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I. Research Summary

This final report summarizes research activities performed by thb Center

for Accelerator Science and Technology of the University of Texas at Arlington

dring the period of July 1, 1987 and June 30, 1990 under Grant No. AFOSR-

8"-0280. The main goals of the successful research program are to provide

ttleoretical basis to analyze the wake-fields in the elliptically shaped wake-field

cavity, and to examine the feasibility of applying the new idea of wake-field

acceleration to beams of lasers. The theorectical research is very important

due to the world-wide interest in finding new acceleration principles with

higher accelerating gradients suitable for future particle accelerators. In par-

ticular, very exciting and -new experimental results from Argonne National

Laboratory seems to indicate that wake field acceleration is indeed a very vi-

able alternative for this endeavor.>

Although our own experimental -ork has not been completed in the

period due to primarily an inadequate experimental support for the 20 MeV

electron linac as noted on the technical report of July, 1990, a great deal was

accomplished in the theoretical analysis. We hereby report the research ac-

tivities undertaken during this period. 'he research performed under this con-

tract- is divided into six categories. and main achievements in each category are

as follows.

(1) Investigation of wake-field acceleration using the elliptical wake-field

cavi- ''

Our theoretical works on this subject were very successful and major

progress has been made. An analytical method was developed to calculate the

wake-fields in a metali - elliptical nillbnx cvit,. By solving sets of the

Maxwell's equations in the transformed plane, we were able to express the
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wake-fields analytically. This analytic method simplifies the wake-fields calcula-

tion significantly, and we can readily optimize the cavity design without much

computational efforts. Our analysis was shown to agree extremely well with

data of existing 3-D computer c de as well as with experimental data

presented recently by the Argonne ,roup. This work was well recognized and

published in the refereed journal (Particle Accelerators). Modal analysis has

been extended to include the effects of arbitrary sized beam aperture in a

cavity. Excellent agreement between the experimental data and our analysis was

demonstrated. The second work was also published in refereed journal (J. of

Applied Physics, in progress).

f (2) Theoretical study of dielectric wake-field cavity,

It is found that the dielectric-lined elliptical wake-field cavity will yield

an acceleration gradient of the same order of magnitude that can be obtain

with a metallic cavity, and the deflection modes are supressed if the energy

of the driving beam is sufficiently high. This new acceleration scheme provides

a simple solution to the transverse instability problem in the wake-field ac-

celeration.

(3) Computer code development for a wake4field cavity analysis,

Based on the theoretical analyses developed here, very efficient and time

saving computer codes are developed.

(4) Development of wake-field measurement system

A novel electrostatic probe to measure the wake-fields directly was

developed. It was shown that we can measure with reasonable accuracy the
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strength of the wake potentials in a cavity without using an expensive energy

analyzing magnet and beam manipulating equipments.

(5) Applicat on of Wake field cavities: Study of a soft x-ray laser scheme

This work d.,als with an application of the elliptical wake-field cavity. We

have performed pioneering analysis for applying the wake- fields generated in

an elliptical cavity as an electric wiggler in free electron lasers. Theoretical

study of a soft x-ray EFEL scheme using two-beam elliptical pillbox wake-field

cavity has been conducted. It is found that the scheme provides sufficient gain

as a coherent radiation source down to the x-ray regime. Our work was

presented in a number of published and refereed articles.

(6) Development of a laser photocathode

The design and construction of a laser photocathode was conducted for

a use as an intense, short electron beam source for the wake-field acceleration

study. Numerical study of optimal cathode geometry was conducted and beam

currents were measured. It was demonstrated that this type of photoemitter

can be used as an efficient short, intense electron beam source for a compact

linac design. -
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H. Research Performed by Category

In the following, we describe in detail the six research tasks we ac-

complished. First we list the publications in which the results were presented

in detail. A summany of the results is then given.

Task 1:

Investigation of wake-field acceleration using the ellipticalwake-field cavity.

Purpose: to develop a rigorous and theoretical basis to calculate the wake-fields

in an elliptical cavity.

Publications to-date:

1. J. S. Yang and K. W. Chen, An analytical solution of wake-fields in

an elliptical pillbox cavity, will appear on Particle Accelerators, Vol 23, 1990.

2. S. H. Kim, K. W. Chen and J. S. Yang, Madal analysis of wake- fields

and its application to elliptical pillbox cavity with finite aperture, will appear

on Nov. 1, 1990 issue of J. of Applied Physics.

3. J. S. Yang and K. W. Chen, Wake potential in a semi-elliptic pillbox

cavity, on Advanced Accelerator Concepts, AIP conference proceedings 193,

Lake Arrowhead, CA 1989.

4. K W. Chen and S. H. Kim, Wake-field acceleration and compact ac-

celerator considerations, SPIE Vol. 875 (SPIE, Bellingham, WA 1988), pp. 223-

233.

Theoretical study on the wake-field generation using the elliptical cavity

has been conducted. Major progre-s has been made in this study: development

of an analytical method, and analysis of cavity with arbitrary sized aperture. It

was known from theoretical and experimental works that the impedance, which
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is the Fourier transformation of the wake-fields, of a closed cavity and that

of a cavity with finite aperture are practically the same at the low frequencies.

Therefore, the long range wake-fields of a short bunch or the wake-fields of

a very long bunch are almost t1,e same for these two different structures. Since

the wake-field acceleration scheine requires a very short, intense driving bunch

to excite acceleration fields of the order of 100 MeV/m and, furthermore,

delay distance between the driving and trailing beam is very large compared

to the bunch length, we can estimate with good accuracy the wake potentials

of the most practical cavities by neglecting aperture effects. Under this as-

sumption and using the coordinates transformation, we were able to express

the wake-fields and wake potentials of an elliptical cavity analytically. With this

analytical method, we can easily estimate maximum energy gain of the ac-

celerated particles, and sinplify the optimization of the cavity design without

time consuming 3-dimensional computation. It is demonstrated that our analysis

agrees extremely well with that of existing computer code WELL.

Although aperture effects are not serious for the long range wake- fields

as long as aperture is small compared to the cavity cross section, we have to

consider its effects to calculate the short range wake-fields or to estimate the

energy loss of the driving beam and to consider the beam dynamics calculation.

For this purpose, the theoretical analysis was expanded significantly to extend

the modal analysis methods to include the effects of arbitrary apertures in the

cavity. A complete modal analysis was carried out by using the Floquet's

theorem and an obvious requirement that the energy gain over all acceleration

cavity of repeating structure must be proportional to the number of pillboxes.

In addition, by assigning proper boundary conditions on the apertures and con-

sidering the parity and continuity of the fields at the aperture, the formalism
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to determine the Fourier coefficients for the repeating str'icture consisting of

many pillbox cavities with arbitrary aperture was derived. The results of this

analysis were compared with experiments done by the Argo'ne Group. An

excellent agreement between the experiment data and o'r analysis was

demonstrated as in publication 2.

Task 2

Study of wake-Fields excited in the dielectric structure

Purpose: to investigate the effects of dielectric material in the

elliptical cavity for a use as a wake-field device.

Publications:

1. J. S. Yang and K. W. Chen, Wake-fields in a dielectric-loaded elliptic

waveguide, submitted to Particle Accelerators for publication, July, 1990.

Results

The wake-field acceleration scheme using dielectric-lined elliptical cavity

was conducted. It is well known that the electron beam loses energy and excite

slow EM waves (Cerenkov radiation) behind when it passes through a

dielectric-lined structures. The dielectric structure can be used as a wake-field

device as well as other applications such as storage cell, energy modulator,

etc. It was shown experimentally by Argonne group that the dielectric-lined

circular cavity has great advantages over other wake-field schemes; acceleration

gradient is of the same order of magnitude that can be achieved with metallic

cavity and the transverse wake potential can be made quite small for the ultra-

relativistic driving beam. The proof-of-principle of acceleration by the wake-

fields generated in the circular dielectric structure has been experimentally

demonstrated by the Argonne group. However, it was not clear whether the
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transverse modes are also supressed in the elliptical dielectric cavity as in the

circular cavity. Extraction and re-acceleration of driving beam can be simplified

significantly if the driving beam and accelerated beam pass through different

paths. Here, we extend the idea of acceleiation using dielectric-lined elliptical

cavity to supress the transverse deflection modes and still provide staging

capability. The investigation of the wake-fie'ds excited in the elliptical dielectric

cavity was carried out. Sets of the Maxwell's eqs. are solved analytically in the

transformed plane. It was shown that only fundamental modes are excited in

the dielectric structure, and all the higher modes and transverse deflecting

modes are inversely proportional to the square of the driving beam energy.

This property of lack of the transverse modes is a unique feature of a

dielectric structures. The model calculation showed that this cavity can be used

as a wake-field acceleration device which has a large acceleration gradient of

the order of 100 MeV/m, no appreciable transverse forces, and still provides

the easy staging capability. Excellent agreement with the Argonne wake-field

experiment was demonstrated.

Task 3

Computer Codes Development for an Elliptical Pillbox Cavity

Publications: J. S. Yang, Results of a PC-based wake-field code, CAST internal

report CAST-89-0115

As a result of the theoretical works developed here, a simple and effi-

cient numerical code was developed to calculate all the resonant modes and

loss parameters of an elliptical pillbox cavity. Excellent agreements with the

3-dimensional numerical code WELL as well as with experimental data were

9



L,,.monstrated in publication 1.

Task 4

Development of a Wake-Field Measurement System

Purpose: to develope a method to measure the intensity of the wake- fie.Js

directly in an elliptical cavity.

Publications:

1. S. H. Kim and K. W. Chen, An electrostatic p-obe system for the

measurement of wake-field in a two-beam elliptical pillbox cavity, submitted to

Review of Scientific Instrumentation

Results
A unique system to measure the wake-fields generated in an elliptical

cavity was developed. Utilizing the facts that wake-fields are predominated by

a few lower order modes and the wavelength of the fundamental mode is of

the order of the cavity size, an electrostatic probe with two conducting

spheres can measure the longitudinal and transverse wake-fields of an elliptical

cavity. The sailent advantage of this probe system is deduced from the ex-

perimental result that the voltage amplitude at the oscilloscope is proportional

to the wake-field amplitude. The wake-field is about 5 KV for 3 nC of driving

charge for a cavity used in the Argonne group experiment. Since we can easily

measure a 50 V pulse, which is the expected signal level from the probe for

0.03 nC driving charge of our linac, easily by an oscilloscope, this alleviates

the need that a powerful buncher be installed to a system using a low-current

injector or the need of a system using a witness bunch. This measurement

procedure will simplify greatly the measurement and test system of the wake-

field experiment.
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Task 5

Theoretical Study of a Soft X-Ray Free Electron Laser Scheme

Purpose: to develop a soft x-ray laser

Publications:

1. S. H. Kim and K. W. Chen, Soft x-ray free elec ,on laser using a two

beam elliptical pill-box wake-field cavity, SPIE Vol. 875 (1988)

2. S. 1I. Kii,, Free electron lasing in a longitudinal electric wave, Phys.

Lett. 135A, 39 (1989)

3. S. H. Kim, Stimulated bremsstrahlung of soft x-ray in a two beam

wake-field cavity, Proc. of International Conf. on Phenomena in Ionized Gases

(ICPIG) XIX, Yugoslavia, 10-14 July (1989)

4. S. H. Kim, Free electron lasing in transverse undulating magnetic field,

Phys. Lett. 135A, 44 (1989)

Results

The lasing by stimulated bremsstruhlung of a relativistic dilute electron

beam passing through a spatially periodic longitudinal electrostatic field (static

electric wiggler) or a traveling undulating longitudinal electric field (traveling

electric wiggler) was investigated. We found that the elliptical pillbox cavity is

suitable to generate the traveling wiggler fields. If we inject the lasing electrons

in the opposite direction of the driving beams which excite the wake- fields

along the foci of the elliptic cavity, the lasing electrons are forced to emit

the laser radiation by both the longitudinal and transverse wake-fields. This

scheme is based on the fact that we can produce the longitudinal and

transverse wake-fields whose amplitudes are more than 100 MeV/m in the el-

liptical pillbox cavity. Until the strength of the laser wave arrives that of the

transverse wake-field excited by the driving beam, the transverse motion of the
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lasing electrons is confined by the transverse wake-field, and both stimulated

and unstimulated bremsstrahlung take place similar to the radiation in the con-

ventional magnetic wiggler. It was shown that a laser using a traveling electric

wiggler provides sufficient gain to be used as a coherent radiation source down

to the soft x-ray regime. The gain increases with the inverse of the laser

wavelength, while that of a conventional free electron laser using a transverse

undulating magnetic field operating in the Compton regime decreases with the

laser wavelength. This lasing scheme is entirely new and is quite important for

workers in this field.

Task 6

Development of a laser photocathode for the generation of high current. short

electron bunch

Purpose: To use in the wake-field acceleration and compact accelerator design

study

Publications:

1. K. W. Chen, Y. C. Chae and J. Choi, Development of a laser

photocathode for use in wake-field acceleration and compact accelerator design

studies, SPIE Conf. on Innovative Science and Technology, Los Angeles, CA,

SPIE Vol. 875 (SPIE, Bellingham, WA 1988)

Results

Experimental study of a back-illuminating short-pulse photocathode for a

use as a short, intense electron source has been conducted. Thin films of Cs3Sb

was deposited on the cathode using laser ablation method. The performance

test of the constructed cathode was made with the Q- switched Nd-YAG laser

pulse (532 nm) directed from the rear of the cathode surface. It was observed

12



that a current of 2.5 mA/cm 2 is obtained at 6 KV/cm potential in a modest

vacuum of 10-7 torr. With subsequent improvements and refinements in design,

it was demonstrated that use of this type can be extended to other c mpact

linac designs for commertial applications.

13



III. Personel Participating in the AFOSR Program

Participants of the wake-field research program include: Dr. K. W. Chen,

PI, and Dr. S. H. Kim, senior scientist and graduate students, Mr. J. S. Yang

Y. C. Chae and J. Choi. Other research students involved in this program are

T. Pham and N. Nguyen. Mr. Yang completed his Ph.D. degree in Mechanical

Engineering in August 1990 with the support from this grant. Mr. J. Choi

obtained a M.S. degree in Mechanical Engineering in 1988 and subsequently

moved to the University of Wisconsin to pursue a Ph.D. degree. Mr. Chae

has subsequently received a M.S. degree and has since moved to the University

of Houston. He is currently pursuing his Ph.D. degree at the Argonne National

Laboratory.
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V. Summary of Publications

1. Joulnal Publications

1. J. S. Yang and K. W. Chen, An analytical solution of wake-fields in an

elliptical pillbox cavity, will appear on Particle Accelerators, Vol 23, 1990.

2. S. H. Kim, K. W. Chen and J. S. Yang, Madal analysis of wake-fields and

its application to elliptical pillbox cavity with finite aperture, will appear on

Nov. 1, 1990 issue of J. of Applied Physics.

3. S. H. Kim, Free electron lasing in a longitudinal electric wave, Phys. Lett.

135A, 39 (1989)

4. S. H. Kim, Free electron lasing in transverse undulating magnetic field, Phys.

Lett. 135A, 44 (1989)

5. S. H. Kim and K. W. Chen, An electrostatic probe system for the

measurement of wake-field in a two-beam elliptic pillbox cavity, submitted to

Review of Scientific Instrumentation

2. Conference Publications

1. S. H. Kim, Stimulated bremsstrahlung of soft x-ray in a two beam wake-field

cavity, Proc. of International Conf. on Phenomena in Ionized Gases (ICPIG)

XIX, Yugoslavia, 10-14 July (1989)

2. J. S. Yang and K. W. Chen, Wake potential in a semi-elliptic pillbox cavity,

on Advanced Accelerator Concepts, AIP conference proceedings 193, Lake

Arrowhead, CA 1989.

3. K. W. Chen and S. H. Kim, Wake-field acceleration and compact accelerator

considerations, SPIE Vol. 875 (SPIE, Bellingham, WA 1988), pp. 223-233

4. S. H. Kim and K. W. Chen, Soft x-ray free electron laser using a two

beam elliptical pill-box wake-field cavity, SPIE Vol. 875 (1988)
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5. K. W. Chen, Y. C. Chae and J. Choi, Development of a laser photocathode

for use in wake-field acceleration and compact accelerator design studies, SPIE

Conf. on Innovative Science and Technology, Los Angeles, CA, SPIE Vol. 875

(SPIE, Bellingham, WA 1988)

3. Internal Reports and Publications

1. CAST-88-0013, Status report on UTA Linac installation and testing

2. CAST-89-0810, Wake-fields in a dielectric loaded elliptic waveguide

3. CAST-88-0304, Radiation shielding structure design and radiation safety

adequacy considerations

4. CAST-89-0115, Results of a PC-based wake-field code

4. Thesis Completed

1. J. Choi, M.S. Thesis, "Design and construction of a high current electron

injector utilizing laser back-illuminated photoemission", June 1988, Mechanical

Engineering Department.

2. J. S. Yang, Ph.D. Dissertation, "Wake-field Acceleration of Charged Particles

With an Elliptical Cavity", August 1990, Mechanical Engineering Department.

V. Conclusion

The research on the wake-field acceleration with an emphasis on the use

of elliptical cavities has been conducted. Major progress has been made in the

analysis of the wake-fields in elliptical structures and its application for genera-

tion of laser beams. It was demonstrated that the use of elliptically shaped

wake-field cavity offers promising way for reaching acceleration gradients of a

few hundreds MeV/m, which is suitable for applications such as compact, high

brightness linacs. The elliptic geometry allows us to simplify multi-stage ac-

celerator design and to overcome the low transformer ratio and transverse
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wake-fields problem. We can achieve much higher acceleration gradients by

selecting optimal cavity geometry and beam distribution. With our analytical

method, we can simplify the optimization of the cavity design without time

consuming computational work. To verify our theoretical analyses, we compared

the results with experimental data in circular wake-field cavities obtained by

the Argonne group, and excellent agreement are demonstrated. Furthermore,

it was shown that we can obtain the wake- fields in a circular cavity exactly

from our analytical formula for the wake-fields in an elliptical cavity. Also, the

results of our analytical method were compared with existing numerical code

and very good agreement between these two methods are domenstrated.
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THE ANALYTICAL SOLUTION OF WAKE-FIELDS IN AN
ELLIPTICAL PILLBOX CAVITY

J. S. YANG and K. W. CHEN

Center for Accelerator Science and Technology, The University of Texas at Arlington,
Arlington, TX 76019

(Received June 26. 1990)

The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is
derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical
cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared
with numerical ones.

1. INTRODUCTION

The wake-field produced by a bunch of relativistic charged particles in an elliptical
pillbox cavity is important not only for future high gradient electron accelerators',
but also for a use as an electric wiggler for some proposed free electron laser schemes2 .
The suitability is based on the estimation that the acceleration gradient will exceed
100 MeV/m per /C of driving bunch charge, and on wavelengths of the order of a
few centimeters.

The principle of acceleration by the wake-field generated in a metallic cavity has
been experimentally verified'. Also, other wake-field acceleration schemes using a
plasma medium' or a dielectric-loaded cavity' have been experimentally investigated.
However, these wake-field schemes have not been demonstrated to have significantly
larger acceleration gradient than that in a metallic cavity. Elliptical cavities have
been investigated by several authorsl '2.6"9. It was shown6' 9 that in elliptical cavities
the transformer ratios are rather limited, and that a strong transverse wake-field,
which might lead to beam instabilities, is also excited. However, we can overcome
the low transformer ratio and the transverse deflection problem by using multi-stage
schemes. Although the transformer ratio would not be as high, a wake-field acceler-
ator not based on the impedance transformation principle could be achieved by using
multi-stage schemes with short stages; the driving beam is replaced with a new one
or replenished in energy after each stage. By rotating subsequent groups of cavities,
the overall transverse deflection of the accelerated beam can be minimized.

The wake potential in an elliptical cavity can be obtained either by modal analysis
or by numerically solving Maxwell's equations in the time domain. In the previous
modal analysis7'" , the wake-field is expressed in a Fourier series based on the vector
eigenfunctions of the unit pillbox. For infinitely repeating structures, the problem for



the entire acceleration cavity is reduced to that in a pillbox cavity by using Floquet's
theorem on the periodicity. The modal analysis can be generalized to a cavity of
arbitrary shape when we car, calculate the resonant modes. For a cavity with finite
apertures we should use numerical methods to find resonant modes accurately.
Previously the wake-fields 'rt an elliptic pillbox cavity with finite aperture were
calculated using the numerical code WELL 9, which directly solves Maxwell's equa-
tions in the time domain.

In this article, we do not take into account the aperture effect. The analytic solution
which will be formulated in this article exists and is of interest, even though it is an
approximation for the cavity with beam holes, since we can readily estimate the
maximum energy gain of the accelerated particle. In view of these considerations, we
try to obtain an analytic expression for the resonant modes in an elliptical pillbox
cavity in the limit of vanishing aperture. Using the mode analysis, the longitudinal
and transverse wake potentials are derived in terms of Mathieu functions. It is also
shown that we can derive exactly the same expressions for the wake potentials in a
circular cavity as in Ref. 7 when the ellipse tends to a circle.

2. ELLIPTIC PILLBOX CAVITY

2. 1. Solution of Homogeneous Helmnoltz Equation in an Elliptic Cavity

Consider an elliptic pillbox cavity as shown in Fig. 1. For a cavity of elliptic cross
section, the eigenfunctions can be found in terms of known functions by transforming
the Cartesian coordinates to the confocal elliptic coordinates as shown in Fig. 2. In
these coordinates, boundary conditions on the elliptic cavity are readily satisfied. The

y

--  Driving Beam Path

Accelerated Beam Path

S

d

FIGURE I Elliptic pillbox cavity.
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FIGURE 2 Confocal elliptical ccordinates.

elliptic coordinate variables (, , z) are defined by"°

X = h cosh cos rl,
Y =f h sinh sin q/,()

Z =Z,

where h is the semi-interfocal distance.
The Helmholtz equation is then transformed to

V2'P + 2TF = h + 2 T + - 2 + K= 0. (2)
h2(sinh2  + sin2'.7) P +,- 2j aZ2

Following the method of separation of variables, we seek to find solutions of the form

TF(4, q, z) = f(4)gQ()w(z). (3)

Substituting Eq. (3) into (2) and dividing by T, Eq. (2) is split into three ordinary
differential equations:

f"() - (a - 2q cosh 24)f(0) = 0, (4)

g0q/) + (a - 2q cos 2n)g(q) = 0, (5)

w"(z) + (z)= 0, (6)

where 2q - y2 h2/2, y2  # fI_ , and a is an arbitrary separation constant. The above
Eqs. (4) and (5) are called the Mathieu equations. The solutions of these equations
are the Mathieu functions'0 .



2.2. Resonant Modes of a Cavity

For a closed elliptic pillbox cavity, we corsider the solutions of

(V + y)t'( , 01) = 0 (7)

in the region 0 < < o and 0 < ,t < 2n, wh -re V/ = E. for a TM wave and H, for
a TE wave. Any combination of the product ol' the solution of Eqs. (4) and (5) is also
the solution of Eq. (7). In addition to th- boundary conditions, the following
conditions must be satisfied:

(i) continuity of 41 on the interfocal line,

i0, ?1) = 0(0, -7), (8)

(ii) continuity of gradient of 4 on the interfocal line,

(( ) = - (OW, )) (9)

Among the possible combinations, the only permissible form of the solution which
satisfies above two conditions is

/i = C,,Ce,( , q)ce.(ti, q) + Y S,,Se,( , q)se=('7, q), (10)
M-0 M-1

with the factor exp(j(ot - Pz)) being omitted. Here, Cm and S. are arbitrary
constants. The functions ce=(q, q) and se(Ql, q) are respectively the even and odd type
Mathieu func ons of the first kinds of integral order, and Ce=( , q) and Se=( , q) are
the modified Mathieu functions of the first kinds of integral order. These functions are
given by"°

ce 2 (n, q) = A(2n cos 2ri7, (11)
r-0

se2 + 2(q,q) = F B(0 2+ " sin (2r + 2)q/, (13)
r.= 0

se2 ,+ t(jt, q) B ,'. t sin (2r + 1)iq, (14)
r-o

for n - 0, 1, 2,..., and the coefficients A and B are function of q. Modified Mathieu
functions Ce=n(, q) and Se(4, q) have the same forms as in Eqs. (1 H 14) except r,
sin, and cos are replaced by 4, sinh, and cosh respectively.

We first notice that symmetry of 0( , q) is determined by ce=(P, q) and se,.(q, q).
From Eqs. (11H14) we see that the first term in Eq. (10) is an even function and the
second term is an odd function with respect to '. Therefore, the second term in Eq.
(10) is always zero on t.- median plane (y = 0 plane) where wake potentials are to
be evaluated, and does not contribute to the calculation of the longitudinal wake



potential. For this reason, we only consider the even-type modes of a TM wave,
41 =- Cem( , q)ce.(r, q), for the wake potential calculation.

The boundary (orditions are:

0(, W) = 0. (15)

There remains the co.adition that no tangential component of electric field exists at
the end-plate walls at z 0 and d, which is satisfied if we choose

p p=, ,2,... (16)

where d is the gap distance of the pillbox cavity shown in Fig. 1. From Eq. (15) we have

Ce(c%, q) = 0. (17)

Let q,.. be the nth root of Eq. (17) for mode m. Then we can calculate the resonant
frequencies from the root q... Combining 2q = 72h'/2 and y 2 = K 

2 
_#2, the resonant

frequencies are given by

cO = f4q + (pn)2} "2 (18)

The wavelength of the dominant mode is then given by
rrh rXb ec

0= 1 = / (19)

where e, and xb are, respectively, the eccentricity and semi-major axis of the boundary
ellipse. The ratio 4tot/Xb is plotted against e, in Fig. 3. In this figure, we see that as
e, - 0, i.e., as an ellipse tends to a circle, the ratio approaches 2.61, which is the ratio
of wavelength to the radius, ,/r o = 21r/X01, for the TMo0 o mode of a circular pillbox
cavity of radius ro , where X0o is the first zero of Bessel function Jo.

The field components are given by

E7. Ce.( , q,..)ce,.(q, q.) cos Er-z, (20)
d

Ce',(, q..)ceJ7, q.) sin piz (21)

E _....n Ce,.( , q..)ce'm(I, q,.,.sin -- ,(22)
EDr,,dd

Dd Ce.(, qm.ce', q..) cos d z,(23)
-. nl

H".' =-PJ)Mp 60 Ce'( , q.n)ce,,(r, q..) cos -z, (24)

D.*.d md

H, = 0, (25)
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FIGURE 3 Plot of A-0/xb as a function of eccentricity.

where

4q n cosh 2 i - cos 2q} ./26D.. =-- 2 (26)

The resonant mode patterns for some of the lower-order modes are shown in
Fig. 4.

3. WAKE POTENTIAL CALCULATION

3.1. Longitudinal Wake Potential

Consider the test charge which is traveling through the focus axis of an elliptic pillbox
cavity (t = 0, q = it) and trailing the driving charge Q, which is traveling through
the other focus axis ( = 7 = 0), by a fixed distance s in the z-direction. The delta
function longitudinal wake potential W is defined as the energy gained by unit test
charge. Bane et al. ' obtained the wake potential as an infinite sum

W(s) = 2 kA cos (COA)
- *(2u) cos for s > 0 (27)

A U



(a) (b)

(c) (d)

FIGURE 4 Configuration of resonant modes in an elliptic pillbox cavity. ((a) m = 0, (b) m = 1, (c) m = 2,
(d) m - 3).

where k, is the loss parameter and V, is the voltage induced by a point charge Q.
The stored energy ut is given by

2 f at a. dV = u; ., (28)

where a, is the vector eigenfunction. The vectors r' and r represent, respectively, the
transverse position of the path of the driving charge and that of the test charge. Using
the field components in Eqs. (20H22), the voltage V, becomes

VA(r) = dz exp ( aOZ() , 0, z)

= Cem(O, q..)cem(O, qm.) Jdz exp j(O- cos -- z, (29)fo ( C-:d
VA(r) = dz exp aA,( , ,1, z)

= Ce.(4, qm.)ce.(n, q..) dz exp cos - z, (30)

..... ~~f II d IIII



and further

2C40~),

* - (P)2)2 (. I ( p 1)Cos Wmn,.d ~ (31
C d

where Cm = Cem(c , q,,,, Ce(O, qm, ce,(,I, q,,) cem(O, q.,.
The stored energy u, becomes

UMnp =L 80a-dV
2of

o Ce'( , q,.)Ce2(, q..) cos' dV. (32)

After integration using dV= 1 (cosh 2. - cos 2qj) d4 d1 dz, it is further reduced to
2

_"2
E0oith 2d \--- efou, = 8n Ce(, qm.) x (cosh 2 - Om) d , (33)

mp 8 Ymnft o

where
[ 2z

m = - (l, q.) Cos 27 dq

A (m)'A(m " + A m' A(m) form = 0, 2,4,
0 2 - r 2r+2'

T-0 
(34)

+ A A)) + 2r' 2r+ form = 1, 3, 5,2  + _ An) I A(,)3,1* .
r-O

and A4,') are the coefficients for the series representation of the Mathieu function
ce,.(q, q) given in Eqs. (11) and t12).

Substituting Eq. (31) and (33) into (27), the delta function longitudinal wake
potential on the accelerated beam path ( = 0, P7 = iz) becomes

2 ".( -- (_ I)p COS (Cn) (35)W'(S) ~~ =,,, ,, nI Nm ( )

where ep = - for p = 0 and I for p 6 0. Nn and Cn. in Eq. (35) are given by

q oN, , = foCe.( , q,..) x (cosh 2 - E m) d , -(36)



Cm= (Cem(O, q..))2 cem(O, q..)cem( 7t , q.,n)

A0 form= ,...

' (37)

-- A(M) t) form = 1, 3, 5....

For a circular pillbox cavity, W is expressed analytically 7"- in the form of

W(s)=4 P ( cosl-Ps), (38)
eo d Y- YZ -o Z.nJ't(X**)n Io P=O--]

where Z,,, is the nth zero of the Bessel function JO.
When the boundary ellipse tends to a circle of radius ro , the confocal hyperbolae

in Fig. 2 become radii of the circle r, and the confocal ellipses become concentnc

circles of that radius. In this case, Eq. (35) is reduced exactly to Eq. (38). We can

easily show this by using the limiting properties of Mathieu functions. The Mathieu

functions cem(, q) and Cem( , q) degenerate into the following forms'" as h - 0

and x, -. 0 while keeping the product h cosh -* r:

q-, as h-.O, (39)

ci/ q ~form =0 (41)
( cos mo, form $ 0

Ce.(, q) -* p.J.(yr), (41)

A(') - 0 (except A(-' -- 1 for m # 0, and Ao° 
- i1 (42)

where p. is a constant multiplier, and Jm(X) is the Bessel function of the first kind.

Then, Eq. (37) becomes

C.,. = (Ce.(0, q,))2 ce,,(O, q,.J)ce,(n, q..)

- (PmJm(0) cos m4)2 = 0, for m 0 0

-- (poJo(O))2/2 - p2/2, for m = 0. (43)

It is apparent from Eq. (43) that contributions from m : 0 modes become zero

as expected as an ellipse tends to a circle. The denominator in Eq. (35) for m = 0
becomes

q. . fCe-(, q.,) cosh 2 d - f J~J(yr)r dr

-4 * x2 J (x.*), (44)

where 7 = Z,,ro. Substituting Eqs. (43) and (44) into (35), we can get exactly the

same expression for the wake potenual in the circular pillbox cavity as in Eq. (38).



No closed expression is known for the infinite sum in Eqs. (35) and (38), and they
must be evaluated numerically.

If the driving bunch has a Gaussian charge distribution

;.(z) = I exp (45)

then the bunch wake potential U, becomes

Un(s) = ;.(z)W(s - z) dz

I- cX.(1 -C(.-.l ), cos - np -

tdam-on-i Zf  f
n p=O

x f_ exp(---z cos2) S C z dz. (46)

When s > a, the bunch wake potential becomes

U'(s) = i Y-i exp--" a2

0 7rd M=o a=1 c
( o,,d\

x - ) CO COMs (47)

qnwN,.. c

From this equation, we can see that contributions from the modes whose resonant
wavelengths are much shorter than the bunch length 2a become negligible. For the
dominant mode. Eq. (47) can be conveniently written as

U74 (1 - 122(2da/A) 2 Id 2's
2o"deSo e- 1- cos -- cos -- , (8

E00d2NA A

where S = 7nxbyb is the cross sectional area of the cavity, A is the wavelength of
dominant mode, and e, is the eccentricity of the boundary ellipse. From Eq. (48), we
see that the wake potential scales as co 2 and S-'.

3.2. Transverse Wake Potential

From the Panofsky-Wenzel theorem, the transverse wake potential is related to the
longitudinal wake potential by

-W-(s) - V1 WW(s). (49)
as

From this relation we can write the transverse delta function wake potential as7

W -(s) CV(r)VVA(r) si . (50)
a 2 uAwA)o



On the accelerating beam path ( = 0, ,/ it), we have

Vl(r)Vt VA(r) = Ce(O, q)ce(O, qjce,.(it, qA)V. Cem(O, q;)

x z exp - cos I. (51)

Since the driving charge and test charge are assumed to pass through ea -h focus
axis, only 4-component of the transverse wake potential exists at the fo i of the
elliptic cavity. Thus,

V. Ce=(O, q,) = q lim - CeI(i, qA)1-o h sinh7 Fqd

- E (2r)2 A ', for n = 0, 2, 4,...
h r=O(52)

|- Z(2r + 1)2 A", 1, form = 1, 2, 5,...

Therefore, the transverse delta function wake potential is given by

W 2(s) = - 1 s sin (-.Y (53)
so ad k acojqjINA(

where

Ca = Cem(O, q=,)ce,(O, q=.)ce,.(r, q=.)Vt Ce(0, q..)

(co- 2r , (2r)2 A(2-)form =0,2,4,

-- ( Go (54)
--[ A2m) , E (2r + 1)2 . ' o form = 1,3,5,...
2 + L =r

For the driving bunch of a Gaussian charge distribution, the transverse bunch
wake potential becomes

U.L(s) = f z)WLjs - z) dz

I I) c o m.pd 'c.2/ o 0 ,0ac. c
801triO" m-

coCd MI 0 O (OPn m n~ d

x p 2) sin c--- (s - z) dz. (55)
2al c



4. NUMERICAL EXAMPLES AND DISCUSSIONS

The longitudinal and transverse wake potentials in an elliptic pillbox cavity are
calculated by using Eqs. (46) and (55). We choose the same cavity dimensions and
bunch length as in Ref. 9 to compare the results. The cavity dimensions and beam
parameter are:

major axis 2xb = 10 cm,

minor axis 2 yb = 6 cm,
gap distanced = 2 cm,

a = 5 mm.

The wavelength, ,m=p, and the loss parameters of a Gaussian bunch, k(o), for
some of lower-order resonant modes are tabulated in Table I, while in Table II the

TABLE I
Wavelength ;.... and Loss Parameter k.,ga) of an Elliptical Pillbox Cavity (Xb = 5 Cm. Yb = 3 cm.

d = 2 cm, a = 5 mm)

m q., ;.oe ;-1et k.'rot k .1(a k.°' 1m l{' 2(a)}

(cm) (cm) (cm) (V/pC) (V/pC) (V/pC)

0 1.7353 9.5394 3.6883 1.9574 3.2345 x 10- 2  1.6366 x 10- 3  6.8638 x 10'
1 3.3522 6.8634 3.4559 1.9201 1.2629 x 10' 1.2993 x 10- 2 5.7848 x 10'
2 5.6530 5.2853 3.1895 1.8705 2.2821 x 10' 4.3203 x 10- 2  2.0914 x 10- 3

3 8.6577 4.2708 2.9194 1.8112 2.5776 x 10-' 8.4739 x 10' 4.5668 x 10- 3

4 12.3689 3.5731 2.6648 1.7452 2.0007 x 10' 1.1262 x 10' 6.9154 x 10- 3

5 16.7792 3.0678 2.4343 1.6754 1.1060 x 10' 1.0854 x 10- 1 7.7733 x 10'

m q, ;.Ze ;-=It ;'-,2 k.2,(c) k.,1(cr) k.a2(a)

(cm) (cm) (cm) (V/pC) (V/pC) (V/pC)

0 11.3563 3.7289 2.7276 1.7625 2.8997 x 10-6 1.4188 x 10- 6  8.4089 x 10='
I 14.6278 3.2856 2.5389 1.7084 1.9755 x 10- 1 1.4828 x 10- s  9.8517 x 10'
2 18.4878 2.9225 2.3598 1.6505 6.1309 x 10- 1 7.4392 x 10- 5 5.6547 x 10- 6

3 22.9665 2.6221 2.1930 1.5902 1.0984 x 10' 2.3849 x 10' 2.1224 x 10- 1
4 28.0957 2.3708 2.0395 1.5287 1.1261 x 10' 5.4398 x 10' 5.8271 x 10-

5 33.9196 2.1577 1.8990 1.4668 4.5322 x 10- 9.1853 x 10' 1.2279 x 10- 5

TABLE I
Wavelength ;.. and Loss Parameter k.,(a) of a Circular Pillbox Cavity (ro - 3.873 cm, d = 2 cm. a - 5

mm)

n . 2 ;.e*t ;0.2 koo(oa) ke.1(a) ko.,(V)

(cm) (cm) (cm) (V/pC) (V/pC) (V/pC)

I 2.405 10.118 3.720 1.962 7.235 x 10- 1 3.212 x 10- 1 1.338 x 10- 3

2 5.520 4.408 2.962 1.821 6.031 x 10' 1.818 x 10-  9.614 x 10-
3

3 8.654 2.812 2.300 1.630 1.162 x 10- 1 1.700 x 10' 1.361 x 10- '
4 11.792 2.064 1.834 1.436 4.419 x 10' 4.693 x 10-2 7.128 x 10- 3

5 14.931 1.630 1.509 1.263 3.944 x 10- 3 2.710 x 10-' 1.458 x 10- 1



same information is given for the circular pillbox cavity that has the same cross
sectional area (r0 = ' --bYb).

Figures 5 and 6 are, respectively, the curves of the longitudinal wake potential on
the accelerated beam path and that on the driving beam path, in which different
number of modes are included (solid lines for 24 modes and broken lines for 12
modes). From these figures, we see that the mode summation converges rapidly,
indicating clearly that the wake potential is dominated by a few lower modes. It was
pointed out that the wake potential inside the bunch is difficult to calculate because
of the slow convergence of mode summation'. However, it is not clear in these figures
whether the series converges rather slowly for positions inside the driving bunch.

On the accelerated beam path, we obtained about 125 MeV/m/sC acceleration
gradient, while about 110 MeV/m/tuC was obtained by Y. Chin9 (see Fig. 7). The
elliptical cavity in this example calculation does not represent the maximum accelera-
tion gradient that can be achieved. As discussed earlier, the longitudinal wake
potential is proportional to the number of particles in the driving bunch and inversely
proportional to the cross sectional area of the cavity. Also, it is dependent on the
distribution of charges within a bunch and the eccentricity of a cavity. By choosing
appropriate parameters, one can achieve an even-higher acceleration gradient.

The transverse wake potentials on the accelerated beam path and driving beam
path are shown in Figs. 8 and 9 by the broken lines. The corresponding longitudinal

3.5
-24 modes
---- 12 modes

-3.6 --

-0.08 0.06 0.16 0.25 0.35

Delay s (meter)
FIGURE 5 Plot of the longitudinal wake potential on the accelerated beam path (solid line: 24 modes
sum; broken line: 12 modes sum).
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FIGURE 7 Plot of normalized wake potentials on the accelerated beam path (results of Ref. 9).
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FIGURE 9 Plot of normalized wake potentials on the driving beam path (solid line: longitudinal wake
potential; broken line: transverse wake potentia).
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FIGURE 10 Plot of normalized wake potentials on the driving beam path (results of Ref. 9).

wake potentials are plotted together in order to see if we can find the positions, such
as the point A in Fig. 8, at which the accelerating potential is large while the transverse
potential is small. The charge to be accelerated should be positioned at such a point
in order to avoid large transverse deflection during acceleration. Figures 7 and 10
are, respectively, the curves for the longitudinal and transverse wake potentials on
the accelerated beam path and driving beam path calculated by the numerical code
WELL9 . In these calculations, the effect of beam apertures of 0.5 cm radius was
considered. Comparing these analytical results (Figures 8 and 9) with numerical
method (Figures 7 and 10), we found very good agreement in both magnitudes and
frequencies. However, magnitude of the longitudinal and transverse wake potentials
are higher for this analytical method which does not include the beam aperture effects.
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The potential of the wake .field produced by a bunch of relativistic charged particles passing
through a pill-box cavity is expressed by using Floquet's theorem, and an obvious requirement
that the energy gain over dl acceleration cavity of many pill boxes must be proportional to the
number of pill boxes, based on the previous modal approach (BWW theory). It is found that
the wake-field is consisted of two classes of modes: the longitudinal modes which are
independent of the aperture and the pill-box gap, the hybrid (pill-box) modes which are
dependent of the pill-box gap. The wake field is predominated by the fundamental longitudinal
mode whose wavelength is on the order of the effective diameter of the cavity, and its
magnitude is inversely proportional to the cross sectional area of the cavity for practical
cavities with small apertures. Both longitudinal and transverse wake-fields due to the
longitudinal modes in an elliptical-pill box cavity are expressed analytically in a closed series
form by solving exactly the longitudinal eigenmoderequation in the elliptical cylindrical
coordinates in terms of Mathieu functions. It is found that both longitudinal and transverse
wake-fields whose amplitudes per driving charge are greater than 100 MV/m/puC can be
generated in an elliptical cavity.

I. INTRODUCTION Fourier series based on the scalar and vector eigenmode
functions of the entire cavity. By the law of causality, Bane et

Even though a charged particle in uniform motion on a aL.7 expressed the part of the Fourier series expanded on the
straight line in free space of a pill-box cavity does not radiate scalar eigenmode functions in terms of the part on the vector
(or does not produce "acceleration fields"), it can produce eigenmode functions. Thus the wake field can be expressed
"velocity field," which are independent of acceleration, in a Fourier series based on only the vector eigenmo.e func-
These velocity fields induce currents at the metallic surface tions so that the general formulation of the wake ield be-
of cylinder and disk plates, which in turn produce the elec- come much tractable. The synchronism between particle
tric and magnetic field, commonly called the wake field, be- and mode was used to formulate implicitly the Fourier coef-
hind the trajectory of the charged particle. ficients in a Fourier series expansion of the wake field. 7 So

The wake fields produced by a bunch of relativistic far, from the synchronism, only the acceleration gradient in
charged particles in pill-box cavities are important not only a cavity in the limit of vanishing aperture has been explicitly
for future high-current compact electron accelerators,' but calculated, and it was shown explicitly to be proportional to
also for a use as an electric wiggler for 6 proposed free elec- the inverse square of the pill-box gap.' This inverse square
tron laser scheme.2 The suitability is based on an estimate law is appropriate when the gap distance p is much longer
that the wake electric field exceeds 100 MV/m per pC driv- than the thickness of the disks. When p -0, the pill-box cav-
ing bunch charge, and the wavelength is on the order of a few ity is same as a plain cylinder cavity with inner radius equal
centimeters. The principle of acceleration by the wake field to the aperture radius (i.e., the inner radius of the disks).
in metallic cavities was experimentally verified.' Also, other Thus, the wake field gradient approaches to the zero asp-0.
wake fields in either plasma medium or a dielectric cavity' In. the above modal analysis, the disks are assumed to be
have been experimentally investigated. The energy gain in infinitely thin so that the inverse square law holds for any p.
the recent plasma wake experiment' is about 4 MeV whereas The principle of the modal analysis for a physical quan-
those in the previous wake field experiments3 "4"- are on the tity is to determine the Fourier coefficients based on the
order of 100 keY. complete basis functions. Since the basis functions are corn-

In the rf acceleration cavity, the current source is out- plete, the Fourier coefficients are uniquely determined.
side the ca .ity, and the phase velocity of an electromagnetic Therefore, once the Fourier coefficients are determined to
wave is determined entirely by the cavity structure. In con- satisf" some proper conditions pertinent to the physical
trast, the wake field is produced by the driving charge. quantity, there are no other proper Fourier coefficients than
Therefore, the phase velocities of the wake field modes are these coefficients. In this article, using an obvious attribute
determined by both the velocity of the driving charge which of the acceleration gradient in the periodic cavity, we show
produce the wake field, and the cavity structure. the formulation to d -termine the Fourier coefficients for any

The experiments3 showed the predominance by the fun- pill-box cavity of arbitrary aperture. Using the formulation,
damental mode, indicating that the modal analysis i.)pro- the wake-potential in a cavity of vanishing aperture is ana-
priate tool for the evaluation of th wake field. In e pre- lytically expressed, and the result is exactly the same as the
vious modal analysis,' the wakefield is expanded in a! result from the synchronism.

' . l I II I II I I ' I



To apply the modal analysis, we first find the basis func- field whose amplitude and wavelength are on the order of
tions (or the mode functions). By using Floquet's theorem 100 MV/m and 5 cm, respectively, is equivalent to a magnet-
on the periodicity, the problem all over the acceleration cay- ic wiggler on the order of 3 kG and 5 cm, respectively, which
ity can be reduced to that in a unit pill box. Since the mode i are about the standard values for the magnetic wigglers used
functions satisfy the elliptic partial differential equations, we I in the present free electron lasers. Therefore, even if we just
should specify boundary conditions all over the enclosing consider the transverse wake-field, the elliptic wake-field
surface to determine mode functions uniquely. On the metal- cavity is superior to the conventional magnetic wiggler if we
lic surface, the infinite conductivity condition can be as- can produce the transverse wake fi, .Js whose amplitudes are
signeG a. the pertinent boundary condition as usual. How- more than 100 MV/m.
ever, so fir the problem as to what is the boundary condition If we inject an electron beam in the direction of the Ion-
on apert ire has not been investigated; the previous modal gitudinal electric wiggler, the transverse motions of the elec-
analysis s applied to the cavity in the limit of vanishing aper- trons are not bounded by the electric field, which contrasts
ture, wh.h does not have such problem, and the numerical with the transverse motions of the electrons in the free elec-
methodt which solve directly the Maxwell equations and tron laser using a magnetic wiggler. Also, the longitudinal
boundavy conditions all over the entire cavity (not the unit motions of the electrons are not bounded by the longitudinal
pill-box ) in the time- and space-mesh domain, e.g., the TBCI electric wiggler if the initial kinetic energies are sufficiently
and T3 code, have been used for the cavities with nonzero large which is the usual case in any free electron laser. Free
aperture.' 9 We show here how should the boundary condi- electron lasing by the electrons whose transverse and longi-
tion on aperture be assigned by considering the parity and tudinal motions are not bound by the wiggler does not re-
the continuity at the aperture. Even though the modal analy- quires a transverse current produced by the wiggler along.-
sis, in principle, cannot take into account the effect of large The transverse motion in the longitudinal electric wiggler is
aperture, the specif,.ation of the boundary condition is still primarily governed by the incident electromagnetic wave,
ofacademic interest. For large apertures, we should use oth- and the incident laser wave is the major field to drive the
er methods.'" source current with the help from the longitudinal electric

As is mentioned, one important application of the wake wave. Unlike transversely-bound FELs, stimulated emission
field in a pill-box cavity other than the acceleration is to use in the longitudinal electric wiggler occurs as a two-quantum
the wake field as a wiggler field for a free electron laser. For Stark emission' "' in which the electron make the transi-
this application, the cavity should be a two-beam configura- tions from a free stat va vi fiui Ii state';"The two-quan-
tion such as an elliptic cavity2 or an annular circular cavity' tum Stark emission by the bound electrons are used as a
so that the lasing electrons can be injected in the opposite diagnostic means in plasma spectroscopy. By this two-quan-
direction of the driving charge to be wiggled by the wake- I tum Stark emission, a light is emitted in the same direction as
field produced by the driving charge. Being an axi-symmet- the applied electric field by either stimulated emission or
ric configuration, the annular cavity cannot have the electric spontaneous emission. It had been theoretically shown that
field in the transverse direction (i.e., the direction perpen- the shorter the wavelength of the free electron laser which
dicular to the cavity axis) along the cavity axis ("transverse we want to create, the more advantageous is the longitudinal
wake field"). Therefore, as far as free electron lasing is con- electric wiggler compared with the transverse magnetic
cerned, the annular pill-box cavity is similar to the usual f wiggler.2

acceleration cavity in which the electric field undulating The emission in the so-called Smith-Purcell laser'" is a
along the cavity axis can be routinely made more than 10 spontaneous emission in both transverse and longitudinal
MeV/_m. The rfcavity cannot support both a TM mode of wake fields generated by non-relativistic electron bunches
the same wavelength'which ias ai-electric field in the trans- when they pass over a ruled grating, which acts similarly as
verse direction. Since the wake-field is produced by the driv- the pill box. Since the electrons are non-relativistic in this
ing charge moving inside the cavity as is already mentioned, laser, they can experience the ripple of the wake field which
the elliptic wake-field cavity have both the longitudinal elec- they produce, We can guess that the electrons experience
tric field and the transverse electric field of the same wave- :eitraordinar))lar e electric fields since the gap distance is
length. If we inject the lasing electrons in the opposite direc- extremely small in the rulelgrating. , L , I /
tion along the path passing through the foci of the elliptic Previously, the wake fields in Aneliptic pill-box cavity /
disks on the other side of the foci through which the driving was calculated by solving directly the Maxwell equations
charge is passing, the lasing electrons are forced to emit the and boundary conditions over the entire cavity in the time-
laser radiation by both the longitudinal wake-field and the and space-mesh points.' The advantage of the direct solution
transverse wake-field. Until the field-strength of laser wave of the Maxwell equations is that the aperture effect can be
arrives that of the transverse wake-field ("weak laser re- taken into account. However, the direct solution requires a
gime"), the transverse motions of the electrons are still con- very large number of numerical processing. In contrast to
fined by the transverse wake-field field. Similar to the pres- the direct solution, any modal analysis, in principle, cannot
ent free electron lasing in the magnetic wiggler, both take into account properly the aperture effect when the aper-
stimulated bremssrahlung and unstimulated bremsstrah- ture is large. However, the experiment showed that the pre-
lung by the transversely bound electrons requires the trans- dominance of the wake field by the fundamental mode even
verse current produced by the transverse wake-field alon; for a cavity of considerably large aperture,' indicating that a
and take place at the same wavelengths. 2 A transverse wake modal analysis can render a reasonably good approximate

a take plc I the s w



resulrOrnless high accuracy is demanded. Both longitudinal a, (z + np) = exp(infl,, )a,, (z), (5)
and transverse wake fields due to the longitudinal modes can where P. is an arbitrary constant. By means of Eq. (5), we
be calculated to any degree of precision since we can express have
these fields analytically in closed series forms. This expres- L

sion is ossible by solving analytically the longitudinal eigen- a.. (z) cxp(iw. zlc)dz = a.,()exp(iw)z/c)dz
modefequation in the elliptical cylindrical coordinates in I IpR, d
terms of Mathieu functions 4 as will be shown in this article. X exp [i(3, + o),p/c) n], (6)

94"~t where no= L/lp-1.
II. THE LONGITUDINAL WAKE POTENTIAL 0

Even though any value offl. satisfies the geometric con-
For clarity, let us consider a wake-field consisti'ig of a 1 dition that the cavity is a periodic structure, only a particular

very large number of elliptic pill boxes. A point cArge Q / value satisfies other physical requirements. An obvious re-
passes through oneQhe fci of the dllisks b-J quirenient is that the energy gain over the entire cavity,
speed c. Let the tra Lt coorthese ceilers be W (sis proportional to L (or the number of the pill boxes).
r, = (x0,0) and - xo,0). The delta-function longitudinal To satisfy this requirement, we find from Eq. (6) that #,,
wake potential W, is defined as the energy gained by a unit i must be given by
negative point charge with a velocity c traveling in the path (7)
passing through the other elliptic foci, at a distances in the z
direction behind the accelerating point charge Q. Substituting Eq. (7) into Eq. (6) and combining the

The pill-box cavity is a periodic structure, the wake field resulting equation with Eq. (1), we derive the longitudinal
in this cavity should be very amenable to a modal analysis. wake potential (or the acceleration gradient) as
However, since the wake fie) i is consisted of both electro- W1 4 rQ
magnetic (vector) and electrostatic (scalar) fields, the com- .. - X V* (x0,0.A0 ) V, , - xo,0,A )cos(s/A,,), (8)
plete basis functions for the Fourier series expansion should L p-

include both scalar and vector eigenmode functions. A trac- where
table analysis of the Fourier analysis (or modal analysis) Vd
based on these two different classes of basis functions had V, (x,y,2 0 ) J aV (xy,z)exp(iz/A, )dz. (9)
been nearly impossible. This difficulty is resolved by Bane et
at. They found the relationship between the scalar wake Here, all distances such as z and A. are measured in units of
field and the vector wake field, which is arisen by the causal- the pill-box gapp, and a" = c a,, where ca is a constant such
ity. Accordingly, imposing the causality and using Max- that

well's equations, they7 (BWW theory) first obtained -.

W (s) = 41rQ. aI [z)exp(iw z/c)dz z -" (1)f ava a ' d3r= a '  yr (10)

where a i the normalized vctor eigenfunctions given by where Vdenotes the space in the pill-box. Equation (8) is a
ther followingequorati d beo ryegivenby similar form of the Coulomb law in that the acceleration is

inversely proportional to the square of a distance, p.

718 If the driving i inch has a Gaussian distribution*~,,+----a. =0 (2)
G c g(z) = (21r) - 1/2exp( - /2 2 )/o,

and the wake potential for s o is given by

Va. =0 (3) W,(s) 4frQ- V* ( x,OA., ) V * ( OA
everywhere, and L p- X

a. Xh =0 (4) X exp(-o1/2A2 )cos(s/ ). (1)

on the surface of the metallic enclosure of the accelerator From Eq. ( 11), we find that the modes whose wavelengths
cavity where h is the normal vector of the surface. are much shorter than the length of the Gaussian driving

From this point, the wake potentials is formulated by bunch, 2o, do not contribute significantly to the wake field,
using an obvious attribute of the periodic structure which and the shorter the wavelength of a mode, the smaller is the
the previous BWW theory7 has not used. Also, the math- contribution to the wake-field from this mode.
ematical treatment is different from that in the BWW theo-
ry. .

; ( From this point, the wake potentials is formulated by Ill. CLASSIFICATION OF WAKE MODES AND

using an obvious attribute of the periodic structure which BOUNDARY CONDITIONS

the previous BWW theory7 has not used. Also, the math- Forbrevity, we drop thesuperscriptp which denotes the
ematical treatment is different from that in the BWW theo- pill-box eigenfunction unless there is a chance of confusion,
-. -- and choose the origin of the pill-box coordinates at the center

Since the acceleration cavity is a repetitive structure of the pill-box. Then, the pill-box vector eigenfunctions
with period p, a. (z) is required by Floquet's periodicity a = a + a) satisfy the following equations and boundary
theorem to satisfy conditions:



V23a + al A 2 = 0, (12) f(r) =0, (22)

Va, + a,/A 2 = 0, (13) on the periphery of the cross section, and

(14) 2r.=1, (23)

in the pill box where S is the cross section of the pill box. These longitudinal
a1 =0 (15) modes are independent on the apertures, and their wave-n , t 0 dlengths are determined only by the cross section.

on the disk plates at z = p12,

a, X = 0, (16)
IV. WAKE POTENTIAL IN A CIRCULAR PILL-BOXa, =0 (1) CAVITY

on the peripher' of the cri ss section (the Fide surface of the The modal analysis presumes the periodicity of the ac-
cylinder). celeration cavity, and thus neglects the velocity field directly

From Eqs. (14) and 15), we should impose arrived at the accelerated charge compared to the electric
and magnetic field produced by the currents, which are in-

a, = 0 (18) duced at the surface of the disk plates and the cylinder sur-
I face by the velocity field. This assumption can be approxi-

on the disk plates at z = ± p/ 2 . mately met when the aperture is much smaller compared to
We must impose a condition that a and its derivatives the cross section of the pill box for practical lengths of the

are continuous functions of z as z crosses an aperture to the cavity. Therefore, the modal analysis, in principle, renders
next adjacent pill box. more accurate values as the aperture becomes smaller, and

Since a should satisfy Eqs. ( 12) and (13), and the pill should not be applied to the limit of no disks. The experimen-
box is symmetric with respect to the reflection about the tal results3 showed that the wake-field is predominated by
center plane (z = 0) of the pill box, a. must be either sym- the fundamental longitudinal mode even when the ratio of
metric (even parity with respect to z) or anti-symmeiric the aperture radius (r,) to the cavity radius (R,) is consider-
(odd parity with respect to z). However, because of Eq. ably large (rIR=I for cavity I in the experiment). There-
(14), a, and a. must have different parities (the pair of ei- fore, we can take the wake-field in the limit of vanishing
ther a, and os1 /67z or a, and 3a, /z should have the same aperture as a good approximation of the wake field for most
parity). practical cavities whose aperture radii are not greater than

We need only to prescribe the mode functions in the of the cavity radius.
region O<z<p/ ,The modes can be classified into following For a circular pill box with finite aperture radius,
classes. a1  a," and Eq. (16) is automatically satisfied for this pill

(i) The odd hybrid modes: These modes are dependent box.

on the pill-box gap and aperture, and their a, have the odd Since in the cylindrical coordinate system, Eqs. (12)
parity (consequently, Va,/,7z must have the odd parity). and (13) are written as
Accordingly, and . 24) an

aa,,,,,dr
2  r dr P & A 2

dd =0, ('9)a v z 9 2a, 1as, a 2a, a,

at z = 0 and on the aperture at z p/2. d;- + T _& +=

(ii) The even hybrid modes: These modes are dependent and a, and a. are finite -t r = 0, we have

on the pill-box gap, but independen* of the aperture. Their a, da, aa,
and oda,/z have the odd parity. Equations (15), (18), and - = , a,= 0, - = 0 (26)

the continuity of the odd functions at the aperture are com-

bined to at r = 0.
Further, Eqs. (24) and (14) are combined a single sec-

0O, = 0 (20) ond-order differential equation with respect to z:
aly = ca,0 a, (200

+,=_ (27)
atz=Oandz=p/2. -Z

2  A 2 &7r

(iii) The pure longitudinal (a,= 0) modes: The wave- For con cnience, we will omit the superscripts "even" and
lengths of these modes are completely independent of both "odd", and the subscript "hyb", where there will be no possi-
the pill-box gap and the aperture. From the fact that a, = 0 ble charge of confusion.
satisfies Eq. (12) for any A, Eq. (15), and Eq. (16),
a,,,s =f(r, )! are the eigenmode if

VfAr)+f-e0, (21)ld gradient from all even hybrid modes

A" 2 Solving Eq. (25) with boundary conditions
inside in the cross section a, (R,z) = 0 [Eq. (17)],.a, (0,z)/dr = 0 [ Eq. (26) 1, and



da(rO) a,(rp/2) da, (rO) da,(r,p/2)= =0 = 0, = 0, for 0<r<r,
az dz dz az

[Eq. (20)], we obtain a,(r,p/2) = 0 for ro<r<R o,
a,(rz) =AJo(v,r)cos(vz), (28) a,(0,z)

a,(O,z) 0, (34)where J. ( ) is Bessel function of order n, v, = g,/R, with dr
4', "eing the nth root of J(4') = 0, v, = 2nlT/p with

= 1,2,3,..., and A is the normalization constant to be deter- We cai solve these equations only by the numerical meth-
mined later. .ods.'" The result from the numerical methods is not impor-

Substituting Eq. (28) into Eq. (27), and solving the tant. The reason is as follows. First, the modal analysis does
resulting equation with boundary condition a,(rO) = O, not take ,nto account properly the aperture effect as men-
which is derived from a, being odd for z, a, (0,z) = 0, 1 tioned before. Therefore, the wake field gradient from all
da, (Oz)/dr= 0 [Eq. (26) ], and a, (r,p/2) = 0 [Eq. (20) 1, odd hybrid modes by means of an modal analysis is, in prin-
we obtain ciple, appropriate only for small apertures where an analyti-

cal good estimate is readily available. Second, we can readily
a,(rz) = - A(v,/v,)J,(v,r)sin(vz). (29) find tha the wake field gradient from all odd hybrid modes

from the above equations is anyhow negligible compared to
From Eqs. (28), (29), and (10), we find the normaliza- that from all longitudinal modes for most practical cavities.

tion constant as In the limit of vanishing aperture (i.e., r,-.0), the boundary

condition at z = p/2 is now/2 1 VZ
A = 3 1, (30)

r R1, ( ,,) V,,.,, da. (r,p/2 )
where v.,_ = [(4,/Ro) 2 + (tMrT/p) 211/ 2. z 0, a,(rp/2) =0. (35)

Combining Eqs. (8), (9), (28), and (30), we find that
the wake field gradient from all even hybrid modes is given Then, the analytical solution for the wake-potential from the
by odd hybrid modes is given by

W'hb(S) 1 6Q~ Z.1Y (s) 16Q
nMeven L od n-Imdd

m>O 'n>O

S[ - ( - cos(V.,p)]cos(v",_s) 'Cos- - .lCos(V,,ms)
j2 

2

(31) (36)
In the limit of no disks (i.e., ro- Ro), the boundary con-

dition at z = p12 is written as
B. Wake-field gradient from all longitudinal modes 43a, (r,p/2)

The calculation of the longitudinal modes from Eqs. at(r,p/2)=, z =0. (37)
(21) to (23) is elementary. We find that the wake field gra- Then, the wake-field gradient from all odd hybrid modes is
dient from all longitudinal modes is given by given by

W,(s) _ 8Q -cos(v,,.op)]cos(v,,.oS) ,,-' s.
L -p-Tj g2 z.,yb (S) 6

(32) L n I .even

m>O

[ 1 - ( - 1 )'"cos(v, ,,p) ]cos(v,,..,s)

C. Wake-field gradient from all odd hybrid modes (38)
For rmu0, # st satisfy Eq. (25) and the bound- (38)

ary conditions This wake-field gradient in the limit of no disks has no ap-
a, (rO) = 0, a, (R,.z) = 0, propriate physical meaning. Only the magnitude of this field

can be used only a crude estimate of the component of the
a, (r,p/ 2 ) - 0 for 0<r<ro, wakefield gradient which depends on the aperture.
da, (r~p2) Since ,Qhe eigenmodes of the odd hybrid modes is in the

dz =0 for r 0<(r<Ru, range between the eigenmode in the limit vanishing aperture
and that in the limit of no-disks, we find the largest eigenval-

da, (Oz) =0, (33) ue (A) of the odd hybrid modes is about p/r.
3r I The waketpotential from all modes ini the limit of van-

and a, should be determined by Eq. (27) and the boundary ishing aperture is given, by adding Eqs. (31), (32), and
conditions (36), as



W, (s) 8Q - - l) m cOs(v.,P)] from the longitudinal modes clearly shows the predomi-
L . .J g () ;nance by the fundamental longitudinal mode.

In Fig. 2, the theoretical energy increments over the to-
X cos(v,,.,,,s). (39) tal acceleration length of a cavity with the same cavity geom-

This equation is the exactly same as Eq. (8) of Ref. 8 which etry of cavity I used in the experiment3 are drawn for both a
is derived from the synchronism between the accelerated driving charge having the length which makes the theoreti-
particle and the wake-field modes. cal curve fit best the experimental one (curve a), and an-

From the above equations, we find that the largest other driving charge having the same length as the experi-
eigenvalue of the longitudinal mode is 2-Ro/,=2.6Ro, mental one (curve b). The contribution from all hybrid
while the largest eigenvalue of the hybrid mcdes is about modes is not considered since it is theoretically negligible.
p/ir. This guarantees that the wake-field from all hybrid Even though we do not see so remarkable predominance of
modes are small compared to those from the longitudinal the fundamental mode in curve b as in the experimental re-
modes for most practical cases. Further, if'Ro'a)0.26, we suit. Therefore, we can conjecture that either the bunch
have length was not measured accurately in the experiment, or the

aperture effect, which will be considerably large in the ex-W, (S) 15Q .1
exp( - 2.89o/R 0 )cos(2.4s/R 0 ), (40) perimental case where ro/R,0 -- , suppresses more strongly

0 1 high-modes than the fundamental mode or the finite con-
where Q, Ro, and s are in Gaussian units. ductivity. The latter reason is more probable since the result

To demonstrate the above features of the modal analy- from the TBCI code, which can calculate accurately the
sis, the wake potentials in a cavity of R, = 10, r, = 3, o = 4 wake field for any aperture, is in excellent agreement with
are calculated. In Fig. 1, both the wake potential from the the experimental data.
nine most dominant longitudinal modes and the one from
the nine most dominant even hybrid modes, expressed by
Eqs. (25) and (26) are drawn as the functions ofs. The wake• . .. # . V. WAKE FIELDS IN AN ELLIPTIC PILL-BOX CAVITY
potential from the nine odd hybrid modes,computed numeri-
cally by solving Eqs. (13), (24), and (25) by means of the A. The formula of the transverse wake potential

finite difference method. The largest eigenvalues of the Ion- Consider again the exciting charge Q traveling the one
I gitudinal modes, even hybrid modes, and odd hybrid modes foci of the elliptic cavity at v = c. The delta-function trans-

are 4.158, 0.159, and 0.215, respectively. Therefore, for the verse wake potential U, is defined as the transverse momen-
driving-charge length of o, = 4, the wake potential from all tum kick experienced by a test charge following at a distance
hybrid modes are practically zero compared to that from the s in the z direction on the other foci and also at v = c. Bane et
longitudinal modes as shown in Fig. 1. The wake potential al.' derived

LONGITUDINAL WAKE POTENTIAL
CIRCULAR CAVITY
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= V (xo,OA. ) 17, V. xo,OA. )A . pt

L tials are finite.

The solution can be found in terms of known functions
Ssin(s/,2 ), (41) by the transformation of the coordinates system to the ellip-

Accordingly, the transverse wake potential driven by the tic~L cylindrical coordinates.'4

driving charge of an arbitrary charge distribution is defined The elliptical cylindrical coordinates (4,i7) are related
by with the cartesian coordinates by the fohowing equations:

U1 (s) = (' U, (s + s')g(s')ds', (42) x = h cosh cos 17,
f-y = h sinh sin 7, (44)

where g(s) is the charge distribution of the driving bunch. where 2h is the distance between two foci, i.e., h = '- -y.

B. The wake potentials In an elliptical cylindrical cavity Then, the problem is transformed to solve

From the previous theoretical result (Fig. 1) and an ---- + 2k2(cosh 2 - cos 2,7)f= 0. (45)
experiment,2 we found tPat the aperture of practical size - -
does not affect significanihe wake field, and the wake field in the region 0< <,, 0<i<27rwith the boundary condition
is predominated by the longitudinal modes. Therefore, we . o,17) = 0, (46)
neglect the hybrid modes, and consider only the wake fields ..
contributed from the longitudinal modes. where k = h /2A and 'o = cosh -' (Xb/lx 3).

Toobtain the wake fields from the longitudinal modes in By means of the separation of variables, we have
an elliptical cavity whose periphery of the cross section is f(',i7) = 0( )b(,7) where 0(') and b(i7) satisfy the fol-
given by lowing Mathieu equations:

+ - l, (43) (a - 2k 2 cosh 2 ') = 0, (47)

we must solve Eq. (21) with the boundary condition such d 22
thatf= 0 on this periphery. We first note that the solution 2 + (a - 2k cos 217)o = 0, (48)

must be an even or odd function fory since both the equation
[Eq. (21 and the boundary condition are invariant wheny where a is the separation constant.
is replaced by - y. However, the odd functions do not con- Since we consider only the even functions of y, we have
tribute to either longitudinal or transverse wake-potential at that (71) = 0(21r - 71). From this parity consideration, f
the foci whose y values are zero, and accordingly should be being finite at the foci and Eqs. (46)-(48), the solutions are
excepted. Also, we note that fand VJ must be finite at the expressed as



N,,,C (,q)ce, (,q) U, (0,0) 2rQh2  a(q)(q)sin( h)

+ N ,Seo ( ,q )ce,. (77,q ), (49)+N ( exp( -2q 2 /h 2 )sin(2 ]qs/h), (57)

where q k N,., and N, are the normalization constant, U (0,0) (58)
and 2L(8)

Ce, ( Toq) = Se,. ( o,q) = 0, (50) and the transverse wake potential on the opposite path is
for any value of q. U. (0,1r) 21rh 2 2= " _ " qa'(q)j6(q)sin2(xlq/h)

Since dfldx = Vf.j at the foci, i.e., ( , ) (0,0) and L p-
(0,r), is given by

) X( 1 df(,0) Xexp( 2qo2 /h 2 )sin(2qs/h), (59)
5x h -i o sinh7" ag ' U,(Oi') =O, (60)

df(0,ir) I lim 1 df(,O)) (51) L
ax h -o sinh g" g)' vhere

the condition that the transverse wake-field is finite leads to 1 1 eo(,q)
the discard of all Se,, (,q)ce,, (77,q) terms in Eq. (49). 6(q) = - sinh d 0 -g")

I Further, we are concerned with large eigenvalue A, which 3 3 + q

corresponds to small values of q under the condition Eq. 2 + I q + q- - ' q3 +0(q 4 ).
(50). Accordingly, we can ignore the terms with m>1. 16

Therefore, we obtain From Eqs. (43) to (48), we find that the wake potential
is symmetrical with respect to x = 0 plane in the lowest

ft ,= NqCeo(g,q)ceo(77,q), (52) (m = 0) modal analysis.
Figure 3 shows the longitudinal wake potentials corn-

where q's are the real roots of the following equation: puted by the analytical formulation given by Eq. (55) for
0 = 1 - q cosh 2 0 + 3 q2 cosh 4" cavities of Q = 1 nC, p = 4 mm, and xb/p = 10 (i.e., xh = 4

cm), or = 8 mm, andyb/xb = 0.9,0.5,0.3 as the eccentricity
- h q3 4 cosh 6 - 7 cosh 2g0 ) parameter. From the curves, we find that the dominant

+ 7rr q4 (cosh 8 " - 320 cosh 44o) + O(q5 ), wavelength increases asybixI increases, that is, the effective
(53) radius given by Ro = x increases. We also find that the

and Nq is the normalization constant given by amplitude of the longitudinal wake potential does not be-
come maximum asyb/x, - 1, indicating that an elliptic cross

I h_2 A' 2r. section has a larger acceleration gradient than the circular
-f d" cross section. The acceleration gradient can be greater than

N 2  
100 MeV/m for a cavity having total driving charge of I/ C,

xdq7(cosh 2 - cos 2 7) [Ceo(g,q)ceo(71,q)] 2. (54) pill-box gap of 4 mm, and an elliptical cross section of xb

If q's and Nq 's are determined, then the longitudinal -10cmandYb=5cm.

wake potentials on the same path as that of the driving bunch Figure 4 shows the transverse wake potentials for the
by a gaussian driving charge of length a is, for s > o, same cavities as in Fig. 3. From the curves, we find that we

can make the undulating electric field in the transverse di-
W, (0,0) =41Qh2  

ql rection whose amplitude and wavelength are greater than
L0) 4" a4(q)sin-(/h) , . 100 MeV/m and on the order of 10 cm, respectively, with a

2cavity having total driving charge of 1/pC, pill-box gap of 4
Xexp( - 2qo2/h )cos(2 &;h), (55) mm, and an elliptical cross section ofx, = l0 cm andy, = 5

cm.
and the longitudinal wake potential on the opposite path is

W1(0,0= 41Qh 2  N2 VI. CONCLUSION AND DISCUSSIONS
L I I - a'(q)sin(,q//h)Lp q The potential of the wake-field produced by a bunch of

x exp(- 2uah ')cs2  \hu (56) relativistic charged particles passing through a pill-box cav-
qi co(2qsh. ity is expressed as a Fourier series based on the vector eigen-

where mode-functions of the unit pill box. The Fourier coefficients
a(q) = Ceo(O,q) = ceo(O,q) = ceo(ir,q) are uniquely determined by Floquet's theorem, and an ob-

vious requirement that the energy gain over all acceleration
= I- + q 319 q4 + 0(q). cavity of many pill boxes must be proportional to the number

73728 of pill boxes. The eigenmode functions must satisfy the ellip-
Similarly, the transverse wake-potential on the same ticktye partial differential equations derived from Max-

path as that of the driving charge is well's equations. The complete boundary conditions on the
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whole surface of the unit pill box, which are needed to deter- and wave mode. It is found that the wake field consists of
mine uniquely the eigenmode functions, are assigned by tak- three classes of modes: the longitudinal modes which are
ing into account the symmetricity of the equation and independent of the aperture and the pill-box gap, the even
boundary conditions, the continuity on the aperture, and the hybrid modes which are independent of the aperture, but
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From the above formulation, we derive the wake field in The contributions from both the hybrid modes can be ne-
a similar form of the Coulomb law. In particular, the wake glected comparedthose from the longitudinal modes. We
potential of the circular cavity in the limit of vanishing aper- have found that the wakeiFotential in most practical cavities
ture derived by our formulation is identical with that derived is predominated by the contribution from the fundamental
by the usual method using the synchronism between particle longitudinal mode whose wavelength is 2.6 times of the di-
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ABSTRACT

WAKE-FIELD ACCELERATION OF CHARGED PARTICLES

WITH AN ELLIPTICAL CAVITY

Publication No.

Jin-Seok Yang, Ph.D.

The University of Texas at Arlington, 1990

Supervising professor : K. Wendell Chen

Acceleration of charged particles by the wake fields excited in the el-

liptical cavity by an intense, short electron bunch is investigated. Two

cavities are considered as a wake-field device: disk-loaded metallic cavity and

dielectric-loaded cavity. The analytical methods are developed to evaluate the

wake fields and wake potentials in these cavities. Using modal analysis

method, it is shown that the longitudinal and transverse wake potentials in

the disk-loaded elliptical cavity can be expressed analytically in terms of the

Mathieu functions. The aperture effects are not considered in this calcula-

tion. The longitudinal wake potential in a circular cavity are derived from

that in an elliptical cavity, and it is shown to be exactly the same formula

that was derived earlier. These analytical results are comvared with numeri-

cal ones, and excellent agreements in both frequencies and amplitudes are

observed between these two methods. Also, the wake fields in the dielectric-

loaded structures are derived analytically using the Fourier transform method.

It is shown that the dielectric-loaded structure can support strong accelera-

V



tion field, and has a useful property that the transverse wake fields can be

made quite small for the ultra-relativistic driving beam. It is demonstrated

that acceleration gradient greater than a few hundred MeV/m/nuC can be

achieved in the disk-loaded elliptical cavity or in the dielectric-loaded ellip-

tical cavity.

vi
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CI-LAPTER I

INTRO)UCTION

The invention and continued development of particle accelerators and

the associated technologies have had a profound impact on many fields of

pure and applied science and on variety of branches of modem technology.

In the fields of high energy and nuclear physics, a marvelous complement

of accelerator facilities exists around the world. In other area of science,

synchrotron light sources and accelerator-driven pulsed neutron sources have

opened up revolutionary new research opportunities in materials, chemistry,

and biological research. In industry and medicine there are literally

thousands of accelerators in use in health care treatment, radiation steriliza-

tion, radiation processing, ion implantation, microchip production, etc.

During the past few decades, accelerator energies have been increasing

from KeV to TeV at the rate of an order of magnitude in about every

seven years due mainly to imaginative advances in accelerator technology

and design. As the demand of higher accelerator energy is increased, it be-

comes more important to produce higher acceleration gradient to decrease

the size, cost and complexity of accelerators, especially for the future linear

colliders. This has motivated the development of new ideas for charged par-

ticle acceleration, which are expected to produce acceleration gradient much

higher than that conventional accelerators can produce. Typical acceleration

gradient of conventional accelerators is about 20 MeV/m. The new accelera-

tion schemes under active theoretical and experimental research are: (1)

Laser-Plasma Acceleration,1-5 (2) Plasma Wake-field Acceleration, "9 (3) Wake-

I
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field Acceleration, 1 '-6 etc.

Over the last few years, substantial progress both theoretically and ex-

perimentally has been made on these new acceleration schemes. The plas-

ma-based accelerztion schemes utilize the extremely large high acceleration

gradient associated with plasma waves excited by a number of ways, for ex-

ample, by using high power laser beam"2 (Laser Wake-field Acceleration),

beating of two relatively lower power laser beams 3 (Plasma Beat Wave Ac-

celeration), or using relativistic electron beams 6 (Plasma Wake-field Accelera-

tion). For those schemes involving plasmas, acceleration gradients of the

order of 1 GeV/m are theoretically possible. But plasma devices are very

complicated and their practical applications have a number of unresolved is-

sues which have not been fully explored. These are: fine tuning of plasma

density and laser frequency, production of driving beam with a slow rise

time and very rapid fall time, laser-plasma instability, focusing of laser

beam, etc. The plasma accelerators really exhibit advantages over other con-

cepts only at frequencies greater than about 100 GHz, and the problem of

producing a suitable driver beam which is capable of propagating a suffi-

ciently long distance within the plasma becomes more difficult as the fre-

quency is increased.

In the moderate acceleration gradients (several hundred MeV/m), a

class of wake-field acceleration schemes based on metallic cavity10-14 or

dielectric-loaded structure'5 1 6 (or combination of both) are promising new

concepts in view of their structual simplicity and ease of phase matching.

In these wake-field schemes, an intense, low-energy beam excites the

electromagnetic fields (so called "wake fields") in a metallic cavity or in a

medium, which are then used to accelerate a second, less intence beam to
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high energies. The periodic structure plays the necessary role to produce

the wake fields and to keep constant phase between an accelerated beam

and the wake fields in a metallic cavity, while in the dielectric-loaded struc-

ture a driving beam excites the slow electromignetic waves through the

Cerenkov radiation mechanism.

Let us briefly discuss some features of early works on these wake-field

acceleration schemes. Recently, proof-of-principle tests for the wake-field ac-

celeration schemes14 16 have been demonstrated at the Argonne National

Laboratory (ANL). It was shown that a few hundred MeV/m acceleration

gradient can be achieved in the disk-loaded metallic cavity and in the

dielectric-loaded cavity provided the driving beam is sufficiently intense (of

the order of 1 micro-Coulomb). Wake-field cavities tested have a common

geometry, i.e., both the driving and accelerated bunches pass through the

same path (so called "co-linear geometry"). For the co-linear structures, there

is a fundamental theorem t -. the transformer ratio, defined as the ratio

of the maximum energy gain per particle of the accelerated bunch to the

maximum energy loss per particle of the driving bunch, can not exceed two

when the driving bunch has a symmetric charge distribution. This theorem

complicates the practical applications of wake-field acceleration schemes,

especially for high energy linear colliders.

However, we can overcome this problem by either increasing the trans-

former ratio or staging the cavities. The transformer ratio can be increased

by a number of ways, for example, by mixing, 17 injecting an asymmetrical

driver bunch,18 injecting multiple bunches, 13 non-linear effects in dielectric,

using cavity of annular geometry,10 etc. But practical realization of such

methods meets with some difficulties and limitations, and has not been
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developed yet. Other method to overcome the low transformer ratio is to

use multi-stage scheme, i.e., acceleration in short distance. For accelerators

of low transformer ratio, it is inevitable to replenish the energy of the driv-

ing bunch or to replace used driving bunch by a new one frequently. For

the co-linear cavities, re-acceleation of the decelerated driver or replacement

of the driving charge appears difficult and technically unattractive, as it re-

quires disposing of the spent driver beam and introducing new one without

disturbing the accelerated beam. Multi-staging can be readily realized with

non-concentric cavities which have separate paths for the driving and ac-

celerated beams.

Among the co-linear wake-field devices, the cavity of an annular

geometry had been once rigorously investigated. 10 Here, we briefly discuss

the features of this well-known geometry. The largest transformer (impedance

transformation) ratio is expected in a concentric arrangement as shown in

figure 1.1. In this scheme, high current ring-shaped driver bunch is used to

accelerate a low current beam following the central axis. For a symmetric

driving bunch, transformer ratio in excess of 20 can be realized. Utilizing

asymmetrical shaping of the driving beam, it has been shown numerically

that an optimal transformer ratio as high as 100 is possible in this annular

wake-field device. However, the practical realization of this device or the

asymmetrical shaping of the driver beam meets with rather stringent ex-

perimental limitations. While the production of short, intense annular

electron ring beam is already difficult, but feasible (e.g. workers at DESY,

West Germany, once tried such an experiment), the additional requirement

that the electron ring beams must possess no rotational movement while

traversing the series of annular slots is exceedingly difficult because the
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Figure 1.1. Sketch of an annular wake-field cavity
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inner disks must be supported in place with wires or rods. The ring beam

will be lost if rotation is present. In addition, even if the driver beam does

not rotate appreciably, the supports destroy the apparent rotational symmetry

by creating holes in the ring, thus make the ring beam much vulnerable

to possible transverse beam instabilities.

The past experimental program at DESY is not adversely affected by

the these difficulties because of its very short accelerating structures of 40

cm. For a long accelerator structure, say even for a 1 GeV machine, these

problems could become quite troublesome. Staging could help, but not so

attractive due to its concentric geometry. Replacing the annular beam by

cylindrical beamlets symmetrically located around the annular ring has been

discussed. Here again the possible transverse instability inherent in this ar-

rangement is difficult to eliminate and also required phase synchronism is

difficult to achieve.

A different approach was employed in the UTA Wake-field and FEL

program. Multi-stage acceleration scheme was adapted to overcome the low

transformer ratio and siil pioride high acceleration gradient. For the staging

purpose, we choose an elliptical geometry because of its inherent staging

capability. Unlike the co-linear geometries, replenishing the energy-depleted

driver beams is practical for the elliptical structures since two beam aper-

tures of unequal size around the foci of an ellipse provide two separate

paths for the driving and accelerated bunches. Although the transformer

ratio is not as high, adequate acceleration gradients in such a structure are

possible when the driving beam passes through a high-impedance aperture

but is replenished periodically as shown schematically in figure 1.2. Since

the driving beam is to deliver energy in a single stage, it is possible to
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do so at a high rate. Because of the staging capability, it is now possible

to obtain the correct synchronism to overcome the usual "phase slippage"

between the faster accelerated beam and the slower driver beam. Another

unique application of the elliptical wake-field cavity which 'annot be realized

with the co-linear geometry is that it can be used as ;?a electric wiggler

in a Free Electron Laser 19 (FEL), as shown schematically in figure 1.3. Two

separate paths along the focus axis of the elliptical cavity allow the lasing

electron beam to be injected in the opposite direction of the driving

bunches. The lasing electron bunches wiggles in the rippled wake electric

fields produced by the driving bunches, analogous to the case of the mag-

netic wigglers in conventional FELs. This new lasing scheme promises suf-

ficient gains in the soft x-ray region so that it might be feasible to operate

it as a soft x-ray laser without requiring reflecting mirrors.

Based on these ideas, investigations of wake-field acceleration and its

applications with the emphasis on the elliptical geometry have been going

on 13'19"21A at the Center for Accelerator Science and Technology (CAST),

UTA, in the last few years, part of which is the subject of this dissertation.

The purpose of this dissertation is to set up appropriate theoretical

means to analyze the wake fields excited in the elliptical cavity which is

loaded with metallic disks or a medium. The wake fields and wake poten-

tials in the disk-loaded cavity can be evaluated by either modal analysis

method or numerically solving the Maxwell equations directly -in the time

domain. Because analytical calculations are only xnown for closed cylindrical

cavities, the wake fields in an elliptical cavity have been roughly estimated

from those in the equivalent circular cavity. Furthermore, no method has

been developed to calculate wake fields in a dielectric-loaded elliptical
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cavity. The numerical code WELL,2 which directly solves the Maxwell equa-

tions in the time domain, has been recently developed to study the wake-

field effects in the elliptical pill-box cavity. This particular code cLlc lates

the wake fields and wake potentials in an elliptical pill-box cavity by using

the finite difference method, and the beam aperture effects are cons '-ered

in the calculations.

In this investigation, new methods are developed to calculate the wake

fields in the elliptical structure analytically in the limit of vanishing aperture.

We do not take into account the aperture effects based on the recent ex-

perimental work,14 which showed that the wake fields are predominated by

a few lower-order longitudinal modes even when the ratio of the aperture

radius to the cavity radius is considerably large. At lower frequencies, it

was known that the impedance of a cavity with finite aperture and that of

a closed cavity are practically same.Y Therefore, the wake fields of bunches

which is long compared to the aperture, or the long range wake fields of

short bunches are almost the same for the two different structures. Since

wake-field acceleration schemes require very short, intense bunches to excite

strong accelerating field, and the distance between the driving bunch and

accelerated bunch is usually large compared to the driving bunch length, the

wake fields in the limit of vanishing aperture is a good approximation for

the most practical cavities as long as apertures are not too large. Even

though it is a limiting case for the cavities with finite apertures, it is of

particular interest since the analytical solution exist, which will be formulated

in this investigation. Therefore, we can readily estimate maximum energy

gain of the accelerated particles and the parametric dependence of the wake

potentials on the geometry and beam parameters. Furthermore, it becomes
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possible to include the effects of dielectric material inside the cavity with

this analytical approach.

A short review of the concepts of the wake fields, the wake potential,

and detailed modal analysis method are presented in Chapter 2. We present

analytical formulations of the wake fields and wake potentials in an elliptical

pill-box cavity in Chapter 3. The wake-field effects in the dielectric-loaded

elliptical cavity are described in Chapter 4, while in Chapter 5 discussions

and conclusions are drawn.



'HAPTER II

NORMAL MODE EXPANSION OF THE WAKE POTENTIALS

2. 1. Introduction

The wake fields are the electromagnetic fields induced by a bunch of

relativistic charged particles passing through the structure of varying shape,

and their concepts are important not only for the applications to future high

current compact electron accelerators, but also for the calculation of energy

loss and beam stability in the high energy particle accelerators. We begin

with brief introduction of the concepts of the wake fields and wake poten-

tials.

Consider a point charge Q in free space. When a charge is not

moving, the electric field lines are directed outward in all radial directions

as shown in figure 2.1(a). But the electromagnetic fields carried by a

relativistic point charge Q in fret. space2' is Lorentz contracted into a thin

disk as shown in figure 2.1(c) with angular spread of the order of 1/,

where V being the relativistic factor. The disk actually shrink into a delta

function thickness in the ultra-relativistic limit of the particle velocity

v = c, as shown in figure 2.1(d). In case the charge moves along the axis

of a cylindrically symmetric pipe with perfectly conducting wall, the fields

in the pipe are identical to the free space fields, because the sole function

of the pipe wall is to truncate the field lines by terminating them onto

the image charges on the wall as shown in figure 2.2(a). If the charge

moves off-axis, or if the cross section of the pipe is not a circle, the fields

12
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Z 1peperfe rct conductor

--

V C

trailing charge

Figure 2.2. Fields in a perfectly conducting smooth pipe (a) and in a structure

with perturbing walls (b)
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in the pipe are perturbed from their free space values. But, no fields are

left behind the moving charge since the fields are Lorentz contracted into

a delta functio.i in its longitudinal distribution.

Therefore, in free space or in a perfectly conducting smooth pipe, a

particle does not see the fields carried by other particle unless the two

particles move side by side with exactly same longitudinal position, in which

case they see each other's fields but do not experience any force because

the electric force and the magnetic force cancel exactly in the limit of par-

ticle velocity v = c.

When there are irregularities or discontinuities in the structure, the

trailing charge still will not see the direct fields in the wavefront moving

with the driving charge. However, this wavefront are scattered from the

boundary discontinuities, and this scattered radiation can reach the trailing

charge and exert forces parallel and perpendicular to its direction of motion.

These scattered waves are called the wake fields, and the force integrated

over the total passage time is usually called the wake potential (more

precisely delta function wake potential).

If the wall is smooth but not perfectly conducting,25 6 a charge will

generate behind it the wake fields due to the small longitudinal electric

field E. at the wall, which is related to the dissipation in the wall. How-

ever, the effects of resistive wall are much smailer than other factors. Most

of the wake fields- come from effects associated with discontinuities and

obstacles in the structures. Therefore, in the following section and thereafter,

finite conductivity effects will not considered in the wake fields calculations.

It is also assumed in this chapter that the driving charge and the test

charge rrcove with velocity of light c, and their paths through a cavity or
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structure are not significantly changed from what would have been in the

absence of the induced wake fields.

2. 2. Method of Calculation

The wake fields and wake potentials in a cavity can be evaluated by

either modal analysis method or numerically solving the Maxwell equations

in the time domain. In the modal analysis method, the eigenmodes of an

empty cavity are used to calculate the time development of the fields.

Analytical calculations of the eigenmodes are only known for cavities with

simple geometries, usually for closed cylidrically symmetric cavities. For this

reason, early studies on the wake-field cavities were mainly concentrated on

the circular geometry. For non-axisymmetrical structures, one has to use

numerical methods.

The straightforward way to calculate wake fields and wake potentials

in the structure is to solve the Maxwell equations numerically. The numeri-

cal code TBC127 has been extensively used for the cylidrically symmetric

structures, and MAFIA29 code T3, a three dimensional version of the code

TBCI, was recently developed. Previously, the particular code WELL,22 the

finite difference solution of the Maxwell equations in the time domain, has

been developed for the calculation of the wake fields in an elliptical cavity.

In this code, the aperture or beam hole effects are included in the cal-

culation. However, we need not take into account the aperture effects

seriously for the most practical cavities whose apertures are usually very

small compare to the cross sectional area. This is clearly supported by the

experiment,14 which showed that the wake fields are predominated by a few

lower-order longitudinal modes even when the ratio of the aperture radius

to the cavity radius is considerably large (- V3 for the cavity 1 in that ex-
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periment). Since the impedance of a cavity with finite aperture and that of

a closed cavity are practically same at lower frequencies, the wake fields

of a bunch whose length is long compared to the aperture or the long

range wake fields of a sho t bunch are almost the same for the two dif-

ferent structures. Since we are more interested in evaluating the long range

wake fields induced by a short driving bunch, a closed pill-box cavity is a

good approximation. Even though the final result is the limiting case for

the cavity with beam holes, it is of particular interest since we can formu-

late an analytical solution under the assumtion of zero aperture. The lon-

gitudinal and transverse wake potenials can be calculated to any degree of

precision since we can express these fields analytically in closed series form.

Also, we can readily estimate the maximum energy gain of the trailing par-

ticles, frequency contents, and the dependence on the cavity geometry and

beam parameters.

2. 3. Normal Mode Analysis of the Wake Fields

Consider a closed, empty cavity with perfectly conducting walls. The

electric fields and the magnetic fields induced by a bunch of charged par-

ticles traversing the cavity can be derived from a scalar potential (X, t) and

a vector potential A (x, t) together with proper boundary conditions. First, let

us start from the Maxwell equations (in MKS units)

VxE= -- (2.1)

V x B =,uoJ + 1 aE (2.2)
C 2a

V.E = p  (2.3)V 0(

V.B = 0, (2.4)
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where co and ,uo are respectively the permittivity and permeability of

vacuum. By introducing a vector potential A(xt) and a scalar potential

V,(x,t) wiich are given by the relations

B= VxA, (2.5)

E A _ S'(2.6)at

the inhomogeneous Maxwell eqs. (2.2) and (2.3) become

V2A 1 2A I Vp -o J, (2.7)

V2 9= --- (2.8)

where the Coulomb gage, V A = 0, is used in deriving eqs. (2.7) and (2.8).

The vector potential A(xt) and a scalar potential o(xt) due to current

and charge sources can be expanded in terms of the othogonal

eigenfunctions aA(x) and O(x) as

A (x, t) = qA(t) ai(x), (2.9)

(x, t) = Ar(t) OA(x), (2.10)

where aA and OA are the sets of vector and scalar eigenfunctions of an

empty cavity respectively, which satisfy the following homogeneous Helmholtz

equations and boundary conditions:

V2al + ( ax = 0, (2.11)
C

V'aA= 0 in V, (2.12)

n X aA = 0 on the boundary, (2.13)
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and

+ (_ )2 t = 0, (2.14)
C

0 = 0 on the boundary, (2.15)

where n is the unit vector normal to the wall. In general, (DZ# P A.

Substituting eqs. (2.9) and (2.10) into (2.7), dotting this result with aA,, and

integrating over the cavity volume V gives

(+ 2 q)fai-a, dV=oc fJ " adV. (2.16)

If the eigenfunctions aA are normalized by

E fa, a. dV = u 6 a., (2.17)

where uA is the normalizing factor and 6u. is the Kronecker delta, then

eq. (2.16) becomes simply

qj+cOA2qi= 1 fJ.adV. (2.18)

Similarly, beginning with the Poisson's equation given in (2.8), we can get

the expansion coefficients for the scalar potential, which is given by

1)= 1 fpO;dV, (2.19)

where OA are normalized by

CO fV¢OA. Vo, dV = TA 6,. (2.20)

The expansion coefficients qA(t) and rA(t) can be determined from eqs.

(2.18) and (2.19) provided the source terms J, p and the eigenfunctions

aA and 01, which will be derived in the following chapter, are known. Ac-
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cordingly, we can rewrite the electric field E and the magnetic induction

B in terms of these quantities as

E(x, t) = - T (i(t) aA(x) + r(t) VOA(x)), (2.21)

B(x, t) = qA(t) V x aA(x). (2.22)

These are the wake fields left by the sources. In order to solve eq. (2.18)

and (2.19), we have to know the source terms.

2. 4. Wake Potentials in a Cavity

2. 4. 1. Longitudinal Wake Potential

Consider the cavity shown in figure 2.3, where a driving charge Q is

assumed to enter the cavity at z = 0, t = 0 and to exit at z = L.

The driving charge Q is passing through the cavity with velocity v = c, fol-

lowed by a test charge by a fixed distance zo in the z-direction. Let r and

ro be respectively the transverse coordinate of the test charge and that of

the driving charge. The delta function longitudinal wake potential W. is

defined as the energy gained by the unit negative point charge following

at a distance zo behind the driving charge, divided by Q, or

W,(r, ZO) = -- L f dz E,(r, z, t)t,.(z+zoyc. (2.23)

The source terms due to the exciting charge are

p(x) t = Q 6(r- o) d(z - vt), (2.24)

J(x, t) = Zov = 7oc(x, t), (2.25)

where z is the unit vector in the z-direction and particle velocity of

v = c is assumed. After substituting eq. (2.25) into (2.18), equation for qa
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becomes

2O fo, t< O 
(2.

A +&A'q (o, ct), 0 < t < L/c (2.26)q~ +cot q -2u 0, t > L/c

where ai. is the z-component of te vector eigenfunction aA.

With the initial conditions qA(O) = 4A(O) 0 0, i.e., no field exists before

the driving charge Q enters the cavity, the solution for qt is

q) = Qc 'i(t, c) dt' sinwa(t - t') aA,(io, ct) for t > 0. (2.27)

Similarly, substituting source term, eq. (2.24), into (2.19) gives

Q O, t < 0

rA(t) = O 0A (M CO, 0 < t < VC (2.28)
2T >0,t>L

Substituting these expressions of the expansion coefficients into eqs. (2.21)

and (2.22), we can get the electric field E and the magnetic induction B

at any position in a cavity, which are then used to calculate the longitudinal

and transverse wake potentials by way of eqs. (2.23) and (2.32). By using

the electric field E, and imposing causality, i.e., no wake field will be

produced ahead of the driving charge, Bane et al. 12 obtained the following

equation for the delta function longitudinal wake potential:

_Izo 8 L +(r, z)
W.(r, rb, zo) = fL. (4(zZO) aA(r, z) +- r-.±Q) 10 Z

= VA(Ib) V(r) DA
Scos(-)Zo, (2.29)

where VW is a complex conjugate of VA. Notice that the longitudinal wake

potential is solely expressed in terms of the z-component of the vector
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eigenfunction, and is, in general, functions of the transverse positions of the

driving charge and a test charge. In eq. (2.29), K is defined as

= dz exp( A-) aA.(r, z). (2.30)

Once the delta function wake potential given in eq. (2.29) has been

calculated, it can be used as a Green's function to calculate th. bunch

wake potential U. in and behind an arbitrary charge distribution A(z). The

longitudinal potential for the distributed charge becomes

U,(zo) = fZ" A(z - zo) W(z) dz. (2.31)

2. 4. 2. Transverse Wake Potential

Consider again the driving charge Q and a test charge in a cavity as

shown in figure 2.3. The delta function transverse wake potential W±(zo) is

defined as the transverse momentum kick experienced by a test charge fol-

lowing at a distance zo behind a driving charge, divided by Q, or

W±(zo) - L B)fo±)
W Q f o0 dz (E.± + c(z x t)L.~o (z~zo)/c

Q fo dz (cVLAZ - Vj) t(Z+Z (2.32)

where the transverse gradient operator, V., is defined as

V = V A- (2.33)

Analogously to the longitudinal case, the transverse wake potential W .(zo)

can be calculated by substituting the vector and scalar potentials which are

expanded in terms of the eigenfunctions into eq. (2.32). But, we may use

a rather simple formula known as the Panofsky-Wenzel theorem30
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-W±(zo) =VW(zo) (2.34)

to derive the transverse wake potential frori the knowledge of the

longitudinal wake potential. Eq. (2.34) is valid for the selected cavity

geometries, e.g., for cylindrically symmetric strutires for any value of zo,

for closed cavities of arbitrary shape for zo > L, and for structures with

end plates normal to the path of particles for any value of zo. Thus, we

are going to use the Panofsky-Wenzel theorem in the next chapter to derive

the transverse wake potential in an elliptical pill-box cavity. Combining eqs.

(2.29) and (2.34), the delta function transverse wake potential becomes

W.(zo) = V ( b() VA. VAr sin()zo'  (2.35)
. C 2uA &t C Z

and the transverse wake potential for an arbitrary charge distribution A(z)

can be obtained from

U.(zo) = f, A(z - zo) W.(z)dz. (2.36)



CHAPTER III

WAKE POTENTIALS IN AN ELLIPTICAL CAVITY

3. 1. Eigenmodes in an Elliptical Pill-Box Cavity

In chapter 2, we have derived the longitudinal and transverse wake

potentials solely in terms of the z-component of the vector eigenfunctions,

which is the solution of the homogeneous Helmholtz equation in a source

free cavity with appropriate boundary conditions. The eigenfunctions in an

elliptical pill-box cavity are derived in this section, and the wake potentials

are formulated in the following sections.

Consider an elliptical pill-box cavity with the major axis ZXb and the

minor axis 2yb as shown in figure 3.1. For a cavity of elliptica! cross sec-

tion, the eigenfunctions can be found in terms of known functions by trans-

forming the Cartesian coordinates to the confocal elliptical coordinates as

shown in figure 3.1. In these coordinates, the boundary conditions on the

elliptical cavity walls are easily satisfied.

The confocal elliptical coordinates ( , q, z) are related to the Cartesian

coordinates (x,y,z) by the following equations:

x = h cosh cosq,

y = h sinh sin7, (3.1)

where h is the semi-interfocal distance of the confocal ellipses. The

Helmholtz equation is then transformed to

25
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Conductor

Figure 3.1. Confocal elliptical coordinate system
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1 + i + '_7 + 2+ k2ip = , (3.2)
h2 (sinh 2  + sin 21) ( a 2  a0r2 ) az2

where k is the free space wave number.

Following the method of separation of variables, we seek to find solu-

tions of the form

1= =(X) g(17) w(z). (3.3)

Substituting eq. (3.3) into (3.2) and dividing by 4,, the Helmholtz equation

is split into three ordinary differential equations:

d 2  -(a - 2q cosh2)f( ) = 0, (3.4)

d2 - (a - 2q cos2,7)g(q) = 0, (3.5)

d2W(Z k2 w(z) = 0, (3.6)
dz + )

where a is an arbitrar separation constant. The parameter q is defined as

2q = k2 (3.7)

and k, and k, are arbitrary constants, but are related to the free space

wave number k by

kC2 = k2 
- kZ2. (3.8)

The above equations (3.4) and (3.5) are called the Mathieu equations.1 32

Solutions to these equations are the Mathieu functions, details of which are

given in Appendix A.

With the z-dependence of exp(ikz) in eq. (3.6), we are interested in
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the solution of the two dimensional Helmholtz equation

V 2 ip + kctp = 0 (3.9)

in an elliptical pill-box cavity. Here, the transverse Laplacian operator V.2

is defined by

V.L2 =V 2 (3.1)

The particular modes that we are considering are the modes which

have longitudinal acceleration fields. Therefore, only Transverse Magnetic

(TM) modes will be considered for the calculation of the wake potentials.

For modes TM to z, we may express the fields in terms of the vector

potential A, or equivalently in terms of the vector eigenfunction aa, having

only z-component. Hence tp=ai, in eq. (3.9). Any combinations of the

Mathieu functions in the form of ip =f( )g(Q) are solutions of eq. (3.9). In

addition to the boundary conditions which must be satisfied on the walls

of the cavity, the following two conditions must be satisfied, i.e.,

(i) continuity of function ip on the interfocal line:

b(O, 1) = P(O, -07). (3.11)

(ii) continuity of gradient of function ip on the interfocal line:

((, ))-.o - - (( -)-o (3.12)

Among the possible combinations, the only permissible form of the solution

which satisfies above two conditions are

P = j, SSem( , q) sem(q, q) + , CmCem( , q) cem(j, q), (3.13)
M - I r -0
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with the z-dependent factor exp(ik z) being omitted. Here, Cm and Sm are

abitrary constants. The function cem(l, q) and se,(r, q) are, respectively, the

even and odd type Mathieu functions of the first kinds of integral order,

and Cem( ,q) and Sem( ,q) are the modified Mathieu functions of the first

kinds of integral order.

We first notice that symmetry of the function ip is determined by

cem(7, q) and sem(j,q). The terms in the first summation are odd and the

terms in the second summation are even with respect to ?1. From Appendix

A, we have

sem (, q) = - sem(-I, q), (3.14)

cem (1, q) = cem(-q, q). (3.15)

Therefore, the first summation is always zero on the median plane (y =

0 plane) where the wake potentials are to be evaluated, and as a result

it does not contribute to the calculation of the longitudinal and transverse

wake potentials. For this reason, we are now considering only the TM

modes of even type solutions, ipm = Cem(4, q) cem(?I, q), for the wake potential

calcul.ation.

The boundary conditions are

1P = 0 (3.16)

at the elliptical boundary where = a. There remains the condition that

no tangential component of aA exists at the end-plate walls at z = 0 and

d, which is satisfied if we choose

k. =P-nd ' p = 0, 1, 2,..., (3.17)
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where d is the gap distance of the pill-box cavity as shown in figure 3.2.

From eq. (3.16), we have

Ce, ( a, q) = 0, (3.18)

which are satisfied by particular values of q. Let qm. be the ntb root of

eq. (3.18) for a given mode m. Then, we can calculate resonant frequency

from the root qm. . From eqs. (3.7) and (3.8), the resonant frequency is

C 'h2 )d___ J~qnn +(P~E2}.(3.19)

From this equation, we see that the wavelength of the dominant mode

becomes

= :rh =xxbec (3.20)

where ec is the eccentricity of the boundary ellipse, ec = 1/cosh ,. Figure

3.3 is a plot of qol as a function of the eccentricity ec. The ratio AoiO/Xb

is plotted against ec in figure 3.4. In this figure we see that as ec -* 0, i.e.,

as the ellipse tends to a circle, the ratio approaches 2.61, which is the

ratio of the wavelength to the radius, A/r. = 2.r/Xvol, for the TMo0o mode of

a circular pill-box cavity, where Xoi is the first zero of Bessel function Jo(x).

The transverse components of the vector eigenfunction can be easily

found from the z-component. Thes,; eigenmodes are

a,,,.= Cem( , q..) cem (, qmn) cos -".-Z (3.21)

= -PX Ce'(4, qmn) cem,(q, qm,) sir z, (3.22)ae~q, Dma d
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Figure 3.2. Elliptical pill-box cavity
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a,,., Pd Ce,( , qm,) Cem'(j, q, a) sinr z ,  (3.23)
Drnnd d'_

where

Dmn -4qmn fcosh2g - cos2i4 (3.24)h 1 2

The resonant mode patterns for some of the lower-order modes are shown

in figures 3.5 - 3.8. Now, we proceed to calculate the wake potentials using

eigenmodes given in eqs. (3.21) - (3.23).

3. 2. Wake Potentials in an Elliptical Pill-Box Cavity

3. 2. 1. Longitudinal Wake Potential

The longitudinal and transverse wake potentials on the focus axis. of

an elliptical cavity are of particular interest since when the driving charge

Q is passing through one of the foci of the cavity where =, =-0 (driving

beam path), all the electromagnetic fields radiated will get focused again at

the other foci where = 0 and tq= a (accelerated beam path) in first order

approximation, which are then used to accelerate a trailing charge.

Consider a test charge which is traveling through the cavity where

= 0 and 7 = r (accelerated beam path) and trailing the driving charge Q

by a fixed distance zo in the z-direction. The delta function longitudinal

wake potential M, or the energy gained by the unit negative test charge

is given by eq. (2.29):

W(zo) = r cos(--- ) for zo > 0, (2.29)
2uac

where V is the voltage induced by a point charge, and the normalizing
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factor uA, which can be interpreted as the stored energy in the mode, is

given by eq. (2.17):

Co fa- ai, dV = uA 6,. (2.17)T

After substituting the eigenfunction in eq. (3.21) into eq. (2.30), the voltage

VA on the driving beam path and any position in a cavity become

VI(re) = f dz exp(L-) at,(O, 0, z)

= Cem(O, q,,) cem(O, qm,) f! dz exp(-) co d (325)

Va(r) = fddz exp(-) aA1( , (, z)

- Ce,( , q..) ce(jQ, q.,) f dz exp(-) cos-fz, (3.26)

and further

2C.(.('d3
VA = (1 C G - I Cos_ _)1 (3.27)

((j) 2 ( PX ) 2) 2

c d

where the coefficient Cm is given by

Cm, = Cem( , qmn) Cem(0, qmn) ce(q, qmn) cem(0, qm=). (3.28)

The stored energy uA in the mode becomes

Co f= mua dV

WmnP 2

EO- C "f Cem2(, qmn) cem2(Q, qmn) COS( r)Z dV. (3.29)
2 k(
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After integration of eq. (3.29) using dV - - (cosh2 - cos2q) d dr7 dz, it is

further reduced to

eorhd 2 a P)

u,,p -- 8 2 " Ce 2( ', q..) X (c.,sh2n - Ee) d, (3.30)
8 kcW0

where

1 2x 2.
e= -x cem (q, qm) cos217 dq

Aorn)Am) + A?,)AN 2 , form = 0,2,4,...,
,-o (3.31)

(Aim))' + AATIA 3, form=1, 3, 5,...,
r-o

and Arm) in eq. (3.31) are the coefficients for the series representation of

the Mathieu function ce. Q1, q). Substituting eqs. (3.27) - (3.31) into (2.29)

gives the delta function longitudinal wake potential W.

On the accelerated beam path ( = 0, j7= ;r), the delta function 1on-

gitudinal wake potential becomes

2 0 Ep Cm n (1 - (1 1)p cos~ m fn2d

W2(zo) = 2 rO =o q cos(O0n zo), (3.32)nord 7' =O qmn Nmn c

where Ep = V2 for p = 0 and 1 for p d 0, and Nnn is given by

N,, = f" Ce ,2( , q..) x (cosh2 - G.) d . (3.33)

The coefficient Cm can be expressed in terms of Arm) as

Cm, = (Cem(0, qmn)) 2 cem(0, qmn) cem(a, qmn)
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4

= form = 0, 2,4,..., 3.44 (3.34)

- i 0A~) form = 1, 3,5,...,

When the boundary ellipse tends to a circle, the confocal hyperbolae

in figure 3.1 become radii of the circle r, and the confocal ellipses become

concentric circles of that radius. In this case, we get the longitudinal wake

potential W for a circular pill-box cavity, which is expressed analytically '1 2

in the form

cc (1 -(-1)PcosWPd)

W(Zo) = Xon J2(Xo) cos( --), (3.35)
E 7rd -Ip- C

where x. is the nth zero of Bessel function Jo(x). We can easily show that

eq. (3.32) is exactly reduced to eq. (3.35) by using the limiting properties

of the Mathieu functions. The functions cem(q, q) and Cem( ,q) degenerate

into the following forms as the semi-interfocal distance h -- 0 and -- o,

while keep the product hcosh -- r. From eq. (3.7), we see that q - 0 as

h -- 0. Thus, as q - 0, we have from Appendix A

ce(", fq) 2 or{ m -- 0  (3.36)ce=(r/, q)-cosmo} for m ;6 0

Cem( , q) pm Jm (kcr) (3.37)

A~m) -( 0 (except Am') -* 1 form ,1 0 and AP0 -* V2) (3.38)

where pm is a constant multiplier and Jm(x) is the Bessel function of the

first kind of order m. Using above equations, Cm. in the numorator of eq.

(3.32) becomes simply
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Cmn = (Cem(O, qmn)) 2 cem(O, qm) Cem(;r, qn*)

- (pm Jm(O) cosm) 2 = 0, for m # 0

- (po Jo(0))2/2 = po2/2, form = 0. (3.39)

It is apparent from eq. (3.39) that contributions from m 0 i modes become

zero as expected as an ellipse tends to a circle. The denominator in eq.

(3.32) for m = 0 becomes

q ,( oe02)2 r j
qo n Ceo2( , q,) cosh2g d - 2  f-; Jo2(kr) rdr

o 2 0

4o (3.40)X4 i(XaakCo),

where kc = X.1r for a circular pill-box cavity of radius r. By substituting

eqs. (3.39) and (3.40) into (3.32), we can get exactly the same expression

for the wake potential in a circular pill-box cavity as in references 11 and

12. No closed expression is known for the infinite sum in eqs. (3.32) and

(3.35), which must be evaluated numerically.

The wake potential for the distributed charges can be calculated from

eq. (2.31). For a Gaussian bunch with rms bunch length of a,

.(z) = a exp(-j), (3.41)

the bunch wake potential is

U,(zo) = (z) W(zo - z) dz

,-0 EP-CM.(1 - (-fcomn

- eairda- 00.,1 P-0 qmn Nn
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Xf_ exp(--) Cosmnp(zo - z) dz. (3.42)

When zo > a, the bunch wake potential becomes

2 O)Mnp

Uz(zo) i--,exp(- ( Cn)ao212)

(~~l) osmn pd)Ep c=. ( ( 1)P co j MnpZOx , cos ! . (3.43)
qmn Nmn ¢

It is apparent from this equation that contributions from the modes

whose resonant wavelengths are much shorter than the bunch length a be-

come negligible. For the dominant mode, eq. (3.43) can be written as

(1 - e 2) A.2 Co 1  . 2d 2rzo(3.

xeO 2 e E SN01 ST f  (1- cos-r) cos , (3.44)

where S = rxb yb is the cross sectional area of the cavity, A is the

wavelength of the dominant mode, ec is the eccentricity of the boundary

ellipse. The coefficients Col and Not are found from eqs. (3.33) and (3.34).

From this equation, we see that the wake potential scales as w- 2 and

S-. When the boundary ellipse is very close to a circle, i.e., ec << 1,

the wake potential scales as ej - .

3. 2. 2. Transverse Wake Potential

As discussed in Chapter 2, we can derive the transverse wake potential

in a pill-box cavity from the longitudinal wake potential by using the

Panofsky-Wenzel theorem, eq. (2.35). That is

P__I V (Vaoo
W±(o)= .in(-). (2.35)24AwtL C
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On the accelerating beam path where ! = 0 and a = r, we have

V,* V" VA = Cem(0, a,) cem(0, qA) cem(7r, qi) V.Cem(0, qx)

X (4.d ci exp(L-) cosP~z)2  3'

Since the driving and test charges are assumed to move on each focus xis

which are parallel to the z-axis and on the plane of symmetry (y = 0

plane), only g-component of the transverse wake potential exists at the foci

of the elliptical cavity. Hence,

V±Cem(0, qi) = lim I a Ce0 , qA)-.o hsinh -R e(,

1 (2r)2Ar), form =0,2,4,...
1 a 1)"2T, (3.46)

7, (2r+l)2A, , form = 1,3, 5,h ,-o"'

Therefore, the delta function transverse wake potential is written as

EP 7(1-( 1)P cos(,)i d )2c c sin(--zo), (3.47)

W.(zo) = dA C qA Ni

where

= Cem(0, q..) cem(O, q..) cem(;r, q..) V±Cem(0, qn.)I (A ))3 ((2r2Air)), form = 0,2,4,...
= ,-0 r-O0 (3.48)

1 (1A,?r2 )I (2r+l1)2ZAV,), form= 1,3,5,...
hr-O r"O

For the driving beam with a Gaussian charge distribution, the transverse

bunch wake potential becomes
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U.(zo) = fo dz A(z) W (zo - z)

SCEPCn 
(1 -(-1)

p Cos-, 
d )

iowrdm-On -l pomnp qmn Nmn

X .f exp(- 2) WMn(ZO - dz. (3.49)

00 \202 c

When z. > > a, the transverse bunch wake potential becomes

U±(zo)-- 1 exp((-,nP)202/2)
m=O.i p-0

Ep . (1 - (-1) coso Mnp d)

x C WmnpZO (3.50)
(mnp qmn Nmn C

3. 3. Numerical Examples

The longitudinal and transverse wake potentials in an elliptical pill-box

cavity are calculated by using eqs. (3.42) and (3.49). The results are plotted

in figures 3.10 - 3.14. In these calculations, a driving beam with a Gaussian

charge distribution of a = 5 mm is assumed. We choose the same cavity

dimensions bunch length as in ref. 22 to compare the results of two

methods. The cavity dimensions are shown in figure 3.9.

Figure 3.10 is the plot of the longitudinal wake potential on the ac-

celerated beam path, in which only 5 modes are included in the calculation.

The modes summation converges as the number of modes are increased.

Figures 3.11 and 3.12 are the curves of the longitudinal wake potentials

respectively on the accelerated beam path and on the driving beam path,

in which different number of modes are included in the mode summation

(solid lines for 24 modes and broken lines for 12 modes). From figures
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3.10 - 3.12, we readily find very rapid convergence of the mode summation,

indicating clearly that the wake potentials are predominated by a few lower-

order modes. Even 5 modes summation (figure 3.10) gives a well-defined

curve.

On the accelerated beam path, we obtain about 125 MeV/nx/iC ac-

celeration gradient, while about 110 MeV/m/uC was obtained by Y. Chin"

(figures 3.17 and 3.18).

The path length for the fields radiated from one focus axis to reach

the other after one reflection at the elliptical boundary is 10 cm for this

cavity. The peak accelerating potential on the accelerated beam path (point

A in figure 3.11) is the very fields radiated from the driving beam path

(point B in figure 3.12) and focused again after one reflection at the el-

liptical wall. From figures 3.11 and 3.1Z we can see that the delay distance

between the point A and point B is about 10 cm.

The transverse wake potential on the accelerated beam path and that

on the driving beam path are shown in figures 3.13 and 3.14 respectively

by the broken lines. The corresponding longitudinal wake potentials are

plotted together in order to see if we can find the positions, such as the

point C in figure 3.13, at which the accelerating potential is large while

the transverse potential is small. The charge to be accelerated should be

positioned at such a point in order to avoid large transverse deflection

during acceleration. However, we also found that at the point of peak ac-

celerating potential, the transverse wake potential is not zero. The ac-

celerated particles positioned at this peak will be deflected and efficiency

of acceleration will drop gradually because of the displacement from the

focus axis and proper phase.
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The longitudinal wake potentials for different size cavities are plotted

in figures 3.15 - 3.17. Figures 3.18 and 3.19 are the curves for the lon-

giu-Jinal and transverse wake potentials calculated by pure n.merical

method, the code WELL," which include the effects of the beam apertures

of !cm diameter. Comparing figures 3.13 and 3.14 with 3.18 and 3.19, very

good agreements in magnitudes and frequencies are observed.
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Fgr3y d5 cm c

Figure 3.9. Cavity dimensions for example calculation
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CHAPTER I

WAKE POTENTIAL IN A DIELECTRIC-LOADED

ELLIPTICAL WAVEGUIDE

4. 1. Introduction

As discussed in Chapter 3, disk-loaded elliptical cavity is capable of

producing an acceleration gradient greater than 100 MeV/m/4C. But one dis-

advantage of using this cavity as a wake-field acceleration device is its un-

cancellable transverse wake fields even when alternately rotated stages are

used to minimize net transverse deflection. The transverse wake fields are

useful as an electric wiggler fields for the FEL applications,19 but are the

source of beam instability and blow up for the acceleration application. One

possible solution to this non-zero transverse wake fields is to use a

waveguide, or a cavity, which are partially filled with dielectric (known al-

ternatively as Dielectric Wakefields Acceleration scheme). In this scheme an

intense driving charge excites the wake fields through the Cerenkov radiation

mechanism. This radiation is then used to accelerate a second, less intense

particles to higher energies.

This method has a particular advantage over other wake-field accelera-

tion schemes that the transverse wake fields can be made quite small for

the ultra-relativistic driving beam. Recent experimental 16 and theoretical17

studies have shown that the transverse wake potential in a dielectric-loaded

circular waveguide vanishes in the limit of the particle velocity v - c even

when the driving beam is off-center, and the longitudinal acceleration

59
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gradient is of the same order of magnitude that can be obtained in the

disk-loaded metallic cavity.

Being a co-linear g.ametry like the circular waveguide used in tht

experiment, staging is not quite attractive. Since we are primarily concerned

with the geometry which can permit easy staging in this investigation, the

wake fields excited in the dielectric-loaded waveguide of an elliptical cross

section are of greater interest. In this chapter, we will investigate the wake

fields excited in the dielectric-loaded elliptical waveguide. The property of

vanishing transverse wake fields is investigated for a use as a wake-field

acceleration device. We use the Fourier transform method to solve this

problem for convenience in calculations, and consequently all quantities are

treated in the frequency domain. It is also assumed that the waveguide wall

is perfectly conducting and the waveguide is filled with isotropic dielectric.

4. 2. Formulation of Solution

Consider the elliptical waveguide which is partially filled with medium

of dielectric constant e and permeability # as shown in figure 4.1. Again

the problem is solved in the confocal elliptical coordinates. The coordinate

of the waveguide wall and that of the vacuum-dielectric interface are,

respectively, = and = b. A point charge Q is assumed to move in

a vacuum with velocity v along the arbitrary line (co, r70) which is parallel

to the focus axis of an elliptical cavity. The electromagnetic fields produced

by the motion of a charge in a structure is given again by the Maxwell

equations. In this chapter, we use cgs units.

The Maxwell equations are
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Y

"dielectric E,P

metal

Figure 4.1. Cross section of the elliptical waveguide

partially filled with dielectric
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VxE= 1aB (4.1)
C at'

V x H =4j + 1 _D (4.2)
C C Ot'

V. D = 4rp, (4.3)

VB = 0, (4.4)

D = eE, (4.5)

B =pH. (4.6)

The electric field E and the magnetic induction B can be written in terms

of a vector potential A and a scalar potential (p as

E = 1 aA (4.7)

B=VxA. (4.8)

In the Lorentz gage, V.A + E = 0, the Maxwell equations (4.2) and (4.3)
c at

are transformed to

V2A - C a =, (4.9)C 2 at, - C

V e/s 829 4 r
_ 9= 4-.7 (4.10)c, at 2  -EA

The charge density in the elliptical coordinates (, /,z) is given by

p =Q6(r- ro) 6(z - vt)

= (- - o) 6(1 - 1o) (z - Vt, (4.11)

where ro is the transverse coordinate of an exciting charge Q, and A is

the Jacobian relation given by
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A = a(x, y) I = -(cosh2n - cos21j), (4.12)

where h is a semi-interfocal distance as shown in figure 4.1. Through the

continuity equation, the current density becomes

J =zov, (4.13)

where z is the unit vector in the z-direction. Since the current density of

the particle has only z-component, and the metallic waveguide wall and

dielectric surface are smooth, the vector potential A has only z-component,

i.e, A = z,4. As a result, scalar and vector potentials are proportional to

each other. In fact,

Az = 1 vV. (4.14)

Therefore, we can construct a solution with the knowledge of a scalar

potential p alone. We are going to Fourier transform the inhomogeneous

wave equation (4.10) and solve in the frequency domain. In addition, the

dependence on z and t are such that all quantities depend on the combined

variable (z - vt).

First, we expand the delta functions in eq. (4.11). The well-known

Fourier expansion of d(z - vt) is34

J (z - vt) = nv Ref 0*eiIv do, (4.15)

where Re stands for the real part of the complex quantity. It is convenient

to expand d( - ito) in terms of the othogonal Mathieu functions of the first

kind, cem(, -q), as
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607l - 17o) ce,(q, -q) cem(qjo, -q), (4.16)
Mn-0

where q is given by the relation

h2  2

2q - -- (0-) (1 - epf 2 ), (4.17)

where jl=v/c. Here, we use the othogonal property of the Mathieu

function cem(Y7, -q),

1" f02" cem(q, -q) cen(Qj, -q) = 6u, (4.18)

to derive eq. (4.16), and d. is a Kronecker delta. Substituting eqs. (4.15)

and (4.16) into (4.11), the charge density becomes

P = v( - A0) j cem(q, -q) cem('o, -q) X Re fo el(z - ) dwt . (4.19)NIvA rea0v )do.( 19

Similary, the scalar potential Vp can be expanded in harmonics of the form

1 OD
,,• - ,t) = , - em (,,-q) cem(qo, -q)

X Re f eiz - 't) ( w) do). (4.20)

From the definition of Vp given by eq. (4.20), the Laplacian operator V2 in

the elliptical coordinates ( , j7,z) becomes

V2 = I z a2 2 a2 1 d2 a2 6

-A A

82  82
and the differential operators p and become

2 (02
8 2 (4.22)
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S= (W )2 (4.23)

Substituting eqs. (4.19) - (4.23) into (4.10), the equation for 1m(4, ov) is

reduced to

e + ce"Q, -q) D, _ A ()2 (1 -euP2) Om 4;Q 6 (, - co). (4.24)cem (1, -_q) 7E

Since, the Mathieu function cem(Q, -q) is a solution of the Mathieu

equation with negative q, y" + (a + 2q cos2,7)y = 0, the second term in eq.

(4.24) can be expressed in terms of parameters a, q, and j7. Finally, we

obtain the following equation for 4',( , o):

Om"( , wv) - (a + 2q cosh2) m( , o) =-4a 6(5 - 0). (4.25)

Eq. (4.25) together with (4.7), (4.8), (4.14) and (4.20) completely determines

the fields produced by the moving charge, from which we can determine

the longitudinal and transverse wake potentials.

4. 3. Wake Fields Calculation

4. 3. 1. Solution to the Boundary Value Problem

Two independent solutions of the corresponding homogeneous equation

of (4.25) are the modified Mathieu functions of the first kind Cem( , -q)

and the second kind Fek,,( . -q), which are given in Appendix A. Here,

we denote the vacuum region as region I and the dielectric medium as

region 2. Let us first find the particular solution of inhomogeneous Mathieu

equation (4.25) in the vacuum region where < b,

In region 1, we have
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E = 1, #2 : 5,

q = h (2 (1 _fp2)> 0. (4.26)

Te particular solution of eq. (4.25) can be found by using the Green

fi action technique, i.e., 4 m is continuous while the derivative of (m has a

ju~mp at 4o = . Furthermore, if we demand (D,, be finite at 4 = 0 and

vanish as 4-j o for all values of q, then the solution is

4Ominhomo A!4Q Ce,( <, -q) Fekm(4>, -q), (4.27)

DV

where subscript < (or >) is the smaller (or the bigger) of 4 and 4o, and

Dm is a Wronskian, which is independent of 4 and is a function of q only.

That is

Dm(q) = Cem(o, -q) Fekm'(4o, -q) - Ce,'(o, -q) Fekm(4o, -q)

= Cem(O, -q) Fekm'(O, -q), (4.28)

where f = df/d, and Cem'(0, -q) = 0 is used.

In order to form a complete set of solutions which satisfy all the

boundary conditions, we have to have a homogeneous solution of eq. (4.25),

which is given by

0m, homo = Cm Cem(4o, -q) Ce,(4, -q), (4.29)

where C. is an arbitrary constant. The solution of the form Fekm(4, -q) is

not considered in eq. (4.29) for the same reasons discussed in chapter 3.1.,

i.e., the product ce.(, -q) Fekm(4, -q) must satisfy two additional conditions

given by eqs. (3.11) and (3.12). We see that it is continuous but its

derivative with respect to 4 is not continuous on the interfocal line.
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Combining eqs. (4.27) and (4.29), 0m in region 1 can be written in the

form

(D.1 = [Cem( <, -q) Fel:m( >, -q)

+ Cm Cem( o, -q) Cem( , -q)]. (4.30)

In a dielectric medium ( b < < .), we have

P = 1, efl2 > 1,

h2 = A (4.31)

The solution in region 2 is simply

(D.,2 = Am Feym( , s) + Bm Cem( , s), (4.32)

where A. and Bm are arbitrary constant. We use the parameter s instead

of q in this region. Feym( ,s), the Y-type modified Mathieu function of the

second kind, is used as a second solution in (4.32) for convenience in

calculations.

The coefficients C,, Am and Bm are determined from the boundary

conditions at the metallic wall ( = .) and at the vacuum-dielectric interface

( = b). The boundary conditions are:

(i) Ez=0 at f=i ..

(ii) E. is continuous at b = .

(iii) De is continuous at =

From eqs. (4.7), (4.14) and (4.20), we see that E, and D are proportional

to



68

EZ - - - oml2  (4.33)

D - do". (4.34)

Therefore, the above boundary conditions can be written in terms of

transformed pot,.ntial (D. as

Am Feym(a,s) + B, Ce,(,s) = 0, (4.35)

(14;rQ Cem(o, -q) I [Fekm( b, -q) + C- Ce,( b, -q)]

(1 - ePi2) [Am Feym( b, s) + B. Ce.( b, s)], (4.36)

-4.'rQ Cem(o, -q) [Fek,'(b, -q) + Cm Ce,'(b, -q)]

Dmv

= e [A. Feym'( b,S) + B, Ce,'( 4 b,s)]. (4.37)

We only need to know the coefficient C, to calculate the fields in a

vacuum region. It is found to be

CM - -s Fek,'(b ,-q) m) + eq Fekm(b ,-q) q,m)
S Cem'(b ,-q) TiIm) + eq Ce,,(b ,-q) qm) (

where

qjm) - Cem( a, s) Feym(4b, S) - Ce,( b, S) Feym(a, S), (4.39)

iarn)- Ce.('a, s) Fey, '(sb, s) - Cem'(4, S) Feym( a, s). (4.40)

4. 3. 2. Longitudinal and Transverse Wake Fields

The longitudinal electric field can be calculated from the scalar poten-

tial directly. From eqs. (4.7), (4.14) and (4.20), the electric field in region

1 becomes
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Ez( , 1.z - Vt) = 4Q(I - Q) - q) ceQjo, - q) Re Pdw ho

X Cem( o, -q) (Fekm( , -q) + C'm Cem( , -q)) eiz - ) (4.41)× Dm(q) "

For a .test charge at position t = (z + zo)/c, or trailing the driving charge

by zo, the longitudinal electric field experienced by a test charge is given

by

Ez( , 1,,zo) = 2 (1 _ X cem(q, - q) cemQo, - q) Re fdco ic

X Dm(q) (Fekm( , -q) + Cm Cem( , -q)) e'-'*

E(z-).  (4.42)
M -0

This is the wake fields left by the source. The longitudinal wake potential

W., defined as the energy change of a test charge per unit driving charge,

becomes simply

W 1 LW= L- Ez dz, (4.43)
Q o

where L is the structure length.

The wake fields excited by the ultra-relativistic particle are of particular

interest. Consider the case when the particle velocity v -- c, or /5- 1. From

eq. (4.26), we see that the parameter q becomes zero as /8- 1. In this

case, we can use the following Lmiting properties of the Mathieu functions

to simplify eq. (4.42). As q -. 0, we have
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ce2-, form = 0 (4.44)
[cosmii, form 1

r1
Cem( , -q)- , form = 0 (4.45)

lcoshm?4, fr m a 1

Fekm( , -q)I-v ((y- 1n2 + + V2 Inq) (1 + V2 qcosh2) - V2 qsinh2)), form = 0

22m-2 (m - 1)! m! (4.46)

qmem , foremr1
I-1

-~ form = 0
Fekm'( , -q) " _2 2m-2 m! m! (4.47)

qm q . e for m 2: 1

Din(q) -Feko'(0, -q), form = 0 (4.48)
Fekm'(O, -q) , form Z: 1

where y in eq. (4.46) is the Euler constant.

First, let us concentrate on the monopole component, or m = 0, for

the case of v - c. Substituting eqs. (4.44) (4.48) into (4.38), the coefficient

Co for the monopole mode becomes

(1 _ p2) Co _ _ { p~ o) } (4.49)~~+ S sinh2 ,io

where IFo) and WTo) are given in eqs. (4.39) and (4.40). Substituting eq.

(4.49) into (4.42) then gives the longitudinal electric field as
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E(O) _ _ _ ill e . (4.50)S , ,zo) -) Ref di) 0O) + s sinh2b q4o)

Here, the integral involving Feko can be neglected because the integrand

involving Feko is real and has no poles when fp2 . 1. Thus it does not make

a contribution to the real part of the integral as P2, I ard it is reduced

to

(1 - 2 ) Re fodo iw e'v' -o- 0. (4.51)

The real part of the integral in eq. (4.50) comes from the contrbutions

from the poles of the integrand. The integrand is purely imaginary and the

real part can come only from the residues at the poles. From complex

analysis, we know that

f_ " 0 dw = 2 i e. (4.52)

fo dfA

From eq. (4.31), we have the relation

d ds d 2sd (453)
dW dTW ds = -- a' z.)

then the longitudinal electric field of the monopole mode can be written

as an infinite sum over all discrete harmonics as

_ _ 2 COS--o, (4.54)

where si are the roots of

qo) + S sinh2b qTo) = O. (4.55)

IS| |
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From eq. (4.31), the resonant frequencies wA are related to sA by

h 2 11), (E 1). (4.56)
4 c

Notice that there is no or ;7 dependance of E10) in eq. (4.54). It is

apparent from eq. (4.54) that there is no transverse wake fields associated

with m = 0 mode in the limit of v = c, since the transverse wake fields

are related to the transverse gradient of Ez through the Panofsky-Wenzel

theorem, eq. (2.34).

Similarly, E. for m 2 1 can be found from en. (4.42) as

E(m)  12  ) cem(q, -q) cem(lo, -q)
,71V M-0

xRe d iw Cem( o, -q) (Fekm(4, -q) + Cm Ce=( , -q)) ei'U

D=(q)

±-- (1 - fi2) ce=(,, -q) ce=(;lo, -q)

Cmx Re f'o" dw iW m Cem( o, -q) Ce=( , -q) ei". (4.57)
Dm(q)

Again, by using the limiting values given in eqs. (4.44) - (4.48), we get

(1 -Pi2) DM Cem(O, -q) Ce,( , -q) _2-(1 _ coshto cosh " (.458)
Dm~q) msinhn~b exp(M~b)

and consequently the longitudinal electric field of the multipole mode

becomes

E. ._-4Q cosmjo coshm~o X

m sinhmb exp(Mb) cosm1coshrn x (1 _2) Re f dw0 o e'--

-'0, as f -,, 1. (4.59)

Here, we found that only monopole mode (m = 0) is excited in a
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dielectric loaded elliptical waveguide in the limit of the particle velocity

v - c. The contributions from multipole modes become negligible for the

ultra-relaticistic particles because E tends to zero as y- 2.

The transverse wake fields can be calculated from the longitudin, I

wake field by using the Panofsky-Wenzel theorem, eq. (2.34):

a = V Wz = V.eEz (2.34)

where V. in the elliptical coordinates is given by

1 (4.60)V-. =" h Vsinh' + sinir/ (  + '.(.0

As discussed earlier, there is no transverse wake fields associated with

m = 0 mode because ET) is independent of the transverse coordinates

and j7. For m 0 0 modes, the transverse wake fields are found by substitut-

ing eq. (4.57) into (2.34). Again, using the limiting properties in eq. (4.64)

- (4.68), we have

a
=~Wx f V xeE2

-. constant x V.(cosmql coshm ) x (1 -P2) Re fo dw iw e'7-

-0 asl -0 1. (4.61)

We see again that in the vacuum region the transverse wake fields become

neglegible for the ultra-relativistic particles and tend to zero as y

For the driving beam with an arbitrary charge distribution of A(z), the

longitudinal electric field becomes
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E(O) _ 2_. ) I s f_ .(z)cos!-(z - zO). (4.62),h 2 id (qo) + S sinh2b= qo))

Let us consider the following two limiting cases. First, if the waveguide

is completely filled with a medium ( b = 0), then eq. (4.54) is reduced to

E<O) T_._ Ceo( a, s) Feyo(O, s) - Ceo(O, s) Feyo( , (4.63)
eh 2 . Feyo'(0,s) dCeo(.,s) I c7 z

ds

where sA are roots of Ceo( a, s) = 0. Here, Feyo'(0, s) has no pole since

Feyo'(O, s) = constant X ceo(-, s) > 0 (4.64)

for any s. When b 0 but finite, we see that the fields are little different

from those in a completely filled waveguide because

dCeo(4b, s) (4.65)

4

for !b 0. The important fact is that a charge moving close to a medium

radiates as if it were moving through a medium, and the fields in the

vacuum is not very sensitive to the vacuum-dielectric boundary conditions.

When b- , we see that both qm) andTi~pm) in eq. (4.54) become

zero. Therefore, no wake fields are generated in the perfectly conducting

smooth waveguide, as discussed previously in section 2.1.

4. 3. 3. Transition to the Dielectric-Loaded Circular Waveguide

When the boundary ellipse degenerates into a circle, we get the equa-

tion for the wake fields excited in a dielectric-loaded circular waveguide.

We can show this again by using the limiting properties of the Mathieu
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functions given in Appendix A:

Cem( , s) - Pm J(kr), (4.66)

Cem'( ,s) -pm kr Jm'(kr), (4.67)

Feym( , s) -pm Nm(kr), (4.68)

Feym'( , s) -w Pm krNm'(kr), (4.69)

cem (1, -S) "6pm COSmO, (4.70)

where pm is a constant multilpier, and Jm, Nm are respectively the Bessel

functions of the first and second kinds. The relation between s and k is

given by
h L !2 h2k2  (.1

2s 2 2(4.71)

From eq. (4.71), we have the relation

d 2 dd 2 k d 
(4.72)

If confocal ellipses with = a and = , become concentric circles of

radius r = a and r = b respectively as shown in figure 4.2, then

substituting eqs. (4.66) - (4.72) into (4.54) gives the longitudinal electric

field ERiO) excited in the dielectric-loaded circular waveguide:

Ed. =o) -)) Cosv 5 ' (4.73)cb Tq0 d V -I

where

= Jo(ka) No(kb) - Jo(kb) No(ka), (4.74)

J= o(ka) No'(kb) - Jo'(kb) No(ka), (4.75)
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which is exactly the same equation as in ref. 18. Here, J0 and No are the

zero order Bessel functions of the first kind and second kind respectively.

4. 4. Numerical Example and Discussion

As an example, the longitudinal wake potential in the dielectric- :aded

elliptical waveguide is calculated for the limiting case of v = c. The dimen-

sions of the waveguide are shown in figure 4.3, and the driving beam with

a Gaussian charge distribution of a = 5 mm is assumed. Figure 4.4 is a

plot of the longitudinal wake potential in the vacuum when the dielectric

constant is E = 2 and vacuum hole is very narrow, i.e., 4b - 0. Here, we

obtain about 40 MeV/m acceleration gradient per 1 micro-Coulomb driving

charge, while about 120 MeV/m was obtained in chapter 3 for the disk-

loaded cavity which has the same cross sectional area. We found that in

a dielectric-loaded elliptical waveguide only monopole mode (m = 0) is ex-

cited and the transverse wake fields, which exist in the disk-loaded elliptical

cavity, become zero as the particle velocity 8 -* 1. This result is very im-

portant when we consider using the dielectric-loaded waveguide as a wake-

field acceleration device. It can support high accelerating gradient, but has

no deflecting force which might lead to beam instabilities. The amplitude

of the longitudinal electric field is a function of the transverse position of

the driving beam. Since the longitudinal electric field is uniform within the

vacuum region, we can inject the driving beam and accelerated beam at

two different locations in the vacuum region so that staging becomes prac-

tical.
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Figure 4.2. Transition to the dielectric-loaded circular waveguide
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CHAPTER 1

SUMMARY AND CONCLUSIONS

Acceleration of charged particles by the wake fields produced by a

bunch of relativistic charged particles passing through the elliptical wake-field

cavities has been investigated. The expressions for the wake potentials have

been derived analytically for the disk-loaded metallic cavity and dielectric-

loaded waveguide. For the disk-loaded elliptical cavity, modal analysis

method is used under the assumption of no aperture in a cavity, and the

wake fields and wake potentials are derived in terms of the Mathieu func-

tions. It is found that these analytical results agree well with the numerical

analysis of Chin,2 in which finite difference method is used to directly solve

the Maxwell equations in the time domain. For a dielectric-loaded elliptical

cavity, the longitudinal wake potential is derived analytically using Fourier

transform method. It is shown that both disk-loaded and dielectric-loaded

cavities can support an acceleration gradient in excess of a few hundred

MeV!m. It is also found that strong transverse wake fields, which could be

useful for the FEL application as an electric wiggler, are excited in the

disk-loaded cavity, while no transverse wake fields are induced in a

dielectric-loaded cavity for the ultra-relativistic driving beam.

The idea of wake-field acceleration by means of the elliptical cavity

offers a promising way for reaching acceleration gradients of a 'ew hundred

MeV/m. The wake-field cavities discussed in the previous chapter_ do not

represent the maximum acceleration gradient that can be achieved. ".'Te lon-

gitudinal wake potential or acceleration gradient is proportional to the num-

80
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ber of particles in the driving beam, and inversely proportional to the cross

sectional area of the cavity. Taking the parameters used in example calcula-

tions, an elliptical cavity with the major axis of 5 cm and the minor axis

of 3 cm will yield 600 MeV/mn4LC. Although the transformer ratio of this

elliptical cavity is not as high, a wake-field accelerator not based on the

impedance transformation principle can be achieved by using multi-stage

scheme in which short stages are used with the driving beam which is

replaced with new one or whose energy is replenished aftei each stage. For

the elliptical cavity, we can simplify the replacement of decelerated driving

beam considerably. The need for a fast kicker, or-bending the driver beam

can be eliminated. Furthermore, the fact that the wake-field devices are

simply shaped metallic pill-boxes or waveguides partially filled with dielectric

without any frequency tuning or phasing devices make this kind of ac-

celerator unexpensive and reliable.

The limitations to achieving a high acceleration gradient should be

pointed out. The principle limitation is due to breakdown and electrical dis-

charges which may damage the metallic surface, dielectric breakdown, and

change of dielectric properties. We do not concern ourselves with this prob-

lem about which little is known yet. However, breakdown limits are con-

sidered to be less severe than any other near-field accelerating devices since

the high field strength exists only a limited area and only for a short

period of time. Another difficulty is the production of very short, high cur-

rent driving beam. A charge of 1 /uC, which corresponds to -bout 6 x 1012

electrons witila the driving beam or a peak current of nearly 60 KA, could

be achieved in the induction linac. The laser-driven photoinjector may allow

a simpler solution to this problem.
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As mentioned, we have made several simplifying assumptions in order

to obtain the analytical solutions of the wake potentials in the elliptical

cavity. Further investigations are needed on the following issues: (1) Beam

aperture effects are not considered for the disk-loaded cavity. Although we

have demonstrated that these analytical results are in good agreement with

the results of the numerical code for the cavity with small apertures, large

aperture will affect the calculation in both magnitudes and frequencies of

the wake potentials. (2) The wake fields inside a driving beam can not be

accurately calculated with this method due to the slow convergence of the

modes summation, therefore we cannot calculate the energy loss of the driv-

ing beam accurately. (3) Beam dynamics calculation and instability study due

to the transverse deflecting modes in the elliptical pill-box cavity. (4) Non-

linear effects in the dielectric. A systematic numerical study will give a bet-

ter picture of these wake fields problem.



APPENDIX A

THE MATHIEU EQUATIONS AND MATHIEU FUNCTIONS
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A. 1. Canonical Form of the Mathieu Equation

The Mathieu equation is the particular case of a linear type of the

second order differential equation with periodic coefficients, which has a

form

dI + (a - 2q cos2z)y 0, (Ni)

d?

where the parameters a and q are limited to real number, but z is usually

unrestricted. For the present, we shall confine our attention to solutions

having period , or 2;r in z. If we write i for z in eq. (A.1), it becomes

d- (a - 2q cosh2)y = 0 .(A.2)

A. 2. Periodic Solution of y" + (a - 2q cos2z)y = 0

We have two types of solutions, one is even and the other is odd

function in z. These solutions may be expressed in series forms as:

ce2n(z, q) = 2 A 9") cos2rz, (A.3)
r-O

ce2n+2(zq) = jAg.t')cos(2r+ 1)z, (A.4)
0a0

se2n+2(z, q) = 7 Br++ sin(2r+2)z, (A.5)
rmo

se2f+l(z. q) = j B?.1+i sin(2r+ 1)z, (A.6)
r-O

for n = 0, 1, 2, ... In these series, the coefficients A m) and B( m) are

functions of q. The function ce.(z, q) and sem(z, q) are respectively the even

and odd type Mathieu functions of the first kinds of integral order m. A
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few of the lowest-order Mathieu functions are plotted in figures A.1. and

A.2.

A. 3. Solution of y" - (a - 2q cosh2 )y = 0

The first solutions of eq. (A.2) are dlerived by substituting i for z in

eqs. (A.3) - (A.6). Thus, we have

Cen q) = cet( q) = n) cosh2r , (A.7)
rwo

Ce2 l+i( , q) =Ce20 +I(i , q) = 2A3"A1' cosh(2r+1)g, (A.8)
tw-o

Se2b+2(g, q) -i Se2n +2(i , q) =2B~roA2') sinh(2r+2)4, (A.9)
two

Se~n+ i( , q) =-se 2 a + (ig, q) I j B~r*-+1' sinh(2r+ 1g. (A.10)
rwo

These are defined to be modified Mathieu functions of the first kind of

integral order, and the capital letters are used to denote the modified

functions.

A. 4. Othogonality and Normalization of Mathieu Functions

The Mathieu functions of the first kinds have the property that for a

given q,

f'cem (z, q) cep(z, q) dz = ~sem (z, q) sep(z, q) dz = 0 for m * p. (A- 11)

With this othogonal property, various normalizations are possible. Here,

cemn(z, q) and sem(z, q) are normalized according to

1 ZT2 2 dZ _ x 2f~ J cen(z, q) az= f0l sein (z, q) dz = I (A. 12)
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for all real values of q. The normalization in (A.11) entails a mean squre

value of 1/2 over the interval (0, 2.7r), which is the same as that for the

circular functions. Under this normalization, the coefficients A(m) and B(m)are

given by the relatior

[Ap2)]2 + , - 1, (A.13)
r-I

j X[B2f+1)2 [r+. 2 I2 =. (A.14)
rwO r-O r0O

A. 5. Degenerate Forms of Mathieu Functions

A. 5. 1. Mathieu Functions of the First Kind

When the fundamental ellipse tends to a circle by letting h-, 0, hence

q -- 0, A~m) and B(rm) in the series tend to zero except that AVmm) - 1 and

Btm- 1, and the confocal hyperbolae become radii of the circle with

= . So, we have

Icosmi/ = cosmo for m - 1
cem(Ql, q) , - I/ for (15)

sem(rl, q) - sinmil = sinmo for m > 1. (A.16)

A. 5. 2. Modified Mathieu Functions

When a confocal ellipse of semi-major axis r tends to a circle with

this radius by letting h -- 0, - while keeping the product h cosh - r,

then a -b m2 for a function of integral order m. Consequently, eq. (A.2)

degenerate to the standard Bessel equation:

d, 2 rdr + (ki - 7)y = 0, (A.17)
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where 2q = h2 k12/2. Thus we have the following degenerate cases:

Cem ( , q) pm Jm (kir), (A. 18)

Sem( , q) sm Jm(kir), (A.19)

d
df Cem( , q) -*pm kr Jm'(kir), (A.20)

d
fSem( , q) -* sm kirlm'(kir), (A-21)

Feym( , q) - pm Ym(kir), (A.22)

T, Feym( , q) -pm kir Ym'(kir), (A23)

Ce2n(, -q) - p2s I2n(kir), (A.24)

Ce2n + 1( , - q) " s + i Ihn + i(kir), (A.25)

Se2n+l( , -q) -*p2.+11i,+lKkir), (A.26)

Se2a+2( , -q) "S 2n+2 I2,+2(klr), (A.27)

xf Fek2n( , -q) - P2n K2n(klr), (A.28)

a Fek2,+ l( , -q) - s2n+1 K2,n+ (kir), (A.29)

where pm, sm are constant multipliers, and f(x) =df(x)/dx. Feym( , q) is a

linearly independent second solution for positive q. For negative q, the

solution of the form Fekm( , -q) is usually used.

A. 6. Limiting Forms of Feym( , q) and Fekm( , -q) as q -* 0

Fey0(, q) -, - (y - In2 + + Vz lnq) (1 - V2 q cosh2) (A.30)

2 Feko( , -q)
4-T
.r- [(y - n2 + + V 2 lnq) (1 + V2 q cosh2) - V2 sinh] (A.31)

Feym( , q) - - 22 -1 r(m) r(m+1) ;- 1 q- m Cm for m > 1 (A.32)

Fekm( , -q) -V Feym( , q) for m > 1 (A.33)
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Figure A.2. Mathieu function of the first kind of odd integral order

cem(z, q) and seme(z, q)
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GLOSSARY

a Separation constant

aA(x) ector eigenfunction

A(x, t) ector potential

Am Arbitrary constant

Arm) Coefficients for the series representation of cem(q, q) and Cem(l, q)

B(x, t) Magnetic flux density

Bm Arbitrary constant

Brm) Coefficients for the series representation of sem(r7, q) and Sem( , q)

c Speed of light

cem (q, q) Even type Mathieu function of the first kind of integral order m

Cem( , q) Modified Mathieu function of the first kind of integral order m

Cm Arbitrary constant

Cm Coefficient in the longitudinal wake potential

Z m, Coefficient in the transverse wake potential

d Gap distance of an elliptical pillbox cavity

D(x, t) Electric flux density

Dm(q) Wronskian relation

Dm(q) = Cem(O, -q)Fekm'(O, -q) - Ce.'(O, -q)Fekm(O, -q)

ec Eccentricity of the boundary ellipse
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E(x, t) electric field

Fey.,( , q) Y-type Mathieu function o the second kind

Fekm( , -q) K-type Mathieu function of the second kind

h Semi-interfocal distance of an ellipse

H(x, t) Magnetic field

V -- i

J Current density

JM(X) Bessel function of the first kind of integral order m

k Wave vector

kc Transverse component of wave vector k

k, Longitudinal component of wave vector k

L length of a cavity

min(t, L/c) Minimum of t and Lic

n Unit normal vector

Nm(X) Bessel function of the second kind of integral order m

pm Constant multiplier

qa(t) Time dependent coefficients of the vector potential A(x, t)

qmn, Parameters in the Mathieu functions

Q Charge of a point source

ra Outer radius of dielectric-loaded circular cavity

r, Radius of dielectric-vacuum interface of dielectric-loaded circular cavity

ta(t) Time dependent coefficient of the scalar potential So(xt)
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ro Transverse coordinate of the driving charge

Ro Radius of a circular pillbox cavity

Re z Real part of complex number z

s Parameter related to the transverse wave number in dielectric

sem(il, q) Odd type Mathieu function of the first kind of integral order m

Sem( , q) Modified Mathieu function of the first kind of integral order m

Sm Constant multiplier

S Cross sectional area of an elliptic pillbox cavity

t Time

T Normalizing factor of the scalar eigenfunction OA

uA Normalizing factor of the vector eigenfunction aa

U.(zo) Transverse wake potential of distributed charges

U.(zo) Longitudinal wake potential of distributed charges

v elocity of a particle

V olume of a cavity

A(r) oltage induced by the driving charge at the transverse position r

W±(zo) Delta function transverse wake potential

W(z0) Delta function longitudinal wake potential

x Spatial coordinates

(x, y, z) Cartesian Coordinates

Xb Semi-major axis of the boundary ellipse
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YSemi-minor axis of the boundary ellipse

Z Unit vector in z-direction

zo Delay distance between the driving and test charge

pl Normalized velocity P = v/c

Xce nth root of Bessel function Jo(x)

d'u. Kronecker delta

A Jacobian A = a(x, )

e Permittivity of dielectric

eo Permittivity of vacuum

EP 1/2 forp = 0and 1 forp *0

OA(x) Scalar eigenfunctions

'm( , w) Scalar potential in the frequency domain

(P(x, t) Scalar potential

Y Relativistic factor y = (1 _ p2)-1/2

A(z) Line charge density of the driving bunch

14 Permeability of dielectric

."o Permeability of vacuum

p Charge density

a rms length of a Gaussian bunch

WA Resonant frequencies

(, z) Confocal elliptical coordinates

I I
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Sat the boundary ellipse

b at the dielectric-vacuum interface

(o o70) Transverse coordinates of the driving charge


