved to the University
of Houston. He is currently pursuing his Ph.D. degree at the Argonne National

Laboratory.
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V. Summary of Publications
1. Journal Publications

1. J. S. Yang and K. W. Chen, An analytical solution of wake-fields in an
elliptical pillbox cavity, will appear on Particle Accelerators, Vol 23, 1990.
2. S. H. Kim, K. W. Chen and J. S. Yang, Madal analysis of wake-fields and
its application to elliptical pillbox cavity with finite aperture, will appear on
Nov. 1, 1990 issue of J. of Applied Physics.
3. S. H. Kim, Free electron lasing in a longitudinal electric wave, Phys. Lett.
135A, 39 (1989)
4. S. H. Kim, Free electron lasing in transverse undulating magnetic field, Phys.
Lett. 135A, 44 (1989)
5. S. H. Kim and K. W. Chen, An electrostatic probe system for the
measurement of wake-field in a two-beam elliptic pillbox cavity, submitted to
Review of Scientific Instrumentation

2. Conference Publications
1. S. H. Kim, Stimulated bremsstrahlung of soft x-ray in a two beam wake-field
cavity, Proc. of International Conf. on Phenomena in Ionized Gases (ICPIG)
XIX, Yugoslavia, 10-14 July (1989)
2. J. S. Yang and K. W. Chen, Wake potential in a semi-elliptic pillbox cavity,
on Advanced Accelerator Concepts, AIP conference proceedings 193, Lake
Arrowhead, CA 1989.
3. K. W. Chen and S. H. Kim, Wake-field acceleration and compact accelerator
considerations, SPIE Vol. 875 (SPIE, Bellingham, WA 1988), pp. 223-233
4. S. H. Kim and K. W. Chen, Soft x-ray free electron laser using a two
beam elliptical pill-box wake-fieid cavity, SPIE Vol. 875 (1988)
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5. KL W. Chen, Y. C. Chae and J. Choi, Development of a laser photocathode
for use in wake-field acceleration and compact accelerator design studies, SPIE
Conf. on Innovative Science and Technology, Los Angeles, CA, SPIE Vol. 875
(SPIE, Bellingham, WA 1988)

3. Internal Reports and Publications
1. CAST-88-0013, Status report on UTA Linac installation and testing
2. CAST-89-0810, Wake-fields in a dielectric loaded elliptic waveguide
3. CAST-88-0304, Radiation shielding structure design and radiation safety
adequacy considerations
4. CAST-89-0115, Results of a PC-based wake-field code

4. Thesis Completed

1. J. Choi, M.S. Thesis, "Design and construction of a high current electron
injector utilizing laser back-illuminated photoemission”, June 1988, Mechanical
Engineering Department. ,
2. J. S. Yang, Ph.D. Dissertation, "Wake-field Acceleration of Charged Particles
With an Elliptical Cavity", August 1990, Mechanical Engineering Department.

V. Conclusion

The research on the wake-field acceleration with an emphasis on the use
of elliptical cavities has been conducted. Major progress has been made in the
analysis of the wake-fields in elliptical structures and its application for genera-
tion of laser beams. It was demonstrated that the use of elliptically shaped
wake-field cavity offers promising way for reaching acceleration gradients of a
few hundreds MeV/m, which is suitable for applications such as compact, high
brightness linacs. The elliptic geometry allows us to simplify multi-stage ac-

celerator design and to overcome the low transformer ratio and transverse

16




wake-fields problem. We can achieve much higher acceleration gradients by
selecting optimal cavity geometry and beam distribution. With our analytical
method, we can simplify the optimization of the cavity design without time
consuming computational work. To verify our theoretical analyses, we compared
the results with experimental data in circular wake-field cavities obtained by
the Argonne group, and excellent agreement are demonstrated. Furthermore,
it was shown that we can obtain the wake- fields in a circular cavity exactly
from our analytical formula for the wake-fields in an elliptical cavity. Also, the
results of our analytical method were compared with existing numerical code

and very good agreement between these two methods are domenstrated.
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THE ANALYTICAL SOLUTION OF WAKE-FIELDS IN AN
ELLIPTICAL PILLBOX CAVITY

J. 8. YANG and K. W. CHEN

Center for Accelerator Science and Technology, The University of Texas at Arlington,
Arlington, TX 76019

( Received June 26. 1990)

The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is
derived analyticaily in the limit of vanishing aperture. It is found that the resonant modes of an elliptical
cavity can be expressed in terms of Mathieu functions. Calculation resuits are presented and compared
with numerical ones.

1. INTRODUCTION

The wake-field produced by a bunch of relativistic charged particles in an elliptical
pillbox cavity is important not only for future high gradient electron accelerators!,
but also for a use as an electric wiggler for some proposed free electron laser schemes?.
The suitability is based on the estimation that the acceleration gradient will exceed
100 MeV/m per uC of driving bunch charge, and on wavelengths of the order of a
few centimeters.

The principle of acceleration by the wake-field generated in a metallic cavity has
been experimentally verified®. Also, other wake-field acceleration schemes using a
plasma medium* or a dielectric-loaded cavity® have been experimentally investigated.
However, these wake-field schemes have not been demonstrated to have significantly
larger acceleration gradient than that in a metallic cavity. Elliptical cavities have
been investigated by several authors!-#-%% It was shown®? that in elliptical cavities
the transformer ratios are rather limited, and that a strong transverse wake-field,
which might lead to beam instabilities, is aiso excited. However, we can overcome
the low transformer ratio and the transverse deflection problem by using multi-stage
schemes. Although the transformer ratio would not be as high, a wake-field acceler-
ator not based on the impedance transformation principle could be achieved by using
multi-stage schemes with short stages; the driving beam is replaced with a new one
or replenished in energy after each stage. By rotating subsequent groups of cavities,
the overall transverse deflection of the accelerated beam can be minimized.

The wake potential in an elliptical cavity can be obtained either by modal analysis
or by numerically solving Maxwell’s equations in the time domain. In the previous
modal analysis’-8, the wake-field is expressed in a Fourier series based on the vector
cigenfunctions of the unit pillbox. For infinitely repeating structures, the problem for




the entire acceleration cavity is reduced to that in a pillbox cavity by using Floquet’s
theorem on the periodicity. The modal analysis can be generalized to a cavity of
arbitrary shape when we car. calculate the resonant modes. For a cavity with finite
apertures we should use numerical methods to find resonant modes accurately.
Previously the wake-fields ‘n an elliptic pillbox cavity with finite aperture were
calculated using the numerical code weLL®, which directly solves Maxwell’s equa-
tions in the time domain.

In this article, we do not take into account the aperture eifect. The analytic solution
which will be formulated in this article exists and is of interest, even though it is an
approximation for the cavity with beam holes, since we can readily estimate the
maximum energy gain of the accelerated particle. In view of these considerations, we
try to obtain an analytic expression for the resonant modes in an elliptical pillbox
cavity in the limit of vanishing aperture. Using the mode analysis, the longitudinal
and transverse wake potentials are derived in terms of Mathieu functions. It is also
shown that we can derive exactly the same expressions for the wake potentials in a
circular cavity as in Ref. 7 when the ellipse tends to a circle.

2. ELLIPTIC PILLBOX CAVITY

2.1. Solution of Homogeneous Helmnoltz Equation in an Elliptic Cavity

Consider an elliptic pillbox cavity as shown in Fig. 1. For a cavity of elliptic cross
section, the eigenfunctions can be found in terms of known functions by transforming
the Cartesian coordinates to the confocal elliptic coordinates as shown in Fig. 2. In
these coordinates, boundary conditions on the elliptic cavity are readily satisfied. The
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FIGURE 2 Confocal elliptical ccordinates.

elliptic coordinate variables (£, , z) are defined by*'°
X = h cosh € cos n,
Y = h sinh & sin 7, (1
Z =1z,

where h is the semi-interfocal distance.
The Helmholtz equation is then transformed to

1 ?vY 0w\ o
VW 4 Y = —— —— — 4+ k¥ =0. 2
* h¥(sinh? ¢ + sin® ) (562 6»12) o tx @
Following the method of separation of variables, we seek to find sofutions of the form
Y, n, 2) = [(E)g(mw(2). A3)

Substituting Eq. (3) into (2) and dividing by ‘¥, Eq. (2) is split into three ordinary
differential equations:

f&) —(a—2qcosh28)f(§) =0, 4
g"(n) + (a — 2q cos 2n)g(n) = 0, (%)
w'(z) + f*w(z) =0, (6)

where 29 = y2h%/2, y* = x? ~ %, and ais an arbitrary separation constant. The above
Egs. (4) and (5) are called the Mathieu equations. The solutions of these equations
are the Mathieu functions'®.




2.2. Resonant Modes of a Cavity

For a closed elliptic pillbox cavity, we corsider the solutions of

(Vi+ W n=0 ™

in the region 0 < ¢ < &, and 0 < < 2%, whre ¥ = E, for a TM wave and H, for
a TE wave. Any combination of the product »f the solution of Egs. (4) and (5) is also
the solution of Eq. (7). In addition to th~ boundary conditions, the following
conditions must be satisfied:

(1) comtinuity of ¥ on the interfocal line,

(ii) continuity of gradient of ¢ on the interfocal line,

J,, .. d
Y WS Mg~o = — pY: WS —Mg=o- 9)
Among the possible combinations, the only permissible form of the solution which
satisfies above two conditions is

¥ =2 CuCeull q)cen(n, 4) + 2 SmSen(s, q)sen(r, @), (10)
m=g m=1
with the factor exp(j(wt — fz)) being omitted. Here, C, and S are arbitrary
constants. The functions ce_(n, g) and se,(n, q) are respectively the even and odd type
Mathieu func ons of the first kinds of integral order, and Ce_(£, ) and Se,(¢, q) are
the modified Mathieu functions of the first kinds of integral order. These functions are
given by!°

cer(tna) = 3. AG™ cos 2rm, (11)
r=0

Cernerlm )= 3 AZSD cos (2r + U, (12)
=0

Sersalm@) = 3 BE*Vsin 2 + 2n, (13)
=0

Se3a+1(M.q) = i B sin (2r + 1)n, (14)
r=0

forn=0,1,2..., and the coefficients 4 and B are function of q. Modified Mathieu
functions Ce(¢&, q) and Se, (¢, q) have the same forms as in Eqgs. (11)<(14) except ,
sin, and cos are replaced by ¢, sinh, and cosh respectively.

We first notice that symmetry of (¢, n) is determined by ce.(n, q) and se (1, q).
From Egs. (11)«14) we see that the first term in Eq. (10) is an even function and the
second term is an odd function with respect to n. Therefore, the second term in Eq.
(10) is always zero on th: median plane (y = 0 plane) where wake potentials are to
be evaluated, and does not contribute to the calculation of the longitudinal wake




potential. For this reason, we only consider the even-type modes of a TM wave,
Wm = Cen(E, g)cen(n, q), for the wake potential calculation.
The boundary corditions are:

¥(&o, m) = 0. (15)

There remains the cuadition that no tangential component of electric field exists at
the end-plate walls at z = 0 and d, which is satisfied if we choose

-

ﬁ=?, p=012... (16)

where d is the gap distance of the pillbox cavity shown in Fig. 1. From Eq. (15) we have

Ce(8. q) = 0. (17

Let q,,, be the nth root of Eq. (17) for mode m. Then we can calculate the resonant
frequencies from the root g,,. Combining 2g = y?h%/2 and y* = k? — 82, the resonant

frequencies are given by
wmup 4qmn pr e
. — . 18
c { BT (d ) } 19

The wavelength of the dominant mode is then given by

rth nxye,

'1010 = ’
901 901

where e_ and x, are, respectively, the eccentricity and semi-major axis of the boundary
ellipse. The ratio 4q,¢/X, is plotted against e, in Fig. 3. In this figure, we see that as
e.—0,ie., as an ellipse tends to a circle, the ratio approaches 2.61, which is the ratio
of wavelength to the radius, i/ry = 27/y4,, for the TM,,, mode of a circular pillbox
cavity of radius ro, where x,, is the first zero of Bessel function J,.

The field components are given by

(19)

E;.., = Cen(&, dma)cen(n, gma) COS '—’dﬁz, (20)
Bt = = g ConlE: dmnlcealr, dne) sin - ey
Eo = D‘; " — Cenld, dancenlt, Gua) sin =2, (22)
Hoy = 22222 Cerlg, quukcentn, ame) cos 5 2 23)
H, . = :%"dﬁ CerlE, Gmakcen(t dma) <08 -2, (24)

H,=0, ' (25)
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FIGURE 3 Plot of 4y,¢/x, as a function of eccentricity.
where
4Qq {cosh 28 — cos 27 V-
Do == > . (26)

The resonant mode patterns for some of the lower-order modes are shown in
Fig. 4.

3. WAKE POTENTIAL CALCULATION

3.1. Longitudinal Wake Potential

Consider the test charge which is traveling through the focus axis of an elliptic pillbox
cavity ({ =0, 1 = n) and trailing the driving charge Q, which is traveling through
the other focus axis (£ = n = 0), by a fixed distance s in the z-direction. The delta
function longitudinal wake potential W, is defined as the energy gained by unit test
charge. Bane et al.” obtained the wake potential as an infinite sum

Wis)=2Y k, cos (w_xs)
l C

Vi)V, ;
=Y ZHOD) o <w—‘s), fors>0 27
" 2u c

i
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FIGURE 4 Configuration of resonant modes in an elliptic pillbox cavity. (a)m = 0,(b)m = 1, (c)m = 2,
(d) m = 3).

where k, is the loss parameter and V; is the voltage induced by a point charge Q.
The stored energy u, is given by

%o Jax a; dV = udy,, (28)

where a, is the vector eigenfunction. The vectors r’ and r represent, respectively, the
transverse position of the path of the driving charge and that of the test charge. Using
the field components in Egs. (20)~(22), the voltage V, becomes

P ,
Vir) = J dz exp (’lwz)a 0,0, 2)

[

1]
da .
= Ce (0, gna)cen 0, q'“),[ dz exp (J_‘E) cos L 2, (29)
° c d
4 jwz
Vir) = j dz exp (——)aa,(é, n, )
° ¢
d .
= Cenfd, malcen, qm)j dz exp (’“’7’) cos 2 2, (30)
(4]




and further

w\?
2Cm"<;) Wmnpd

<(w)2 (pn 2)2(1 - (=1)?cos m;p >; (31)
c) d)

where C,,, = Cen(S, Gmn) Clml0) dmn) el Grmn) CEm(0, Genn)-
The stored energy u, becomes

Vv, =

Umnp =SE°J'aA'aA'dV

)
c .. L4
= 5—2(’ = f Cel(E, Gma)ceZ(M, dmn) COS? (%): av. (32)

‘mn

h? ..
After integration using dV = 0 {cosh 2& — cos 2n) d€ dn dz, it is further reduced to

(%)
gomh?d \ ¢ %o .
Uppp = 0 2 — j Cei(C, ma) X (cOsh 28 — O_) d¢, (33)

mn 0

where

2=

1
On= ;J cel(n, qmn) €OS 217 dn

1]
APAM + Y APAD, ., form=0,2,4,...
= =0 (34)
HAT™? + Y AP, AP, form=1,3,5,...
r=0Q
and A!™ are the coefficients for the series representation of the Mathieu function
cen{n, q) given in Eqs. (11) and (12).
Substituting Eq. (31) and (33) into (27), the delta function longitudinal wake
potential on the accelerated beam path (¢ = 0, n = =) becomes

) cos (w"'""s), (35)
c

where g, = } for p=0and | for p # 0. N, and C,, in Eq. (35) are given by

d
Epcmn(l —(—=1)Pcos w"':"

2 ) 0 ®
Wi=—— X L L

m=0p=) p=0 qmnNmn

o
Noa = J Cel(£, qma) x (cosh 28 — ©,) d¢, (36)
. i




Cmn = (Cem(o’ qmn))zcem(o’ qmn)cem(nv qnm)

» 4
(ZA(ZH:)> form=29,.,.4....

e=Q

= (37
© 4
—(ZA‘z':Ll) form=1,3,5,...
r=0

For a circular pillbox cavity, W, is expressed analyticaily”"* in the form of

) cos (wo,,,,s), (38)

(l — (=1} cos w";"d
W(s) =

4 @ 0
1) Ttd ngl pgosp '/.on'l%(Zon)
where y,, is the nth zero of the Bessel function J,.

When the boundary ellipse tends to a circle of radius ro, the confocal hyperbolae
in Fig. 2 become radii of the circle r, and the confocal ellipses become concentric
circles of that radius. In this case, Eq. (35) is reduced exactly to Eq. (38). We can
easily show this by using the limiting properties of Mathieu functions. The Mathieu
functions ce(n, g) and Ce.(£, q) degenerate into the following forms'® as h =0
and ¢ — 20, while keeping the product hcosh ¢ —r:

q—'O as h—Q, (39)
\/1 form=0
A 41
cenl 4) {cos me, form#0 (41)
Cen(&, 9) = P ml¥r), (41)
A™ 0 (except A™ — 1 for m # 0, and 4P ~ /1), (42)

where p,, is a constant multiplier, and J,(x) is the Bessel function of the first kind.
Then, Eq. (37) becomes

Conn = (Cem(0, Grmn))?cem(0: dma)Clrm(Ts dmn)
- (pme(o) cos m¢)2 = 0, fOl' m # 0
= (poJo(0)3/2 = p3/2, form =0. (43)
It is apparent from Eq. (43) that contributions from m # 0 modes become zero

as expected as an ellipse tends to a circle. The denominator in Eq. (35) for m=0
becomes

% ( p07)2 fro
Gon Cetz)(cv qon) COSh 25 dé - —'—2_' JéJ(z)(?r)r dr
0

o

s :
- 7° 22 on): (44)

where 7 = 7,./ro. Substituting Eqs. (43) and (44) into (35), we can get exactly the
same expression for the wake potenual in the circular pillbox cavity as in Eq. (38).




No closed expression is known for the infinite sum in Egs. (35) and (38), and they
must be evaluated numerically.
If the driving bunch has a Gaussian charge distribution

1 —zz)
iz) = , 45
#2) \/Z—M exp (20 (45)

then the bunch wake potential U, becomes

Us) = f HoWfs — 2) dz

¢ C,,,,,(l —(—1)Pcosw—'"—-“"d>
c

V/Z/n el 0 o P

XX

_Soﬂdamao a=]p=0 qmnNmn

s —2 —
x J exp(z-:?> cos Domesl — 2) dz. (46)

o c

When s » o, the bunch wake potential becomes

Us) = 2 i i i cxp(—(&"i’ﬂ)zo’z/Z)
z 8Oﬂdﬂ:=0 n=1p=0 (4
W pnod
s,Cm(l — (—1)°cos —C—"—)
DmnpS
X cos . 47
From this equation, we can see that contributions from the modes whose resonant

wavelengths are much shorter than the bunch length 20 become negligible. For the
dominant mode. Eq. (47) can be conveniently written as

o252
o = Ltei)—z/'—cﬂe' Y "”“”"z( 1 - cos 222) cos 2, (48)
egn-de’SNgy, i i

where S = nx,y, is the cross sectional area of the cavity, A is the wavelength of
dominant mode, and ¢, is the eccentricity of the boundary ellipse. From Eq. (48), we
see that the wake potential scales as w;? and S™°.

3.2. Transverse Wake Potential

From the Panofsky-Wenzel theorem, the transverse wake potential is related to the
longitudinal wake potential by
OW (s)

Js

From this relation we can write the transverse delta function wake potential as’

S OAZUN (92)
c

=V, W(s). (49)

Wi(s)—=) ¢
‘ ; 2u,w,

(50)




On the accelerating beam path (£ = 0, n = =), we have

VIOV, V(1) = Cenl0, qi)cen(0, qa)cem(m, 4V Cen(0, 9.)

d ; 2
X (J dz exp (jiuf) cos 7~ z) . (50
0 c d

Since the driving charge and test charge are assumed to pass through ea‘h focus

axis, only ¢-component of the transverse wake potential exists at the foci of the
elliptic cavity. Thus,

]
V,Ce,(0,q)=¢li (&,
en(0, 92) cgl:r;h nh % 0 Cen{¢, 92)
;; Z (2r)2 A%, form=0,2,4,...
81 - (52)
Z(zr + )24, form=1,25,...
r=0Q
Therefore, the transverse delta function wake potential is given by
d
5 s,C‘(l —~(—1)Pcos -ai:—-)
c . [@;
W,(s) = $ —~5), 53
) Eondg w,q:N; " ( ¢ s) ©3)
where
Cl = Cem(o qmn)cem(o qmn)cem(nv an)vl. Cen;(o’ qmn)
(Z A"“’) < ) (Zr)zA“"’> form=0,24,...
- =0 r=0 (54)
( ‘ZTLl)\Z(Zr+I)2A‘;',‘L,), form=13,5,...
r=0 r=0

For the driving bunch of a Gaussian charge distribution, the transverse bunch
wake potential becomes

U,s)= J‘ ' M)W (s - 2) dz

A (P S
3

eonda ms0n=] p=0 wmanmnNmn

s — 2
x '[ exp (2:2) sin :"" (s — 2) dz. (55)




4. NUMERICAL EXAMPLES AND DISCUSSIONS

The longitudinal and transverse wake potentials in an elliptic pillbox cavity are
calculated by using Eqs. (46) and (55). We choose the same cavity dimensions and
bunch length as in Ref. 9 to compare the results. The cavity dimensions and beam
parameter are:

major axis 2x, = 10 cm,

minor axis 2y, = 6 cm,

gap distanced = 2 cm,

=5 mm.

The wavelength, i,,,, and the loss parameters of a Gaussian bunch, k;(o), for
some of lower-order resonant modes are tabulated in Table I, while in Table II the

TABLE 1

Wavelength /.., and Loss Parameter kn,.0) of an Elliptical Pillbox Cavity (x, = 5cm, v, = 3cm,
d=2cm, ¢ =5mm)

m dms ‘m10 Zmit Amiz km10l0) ke11{0) k1 2(0}
(cm) (cm) (cm) (v/pCQ) (V/pC) (V/pC)
0 1.7353 9.5394 3.6883 1.9574 3.2345 x 1072 1.6366 x 10~ 6.8638 x 1073
1 3.3522 6.8634 3.4559 1.9201 1.2629 x 10~! 1.2993 x 1072 5.7848 x 104
2 5.6530 5.2853 3.1895 1.8705 22821 x 10°! 43203 x 1072 20914 x 10°3
3 8.6577 4.2708 29194 1.8112 2.5776 x 10~! 84739 x 1072 4.5668 x 1073
4 12.3689 3.5731 2.6648 1.7452 20007 x 10~ 1.1262 x 10~ 69154 x 1073
b 16.7792 3.0678 2.4343 1.6754 1.1060 x 10~! 1.0854 x 10~} 7.7733 x 1072
m 9mz ‘m10 Am21 ‘m2z kma0(0) knz1(0) kmaa(a)
(cm) (cm) (cm) (v/pQ) (V/pC) (V/pC)
0 11.3563 3.7289 2.7276 1.7625 2.8997 x 10~° 1.4188 x 10°¢ 8.4089 x 10~°
i 14.6278 3.2856 2.5389 1.7084 19755 x 10~* 1.4828 x 10°% 9.8517 x 10~7
2 18.4878 29225 2.3598 1.6505 6.1309 x 10~3 74392 x 103 5.6547 x 10°¢
3 22.9665 2.6221 2.1930 1.5902 1.0984 x 10~* 23849 x 10°* 21224 x 1073
4 28.0957 2.3708  2.0395 1.5287 1.1261 x 104 5.4398 x 10°4 58271 x 10°%
5 33.9196 2.1577 1.8990 1.4668 4.5322 x 10~ 9.1853 x 10~* 1.2279 x 103
TABLE 11
Wavelength /,,, and Loss Parameter k,,(g) of a Circular Pillbox Cavity (rq = 3.873cm,d =2 cm, o = §
mm)
n Lon /ons ont “9a2 koaola) koa1(0) kon2(o)
(cm) (cm) {cm) (vieQ) (V/pQ) (V/pC)
{ 2405 10.118 3.720 1.962 7.235 x 107! 3212 x 1072 1.338 x 1073
2 5.520 4.408 2962 1.821 6.031 x [0~} 1.818 x 107! 9.614 x 10~?
3 8.654 2.812 2.300 1.630 1.162 x 107! 1.700 x 10~} 1.361 x 10~32
4 11.792 2.064 1.834 1.436 4419 x 10™¢ 4.693 x 1072 7.128 x 1073
5 14.931 1.630 1.509 1.263 3.944 x 10°? 2710 x 10~3 1.458 x 10~}




same information is given for the circular pillbox cavity that has the same cross
sectional area (r, = \,’:, Vo)-

Figures 5 and 6 are, respectively, the curves of the longitudinal wake potential on
the accelerated beam path and that on the driving beam path, in which different
number of modes are included (solid lines for 24 modes and broken lines for 12
modes). From these figures, we see that the mode summation converges rapidly,
indicating clearly that the wake potential is dominated by a few lower modes. It was
pointed out that the wake potential inside the bunch is difficult to calculate because
of the slow convergence of mode summation®. However, it is not clear in these figures
whether the series converges rather slowly for positions inside the driving bunch.

On the accelerated beam path, we obtained about 125 MeV/m/uC acceleration
gradient, while about 110 MeV/m/uC was obtained by Y. Chin? (see Fig. 7). The
elliptical cavity in this example calculation does not represent the maximum accelera-
tion gradient that can be achieved. As discussed earlier, the longitudinal wake
potential is proportional to the number of particles in the driving bunch and inversely
proportional to the cross sectional area of the cavity. Also, it is dependent on the
distribution of charges within a bunch and the eccentricity of a cavity. By choosing
appropriate parameters, one can achieve an even-higher acceleration gradient.

The transverse wake potentials on the accelerated beam path and driving beam
path are shown in Figs. 8 and 9 by the broken lines. The corresponding longitudinal
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FIGURE 5 Plot of the longitudinal wake potential on the accelerated beam path (solid line: 24 modes
sum; broken line: 12 modes sum).
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FIGURE 6 Plot of the longitudinal wake potential on the driving beam path (solid line: 24 modes sum;

broken line: 12 modes sum).
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FIGURE 7 Plot of normalized wake potentials on the accelerated beam path (results of Ref. 9).
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FIGURE 10 Plot of normalized wake potentials on the driving beam path (results of Ref. 9).

wake potentials are plotted together in order to see if we can find the positions, such
as the point A in Fig. 8, at which the accelerating potential is large while the transverse
potential is small. The charge to be accelerated should be positioned at such a point
in order to avoid large transverse deflection during acceleration. Figures 7 and 10
are, respectively, the curves for the longitudinal and transverse wake potentials on
the accelerated beam path and driving beam path calculated by the numerical code
WELLS?. In these calculations, the effect of beam apertures of 0.5 cm radius was
considered. Comparing these analytical results (Figures 8 and 9) with numerical
method (Figures 7 and 10), we found very good agreement in both magnitudes and
frequencies. However, magnitude of the longitudinal and transverse wake potentials
are higher for this analytical method which does not include the beam aperture effects.
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The potential of the wake-field produced by a bunch of relativistic charged particles passing
through a pill-box cavity 1s expressed by using Floquet’s theorem, and an obvious requirement
that the energy gain over ill acceleration cavity of many pill boxes must be proportional to the
number of pill boxes, based on the previous modal approach (BWW theory). It is found that
the wake-field is consistec of two classes of modes: the longitudinal modes which are
independent of the aperture and the pill-box gap, the hybrid (pill-box) modes which are
dependent of the pill-box gap. The wake field is predominated by the fundamental longitudinal
mode whose wavelength is on the order of the effective diameter of the cavity, and its
magnitude is inversely proportional to the cross sectional area of the cavity for practical
cavities with small apertures. Both longitudinal and transverse wake-fields due to the
longitudinal modes in an elliptical-pill box cavity are expressed analytically in a closed series
form by solving exactly the longitudinal eigenmode,'gquation in the elliptical cylindrical
coordinates in terms of Mathieu functions. It is found that both longitudinal and transverse
wake-fields whose amplitudes per driving charge are greater than 100 MV/m/uC can be
generated in an elliptical cavity.

1. INTRODUCTION Fourier series based on the scalar and vector eigenmode
functions of the entire cavity. By the law of causality, Bane ez

Even though a charged particle in uniform motionona  a/.” expressed the part of the Fourier series expanded on the
straight line in free space of a pill-box cavity does not radiate  scalar eigenmode functions in terms of the part on the vector
(or does not produce “‘acceleration fields™), it can produce  eigenmode functions. Thus the wake field can be expressed
“velocity field,” which are independent of acceleration.  ina Fourier series based on only the vector eigenmode func-
These velocity fields induce currents at the metallic surface  tions so that the general formulation of the wake;?leld be-
of cylinder and disk plates, which in turn produce the elec-  come much tractable. The synchronism between particle
tric and magnetic field, commonly called the wake field, be-  and mode was used to formulate implicitly the Fourier coef-
hind the trajectory of the charged particle. ficients in a Fourier series expansion of the wake field.” So
The wake fields produced by a bunch of relativistic  far, from the synchronism, only the acceleration gradient in
charged particles in pill-box cavities are important not only - a cavity in the limit of vanishing aperture has been explicitly
for future high-current compact electron accelerators,' but  calculated, and it was shown explicitly to be proportional to
also for a use as an electric wiggler for & proposed free elec- - the inverse square of the pill-box gap.® This inverse square
tron laser scheme.? The suitability is based on an estimate : law is approvriate when the gap distance p is much longer
that the wake electric field exceeds 100 MV/m per uC driv- : than the tkickness of the disks. When p -0, the pill-box cav-
ing bunch charge, and the wavelength ison theorderof afew - ity is same as a plain cylinder cavity with inner radius equal
centimeters. The principle of acceleration by the wake field . to the aperture radius (i.e., the inner radius of the disks).
in metallic cavities was experimentally verified.> Also, other . Thus, the wake field gradient approaches to the zero as p —0.
wake fields in either plasma medium** or a dielectric cavity’ | In.the above modal analysis, the disks are assumed to be
have been experimentally investigated. The energy gain in : infinitely thin so that the inverse square law holds for any p.

the recent plasma wake experiment® is about 4 MeV whereas The principle of the modal analysis for a physical quan-
those in the previous wake field experiments®*® are on the i tity is to determine the Fourier coefficients based on the
order of 100 keV. complete basis functions. Since the basis functions are com-

In the rf acceleration cavity, the current source is out- | plete, the Fourier coefficients are uniquely determined.
side the ca .ity, and the phase velocity of an electromagnetic | Therefore, once the Fourier coefficients are determined to
wave is determined entirely by the cavity structure. In con- | satisfv some proper conditions pertinent to the physical
trast, the wake field is produced by the driving charge‘a quantity, there are no other proper Fourier coefficients than
Therefore, the phase velocities of the wake field modes are, | these coefficients. In this article, using an obvious attribute
determined by both the velocity of the driving charge which\ ‘ of the acceleration gradient in the periodic cavity, we show
produce the wake field, and the cavity struciure. ‘\ \ the formulation to d ‘termine the Fourier coefficients for any

The experiments® showed the predominance by the fun- \\ pill-box cavity of arbitrary aperture. Using the formulation,
damental mode, indicating that the modal analysis isppro- ] the wake-potential in a cavity of vanishing aperture is ana-
priate tool for the evaluation of ths‘wake field. In ﬁpre- ' ' lytically expressed, and the result is exactly the same as the
vious modal analysis,” the wakesfield is expanded in a, ' result from the synchronism.
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To apply the modal analysis, we first find the basis func-
tions (or the mode functions). By using Floquet's theorem
on the periodicity, the problem all over the acceleration cav-
ity can be reduced to that in a unit pill box. Since the mode
functions satisfy the elliptic partial differential equations, we
should specify boundary conditions all over the enclosing
surface to determine mode functions uniquely. On the metal-
lic surface, the infinite conductivity condition can be as-
signea a: the pertinent boundary condition as usual. How-
ever, so fr the problem as to what is the boundary condition
on apert re has not been investigated; the previous modal
analysis sapplied to the cavity in the limit of vanishing aper-
ture, wh'_h does not have such problem, and the numerical
method: which solve directly the Maxwell equations and
boundary conditions all over the entire cavity (not the unit
pill-box ) in the time- and space-mesh domain, e.g., the TBCI
and T3 code, have been used for the cavities with nonzero
aperture.”” We show here how should the boundary condi-
tion on aperture be assigned by considering the parity and
the continuity at the aperture. Even though the modal analy-
sis, in principle, cannot take into account the effect of large
aperture, the specif.cation of the boundary condition is still
of academic interest. For large apertures, we should use oth-
er methods. '°

As is mentioned, one important application of the wake
field in a pill-box cavity other than the acceleration is to use
the wake field as a wiggler field for a free electron laser. For
this application, the cavity should be a two-beam configura-
tion such as an elliptic cavity? or an annular circular cavity’
s0 that the lasing electrons can be injected in the opposite
direction of the driving charge to be wiggled by the wake-
field produced by the driving charge. Being an axi-symmet-
ric configuration, the annular cavity cannot have the electric
field in the transverse direction (i.e., the direction perpen-
dicular to the cavity axis) along the cavity axis (“transverse
wake field"). Therefore, as far as free electron lasing is con-
cerned, the annular pill-box cavity is similar to the usual rf
acceleration cavity in which the electric field undulating
along the cavity axis can be routinely made more than 10
MeV/m. The rf cavity cannot support both a TM mode of &

"the same wavelength‘whlch ‘has an‘electric field in the trans-’

verse direction. Since the wake-field is produced by the driv-
ing charge moving inside the cavity as is already mentioned,

* field whose amplitude and wavelength are on the order of

the elliptic wake-field cavity have both the longitudinal elec-
tric field and the transverse electric field of the same wave-
length. If we inject the lasing electrons in the opposite direc-
tion along the path passing through the foci of the elliptic
disks on the other side of the foci through which the driving
charge is passing, the lasing electrons are forced to emit the
laser radiation by both the longitudinal wake-field and the
transverse wake-field, Until the field-strength of laser wave
arrives that of the transverse wake-field (*weak laser re-
gime”), the transverse motions of the electrons are still con-
fined by the transverse wake-field field. Similar to the pres-
ent free electron lasing in the magnetic wiggler, both
stimulated bremss.rahlung and unstimulated bremsstrah-
lung by the transversely bound electrons requires the trans-
verse current produced by the transverse wake-field along,
and take place at the same wavelengths.” A transverse wake

/(i w{:s%" ;o
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100 MV/mand 5 cm, respectively, is equivalent to a magnet-
ic wiggler on the order of 3 kG and 5 cm, respectively, which
are about the standard values for the magnetic wigglers used
in the present free electron lasers. Therefore, even if we just
consider the transverse wake-field, the elliptic wake-field
cavity is superior to the conventional magnetic wiggler if we
can produce the transverse wake fi. .Js whose amplitudes are

- more than 100 MV/m.

If we inject an electron beam in the direction of the lon-
gitudinal electric wiggler, the transverse motions of the elec-
trons are not bounded by the electric field, which contrasts
with the transverse motions of the electrons in the free elec-
tron laser using a magnetic wiggler. Also, the longitudinal
motions of the electrons are not bounded by the longitudinal
electric wiggler if the initial kinetic energies are sufficiently
large which is the usual case in any free electron laser. Free
electron lasing by the electrons whose transverse and longi-
tudinal motions are not bound by the wiggler does not re-
quires a transverse current produced by the wiggler along.”
The transverse motion in the longitudinal electric wiggler is
primarily governed by the incident electromagnetic wave,
and the incident laser wave is the major field to drive the
source current with the help from the longitudinal electric
wave. Unlike transversely-bound FELs, stimulated emission
in the longitudinal electric wiggler occurs as a two-quantum
Stark emission'"'? in which the electron make the transi-
tions from a free statdVia'a virfual free staté. The two-quan-
tum Stark emission by the bound electrons are used as a
diagnostic means in plasma spectroscopy. By this two-quan-
tum Stark emission, a light is emitted in the same direction as
the applied electric field by either stimulated emission or
spontaneous emission. It had been theoretically shown that
the shorter the wavelength of the free electron laser which
we want to create, the more advantageous is the longitudinal
electric wiggler compared with the transverse magnetic
wiggler.?

The emission in the so-called Smith-Purcell laser’’ is a
spontaneous emission in both transverse and longitudinal
wake fields generated by non-relativistic electron bunches
when they pass over a ruled grating, which acts similarly as
the pill box. Since the electrons are non-relativistic in this
laser, they can experience the ripple of the wake field which
they produce, We can guess that the electrons experience

-'eXtraordina:;’]large electric fields since the gap distance is

extremely small in the rulelgrating. SRR {
Previously, the wake fields in dn elhpuc pill-box cnnty
was calculated by solving directly the Maxwell equations
and boundary conditions over the entire cavity in the time-
and space-mesh points.” The advantage of the direct solution
of the Maxwell equations is that the aperture effect can be
taken into account. However, the direct solution requires a
very large number of numerical processing. In contrast to
the direct solution, any modal analysis, in principle, cannot
take into account properly the aperture effect when the aper-

| ture is large. However, the experiment showed that the pre-

!

dominance of the wake field by the fundamental mode even
for a cavity of considerably large aperture,’ indicating that a

| modal analysis can render a reasonably good approximate
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resulty'unless high accuracy is demanded. Both longitudinal
and transverse wake fields due to the longitudinal modes can
be calculated to any degree of precision since we can express
these fields analytically in closed series forms. This expres-
sion is possibie by solving analytically the longitudinal eigen-
mode/equation in the elliptical cylindrical coordinates in
terms of Mathieu functions'* as will be shown in this article.

et

Il. THE LONGITUDINAL WAKE POTENTIAL

For clarity, let us consider a wake-field consisting of a
very large number of elliptic pill boxes. A point cmrge o
| passes through one/hqgf‘;gve foci of the elliptic disks

speed c. Let the tra 4& coordimaresof these ceniers be
r, = (x0,0) and ( — x,,0). The delta-function longitudinal
wake potential W, is defined as the energy gained by a unit
negative point charge with a velocity ¢ traveling in the path
passing through the other elliptic foci, at a distance sin the z
direction behind the accelerating point charge Q.

The pill-box cavity is a periodic structure, the wake field
in this cavity should be very amenable to a modal analysis.
However, since the wake fiel 1 is consisted of both electro-
magnetic (vec.or) and electrostatic (scalar) fields, the com:
plete basis functions for the Fourier series expansion should
include both scalar and vector eigenmode functions. A trac-
table analysis of the Fourier analysis (or modal analysis)
based on these two different classes of basis functions had
been nearly impossible. This difficulty is resolved by Bane et
al.” They found the relationship between the scalar wake
field and the vector wake field, which is arisen by the causal-

well’s equations, they’ (BWW theory) first obtained
= 47Q z

where a, i3 the normalized vector eigenfunctions given by
the following equation and boundary conditions:

W, (s)

L 2 4
f a,, (2)expliv,z/c)dz @"’(1)
< )

2

Vi, + 2% 8, =0 (2)
c
and
V-a,=0 (3)
everywhere, and
a, Xh=0 4)

on the surface of the metallic enclosure of the accelerator
cavity where 7 is the normal vector of the surface.

From this point, the wake potentials is formulated by
using an obvious attribute of the periodic structure which
the previous BWW theory’ has not used. Also, the math-
ematical treatment is different from that in the BWW theo-
ry.

-
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From this pomt, the wake potenuals is formulated by
using an obvious attribute of the periodic structure which
 the previous BWW theory’ has not used. Also, the math-
{ ematical treatment is different from that in the BWW th
ry.

| with period p, a, (2) is required by Floquet's periodicity
| theorem to satisfy

ity. Accordingly, imposing the causality and using Max-

€o-
Since the acceleration cavity is a repetitive strucuﬂ

a,.(z + np) = exp(inf,)a,,(2), (5)
* where 3, is an arbitrary constant. By means of Eq. (5), we
. have
Lot \ »
, J a,, (2)expliow, z/c)dz = f a,, (:)expliw,z/c)dz
]1} o [
| whereng=L/p— 1.
| Even though any value of 3, satisfies the geometric con-
| dition that the cavity is a periodic structure, only a particular
| value satisfies other physical requirements. An obvious re-
| qunrement is that the energy gain over the entire cavity,
| W, (s) is proportional to L (or the number of the pill boxes).
] To satxsfy this requirement, we find from Eq. (6) that 8,
| must be given by

Ba = —(dap/C- (N

i

!

i Substituting Eq. (7) into Eq. (6) and combining the
! resulting equation with Eq. (1), we derive the longitudinal
! wake potential (or the acceleration gradient) as
|

i

\

i

|

LN

>

n=0

Xexp[i(B, + w,p/cIn], (6)

LW,

L
| where

370 S V2 (50040 ) Vs ( = %0.4q )c0S(5/4,,), (8)
P a

1
V,(xpA,) = f al, (xp,z)expliz/A, )dz. 9)
0

Here, all distances such as z and A, are measured in units of

the pill-box gap p, and &%, = ¢, a, wherec, is aconstant such
that

| [ Jemerma

where ¥, denotes the space in the pill-box. Equation (8) isa
similar form of the Coulomb law in that the acceleration is
inversely proportional to the square of a distance, p.

If the driving © inch has a Gaussian distribution

g(z) = (2m) = exp( — 7/20°) /o,
the wake potential for s3 o is given by

W, ()
L

[V

i
i

Vp (10)

41rQ z V3(x004,)V2( —x,04,)

e XCXP( — /2 Y)cos(s/4,). (11)

From Eq. (11), we find that the modes whose wavelengths
are much shorter than the length of the Gaussian driving
bunch, 20, do not contribute significantly to the wake field,
and the shorter the wavelength of a mode, the smaller is the
contribution to the wake-field from this mode.

lil. CLASSIFICATION OF WAKE MODES AND
BOUNDARY CONDITIONS

For brevity, we drop the superscript p which denotes the
pill-box eigenfunction unless there is a chance of confusion,
and choose the origin of the pill-box coordinates at the center
of the pill-box. Then, the pill-box vector eigenfunctions
a = a, + a,Z satisfy the following equations and boundary
conditions:

|
\

]




Via, +a,/1*=0, (12)

Via, +a,/1%= (13)

%+V1'a1=0 (14)
in the pill box 9

a, =0 (15)
on the disk plates at z=: -- p/2,

a, Xn=0, (16)

a,=0 S¥)]

on the periphery of the cri ss section (the side surface of the
cylinder).
From Egs. (14) and [15), we should impose
da,
-0

18
5 (18)

i on the disk platesatz= + p/2.

We must impose a condition that a and its derivatives
are continuous functions of z as z crosses an aperture to the
next adjacent pill box.

Since a should satisfy Eqs. (12) and (13), and the pxll
box is symmetric with respect to the reflection about the
center plane (z = 0) of the pill box, a, must be either sym-
metric (even parity with respect to z) ar anti-symineiric
(odd parity with respect to z). However, because of Eq.
(14), a, and a, must have different parities (the pair of ei-
ther @, and da, /dz or a, and da,/Jz should have the same
parity).

We need only to prescribe the mode functions in the
region 0<z<p/2,. The modes can be classified into following
classes.

(i) The odd hybnd modes: These modes are dependent
on the pill-box gap and aperture, and their a, have the odd
parity (consequently, Va, /¥z inust have the odd parity).
Accordingly,

gly \ 3 \ S
[

d; nyv

__.a.z__=03_;’v

at z= 0 and on the aperture at z = p/2.

(ii) The even hybrid modes: These modes are dependent
on the pill-box gap, but independent of the aperture. Their a,
and da,/Jz have the odd parity. Equations (15), (18), and
the continuity of the odd functions at the aperture are com-
bined to

ae =0, ('9)

alm, =0, ;’;"’ =0 (20)

atz=0and z=p/2.

(iii) The pure longitudinal (a, = 0) modes: The wave-
lengths of these modes are completely independent of both
the pill-box gap and the aperture. From the fact thata, =0
satisfies Eq. (12) for any 4, Eq. (15), and Eq. (16),
Bmg =/(r, )2 are the eigenmode if

(21)

inside in the cross section

e e

" a,(Ry2)

Sr ) =0, (22)
on the periphery of the cross section, and
[ freaa =t (23)

where Sis the cross section of the pilibox. These longitudinal
modes are independent on the apertures, and their wave-
lengihs are determined only by the cross section.

V. WAKE POTENTIAL IN A CIRCULAR PILL-BOX
CAVITY

The modal analysis presumes the periodicity of the ac-
celeration cavity, and thus neglects the velocity field directly
arrived at the accelerated charge compared to the electric
and magnetic field produced by the currents, which are in-
duced at the surface of the disk plates and the cylinder sur-
face by the velocity field. This assumption can be approxi-
mately met when the aperture is much smaller compared to
the cross section of the pill box for practical lengths of the
cavity. Therefore, the modal analysis, in principle, renders
more accurate values as the aperture becomes smaller, and

| should not be applied to the limit of no disks. The experimen-

tal results® showed that the wake-field is predominated by
the fundamental longitudinal mode even when the ratio of
the aperture radius (7,) to the cavity radius (R,,) is consider-
ably large (r,/R=| for cavity 1 in the experiment). There-
fore, we can take the wake-field in the limit of vanishing
aperture as a good approximation of the wake field for most
practical cavities whose aperture radii are not greater than }
of the cavity radius.

For a circular pill box with finite aperture radius,
a, = a,Fand Eq. (16) is automatically satisfied for this pill
box.

Since in the cylindrical coordinate system, Eqgs. (12)
and (13) are written as

d%a, | da, a, a"'a,+ 2 _o (24)
o " rar £ o A -
d%a 1 da, 3%, a
z z z —o, 25
aF T Far Taz Tz (23)
and g, and a, are finite ~t r = 0, we have
. O da,
L% _0,4,=0 2220 (26)
<o g ar
atr=0.

Further, Egs. (24) and (14) are combined a single sec-
ond-order differential equation with respect to z:
d%a, a, J%,
- t+—-—== .
9z A Jdzor
For convenience, we will omit the superscripts “even” and

**odd”, and the subscript *hyb”, where there will be no possi-
ble change of confusion.

n

A. Wake-field gradient from all even hybrid modes

Solving Eq. (25) with boundary conditions |
=0 [Eq. (17)}, 3a,(0,2)/dr =0 [Eq. (26} ], and




da.(r,0) _ da,(rp/2)
oz o

- [Eq. (20) ], we obtain

a,(rz)

= AJy(v,r)cos(v,z2), (28)

where J, (£) is Bessel function of order n, v, = £, /R, with
§. heing the nth root of Jy(&) =0, v, =2nw/p with
r = 12,3,..., and 4 is the normalization constant to be deter-
mined later.

Substituting Eq. (28) into Eq. (27), and solving the
resulting equation with boundary condition q,(r,0) =
which is derived from a, being odd for z, a,(0,2) =0,
0a,(0,2)/3r =0[Eq. (26)],anda,(r,p/2) = 0 {Eq. (20)],
we obtain

a,(rz) = —A(v,/v)J,(v,r)sin(v,z). (29)

From Egs. (28), (29), and (10), we find the normaliza-
. tion constant as

ae [T w
k18 R(”|(§,,) Vu2m ’

f where v, , = [(£,/R,)? + (mm/p)*]'/2
Combining Egs. (8), (9), (28), and (30), we find that
. the wake field gradient from all even hybrid modes is given
by

W i (5)

L

(30)

_ 160 =
P' nZI m azcven
m>0

L1 = (= D"e05(0,.0) 605(4,)
JI(ENE? '

(31

i B. Wake-field gradient from all longitudinal modes

The calculation of the longitudinal modes from Egs.
(21) to (23) is elementary. We find that the wake field gra-
i dient from all Jongitudinal modes is given by

W,Jo,,‘ (s) 8Q Z

[ 1-—- COS(V"'OP) ]COS(V,,,QS)
L nal .

JiE)ED

(32)

. C. Wake-field gradient from all odd hybrid modes

For ry #£0, MM satisfy Eq. (25) and the bound-
ary conditions

a;(’lo) = ’ ax(Rubz) =01
a‘(’,P/Z) =0 for o<’<’uv
P72
M:O for ru<r<Ru'
9z
9a,02) _ (33)
or

and a, should be determined by Eq. (27) and the boundary
conditions

- -

' da,(r0 (rp/2
; .i(:._) =0, _a.a_(r_p/_) =0, for 0<r<r,,
‘ dz az
a,(rp/2) =0 for r,<r<R,,
i
da, (0
a,(O,Z) =, ‘_a’ (_’Z)' = Or (34)
ar

We can solve these equations only by the numerical meth-
.ods.'® The result from the numerical methods is not impor-
tant. The reason is as follows. First, the modal analysis does
| not take .nto account properly the aperture effect as men-
| tioned before. Therefore, the wake field gradient from all
odd hybrid modes by means of an modal analysis is, in prin-
ciple, appropriate only for small apertures where an analyti-
cal good estimate is readily available. Second, we can readily
find thai the wake field gradient from all odd hybrid modes
from the above equations is anyhow negligible compared to
that from all longitudinal modes for most practical cavities.
In the limit of vanishing aperture (i.e., r,—0), the boundary
condition at z = p/2 is now

da.(r,p/2)

=0, a,(rp/2)=0.
E (rp/2)

Then, the analytical solution for the wake-potential from the
odd hybrid modes is given by

Wine(s) 160 & &
L p" A=1m=oudd
m>0

< [1=(1—=)"cos(v,,.p)]cos(v,,,s)
THUSYE '

(36)

In the limit of no disks (i.e., 74—~ R,), the boundary con-
dition at z = p/2 is written as

da,(rp/2) _

gz o

Then, the wake-field gradient from all odd hybrid modes is
given by

a (rp/2) = (37)

W (s) _ 160 &
L p2 nZl m = cven
- m>0
- [1 - (~ D™cos(v,,,p) |cos(v,.,,s)
HUAYE '

(38)

This wake-field gradient in the limit of no disks has no ap-
propriate physical meaning. Only the magnitude of this field
can be used only a crude estimate of the component of the
wake field gradient which depends on the aperture.

Since(‘t(_he eigenmodes of the odd hybrid modes is in the
range between the eigenmode in the limit vanishing aperture
| and that in the limit of no-disks, we find the largest eigenval-
ue (A) of the odd hybrid modes is about p/7.

The wake]ﬁotemml from all modes in the limit of van-
ishing aperture is given, by adding Eqs. (31), (32), and
(36), as

(35)

1




W.(s) 80 & &

- f >

[1-(=1"cos(v,.p)]
Jig)E:

Pz n=lm=m -
Xcos(v, ,s).

+ This equation is the exactly same as Eq. (8) of Ref. 8 which
| is derived from the synchronism between the accelerated
; particle and the wake-field modes.

i From the above equations, we find that the largest
: eigenvalue of the longitudinal mode is 2mR,/&, =2.6R,,
i while the largest eigenvalue of the hybrid mcdes is about
i p/m. This guarantees that the wake-field from all hybrid
: modes are small compared to those from the 'ongitudinal
- modes for most practical cases. Further, if"'R,’03 0.26, we

have

W;(s) 150
L T R:

[}

exp( — 2.890°/R 3 )cos(2.4s/R,), (40)

where @, R,, and s are in Gaussian units.

To demonstrate the above features of the modal analy-
sis, the wake potentials in a cavity of Ry, = 10, ry, = 3, 0 =4
are calculated. In Fig. 1, both the wake potential from the
nine most dominant longitudinal modes and the one from
the nine most dominant even hybrid modes, expressed by
Egs. (25) and (26) aredrawn as the func;i‘o‘ng of 5. The wake
potential from the nine odd hybrid modes computed numeri-
cally by solving Egs. (13), (24), and (25) by means of the
finite difference method. The largest eigenvalues of the lon-
gitudinal modes, even hybrid modes, and odd hybrid modes
are 4.158, 0.159, and 0.215, respectively. Therefore, for the
driving-charge length of o = 4, the wake potential from all
hybrid modes are practically zero compared to that from the
| longitudinal modes as shown in Fig. 1. The wake potential

(39) -

i
\
i

from the longitudinal modes clearly shows the predomi- ‘\
nance by the fundamental longitudinal mode.

In Fig. 2, the theoretical energy increments over the to-
tal acceleration length of a cavity with the same cavity geom-
etry of cavity 1 used in the experiment?® are drawn for both a
driving charge having the length which makes the theoreti-
cal curve fit best the experimental one (curve a), and an-
other driving charge having the same length as the experi-

-mental one (curve b). The contribution from all hybrid

modes is not considered since it is theoretically negligible.
Even though we do not see so remarkable predominance of
the fundamental mode in curve b as in the experimental re-
sult. Therefore, we can conjecture that either the bunch
length was not measured accurately in the experiment, or the
aperture effect, which will be considerably large in the ex-
perimental case where ro/R, =, suppresses more strongly
high-modes than the fundamental mode or the finite con-
ductivity. The latter reason is more probable since the result
from the TBCI code, which can calculate accurately the
wake field for any aperture, is in excellent agreement with
the experimental data.

V. WAKE FIELDS IN AN ELLIPTIC PiLL-BOX CAVITY

A. The formula of the transverse wake potential

Consider again the exciting charge Q traveling the one

foci of the elliptic cavity at v = ¢. The delta-function trans-
verse wake potential U, is defined as the transverse momen-
tum kick experienced by a test charge following at a distance

i sinthe z direction on the other foci and also at v = ¢. Bane er
| al.” derived

LONGITUDINAL WAKE POTENTIAL
vora CIRCULAR CAVITY
0.01
’_
5 0.008 - b ¢
]

a (\"\ 0.006 FIG. 1. Wake potentials in unit of 8Q /p* as
< a 0.004 the functions of the distance s between the
% ~N driving charge and the accelerated charge in

e} 0.002 acavity R, = 10, 7, = 3, 0 = 4. Here, p. R,

00 ’ T r,, and 20 are the cavity radius, the aperture
Z 0 radius, and the length of the driving charge
9 o in unit of the pill-box gap p, and Q is the
= . -0.002 driving charge. (a) The wake potential from
é E the fifteen longest longitudinal modes. (b)
Ly 3 —0.004 The wake potential from the odd nine lung-
- c a est modes. (¢) The wake potential from the
L = -0.008 - even nine (m = 2,4,6; n=1.2,3) longest
8 ~0.008 hybrid modes.
<

-0.01 o
-0.012 . -— : r — - -
0 10 20 30 40

s (in unit of p)




WAKE POTENTIAL

Circular Cavity

>

e
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the t stal acceleration length as a function of the
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U,(s) 4arQ foci since both the longitudinal and transverse wake-poten-
= - —_ . . ’
L 7 ; V(X004 Vi Vo (= 20040)4, tials are finite.
sin(s/A. ) (a1) The solution can be found in terms of known functions
sin(s/4,),

Accordingly, the transverse wake potential driven by the
driving charge of an arbitrary charge distribution is defined
by

U, (s) = U, (s+5)g(s')ds,

-3

where g(s) is the charge distribution of the driving bunch.

(42)

B. The wake potentials in an elliptical eylindrical cavity

From the previous theoretical result (Fig. 1) and an
experiment,” we found that the aperture of practical size
does not affect significan(the wake field, and the wake field
is predominated by the longitudinal modes. Therefore, we
neglect the hybrid modes, and consider only the wake fields
contributed from the longitudinal modes.

Toobtain the wake fields from the longitudinal modes in
an elliptical cavity whose periphery of the cross section is
given by

X ¥
x5 Y

we must solve Eq. (21) with the boundary condition such
that f= 0 on this periphery. We first note that the solution
must be an even or odd function for y since both the equation
[Eq. (21)] and the boundary condition are invariant when y
is replaced by — y. However, the cdd functions do not con-
tribute to either longitudinal or transverse wake-potential at
the foci whose y values are zero, and accordingly should be
excepted. Also, we note that fand V,f must be finite at the

e,

by the transformation of the coordinates system to the ellip-
tical cylindrical coordinates. '
The elliptical cylindrical coordinates (£,%) are related
with the cartesian coordinates by the foliowing equations:
x = h cosh & cos 7,

y = hsinh £sin 17, (44)

where 24 is the distance between two foci,i.e., h = ,/xf, — .
Then, the problem is transformed to solve

af  af 2
—= 4 —= 4+ 2k *(cosh 2§ — cos 29) /= 0. (45)
g oy

in the region 0<£<&,, 0< <2 with the boundary condition
. R =0, (46)

‘Where k = h /24 and &= cosh =" (x,/\[x; — y2).

By means of the separation of variables, we have
JIEm) = ¢(E)Y(n) where ¢(£) and ¢¥(7) satisfy the fol-
lowing Mathieu equations:

| 2
| Zg'f — (a—2k*cosh 2§)y =0, “h
ﬂfl+ (a—2k?*cos2m)¢ =0, (48)

; where a is the separation constant.
Since we consider only the even functions of y, we have
i that (7)) = ¢(27 — 7). From this parity consideration, f
being finite at the foci and Eqs. (46)~(48), the solutions are
' expressed as

}




fEm) = ZZ N, Ce, (&q)ce, (1.9)

+ Z z N:"‘ise"' (§’q)cem (7714).
m g

whereg=k? N, and N mq are the normalization constant,
and

(49)

Cem (§0’q) = Sem (g()!q) = 0! (50)
for any value of ¢.
Since df /dx = V f % at the foci, i.e., (£,7) = (0,0) and
(0,7), is given by
ox h s-o\sinh§ €
df(0,m) _ 1 lim( 1 af(é’O)), (51)
ax h s-o\sinh§ &

the condition that the transverse wake-field is finite leads to
the discard of all Se,, (£,9)ce,, (7,9) terms in Eq. (49).
Further, we are concerned with large eigenvalue 4, which
corresponds to small values of ¢ under the condition Eq.
(50). Accordingly, we can ignore the terms with m>1.
Therefore, we obtain .

fEm) = N, Cey(£,9)ce(n,9),
q
where ¢’s are the real roots of the following equation:
0=1-}qcosh 2§, + 4 ¢* cosh 4¢,
— s ¢ (§ cosh 6, — 7 cosh 2£,)
+ w¥g ¢ (cosh 8£, — 320 cosh 4£,) + O(g°),

(52)

(53)
and NV, is the normalization constant given by
2
_l_ = dg f
xdn(cosh 2£ — cos 29) [ Ceo(£,9) cen(1,9) 12, (54)

If ¢’s’and N,’s are determined, then the longitudinal
wake potentials on the same path as that of the driving bunch
by a gaussian driving charge of length ais, for sy a,

W, (0,0) 41rQh'
a*(g)sin®(Vg/h) .
L P ; q \E""’
Xexp( — 290°/h z)cos(ZWh),’ (55)

and the longitudinal wake potential on the opposite path is
W, (0,7) _4nQh’ z
q

L a*(q)sin®(Jg/h)

L r %
Xexp( — 2g0*/h*)cos(2Vgs/h).  (56)
where ‘
a(q) = Ce,(0,9) = cey(0,9) = ce,(mq)
319
=1- - Y+ 0(¢°).
19+4 9+ 37 — o3 55 4 HOW)

Similarly, the transverse wake-potential on the same
! path as that of the driving charge is

U,(00) _270h?
a*(¢)B(q)sin*(Jg/h)
L P 2} Vg
Xexp( — 2ga°/h *)sin(2Vgs/h),  (57)
U,(0,0)
=0, 8
I (58)

and the transverse wake potential on the opposite path is

Ux (olﬂ) 21TQh < z

£ a*(g)B(g)sin*(Vg/h)

L P T
Xexp( — 2g0°/h *)sin(2Vgs/h),  (59)
205 _,, (60)
L
‘vhere
1 dcCe (§,q))
_-_l 0
o =- s'—o(smhg T
= —2+§q+-§—q' % ¢ +0(g").
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From Lkgs. (43) to (48), we find that the wake potential

is symmetrical with respect to x =0 plane in the lowest
(m = 0) modal analysis.

Figure 3 shows the longitudinal wake potentials com-

puted by the analytical formulation given by Eq. (55) for

cavitiesof @ = 1 nC, p =4 mm, and x,/p = 10 (i.e., x, = 4

~em), o = 8§ mm, and y,/x, = 0.9, 0.5, 0.3 as the eccentricity
.| parameter. From the curves, we find that the dominant

wavelength increases as y, /x, increases, that is, the effective

radius given by R, = \/x,, increases. We also find that the
amplitude of the longitudinal wake potential does not be-
come maximum as y,/x, — 1, indicating that an elliptic cross
section has a larger acceleration gradient than the circular
cross section. The acceleration gradient can be greater than
100 MeV/m for a cavity having total driving charge of 1 uC,
pill-box gap of 4 mm, and an elliptical cross section of x,
= 10ecmand y, = 5cm.

Figure 4 shows the transverse wake potentials for the
same cavities as in Fig. 3. From the curves, we find that we
can make the undulating electric field in the transverse di-
rection whose amplitude and wavelength are greater than
100 MeV/m and on the order of 10 cm, respectively, with a
cavity having total driving charge of 1 uC, pill-box gap of 4
mm, and an elliptical cross section of x, = 10cmand y, = §
cm,

Vi. CONCLUSION AND DISCUSSIONS

The potential of the wake-field produced by a bunch of
relativistic charged particles passing through a pill-box cav-
ity is expressed as a Fourier series based on the vector eigen-
mode-functions of the unit pill box. The Fourier coefficients
are uniquely determined by Floquet’s theorem, and an ob-
vious requirement that the energy gain over all acceleration
cavity of many pill boxes must be proportional to the number
of pill boxes. The eigenmode functions must satisfy the ellip-

© ticetype partial differential equations derived from Max-
. well’s equations. The complete boundary conditions on the




| FIG. 3. Longitudinal wz«e potentials for

three values of y,/x, in « 1 elliptical cavity

having @ = 1nC,p=4nn;,and x,/p = 10
(ie, x,=4 cm), ¢ =8 mm. (a)

Yo/xy =09. (b) y,7x, =0.5. (¢) y./x,
=0J3.
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whole surface of the unit pill box, which are needed to deter-
mine uniquely the eigenmode functions, are assigned by tak-
ing into account the symmetricity of the equation and
boundary conditions, the continuity on the aperture, and the
zero divergence of the eigenmade function, and the infinite
conductivity on the conducting surface.

From the above formulation, we derive the wake field in
a similar form of the Coulomb law. In particular, the wake
potential of the circular cavity in the limit of vanishing aper-
ture derived by our formulation is identical with that derived
by the usual method using the synchronism between particle

and wave mode. It is found that the wake field consists of
three classes of modes: the longitudinal modes which are
independent of the aperture and the pill-box gap, the even
hybrid modes which are independent of the aperture, but
dependent of the pill-box gap, and the odd hybrid modes
which are dependent on both the aperture and pill-box gap.
The contributions from both the hybrid modes can be ne-
glected comparedt‘ihose from the longitudinal modes. We
have found that the wake/potential in most practical cavities
is predominated by the contribution from the fundamental
longitudinal mode whose wavelength is 2.6 times of the di-
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ameter of the pill box, and is inversely proportional to the
cross sectional area of the cavity. The result of this modal

analysis is in excellent agreement with an experiment except

- that the length of the driving charge differs by a factor 2. We
- can attribute the difference to the aperture effect, which can-
not be taken into account properly by the modal analysis
when the aperture is large as in the experiment.

Unlike the circular cavity, we can generate the trans-
verse wake field in the elliptical cavity. Boththese fields can
serve as a catalyzing field for stimulated bremmstrahlung,
and thus are important in the application for a free electron
laser. Both the wake fields from the longitudinal modes have
i been analytically obtained by=the-use-of the Mathie,w func-
| tions. The analytical result shéws that we'can generate both
- longitudinal and transverse wake fields having amplitude
greater than 100 MV/m and wavelength on the order of 10
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ABSTRACT

WAKE-FIELD ACCELERATION OF CHARGED PARTICLES
WITH AN ELLIPTICAL CAVITY

Publication No.

Jin-Seok Yang, Ph.D.
The University of Texas at Arlington, 1990
Supervising professor : K. Wendell Chen

Acceleration of charged particles by the wake fields excited in the el-
liptical cavity by an intense, short electron bunch is investigated. Two
cavities are considered as a wake-field device: disk-loaded metallic cavity and
dielectric-loaded cavity. The analytical methods are developed to evaluate the
wake fields and wake potentials in these cavities. Using modal analysis
method, it is shown that the longitudinal and transverse wake potentials in
the disk-loaded elliptical cavity can be expressed analytically in terms of the
Mathieu functions. The aperture effects are not considered in this calcula-
tion. The longitudinal wake potential in a circular cavity are derived from
that in an elliptical cavity, and it is shown to be exactly the same formula
that was derived earlier. These analytical results are compared with numeri-
cal ones, and excellent agreements in both frequencies and amplitudes are
observed between these two methods. Also, the wake fields in the dielectric-
loaded structures are derived analytically using the Fourier transform method.

It is shown that the dielectric-loaded structure can support strong accelera-




tion field, and has a useful property that the transverse wake fields can be
made quite small for the ultra-relativistic driving beam. It is demonstrated
that acceleration gradient greater than a few hundred MeV/m/uC can be
achieved in the disk-loaded elliptical cavity or in the dielectric-loaded ellip-
tical cavity.
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CHAPTER 1
INTRGDUCTION

The invention and continued development of particle accelerators and
the associated technologies have had a profound impact on many fields of
pure and applied science and on variety of branches of modern technology.
In the fields of high energy and nuclear physics, a marvelous complement
of accelerator facilities exists around the world. In other area of science,
synchrotron light sources and accelerator-driven pulsed neutron sources have
opened up revolutionary new research opportunities in materials, chemistry,
and biological research. In industry and medicine there are literally
thousands of accelerators in use in health care treatment, radiation steriliza-
tion, radiation processing, ion implantation, microchip production, etc.

During the past few decades, accelerator energies have been increasing
from KeV to TeV at the rate of an order of magnitude in about every
seven years due mainly to imaginative advances in accelerator technology
and design. As the demand of higher accelerator energy is increased, it be-
comes more important to produce higher acceleration gradient to decrease
the size, cost and complexity of accelerators, especially for the future linear
colliders. This has motivated the development of new ideas for charged par-
ticle acceleration, which are expected to produce acceleration gradient much
higher than that conventional accelerators can produce. Typical acceleration
gradient of conventional accelerators is about 20 MeV/m. The new accelera-
tion schemes under active theoretical and experimental research are: (1)
Laser-Plasma Acceleration,® (2) Plasma Wake-field Acceleration,®® (3) Wake-

1
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field Acceleration,

Over the last few years, substantial progress both theoretically and ex-
perimentally has been made on these new acceleration schemes. The plas-
ma-based accelerztion schemes utilize the extremely large high acceleration
gradient associated with plasma waves excited by a number of ways, for ex-
ample, by using high power laser beam™ (Laser Wake-ﬁéld Acceleration),
beating of two relatively lower power laser beams® (Plasma Beat Wave Ac-
celeration), or using relativistic electron beams® (Plasma Wake-field Accelera-
tion). For those schemes involving plasmas, acceleration gradients of the
order of 1 GeV/m are theoretically possible. But plasma devices are very
complicated and their practical applications have a number of unresolved is-
sues which have not been fully explored. These are: fine tuning of plasma
density and laser frequency, production of driving beam with a slow rise
time and very rapid fall time, laser-plasma instability, focusing of laser
beam, etc. The plasma accelerators really exhibit advantages over other con-
cepts only at frequencies greater than about 100 GHz, and the problem of
producing a suitable driver beam which is capable of propagating a suffi-
ciently long distance within the plasma becomes more difficult as the fre-
quency is increased.

In the moderate acceleration gradients (several hundred MeV/m), a

class of wake-field acceleration schemes based on metallic cavity'®™ or

dielectric-loaded structure'>'®

(or combination of both) are promising new
concepts in view of their structual simplicity and ease of phase matching,
In these wake-field schemes, an intense, low-energy beam excites the
electromagnetic fields (so called "wake fields") in a metallic cavity or in a

medium, which are then used to accelerate a second, less intence beam to




high energies. The periodic structure plays the necessary role to produce
the wake fields and to keep constant phase between an accelerated beam
and the wake fields in a metallic cavity, while in the dielectric-loaded struc-
ture a driving beam excites the slow electromignetic waves through the
Cerenkov radiation mechanism.

Let us briefly discuss some features of early works on these wake-field
acceleration schemes. Recently, proof-of-principle tests for the wake-field ac-
celeration schemes''® have been demonstrated at the Argonne National
Laboratory (ANL). It was shown that a few hundred MeV/m acceleration
gradient can be achieved in the disk-loaded metallic cavity and in the
dielectric-loaded cavity provided the driving beam is sufficiently intense (of
the order of 1 micro-Coulomb). Wake-field cavities tested have a common
geometry, ie., both the driving and accelerated bunches pass through the
same path (so called "co-linear geometry"). For the co-linear structures, there
is a fundamental theorem t'.t the transformer ratio, defined as the ratio
of the maximum energy gain per particle of the accelerated bunch to the
maximum energy loss per particle of the driving bunch, can not exceed two
when the driving bunch has a symmetric charge distribution. This theorem
complicates the practical applications of wake-field acceleration schemes,
especially for high energy linear colliders.

However, we can overcome this problem by eithef increasing the trans-
former ratio or staging the cavities. The transformer ratio can be increased
by a number of ways, for example, by mixing,"” injecting an asymmetrical
driver bunch,"’ injecting multiple bunches,”® non-linear effects in dielectric,
using cavity of annular geometry, etc. But practical realization of such

methods meets with some difficulties and limitations, and has not been




developed yet. Other method tu overcome the low transformer ratio is to
use multi-stage scheme, i.e., acceleration in short distance. For accelerators
of low transformer ratio, it is inevitable to replenish the energy of the driv-
ing bunch or to replace used driving bunch by a new one frequently. For
the co-linear cavities, re-acceleration of the decelerated driver or replacement
of the driving charge appears difficult and technically unattractive, as it re-
quires disposing of the spent driver beam and introducing new one without
disturbing the accelerated beam. Multi-staging can be readily realized with
non-concentric cavities which have separate paths for the driving and ac-
celerated beams.

Among the co-linear wake-field devices, the cavity of an annular
geometry had been once rigorously investigated."® Here, we briefly discuss
the features of this well-known geometry. The largest transformer (impedance
transformation) ratio is expected in a concentric arrangement as shown in
figure 1.1. In this scheme, high current ring-shaped driver bunch is used to
accelerate a low current beam following the central axis. For a symmetric
driving bunch, transformer ratio in excess of 20 can be realized. Utilizing.
asymmetrical shaping of the driving beam, it has been shown .numerically
that an optimal transformer ratio as high as 100 is possible in this annular
wake-field device. However, the practical realization of this device or the
asymmetrical shaping of the driver beam meets with rather stringent ex-
perimental limitations. While the production of short, intense annular
electron ring beam is already difficult, but feasible (e.g. workers at DESY,
West Germany, once tried such an experiment),A the additional requirement
that the electron ring beams must possess no rotational movement while

traversing the series of annular slots is exceedingly difficult because the
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inner disks must be supported in place with wires or rods. The ring beam
will be lost if rotation is present. In addition, even if the driver beam does
not rotate appreciably, the supports destroy the apparent rotational symmetry
by creating holes in the ring, thus make the ring beam much vulnerable
to possible transverse beam instabilities.

The past experimental program at DESY is not adversely affected by
the these difficulties because of its very short accelerating structures of 40
cm. For a long accelerator structure, say even for a 1 GeV machine, these
problems could become quite troublesome. Staging could help, but not so
attractive due to its concentric geometry. Replacing the annular beam by
cylindrical beamlets symmetrically located around the annular ring has been
discussed. Hefe again the possible transverse instability inherent in this ar-
rangement is difficult to eliminate and also required phase synchronism is
difficult to achieve.

A different approach was employed in the UTA Wake-field and FEL
program. Multi-stage acceleration scheme was adapted to overcome the low
transformer ratio and siill piovide high acceleration gradient. For the staging
purpose, we choose an elliptical geometry because of its inherent staging
capability. Unlike the co-linear geometries, replenishing the energy-depleted
driver beams is practical for the elliptical structures since two beam aper-
tures of unequal sizé around the foci of an ellipse provide two separate
paths for the driving and accelerated bunches. Although the transformer
ratio is not as high, adequate acceleration gradients in such a structure are
possible when the driving beam passes through a high-impedance aperture
but is replenished periodically as shown schematically in figure 1.2. Since

the driving beam is to deliver energy in a single stage, it is possible to
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do so at a high rate. Because of the staging capability, it is now possible
to obtain the correct synchronism to overcome the usual "phase slippage"
between the faster accelerated beam and the slower driver beam. Another
unique application of the elliptical wake-field cavity which cannot be realized
with the co-linear geometry is that it can be used as 2a electric wiggler
in a Free Electron Laser’ (FEL), as shown schematically in figure 1.3. Two
separate paths along the focus axis of the elliptical cavity allow the lasing
electron beam to be injected in the opposite direction of the driving
bunches. The lasing electron bunches wiggles in the rippled wake electric
fields produced by the driving bunches, analogous to the case of the mag-
netic wigglers in conventional FELs. This new lasing scheme promises suf-
ficient gains in the soft x-ray region so that it might be feasible to operate
it as a soft x-ray laser without requiring reflecting mirrors.

Based on these ideas, investigations of wake-field acceleration and its
applications with the emphasis on the elliptical geometry have been going
on*®#® a4t the Center for Accelerator Science and Technology (CAST),
UTA, in the last few years, part of which is the subject of this dissertation.

The purpose of this dissertation is to set up appropriate theoretical
means to analyze the wake fields excited in the elliptical cavity which is
loaded with metallic disks or a medium. The wake fields and wake poten-
tials in the disk-loaded cavity can be evaluated by either modal analysis
method or numerically solving the Maxwell equations directly -in the time
domain. Because analytical calculations are only xnown for closed cylindrical
cavities, the wake fields in an elliptical cavity have been roughly estimated
from those in the equivalent circular cavity. Furthermore, no method has

been developed to calculate wake fields in a dielectric-loaded elliptical
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cavity. The numerical code WELL,2? which directly solves the Maxwell equa-
tions in the time domain, has been recently developed to study the wake-
field effects in the elliptical pill-box cavity. This particular code czlcilates
the wake fields and wake potentials in an elliptical pill-box cavity by using
the finite difference method, and the beam aperture effects are consiered
in the calculations.

In this investigation, new methods are developed to calculate the wake
fields in the elliptical structure analytically in the limit of vanishing aperture.
We do not take into account the aperture effects based on the recent ex-
perimental work," which showed that the wake fields are predominated by
a few lower-order longitudinal modes even when the ratio of the aperture
radius to the cavity radius is considerably large. At lower frequencies, it
was known that the impedance of a cavity with finite aperture and that of
a closed cavity are practically same.”’ Therefore, the wake fields of bunches
which is long compared to the aperture, or the long range wake fields of
short bunches are almost the same for the two different structures. Since
wake-field acceleration schemes require very short, intense bunches to excite
strong accelerating field, and the distance between the driving bunch and
accelerated bunch is usually large compared to the driving bunch length, the
wake fields in the limit of vanishing aperture is a good approximation for
the most practical éa;rities as long as apertures are not too large. Even
though it is a limiting case for the cavities with finite apertures, it is of
particular interest since the analytical solution exist, which will be formulated
in this investigation. Therefore, we can readily estimate maximum energy
gain of the accelerated particles and the parametric dependence of the wake

potentials on the geometry and beam parameters. Furthermore, it becomes
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possible to include the effects of dielectric material inside the cavity with
this analytical approach.

A short review of the concepts of the wake fields, the wake potential,
and detailed modal analysis method are presented in Chapter 2. We present
analytical formulations of the wake fields and wake potentials in an elliptical
pill-box cavity in Chapter 3. The wake-field effects in the dielectric-loaded
elliptical cavity are described in Chapter 4, while in Chapter 5 discussions

and conclusions are drawn.




<HAPTER II

NORMAL MODE EXPANSION OF THE WAKE POTENTIALS

2. 1. Introduction

The wake fields are the electromagnetic fields induced by a bunch of
relativistic charged particles passing through the structure of varying shape,
and their concepts are important not only for the applications to future high
current compact electron accelerators, but also for the calculation of energy
loss and beam stability in the high energy particle accelerators. We begin
with brief introduction of the concepts of the wake fields and wake poten-
tials.

Consider a point charge Q in free space. When a charge is not
moving, the electric field lines are directed outward in all radial directions
as shown in figure 2.1(a). But the electromagnetic fields carried by a
relativistic point charge Q in fre. space® is Lorentz contracted into a thin
disk as shown in figure 2.1(c) with angular spread of the order of 1/,
where y being the relativistic factor. The disk actually shrink into a delta
function thickness in the ultra-relativistic limit of the particle velocity
v =¢, as shown in figure 2.1(d). In case the charge moves along the axis
of a cylindrically symmetric pipe with perfectly conducting wall, the fields
in the pipe are identical to the free space fields, because the sole function
of the pipe wall is to truncate the field lines by terminating them onto
the image charges on the wall as shown in figure 22(a). If the charge
moves off-axis, or if the cross section of the pipe is not a circle, the fields

12
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Figure 2.2, Fields in a perfectly conducting smooth pipe (a) and in a structure

with perturbing walls (b)
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in the pipe are perturbed from their free space values. But, no fields are
left behind the moving charge since the fields are Lorentz contracted into
a delta functior in its longitudinal distribution.

Therefore, in free space or in a perfectly conducting smooth pipe, a
particle does not see the fields carried by other particle unless the two
particles move side by side with exactly same longitudinal position, in which
case they see each other’s fields but do not experience any force because
the electric force and the magnetic force cancel exactly in the limit of par-
ticle velocity v =c.

When there are irregularities or discontinuities in the structure, the
trailing charge still will not see the direct fields in the wavefront moving
with the driving charge. However, this wavefront are scattered from the
boundary discontinuities, and this scattered radiation can reach the trailing
charge and exert forces parallel and perpendicular to its direction of motion.
These scattered waves are called the wake fields, and the force integrated
over the total passage time is usually called the wake potential (more
precisely delta function wake potential).

If the wall is smooth but not perfectly conducting,®?

a charge will
generate behind it the wake fields due to the small longitudinal electric
field E; at the wall, which is related to the dissipation in the wall. How-
ever, the effects of resistive wall are much smailer than other factors. Most
of the wake fields come from effects associated with discontinuities and
obstacles in the structures. Therefore, in the following section and thereafter,
finite conductivity effects will not considered in the wake fields calculations.

It is also assumed in this chapter that the driving charge and the test

charge move with velocity of light ¢, and their paths through a cavity or
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structure are not significantly changed from what would have been in the

absence of the induced wake fields.
2. 2. Method of Calculation

The wake fields and wake potentials in a cavity can be evaluated by
either modal analysis method or numerically solving the Maxwell equations
in the time domain. In the modal analysis method, the eigenmodes of an
empty cavity are used to calculate the time development of the fields.
Analytical calculations of the eigenmodes are only known for cavities with
simple geometries, usually for closed cylidrically symmetric cavities. For this
reason, early studies on the wake-field cavities were mainly concentrated on
the circular geometry. For non-axisymmetrical structures, one has to use

numerical methods.

The straightforward way to calculate wake fields and wake potentials
in the structure is to solve the Maxwell equations numerically. The numeri-
cal code TBCI”® has been extensively used for the cylidrically symmetric
structures, and MAFIA® code T3, a three dimensional version of the code
TBCI, was recently developed. Previously, the particular code WELL? the
finite difference solution of the Maxwell equations in the time domain, has
been developed for the calculation of the wake fields in an elliptical cavity.
In this code, the aperture or beam hole effects are included in the cal-
culation. However, we need not take into account the aperture effects
seriously for the most practical cavities whose apertures are usually very
small compare to the cross sectional area. This is clearly supported by the
e:ltperiment,“ which showed that the wake fields are predominated by a few
lower-order longitudinal modes even when the ratio of the aperture radius

to the cavity radius is considerably large (= V3 for the cavity 1 in that ex-

e
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periment). Since the impedance of a cavity with finite aperture and that of
a closed cavity are practically same at lower frequencies, the wake fields
of a bunch whose length is long compared to the aperture or the long
range wake fields of a shot bunch are almost the same for the two dif-
ferent structures. Since we are more interested in evaluating the long range
wake fields induced by a short driving bunch, a closed pill-box cavity is a
good approximation. Even though the final result is the limiting case for
the cavity with beam holes, it is of particular interest since we can formu-
late an analytical solution under the assumtion of zero aperture. The lon-
gitudinal and transverse wake potenuals can be calculated to any degree of
precision since we can express these fields analytically in closed series form.
Also, we can readily estimate the maximum energy gain of the trailing par-
ticles, frequency contents, and the dependence on the cavity geometry and

beam parameters.
2. 3. Normal Mode Analysis of the Wake Fields

Consider a closed, empty cavity with perfectly conducting walls. The
electric fields and the magnetic fields induced by a bunch of charged par-
ticles traversing the cavity can be derived from a scalar potential ¢(x,¢) and
a vector potential A (x¢) together with proper boundary conditions. First, let

us start from the Maxwell equations (in MKS units)

dB

VXE= TR (2.1)
1 6E
VXB—yoJ+c2 3’ (2.2)
vP
V-E=g, (23)
V-B =0, (2.4)
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where & and po are respectively the permittivity and permeability of
vacuum. By introducing a vector potential A(x,¢t) and a scalar potential

¢(x, t) which are given by the relations

B= VXA, (2.5)
o A
==~ Vo, (2.6)

the inhomogeneous Maxwell eqs. (2.2) and (2.3) become

15°A _14%
VA-3 "G s =k, @7)
. __P '
Vip=-£, (2.8)

where the Coulomb gage, V'-A =0, is used in deriving egs. (2.7) and (2.8).
The vector potential A(x,t) and a scalar potential ¢(x ) due to current
and charge sources can be expanded in terms of the othogonal

eigenfunctions ai(x) and ¢i(x) as
A (x 1) = Z qu(e) ai(¥), (2.9)
P(x 1) = 3 n() (%), (2.10)
where a, and ¢ are the sets of vector and scalar eigenfunctions of an

empty cavity respectively, which satisfy the following homogeneous Helmholtz

equations and boundary conditions:

VZa, + (_‘%l_)z a1 =0, (2.11)
Vag=0in ¥ (2.12)
n X a; = 0 on the boundary, (2.13)
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and
VgL + (%)2 @1 =0, (2.14)
@i = 0 on the boundary, (2.15)

where n is the unit vector normal (o the wall. In general, w:i# S
Substituting eqs. (2.9) and (2.10) into (.7), dotting this result with ay, and

integrating over the cavity volume V gives

(G2 + 02 @) Jay-ar dV = poc® [ dV. (2.16)

If the eigenfunctions a; are normalized by
&
-i—fag-a;-dV= ux Oy, (2.17)

where wu: is the normalizing factor and dw is the Kronecker delta, then

eq. (2.16) becomes simply
ol = —— (]
Gt orq=g [J-a dv. | (2.18)

Similarly, beginning with the Poisson’s equation given in (2.8), we can get

the expansion coefficients for the scalar potential, which is given by

=L
where @1 are normalized by
% [V%1-Vgr dV = T, dur. (2.20)

The expansion coefficients qi(t) and ra(t) | can be determined from egs.
(2.18) and (2.19) provided the source terms J, p and the -eigenfunctions

a; and ¢, which will be derived in the following chapter, are known. Ac-
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cordingly, we can rewrite the electric field E and the magnetic induction

B in terms of these quantities as
E(x t) = -; (q'z(t) ai(x) + raft) V¢A(X)). (2.21)

B(x 1) = $ai(0)V X ax(¥). (222)

These are the wake fields left by the sources. In order to solve eq. (2.18)

and (2.19), we have to know the source terms.
2. 4. Wake Potentials in a Cavity
2. 4. 1. Longitudinal Wake Potential

Consider the cavity shown in figure 2.3, where a driving charge Q is
assumed to enter the cavity at z = 0, ¢t = 0 and to exit at z = L.
Tre driving charge Q is passing through the cavity with velocity v =c¢, fol-
lowed by a test charge by a fixed distance zo in the z-direction. Let r and
ro be respectively the transverse coordinate of the test charge and that of
the driving charge. The delta function longitudinal wake potential W, is
defined as the energy gained by the unit negative point charge following
at a distance zo behind the driving charge, divided by Q, or

L B, 2, emgernaye (2.23)

Wz(r, ZO) = Q

The source terms due to the exciting charge are
p(x1) = Q&(r - m)d(z - vr), (2.24)
J(x, 1) = 7pv = 7pc(x, 1), (2.25)

where z is the unit vector in the z-direction and particle velocity of

v=c is assumed. After substituting eq. (2.25) into (2.18), equation for g¢;
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becomes
Q_ F 0
@+ wlq= a;, (myct), 0<t<L/c (2.26)
0, t> L/

where ai, is the z-component of tre vector eigenfunction aj.

With the initial conditions qi(0) = q1(0) =0, ie., no field exists before

the driving charge Q enters the cavity, the solution for q. is

QC ="M dt sinan(e ~ ) aimct) fort > 0. (227)

() = 0

Similarly, substituting source term, eq. (2.24), into (2.19) gives

Q 0, t<0
n(t) = ¢1(m,ct), 0<t<lif (2.28)
o, t>1

Substituting these expressions of the expansion coefficients into eqs. (2.21)
and (2.22), we can get the electric field E and the magnetic induction B
at any position in a cavity, which are then used to calculate the longitudinal
and transverse wake potentials by way of eqs. (2.23) and (2.32). By using -
the electric field E; and imposing causality, i.e., no wake field will be
produced ahead of the driving charge, Bane et al'? obtained the following

equation for the delta function longitudinal wake potential:

M(r n, 20) = '_? f dz (ql *"'—) ax (l' z) + n(z 20 a¢‘§; Z))

= ;—J—m l;quA J cos(g)c—‘)zo, : (2.29)

where V3" is a complex conjugate of V. Notice that the longitudinal wake

potential is solely expressed in terms of the z-component of the vector
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eigenfunction, and is, in general, functions of the transverse positions of the

driving charge and a test charge. In eq. (2.29), Vi is defined as
Vae) = [y dz exp(!a;—‘z-) ai(r, 2). (2.30)

Once the delta function wake potential given in eq. (2.29) huas been
calculated, it can be used as a Green’s function to calculate th: bunch
wake potential U, in and behind an arbitrary charge distribution A(z). The

longitudinal potential for the distributed charge becomes
Ux(z0) = I Mz — 20) Wi(z) dz. (231

2. 4. 2. Transverse Wake Potential

Consider again the driving charge Q and a test chérgc in a cavity as
shown in figure 2.3. The delta function transverse wake potential W.(zo) is
defined as the transverse momentum kick experienced by a test charge fol-

lowing at a distance zo behind a driving charge, divided by Q, or

Wazo) = = fLdz (E. + @ x B).)

Q t=(z+29)/c
I R
=5 f,dz (CVJ,A, - vw) eraye (2.32)
where the transverse gradient operator, V,, is defined as
V,=v-22 (2.33)
4 aZ . .

Analogously to the longitudinal case, the transverse wake potential W, (zo)
can be calculated by substituting the vector and scalar potentials which are
expanded in terms of the eigenfunctions into eq. (2.32). But, we may use

a rather simple formula known as the Panofsky-Wenzel theorem™
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%wi(zo) = V. Wi(zo) (2.34)

to derive the transverse wake potential fror1 the knowledge of the
longitudinal wake potential. Eq. (2.34) is valid for the selected cavity
geometries,” e.g., for cylindrically symmetric structares for any value of zo,
for closed cavities of arbitrary shape for zo > L, and for structures with
end plates normal to the path of particles for any value of zo. Thus, we
are going to use the Panofsky-Wenzel theorem in the next chapter to derive
the transverse wake potential in an elliptical pill-box cavity. Combining egs.

(2.29) and (2.34), the delta function transverse wake potential becomes

c V'(ro) v V;(r)

Wi) =3 sin(Z)z, (235)

and the transverse wake potential for an arbitrary charge distribution A(z)

can be obtained from

Us(zo) = J2_ A(z — z0) W.(2)dz. (2.36)




CHAPTER III

WAKE POTENTIALS IN AN ELLIPTICAL CAVITY

3. 1. Eigenmodes in an Elliptical Pill-Box Cavity

In chapter 2, we have derived the longitudinal and transverse wake
potentials solely in terms of the z-component of the vector eigenfunctions,
which is the solution of the homogeneous Helmholtz equation in a source
free cavity with -appropriate boundary conditions. The eigenfunctions in an
elliptical pill-box cavity are derived in this section, and the wake potentials
are formulated in the following sections.

Consider an elliptical pill-box cavity with the major axis 2x, and the
minor axis 2y as shown in figure 3.1. For a cavity of elliptica! cross sec-
tion, the eigenfunctions can be found in terms of known functions by trans-
forming the Cartesian coordinates to the confocal elliptical coordinates as
shown in figure 3.1. In these coordinates, the boundary conditions on the

elliptical cavity walls are’ easily satisfied.

The confocal elliptical coordinates (&,7,z) are related to the Cartesian

coordinates (x,y,z) by the following equations:
x = h cosh§ cosn,
y = h sinhé sinzy, (3.1)

where h is the semi-interfocal distance of the confocal ellipses. The

Helmholtz equation is then transformed to

25
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Figure 3.1. Confocal elliptical coordinate system
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2 = 1 oy oy  Fy o
Vi +k h*(sinh% + sin%p) (852 an 2+ zz+k¢ 0 (3:2)

where k is the free space wave number.

Following the method of separation of variables, we seek to find solu-

tions of the form

¥ = f(§) g(n) w(2). (33)
Substituting eq. (3.3) into (3.2) and dividing by ¥, the Helmholtz equation

is split into three ordinary differential equations:

2
4;%? ~ (a - 2q cosh2£) f(&) = 0, (3.4)

2
if,fzﬂ + (@ — 29 cos27) g(n) = 0, @3.5)

2
d—d’:%l + k2 w(z) = 0, (3.6)

where a is an arbitrary separation constant. The parameter g is defined as

212
2 =5k (3.)

and k. and k. are arbitrary constants, but are related to the free space

wave number k by

k2 = k* ~ k% (3.8)

The above equations (3.4) and (3.5) are called the Mathieu equations.*

Solutions to these equations are the Mathieu functions, details of which are

given in Appendix A.

With the z-dependence of exp(ik:z) in eq. (3.6), we are interested in
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the solution of the two dimensional Helmholtz equation
Vip+kiy=0 (3.9)

in an elliptical pill-box cavity. Here, the transverse Laplacian operator v?

is defined by
vi=v-2, (3.1))

The particular modes that we are considering are the modes which
have longitudinal acceleration fields. Therefore, only Transverse Magnetic
(TM) modes will be considered for the calculation of the wake potentials.
For modes TM to z, we may express the fields in terms of the vector
potential A, or equivalently in terms of the vector eigenfunction ai, having
only z-component. Hence ¢ =ai, in eq. (3.9). Any combinations of the
Mathieu functions in the form of y =f(€)g(n) are solutions of eq. (3.9). In
addition to the boundary conditions which must be satisfied on the walls

of the cavity, the following two conditions must be satisfied, i.e.,

(i) continuity of function ¥ on the interfocal line:

(0, 7) = y(0, ~). (3.11)

(ii) continuity of gradient of function ¥ on the interfocal line:

3 (W& Moo = = 3E (W&, —M)h0- (3.12)

Among the possible combinations, the only permissible form of the solution

which satisfies above two conditions are

Y= 2-: 1S.,.Se.,.(E, q) sem(n, q) +m2_ 0C..,Ce.,.(.’;“, q) cem(n, q), (3.13)
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with the z-dependent factor exp(ik:z) being omitted. Here, Cm and Sa are
abitrary constants. The function cem(n,9) and sem(7,q) are, respectively, the
even and odd type Mathieu functions of the first kinds of integral order,
and Cem(£,q) and Sem(£,g) are the modified Mathieu functions of the first
kinds of integral order.

We first notice that symmetry of the function y is determined by
cem(n,q) and sem(n,q). The terms in the first summation are odd and the

terms in the second summation are even with respect to 7. From Appendix

A, we have
Sem(ﬂ’ Q) == sem(—q, Q), (3-14)
cem(n, q) = cea(-1.9). (3.15)

Therefore, the first summation is always zero on the median plane (y =
0 plane) where the wake potentials are to be evaluated, and as a result
it does not contribute to the calculation of the longitudinal and transverse
wake potentials. For this reason, we are now considering only the TM
modes of even type solutions, ¥m = Cem(&, q) cem(n,q), for the wake potential

calcu’ation.
The boundary conditions are
p=0 (3.16)

at the elliptical boundary where & =§,. There remains the condition that
no tangential component of a, exists at the end-plate walls at z = 0 and

d, which is satisfied if we choose

kz=%r',P=0, 192)"' ’ (3'17)
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where d is the gap distance of the pill-box cavity as shown in figure 3.2

From eq. (3.16), we have

Cem(&a, q) =0, (3.18)

which are satisfied by particular values of q. Let gma be the n™ root of
eq. (3.18) for a given mode m. Then, we can calculate resonant frequency

from the root gma . From eqs. (3.7) and (3.8), the resonant frequency is

From this equation, we see that the wavelength of the dominant mode

becomes

(3.20)

where e. is the ecéentricity of the boundary ellipse, e. = 1/cosh&,. Figure
33 is a plot of gn as a function of the eccentricity e.. The ratio Aoio/xv
is plotted against e. in figure 3.4. In this figure we see that as e. -0, i.e,
as the ellipse tends to a circle, the ratio approaches 2.61, which is the
ratio of the wavelength to the radius, A/r. = 21/yn, for the TMoo mode of

a circular pill-box cavity, where xo1 is the first zero of Bessel function Jo(x).

The transverse components of the vector eigenfunction can be easily

found from the z-component. Thesc eigenmodes are

Gra = Cem(§, gna) cE (1, Gma) cos, (3:21)

Aoy = -E—Cem (& gma) cem(n, gma) sin? 5, (3.22)
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Figure 3.2. Elliptical pill-box cavity
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Gress = =T Cenl&, ma) com’(1, Gma) it (3.23)
where
4qma | cosh28 — cos2n "
Dua = % { 2 } . (3.24)

The resonant mode patterns for some of the lower-order modes are shown
in figures 3.5 - 3.8. Now, we proceed to calculate the wake potentials using

eigenmodes given in eqgs. (3.21) - (3.23).
3. 2. Wake Potentials in an Elliptical Pill-Box Cavity
3. 2. 1. Longitudinal Wake Potential

The longitudinal and transverse wake potentials on the focus axis. of
an elliptical cavity are of particular interest since when the driving charge
Q is passing through one of the foci of the cavity where £ =9 =0 (driving
beam path), all the electromagnetic fields radiated will get focused again at
the other foci where § =0 and n =x (accelerated beam path) in first order

approximation, which are then used to accelerate a trailing charge.

Consider a test charge which is traveling through the cavity where
£=0 and 5 =x (accelerated beam path) and trailing the driving charge Q
by a fixed distance zo in the z-direction. The delta function longitudinal
wake potential W, or the energy gained by the unit negaive test charge

is given by eq. (2.29):

Vi'(m) Vi
Wizo) = ; 4 @;1)41 i) cos(wtzo) forzo > 0, (2.29)

where Vi is the voltage induced by a point charge, and the normalizing
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Figure 3.7. Configuration of the resonant mode Q.. in an elliptical cavity (m=2, n=1, p=0)
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factor u;, which can be interpreted as the stored energy in the mode, is

given by eq. (2.17):
€o
-Z—fa).‘al'dV= udu . (2.17)

After substituting the eigenfunction in eq. (3.21) into eq (2.30), the voltage

Vi on the driving beam path and any position in a cavity become
Vi(m) = fy dz exp(5) a1(0, 0,2)
= Cem(0, gmn) cm(0, gmn) f; dz exp(lez) cosadjzz, (3.25)

Vi) = 3z exp(Z) an6,7,2)

= Cen(§, qma) cen(, qma) Sy dz exp(* ) cosyz, (326)
and further
.2
ZCmn('—_')
Wi’ = < (1-(-1)p cosg)ﬂ?—d), (3.27)

W2 _ P22
(- EH
where the coefficient Cmn is given by

Cma = Cem(§, qmn) Cem(0, gmn) cem(7, gma) c€m(0, gmn). (3.28)

The stored energy w: in the mode becomes

umnp=£29'!al’al'dV

(“’_mez 2
= % kf 2 I Cemz(E, an) Cemz(ﬂ, qmn) COSZ(BdJE)Z dav. (329)
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2
After integration of eq. (3.29) using dV = bz—(coshZE —cos2n)dEdndz, it is

further reduced to

2 (wmnz 2
Kd ,
map = 25 kf — 13 Cel(E, gma) X (cush2t — ©p) dE, (3.30)
where
On = & 12 cen’(1, qm) cos2y d

A™ 4™ + 3 4™ A4, | form =0,2,4, ...,
1 e (3.31)
5(AS'“’)’ + T AML Ay, form=1,3,5,...,

r=0

il
—e

and A™ in eq. (3.31) are the coefficients for the series representation of
the Mathieu function cen(7,q). Substituting egs. (3.27) - (3.31) into (2.29)

gives the delta function longitudinal wake potential W..

On the accelerated beam path (§ =0,7 =x), the delta function lon-

gitudinal wake potential becomes

®» o o € Cmn (1 - (—1‘)9 coswmngd)

Wiz) = —=3 3 3

ewdms()n:] pxo an Nmn

os(“"“z_" 29 (332)

where &,=v2 for p = 0 and 1 for p#0, and Nm. is given by
Nima = J2* Cem*(E, qma) X (cosh2E — ©n) dt. (3.33)
The coefficient Cma can be expressed in terms of A™ as

Cama = (Cem(0, qmn))2 cem(0, gmn) c€m(7, gmn)
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( 4

(EAST)) form=0,2,4,...,
=] =0 ] (3.39)

- Lif&;‘);) form=1,3,5, ...,

When the boundary ellipse tends to a circle, the confocal hyperbolae
in figure 3.1 become radii of the circle r, and the confocal ellipses become
concentric circles of that radius. In this case, we get the longitudinal wake
potential W, for a circular pill-box cavity, which is expressed analytically'""

in the form

© = (1 — (-1 cosw)

= _4_ Wonp 20
Wa(z0) = p— El EO &p o T cos( . ), (3.35)

where yon is the n™ zero of Bessel function Jo(x). We can easily show that
eq. (3.32) is exactly reduced to eq. (3.35) by using the limiting properties
of the Mathieu functions. The functions cem(7,q) and Cem(§,q) degenerate
into the following forms as the semi-interfocal distance A >0 and § - «,
while keep the product hcoshf -»r. From eq. (3.7), we see that ¢g—>0 as

h—-0. Thus, as ¢g—=+0, we have from Appendix A

LV form =0

cem(:9) {cosrmp ,form=0 (3.36)
Cem(s, q) ~*Pm ]m(kcr) (3.37)
A™ > 0 (except AT » 1 form = 0 and Af” » V¥%) (3.38)

where pm is a constant multiplier and Jm(x) is the Bessel function of the
first kind of order m. Using above equations, Cms in the numorator of eq.

(3.32) becomes simply
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Comn = (Cem(0, gmn))? cem(0, gmn) cem (7T, gmn)
= (P Jm(0) cosme)? = 0, form = 0
- (poJo(0))%/2 = pi®/2, form = 0. (3.39)

It is apparent from eq. (3.39) that contributions from m # i) modes become
zero as expected as an ellipse tends to a circle. The denominator in eq.

(3.32) for m = 0 becomes
2
on S5 Ces'(8, gon) cosh2t dE - S&zkgl I3 1) rdr

2
g &:‘szjlzum), (3:40)

where kc = xo/ra for a circular pill-box cavity of radius r.. By substituting
egs. (3.39) and (3.40) into (3.32), we can get exactly the same expression
for the wake potential in a circular pill-box cavity as in references 11 and
12. No closed expression is known for the infinite sum in egs. (3.32) and

(3.35), which must be evaluated numerically.
The wake potential for the distributed charges can be calculated from

eq. (2.31). For a Gaussian bunch with rms bunch length of o,

(3.41)

1 -z?
Az) = o CXP("'ZEI),

the bunch wake potential is
Ux(z0) = I A(z) W20 - 2) dz

© © ® e,,Cm(l—(—l)"cos\Qm-

L >

£o7td0' m=0n=] p=0 gmn Nmn ‘
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2
2 -Z _wmnp(zo - Z)
x [ exp( 202) oS p dz. (3.42)
When 2 >> 0, the bunch wake potential becomes
Wmn
Uy~ 23 3 E exp(-(—"2)'0/2)
Eoﬂdm-o n=]p=0

€p Cama (1 — (—1)P cosg"%Ld) "

X cos— a0 (3.43)

dmn Nma c

It is apparent from this equation that contributions from the modes
whose resonant wavelengths are much shorter than the bunch length o be-
come negligible. For the dominant mode, eq. (3.43) can be written as

(1-e)* 22 Co 1229y 21z
Useso = s idels le 200 (1~ cosT) cos— 1, (3.44)

where S=mx,y» is the cross sectional area of the cavity, 4 is the
wavelength of the dominant mode, e. is the eccentricity of the boundary

ellipse. The coefficients Co1 and No are found from eqs. (3.33) and (3.34).

=2

From this equation, we see that the wake potential scales as w:i ° and

S~!. When the boundary ellipse is very close to a circle, ie, e« << 1,

the wake potential scales as e 2.

3. 2. 2. Transverse Wake Potential

As discussed in Chapter 2, we can derive the transverse wake potential
in a pill-box cavity from the longitudinal wake potential by using the
Panofsky-Wenzel theorem, eq. (2.35). That is

c Vi \AZ! cin(w;zo)
pJ7777) S

Wi(z0) = (2.35)
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On the accelerating beam path where §=0 and 7 =x, we have
Vi* V Vi = Cem(0, @) cen(0, 1) cen(r, q1) V.Cen(0, g1)
X (I: dz exp(iq-;—g) cos%nz) ’ (3:+5)

Since the driving and test charges are assumed to move on each focus :xis
which are parallel to the z-axis and on the plane of symmetry (y = 0
plane), only :-component of the transverse wake potential exists at the foci

of the elliptical cavity. Hence,

- 1 4
« ViCem(0,q1) = 151_1.1; hsinhE % Cem(, q1)

;,I‘E 22 A®, form=0,2,4,...
=§{,"s (3.46)
;20(2!4-1)2/15':“21 , form=1,3,5,...
Therefore, the delta function transverse wake potential is written as
2 o BTI=(-1F cosﬂ‘c—‘l) o
Wilz) = eond ; wi gi Ni Sln(?°)’ (3.47)

where
C= Cemn(0, gmn) cem(0, gmn) cem(7, gmn) V1Cem(0, gmn)
%(i,qg‘) ) (i (22 A™), form = 0, 2,4,..
r=0

=1 . (3.48)
T (ZAENY (2 @r+1)afth), form =135,

For the driving beam with a Gaussian charge distribution, the transverse

bunch wake potential becomes
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Us(zo) = I _ dz A(z) Wi(z0 - 2)

o € Cmn(1—(~ l)pcos— *—)
- €o7td0 2 Z 2

m=0a=1p=0 Wmnp gma Nmn
— 2 —
X f2, exn(z3) siu‘""‘“"(f;0 2 4. (3.49)

When z, >> o0, the transverse bunch wake potential becomes

UJ.(ZO) =

i il io exp(~(22220/2)
> 2, 2

wmn
BTl - ertendy |

X Oman don Nom sin c (3.50)

3. 3. Numerical Examples

The longitudinal and transw)erse wake potentials in an elliptical pill-box
cavity are calculated by using egs. (3.42) and (3.49). The results are plotted
in figures 3.10 - 3.14. In these calculations, a driving beam with a Gaussian
charge distribution of 0 = 5 mm is assumed. We choose the same cavity
dimensions bunch length as in ref. 22 to compare the results of two

methods. The cavity dimensions are shown in figure 3.9.

Figure 3.10 is the plot of the longitudinal wake potential on the ac-
celerated beam path, in which only 5 modes are included in the calculation.
The modes summation converges as the number of modes are increased.
Figures 3.11 and 3.12 are the curves of the longitudinal wake potentials
respectively on the accelerated beam path and on the driving beam path,
in which different number of modes are included in the mode summation

(solid lines for 24 modes and broken lines for 12 modes). From figures




46

3.10 - 3.12, we readily find very rapid convergence of the mode summation,
indicating clearly that the wake potentials are predominated by a few lower-
order modes. Even 5 modes summation (figure 3.10) gives a well-defined
curve.

On the accelerated beam path, we obtain about 125 MeV/m/uC ac-
celeration gradient, while about 110 MeV/m/uC was obtained by Y. Chin®
(figures 3.17 and 3.18).

The path length for the fields radiated from one focus axis to reach
the other after one reflection at the elliptical boundary is 10 cm for this
cavity,. The peak accelerating potential on the accelerated beam path (point
A in figure 3.11) is the very fields radiated from the driving beam path
(point B in figure 3.12) and focused again after one reflection at the el-
liptical wall. From figures 3.11 and 3.12, we can see that the delay distance
between the point A and point B is about 10 cm.

The transverse wake potential on the accelerated beam path and that
on the driving beam path are shown in figures 3.13 and 3.14 respectively
by the broken lines. The corresponding longitudinal wake potentials are
plotted together in order to see if we can find the positions, such as the
point C in figure 3.13, at which the accelerating potential is large while
the transverse potential is small. The charge to be accelerated should be
positioned at such a point in order to avoid large transverse deflection
during acceleration. However, we also found that at the point of peak ac-
celerating potential, the transverse wake potential is not zero. The ac-
celerated particles positioned at this peak will be deflected and efficiency
of acceleration will drop gradually because of the displacement from the

focus axis and proper phase.
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The longitudinal wake potentials for different size cavities are plotted
in figures 3.15 - 3.17. Figures 3.18 and 3.19 are the curves for the lon-
gi‘udinal and transverse wake potentials calculated by pure numerical
metliod, the code WELLZ which include the effects of the beam apertures
of '¢m diameter. Comparing figures 3.13 and 3.14 with 3.18 and 3.19, very

good agreements in magnitudes and frequencies are observed.




Figure 3.9. Cavity dimensions for example calculation
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CHAPTER I\

WAKE POTENTIAL IN A DIELECTRIC-LOADED
ELLIPTICAL WAVEGUIDE

4. 1. Introduction

As discussed in Chapter 3, disk-loaded elliptical cavity is capable of
producing an acceleration gradient greater than 100 MeV/m/uC. But one dis-
advantage of using this cavity as a wake-field acceleration device is its un-
cancellable transverse wake fields even when alternately rotated stages are
used to minimize net transverse deflection. The transverse wake fields are
useful as an electric wiggler fields for the FEL applications,”® but are the
source of beam instability and blow up for the acceleration application. One
possible solution to this non-zero transverse wake fields is to use a
waveguide, or a cavity, which are partially filled with dielectric (known al-
ternatively as Dielectric Wakefields Acceleration scheme). In this scheme an
intense driving charge excites the wake fields through the Cerenkov radiation
mechanism. This radiation is then used to accelerate a second, less intense

particles to higher energies.

This method has a particular advantage over other wake-field accelera-

tion schemes that the transverse wake fields can be made quite small for

116 117

the ultra-relativistic driving beam. Recent experimental™ and theoretica
studies have shown that the transverse wake potential in a dielectric-loaded
circular waveguide vanishes in the limit of the particle velocity v->c even

when the driving beam is off-center, and the longitudinal acceleration

59
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gradient is of the same order of magnitude that can be obtained in the
disk-loaded metallic cavity.

Being a co-linear gcametry like the circular waveguide used in thet
experiment, staging is not quite attractive. Since we are primarily concerned
with the geometry which can permit easy staging in this investigation, the
wake fields excited in the dielectric-loaded waveguide of an elliptical cross
section are of greater interest. In this chapter, we will investigate the wake
fields excited in the dielectric-loaded elliptical waveguide. The property of
vanishing transverse wake fields is investigated for a use as a wake-field
acceleration device. We use the Fourier transform method to solve this
problem for convenience in calculations, and consequently all quantities are
treated in the frequency domain. It is also assumed that the waveguide wall

is perfectly conducting and the waveguide is filled with isotropic dielectric.
4. 2. Formulation of Solution

Consider the elliptical waveguide which is partially filled with medium
of dielectric constant ¢ and permeability # as shown in figure 4.1. Again
the problem is solved in the confocal elliptical coordinates. The coordinate
of the waveguide wall and that of the vacuum-dielectric interface are,
respectively, £ =&, and §=£&. A point charge Q is assumed to move in
a vacuum with velocity v along the arbitrary line (&, 70) which is parallel
to the focus axis of an elliptical cavity. The electromagnetic fields produced
by the motion of a charge in a structure is given again by the Maxwell
equations. In this chapter, we use cgs units.

The Maxwell equations are




61

Figure 4.1. Cross section of the elliptical waveguide

partially filled with dielectric
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14B

VXE=--% | 4.1)
vxH=2y4180 42)
VD = 4np, (4.3)
V-B =0, | (4.4)
D = ¢E, (4.5)
B =uH. (4.6)

The electric field E and the magnetic induction B can be written in terms

of a vector potential A and a scalar potential ¢ as

1 0A
=-Vp -7, (4.7)

B=VXA. . (4.8)

In the Lorentz gage, V'A+-ef-%€- = (, the Maxwell equations (4.2) and (4.3)

are transformed to

2, _ A _ _dmu
va- %= -y, @9
eudp  4nm

The charge density in the elliptical coordinates (§,7,z) is given by
p=Q06(r—mn)d(—v)
=8¢ - £0)8(r - 10) 0z — o), (a1)

where ro is the transverse coordinate of an exciting charge Q, and A is

the Jacobian relation given by
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A=

2
g%%l = bz—(coshZE — cos27y), (4.12)

where h is a semi-interfocal distance as shown in figure 4.1. Through the

continuity equation, the current density becomes

where 2 is the unit vector in the z-direction. Since the current density of
the particle has only z-component, and the metallic waveguide wall and
dielectric surface are smooth, the vector potential A has only z-component,
i.e, A=24,. As a result, scalar and vector potgntials are proportional to

each other. In fact,
Ay =L yp. (4.14)

Therefore, we can construct a solution with the knowledge of a scalar
potential ¢ alone. We are going to Fourier transform the inhomogeneous
wave equation (4.10) and solve in the frequency domain. In addition, the
dependence on z and ¢ are such that all quantities depend on the combined

variable (z — ur).
First, we expand the delta functions in eq. (4.11). The well-known
Fourier expansion of d(z — vt) is*®

8(z - vt) = == RefTe"® ™" do, (4.15)

where Re stands for the real part of the complex quantity. It is convenient
to expand d(n — no) in terms of the othogonal Mathieu functions of the first

kind, cem(n, —q), as
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1 L J
O(n — o) = 3 }‘,ocem(ﬂ, —q) cem(10, —9), (4.16)
where ¢q is given by the relation

2
2 =% By (1 - eus®, (.17)

where B =v/c. Here, we use the othogonal property of the Mathieu

function cen(n, —9),

%Islcem(’h -q) cen(n, —q) = Omn, (4.18)

to derive eq. (4.16), and JOma is a Kronecker delta. Substituting egs. (4.15)
and (4.16) into (4.11), the charge density becomes

p=LEE) 3 cealt, ~g) cealtn ~a) XRe ;¢3¢ do. (419
Similary, the scalar potential ¢ can be expanded in harmonics of the form
l «®
pE,mz-v)=— 20cem(’7, —q) cem(10, —q)

X Re [T evE ™" (¢, 0) do. (4.20)

From the definition of ¢ given by eq. (4.20), the Laplacian operator V? in

the elliptical coordinates (§,7,z) becomes

21,08 & 62162 PN
V=iGa* W E G el &) (4.21)

2 2
and the differential operators aiti and 38'27 become

=-d (4.22)
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82 .2

= — (=) 4.23
e ) (4.23)
Substituting eqs. (4.19) - (4.23) into (4.10), the equation for Dn(§, @) is
reduced to

Oa' + %é)’-'—:q‘;—) ®a — ALY (1 - ) On = - Q5 —g).  (429)

Since, the Mathieu function cen(, —¢) is a solution of the Mathieu
equation with negative q, y"' + (a+ 2gcos2p)y =0, the second term in eq.
(4.24) can be expressed in terms of parameters a, ¢, and 7. Finally, we

obtain the following equation for ®n(&, w):

®n''(E, ) - (@ + 2q cosh2k) Du(t, 0) = - 22 5% — &) (425)

Eq. (4.25) together with (4.7), (4.8), (4.14) and (4.20) completely determines
the fields produced by the moving charge, from which we can determine

the longitudinal and transverse wake potentials.
4. 3. Wake Fields Calculation
4. 3. 1. Solution to the Boundary Value Problem

Two independent solutions of the corresponding homogeneous equation
of (4.25) are the modified Mathieu functions of the first kind Cen(£, —9q)
and the second kind Fekm(&. —-g), which are given in Appendix A. Here,
we denote the vacuum region as region 1 and the dielectric medium as
region 2. Let us first find the pqrticular solution of inhomogeneous Mathieu

equation (4.25) in the vacuum region where & < &.

In region 1, we have
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e=pu=10s1,

2
q= "7 GPa-py=o0 (4.26)

Tae particular solution of eq. (4.25) can be found by using the Green
fi action technique, i.e., ®m is continuous while the derivative of ®n has a
jump at & =&, Furthermore, if we demand ®, be finite at £=0 and

vanish as & o for all values of g, then the solution is
Dn.inromo == 2 Cen(§<, =) Fekalt>, =4 427)

where subscript < (or >) is the smaller (or the bigger) of & and &, and
Dn is a Wronskian, which is independent of & and is a function of g .only.
That is

Dn(q) = Cem(&o, —q) Fekm'(§o, —q) — Cen'(§0, —q) Feka (8o, —q)
= Cem(O, "q) Fekm'(O, —q), (428)

where f =df/d§, and Cem'(0,—q) = 0 is used.

In order to form a complete set of solutions which satisfy all the
boundary conditions, we have to have a homogeneous solution of eq. (4.25),

which is given by
<l’m.homo =Cn Cem(§0, -Q) Cem(&; —Q), (4'29)

where Cn is an arbitrary constant. The solution of the form Fekm(§, —q) is
not considered in eq. (4.29) for the same reasons discussed in chapter 3.1,
i.e., the product cen(n, —q) Fekm(§, —q) must satisfy two additional conditions
given by egs. (3.11) and (3.12). We see that it is continuous but its

derivative with respect to & is not continuous on the interfocal line.
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Combining eqs. (4.27) and (4.29), ®n in region 1 can be written in the

form

-b:an ([Cem(€<, —q) Fel:m(§>, —q)

(Dm.l =

+ Cm Cem(80, —9) Cem(é, —9q)]. (4.30)
In a dielectric medium (§, <§ < &), we have
p=1 8 >1,

q= %E(%)’ (1-¢f%)=~5<0. (4.31)

The solution in region 2 is simply
P, 2 = Am Feym(§, 5) + Bm Cen(§, 5), (4.32)

where Awm and Bnm are arbitrary constant. We use the parameter s instead
of ¢ in this region. Feym(§,s), the Y-type modified Mathieu function of the
second kind, is used as a second solution in (4.32) for convenience in

calculations.

The coefficients Cm Am and Bn are determined from the boundary

conditions at the metallic wall (§ =&.) and at the vacuum-dielectric interface

(§ = &). The boundary conditions are:
(i) E:=0 at §=&..

(ii) E; is continuous at & = &,.

(ili) Dg is continucus at & = §&,.

From eqs. (4.7), (4.14) and (4.20), we see that E, and D; are proportional

to
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E:~ 3 (1~ euf’) Pa, (4.33)
Ds ~ eid;}"- (4.34)

Therefore, the above boundary conditions can be written in terms of

transformed pot.ntial @, as

Am Feyn(§a, 5) + Bn Cem(Ea, 5) = 0, (4.35)
(1 - g [~ 2R~y g1, ~) + Ca CentEn —9)]

= (1 - &%) lam Feym(§b, 5) + Bu Cem(Enr5)), (4.36)
410 CenlB0.~4) ek, (8, ~q) + Ca Cen'(Er, =)

= & [An Feya'(80,5) + B Cen' (G )] (437)

We only need to know the coefficient Cn to calculate the fields in a

vacuum region. It is found to be

s Fekn' (60 ,—q) W™ + eq Fekn(§o ,—q) ¥4

O e o) V™ 29 Cenlls,—q) B (4.38)
where

Y™ = Cem(£s, 5) Feym(Ev, 5) — Cem(s, 5) Feym(Ea, 5), (4.39)

%m) = Cem(§-. s) Feym ,(gb, s) = Cem '(gb, 5) Feym(f,, 5). (4.40)

4. 3. 2. Longitudinal and Transverse Wake Fields

The longitudihal electric field can be calculated from the scalar poten-
tial directly. From eqs. (4.7), (4.14) and (4.20), the electric field in region

1 becomes
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E(§,n2z—-vt)= :—;Qi 1-89) éocem(rl — q) cem(n0, — q) Re f dw iw

X —'C&Bg?q)— 2 (Feka (€, ~q) + Cm Cen(f, =2)) €5 . (441)

For a .test charge at position ¢ = (z +20)/c, or trailing the driving charge
by zo, the longitudinal electric field experienced by a test charge is g{ven

by

Ex(§,n,20) = %v% 1- 132)m§; 0cem(n, — q) cem(no, — q) Re f : dw iw
x Zo0 ) (ruta(f, ~g) + Ca Conll, ~a) 5
=T E™, (4.42)
m=0

This is the wake fields left by the source. The longitudinal wake potential
W, defined as the energy change of a test charge per unit driving charge,

becomes simply

W= 2L a, (4.43)

=1
Q
where L is the structure length.

The wake fields excited by the ultra-relativistic particle are of pérticular
interest. Consider the case when the particle velocity v-+c¢, or = 1. From
eq. (4.26), we see that the parameter g becomes zero as f-1. In this
case, we can use the following Lmiting properties of the Mathieu functions

to simplify eq. (4.42). As q-+ 0, we have
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L form=0
cem(n, ~q) > { V2" (4.44)
cosmn, form=1

1 =
Cea(t, —q) > {VZ>» form=0 (4.45)
coshmé, form=1

Feku(§, —q) =

(v — In2+ £ + V41ng) (1 + v gcosh2E) — V4 gsinh2£)) , for m = 0

222 (m — 1) m! (4.46)
zq" e , form=1
-1
VI form=20
Fekm'(g, —q) -> _22m-2m! m! (4.47)
thmeme ’ formz=1
L Feky'(0, -q), form =0
Du(q) » {V2 Fekd'(0, =q), form = (4.48)
Feky'(0, —q), form =1
where y in eq. (4.46) is the Euler constant.
First, let us concentrate on the monopole component, or m = 0, for

the case of v =c. Substituting eqs. (4.44) - (4.48) into (4.38), the coefficient

Co for the monopole mode becomes

-1 \yio)
& 0 , S sinh2%b \.,(0) ’
¥ + == W

1-pYCo=¢ (4.49)

where ¥ and W{” are given in eqs. (4.39) and (4.40). Substituting eq.
(4.49) into (4.42) then gives the longitudinal electric field as
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- - 0) @
ED (¢, 1,20) =~ 1) =5 U Ref? du iw s‘:i's R e (450
0) 0
¥ + =W
Here, the integral involving Feko can be neglected because the integrand
involving Feko is real and has no poles when 82— 1. Thus it does not make

a contribution to the real part of the integral as f*—1 ard it is reduced

to
(1-pHRe /S, dwio v = (, (4.51)

The real part of the integral in eq. (4.50) comes from the contr'butions
from the poles of the integrand. The integrand is purely imaginary and the
real part can come only from the residues at the poles. From complex

analysis, we know that

I ﬁdw=2m‘§:—ﬁ—| : (4.52)
® fo _i—f o =)
e [
From eq. (4.31), we have the relation
d _dsd_2d
do  dwds ™ ©ds (4.33)

then the longitudinal electric field of the monopole mode can be written

as an infinite sum over all discrete harmonics as

o2y W
eh? % v + 2 Slﬂehsz W) s=sl

cos%‘m (4.54)

where s; are the roots of

v + 5—"’—"%252 ¥ =0 (4.55)




From eq. (4.31), the resonant frequencies w; are related to si by

2
a=t &=, (456)

Notice that there is no & or 5 dependance of E® in eq. (4.54). It is
apparent from eq. (4.54) that there is no transverse wake fields associated
with m = 0 mode in the limit of v =¢, since the transverse wake fields
are related to the transverse gradient of E, through the Panofsky-Wenzel

theorem, eq. (2.34).

Similarly, E; for m 21 can be found from en. (4.42) as
EMm =ig._ 1-48% - - -
: 3 (1= 8% 2 cem(n, ~q) cem (0, —q)
v m=0

x Re [~ do i S22 =) Bk (& — ) + Ca Cea®, ~q)) €5

Du(q)
~ 22 (1-B) 3 centn, ~q) cenlr, ~9)
X Re [ : dw iw DS'(“q) Cem(&o, —q) Cen(§, —q) v, 4.57)

Again, by using the limiting values given in eqs. (4.44) - (4.48), we get

Cm coshméo coshmé
(1=F) iy Comlo =) Ceall, —) = —(1 =B et ) 45®)

and consequently the longitudinal electric field of the multipole mode

becomes

E™ o ~-40Q cosmng coshmé,
: vt m sinhm&y, =xp(mé&y)

-0, asf - 1. (4.59)

cosmy coshmé x (1 -f%) Ref, dw iw eiv

Here, we found that only monopole mode (m = 0) is excited in a
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dielectric loaded elliptical waveguide in the limit of the particle velocity
v ->c. The contributions from multipole modes become negligible for the

ultra-relaticistic particles because E; tends to zero as y >

The transverse wake fields can be calculated from the longitudin:!

wake field by using the Panofsky-Wenzel theorem, eq. (2.34):

I W, = V. W, =V.eE, (2.34)
920

where V. in the elliptical coordinates is given by

1 .9
h Vsinh% + siny (é3z +

V.= g (4.60)

As discussed earlier, there is no transverse wake fields associated with
m = 0 mode because EY is independent of the tramsverse coordinates &
and 7. For m # 0 modes, the transverse wake fields are found by substitut-
ing eq. (4.57) into (2.34). Again, using the limiting properties in eq. (4.64)
- (4.68), we have

"é—w.L = V.LeEz
920

- constant X V(cosmn coshmg) X (1 - Re [ dw iw ev
~0asf~ 1. (4.61)

We see again that in the vacuum region the transverse wake fields become

neglegible for the ultra-relativistic particles and tend to zero as y 2

For the driving beam with an arbitrary charge distribution of A(z), the

longitudinal electric field becomes
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EQ = —Q-; 1 4% L2 A2 cos-——(z - 20). (4.62)

eh?

Let us consider the following two limiting cases. First, if the waveguide

is completely filled with a medium (& =0), then eq. (4.54) is reduced to

40  Ceoléns) Feyo(0,s) — Ceol0,s) Feyol€as) | on, ey

where s1 are roots of Ceo(§a,5)=0. Here, Feyy'(0,5) has no pole since
Feyo'(0, s) = constant X ceo(-g-, 5)>0 (4.64)

for any s. When &, =0 but finite, we see that the fields are little different
from those in a completely filled waveguide because

—(——ldce‘;g"" =0 (4.65)

for & = 0. The important fact is that a charge moving close to a medium
radiates as if it were moving through a medium, and the fields in the

vacuum is not very sensitive to the vacuum-dielectric boundary conditions.

Whea & &, we see that both W™ and ¥i™ in eq. (4.54) become
zero. Therefore, no wake fields are generated in the perfectly conducting

smooth waveguide, as discussed previously in section 2.1.
4. 3. 3. Transition to the Dielectric-Loaded Circular Waveguide

When the boundary ellipse degenerates into a circle, we get the equa-
tion for the wake fields excited in a dielectric-loaded circular waveguide.

We can show this again by using the limiting properties of the Mathieu
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functions given in Appendix A:

Cen(£,5) = pm Ju(kr), (4.66)
Cen'(§,5) = pm krJu'(kr), (4.67)
Feym(§, ) pm Nu(k7), (4.68)
Feym'(§,5) = pm kr Nu' (kr), (4.69)
cem(”, —S) = pm cOSMQP, (4.70)

where pm is a constant multilpier, and Jm, Nm are respectively the Bessel
functions of the first and second kinds. The relation between s and k is

given by

2 272
=% Gr e - =2k (@.71)

From eq. (4.71), we have the relation

(4.72).

d L_é.
ds kntdk
If confocal ellipses with £ =&, and £ =& become concentric circles of
radius r = a and r = b respectively as shown in figure 4.2, then

substituting egs. (4.66) - (4.72) into (4.54) gives the longitudinal electric

field E{” excited in the dielectric-loaded circular waveguide:

- _Q i
EQ = ;: 7 (;3°> ; kbﬂo)) |k_m1 cos—au, (4.73)
where
A0 = Jo(ka) No(kb) — Jo(kb) No(ka), (4.74)
= Jo(ka) No'(kb) — Jo' (kb) No(ka), (4.75)
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which is exactly the same equation as in ref. 18. Here, Jo and No are the

zero order Bessel functions of the first kind and second kind respectively.
4. 4. Numerical Example and Discussion

As an example, the longitudinal wake potential in the dielectric-idaded
elliptical waveguide is calculated for the limiting case of v =c. The dimen-
sions of the waveguide are shown in figure 4.3, and the driving bearn with
a Gaussian charge distribution of ¢ = S mm is assumed. Figure 4.4 is a
plot of the longitudinal wake potential in the vacuum when the dielectric
constant is € = 2 and vacuum hole is very narrow, i.., & = 0. Here, we
obtain about 40 MeV/m acceleration gradient per 1 micro-Coulomb driving
charge, while about 120 MeV/m was obtained in chapter 3 for the disk-
loaded cavity which has the same cross sectional area. We found that in
a dielectric-loaded elliptical waveguide only monopole mode (m = 0) is ex-
cited and the transverse wake fields, which exist in the disk-loaded elliptical
cavity, become zero as the particle velocity g - 1. This result is very im-
portant when we consider using the dielectric-loaded waveguide as a wake-
field acceleration device. It can support high accelerating gradient, but has
no deflecting force which might lead to beam instabilities. The amplitude
of the longitudinal electric field is a function of the transverse position of
the driving beam. Since the longitudinal electric field is uniform within the
vacuum region, we can inject the driving beam and accelerated beam at
two different lccations in the vacuum region so that staging becomes prac-

tical.
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conductor

. h=+0,8+
h coshf, = g, h cosh, »b 7> ¢

conductor Yy &

Figure 4.2. Transition to the dielectric-loaded circular waveguide
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Figure 4.3. Dielectric-loaded elliptic waveguide dimensions
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CHAPTER V
SUMMARY AND CONCLUSIONS

Acceleration of charged particles by the waké fields produced by a
bunch of relativistic charged particles passing through the elliptical wake-field
cavities has been investigated. The expressions for the wake potentials have
been derived analytically for the disk-loaded metallic cavity and dielectric-
loaded waveguide. For the disk-loaded elliptical cavity, modal analysis
method is used under the assumption of no aperture in a cavity, and the
wake fields and wake potentials are derived in terms of the Mathieu func-
tions. It is found that these analytical results agree well with the numerical
analysis of Chin,® in which finite difference method is used to directly solve
the Maxwell equations in the time domain. For a dielectric-loaded elliptical
cavity, the longitudinal wake potential is derived analytically using Fourier
transform method. It is shown that both disk-loaded and dielectric-loaded
cavities can support an acceleration gradient in excess of a few hundred
MeV/m. It is also found that strong transverse wake fields, which could be
useful for the FEL application as an electric wiggler, are excited in the
disk-loaded cavity, while no transverse wake fields are induced in a
dielectric-loaded cavity for the ultra-relativistic driving beam.

The idea of wake-field acceleration by means of the elliptical cavity
offers a promising way for reaching acceleration gradients of a few hundred
MeV/m. The wake-field cavities discussed in the previous chapter: do not
represent the maximum acceleration gradient that can be achieved. Tle lon-

gitudinal wake potential or acceleration gradient is proportional to the num-
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ber of particles in the driving beam, and inversely proportional to the cross
sectional area of the cavity. Taking the parameters used in example calcula-
tions, an eliliptical cavity with the major axis of S c¢cm and the minor axis
of 3 cm wil yield 600 MeV/m/uC. Although the transformer ratio of this
elliptical cavity is not as high, a wake-field accelerator not based on the
impedance transformation principle can be achieved by using multi-stage
scheme in which short stages are used with the driving beam which is
replaced with new one or whose energy is replenished after each stage. For
the elliptical cavity, we can simplify the replacement of decelerated driving
beam considerably. The need for a fast kicker, or-bending the driver beam
can be eliminated. Furthermore, the fact that the wake-field devices are
simply shaped metallic pill-boxes or waveguides partially filled with dielectric
without any frequency tuning or phasing devices make this kind of ac-
celerator unexpensive and reliable.

The limitations to achieving a high acceleration gradient should be
pointed out. The principle limitation is due to breakdown and electrical dis-
charges which may damage the metallic surface, dielectric breakdown, and
change of dielectric properties. We do not concern ourselves with this prob-
lem about which little is known yet. However, breakdown limits are con-
sidered to be less severe than any other near-field accelerating devices since
the high field strength exists only a limited area and only for a short
period of time. Another difficulty is the production of very short, high cur-
rent driving beam. A charge of 1 uC, which corresponds to ~bout 6 x 10"
electrons withia the driving beam or a peak current of nearly 60 KA, could
be achieved in the induction linac. The laser-driven photoinjector may allow

a simpler solution to this problem.
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As mentioned, we have made several simplifying assumptions in order
to obtain the analytical solutions of the wake potentials in the elliptical
cavity. Further investigations are needed on the following issues: (1) Beam
aperture effects are not considered for the disk-loaded cavity. Although we
have demonstrated that these analytical results are in good agreement with
the results of the numerical code for the cavity with small apertures, large
aperture will affect the calculation in both magnitudes and frequencies of
the wake potentials. (2) The wake fields inside a driving beam can not be
accurately calculated with this method due to the slow convergence of the
modes summation, therefore we cannot calculate the energy loss of the driv-
ing beam accurately. (3) Beam dynamics calculation and instability study due
to the transverse deflecting modes in the elliptical pill-box cavity. (4) Non-
linear effects in the dielectric. A systematic numerical study will give a bet-
ter picture of these wake fields problem.




APPENDIX A
THE MATHIEU EQUATIONS AND MATHIEU FUNCTIONS
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A. 1. Canonical Form of the Mathieu Equation

The Mathieu equation is the particular case of a linear type of the
second order differential equation with periodic coefficients, which has a
form

5% + (a - 2g cos2z)y = 0, (A.1)
z

where the parameters @ and ¢ are limited to real number, but z is usually
unrestricted. For the present, we shall confine our attention to solutions

having period # or 27 in z. If we write i for z in eq. (A.l), it becomes

g;{- ~(@a—2gcosh2f)y =0 (A2)

A. 2. Periodic Solution of y'’' + (@ —2gcos2z)y =0

We have two types of solutions. one is even and the other is odd

function in z. These solutions may be expressed in series forms as:

cen(z, q) = éoA 2 cos2rz, (A.3)
cen+1(2,q) =§:°A§'31) cos(2r+1)z, (A4)
se2n+2(2, q) =§°Bg'l§2) sin(2r+2)z, _ (A.5)
sez+1(z, 9) =§°B£%'ﬁ‘> sin(2r+1)z, (A.6)
for n = 0, 1, 2, .. In these series, the coefficients 4™ and B{™ are

functions of g. The function cenm(z,q) and sen(z,q) are respectively the even

and odd type Mathieu functions of the first kinds of integral order m. A
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few of the lowest-order Mathieu functions are plotted in figures A.l. and

A2

A. 3. Solution of y'' — (a —2gcosh2§)y =10

The first solutions of eq. (A.2) are derived by substituting i for z in
eqs. (A.3) - (A.6). Thus, we have

Cera§,9) = cemit, g) = S AL coshr, (A7)
Cezn+1(€, 9) = cen+1(&, q) =§°A§’l’i” cosh(2r+1)§, (A.8)
Seansal6, @) = —iseme(ih, ) = 3 BT sinh(2r+ ), (A9)
Sexn+1(&, g) = —i seza+1(i€, q) = §B£3‘r;" sinh(2r+1)£. (A.10)

=0

These are defined to be modified Mathieu functions of the first kind of
integral order, and the capital letters are used to denote the modified

functions.
A. 4. Othogonality and Normalization of Mathieu Functions

'The Mathieu functions of the first kinds have the property that for a

given g,
S ;" cen(z,q) cep(z,q) dz = f? sem(z, q) sep(z,q)dz = 0 form # p. (A.11)

With this othogonal property, various normalizations are possible. Here,

cem(z,q) and sem(z,q) are normalized according to

1 1 |
7 f;" cem’(z,q) dz = = f:’ sem’(z,q) dz = 1 (A.12)
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for all real values of g. The normalization in (A.11) entails a mean squre
value of 1/2 over the interval (0, 27), which is the same as that for the
circular functions. Under this normalization, the coefficients 4™ and B™are

given by the relatior

2 [48) + i K& =1, (A.13)
r=]1 .
fjo[ASﬁ‘I"]’ = iowﬁ‘r;"]’ = io[Bﬁ'l’;”]’ =1. (A.14)

A. 5. Degenerate Forms of Mathieu Functions
A. 5. 1. Mathieu Functions of the First Kind

When the fundamental ellipse tends to a circle by letting 4 -+ 0, hence
g=+0, A™ and B™ in the series tend to zero except that 4™ -1 and
B™ »1, and the confocal hyperbolae become radii of the circle with
n=¢. So, we have

cosmn = cosm¢g for m=1

cem(,q) > AD = 1/VZ form=0 (A-15)

sem(n, @) = sinmn = sinm¢ for m = 1. | (A.16)
A. S. 2. Modified Mathieu Functions

When a confocal ellipse of semi-major axis r tends to a circle with

this radius by letting h >0, & - « while keeping the product h cosh-r,

2

then a-+>m" for a function of integral order m. Consequently, eq. (A.2)

degenerate to the standard Bessel equation:

2
%+%%+(k12—""’§‘)y=0, (A.17)




where 2g = h*k%/2. Thus we have the following degenerate cases:

Cen(§, q) = Pm Im(kvr), (A.18)
Sen(§, q) = sm Ju(kyr), (A.19)
% Cen(t, q) = P ir Ju'(ktr), (A.20)
2 Sen(6, ) = s Ju' ), (A21)
Fer(E, 4) > Pm Ym(kl"), (A.22)
S Feya(,a) + po Yo'k, (A23)
C€2n(§, _Q) —> Don Izn(kl")’ (A-24)
Cean+1(§, —q) = S2a+1 Lan+1(krr), (A.25)
Sean+1(§, —q) = P2n+1 L2n+1(kir), (A.26)
Sezn+2(§, —q) = sm+2 Lans2(kir), (A.27)
7t Fekan(§, —q) = P2a Kaa(kr), (A.28)
7t Fekan+1(§, —q) = S2a+1 Kan+1(krr), (A.29)

where pm, sm are constant multipliers, and f(x) = df(x)/dx. Feym(§,q) is a
linearly independent second solution for positive g. For negative g, the

solution of the form Fekm(§, —q) is usually used.

A. 6. Limiting Forms of Feyn(£,q) and Fekm(§, —q) as ¢—>0

Feyo®, @) ~ 22 (7 ~ 1n2 + § + v41ng) (1 - Vi q cosh2$) (A30)
2 Feko(§, —q)
- - ’?‘[(7 = 1In2 + £ + Valng) (1 + Vaq cosh2f) — Vasinh28]  (A.31)

Feym(t, @)= =22 'T(m)T(m+1)x " g™ e™ for m = 1 (A.32)
Fekn(&, —q) » — V2 Feym(§,q) for m21 (A.33)
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1-0

0'

seg(z, 2) se(z,2)  sex(z,2)

Figure A.1. Mathieu function of the first kind of even integral order

cem(z, q) and sem(z, q)
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sexz,2)  ses(z, 2) sex(z, 2)

Figure A.2. Mathieu function of the first kind of odd integral order

cem(z, g) and sem(z, q)
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ai(x)
A(x t)
An
A™

B(x, #)

B

c

cen(™ q)
Cen(§,q)
Cn

Crno

Crma

D(x, 1)

Dn(q)

€c

GLOSSARY

Separation constant

ector eigenfunction

ector potential

Arbitrary constant

Coefficients for the series representation of cem(7,q) and Cem(£, q)
Magnetic flux density

Arbitrary constant

Coefficients for the series representation of sex(7,g) and Sem(§, q)
Speed of light

Even type Mathieu function of the first kind of integral order m
Modified Mathieu function of the first kind of integral order m
Arbitrary constant

Coefficient in the longitudinal wake potential

Coefficient in the transverse wake potential

Gap distance of an elliptical pillbox cavity

Electric flux density

Wronskian relation
Dn(q) = Cen(0, —g)Fekn'(0, —q) — Cen'(0, —q)Fekm(0, ~¢)

Eccentricity of the boundary ellipse
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E(x, ¢)
Feym (51 q)

Fekm (Ev —q)

h

H(x, )

min(s, L/c)
n

Nu(x)

Pnm

a(t)

qma

Q

ra
n

n(t)
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electric field

Y-type Mathieu function of the second kind

K-type Mathieu function of the second kind
Semi-interfocal distance of an ellipse

Magnetic field

V-1

Current density

Bessel function of the first kind of integral order m
Wave vector

Transverse component of wave vector k

Longitudinal component of wave vector k

length of a cavity

Minimum of ¢ and L/c

Unit normal vector

Bessel function of the second kind of integral order m
Constant multiplier

Time dependent coefficients of the vector potential A(x, ¢)
Parémeters in the Mathieu functions

Charge of a point source

Outer radius of dielectric-loaded circular cavity

Radius of dielectric-vacuum interface of dielectric-loaded circular cavity

Time dependent coefficient of the scalar potential ¢(x )




To

Re 2

s
sem(17,9)
Sem(£, 9)
Sm

S

t

T;

u
U.(20)

U:(z0)

Va(r)
| W_L (ZO)

W(z0)

(x y 2)

X
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Transverse coordinate of the driving charge

Radius of a circular pillbox cavity

Real part of complex number z

Parameter related to the transverse wave number in dielectric
Odd type Mathieu function of the first kind of integral order m
Modified Mathieu function of the first kind of integral order m
Constant multiplier

Cross sectional area of an elliptic pillbox cavity

Time

Normalizing factor of the scalar eigenfunction ¢,

Normalizing factor of the vector eigenfunction ax

Transverse wake potential of distributed charges

Longitudinal wake potential of distributed charges

elocity of a particle

olume of a cavity

oltage induced by the driving charge at the transverse position r
Delta function transverse wake potential

Delta function longitudinal wake potential

Spatial coordinates
Cartesian Coordinates

Semi-major axis of the boundary ellipse




20

Xon
o

&

Pa(x)

(I)m (5’ 0))

p(xt)

A2)

Ko

w3

¢ n2)

Semi-minor axis of the boundary ellipse

Unit vector in z-direction

Delay distance between the driving and test charge

Normalized velocity 8 = v/c
n™ root of Bessel function Jo(x)

Kronecker delta

a(x, |
o, n)

Jacobian A =

Permittivity of dielectric

Permittivity of vacuum

12forp = 0and 1 forp=0

Scalar eigenfunctions

Scalar potential in the frequency domain
Scalar potential

Relativistic factor y = (1 - %)~12

Line charge density of the driving bunch
Permeability of dielectric

Permeability of vacuum

Charge density

rms length of a Gaussian bunch

Resonant frequencies

Confocal elliptical coordinates




&s
&p
(60, 10)

& at the boundary ellipse
£ at the dielectric-vacuum interface

Transverse coordinates of the driving charge
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